1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2017 Broadcom
3
4 /*
5 * Broadcom FlexRM Mailbox Driver
6 *
7 * Each Broadcom FlexSparx4 offload engine is implemented as an
8 * extension to Broadcom FlexRM ring manager. The FlexRM ring
9 * manager provides a set of rings which can be used to submit
10 * work to a FlexSparx4 offload engine.
11 *
12 * This driver creates a mailbox controller using a set of FlexRM
13 * rings where each mailbox channel represents a separate FlexRM ring.
14 */
15
16 #include <asm/barrier.h>
17 #include <asm/byteorder.h>
18 #include <linux/atomic.h>
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mailbox_controller.h>
29 #include <linux/mailbox_client.h>
30 #include <linux/mailbox/brcm-message.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/spinlock.h>
37
38 /* ====== FlexRM register defines ===== */
39
40 /* FlexRM configuration */
41 #define RING_REGS_SIZE 0x10000
42 #define RING_DESC_SIZE 8
43 #define RING_DESC_INDEX(offset) \
44 ((offset) / RING_DESC_SIZE)
45 #define RING_DESC_OFFSET(index) \
46 ((index) * RING_DESC_SIZE)
47 #define RING_MAX_REQ_COUNT 1024
48 #define RING_BD_ALIGN_ORDER 12
49 #define RING_BD_ALIGN_CHECK(addr) \
50 (!((addr) & ((0x1 << RING_BD_ALIGN_ORDER) - 1)))
51 #define RING_BD_TOGGLE_INVALID(offset) \
52 (((offset) >> RING_BD_ALIGN_ORDER) & 0x1)
53 #define RING_BD_TOGGLE_VALID(offset) \
54 (!RING_BD_TOGGLE_INVALID(offset))
55 #define RING_BD_DESC_PER_REQ 32
56 #define RING_BD_DESC_COUNT \
57 (RING_MAX_REQ_COUNT * RING_BD_DESC_PER_REQ)
58 #define RING_BD_SIZE \
59 (RING_BD_DESC_COUNT * RING_DESC_SIZE)
60 #define RING_CMPL_ALIGN_ORDER 13
61 #define RING_CMPL_DESC_COUNT RING_MAX_REQ_COUNT
62 #define RING_CMPL_SIZE \
63 (RING_CMPL_DESC_COUNT * RING_DESC_SIZE)
64 #define RING_VER_MAGIC 0x76303031
65
66 /* Per-Ring register offsets */
67 #define RING_VER 0x000
68 #define RING_BD_START_ADDR 0x004
69 #define RING_BD_READ_PTR 0x008
70 #define RING_BD_WRITE_PTR 0x00c
71 #define RING_BD_READ_PTR_DDR_LS 0x010
72 #define RING_BD_READ_PTR_DDR_MS 0x014
73 #define RING_CMPL_START_ADDR 0x018
74 #define RING_CMPL_WRITE_PTR 0x01c
75 #define RING_NUM_REQ_RECV_LS 0x020
76 #define RING_NUM_REQ_RECV_MS 0x024
77 #define RING_NUM_REQ_TRANS_LS 0x028
78 #define RING_NUM_REQ_TRANS_MS 0x02c
79 #define RING_NUM_REQ_OUTSTAND 0x030
80 #define RING_CONTROL 0x034
81 #define RING_FLUSH_DONE 0x038
82 #define RING_MSI_ADDR_LS 0x03c
83 #define RING_MSI_ADDR_MS 0x040
84 #define RING_MSI_CONTROL 0x048
85 #define RING_BD_READ_PTR_DDR_CONTROL 0x04c
86 #define RING_MSI_DATA_VALUE 0x064
87
88 /* Register RING_BD_START_ADDR fields */
89 #define BD_LAST_UPDATE_HW_SHIFT 28
90 #define BD_LAST_UPDATE_HW_MASK 0x1
91 #define BD_START_ADDR_VALUE(pa) \
92 ((u32)((((dma_addr_t)(pa)) >> RING_BD_ALIGN_ORDER) & 0x0fffffff))
93 #define BD_START_ADDR_DECODE(val) \
94 ((dma_addr_t)((val) & 0x0fffffff) << RING_BD_ALIGN_ORDER)
95
96 /* Register RING_CMPL_START_ADDR fields */
97 #define CMPL_START_ADDR_VALUE(pa) \
98 ((u32)((((u64)(pa)) >> RING_CMPL_ALIGN_ORDER) & 0x07ffffff))
99
100 /* Register RING_CONTROL fields */
101 #define CONTROL_MASK_DISABLE_CONTROL 12
102 #define CONTROL_FLUSH_SHIFT 5
103 #define CONTROL_ACTIVE_SHIFT 4
104 #define CONTROL_RATE_ADAPT_MASK 0xf
105 #define CONTROL_RATE_DYNAMIC 0x0
106 #define CONTROL_RATE_FAST 0x8
107 #define CONTROL_RATE_MEDIUM 0x9
108 #define CONTROL_RATE_SLOW 0xa
109 #define CONTROL_RATE_IDLE 0xb
110
111 /* Register RING_FLUSH_DONE fields */
112 #define FLUSH_DONE_MASK 0x1
113
114 /* Register RING_MSI_CONTROL fields */
115 #define MSI_TIMER_VAL_SHIFT 16
116 #define MSI_TIMER_VAL_MASK 0xffff
117 #define MSI_ENABLE_SHIFT 15
118 #define MSI_ENABLE_MASK 0x1
119 #define MSI_COUNT_SHIFT 0
120 #define MSI_COUNT_MASK 0x3ff
121
122 /* Register RING_BD_READ_PTR_DDR_CONTROL fields */
123 #define BD_READ_PTR_DDR_TIMER_VAL_SHIFT 16
124 #define BD_READ_PTR_DDR_TIMER_VAL_MASK 0xffff
125 #define BD_READ_PTR_DDR_ENABLE_SHIFT 15
126 #define BD_READ_PTR_DDR_ENABLE_MASK 0x1
127
128 /* ====== FlexRM ring descriptor defines ===== */
129
130 /* Completion descriptor format */
131 #define CMPL_OPAQUE_SHIFT 0
132 #define CMPL_OPAQUE_MASK 0xffff
133 #define CMPL_ENGINE_STATUS_SHIFT 16
134 #define CMPL_ENGINE_STATUS_MASK 0xffff
135 #define CMPL_DME_STATUS_SHIFT 32
136 #define CMPL_DME_STATUS_MASK 0xffff
137 #define CMPL_RM_STATUS_SHIFT 48
138 #define CMPL_RM_STATUS_MASK 0xffff
139
140 /* Completion DME status code */
141 #define DME_STATUS_MEM_COR_ERR BIT(0)
142 #define DME_STATUS_MEM_UCOR_ERR BIT(1)
143 #define DME_STATUS_FIFO_UNDERFLOW BIT(2)
144 #define DME_STATUS_FIFO_OVERFLOW BIT(3)
145 #define DME_STATUS_RRESP_ERR BIT(4)
146 #define DME_STATUS_BRESP_ERR BIT(5)
147 #define DME_STATUS_ERROR_MASK (DME_STATUS_MEM_COR_ERR | \
148 DME_STATUS_MEM_UCOR_ERR | \
149 DME_STATUS_FIFO_UNDERFLOW | \
150 DME_STATUS_FIFO_OVERFLOW | \
151 DME_STATUS_RRESP_ERR | \
152 DME_STATUS_BRESP_ERR)
153
154 /* Completion RM status code */
155 #define RM_STATUS_CODE_SHIFT 0
156 #define RM_STATUS_CODE_MASK 0x3ff
157 #define RM_STATUS_CODE_GOOD 0x0
158 #define RM_STATUS_CODE_AE_TIMEOUT 0x3ff
159
160 /* General descriptor format */
161 #define DESC_TYPE_SHIFT 60
162 #define DESC_TYPE_MASK 0xf
163 #define DESC_PAYLOAD_SHIFT 0
164 #define DESC_PAYLOAD_MASK 0x0fffffffffffffff
165
166 /* Null descriptor format */
167 #define NULL_TYPE 0
168 #define NULL_TOGGLE_SHIFT 58
169 #define NULL_TOGGLE_MASK 0x1
170
171 /* Header descriptor format */
172 #define HEADER_TYPE 1
173 #define HEADER_TOGGLE_SHIFT 58
174 #define HEADER_TOGGLE_MASK 0x1
175 #define HEADER_ENDPKT_SHIFT 57
176 #define HEADER_ENDPKT_MASK 0x1
177 #define HEADER_STARTPKT_SHIFT 56
178 #define HEADER_STARTPKT_MASK 0x1
179 #define HEADER_BDCOUNT_SHIFT 36
180 #define HEADER_BDCOUNT_MASK 0x1f
181 #define HEADER_BDCOUNT_MAX HEADER_BDCOUNT_MASK
182 #define HEADER_FLAGS_SHIFT 16
183 #define HEADER_FLAGS_MASK 0xffff
184 #define HEADER_OPAQUE_SHIFT 0
185 #define HEADER_OPAQUE_MASK 0xffff
186
187 /* Source (SRC) descriptor format */
188 #define SRC_TYPE 2
189 #define SRC_LENGTH_SHIFT 44
190 #define SRC_LENGTH_MASK 0xffff
191 #define SRC_ADDR_SHIFT 0
192 #define SRC_ADDR_MASK 0x00000fffffffffff
193
194 /* Destination (DST) descriptor format */
195 #define DST_TYPE 3
196 #define DST_LENGTH_SHIFT 44
197 #define DST_LENGTH_MASK 0xffff
198 #define DST_ADDR_SHIFT 0
199 #define DST_ADDR_MASK 0x00000fffffffffff
200
201 /* Immediate (IMM) descriptor format */
202 #define IMM_TYPE 4
203 #define IMM_DATA_SHIFT 0
204 #define IMM_DATA_MASK 0x0fffffffffffffff
205
206 /* Next pointer (NPTR) descriptor format */
207 #define NPTR_TYPE 5
