1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ARM DynamIQ Shared Unit (DSU) PMU driver
4 *
5 * Copyright (C) ARM Limited, 2017.
6 *
7 * Based on ARM CCI-PMU, ARMv8 PMU-v3 drivers.
8 */
9
10 #define PMUNAME "arm_dsu"
11 #define DRVNAME PMUNAME "_pmu"
12 #define pr_fmt(fmt) DRVNAME ": " fmt
13
14 #include <linux/acpi.h>
15 #include <linux/bitmap.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/cpumask.h>
19 #include <linux/device.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30
31 #include <asm/arm_dsu_pmu.h>
32 #include <asm/local64.h>
33
34 /* PMU event codes */
35 #define DSU_PMU_EVT_CYCLES 0x11
36 #define DSU_PMU_EVT_CHAIN 0x1e
37
38 #define DSU_PMU_MAX_COMMON_EVENTS 0x40
39
40 #define DSU_PMU_MAX_HW_CNTRS 32
41 #define DSU_PMU_HW_COUNTER_MASK (DSU_PMU_MAX_HW_CNTRS - 1)
42
43 #define CLUSTERPMCR_E BIT(0)
44 #define CLUSTERPMCR_P BIT(1)
45 #define CLUSTERPMCR_C BIT(2)
46 #define CLUSTERPMCR_N_SHIFT 11
47 #define CLUSTERPMCR_N_MASK 0x1f
48 #define CLUSTERPMCR_IDCODE_SHIFT 16
49 #define CLUSTERPMCR_IDCODE_MASK 0xff
50 #define CLUSTERPMCR_IMP_SHIFT 24
51 #define CLUSTERPMCR_IMP_MASK 0xff
52 #define CLUSTERPMCR_RES_MASK 0x7e8
53 #define CLUSTERPMCR_RES_VAL 0x40
54
55 #define DSU_ACTIVE_CPU_MASK 0x0
56 #define DSU_ASSOCIATED_CPU_MASK 0x1
57
58 /*
59 * We use the index of the counters as they appear in the counter
60 * bit maps in the PMU registers (e.g CLUSTERPMSELR).
61 * i.e,
62 * counter 0 - Bit 0
63 * counter 1 - Bit 1
64 * ...
65 * Cycle counter - Bit 31
66 */
67 #define DSU_PMU_IDX_CYCLE_COUNTER 31
68
69 /* All event counters are 32bit, with a 64bit Cycle counter */
70 #define DSU_PMU_COUNTER_WIDTH(idx) \
71 (((idx) == DSU_PMU_IDX_CYCLE_COUNTER) ? 64 : 32)
72
73 #define DSU_PMU_COUNTER_MASK(idx) \
74 GENMASK_ULL((DSU_PMU_COUNTER_WIDTH((idx)) - 1), 0)
75
76 #define DSU_EXT_ATTR(_name, _func, _config) \
77 (&((struct dev_ext_attribute[]) { \
78 { \
79 .attr = __ATTR(_name, 0444, _func, NULL), \
80 .var = (void *)_config \
81 } \
82 })[0].attr.attr)
83
84 #define DSU_EVENT_ATTR(_name, _config) \
85 DSU_EXT_ATTR(_name, dsu_pmu_sysfs_event_show, (unsigned long)_config)
86
87 #define DSU_FORMAT_ATTR(_name, _config) \
88 DSU_EXT_ATTR(_name, dsu_pmu_sysfs_format_show, (char *)_config)
89
90 #define DSU_CPUMASK_ATTR(_name, _config) \
91 DSU_EXT_ATTR(_name, dsu_pmu_cpumask_show, (unsigned long)_config)
92
93 struct dsu_hw_events {
94 DECLARE_BITMAP(used_mask, DSU_PMU_MAX_HW_CNTRS);
95 struct perf_event *events[DSU_PMU_MAX_HW_CNTRS];
96 };
97
98 /*
99 * struct dsu_pmu - DSU PMU descriptor
100 *
101 * @pmu_lock : Protects accesses to DSU PMU register from normal vs
102 * interrupt handler contexts.
103 * @hw_events : Holds the event counter state.
104 * @associated_cpus : CPUs attached to the DSU.
105 * @active_cpu : CPU to which the PMU is bound for accesses.
106 * @cpuhp_node : Node for CPU hotplug notifier link.
107 * @num_counters : Number of event counters implemented by the PMU,
108 * excluding the cycle counter.
109 * @irq : Interrupt line for counter overflow.
