1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs_dsp.c -- Cirrus Logic DSP firmware support
4 *
5 * Based on sound/soc/codecs/wm_adsp.c
6 *
7 * Copyright 2012 Wolfson Microelectronics plc
8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9 * Cirrus Logic International Semiconductor Ltd.
10 */
11
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #include <linux/firmware/cirrus/cs_dsp.h>
21 #include <linux/firmware/cirrus/wmfw.h>
22
23 #define cs_dsp_err(_dsp, fmt, ...) \
24 dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
25 #define cs_dsp_warn(_dsp, fmt, ...) \
26 dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
27 #define cs_dsp_info(_dsp, fmt, ...) \
28 dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_dbg(_dsp, fmt, ...) \
30 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31
32 #define ADSP1_CONTROL_1 0x00
33 #define ADSP1_CONTROL_2 0x02
34 #define ADSP1_CONTROL_3 0x03
35 #define ADSP1_CONTROL_4 0x04
36 #define ADSP1_CONTROL_5 0x06
37 #define ADSP1_CONTROL_6 0x07
38 #define ADSP1_CONTROL_7 0x08
39 #define ADSP1_CONTROL_8 0x09
40 #define ADSP1_CONTROL_9 0x0A
41 #define ADSP1_CONTROL_10 0x0B
42 #define ADSP1_CONTROL_11 0x0C
43 #define ADSP1_CONTROL_12 0x0D
44 #define ADSP1_CONTROL_13 0x0F
45 #define ADSP1_CONTROL_14 0x10
46 #define ADSP1_CONTROL_15 0x11
47 #define ADSP1_CONTROL_16 0x12
48 #define ADSP1_CONTROL_17 0x13
49 #define ADSP1_CONTROL_18 0x14
50 #define ADSP1_CONTROL_19 0x16
51 #define ADSP1_CONTROL_20 0x17
52 #define ADSP1_CONTROL_21 0x18
53 #define ADSP1_CONTROL_22 0x1A
54 #define ADSP1_CONTROL_23 0x1B
55 #define ADSP1_CONTROL_24 0x1C
56 #define ADSP1_CONTROL_25 0x1E
57 #define ADSP1_CONTROL_26 0x20
58 #define ADSP1_CONTROL_27 0x21
59 #define ADSP1_CONTROL_28 0x22
60 #define ADSP1_CONTROL_29 0x23
61 #define ADSP1_CONTROL_30 0x24
62 #define ADSP1_CONTROL_31 0x26
63
64 /*
65 * ADSP1 Control 19
66 */
67 #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
68 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70
71 /*
72 * ADSP1 Control 30
73 */
74 #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
75 #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
79 #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
82 #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
83 #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
86 #define ADSP1_START 0x0001 /* DSP1_START */
87 #define ADSP1_START_MASK 0x0001 /* DSP1_START */
88 #define ADSP1_START_SHIFT 0 /* DSP1_START */
89 #define ADSP1_START_WIDTH 1 /* DSP1_START */
90
91 /*
92 * ADSP1 Control 31
93 */
94 #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
95 #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
97
98 #define ADSP2_CONTROL 0x0
99 #define ADSP2_CLOCKING 0x1
100 #define ADSP2V2_CLOCKING 0x2
101 #define ADSP2_STATUS1 0x4
102 #define ADSP2_WDMA_CONFIG_1 0x30
103 #define ADSP2_WDMA_CONFIG_2 0x31
104 #define ADSP2V2_WDMA_CONFIG_2 0x32
105 #define ADSP2_RDMA_CONFIG_1 0x34
106
107 #define ADSP2_SCRATCH0 0x40
108 #define ADSP2_SCRATCH1 0x41
109 #define ADSP2_SCRATCH2 0x42
110 #define ADSP2_SCRATCH3 0x43
111
112 #define ADSP2V2_SCRATCH0_1 0x40
113 #define ADSP2V2_SCRATCH2_3 0x42
114
115 /*
116 * ADSP2 Control
117 */
118 #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
119 #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
122 #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
123 #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
126 #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
127 #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
130 #define ADSP2_START 0x0001 /* DSP1_START */
131 #define ADSP2_START_MASK 0x0001 /* DSP1_START */
132 #define ADSP2_START_SHIFT 0 /* DSP1_START */
133 #define ADSP2_START_WIDTH 1 /* DSP1_START */
134
135 /*
136 * ADSP2 clocking
137 */
138 #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
139 #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
141
142 /*
143 * ADSP2V2 clocking
144 */
145 #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
146 #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
148
149 #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
150 #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
151 #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
152
153 /*
154 * ADSP2 Status 1
155 */
156 #define ADSP2_RAM_RDY 0x0001
157 #define ADSP2_RAM_RDY_MASK 0x0001
158 #define ADSP2_RAM_RDY_SHIFT 0
159 #define ADSP2_RAM_RDY_WIDTH 1
160
161 /*
162 * ADSP2 Lock support
163 */
164 #define ADSP2_LOCK_CODE_0 0x5555
165 #define ADSP2_LOCK_CODE_1 0xAAAA
166
167 #define ADSP2_WATCHDOG 0x0A
168 #define ADSP2_BUS_ERR_ADDR 0x52
169 #define ADSP2_REGION_LOCK_STATUS 0x64
170 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
171 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
172 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
173 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
174 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
175 #define ADSP2_LOCK_REGION_CTRL 0x7A
176 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
177
178 #define ADSP2_REGION_LOCK_ERR_MASK 0x8000