208 #define NPTR_TOGGLE_SHIFT 58
209 #define NPTR_TOGGLE_MASK 0x1
210 #define NPTR_ADDR_SHIFT 0
211 #define NPTR_ADDR_MASK 0x00000fffffffffff
212
213 /* Mega source (MSRC) descriptor format */
214 #define MSRC_TYPE 6
215 #define MSRC_LENGTH_SHIFT 44
216 #define MSRC_LENGTH_MASK 0xffff
217 #define MSRC_ADDR_SHIFT 0
218 #define MSRC_ADDR_MASK 0x00000fffffffffff
219
220 /* Mega destination (MDST) descriptor format */
221 #define MDST_TYPE 7
222 #define MDST_LENGTH_SHIFT 44
223 #define MDST_LENGTH_MASK 0xffff
224 #define MDST_ADDR_SHIFT 0
225 #define MDST_ADDR_MASK 0x00000fffffffffff
226
227 /* Source with tlast (SRCT) descriptor format */
228 #define SRCT_TYPE 8
229 #define SRCT_LENGTH_SHIFT 44
230 #define SRCT_LENGTH_MASK 0xffff
231 #define SRCT_ADDR_SHIFT 0
232 #define SRCT_ADDR_MASK 0x00000fffffffffff
233
234 /* Destination with tlast (DSTT) descriptor format */
235 #define DSTT_TYPE 9
236 #define DSTT_LENGTH_SHIFT 44
237 #define DSTT_LENGTH_MASK 0xffff
238 #define DSTT_ADDR_SHIFT 0
239 #define DSTT_ADDR_MASK 0x00000fffffffffff
240
241 /* Immediate with tlast (IMMT) descriptor format */
242 #define IMMT_TYPE 10
243 #define IMMT_DATA_SHIFT 0
244 #define IMMT_DATA_MASK 0x0fffffffffffffff
245
246 /* Descriptor helper macros */
247 #define DESC_DEC(_d, _s, _m) (((_d) >> (_s)) & (_m))
248 #define DESC_ENC(_d, _v, _s, _m) \
249 do { \
250 (_d) &= ~((u64)(_m) << (_s)); \
251 (_d) |= (((u64)(_v) & (_m)) << (_s)); \
252 } while (0)
253
254 /* ====== FlexRM data structures ===== */
255
256 struct flexrm_ring {
257 /* Unprotected members */
258 int num;
259 struct flexrm_mbox *mbox;
260 void __iomem *regs;
261 bool irq_requested;
262 unsigned int irq;
263 cpumask_t irq_aff_hint;
264 unsigned int msi_timer_val;
265 unsigned int msi_count_threshold;
266 struct brcm_message *requests[RING_MAX_REQ_COUNT];
267 void *bd_base;
268 dma_addr_t bd_dma_base;
269 u32 bd_write_offset;
270 void *cmpl_base;
271 dma_addr_t cmpl_dma_base;
272 /* Atomic stats */
273 atomic_t msg_send_count;
274 atomic_t msg_cmpl_count;
275 /* Protected members */
276 spinlock_t lock;
277 DECLARE_BITMAP(requests_bmap, RING_MAX_REQ_COUNT);
278 u32 cmpl_read_offset;
279 };
280
281 struct flexrm_mbox {
282 struct device *dev;
283 void __iomem *regs;
284 u32 num_rings;
285 struct flexrm_ring *rings;
286 struct dma_pool *bd_pool;
287 struct dma_pool *cmpl_pool;
288 struct dentry *root;
289 struct mbox_controller controller;
290 };
291
292 /* ====== FlexRM ring descriptor helper routines ===== */
293
flexrm_read_desc(void * desc_ptr)294 static u64 flexrm_read_desc(void *desc_ptr)
295 {
296 return le64_to_cpu(*((u64 *)desc_ptr));
297 }
298
flexrm_write_desc(void * desc_ptr,u64 desc)299 static void flexrm_write_desc(void *desc_ptr, u64 desc)
300 {
301 *((u64 *)desc_ptr) = cpu_to_le64(desc);
302 }
303
flexrm_cmpl_desc_to_reqid(u64 cmpl_desc)304 static u32 flexrm_cmpl_desc_to_reqid(u64 cmpl_desc)
305 {
306 return (u32)(cmpl_desc & CMPL_OPAQUE_MASK);
307 }
308
flexrm_cmpl_desc_to_error(u64 cmpl_desc)309 static int flexrm_cmpl_desc_to_error(u64 cmpl_desc)
310 {
311 u32 status;
312
313 status = DESC_DEC(cmpl_desc, CMPL_DME_STATUS_SHIFT,
314 CMPL_DME_STATUS_MASK);
315 if (status & DME_STATUS_ERROR_MASK)
316 return -EIO;
317
318 status = DESC_DEC(cmpl_desc, CMPL_RM_STATUS_SHIFT,
319 CMPL_RM_STATUS_MASK);
320 status &= RM_STATUS_CODE_MASK;
321 if (status == RM_STATUS_CODE_AE_TIMEOUT)
322 return -ETIMEDOUT;
323
324 return 0;
325 }
326
flexrm_is_next_table_desc(void * desc_ptr)327 static bool flexrm_is_next_table_desc(void *desc_ptr)
328 {
329 u64 desc = flexrm_read_desc(desc_ptr);
330 u32 type = DESC_DEC(desc, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
331
332 return (type == NPTR_TYPE) ? true : false;
333 }
334
flexrm_next_table_desc(u32 toggle,dma_addr_t next_addr)335 static u64 flexrm_next_table_desc(u32 toggle, dma_addr_t next_addr)
336 {
337 u64 desc = 0;
338
339 DESC_ENC(desc, NPTR_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
340 DESC_ENC(desc, toggle, NPTR_TOGGLE_SHIFT, NPTR_TOGGLE_MASK);
341 DESC_ENC(desc, next_addr, NPTR_ADDR_SHIFT, NPTR_ADDR_MASK);
342
343 return desc;
344 }
345
flexrm_null_desc(u32 toggle)346 static u64 flexrm_null_desc(u32 toggle)
347 {
348 u64 desc = 0;
349
350 DESC_ENC(desc, NULL_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
351 DESC_ENC(desc, toggle, NULL_TOGGLE_SHIFT, NULL_TOGGLE_MASK);
352
353 return desc;
354 }
355
flexrm_estimate_header_desc_count(u32 nhcnt)356 static u32 flexrm_estimate_header_desc_count(u32 nhcnt)
357 {
358 u32 hcnt = nhcnt / HEADER_BDCOUNT_MAX;
359
360 if (!(nhcnt % HEADER_BDCOUNT_MAX))
361 hcnt += 1;
362
363 return hcnt;
364 }
365
flexrm_flip_header_toggle(void * desc_ptr)366 static void flexrm_flip_header_toggle(void *desc_ptr)
367 {
368 u64 desc = flexrm_read_desc(desc_ptr);
369
370 if (desc & ((u64)0x1 << HEADER_TOGGLE_SHIFT))
371 desc &= ~((u64)0x1 << HEADER_TOGGLE_SHIFT);
372 else
373 desc |= ((u64)0x1 << HEADER_TOGGLE_SHIFT);
374
375 flexrm_write_desc(desc_ptr, desc);
376 }
377
flexrm_header_desc(u32 toggle,u32 startpkt,u32 endpkt,u32 bdcount,u32 flags,u32 opaque)378 static u64 flexrm_header_desc(u32 toggle, u32 startpkt, u32 endpkt,
379 u32 bdcount, u32 flags, u32 opaque)
380 {
381 u64 desc = 0;
382
383 DESC_ENC(desc, HEADER_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
384 DESC_ENC(desc, toggle, HEADER_TOGGLE_SHIFT, HEADER_TOGGLE_MASK);
385 DESC_ENC(desc, startpkt, HEADER_STARTPKT_SHIFT, HEADER_STARTPKT_MASK);
386 DESC_ENC(desc, endpkt, HEADER_ENDPKT_SHIFT, HEADER_ENDPKT_MASK);
387 DESC_ENC(desc, bdcount, HEADER_BDCOUNT_SHIFT, HEADER_BDCOUNT_MASK);
388 DESC_ENC(desc, flags, HEADER_FLAGS_SHIFT, HEADER_FLAGS_MASK);
389 DESC_ENC(desc, opaque, HEADER_OPAQUE_SHIFT, HEADER_OPAQUE_MASK);
390
391 return desc;
392 }
393
flexrm_enqueue_desc(u32 nhpos,u32 nhcnt,u32 reqid,u64 desc,void ** desc_ptr,u32 * toggle,void * start_desc,void * end_desc)394 static void flexrm_enqueue_desc(u32 nhpos, u32 nhcnt, u32 reqid,
395 u64 desc, void **desc_ptr, u32 *toggle,
396 void *start_desc, void *end_desc)
397 {
398 u64 d;
399 u32 nhavail, _toggle, _startpkt, _endpkt, _bdcount;
400
401 /* Sanity check */
402 if (nhcnt <= nhpos)
403 return;
404
405 /*
406 * Each request or packet start with a HEADER descriptor followed
407 * by one or more non-HEADER descriptors (SRC, SRCT, MSRC, DST,
408 * DSTT, MDST, IMM, and IMMT). The number of non-HEADER descriptors
409 * following a HEADER descriptor is represented by BDCOUNT field
410 * of HEADER descriptor. The max value of BDCOUNT field is 31 which
411 * means we can only have 31 non-HEADER descriptors following one
412 * HEADER descriptor.