110 * @cpmceid_bitmap : Bitmap for the availability of architected common
111 * events (event_code < 0x40).
112 */
113 struct dsu_pmu {
114 struct pmu pmu;
115 struct device *dev;
116 raw_spinlock_t pmu_lock;
117 struct dsu_hw_events hw_events;
118 cpumask_t associated_cpus;
119 cpumask_t active_cpu;
120 struct hlist_node cpuhp_node;
121 s8 num_counters;
122 int irq;
123 DECLARE_BITMAP(cpmceid_bitmap, DSU_PMU_MAX_COMMON_EVENTS);
124 };
125
126 static unsigned long dsu_pmu_cpuhp_state;
127
to_dsu_pmu(struct pmu * pmu)128 static inline struct dsu_pmu *to_dsu_pmu(struct pmu *pmu)
129 {
130 return container_of(pmu, struct dsu_pmu, pmu);
131 }
132
dsu_pmu_sysfs_event_show(struct device * dev,struct device_attribute * attr,char * buf)133 static ssize_t dsu_pmu_sysfs_event_show(struct device *dev,
134 struct device_attribute *attr,
135 char *buf)
136 {
137 struct dev_ext_attribute *eattr = container_of(attr,
138 struct dev_ext_attribute, attr);
139 return sysfs_emit(buf, "event=0x%lx\n", (unsigned long)eattr->var);
140 }
141
dsu_pmu_sysfs_format_show(struct device * dev,struct device_attribute * attr,char * buf)142 static ssize_t dsu_pmu_sysfs_format_show(struct device *dev,
143 struct device_attribute *attr,
144 char *buf)
145 {
146 struct dev_ext_attribute *eattr = container_of(attr,
147 struct dev_ext_attribute, attr);
148 return sysfs_emit(buf, "%s\n", (char *)eattr->var);
149 }
150
dsu_pmu_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)151 static ssize_t dsu_pmu_cpumask_show(struct device *dev,
152 struct device_attribute *attr,
153 char *buf)
154 {
155 struct pmu *pmu = dev_get_drvdata(dev);
156 struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu);
157 struct dev_ext_attribute *eattr = container_of(attr,
158 struct dev_ext_attribute, attr);
159 unsigned long mask_id = (unsigned long)eattr->var;
160 const cpumask_t *cpumask;
161
162 switch (mask_id) {
163 case DSU_ACTIVE_CPU_MASK:
164 cpumask = &dsu_pmu->active_cpu;
165 break;
166 case DSU_ASSOCIATED_CPU_MASK:
167 cpumask = &dsu_pmu->associated_cpus;
168 break;
169 default:
170 return 0;
171 }
172 return cpumap_print_to_pagebuf(true, buf, cpumask);
173 }
174
175 static struct attribute *dsu_pmu_format_attrs[] = {
176 DSU_FORMAT_ATTR(event, "config:0-31"),
177 NULL,
178 };
179
180 static const struct attribute_group dsu_pmu_format_attr_group = {
181 .name = "format",
182 .attrs = dsu_pmu_format_attrs,
183 };
184
185 static struct attribute *dsu_pmu_event_attrs[] = {
186 DSU_EVENT_ATTR(cycles, 0x11),
187 DSU_EVENT_ATTR(bus_access, 0x19),
188 DSU_EVENT_ATTR(memory_error, 0x1a),
189 DSU_EVENT_ATTR(bus_cycles, 0x1d),
190 DSU_EVENT_ATTR(l3d_cache_allocate, 0x29),
191 DSU_EVENT_ATTR(l3d_cache_refill, 0x2a),
192 DSU_EVENT_ATTR(l3d_cache, 0x2b),
193 DSU_EVENT_ATTR(l3d_cache_wb, 0x2c),
194 NULL,
195 };
196
197 static umode_t
dsu_pmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)198 dsu_pmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr,
199 int unused)
200 {
201 struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj));
202 struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu);
203 struct dev_ext_attribute *eattr = container_of(attr,
204 struct dev_ext_attribute, attr.attr);
205 unsigned long evt = (unsigned long)eattr->var;
206
207 return test_bit(evt, dsu_pmu->cpmceid_bitmap) ? attr->mode : 0;
208 }
209
210 static const struct attribute_group dsu_pmu_events_attr_group = {
211 .name = "events",
212 .attrs = dsu_pmu_event_attrs,
213 .is_visible = dsu_pmu_event_attr_is_visible,
214 };
215
216 static struct attribute *dsu_pmu_cpumask_attrs[] = {
217 DSU_CPUMASK_ATTR(cpumask, DSU_ACTIVE_CPU_MASK),
218 DSU_CPUMASK_ATTR(associated_cpus, DSU_ASSOCIATED_CPU_MASK),
219 NULL,
220 };
221
222 static const struct attribute_group dsu_pmu_cpumask_attr_group = {
223 .attrs = dsu_pmu_cpumask_attrs,
224 };
225
226 static const struct attribute_group *dsu_pmu_attr_groups[] = {