179 #define ADSP2_ADDR_ERR_MASK 0x4000
180 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
181 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
182 #define ADSP2_CTRL_ERR_EINT 0x0001
183
184 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
185 #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
186 #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
187 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16
188 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
189
190 #define ADSP2_LOCK_REGION_SHIFT 16
191
192 /*
193 * Event control messages
194 */
195 #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
196
197 /*
198 * HALO system info
199 */
200 #define HALO_AHBM_WINDOW_DEBUG_0 0x02040
201 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044
202
203 /*
204 * HALO core
205 */
206 #define HALO_SCRATCH1 0x005c0
207 #define HALO_SCRATCH2 0x005c8
208 #define HALO_SCRATCH3 0x005d0
209 #define HALO_SCRATCH4 0x005d8
210 #define HALO_CCM_CORE_CONTROL 0x41000
211 #define HALO_CORE_SOFT_RESET 0x00010
212 #define HALO_WDT_CONTROL 0x47000
213
214 /*
215 * HALO MPU banks
216 */
217 #define HALO_MPU_XMEM_ACCESS_0 0x43000
218 #define HALO_MPU_YMEM_ACCESS_0 0x43004
219 #define HALO_MPU_WINDOW_ACCESS_0 0x43008
220 #define HALO_MPU_XREG_ACCESS_0 0x4300C
221 #define HALO_MPU_YREG_ACCESS_0 0x43014
222 #define HALO_MPU_XMEM_ACCESS_1 0x43018
223 #define HALO_MPU_YMEM_ACCESS_1 0x4301C
224 #define HALO_MPU_WINDOW_ACCESS_1 0x43020
225 #define HALO_MPU_XREG_ACCESS_1 0x43024
226 #define HALO_MPU_YREG_ACCESS_1 0x4302C
227 #define HALO_MPU_XMEM_ACCESS_2 0x43030
228 #define HALO_MPU_YMEM_ACCESS_2 0x43034
229 #define HALO_MPU_WINDOW_ACCESS_2 0x43038
230 #define HALO_MPU_XREG_ACCESS_2 0x4303C
231 #define HALO_MPU_YREG_ACCESS_2 0x43044
232 #define HALO_MPU_XMEM_ACCESS_3 0x43048
233 #define HALO_MPU_YMEM_ACCESS_3 0x4304C
234 #define HALO_MPU_WINDOW_ACCESS_3 0x43050
235 #define HALO_MPU_XREG_ACCESS_3 0x43054
236 #define HALO_MPU_YREG_ACCESS_3 0x4305C
237 #define HALO_MPU_XM_VIO_ADDR 0x43100
238 #define HALO_MPU_XM_VIO_STATUS 0x43104
239 #define HALO_MPU_YM_VIO_ADDR 0x43108
240 #define HALO_MPU_YM_VIO_STATUS 0x4310C
241 #define HALO_MPU_PM_VIO_ADDR 0x43110
242 #define HALO_MPU_PM_VIO_STATUS 0x43114
243 #define HALO_MPU_LOCK_CONFIG 0x43140
244
245 /*
246 * HALO_AHBM_WINDOW_DEBUG_1
247 */
248 #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
249 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
250 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
251
252 /*
253 * HALO_CCM_CORE_CONTROL
254 */
255 #define HALO_CORE_RESET 0x00000200
256 #define HALO_CORE_EN 0x00000001
257
258 /*
259 * HALO_CORE_SOFT_RESET
260 */
261 #define HALO_CORE_SOFT_RESET_MASK 0x00000001
262
263 /*
264 * HALO_WDT_CONTROL
265 */
266 #define HALO_WDT_EN_MASK 0x00000001
267
268 /*
269 * HALO_MPU_?M_VIO_STATUS
270 */
271 #define HALO_MPU_VIO_STS_MASK 0x007e0000
272 #define HALO_MPU_VIO_STS_SHIFT 17
273 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
274 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
275 #define HALO_MPU_VIO_ERR_SRC_SHIFT 0
276
277 struct cs_dsp_ops {
278 bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
279 unsigned int (*parse_sizes)(struct cs_dsp *dsp,
280 const char * const file,
281 unsigned int pos,
282 const struct firmware *firmware);
283 int (*setup_algs)(struct cs_dsp *dsp);
284 unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
285 unsigned int offset);
286
287 void (*show_fw_status)(struct cs_dsp *dsp);
288 void (*stop_watchdog)(struct cs_dsp *dsp);
289
290 int (*enable_memory)(struct cs_dsp *dsp);
291 void (*disable_memory)(struct cs_dsp *dsp);
292 int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
293
294 int (*enable_core)(struct cs_dsp *dsp);
295 void (*disable_core)(struct cs_dsp *dsp);
296
297 int (*start_core)(struct cs_dsp *dsp);
298 void (*stop_core)(struct cs_dsp *dsp);
299 };
300
301 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
302 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
303 static const struct cs_dsp_ops cs_dsp_halo_ops;
304
305 struct cs_dsp_buf {
306 struct list_head list;
307 void *buf;
308 };
309
cs_dsp_buf_alloc(const void * src,size_t len,struct list_head * list)310 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
311 struct list_head *list)
312 {
313 struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
314
315 if (buf == NULL)
316 return NULL;
317
318 buf->buf = vmalloc(len);
319 if (!buf->buf) {
320 kfree(buf);
321 return NULL;
322 }
323 memcpy(buf->buf, src, len);
324
325 if (list)
326 list_add_tail(&buf->list, list);
327
328 return buf;
329 }
330
cs_dsp_buf_free(struct list_head * list)331 static void cs_dsp_buf_free(struct list_head *list)
332 {
333 while (!list_empty(list)) {
334 struct cs_dsp_buf *buf = list_first_entry(list,
335 struct cs_dsp_buf,
336 list);
337 list_del(&buf->list);
338 vfree(buf->buf);
339 kfree(buf);
340 }
341 }
342
343 /**
344 * cs_dsp_mem_region_name() - Return a name string for a memory type
345 * @type: the memory type to match
346 *
347 * Return: A const string identifying the memory region.