413 *
414 * In general use, number of non-HEADER descriptors can easily go
415 * beyond 31. To tackle this situation, we have packet (or request)
416 * extension bits (STARTPKT and ENDPKT) in the HEADER descriptor.
417 *
418 * To use packet extension, the first HEADER descriptor of request
419 * (or packet) will have STARTPKT=1 and ENDPKT=0. The intermediate
420 * HEADER descriptors will have STARTPKT=0 and ENDPKT=0. The last
421 * HEADER descriptor will have STARTPKT=0 and ENDPKT=1. Also, the
422 * TOGGLE bit of the first HEADER will be set to invalid state to
423 * ensure that FlexRM does not start fetching descriptors till all
424 * descriptors are enqueued. The user of this function will flip
425 * the TOGGLE bit of first HEADER after all descriptors are
426 * enqueued.
427 */
428
429 if ((nhpos % HEADER_BDCOUNT_MAX == 0) && (nhcnt - nhpos)) {
430 /* Prepare the header descriptor */
431 nhavail = (nhcnt - nhpos);
432 _toggle = (nhpos == 0) ? !(*toggle) : (*toggle);
433 _startpkt = (nhpos == 0) ? 0x1 : 0x0;
434 _endpkt = (nhavail <= HEADER_BDCOUNT_MAX) ? 0x1 : 0x0;
435 _bdcount = (nhavail <= HEADER_BDCOUNT_MAX) ?
436 nhavail : HEADER_BDCOUNT_MAX;
437 if (nhavail <= HEADER_BDCOUNT_MAX)
438 _bdcount = nhavail;
439 else
440 _bdcount = HEADER_BDCOUNT_MAX;
441 d = flexrm_header_desc(_toggle, _startpkt, _endpkt,
442 _bdcount, 0x0, reqid);
443
444 /* Write header descriptor */
445 flexrm_write_desc(*desc_ptr, d);
446
447 /* Point to next descriptor */
448 *desc_ptr += sizeof(desc);
449 if (*desc_ptr == end_desc)
450 *desc_ptr = start_desc;
451
452 /* Skip next pointer descriptors */
453 while (flexrm_is_next_table_desc(*desc_ptr)) {
454 *toggle = (*toggle) ? 0 : 1;
455 *desc_ptr += sizeof(desc);
456 if (*desc_ptr == end_desc)
457 *desc_ptr = start_desc;
458 }
459 }
460
461 /* Write desired descriptor */
462 flexrm_write_desc(*desc_ptr, desc);
463
464 /* Point to next descriptor */
465 *desc_ptr += sizeof(desc);
466 if (*desc_ptr == end_desc)
467 *desc_ptr = start_desc;
468
469 /* Skip next pointer descriptors */
470 while (flexrm_is_next_table_desc(*desc_ptr)) {
471 *toggle = (*toggle) ? 0 : 1;
472 *desc_ptr += sizeof(desc);
473 if (*desc_ptr == end_desc)
474 *desc_ptr = start_desc;
475 }
476 }
477
flexrm_src_desc(dma_addr_t addr,unsigned int length)478 static u64 flexrm_src_desc(dma_addr_t addr, unsigned int length)
479 {
480 u64 desc = 0;
481
482 DESC_ENC(desc, SRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
483 DESC_ENC(desc, length, SRC_LENGTH_SHIFT, SRC_LENGTH_MASK);
484 DESC_ENC(desc, addr, SRC_ADDR_SHIFT, SRC_ADDR_MASK);
485
486 return desc;
487 }
488
flexrm_msrc_desc(dma_addr_t addr,unsigned int length_div_16)489 static u64 flexrm_msrc_desc(dma_addr_t addr, unsigned int length_div_16)
490 {
491 u64 desc = 0;
492
493 DESC_ENC(desc, MSRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
494 DESC_ENC(desc, length_div_16, MSRC_LENGTH_SHIFT, MSRC_LENGTH_MASK);
495 DESC_ENC(desc, addr, MSRC_ADDR_SHIFT, MSRC_ADDR_MASK);
496
497 return desc;
498 }
499
flexrm_dst_desc(dma_addr_t addr,unsigned int length)500 static u64 flexrm_dst_desc(dma_addr_t addr, unsigned int length)
501 {
502 u64 desc = 0;
503
504 DESC_ENC(desc, DST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
505 DESC_ENC(desc, length, DST_LENGTH_SHIFT, DST_LENGTH_MASK);
506 DESC_ENC(desc, addr, DST_ADDR_SHIFT, DST_ADDR_MASK);
507
508 return desc;
509 }
510
flexrm_mdst_desc(dma_addr_t addr,unsigned int length_div_16)511 static u64 flexrm_mdst_desc(dma_addr_t addr, unsigned int length_div_16)
512 {
513 u64 desc = 0;
514
515 DESC_ENC(desc, MDST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
516 DESC_ENC(desc, length_div_16, MDST_LENGTH_SHIFT, MDST_LENGTH_MASK);
517 DESC_ENC(desc, addr, MDST_ADDR_SHIFT, MDST_ADDR_MASK);
518
519 return desc;
520 }
521
flexrm_imm_desc(u64 data)522 static u64 flexrm_imm_desc(u64 data)
523 {
524 u64 desc = 0;
525
526 DESC_ENC(desc, IMM_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
527 DESC_ENC(desc, data, IMM_DATA_SHIFT, IMM_DATA_MASK);
528
529 return desc;
530 }
531
flexrm_srct_desc(dma_addr_t addr,unsigned int length)532 static u64 flexrm_srct_desc(dma_addr_t addr, unsigned int length)
533 {
534 u64 desc = 0;
535
536 DESC_ENC(desc, SRCT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
537 DESC_ENC(desc, length, SRCT_LENGTH_SHIFT, SRCT_LENGTH_MASK);
538 DESC_ENC(desc, addr, SRCT_ADDR_SHIFT, SRCT_ADDR_MASK);
539
540 return desc;
541 }
542
flexrm_dstt_desc(dma_addr_t addr,unsigned int length)543 static u64 flexrm_dstt_desc(dma_addr_t addr, unsigned int length)
544 {
545 u64 desc = 0;
546
547 DESC_ENC(desc, DSTT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
548 DESC_ENC(desc, length, DSTT_LENGTH_SHIFT, DSTT_LENGTH_MASK);
549 DESC_ENC(desc, addr, DSTT_ADDR_SHIFT, DSTT_ADDR_MASK);
550
551 return desc;
552 }
553
flexrm_immt_desc(u64 data)554 static u64 flexrm_immt_desc(u64 data)
555 {
556 u64 desc = 0;
557
558 DESC_ENC(desc, IMMT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK);
559 DESC_ENC(desc, data, IMMT_DATA_SHIFT, IMMT_DATA_MASK);
560
561 return desc;
562 }
563
flexrm_spu_sanity_check(struct brcm_message * msg)564 static bool flexrm_spu_sanity_check(struct brcm_message *msg)
565 {
566 struct scatterlist *sg;
567
568 if (!msg->spu.src || !msg->spu.dst)
569 return false;
570 for (sg = msg->spu.src; sg; sg = sg_next(sg)) {
571 if (sg->length & 0xf) {
572 if (sg->length > SRC_LENGTH_MASK)
573 return false;
574 } else {
575 if (sg->length > (MSRC_LENGTH_MASK * 16))
576 return false;
577 }
578 }
579 for (sg = msg->spu.dst; sg; sg = sg_next(sg)) {
580 if (sg->length & 0xf) {
581 if (sg->length > DST_LENGTH_MASK)
582 return false;
583 } else {
584 if (sg->length > (MDST_LENGTH_MASK * 16))
585 return false;
586 }
587 }
588
589 return true;
590 }
591
flexrm_spu_estimate_nonheader_desc_count(struct brcm_message * msg)592 static u32 flexrm_spu_estimate_nonheader_desc_count(struct brcm_message *msg)
593 {
594 u32 cnt = 0;
595 unsigned int dst_target = 0;
596 struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
597
598 while (src_sg || dst_sg) {
599 if (src_sg) {
600 cnt++;
601 dst_target = src_sg->length;
602 src_sg = sg_next(src_sg);
603 } else
604 dst_target = UINT_MAX;
605
606 while (dst_target && dst_sg) {
607 cnt++;
608 if (dst_sg->length < dst_target)
609 dst_target -= dst_sg->length;
610 else
611 dst_target = 0;
612 dst_sg = sg_next(dst_sg);
613 }
614 }
615
616 return cnt;
617 }
618
flexrm_spu_dma_map(struct device * dev,struct brcm_message * msg)619 static int flexrm_spu_dma_map(struct device *dev, struct brcm_message *msg)
620 {
621 int rc;
622
623 rc = dma_map_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
624 DMA_TO_DEVICE);
625 if (!rc)
626 return -EIO;
627
628 rc = dma_map_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
629 DMA_FROM_DEVICE);
630 if (!rc) {
631 dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
632 DMA_TO_DEVICE);
633 return -EIO;
634 }
635
636 return 0;
637 }
638
flexrm_spu_dma_unmap(struct device * dev,struct brcm_message * msg)639 static void flexrm_spu_dma_unmap(struct device *dev, struct brcm_message *msg)
