1 /*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 #include <linux/numa.h>
21
22 #define EDAC_DEVICE_NAME_LEN 31
23
24 struct device;
25
26 #define EDAC_OPSTATE_INVAL -1
27 #define EDAC_OPSTATE_POLL 0
28 #define EDAC_OPSTATE_NMI 1
29 #define EDAC_OPSTATE_INT 2
30
31 extern int edac_op_state;
32
33 struct bus_type *edac_get_sysfs_subsys(void);
34
opstate_init(void)35 static inline void opstate_init(void)
36 {
37 switch (edac_op_state) {
38 case EDAC_OPSTATE_POLL:
39 case EDAC_OPSTATE_NMI:
40 break;
41 default:
42 edac_op_state = EDAC_OPSTATE_POLL;
43 }
44 return;
45 }
46
47 /* Max length of a DIMM label*/
48 #define EDAC_MC_LABEL_LEN 31
49
50 /* Maximum size of the location string */
51 #define LOCATION_SIZE 256
52
53 /* Defines the maximum number of labels that can be reported */
54 #define EDAC_MAX_LABELS 8
55
56 /* String used to join two or more labels */
57 #define OTHER_LABEL " or "
58
59 /**
60 * enum dev_type - describe the type of memory DRAM chips used at the stick
61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
62 * @DEV_X1: 1 bit for data
63 * @DEV_X2: 2 bits for data
64 * @DEV_X4: 4 bits for data
65 * @DEV_X8: 8 bits for data
66 * @DEV_X16: 16 bits for data
67 * @DEV_X32: 32 bits for data
68 * @DEV_X64: 64 bits for data
69 *
70 * Typical values are x4 and x8.
71 */
72 enum dev_type {
73 DEV_UNKNOWN = 0,
74 DEV_X1,
75 DEV_X2,
76 DEV_X4,
77 DEV_X8,
78 DEV_X16,
79 DEV_X32, /* Do these parts exist? */
80 DEV_X64 /* Do these parts exist? */
81 };
82
83 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
84 #define DEV_FLAG_X1 BIT(DEV_X1)
85 #define DEV_FLAG_X2 BIT(DEV_X2)
86 #define DEV_FLAG_X4 BIT(DEV_X4)
87 #define DEV_FLAG_X8 BIT(DEV_X8)
88 #define DEV_FLAG_X16 BIT(DEV_X16)
89 #define DEV_FLAG_X32 BIT(DEV_X32)
90 #define DEV_FLAG_X64 BIT(DEV_X64)
91
92 /**
93 * enum hw_event_mc_err_type - type of the detected error
94 *
95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
96 * corrected error was detected
97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
98 * can't be corrected by ECC, but it is not
99 * fatal (maybe it is on an unused memory area,
100 * or the memory controller could recover from
101 * it for example, by re-trying the operation).
102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
103 * error whose handling is not urgent. This could
104 * be due to hardware data poisoning where the
105 * system can continue operation until the poisoned
106 * data is consumed. Preemptive measures may also
107 * be taken, e.g. offlining pages, etc.
108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
109 * be recovered.
110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
111 * type of error: informational logs.
112 */
113 enum hw_event_mc_err_type {
114 HW_EVENT_ERR_CORRECTED,
115 HW_EVENT_ERR_UNCORRECTED,
116 HW_EVENT_ERR_DEFERRED,
117 HW_EVENT_ERR_FATAL,
118 HW_EVENT_ERR_INFO,
119 };
120
mc_event_error_type(const unsigned int err_type)121 static inline char *mc_event_error_type(const unsigned int err_type)
122 {
123 switch (err_type) {
124 case HW_EVENT_ERR_CORRECTED:
125 return "Corrected";
126 case HW_EVENT_ERR_UNCORRECTED:
127 return "Uncorrected";
128 case HW_EVENT_ERR_DEFERRED:
129 return "Deferred";
130 case HW_EVENT_ERR_FATAL:
131 return "Fatal";
132 default:
133 case HW_EVENT_ERR_INFO:
134 return "Info";
135 }
136 }
137
138 /**
139 * enum mem_type - memory types. For a more detailed reference, please see
140 * http://en.wikipedia.org/wiki/DRAM
141 *
142 * @MEM_EMPTY: Empty csrow
143 * @MEM_RESERVED: Reserved csrow type
144 * @MEM_UNKNOWN: Unknown csrow type
145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
148 * @MEM_SDR: SDR - Single data rate SDRAM
149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
150 * They use 3 pins for chip select: Pins 0 and 2 are
151 * for rank 0; pins 1 and 3 are for rank 1, if the memory
152 * is dual-rank.