227 &dsu_pmu_cpumask_attr_group,
228 &dsu_pmu_events_attr_group,
229 &dsu_pmu_format_attr_group,
230 NULL,
231 };
232
dsu_pmu_get_online_cpu_any_but(struct dsu_pmu * dsu_pmu,int cpu)233 static int dsu_pmu_get_online_cpu_any_but(struct dsu_pmu *dsu_pmu, int cpu)
234 {
235 struct cpumask online_supported;
236
237 cpumask_and(&online_supported,
238 &dsu_pmu->associated_cpus, cpu_online_mask);
239 return cpumask_any_but(&online_supported, cpu);
240 }
241
dsu_pmu_counter_valid(struct dsu_pmu * dsu_pmu,u32 idx)242 static inline bool dsu_pmu_counter_valid(struct dsu_pmu *dsu_pmu, u32 idx)
243 {
244 return (idx < dsu_pmu->num_counters) ||
245 (idx == DSU_PMU_IDX_CYCLE_COUNTER);
246 }
247
dsu_pmu_read_counter(struct perf_event * event)248 static inline u64 dsu_pmu_read_counter(struct perf_event *event)
249 {
250 u64 val;
251 unsigned long flags;
252 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
253 int idx = event->hw.idx;
254
255 if (WARN_ON(!cpumask_test_cpu(smp_processor_id(),
256 &dsu_pmu->associated_cpus)))
257 return 0;
258
259 if (!dsu_pmu_counter_valid(dsu_pmu, idx)) {
260 dev_err(event->pmu->dev,
261 "Trying reading invalid counter %d\n", idx);
262 return 0;
263 }
264
265 raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags);
266 if (idx == DSU_PMU_IDX_CYCLE_COUNTER)
267 val = __dsu_pmu_read_pmccntr();
268 else
269 val = __dsu_pmu_read_counter(idx);
270 raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags);
271
272 return val;
273 }
274
dsu_pmu_write_counter(struct perf_event * event,u64 val)275 static void dsu_pmu_write_counter(struct perf_event *event, u64 val)
276 {
277 unsigned long flags;
278 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
279 int idx = event->hw.idx;
280
281 if (WARN_ON(!cpumask_test_cpu(smp_processor_id(),
282 &dsu_pmu->associated_cpus)))
283 return;
284
285 if (!dsu_pmu_counter_valid(dsu_pmu, idx)) {
286 dev_err(event->pmu->dev,
287 "writing to invalid counter %d\n", idx);
288 return;
289 }
290
291 raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags);
292 if (idx == DSU_PMU_IDX_CYCLE_COUNTER)
293 __dsu_pmu_write_pmccntr(val);
294 else
295 __dsu_pmu_write_counter(idx, val);
296 raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags);
297 }
298
dsu_pmu_get_event_idx(struct dsu_hw_events * hw_events,struct perf_event * event)299 static int dsu_pmu_get_event_idx(struct dsu_hw_events *hw_events,
300 struct perf_event *event)
301 {
302 int idx;
303 unsigned long evtype = event->attr.config;
304 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
305 unsigned long *used_mask = hw_events->used_mask;
306
307 if (evtype == DSU_PMU_EVT_CYCLES) {
308 if (test_and_set_bit(DSU_PMU_IDX_CYCLE_COUNTER, used_mask))
309 return -EAGAIN;
310 return DSU_PMU_IDX_CYCLE_COUNTER;
311 }
312
313 idx = find_first_zero_bit(used_mask, dsu_pmu->num_counters);
314 if (idx >= dsu_pmu->num_counters)
315 return -EAGAIN;
316 set_bit(idx, hw_events->used_mask);
317 return idx;
318 }
319
dsu_pmu_enable_counter(struct dsu_pmu * dsu_pmu,int idx)320 static void dsu_pmu_enable_counter(struct dsu_pmu *dsu_pmu, int idx)
321 {
322 __dsu_pmu_counter_interrupt_enable(idx);
323 __dsu_pmu_enable_counter(idx);
324 }
325
dsu_pmu_disable_counter(struct dsu_pmu * dsu_pmu,int idx)326 static void dsu_pmu_disable_counter(struct dsu_pmu *dsu_pmu, int idx)
327 {
328 __dsu_pmu_disable_counter(idx);
329 __dsu_pmu_counter_interrupt_disable(idx);
330 }
331
dsu_pmu_set_event(struct dsu_pmu * dsu_pmu,struct perf_event * event)332 static inline void dsu_pmu_set_event(struct dsu_pmu *dsu_pmu,
333 struct perf_event *event)
334 {
335 int idx = event->hw.idx;
336 unsigned long flags;
337
338 if (!dsu_pmu_counter_valid(dsu_pmu, idx)) {
339 dev_err(event->pmu->dev,
340 "Trying to set invalid counter %d\n", idx);
341 return;
342 }
343
344 raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags);