640 {
641 dma_unmap_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst),
642 DMA_FROM_DEVICE);
643 dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src),
644 DMA_TO_DEVICE);
645 }
646
flexrm_spu_write_descs(struct brcm_message * msg,u32 nhcnt,u32 reqid,void * desc_ptr,u32 toggle,void * start_desc,void * end_desc)647 static void *flexrm_spu_write_descs(struct brcm_message *msg, u32 nhcnt,
648 u32 reqid, void *desc_ptr, u32 toggle,
649 void *start_desc, void *end_desc)
650 {
651 u64 d;
652 u32 nhpos = 0;
653 void *orig_desc_ptr = desc_ptr;
654 unsigned int dst_target = 0;
655 struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst;
656
657 while (src_sg || dst_sg) {
658 if (src_sg) {
659 if (sg_dma_len(src_sg) & 0xf)
660 d = flexrm_src_desc(sg_dma_address(src_sg),
661 sg_dma_len(src_sg));
662 else
663 d = flexrm_msrc_desc(sg_dma_address(src_sg),
664 sg_dma_len(src_sg)/16);
665 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
666 d, &desc_ptr, &toggle,
667 start_desc, end_desc);
668 nhpos++;
669 dst_target = sg_dma_len(src_sg);
670 src_sg = sg_next(src_sg);
671 } else
672 dst_target = UINT_MAX;
673
674 while (dst_target && dst_sg) {
675 if (sg_dma_len(dst_sg) & 0xf)
676 d = flexrm_dst_desc(sg_dma_address(dst_sg),
677 sg_dma_len(dst_sg));
678 else
679 d = flexrm_mdst_desc(sg_dma_address(dst_sg),
680 sg_dma_len(dst_sg)/16);
681 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
682 d, &desc_ptr, &toggle,
683 start_desc, end_desc);
684 nhpos++;
685 if (sg_dma_len(dst_sg) < dst_target)
686 dst_target -= sg_dma_len(dst_sg);
687 else
688 dst_target = 0;
689 dst_sg = sg_next(dst_sg);
690 }
691 }
692
693 /* Null descriptor with invalid toggle bit */
694 flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
695
696 /* Ensure that descriptors have been written to memory */
697 wmb();
698
699 /* Flip toggle bit in header */
700 flexrm_flip_header_toggle(orig_desc_ptr);
701
702 return desc_ptr;
703 }
704
flexrm_sba_sanity_check(struct brcm_message * msg)705 static bool flexrm_sba_sanity_check(struct brcm_message *msg)
706 {
707 u32 i;
708
709 if (!msg->sba.cmds || !msg->sba.cmds_count)
710 return false;
711
712 for (i = 0; i < msg->sba.cmds_count; i++) {
713 if (((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
714 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) &&
715 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT))
716 return false;
717 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) &&
718 (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
719 return false;
720 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C) &&
721 (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK))
722 return false;
723 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) &&
724 (msg->sba.cmds[i].resp_len > DSTT_LENGTH_MASK))
725 return false;
726 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) &&
727 (msg->sba.cmds[i].data_len > DSTT_LENGTH_MASK))
728 return false;
729 }
730
731 return true;
732 }
733
flexrm_sba_estimate_nonheader_desc_count(struct brcm_message * msg)734 static u32 flexrm_sba_estimate_nonheader_desc_count(struct brcm_message *msg)
735 {
736 u32 i, cnt;
737
738 cnt = 0;
739 for (i = 0; i < msg->sba.cmds_count; i++) {
740 cnt++;
741
742 if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) ||
743 (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C))
744 cnt++;
745
746 if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP)
747 cnt++;
748
749 if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT)
750 cnt++;
751 }
752
753 return cnt;
754 }
755
flexrm_sba_write_descs(struct brcm_message * msg,u32 nhcnt,u32 reqid,void * desc_ptr,u32 toggle,void * start_desc,void * end_desc)756 static void *flexrm_sba_write_descs(struct brcm_message *msg, u32 nhcnt,
757 u32 reqid, void *desc_ptr, u32 toggle,
758 void *start_desc, void *end_desc)
759 {
760 u64 d;
761 u32 i, nhpos = 0;
762 struct brcm_sba_command *c;
763 void *orig_desc_ptr = desc_ptr;
764
765 /* Convert SBA commands into descriptors */
766 for (i = 0; i < msg->sba.cmds_count; i++) {
767 c = &msg->sba.cmds[i];
768
769 if ((c->flags & BRCM_SBA_CMD_HAS_RESP) &&
770 (c->flags & BRCM_SBA_CMD_HAS_OUTPUT)) {
771 /* Destination response descriptor */
772 d = flexrm_dst_desc(c->resp, c->resp_len);
773 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
774 d, &desc_ptr, &toggle,
775 start_desc, end_desc);
776 nhpos++;
777 } else if (c->flags & BRCM_SBA_CMD_HAS_RESP) {
778 /* Destination response with tlast descriptor */
779 d = flexrm_dstt_desc(c->resp, c->resp_len);
780 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
781 d, &desc_ptr, &toggle,
782 start_desc, end_desc);
783 nhpos++;
784 }
785
786 if (c->flags & BRCM_SBA_CMD_HAS_OUTPUT) {
787 /* Destination with tlast descriptor */
788 d = flexrm_dstt_desc(c->data, c->data_len);
789 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
790 d, &desc_ptr, &toggle,
791 start_desc, end_desc);
792 nhpos++;
793 }
794
795 if (c->flags & BRCM_SBA_CMD_TYPE_B) {
796 /* Command as immediate descriptor */
797 d = flexrm_imm_desc(c->cmd);
798 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
799 d, &desc_ptr, &toggle,
800 start_desc, end_desc);
801 nhpos++;
802 } else {
803 /* Command as immediate descriptor with tlast */
804 d = flexrm_immt_desc(c->cmd);
805 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
806 d, &desc_ptr, &toggle,
807 start_desc, end_desc);
808 nhpos++;
809 }
810
811 if ((c->flags & BRCM_SBA_CMD_TYPE_B) ||
812 (c->flags & BRCM_SBA_CMD_TYPE_C)) {
813 /* Source with tlast descriptor */
814 d = flexrm_srct_desc(c->data, c->data_len);
815 flexrm_enqueue_desc(nhpos, nhcnt, reqid,
816 d, &desc_ptr, &toggle,
817 start_desc, end_desc);
818 nhpos++;
819 }
820 }
821
822 /* Null descriptor with invalid toggle bit */
823 flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle));
824
825 /* Ensure that descriptors have been written to memory */
826 wmb();
827
828 /* Flip toggle bit in header */
829 flexrm_flip_header_toggle(orig_desc_ptr);
830
831 return desc_ptr;
832 }
833
flexrm_sanity_check(struct brcm_message * msg)834 static bool flexrm_sanity_check(struct brcm_message *msg)
835 {
836 if (!msg)
837 return false;
838
839 switch (msg->type) {
840 case BRCM_MESSAGE_SPU:
841 return flexrm_spu_sanity_check(msg);
842 case BRCM_MESSAGE_SBA:
843 return flexrm_sba_sanity_check(msg);
844 default:
845 return false;
846 };
847 }
848
flexrm_estimate_nonheader_desc_count(struct brcm_message * msg)849 static u32 flexrm_estimate_nonheader_desc_count(struct brcm_message *msg)
850 {
851 if (!msg)
852 return 0;
853
854 switch (msg->type) {
855 case BRCM_MESSAGE_SPU:
856 return flexrm_spu_estimate_nonheader_desc_count(msg);
857 case BRCM_MESSAGE_SBA:
858 return flexrm_sba_estimate_nonheader_desc_count(msg);
859 default:
860 return 0;
861 };
862 }
863
flexrm_dma_map(struct device * dev,struct brcm_message * msg)864 static int flexrm_dma_map(struct device *dev, struct brcm_message *msg)
865 {
866 if (!dev || !msg)