153 * @MEM_RDR: Registered SDR SDRAM
154 * @MEM_DDR: Double data rate SDRAM
155 * http://en.wikipedia.org/wiki/DDR_SDRAM
156 * @MEM_RDDR: Registered Double data rate SDRAM
157 * This is a variant of the DDR memories.
158 * A registered memory has a buffer inside it, hiding
159 * part of the memory details to the memory controller.
160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
162 * Those memories are labeled as "PC2-" instead of "PC" to
163 * differentiate from DDR.
164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
165 * and JESD206.
166 * Those memories are accessed per DIMM slot, and not by
167 * a chip select signal.
168 * @MEM_RDDR2: Registered DDR2 RAM
169 * This is a variant of the DDR2 memories.
170 * @MEM_XDR: Rambus XDR
171 * It is an evolution of the original RAMBUS memories,
172 * created to compete with DDR2. Weren't used on any
173 * x86 arch, but cell_edac PPC memory controller uses it.
174 * @MEM_DDR3: DDR3 RAM
175 * @MEM_RDDR3: Registered DDR3 RAM
176 * This is a variant of the DDR3 memories.
177 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
178 * @MEM_LPDDR3: Low-Power DDR3 memory.
179 * @MEM_DDR4: Unbuffered DDR4 RAM
180 * @MEM_RDDR4: Registered DDR4 RAM
181 * This is a variant of the DDR4 memories.
182 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
183 * @MEM_LPDDR4: Low-Power DDR4 memory.
184 * @MEM_DDR5: Unbuffered DDR5 RAM
185 * @MEM_RDDR5: Registered DDR5 RAM
186 * @MEM_LRDDR5: Load-Reduced DDR5 memory.
187 * @MEM_NVDIMM: Non-volatile RAM
188 * @MEM_WIO2: Wide I/O 2.
189 * @MEM_HBM2: High bandwidth Memory Gen 2.
190 */
191 enum mem_type {
192 MEM_EMPTY = 0,
193 MEM_RESERVED,
194 MEM_UNKNOWN,
195 MEM_FPM,
196 MEM_EDO,
197 MEM_BEDO,
198 MEM_SDR,
199 MEM_RDR,
200 MEM_DDR,
201 MEM_RDDR,
202 MEM_RMBS,
203 MEM_DDR2,
204 MEM_FB_DDR2,
205 MEM_RDDR2,
206 MEM_XDR,
207 MEM_DDR3,
208 MEM_RDDR3,
209 MEM_LRDDR3,
210 MEM_LPDDR3,
211 MEM_DDR4,
212 MEM_RDDR4,
213 MEM_LRDDR4,
214 MEM_LPDDR4,
215 MEM_DDR5,
216 MEM_RDDR5,
217 MEM_LRDDR5,
218 MEM_NVDIMM,
219 MEM_WIO2,
220 MEM_HBM2,
221 };
222
223 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
224 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
225 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
226 #define MEM_FLAG_FPM BIT(MEM_FPM)
227 #define MEM_FLAG_EDO BIT(MEM_EDO)
228 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
229 #define MEM_FLAG_SDR BIT(MEM_SDR)
230 #define MEM_FLAG_RDR BIT(MEM_RDR)
231 #define MEM_FLAG_DDR BIT(MEM_DDR)
232 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
233 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
234 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
235 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
236 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
237 #define MEM_FLAG_XDR BIT(MEM_XDR)
238 #define MEM_FLAG_DDR3 BIT(MEM_DDR3)
239 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
240 #define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3)
241 #define MEM_FLAG_DDR4 BIT(MEM_DDR4)
242 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
243 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
244 #define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4)
245 #define MEM_FLAG_DDR5 BIT(MEM_DDR5)
246 #define MEM_FLAG_RDDR5 BIT(MEM_RDDR5)
247 #define MEM_FLAG_LRDDR5 BIT(MEM_LRDDR5)
248 #define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM)
249 #define MEM_FLAG_WIO2 BIT(MEM_WIO2)
250 #define MEM_FLAG_HBM2 BIT(MEM_HBM2)
251
252 /**
253 * enum edac_type - Error Detection and Correction capabilities and mode
254 * @EDAC_UNKNOWN: Unknown if ECC is available
255 * @EDAC_NONE: Doesn't support ECC
256 * @EDAC_RESERVED: Reserved ECC type
257 * @EDAC_PARITY: Detects parity errors
258 * @EDAC_EC: Error Checking - no correction
259 * @EDAC_SECDED: Single bit error correction, Double detection
260 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
261 * @EDAC_S4ECD4ED: Chipkill x4 devices