348 */
cs_dsp_mem_region_name(unsigned int type)349 const char *cs_dsp_mem_region_name(unsigned int type)
350 {
351 switch (type) {
352 case WMFW_ADSP1_PM:
353 return "PM";
354 case WMFW_HALO_PM_PACKED:
355 return "PM_PACKED";
356 case WMFW_ADSP1_DM:
357 return "DM";
358 case WMFW_ADSP2_XM:
359 return "XM";
360 case WMFW_HALO_XM_PACKED:
361 return "XM_PACKED";
362 case WMFW_ADSP2_YM:
363 return "YM";
364 case WMFW_HALO_YM_PACKED:
365 return "YM_PACKED";
366 case WMFW_ADSP1_ZM:
367 return "ZM";
368 default:
369 return NULL;
370 }
371 }
372 EXPORT_SYMBOL_GPL(cs_dsp_mem_region_name);
373
374 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)375 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
376 {
377 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
378
379 kfree(dsp->wmfw_file_name);
380 dsp->wmfw_file_name = tmp;
381 }
382
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)383 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
384 {
385 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
386
387 kfree(dsp->bin_file_name);
388 dsp->bin_file_name = tmp;
389 }
390
cs_dsp_debugfs_clear(struct cs_dsp * dsp)391 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
392 {
393 kfree(dsp->wmfw_file_name);
394 kfree(dsp->bin_file_name);
395 dsp->wmfw_file_name = NULL;
396 dsp->bin_file_name = NULL;
397 }
398
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)399 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
400 char __user *user_buf,
401 size_t count, loff_t *ppos)
402 {
403 struct cs_dsp *dsp = file->private_data;
404 ssize_t ret;
405
406 mutex_lock(&dsp->pwr_lock);
407
408 if (!dsp->wmfw_file_name || !dsp->booted)
409 ret = 0;
410 else
411 ret = simple_read_from_buffer(user_buf, count, ppos,
412 dsp->wmfw_file_name,
413 strlen(dsp->wmfw_file_name));
414
415 mutex_unlock(&dsp->pwr_lock);
416 return ret;
417 }
418
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)419 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
420 char __user *user_buf,
421 size_t count, loff_t *ppos)
422 {
423 struct cs_dsp *dsp = file->private_data;
424 ssize_t ret;
425
426 mutex_lock(&dsp->pwr_lock);
427
428 if (!dsp->bin_file_name || !dsp->booted)
429 ret = 0;
430 else
431 ret = simple_read_from_buffer(user_buf, count, ppos,
432 dsp->bin_file_name,
433 strlen(dsp->bin_file_name));
434
435 mutex_unlock(&dsp->pwr_lock);
436 return ret;
437 }
438
439 static const struct {
440 const char *name;
441 const struct file_operations fops;
442 } cs_dsp_debugfs_fops[] = {
443 {
444 .name = "wmfw_file_name",
445 .fops = {
446 .open = simple_open,
447 .read = cs_dsp_debugfs_wmfw_read,
448 },
449 },
450 {
451 .name = "bin_file_name",
452 .fops = {
453 .open = simple_open,
454 .read = cs_dsp_debugfs_bin_read,
455 },
456 },
457 };
458
459 /**
460 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
461 * @dsp: pointer to DSP structure
462 * @debugfs_root: pointer to debugfs directory in which to create this DSP
463 * representation
464 */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)465 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
466 {
467 struct dentry *root = NULL;
468 int i;
469
470 root = debugfs_create_dir(dsp->name, debugfs_root);
471
472 debugfs_create_bool("booted", 0444, root, &dsp->booted);
473 debugfs_create_bool("running", 0444, root, &dsp->running);
474 debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
475 debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
476
477 for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
478 debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
479 dsp, &cs_dsp_debugfs_fops[i].fops);
480
481 dsp->debugfs_root = root;
482 }
483 EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
484
485 /**
486 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
487 * @dsp: pointer to DSP structure
488 */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)489 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
490 {
491 cs_dsp_debugfs_clear(dsp);
492 debugfs_remove_recursive(dsp->debugfs_root);
493 dsp->debugfs_root = NULL;
494 }
495 EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
496 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)497 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
498 {
499 }
500 EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
501