345 __dsu_pmu_set_event(idx, event->hw.config_base);
346 raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags);
347 }
348
dsu_pmu_event_update(struct perf_event * event)349 static void dsu_pmu_event_update(struct perf_event *event)
350 {
351 struct hw_perf_event *hwc = &event->hw;
352 u64 delta, prev_count, new_count;
353
354 do {
355 /* We may also be called from the irq handler */
356 prev_count = local64_read(&hwc->prev_count);
357 new_count = dsu_pmu_read_counter(event);
358 } while (local64_cmpxchg(&hwc->prev_count, prev_count, new_count) !=
359 prev_count);
360 delta = (new_count - prev_count) & DSU_PMU_COUNTER_MASK(hwc->idx);
361 local64_add(delta, &event->count);
362 }
363
dsu_pmu_read(struct perf_event * event)364 static void dsu_pmu_read(struct perf_event *event)
365 {
366 dsu_pmu_event_update(event);
367 }
368
dsu_pmu_get_reset_overflow(void)369 static inline u32 dsu_pmu_get_reset_overflow(void)
370 {
371 return __dsu_pmu_get_reset_overflow();
372 }
373
374 /**
375 * dsu_pmu_set_event_period: Set the period for the counter.
376 *
377 * All DSU PMU event counters, except the cycle counter are 32bit
378 * counters. To handle cases of extreme interrupt latency, we program
379 * the counter with half of the max count for the counters.
380 */
dsu_pmu_set_event_period(struct perf_event * event)381 static void dsu_pmu_set_event_period(struct perf_event *event)
382 {
383 int idx = event->hw.idx;
384 u64 val = DSU_PMU_COUNTER_MASK(idx) >> 1;
385
386 local64_set(&event->hw.prev_count, val);
387 dsu_pmu_write_counter(event, val);
388 }
389
dsu_pmu_handle_irq(int irq_num,void * dev)390 static irqreturn_t dsu_pmu_handle_irq(int irq_num, void *dev)
391 {
392 int i;
393 bool handled = false;
394 struct dsu_pmu *dsu_pmu = dev;
395 struct dsu_hw_events *hw_events = &dsu_pmu->hw_events;
396 unsigned long overflow;
397
398 overflow = dsu_pmu_get_reset_overflow();
399 if (!overflow)
400 return IRQ_NONE;
401
402 for_each_set_bit(i, &overflow, DSU_PMU_MAX_HW_CNTRS) {
403 struct perf_event *event = hw_events->events[i];
404
405 if (!event)
406 continue;
407 dsu_pmu_event_update(event);
408 dsu_pmu_set_event_period(event);
409 handled = true;
410 }
411
412 return IRQ_RETVAL(handled);
413 }
414
dsu_pmu_start(struct perf_event * event,int pmu_flags)415 static void dsu_pmu_start(struct perf_event *event, int pmu_flags)
416 {
417 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
418
419 /* We always reprogram the counter */
420 if (pmu_flags & PERF_EF_RELOAD)
421 WARN_ON(!(event->hw.state & PERF_HES_UPTODATE));
422 dsu_pmu_set_event_period(event);
423 if (event->hw.idx != DSU_PMU_IDX_CYCLE_COUNTER)
424 dsu_pmu_set_event(dsu_pmu, event);
425 event->hw.state = 0;
426 dsu_pmu_enable_counter(dsu_pmu, event->hw.idx);
427 }
428
dsu_pmu_stop(struct perf_event * event,int pmu_flags)429 static void dsu_pmu_stop(struct perf_event *event, int pmu_flags)
430 {
431 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
432
433 if (event->hw.state & PERF_HES_STOPPED)
434 return;
435 dsu_pmu_disable_counter(dsu_pmu, event->hw.idx);
436 dsu_pmu_event_update(event);
437 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
438 }
439
dsu_pmu_add(struct perf_event * event,int flags)440 static int dsu_pmu_add(struct perf_event *event, int flags)
441 {
442 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
443 struct dsu_hw_events *hw_events = &dsu_pmu->hw_events;
444 struct hw_perf_event *hwc = &event->hw;
445 int idx;
446
447 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
448 &dsu_pmu->associated_cpus)))
449 return -ENOENT;
450
451 idx = dsu_pmu_get_event_idx(hw_events, event);
452 if (idx < 0)
453 return idx;
454
455 hwc->idx = idx;
456 hw_events->events[idx] = event;
457 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
458
459 if (flags & PERF_EF_START)
460 dsu_pmu_start(event, PERF_EF_RELOAD);