262 * @EDAC_S8ECD8ED: Chipkill x8 devices
263 * @EDAC_S16ECD16ED: Chipkill x16 devices
264 */
265 enum edac_type {
266 EDAC_UNKNOWN = 0,
267 EDAC_NONE,
268 EDAC_RESERVED,
269 EDAC_PARITY,
270 EDAC_EC,
271 EDAC_SECDED,
272 EDAC_S2ECD2ED,
273 EDAC_S4ECD4ED,
274 EDAC_S8ECD8ED,
275 EDAC_S16ECD16ED,
276 };
277
278 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
279 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
280 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
281 #define EDAC_FLAG_EC BIT(EDAC_EC)
282 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
283 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
284 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
285 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
286 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
287
288 /**
289 * enum scrub_type - scrubbing capabilities
290 * @SCRUB_UNKNOWN: Unknown if scrubber is available
291 * @SCRUB_NONE: No scrubber
292 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
293 * @SCRUB_SW_SRC: Software scrub only errors
294 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
295 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
296 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
297 * @SCRUB_HW_SRC: Hardware scrub only errors
298 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
299 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
300 */
301 enum scrub_type {
302 SCRUB_UNKNOWN = 0,
303 SCRUB_NONE,
304 SCRUB_SW_PROG,
305 SCRUB_SW_SRC,
306 SCRUB_SW_PROG_SRC,
307 SCRUB_SW_TUNABLE,
308 SCRUB_HW_PROG,
309 SCRUB_HW_SRC,
310 SCRUB_HW_PROG_SRC,
311 SCRUB_HW_TUNABLE
312 };
313
314 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
315 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
316 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
317 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
318 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
319 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
320 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
321 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
322
323 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
324
325 /* EDAC internal operation states */
326 #define OP_ALLOC 0x100
327 #define OP_RUNNING_POLL 0x201
328 #define OP_RUNNING_INTERRUPT 0x202
329 #define OP_RUNNING_POLL_INTR 0x203
330 #define OP_OFFLINE 0x300
331
332 /**
333 * enum edac_mc_layer_type - memory controller hierarchy layer
334 *
335 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
336 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
337 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
338 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
339 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
340 * as a single memory area. This is used when
341 * retrieving errors from a firmware driven driver.
342 *
343 * This enum is used by the drivers to tell edac_mc_sysfs what name should
344 * be used when describing a memory stick location.
345 */
346 enum edac_mc_layer_type {
347 EDAC_MC_LAYER_BRANCH,
348 EDAC_MC_LAYER_CHANNEL,
349 EDAC_MC_LAYER_SLOT,
350 EDAC_MC_LAYER_CHIP_SELECT,
351 EDAC_MC_LAYER_ALL_MEM,
352 };
353
354 /**
355 * struct edac_mc_layer - describes the memory controller hierarchy
356 * @type: layer type
357 * @size: number of components per layer. For example,
358 * if the channel layer has two channels, size = 2
359 * @is_virt_csrow: This layer is part of the "csrow" when old API
360 * compatibility mode is enabled. Otherwise, it is
361 * a channel
362 */
363 struct edac_mc_layer {
364 enum edac_mc_layer_type type;
365 unsigned size;
366 bool is_virt_csrow;
367 };
368
369 /*
370 * Maximum number of layers used by the memory controller to uniquely
371 * identify a single memory stick.
372 * NOTE: Changing this constant requires not only to change the constant
373 * below, but also to change the existing code at the core, as there are
374 * some code there that are optimized for 3 layers.