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)502 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
503 {
504 }
505 EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
506
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)507 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
508 const char *s)
509 {
510 }
511
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)512 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
513 const char *s)
514 {
515 }
516
cs_dsp_debugfs_clear(struct cs_dsp * dsp)517 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
518 {
519 }
520 #endif
521
cs_dsp_find_region(struct cs_dsp * dsp,int type)522 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
523 int type)
524 {
525 int i;
526
527 for (i = 0; i < dsp->num_mems; i++)
528 if (dsp->mem[i].type == type)
529 return &dsp->mem[i];
530
531 return NULL;
532 }
533
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)534 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
535 unsigned int offset)
536 {
537 switch (mem->type) {
538 case WMFW_ADSP1_PM:
539 return mem->base + (offset * 3);
540 case WMFW_ADSP1_DM:
541 case WMFW_ADSP2_XM:
542 case WMFW_ADSP2_YM:
543 case WMFW_ADSP1_ZM:
544 return mem->base + (offset * 2);
545 default:
546 WARN(1, "Unknown memory region type");
547 return offset;
548 }
549 }
550
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)551 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
552 unsigned int offset)
553 {
554 switch (mem->type) {
555 case WMFW_ADSP2_XM:
556 case WMFW_ADSP2_YM:
557 return mem->base + (offset * 4);
558 case WMFW_HALO_XM_PACKED:
559 case WMFW_HALO_YM_PACKED:
560 return (mem->base + (offset * 3)) & ~0x3;
561 case WMFW_HALO_PM_PACKED:
562 return mem->base + (offset * 5);
563 default:
564 WARN(1, "Unknown memory region type");
565 return offset;
566 }
567 }
568
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)569 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
570 int noffs, unsigned int *offs)
571 {
572 unsigned int i;
573 int ret;
574
575 for (i = 0; i < noffs; ++i) {
576 ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
577 if (ret) {
578 cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
579 return;
580 }
581 }
582 }
583
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)584 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
585 {
586 unsigned int offs[] = {
587 ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
588 };
589
590 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
591
592 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
593 offs[0], offs[1], offs[2], offs[3]);
594 }
595
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)596 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
597 {
598 unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
599
600 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
601
602 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
603 offs[0] & 0xFFFF, offs[0] >> 16,
604 offs[1] & 0xFFFF, offs[1] >> 16);
605 }
606
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)607 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
608 {
609 unsigned int offs[] = {
610 HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
611 };
612
613 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
614
615 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
616 offs[0], offs[1], offs[2], offs[3]);
617 }
618
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)619 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
620 unsigned int off)
621 {
622 const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
623 struct cs_dsp *dsp = ctl->dsp;
624 const struct cs_dsp_region *mem;
625
626 mem = cs_dsp_find_region(dsp, alg_region->type);
627 if (!mem) {
628 cs_dsp_err(dsp, "No base for region %x\n",
629 alg_region->type);
630 return -EINVAL;
631 }
632
633 *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
634
635 return 0;
636 }
637
638 /**
639 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
640 * @ctl: pointer to acked coefficient control
641 * @event_id: the value to write to the given acked control
642 *
643 * Once the value has been written to the control the function shall block
644 * until the running firmware acknowledges the write or timeout is exceeded.
645 *
646 * Must be called with pwr_lock held.
647 *
648 * Return: Zero for success, a negative number on error.