461
462 perf_event_update_userpage(event);
463 return 0;
464 }
465
dsu_pmu_del(struct perf_event * event,int flags)466 static void dsu_pmu_del(struct perf_event *event, int flags)
467 {
468 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
469 struct dsu_hw_events *hw_events = &dsu_pmu->hw_events;
470 struct hw_perf_event *hwc = &event->hw;
471 int idx = hwc->idx;
472
473 dsu_pmu_stop(event, PERF_EF_UPDATE);
474 hw_events->events[idx] = NULL;
475 clear_bit(idx, hw_events->used_mask);
476 perf_event_update_userpage(event);
477 }
478
dsu_pmu_enable(struct pmu * pmu)479 static void dsu_pmu_enable(struct pmu *pmu)
480 {
481 u32 pmcr;
482 unsigned long flags;
483 struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu);
484
485 /* If no counters are added, skip enabling the PMU */
486 if (bitmap_empty(dsu_pmu->hw_events.used_mask, DSU_PMU_MAX_HW_CNTRS))
487 return;
488
489 raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags);
490 pmcr = __dsu_pmu_read_pmcr();
491 pmcr |= CLUSTERPMCR_E;
492 __dsu_pmu_write_pmcr(pmcr);
493 raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags);
494 }
495
dsu_pmu_disable(struct pmu * pmu)496 static void dsu_pmu_disable(struct pmu *pmu)
497 {
498 u32 pmcr;
499 unsigned long flags;
500 struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu);
501
502 raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags);
503 pmcr = __dsu_pmu_read_pmcr();
504 pmcr &= ~CLUSTERPMCR_E;
505 __dsu_pmu_write_pmcr(pmcr);
506 raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags);
507 }
508
dsu_pmu_validate_event(struct pmu * pmu,struct dsu_hw_events * hw_events,struct perf_event * event)509 static bool dsu_pmu_validate_event(struct pmu *pmu,
510 struct dsu_hw_events *hw_events,
511 struct perf_event *event)
512 {
513 if (is_software_event(event))
514 return true;
515 /* Reject groups spanning multiple HW PMUs. */
516 if (event->pmu != pmu)
517 return false;
518 return dsu_pmu_get_event_idx(hw_events, event) >= 0;
519 }
520
521 /*
522 * Make sure the group of events can be scheduled at once
523 * on the PMU.
524 */
dsu_pmu_validate_group(struct perf_event * event)525 static bool dsu_pmu_validate_group(struct perf_event *event)
526 {
527 struct perf_event *sibling, *leader = event->group_leader;
528 struct dsu_hw_events fake_hw;
529
530 if (event->group_leader == event)
531 return true;
532
533 memset(fake_hw.used_mask, 0, sizeof(fake_hw.used_mask));
534 if (!dsu_pmu_validate_event(event->pmu, &fake_hw, leader))
535 return false;
536 for_each_sibling_event(sibling, leader) {
537 if (!dsu_pmu_validate_event(event->pmu, &fake_hw, sibling))
538 return false;
539 }
540 return dsu_pmu_validate_event(event->pmu, &fake_hw, event);
541 }
542
dsu_pmu_event_init(struct perf_event * event)543 static int dsu_pmu_event_init(struct perf_event *event)
544 {
545 struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu);
546
547 if (event->attr.type != event->pmu->type)
548 return -ENOENT;
549
550 /* We don't support sampling */
551 if (is_sampling_event(event)) {
552 dev_dbg(dsu_pmu->pmu.dev, "Can't support sampling events\n");
553 return -EOPNOTSUPP;
554 }
555
556 /* We cannot support task bound events */
557 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
558 dev_dbg(dsu_pmu->pmu.dev, "Can't support per-task counters\n");
559 return -EINVAL;
560 }
561
562 if (has_branch_stack(event)) {
563 dev_dbg(dsu_pmu->pmu.dev, "Can't support filtering\n");
564 return -EINVAL;
565 }
566
567 if (!cpumask_test_cpu(event->cpu, &dsu_pmu->associated_cpus)) {
568 dev_dbg(dsu_pmu->pmu.dev,
569 "Requested cpu is not associated with the DSU\n");
570 return -EINVAL;
571 }
572 /*
573 * Choose the current active CPU to read the events. We don't want
574 * to migrate the event contexts, irq handling etc to the requested
575 * CPU. As long as the requested CPU is within the same DSU, we
576 * are fine.