375 */
376 #define EDAC_MAX_LAYERS 3
377
378 struct dimm_info {
379 struct device dev;
380
381 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
382
383 /* Memory location data */
384 unsigned int location[EDAC_MAX_LAYERS];
385
386 struct mem_ctl_info *mci; /* the parent */
387 unsigned int idx; /* index within the parent dimm array */
388
389 u32 grain; /* granularity of reported error in bytes */
390 enum dev_type dtype; /* memory device type */
391 enum mem_type mtype; /* memory dimm type */
392 enum edac_type edac_mode; /* EDAC mode for this dimm */
393
394 u32 nr_pages; /* number of pages on this dimm */
395
396 unsigned int csrow, cschannel; /* Points to the old API data */
397
398 u16 smbios_handle; /* Handle for SMBIOS type 17 */
399
400 u32 ce_count;
401 u32 ue_count;
402 };
403
404 /**
405 * struct rank_info - contains the information for one DIMM rank
406 *
407 * @chan_idx: channel number where the rank is (typically, 0 or 1)
408 * @ce_count: number of correctable errors for this rank
409 * @csrow: A pointer to the chip select row structure (the parent
410 * structure). The location of the rank is given by
411 * the (csrow->csrow_idx, chan_idx) vector.
412 * @dimm: A pointer to the DIMM structure, where the DIMM label
413 * information is stored.
414 *
415 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
416 * This is a bad assumption, but it makes this patch easier. Later
417 * patches in this series will fix this issue.
418 */
419 struct rank_info {
420 int chan_idx;
421 struct csrow_info *csrow;
422 struct dimm_info *dimm;
423
424 u32 ce_count; /* Correctable Errors for this csrow */
425 };
426
427 struct csrow_info {
428 struct device dev;
429
430 /* Used only by edac_mc_find_csrow_by_page() */
431 unsigned long first_page; /* first page number in csrow */
432 unsigned long last_page; /* last page number in csrow */
433 unsigned long page_mask; /* used for interleaving -
434 * 0UL for non intlv */
435
436 int csrow_idx; /* the chip-select row */
437
438 u32 ue_count; /* Uncorrectable Errors for this csrow */
439 u32 ce_count; /* Correctable Errors for this csrow */
440
441 struct mem_ctl_info *mci; /* the parent */
442
443 /* channel information for this csrow */
444 u32 nr_channels;
445 struct rank_info **channels;
446 };
447
448 /*
449 * struct errcount_attribute - used to store the several error counts
450 */
451 struct errcount_attribute_data {
452 int n_layers;
453 int pos[EDAC_MAX_LAYERS];
454 int layer0, layer1, layer2;
455 };
456
457 /**
458 * struct edac_raw_error_desc - Raw error report structure
459 * @grain: minimum granularity for an error report, in bytes
460 * @error_count: number of errors of the same type
461 * @type: severity of the error (CE/UE/Fatal)
462 * @top_layer: top layer of the error (layer[0])
463 * @mid_layer: middle layer of the error (layer[1])
464 * @low_layer: low layer of the error (layer[2])
465 * @page_frame_number: page where the error happened
466 * @offset_in_page: page offset
467 * @syndrome: syndrome of the error (or 0 if unknown or if
468 * the syndrome is not applicable)
469 * @msg: error message
470 * @location: location of the error
471 * @label: label of the affected DIMM(s)
472 * @other_detail: other driver-specific detail about the error
473 */
474 struct edac_raw_error_desc {
475 char location[LOCATION_SIZE];
476 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
477 long grain;
478
479 u16 error_count;
480 enum hw_event_mc_err_type type;
481 int top_layer;
482 int mid_layer;
483 int low_layer;
484 unsigned long page_frame_number;
485 unsigned long offset_in_page;
486 unsigned long syndrome;
487 const char *msg;
488 const char *other_detail;
489 };
490
491 /* MEMORY controller information structure
492 */
493 struct mem_ctl_info {
494 struct device dev;
495 struct bus_type *bus;
496
497 struct list_head link; /* for global list of mem_ctl_info structs */
498
499 struct module *owner; /* Module owner of this control struct */
500
501 unsigned long mtype_cap; /* memory types supported by mc */
502 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
503 unsigned long edac_cap; /* configuration capabilities - this is
504 * closely related to edac_ctl_cap. The
505 * difference is that the controller may be
506 * capable of s4ecd4ed which would be listed
507 * in edac_ctl_cap, but if channels aren't
508 * capable of s4ecd4ed then the edac_cap would
509 * not have that capability.
510 */
511 unsigned long scrub_cap; /* chipset scrub capabilities */
512 enum scrub_type scrub_mode; /* current scrub mode */
513
514 /* Translates sdram memory scrub rate given in bytes/sec to the
515 internal representation and configures whatever else needs
516 to be configured.
517 */
518 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
519
520 /* Get the current sdram memory scrub rate from the internal
521 representation and converts it to the closest matching
522 bandwidth in bytes/sec.