649 */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)650 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
651 {
652 struct cs_dsp *dsp = ctl->dsp;
653 __be32 val = cpu_to_be32(event_id);
654 unsigned int reg;
655 int i, ret;
656
657 lockdep_assert_held(&dsp->pwr_lock);
658
659 if (!dsp->running)
660 return -EPERM;
661
662 ret = cs_dsp_coeff_base_reg(ctl, ®, 0);
663 if (ret)
664 return ret;
665
666 cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
667 event_id, ctl->alg_region.alg,
668 cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
669
670 ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
671 if (ret) {
672 cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
673 return ret;
674 }
675
676 /*
677 * Poll for ack, we initially poll at ~1ms intervals for firmwares
678 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
679 * to ack instantly so we do the first 1ms delay before reading the
680 * control to avoid a pointless bus transaction
681 */
682 for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
683 switch (i) {
684 case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
685 usleep_range(1000, 2000);
686 i++;
687 break;
688 default:
689 usleep_range(10000, 20000);
690 i += 10;
691 break;
692 }
693
694 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
695 if (ret) {
696 cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
697 return ret;
698 }
699
700 if (val == 0) {
701 cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
702 return 0;
703 }
704 }
705
706 cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
707 reg, ctl->alg_region.alg,
708 cs_dsp_mem_region_name(ctl->alg_region.type),
709 ctl->offset);
710
711 return -ETIMEDOUT;
712 }
713 EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_acked_control);
714
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)715 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
716 unsigned int off, const void *buf, size_t len)
717 {
718 struct cs_dsp *dsp = ctl->dsp;
719 void *scratch;
720 int ret;
721 unsigned int reg;
722
723 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
724 if (ret)
725 return ret;
726
727 scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
728 if (!scratch)
729 return -ENOMEM;
730
731 ret = regmap_raw_write(dsp->regmap, reg, scratch,
732 len);
733 if (ret) {
734 cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
735 len, reg, ret);
736 kfree(scratch);
737 return ret;
738 }
739 cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
740
741 kfree(scratch);
742
743 return 0;
744 }
745
746 /**
747 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
748 * @ctl: pointer to coefficient control
749 * @off: word offset at which data should be written
750 * @buf: the buffer to write to the given control
751 * @len: the length of the buffer in bytes
752 *
753 * Must be called with pwr_lock held.
754 *
755 * Return: Zero for success, a negative number on error.
756 */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)757 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
758 unsigned int off, const void *buf, size_t len)
759 {
760 int ret = 0;
761
762 if (!ctl)
763 return -ENOENT;
764
765 lockdep_assert_held(&ctl->dsp->pwr_lock);
766
767 if (len + off * sizeof(u32) > ctl->len)
768 return -EINVAL;
769
770 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
771 ret = -EPERM;
772 else if (buf != ctl->cache)
773 memcpy(ctl->cache + off * sizeof(u32), buf, len);
774
775 ctl->set = 1;
776 if (ctl->enabled && ctl->dsp->running)
777 ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
778
779 return ret;
780 }
781 EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_ctrl);
782
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)783 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
784 unsigned int off, void *buf, size_t len)
785 {
786 struct cs_dsp *dsp = ctl->dsp;
787 void *scratch;
788 int ret;
789 unsigned int reg;
790
791 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
792 if (ret)
793 return ret;
794
795 scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
796 if (!scratch)
797 return -ENOMEM;
798
799 ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
800 if (ret) {
801 cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
802 len, reg, ret);
803 kfree(scratch);
804 return ret;
805 }
806 cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
807
808 memcpy(buf, scratch, len);
809 kfree(scratch);
810
811 return 0;
812 }
813
814 /**
815 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
816 * @ctl: pointer to coefficient control
817 * @off: word offset at which data should be read
818 * @buf: the buffer to store to the given control
819 * @len: the length of the buffer in bytes
820 *
821 * Must be called with pwr_lock held.
822 *
823 * Return: Zero for success, a negative number on error.
824 */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)825 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
826 unsigned int off, void *buf, size_t len)
827 {
828 int ret = 0;
829
830 if (!ctl)
831 return -ENOENT;
832
833 lockdep_assert_held(&ctl->dsp->pwr_lock);
834
835 if (len + off * sizeof(u32) > ctl->len)
836 return -EINVAL;
837
838 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
839 if (ctl->enabled && ctl->dsp->running)
840 return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
841 else
842 return -EPERM;
843 } else {
844 if (!ctl->flags && ctl->enabled && ctl->dsp->running)
845 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
846
847 if (buf != ctl->cache)
848 memcpy(buf, ctl->cache + off * sizeof(u32), len);
849 }
850
851 return ret;
852 }
853 EXPORT_SYMBOL_GPL(cs_dsp_coeff_read_ctrl);
854
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)855 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
856 {
857 struct cs_dsp_coeff_ctl *ctl;
858 int ret;
859
860 list_for_each_entry(ctl, &dsp->ctl_list, list) {
861 if (!ctl->enabled || ctl->set)
862 continue;
863 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
864 continue;
865
866 /*
867 * For readable controls populate the cache from the DSP memory.
868 * For non-readable controls the cache was zero-filled when
869 * created so we don't need to do anything.