577 */
578 event->cpu = cpumask_first(&dsu_pmu->active_cpu);
579 if (event->cpu >= nr_cpu_ids)
580 return -EINVAL;
581 if (!dsu_pmu_validate_group(event))
582 return -EINVAL;
583
584 event->hw.config_base = event->attr.config;
585 return 0;
586 }
587
dsu_pmu_alloc(struct platform_device * pdev)588 static struct dsu_pmu *dsu_pmu_alloc(struct platform_device *pdev)
589 {
590 struct dsu_pmu *dsu_pmu;
591
592 dsu_pmu = devm_kzalloc(&pdev->dev, sizeof(*dsu_pmu), GFP_KERNEL);
593 if (!dsu_pmu)
594 return ERR_PTR(-ENOMEM);
595
596 raw_spin_lock_init(&dsu_pmu->pmu_lock);
597 /*
598 * Initialise the number of counters to -1, until we probe
599 * the real number on a connected CPU.
600 */
601 dsu_pmu->num_counters = -1;
602 return dsu_pmu;
603 }
604
605 /**
606 * dsu_pmu_dt_get_cpus: Get the list of CPUs in the cluster
607 * from device tree.
608 */
dsu_pmu_dt_get_cpus(struct device * dev,cpumask_t * mask)609 static int dsu_pmu_dt_get_cpus(struct device *dev, cpumask_t *mask)
610 {
611 int i = 0, n, cpu;
612 struct device_node *cpu_node;
613
614 n = of_count_phandle_with_args(dev->of_node, "cpus", NULL);
615 if (n <= 0)
616 return -ENODEV;
617 for (; i < n; i++) {
618 cpu_node = of_parse_phandle(dev->of_node, "cpus", i);
619 if (!cpu_node)
620 break;
621 cpu = of_cpu_node_to_id(cpu_node);
622 of_node_put(cpu_node);
623 /*
624 * We have to ignore the failures here and continue scanning
625 * the list to handle cases where the nr_cpus could be capped
626 * in the running kernel.
627 */
628 if (cpu < 0)
629 continue;
630 cpumask_set_cpu(cpu, mask);
631 }
632 return 0;
633 }
634
635 /**
636 * dsu_pmu_acpi_get_cpus: Get the list of CPUs in the cluster
637 * from ACPI.
638 */
dsu_pmu_acpi_get_cpus(struct device * dev,cpumask_t * mask)639 static int dsu_pmu_acpi_get_cpus(struct device *dev, cpumask_t *mask)
640 {
641 #ifdef CONFIG_ACPI
642 struct acpi_device *parent_adev = acpi_dev_parent(ACPI_COMPANION(dev));
643 int cpu;
644
645 /*
646 * A dsu pmu node is inside a cluster parent node along with cpu nodes.
647 * We need to find out all cpus that have the same parent with this pmu.
648 */
649 for_each_possible_cpu(cpu) {
650 struct acpi_device *acpi_dev;
651 struct device *cpu_dev = get_cpu_device(cpu);
652
653 if (!cpu_dev)
654 continue;
655
656 acpi_dev = ACPI_COMPANION(cpu_dev);
657 if (acpi_dev && acpi_dev_parent(acpi_dev) == parent_adev)
658 cpumask_set_cpu(cpu, mask);
659 }
660 #endif
661
662 return 0;
663 }
664
665 /*
666 * dsu_pmu_probe_pmu: Probe the PMU details on a CPU in the cluster.