867 return -EINVAL;
868
869 switch (msg->type) {
870 case BRCM_MESSAGE_SPU:
871 return flexrm_spu_dma_map(dev, msg);
872 default:
873 break;
874 }
875
876 return 0;
877 }
878
flexrm_dma_unmap(struct device * dev,struct brcm_message * msg)879 static void flexrm_dma_unmap(struct device *dev, struct brcm_message *msg)
880 {
881 if (!dev || !msg)
882 return;
883
884 switch (msg->type) {
885 case BRCM_MESSAGE_SPU:
886 flexrm_spu_dma_unmap(dev, msg);
887 break;
888 default:
889 break;
890 }
891 }
892
flexrm_write_descs(struct brcm_message * msg,u32 nhcnt,u32 reqid,void * desc_ptr,u32 toggle,void * start_desc,void * end_desc)893 static void *flexrm_write_descs(struct brcm_message *msg, u32 nhcnt,
894 u32 reqid, void *desc_ptr, u32 toggle,
895 void *start_desc, void *end_desc)
896 {
897 if (!msg || !desc_ptr || !start_desc || !end_desc)
898 return ERR_PTR(-ENOTSUPP);
899
900 if ((desc_ptr < start_desc) || (end_desc <= desc_ptr))
901 return ERR_PTR(-ERANGE);
902
903 switch (msg->type) {
904 case BRCM_MESSAGE_SPU:
905 return flexrm_spu_write_descs(msg, nhcnt, reqid,
906 desc_ptr, toggle,
907 start_desc, end_desc);
908 case BRCM_MESSAGE_SBA:
909 return flexrm_sba_write_descs(msg, nhcnt, reqid,
910 desc_ptr, toggle,
911 start_desc, end_desc);
912 default:
913 return ERR_PTR(-ENOTSUPP);
914 };
915 }
916
917 /* ====== FlexRM driver helper routines ===== */
918
flexrm_write_config_in_seqfile(struct flexrm_mbox * mbox,struct seq_file * file)919 static void flexrm_write_config_in_seqfile(struct flexrm_mbox *mbox,
920 struct seq_file *file)
921 {
922 int i;
923 const char *state;
924 struct flexrm_ring *ring;
925
926 seq_printf(file, "%-5s %-9s %-18s %-10s %-18s %-10s\n",
927 "Ring#", "State", "BD_Addr", "BD_Size",
928 "Cmpl_Addr", "Cmpl_Size");
929
930 for (i = 0; i < mbox->num_rings; i++) {
931 ring = &mbox->rings[i];
932 if (readl(ring->regs + RING_CONTROL) &
933 BIT(CONTROL_ACTIVE_SHIFT))
934 state = "active";
935 else
936 state = "inactive";
937 seq_printf(file,
938 "%-5d %-9s 0x%016llx 0x%08x 0x%016llx 0x%08x\n",
939 ring->num, state,
940 (unsigned long long)ring->bd_dma_base,
941 (u32)RING_BD_SIZE,
942 (unsigned long long)ring->cmpl_dma_base,
943 (u32)RING_CMPL_SIZE);
944 }
945 }
946
flexrm_write_stats_in_seqfile(struct flexrm_mbox * mbox,struct seq_file * file)947 static void flexrm_write_stats_in_seqfile(struct flexrm_mbox *mbox,
948 struct seq_file *file)
949 {
950 int i;
951 u32 val, bd_read_offset;
952 struct flexrm_ring *ring;
953
954 seq_printf(file, "%-5s %-10s %-10s %-10s %-11s %-11s\n",
955 "Ring#", "BD_Read", "BD_Write",
956 "Cmpl_Read", "Submitted", "Completed");
957
958 for (i = 0; i < mbox->num_rings; i++) {
959 ring = &mbox->rings[i];
960 bd_read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
961 val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
962 bd_read_offset *= RING_DESC_SIZE;
963 bd_read_offset += (u32)(BD_START_ADDR_DECODE(val) -
964 ring->bd_dma_base);
965 seq_printf(file, "%-5d 0x%08x 0x%08x 0x%08x %-11d %-11d\n",
966 ring->num,
967 (u32)bd_read_offset,
968 (u32)ring->bd_write_offset,
969 (u32)ring->cmpl_read_offset,
970 (u32)atomic_read(&ring->msg_send_count),
971 (u32)atomic_read(&ring->msg_cmpl_count));
972 }
973 }
974
flexrm_new_request(struct flexrm_ring * ring,struct brcm_message * batch_msg,struct brcm_message * msg)975 static int flexrm_new_request(struct flexrm_ring *ring,
976 struct brcm_message *batch_msg,
977 struct brcm_message *msg)
978 {
979 void *next;
980 unsigned long flags;
981 u32 val, count, nhcnt;
982 u32 read_offset, write_offset;
983 bool exit_cleanup = false;
984 int ret = 0, reqid;
985
986 /* Do sanity check on message */
987 if (!flexrm_sanity_check(msg))
988 return -EIO;
989 msg->error = 0;
990
991 /* If no requests possible then save data pointer and goto done. */
992 spin_lock_irqsave(&ring->lock, flags);
993 reqid = bitmap_find_free_region(ring->requests_bmap,
994 RING_MAX_REQ_COUNT, 0);
995 spin_unlock_irqrestore(&ring->lock, flags);
996 if (reqid < 0)
997 return -ENOSPC;
998 ring->requests[reqid] = msg;
999
1000 /* Do DMA mappings for the message */
1001 ret = flexrm_dma_map(ring->mbox->dev, msg);
1002 if (ret < 0) {
1003 ring->requests[reqid] = NULL;
1004 spin_lock_irqsave(&ring->lock, flags);
1005 bitmap_release_region(ring->requests_bmap, reqid, 0);
1006 spin_unlock_irqrestore(&ring->lock, flags);
1007 return ret;
1008 }
1009
1010 /* Determine current HW BD read offset */
1011 read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR);
1012 val = readl_relaxed(ring->regs + RING_BD_START_ADDR);
1013 read_offset *= RING_DESC_SIZE;
1014 read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base);
1015
1016 /*
1017 * Number required descriptors = number of non-header descriptors +
1018 * number of header descriptors +
1019 * 1x null descriptor
1020 */
1021 nhcnt = flexrm_estimate_nonheader_desc_count(msg);
1022 count = flexrm_estimate_header_desc_count(nhcnt) + nhcnt + 1;
1023
1024 /* Check for available descriptor space. */
1025 write_offset = ring->bd_write_offset;
1026 while (count) {
1027 if (!flexrm_is_next_table_desc(ring->bd_base + write_offset))
1028 count--;
1029 write_offset += RING_DESC_SIZE;
1030 if (write_offset == RING_BD_SIZE)
1031 write_offset = 0x0;
1032 if (write_offset == read_offset)
1033 break;
1034 }
1035 if (count) {
1036 ret = -ENOSPC;
1037 exit_cleanup = true;
1038 goto exit;
1039 }
1040
1041 /* Write descriptors to ring */
1042 next = flexrm_write_descs(msg, nhcnt, reqid,
1043 ring->bd_base + ring->bd_write_offset,
1044 RING_BD_TOGGLE_VALID(ring->bd_write_offset),
1045 ring->bd_base, ring->bd_base + RING_BD_SIZE);
1046 if (IS_ERR(next)) {
1047 ret = PTR_ERR(next);
1048 exit_cleanup = true;
1049 goto exit;
1050 }
1051
1052 /* Save ring BD write offset */
1053 ring->bd_write_offset = (unsigned long)(next - ring->bd_base);
1054
1055 /* Increment number of messages sent */
1056 atomic_inc_return(&ring->msg_send_count);
1057
1058 exit:
1059 /* Update error status in message */
1060 msg->error = ret;
1061
1062 /* Cleanup if we failed */
1063 if (exit_cleanup) {
1064 flexrm_dma_unmap(ring->mbox->dev, msg);
1065 ring->requests[reqid] = NULL;
1066 spin_lock_irqsave(&ring->lock, flags);
1067 bitmap_release_region(ring->requests_bmap, reqid, 0);
1068 spin_unlock_irqrestore(&ring->lock, flags);
1069 }
1070
1071 return ret;
1072 }
1073
flexrm_process_completions(struct flexrm_ring * ring)1074 static int flexrm_process_completions(struct flexrm_ring *ring)
1075 {
1076 u64 desc;
1077 int err, count = 0;
1078 unsigned long flags;
1079 struct brcm_message *msg = NULL;
1080 u32 reqid, cmpl_read_offset, cmpl_write_offset;
1081 struct mbox_chan *chan = &ring->mbox->controller.chans[ring->num];
1082
1083 spin_lock_irqsave(&ring->lock, flags);
1084
1085 /*
1086 * Get current completion read and write offset
1087 *
1088 * Note: We should read completion write pointer at least once
1089 * after we get a MSI interrupt because HW maintains internal
1090 * MSI status which will allow next MSI interrupt only after
1091 * completion write pointer is read.