523 */
524 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
525
526
527 /* pointer to edac checking routine */
528 void (*edac_check) (struct mem_ctl_info * mci);
529
530 /*
531 * Remaps memory pages: controller pages to physical pages.
532 * For most MC's, this will be NULL.
533 */
534 /* FIXME - why not send the phys page to begin with? */
535 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
536 unsigned long page);
537 int mc_idx;
538 struct csrow_info **csrows;
539 unsigned int nr_csrows, num_cschannel;
540
541 /*
542 * Memory Controller hierarchy
543 *
544 * There are basically two types of memory controller: the ones that
545 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
546 * All old memory controllers enumerate memories per rank, but most
547 * of the recent drivers enumerate memories per DIMM, instead.
548 * When the memory controller is per rank, csbased is true.
549 */
550 unsigned int n_layers;
551 struct edac_mc_layer *layers;
552 bool csbased;
553
554 /*
555 * DIMM info. Will eventually remove the entire csrows_info some day
556 */
557 unsigned int tot_dimms;
558 struct dimm_info **dimms;
559
560 /*
561 * FIXME - what about controllers on other busses? - IDs must be
562 * unique. dev pointer should be sufficiently unique, but
563 * BUS:SLOT.FUNC numbers may not be unique.
564 */
565 struct device *pdev;
566 const char *mod_name;
567 const char *ctl_name;
568 const char *dev_name;
569 void *pvt_info;
570 unsigned long start_time; /* mci load start time (in jiffies) */
571
572 /*
573 * drivers shouldn't access those fields directly, as the core
574 * already handles that.
575 */
576 u32 ce_noinfo_count, ue_noinfo_count;
577 u32 ue_mc, ce_mc;
578
579 struct completion complete;
580
581 /* Additional top controller level attributes, but specified
582 * by the low level driver.
583 *
584 * Set by the low level driver to provide attributes at the
585 * controller level.
586 * An array of structures, NULL terminated
587 *
588 * If attributes are desired, then set to array of attributes
589 * If no attributes are desired, leave NULL
590 */
591 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
592
593 /* work struct for this MC */
594 struct delayed_work work;
595
596 /*
597 * Used to report an error - by being at the global struct
598 * makes the memory allocated by the EDAC core
599 */
600 struct edac_raw_error_desc error_desc;
601
602 /* the internal state of this controller instance */
603 int op_state;
604
605 struct dentry *debugfs;
606 u8 fake_inject_layer[EDAC_MAX_LAYERS];
607 bool fake_inject_ue;
608 u16 fake_inject_count;
609 };
610
611 #define mci_for_each_dimm(mci, dimm) \
612 for ((dimm) = (mci)->dimms[0]; \
613 (dimm); \
614 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \
615 ? (mci)->dimms[(dimm)->idx + 1] \
616 : NULL)
617
618 /**
619 * edac_get_dimm - Get DIMM info from a memory controller given by
620 * [layer0,layer1,layer2] position
621 *
622 * @mci: MC descriptor struct mem_ctl_info
623 * @layer0: layer0 position
624 * @layer1: layer1 position. Unused if n_layers < 2
625 * @layer2: layer2 position. Unused if n_layers < 3
626 *
627 * For 1 layer, this function returns "dimms[layer0]";
628 *
629 * For 2 layers, this function is similar to allocating a two-dimensional
630 * array and returning "dimms[layer0][layer1]";
631 *
632 * For 3 layers, this function is similar to allocating a tri-dimensional
633 * array and returning "dimms[layer0][layer1][layer2]";
634 */
edac_get_dimm(struct mem_ctl_info * mci,int layer0,int layer1,int layer2)635 static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci,
636 int layer0, int layer1, int layer2)
637 {
638 int index;
639
640 if (layer0 < 0
641 || (mci->n_layers > 1 && layer1 < 0)
642 || (mci->n_layers > 2 && layer2 < 0))
643 return NULL;
644
645 index = layer0;
646
647 if (mci->n_layers > 1)
648 index = index * mci->layers[1].size + layer1;
649
650 if (mci->n_layers > 2)
651 index = index * mci->layers[2].size + layer2;
652
653 if (index < 0 || index >= mci->tot_dimms)
654 return NULL;
655
656 if (WARN_ON_ONCE(mci->dimms[index]->idx != index))
657 return NULL;
658
659 return mci->dimms[index];
660 }
661 #endif /* _LINUX_EDAC_H_ */
662