870 */
871 if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
872 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
873 if (ret < 0)
874 return ret;
875 }
876 }
877
878 return 0;
879 }
880
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)881 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
882 {
883 struct cs_dsp_coeff_ctl *ctl;
884 int ret;
885
886 list_for_each_entry(ctl, &dsp->ctl_list, list) {
887 if (!ctl->enabled)
888 continue;
889 if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
890 ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
891 ctl->len);
892 if (ret < 0)
893 return ret;
894 }
895 }
896
897 return 0;
898 }
899
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)900 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
901 unsigned int event)
902 {
903 struct cs_dsp_coeff_ctl *ctl;
904 int ret;
905
906 list_for_each_entry(ctl, &dsp->ctl_list, list) {
907 if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
908 continue;
909
910 if (!ctl->enabled)
911 continue;
912
913 ret = cs_dsp_coeff_write_acked_control(ctl, event);
914 if (ret)
915 cs_dsp_warn(dsp,
916 "Failed to send 0x%x event to alg 0x%x (%d)\n",
917 event, ctl->alg_region.alg, ret);
918 }
919 }
920
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)921 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
922 {
923 kfree(ctl->cache);
924 kfree(ctl->subname);
925 kfree(ctl);
926 }
927
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)928 static int cs_dsp_create_control(struct cs_dsp *dsp,
929 const struct cs_dsp_alg_region *alg_region,
930 unsigned int offset, unsigned int len,
931 const char *subname, unsigned int subname_len,
932 unsigned int flags, unsigned int type)
933 {
934 struct cs_dsp_coeff_ctl *ctl;
935 int ret;
936
937 list_for_each_entry(ctl, &dsp->ctl_list, list) {
938 if (ctl->fw_name == dsp->fw_name &&
939 ctl->alg_region.alg == alg_region->alg &&
940 ctl->alg_region.type == alg_region->type) {
941 if ((!subname && !ctl->subname) ||
942 (subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
943 if (!ctl->enabled)
944 ctl->enabled = 1;
945 return 0;
946 }
947 }
948 }
949
950 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
951 if (!ctl)
952 return -ENOMEM;
953
954 ctl->fw_name = dsp->fw_name;
955 ctl->alg_region = *alg_region;
956 if (subname && dsp->fw_ver >= 2) {
957 ctl->subname_len = subname_len;
958 ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
959 if (!ctl->subname) {
960 ret = -ENOMEM;
961 goto err_ctl;
962 }
963 }
964 ctl->enabled = 1;
965 ctl->set = 0;
966 ctl->dsp = dsp;
967
968 ctl->flags = flags;
969 ctl->type = type;
970 ctl->offset = offset;
971 ctl->len = len;
972 ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
973 if (!ctl->cache) {
974 ret = -ENOMEM;
975 goto err_ctl_subname;
976 }
977
978 list_add(&ctl->list, &dsp->ctl_list);
979
980 if (dsp->client_ops->control_add) {
981 ret = dsp->client_ops->control_add(ctl);
982 if (ret)
983 goto err_list_del;
984 }
985
986 return 0;
987
988 err_list_del:
989 list_del(&ctl->list);
990 kfree(ctl->cache);
991 err_ctl_subname:
992 kfree(ctl->subname);
993 err_ctl:
994 kfree(ctl);
995
996 return ret;
997 }
998
999 struct cs_dsp_coeff_parsed_alg {
1000 int id;
1001 const u8 *name;
1002 int name_len;
1003 int ncoeff;
1004 };
1005
1006 struct cs_dsp_coeff_parsed_coeff {
1007 int offset;
1008 int mem_type;
1009 const u8 *name;
1010 int name_len;
1011 unsigned int ctl_type;
1012 int flags;
1013 int len;
1014 };
1015
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,const u8 ** str)1016 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1017 {
1018 int length;
1019
1020 switch (bytes) {
1021 case 1:
1022 length = **pos;
1023 break;
1024 case 2:
1025 length = le16_to_cpu(*((__le16 *)*pos));
1026 break;
1027 default:
1028 return 0;
1029 }
1030
1031 if (str)
1032 *str = *pos + bytes;
1033
1034 *pos += ((length + bytes) + 3) & ~0x03;
1035
1036 return length;
1037 }
1038
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1039 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1040 {
1041 int val = 0;
1042
1043 switch (bytes) {
1044 case 2:
1045 val = le16_to_cpu(*((__le16 *)*pos));
1046 break;
1047 case 4:
1048 val = le32_to_cpu(*((__le32 *)*pos));
1049 break;
1050 default:
1051 break;
1052 }
1053
1054 *pos += bytes;
1055
1056 return val;
1057 }
1058
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const u8 ** data,struct cs_dsp_coeff_parsed_alg * blk)1059 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1060 struct cs_dsp_coeff_parsed_alg *blk)
1061 {
1062 const struct wmfw_adsp_alg_data *raw;
1063
1064 switch (dsp->fw_ver) {
1065 case 0:
1066 case 1:
1067 raw = (const struct wmfw_adsp_alg_data *)*data;
1068 *data = raw->data;
1069
1070 blk->id = le32_to_cpu(raw->id);
1071 blk->name = raw->name;
1072 blk->name_len = strlen(raw->name);
1073 blk->ncoeff = le32_to_cpu(raw->ncoeff);
1074 break;
1075 default:
1076 blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1077 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1078 &blk->name);
1079 cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1080 blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1081 break;
1082 }
1083