1092 */
1093 cmpl_write_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
1094 cmpl_write_offset *= RING_DESC_SIZE;
1095 cmpl_read_offset = ring->cmpl_read_offset;
1096 ring->cmpl_read_offset = cmpl_write_offset;
1097
1098 spin_unlock_irqrestore(&ring->lock, flags);
1099
1100 /* For each completed request notify mailbox clients */
1101 reqid = 0;
1102 while (cmpl_read_offset != cmpl_write_offset) {
1103 /* Dequeue next completion descriptor */
1104 desc = *((u64 *)(ring->cmpl_base + cmpl_read_offset));
1105
1106 /* Next read offset */
1107 cmpl_read_offset += RING_DESC_SIZE;
1108 if (cmpl_read_offset == RING_CMPL_SIZE)
1109 cmpl_read_offset = 0;
1110
1111 /* Decode error from completion descriptor */
1112 err = flexrm_cmpl_desc_to_error(desc);
1113 if (err < 0) {
1114 dev_warn(ring->mbox->dev,
1115 "ring%d got completion desc=0x%lx with error %d\n",
1116 ring->num, (unsigned long)desc, err);
1117 }
1118
1119 /* Determine request id from completion descriptor */
1120 reqid = flexrm_cmpl_desc_to_reqid(desc);
1121
1122 /* Determine message pointer based on reqid */
1123 msg = ring->requests[reqid];
1124 if (!msg) {
1125 dev_warn(ring->mbox->dev,
1126 "ring%d null msg pointer for completion desc=0x%lx\n",
1127 ring->num, (unsigned long)desc);
1128 continue;
1129 }
1130
1131 /* Release reqid for recycling */
1132 ring->requests[reqid] = NULL;
1133 spin_lock_irqsave(&ring->lock, flags);
1134 bitmap_release_region(ring->requests_bmap, reqid, 0);
1135 spin_unlock_irqrestore(&ring->lock, flags);
1136
1137 /* Unmap DMA mappings */
1138 flexrm_dma_unmap(ring->mbox->dev, msg);
1139
1140 /* Give-back message to mailbox client */
1141 msg->error = err;
1142 mbox_chan_received_data(chan, msg);
1143
1144 /* Increment number of completions processed */
1145 atomic_inc_return(&ring->msg_cmpl_count);
1146 count++;
1147 }
1148
1149 return count;
1150 }
1151
1152 /* ====== FlexRM Debugfs callbacks ====== */
1153
flexrm_debugfs_conf_show(struct seq_file * file,void * offset)1154 static int flexrm_debugfs_conf_show(struct seq_file *file, void *offset)
1155 {
1156 struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
1157
1158 /* Write config in file */
1159 flexrm_write_config_in_seqfile(mbox, file);
1160
1161 return 0;
1162 }
1163
flexrm_debugfs_stats_show(struct seq_file * file,void * offset)1164 static int flexrm_debugfs_stats_show(struct seq_file *file, void *offset)
1165 {
1166 struct flexrm_mbox *mbox = dev_get_drvdata(file->private);
1167
1168 /* Write stats in file */
1169 flexrm_write_stats_in_seqfile(mbox, file);
1170
1171 return 0;
1172 }
1173
1174 /* ====== FlexRM interrupt handler ===== */
1175
flexrm_irq_event(int irq,void * dev_id)1176 static irqreturn_t flexrm_irq_event(int irq, void *dev_id)
1177 {
1178 /* We only have MSI for completions so just wakeup IRQ thread */
1179 /* Ring related errors will be informed via completion descriptors */
1180
1181 return IRQ_WAKE_THREAD;
1182 }
1183
flexrm_irq_thread(int irq,void * dev_id)1184 static irqreturn_t flexrm_irq_thread(int irq, void *dev_id)
1185 {
1186 flexrm_process_completions(dev_id);
1187
1188 return IRQ_HANDLED;
1189 }
1190
1191 /* ====== FlexRM mailbox callbacks ===== */
1192
flexrm_send_data(struct mbox_chan * chan,void * data)1193 static int flexrm_send_data(struct mbox_chan *chan, void *data)
1194 {
1195 int i, rc;
1196 struct flexrm_ring *ring = chan->con_priv;
1197 struct brcm_message *msg = data;
1198
1199 if (msg->type == BRCM_MESSAGE_BATCH) {
1200 for (i = msg->batch.msgs_queued;
1201 i < msg->batch.msgs_count; i++) {
1202 rc = flexrm_new_request(ring, msg,
1203 &msg->batch.msgs[i]);
1204 if (rc) {
1205 msg->error = rc;
1206 return rc;
1207 }
1208 msg->batch.msgs_queued++;
1209 }
1210 return 0;
1211 }
1212
1213 return flexrm_new_request(ring, NULL, data);
1214 }
1215
flexrm_peek_data(struct mbox_chan * chan)1216 static bool flexrm_peek_data(struct mbox_chan *chan)
1217 {
1218 int cnt = flexrm_process_completions(chan->con_priv);
1219
1220 return (cnt > 0) ? true : false;
1221 }
1222
flexrm_startup(struct mbox_chan * chan)1223 static int flexrm_startup(struct mbox_chan *chan)
1224 {
1225 u64 d;
1226 u32 val, off;
1227 int ret = 0;
1228 dma_addr_t next_addr;
1229 struct flexrm_ring *ring = chan->con_priv;
1230
1231 /* Allocate BD memory */
1232 ring->bd_base = dma_pool_alloc(ring->mbox->bd_pool,
1233 GFP_KERNEL, &ring->bd_dma_base);
1234 if (!ring->bd_base) {
1235 dev_err(ring->mbox->dev,
1236 "can't allocate BD memory for ring%d\n",
1237 ring->num);
1238 ret = -ENOMEM;
1239 goto fail;
1240 }
1241
1242 /* Configure next table pointer entries in BD memory */
1243 for (off = 0; off < RING_BD_SIZE; off += RING_DESC_SIZE) {
1244 next_addr = off + RING_DESC_SIZE;
1245 if (next_addr == RING_BD_SIZE)
1246 next_addr = 0;
1247 next_addr += ring->bd_dma_base;
1248 if (RING_BD_ALIGN_CHECK(next_addr))
1249 d = flexrm_next_table_desc(RING_BD_TOGGLE_VALID(off),
1250 next_addr);
1251 else
1252 d = flexrm_null_desc(RING_BD_TOGGLE_INVALID(off));
1253 flexrm_write_desc(ring->bd_base + off, d);
1254 }
1255
1256 /* Allocate completion memory */
1257 ring->cmpl_base = dma_pool_zalloc(ring->mbox->cmpl_pool,
1258 GFP_KERNEL, &ring->cmpl_dma_base);
1259 if (!ring->cmpl_base) {
1260 dev_err(ring->mbox->dev,
1261 "can't allocate completion memory for ring%d\n",
1262 ring->num);
1263 ret = -ENOMEM;
1264 goto fail_free_bd_memory;
1265 }
1266
1267 /* Request IRQ */
1268 if (ring->irq == UINT_MAX) {
1269 dev_err(ring->mbox->dev,
1270 "ring%d IRQ not available\n", ring->num);
1271 ret = -ENODEV;
1272 goto fail_free_cmpl_memory;
1273 }
1274 ret = request_threaded_irq(ring->irq,
1275 flexrm_irq_event,
1276 flexrm_irq_thread,
1277 0, dev_name(ring->mbox->dev), ring);
1278 if (ret) {
1279 dev_err(ring->mbox->dev,
1280 "failed to request ring%d IRQ\n", ring->num);
1281 goto fail_free_cmpl_memory;
1282 }
1283 ring->irq_requested = true;
1284
1285 /* Set IRQ affinity hint */
1286 ring->irq_aff_hint = CPU_MASK_NONE;
1287 val = ring->mbox->num_rings;
1288 val = (num_online_cpus() < val) ? val / num_online_cpus() : 1;
1289 cpumask_set_cpu((ring->num / val) % num_online_cpus(),
1290 &ring->irq_aff_hint);
1291 ret = irq_update_affinity_hint(ring->irq, &ring->irq_aff_hint);
1292 if (ret) {
1293 dev_err(ring->mbox->dev,