667 */
dsu_pmu_probe_pmu(struct dsu_pmu * dsu_pmu)668 static void dsu_pmu_probe_pmu(struct dsu_pmu *dsu_pmu)
669 {
670 u64 num_counters;
671 u32 cpmceid[2];
672
673 num_counters = (__dsu_pmu_read_pmcr() >> CLUSTERPMCR_N_SHIFT) &
674 CLUSTERPMCR_N_MASK;
675 /* We can only support up to 31 independent counters */
676 if (WARN_ON(num_counters > 31))
677 num_counters = 31;
678 dsu_pmu->num_counters = num_counters;
679 if (!dsu_pmu->num_counters)
680 return;
681 cpmceid[0] = __dsu_pmu_read_pmceid(0);
682 cpmceid[1] = __dsu_pmu_read_pmceid(1);
683 bitmap_from_arr32(dsu_pmu->cpmceid_bitmap, cpmceid,
684 DSU_PMU_MAX_COMMON_EVENTS);
685 }
686
dsu_pmu_set_active_cpu(int cpu,struct dsu_pmu * dsu_pmu)687 static void dsu_pmu_set_active_cpu(int cpu, struct dsu_pmu *dsu_pmu)
688 {
689 cpumask_set_cpu(cpu, &dsu_pmu->active_cpu);
690 if (irq_set_affinity(dsu_pmu->irq, &dsu_pmu->active_cpu))
691 pr_warn("Failed to set irq affinity to %d\n", cpu);
692 }
693
694 /*
695 * dsu_pmu_init_pmu: Initialise the DSU PMU configurations if
696 * we haven't done it already.
697 */
dsu_pmu_init_pmu(struct dsu_pmu * dsu_pmu)698 static void dsu_pmu_init_pmu(struct dsu_pmu *dsu_pmu)
699 {
700 if (dsu_pmu->num_counters == -1)
701 dsu_pmu_probe_pmu(dsu_pmu);
702 /* Reset the interrupt overflow mask */
703 dsu_pmu_get_reset_overflow();
704 }
705
dsu_pmu_device_probe(struct platform_device * pdev)706 static int dsu_pmu_device_probe(struct platform_device *pdev)
707 {
708 int irq, rc;
709 struct dsu_pmu *dsu_pmu;
710 struct fwnode_handle *fwnode = dev_fwnode(&pdev->dev);
711 char *name;
712 static atomic_t pmu_idx = ATOMIC_INIT(-1);
713
714 dsu_pmu = dsu_pmu_alloc(pdev);
715 if (IS_ERR(dsu_pmu))
716 return PTR_ERR(dsu_pmu);
717
718 if (is_of_node(fwnode))
719 rc = dsu_pmu_dt_get_cpus(&pdev->dev, &dsu_pmu->associated_cpus);
720 else if (is_acpi_device_node(fwnode))
721 rc = dsu_pmu_acpi_get_cpus(&pdev->dev, &dsu_pmu->associated_cpus);
722 else
723 return -ENOENT;
724
725 if (rc) {
726 dev_warn(&pdev->dev, "Failed to parse the CPUs\n");
727 return rc;
728 }
729
730 irq = platform_get_irq(pdev, 0);
731 if (irq < 0)
732 return -EINVAL;
733
734 name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_%d",
735 PMUNAME, atomic_inc_return(&pmu_idx));
736 if (!name)
737 return -ENOMEM;
738 rc = devm_request_irq(&pdev->dev, irq, dsu_pmu_handle_irq,
739 IRQF_NOBALANCING, name, dsu_pmu);
740 if (rc) {
741 dev_warn(&pdev->dev, "Failed to request IRQ %d\n", irq);
742 return rc;
743 }
744
745 dsu_pmu->irq = irq;
746 platform_set_drvdata(pdev, dsu_pmu);
747 rc = cpuhp_state_add_instance(dsu_pmu_cpuhp_state,
748 &dsu_pmu->cpuhp_node);
749 if (rc)
750 return rc;
751
752 dsu_pmu->pmu = (struct pmu) {
753 .task_ctx_nr = perf_invalid_context,
754 .module = THIS_MODULE,
755 .pmu_enable = dsu_pmu_enable,
756 .pmu_disable = dsu_pmu_disable,
757 .event_init = dsu_pmu_event_init,
758 .add = dsu_pmu_add,
759 .del = dsu_pmu_del,
760 .start = dsu_pmu_start,
761 .stop = dsu_pmu_stop,
762 .read = dsu_pmu_read,
763
764 .attr_groups = dsu_pmu_attr_groups,
765 .capabilities = PERF_PMU_CAP_NO_EXCLUDE,
766 };
767
768 rc = perf_pmu_register(&dsu_pmu->pmu, name, -1);