1084 cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1085 cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1086 cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1087 }
1088
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const u8 ** data,struct cs_dsp_coeff_parsed_coeff * blk)1089 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1090 struct cs_dsp_coeff_parsed_coeff *blk)
1091 {
1092 const struct wmfw_adsp_coeff_data *raw;
1093 const u8 *tmp;
1094 int length;
1095
1096 switch (dsp->fw_ver) {
1097 case 0:
1098 case 1:
1099 raw = (const struct wmfw_adsp_coeff_data *)*data;
1100 *data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1101
1102 blk->offset = le16_to_cpu(raw->hdr.offset);
1103 blk->mem_type = le16_to_cpu(raw->hdr.type);
1104 blk->name = raw->name;
1105 blk->name_len = strlen(raw->name);
1106 blk->ctl_type = le16_to_cpu(raw->ctl_type);
1107 blk->flags = le16_to_cpu(raw->flags);
1108 blk->len = le32_to_cpu(raw->len);
1109 break;
1110 default:
1111 tmp = *data;
1112 blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1113 blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1114 length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1115 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1116 &blk->name);
1117 cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1118 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1119 blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1120 blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1121 blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1122
1123 *data = *data + sizeof(raw->hdr) + length;
1124 break;
1125 }
1126
1127 cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1128 cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1129 cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1130 cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1131 cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1132 cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1133 }
1134
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1135 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1136 const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1137 unsigned int f_required,
1138 unsigned int f_illegal)
1139 {
1140 if ((coeff_blk->flags & f_illegal) ||
1141 ((coeff_blk->flags & f_required) != f_required)) {
1142 cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1143 coeff_blk->flags, coeff_blk->ctl_type);
1144 return -EINVAL;
1145 }
1146
1147 return 0;
1148 }
1149
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1150 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1151 const struct wmfw_region *region)
1152 {
1153 struct cs_dsp_alg_region alg_region = {};
1154 struct cs_dsp_coeff_parsed_alg alg_blk;
1155 struct cs_dsp_coeff_parsed_coeff coeff_blk;
1156 const u8 *data = region->data;
1157 int i, ret;
1158
1159 cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1160 for (i = 0; i < alg_blk.ncoeff; i++) {
1161 cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1162
1163 switch (coeff_blk.ctl_type) {
1164 case WMFW_CTL_TYPE_BYTES:
1165 break;
1166 case WMFW_CTL_TYPE_ACKED:
1167 if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1168 continue; /* ignore */
1169
1170 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1171 WMFW_CTL_FLAG_VOLATILE |
1172 WMFW_CTL_FLAG_WRITEABLE |
1173 WMFW_CTL_FLAG_READABLE,
1174 0);
1175 if (ret)
1176 return -EINVAL;
1177 break;
1178 case WMFW_CTL_TYPE_HOSTEVENT:
1179 case WMFW_CTL_TYPE_FWEVENT:
1180 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1181 WMFW_CTL_FLAG_SYS |
1182 WMFW_CTL_FLAG_VOLATILE |
1183 WMFW_CTL_FLAG_WRITEABLE |
1184 WMFW_CTL_FLAG_READABLE,
1185 0);
1186 if (ret)
1187 return -EINVAL;
1188 break;
1189 case WMFW_CTL_TYPE_HOST_BUFFER:
1190 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1191 WMFW_CTL_FLAG_SYS |
1192 WMFW_CTL_FLAG_VOLATILE |
1193 WMFW_CTL_FLAG_READABLE,
1194 0);
1195 if (ret)
1196 return -EINVAL;
1197 break;
1198 default:
1199 cs_dsp_err(dsp, "Unknown control type: %d\n",
1200 coeff_blk.ctl_type);
1201 return -EINVAL;
1202 }
1203
1204 alg_region.type = coeff_blk.mem_type;
1205 alg_region.alg = alg_blk.id;
1206
1207 ret = cs_dsp_create_control(dsp, &alg_region,
1208 coeff_blk.offset,
1209 coeff_blk.len,
1210 coeff_blk.name,
1211 coeff_blk.name_len,
1212 coeff_blk.flags,
1213 coeff_blk.ctl_type);
1214 if (ret < 0)
1215 cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1216 coeff_blk.name_len, coeff_blk.name, ret);
1217 }
1218
1219 return 0;
1220 }
1221
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1222 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1223 const char * const file,
1224 unsigned int pos,
1225 const struct firmware *firmware)
1226 {
1227 const struct wmfw_adsp1_sizes *adsp1_sizes;
1228
1229 adsp1_sizes = (void *)&firmware->data[pos];
1230
1231 cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1232 le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1233 le32_to_cpu(adsp1_sizes->zm));
1234
1235 return pos + sizeof(*adsp1_sizes);
1236 }
1237
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1238 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1239 const char * const file,
1240 unsigned int pos,