1294 "failed to set IRQ affinity hint for ring%d\n",
1295 ring->num);
1296 goto fail_free_irq;
1297 }
1298
1299 /* Disable/inactivate ring */
1300 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1301
1302 /* Program BD start address */
1303 val = BD_START_ADDR_VALUE(ring->bd_dma_base);
1304 writel_relaxed(val, ring->regs + RING_BD_START_ADDR);
1305
1306 /* BD write pointer will be same as HW write pointer */
1307 ring->bd_write_offset =
1308 readl_relaxed(ring->regs + RING_BD_WRITE_PTR);
1309 ring->bd_write_offset *= RING_DESC_SIZE;
1310
1311 /* Program completion start address */
1312 val = CMPL_START_ADDR_VALUE(ring->cmpl_dma_base);
1313 writel_relaxed(val, ring->regs + RING_CMPL_START_ADDR);
1314
1315 /* Completion read pointer will be same as HW write pointer */
1316 ring->cmpl_read_offset =
1317 readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR);
1318 ring->cmpl_read_offset *= RING_DESC_SIZE;
1319
1320 /* Read ring Tx, Rx, and Outstanding counts to clear */
1321 readl_relaxed(ring->regs + RING_NUM_REQ_RECV_LS);
1322 readl_relaxed(ring->regs + RING_NUM_REQ_RECV_MS);
1323 readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_LS);
1324 readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_MS);
1325 readl_relaxed(ring->regs + RING_NUM_REQ_OUTSTAND);
1326
1327 /* Configure RING_MSI_CONTROL */
1328 val = 0;
1329 val |= (ring->msi_timer_val << MSI_TIMER_VAL_SHIFT);
1330 val |= BIT(MSI_ENABLE_SHIFT);
1331 val |= (ring->msi_count_threshold & MSI_COUNT_MASK) << MSI_COUNT_SHIFT;
1332 writel_relaxed(val, ring->regs + RING_MSI_CONTROL);
1333
1334 /* Enable/activate ring */
1335 val = BIT(CONTROL_ACTIVE_SHIFT);
1336 writel_relaxed(val, ring->regs + RING_CONTROL);
1337
1338 /* Reset stats to zero */
1339 atomic_set(&ring->msg_send_count, 0);
1340 atomic_set(&ring->msg_cmpl_count, 0);
1341
1342 return 0;
1343
1344 fail_free_irq:
1345 free_irq(ring->irq, ring);
1346 ring->irq_requested = false;
1347 fail_free_cmpl_memory:
1348 dma_pool_free(ring->mbox->cmpl_pool,
1349 ring->cmpl_base, ring->cmpl_dma_base);
1350 ring->cmpl_base = NULL;
1351 fail_free_bd_memory:
1352 dma_pool_free(ring->mbox->bd_pool,
1353 ring->bd_base, ring->bd_dma_base);
1354 ring->bd_base = NULL;
1355 fail:
1356 return ret;
1357 }
1358
flexrm_shutdown(struct mbox_chan * chan)1359 static void flexrm_shutdown(struct mbox_chan *chan)
1360 {
1361 u32 reqid;
1362 unsigned int timeout;
1363 struct brcm_message *msg;
1364 struct flexrm_ring *ring = chan->con_priv;
1365
1366 /* Disable/inactivate ring */
1367 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1368
1369 /* Set ring flush state */
1370 timeout = 1000; /* timeout of 1s */
1371 writel_relaxed(BIT(CONTROL_FLUSH_SHIFT),
1372 ring->regs + RING_CONTROL);
1373 do {
1374 if (readl_relaxed(ring->regs + RING_FLUSH_DONE) &
1375 FLUSH_DONE_MASK)
1376 break;
1377 mdelay(1);
1378 } while (--timeout);
1379 if (!timeout)
1380 dev_err(ring->mbox->dev,
1381 "setting ring%d flush state timedout\n", ring->num);
1382
1383 /* Clear ring flush state */
1384 timeout = 1000; /* timeout of 1s */
1385 writel_relaxed(0x0, ring->regs + RING_CONTROL);
1386 do {
1387 if (!(readl_relaxed(ring->regs + RING_FLUSH_DONE) &
1388 FLUSH_DONE_MASK))
1389 break;
1390 mdelay(1);
1391 } while (--timeout);
1392 if (!timeout)
1393 dev_err(ring->mbox->dev,
1394 "clearing ring%d flush state timedout\n", ring->num);
1395
1396 /* Abort all in-flight requests */
1397 for (reqid = 0; reqid < RING_MAX_REQ_COUNT; reqid++) {
1398 msg = ring->requests[reqid];
1399 if (!msg)
1400 continue;
1401
1402 /* Release reqid for recycling */
1403 ring->requests[reqid] = NULL;
1404
1405 /* Unmap DMA mappings */
1406 flexrm_dma_unmap(ring->mbox->dev, msg);
1407
1408 /* Give-back message to mailbox client */
1409 msg->error = -EIO;
1410 mbox_chan_received_data(chan, msg);
1411 }
1412
1413 /* Clear requests bitmap */
1414 bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
1415
1416 /* Release IRQ */
1417 if (ring->irq_requested) {
1418 irq_update_affinity_hint(ring->irq, NULL);
1419 free_irq(ring->irq, ring);
1420 ring->irq_requested = false;
1421 }
1422
1423 /* Free-up completion descriptor ring */
1424 if (ring->cmpl_base) {
1425 dma_pool_free(ring->mbox->cmpl_pool,
1426 ring->cmpl_base, ring->cmpl_dma_base);
1427 ring->cmpl_base = NULL;
1428 }
1429
1430 /* Free-up BD descriptor ring */
1431 if (ring->bd_base) {
1432 dma_pool_free(ring->mbox->bd_pool,
1433 ring->bd_base, ring->bd_dma_base);
1434 ring->bd_base = NULL;
1435 }
1436 }
1437
1438 static const struct mbox_chan_ops flexrm_mbox_chan_ops = {
1439 .send_data = flexrm_send_data,
1440 .startup = flexrm_startup,
1441 .shutdown = flexrm_shutdown,
1442 .peek_data = flexrm_peek_data,
1443 };
1444
flexrm_mbox_of_xlate(struct mbox_controller * cntlr,const struct of_phandle_args * pa)1445 static struct mbox_chan *flexrm_mbox_of_xlate(struct mbox_controller *cntlr,
1446 const struct of_phandle_args *pa)
1447 {
1448 struct mbox_chan *chan;
1449 struct flexrm_ring *ring;
1450
1451 if (pa->args_count < 3)
1452 return ERR_PTR(-EINVAL);
1453
1454 if (pa->args[0] >= cntlr->num_chans)
1455 return ERR_PTR(-ENOENT);
1456
1457 if (pa->args[1] > MSI_COUNT_MASK)
1458 return ERR_PTR(-EINVAL);
1459
1460 if (pa->args[2] > MSI_TIMER_VAL_MASK)
1461 return ERR_PTR(-EINVAL);
1462
1463 chan = &cntlr->chans[pa->args[0]];
1464 ring = chan->con_priv;
1465 ring->msi_count_threshold = pa->args[1];
1466 ring->msi_timer_val = pa->args[2];
1467
1468 return chan;
1469 }
1470
1471 /* ====== FlexRM platform driver ===== */
1472
flexrm_mbox_msi_write(struct msi_desc * desc,struct msi_msg * msg)1473 static void flexrm_mbox_msi_write(struct msi_desc *desc, struct msi_msg *msg)
1474 {
1475 struct device *dev = msi_desc_to_dev(desc);
1476 struct flexrm_mbox *mbox = dev_get_drvdata(dev);
1477 struct flexrm_ring *ring = &mbox->rings[desc->msi_index];
1478
1479 /* Configure per-Ring MSI registers */
1480 writel_relaxed(msg->address_lo, ring->regs + RING_MSI_ADDR_LS);
1481 writel_relaxed(msg->address_hi, ring->regs + RING_MSI_ADDR_MS);
1482 writel_relaxed(msg->data, ring->regs + RING_MSI_DATA_VALUE);
1483 }
1484
flexrm_mbox_probe(struct platform_device * pdev)1485 static int flexrm_mbox_probe(struct platform_device *pdev)
1486 {
1487 int index, ret = 0;