769 if (rc) {
770 cpuhp_state_remove_instance(dsu_pmu_cpuhp_state,
771 &dsu_pmu->cpuhp_node);
772 }
773
774 return rc;
775 }
776
dsu_pmu_device_remove(struct platform_device * pdev)777 static int dsu_pmu_device_remove(struct platform_device *pdev)
778 {
779 struct dsu_pmu *dsu_pmu = platform_get_drvdata(pdev);
780
781 perf_pmu_unregister(&dsu_pmu->pmu);
782 cpuhp_state_remove_instance(dsu_pmu_cpuhp_state, &dsu_pmu->cpuhp_node);
783
784 return 0;
785 }
786
787 static const struct of_device_id dsu_pmu_of_match[] = {
788 { .compatible = "arm,dsu-pmu", },
789 {},
790 };
791 MODULE_DEVICE_TABLE(of, dsu_pmu_of_match);
792
793 #ifdef CONFIG_ACPI
794 static const struct acpi_device_id dsu_pmu_acpi_match[] = {
795 { "ARMHD500", 0},
796 {},
797 };
798 MODULE_DEVICE_TABLE(acpi, dsu_pmu_acpi_match);
799 #endif
800
801 static struct platform_driver dsu_pmu_driver = {
802 .driver = {
803 .name = DRVNAME,
804 .of_match_table = of_match_ptr(dsu_pmu_of_match),
805 .acpi_match_table = ACPI_PTR(dsu_pmu_acpi_match),
806 .suppress_bind_attrs = true,
807 },
808 .probe = dsu_pmu_device_probe,
809 .remove = dsu_pmu_device_remove,
810 };
811
dsu_pmu_cpu_online(unsigned int cpu,struct hlist_node * node)812 static int dsu_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
813 {
814 struct dsu_pmu *dsu_pmu = hlist_entry_safe(node, struct dsu_pmu,
815 cpuhp_node);
816
817 if (!cpumask_test_cpu(cpu, &dsu_pmu->associated_cpus))
818 return 0;
819
820 /* If the PMU is already managed, there is nothing to do */
821 if (!cpumask_empty(&dsu_pmu->active_cpu))
822 return 0;
823
824 dsu_pmu_init_pmu(dsu_pmu);
825 dsu_pmu_set_active_cpu(cpu, dsu_pmu);
826
827 return 0;
828 }
829
dsu_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)830 static int dsu_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
831 {
832 int dst;
833 struct dsu_pmu *dsu_pmu = hlist_entry_safe(node, struct dsu_pmu,
834 cpuhp_node);
835
836 if (!cpumask_test_and_clear_cpu(cpu, &dsu_pmu->active_cpu))
837 return 0;
838
839 dst = dsu_pmu_get_online_cpu_any_but(dsu_pmu, cpu);
840 /* If there are no active CPUs in the DSU, leave IRQ disabled */
841 if (dst >= nr_cpu_ids)
842 return 0;
843
844 perf_pmu_migrate_context(&dsu_pmu->pmu, cpu, dst);
845 dsu_pmu_set_active_cpu(dst, dsu_pmu);
846
847 return 0;
848 }
849
dsu_pmu_init(void)850 static int __init dsu_pmu_init(void)
851 {
852 int ret;
853
854 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
855 DRVNAME,
856 dsu_pmu_cpu_online,
857 dsu_pmu_cpu_teardown);
858 if (ret < 0)
859 return ret;
860 dsu_pmu_cpuhp_state = ret;
861 ret = platform_driver_register(&dsu_pmu_driver);
862 if (ret)
863 cpuhp_remove_multi_state(dsu_pmu_cpuhp_state);
864
865 return ret;
866 }
867
dsu_pmu_exit(void)868 static void __exit dsu_pmu_exit(void)
869 {
870 platform_driver_unregister(&dsu_pmu_driver);
871 cpuhp_remove_multi_state(dsu_pmu_cpuhp_state);
872 }
873
874 module_init(dsu_pmu_init);
875 module_exit(dsu_pmu_exit);
876
877 MODULE_DESCRIPTION("Perf driver for ARM DynamIQ Shared Unit");
878 MODULE_AUTHOR("Suzuki K Poulose <suzuki.poulose@arm.com>");
879 MODULE_LICENSE("GPL v2");
880