1488 void __iomem *regs;
1489 void __iomem *regs_end;
1490 struct resource *iomem;
1491 struct flexrm_ring *ring;
1492 struct flexrm_mbox *mbox;
1493 struct device *dev = &pdev->dev;
1494
1495 /* Allocate driver mailbox struct */
1496 mbox = devm_kzalloc(dev, sizeof(*mbox), GFP_KERNEL);
1497 if (!mbox) {
1498 ret = -ENOMEM;
1499 goto fail;
1500 }
1501 mbox->dev = dev;
1502 platform_set_drvdata(pdev, mbox);
1503
1504 /* Get resource for registers */
1505 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1506 if (!iomem || (resource_size(iomem) < RING_REGS_SIZE)) {
1507 ret = -ENODEV;
1508 goto fail;
1509 }
1510
1511 /* Map registers of all rings */
1512 mbox->regs = devm_ioremap_resource(&pdev->dev, iomem);
1513 if (IS_ERR(mbox->regs)) {
1514 ret = PTR_ERR(mbox->regs);
1515 goto fail;
1516 }
1517 regs_end = mbox->regs + resource_size(iomem);
1518
1519 /* Scan and count available rings */
1520 mbox->num_rings = 0;
1521 for (regs = mbox->regs; regs < regs_end; regs += RING_REGS_SIZE) {
1522 if (readl_relaxed(regs + RING_VER) == RING_VER_MAGIC)
1523 mbox->num_rings++;
1524 }
1525 if (!mbox->num_rings) {
1526 ret = -ENODEV;
1527 goto fail;
1528 }
1529
1530 /* Allocate driver ring structs */
1531 ring = devm_kcalloc(dev, mbox->num_rings, sizeof(*ring), GFP_KERNEL);
1532 if (!ring) {
1533 ret = -ENOMEM;
1534 goto fail;
1535 }
1536 mbox->rings = ring;
1537
1538 /* Initialize members of driver ring structs */
1539 regs = mbox->regs;
1540 for (index = 0; index < mbox->num_rings; index++) {
1541 ring = &mbox->rings[index];
1542 ring->num = index;
1543 ring->mbox = mbox;
1544 while ((regs < regs_end) &&
1545 (readl_relaxed(regs + RING_VER) != RING_VER_MAGIC))
1546 regs += RING_REGS_SIZE;
1547 if (regs_end <= regs) {
1548 ret = -ENODEV;
1549 goto fail;
1550 }
1551 ring->regs = regs;
1552 regs += RING_REGS_SIZE;
1553 ring->irq = UINT_MAX;
1554 ring->irq_requested = false;
1555 ring->msi_timer_val = MSI_TIMER_VAL_MASK;
1556 ring->msi_count_threshold = 0x1;
1557 memset(ring->requests, 0, sizeof(ring->requests));
1558 ring->bd_base = NULL;
1559 ring->bd_dma_base = 0;
1560 ring->cmpl_base = NULL;
1561 ring->cmpl_dma_base = 0;
1562 atomic_set(&ring->msg_send_count, 0);
1563 atomic_set(&ring->msg_cmpl_count, 0);
1564 spin_lock_init(&ring->lock);
1565 bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT);
1566 ring->cmpl_read_offset = 0;
1567 }
1568
1569 /* FlexRM is capable of 40-bit physical addresses only */
1570 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
1571 if (ret) {
1572 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1573 if (ret)
1574 goto fail;
1575 }
1576
1577 /* Create DMA pool for ring BD memory */
1578 mbox->bd_pool = dma_pool_create("bd", dev, RING_BD_SIZE,
1579 1 << RING_BD_ALIGN_ORDER, 0);
1580 if (!mbox->bd_pool) {
1581 ret = -ENOMEM;
1582 goto fail;
1583 }
1584
1585 /* Create DMA pool for ring completion memory */
1586 mbox->cmpl_pool = dma_pool_create("cmpl", dev, RING_CMPL_SIZE,
1587 1 << RING_CMPL_ALIGN_ORDER, 0);
1588 if (!mbox->cmpl_pool) {
1589 ret = -ENOMEM;
1590 goto fail_destroy_bd_pool;
1591 }
1592
1593 /* Allocate platform MSIs for each ring */
1594 ret = platform_msi_domain_alloc_irqs(dev, mbox->num_rings,
1595 flexrm_mbox_msi_write);
1596 if (ret)
1597 goto fail_destroy_cmpl_pool;
1598
1599 /* Save alloced IRQ numbers for each ring */
1600 for (index = 0; index < mbox->num_rings; index++)
1601 mbox->rings[index].irq = msi_get_virq(dev, index);
1602
1603 /* Check availability of debugfs */
1604 if (!debugfs_initialized())
1605 goto skip_debugfs;
1606
1607 /* Create debugfs root entry */
1608 mbox->root = debugfs_create_dir(dev_name(mbox->dev), NULL);
1609
1610 /* Create debugfs config entry */
1611 debugfs_create_devm_seqfile(mbox->dev, "config", mbox->root,
1612 flexrm_debugfs_conf_show);
1613
1614 /* Create debugfs stats entry */
1615 debugfs_create_devm_seqfile(mbox->dev, "stats", mbox->root,
1616 flexrm_debugfs_stats_show);
1617
1618 skip_debugfs:
1619
1620 /* Initialize mailbox controller */
1621 mbox->controller.txdone_irq = false;
1622 mbox->controller.txdone_poll = false;
1623 mbox->controller.ops = &flexrm_mbox_chan_ops;
1624 mbox->controller.dev = dev;
1625 mbox->controller.num_chans = mbox->num_rings;
1626 mbox->controller.of_xlate = flexrm_mbox_of_xlate;
1627 mbox->controller.chans = devm_kcalloc(dev, mbox->num_rings,
1628 sizeof(*mbox->controller.chans), GFP_KERNEL);
1629 if (!mbox->controller.chans) {
1630 ret = -ENOMEM;
1631 goto fail_free_debugfs_root;
1632 }
1633 for (index = 0; index < mbox->num_rings; index++)
1634 mbox->controller.chans[index].con_priv = &mbox->rings[index];
1635
1636 /* Register mailbox controller */
1637 ret = devm_mbox_controller_register(dev, &mbox->controller);
1638 if (ret)
1639 goto fail_free_debugfs_root;
1640
1641 dev_info(dev, "registered flexrm mailbox with %d channels\n",
1642 mbox->controller.num_chans);
1643
1644 return 0;
1645
1646 fail_free_debugfs_root:
1647 debugfs_remove_recursive(mbox->root);
1648 platform_msi_domain_free_irqs(dev);
1649 fail_destroy_cmpl_pool:
1650 dma_pool_destroy(mbox->cmpl_pool);
1651 fail_destroy_bd_pool:
1652 dma_pool_destroy(mbox->bd_pool);
1653 fail:
1654 return ret;
1655 }
1656
flexrm_mbox_remove(struct platform_device * pdev)1657 static int flexrm_mbox_remove(struct platform_device *pdev)
1658 {
1659 struct device *dev = &pdev->dev;
1660 struct flexrm_mbox *mbox = platform_get_drvdata(pdev);
1661
1662 debugfs_remove_recursive(mbox->root);
1663
1664 platform_msi_domain_free_irqs(dev);
1665
1666 dma_pool_destroy(mbox->cmpl_pool);
1667 dma_pool_destroy(mbox->bd_pool);
1668
1669 return 0;
1670 }
1671
1672 static const struct of_device_id flexrm_mbox_of_match[] = {
1673 { .compatible = "brcm,iproc-flexrm-mbox", },
1674 {},
1675 };
1676 MODULE_DEVICE_TABLE(of, flexrm_mbox_of_match);
1677
1678 static struct platform_driver flexrm_mbox_driver = {
1679 .driver = {
1680 .name = "brcm-flexrm-mbox",
1681 .of_match_table = flexrm_mbox_of_match,
1682 },
1683 .probe = flexrm_mbox_probe,
1684 .remove = flexrm_mbox_remove,
1685 };
1686 module_platform_driver(flexrm_mbox_driver);
1687
1688 MODULE_AUTHOR("Anup Patel <anup.patel@broadcom.com>");
1689 MODULE_DESCRIPTION("Broadcom FlexRM mailbox driver");
1690 MODULE_LICENSE("GPL v2");
1691