1241 const struct firmware *firmware)
1242 {
1243 const struct wmfw_adsp2_sizes *adsp2_sizes;
1244
1245 adsp2_sizes = (void *)&firmware->data[pos];
1246
1247 cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1248 le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1249 le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1250
1251 return pos + sizeof(*adsp2_sizes);
1252 }
1253
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1254 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1255 {
1256 switch (version) {
1257 case 0:
1258 cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1259 return true;
1260 case 1:
1261 case 2:
1262 return true;
1263 default:
1264 return false;
1265 }
1266 }
1267
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1268 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1269 {
1270 switch (version) {
1271 case 3:
1272 return true;
1273 default:
1274 return false;
1275 }
1276 }
1277
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1278 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1279 const char *file)
1280 {
1281 LIST_HEAD(buf_list);
1282 struct regmap *regmap = dsp->regmap;
1283 unsigned int pos = 0;
1284 const struct wmfw_header *header;
1285 const struct wmfw_adsp1_sizes *adsp1_sizes;
1286 const struct wmfw_footer *footer;
1287 const struct wmfw_region *region;
1288 const struct cs_dsp_region *mem;
1289 const char *region_name;
1290 char *text = NULL;
1291 struct cs_dsp_buf *buf;
1292 unsigned int reg;
1293 int regions = 0;
1294 int ret, offset, type;
1295
1296 ret = -EINVAL;
1297
1298 pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1299 if (pos >= firmware->size) {
1300 cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1301 file, firmware->size);
1302 goto out_fw;
1303 }
1304
1305 header = (void *)&firmware->data[0];
1306
1307 if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1308 cs_dsp_err(dsp, "%s: invalid magic\n", file);
1309 goto out_fw;
1310 }
1311
1312 if (!dsp->ops->validate_version(dsp, header->ver)) {
1313 cs_dsp_err(dsp, "%s: unknown file format %d\n",
1314 file, header->ver);
1315 goto out_fw;
1316 }
1317
1318 cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1319 dsp->fw_ver = header->ver;
1320
1321 if (header->core != dsp->type) {
1322 cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1323 file, header->core, dsp->type);
1324 goto out_fw;
1325 }
1326
1327 pos = sizeof(*header);
1328 pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1329
1330 footer = (void *)&firmware->data[pos];
1331 pos += sizeof(*footer);
1332
1333 if (le32_to_cpu(header->len) != pos) {
1334 cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1335 file, le32_to_cpu(header->len));
1336 goto out_fw;
1337 }
1338
1339 cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1340 le64_to_cpu(footer->timestamp));
1341
1342 while (pos < firmware->size &&
1343 sizeof(*region) < firmware->size - pos) {
1344 region = (void *)&(firmware->data[pos]);
1345 region_name = "Unknown";
1346 reg = 0;
1347 text = NULL;
1348 offset = le32_to_cpu(region->offset) & 0xffffff;
1349 type = be32_to_cpu(region->type) & 0xff;
1350
1351 switch (type) {
1352 case WMFW_NAME_TEXT:
1353 region_name = "Firmware name";
1354 text = kzalloc(le32_to_cpu(region->len) + 1,
1355 GFP_KERNEL);
1356 break;
1357 case WMFW_ALGORITHM_DATA:
1358 region_name = "Algorithm";
1359 ret = cs_dsp_parse_coeff(dsp, region);
1360 if (ret != 0)
1361 goto out_fw;
1362 break;
1363 case WMFW_INFO_TEXT:
1364 region_name = "Information";
1365 text = kzalloc(le32_to_cpu(region->len) + 1,
1366 GFP_KERNEL);
1367 break;
1368 case WMFW_ABSOLUTE:
1369 region_name = "Absolute";
1370 reg = offset;
1371 break;
1372 case WMFW_ADSP1_PM:
1373 case WMFW_ADSP1_DM:
1374 case WMFW_ADSP2_XM:
1375 case WMFW_ADSP2_YM:
1376 case WMFW_ADSP1_ZM:
1377 case WMFW_HALO_PM_PACKED:
1378 case WMFW_HALO_XM_PACKED:
1379 case WMFW_HALO_YM_PACKED:
1380 mem = cs_dsp_find_region(dsp, type);
1381 if (!mem) {
1382 cs_dsp_err(dsp, "No region of type: %x\n", type);
1383 ret = -EINVAL;
1384 goto out_fw;
1385 }
1386
1387 region_name = cs_dsp_mem_region_name(type);
1388 reg = dsp->ops->region_to_reg(mem, offset);
1389 break;
1390 default:
1391 cs_dsp_warn(dsp,
1392 "%s.%d: Unknown region type %x at %d(%x)\n",
1393 file, regions, type, pos, pos);
1394 break;
1395 }
1396
1397 cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1398 regions, le32_to_cpu(region->len), offset,
1399 region_name);
1400
1401 if (le32_to_cpu(region->len) >
1402 firmware->size - pos - sizeof(*region)) {
1403 cs_dsp_err(dsp,
1404 "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1405 file, regions, region_name,
1406 le32_to_cpu(region->len), firmware->size);
1407 ret = -EINVAL;
1408 goto out_fw;
1409 }
1410
1411 if (text) {
1412 memcpy(text, region->data, le32_to_cpu(region->len));
1413 cs_dsp_info(dsp, "%s: %s\n", file, text);
1414 kfree(text);
1415 text = NULL;
1416 }
1417
1418 if (reg) {
1419 buf = cs_dsp_buf_alloc(region->data,
1420 le32_to_cpu(region->len),
1421 &buf_list);
1422 if (!buf) {
1423 cs_dsp_err(dsp, "Out of memory\n");
1424 ret = -ENOMEM;
1425 goto out_fw;
1426 }
1427
1428 ret = regmap_raw_write_async(regmap, reg, buf->buf,
1429 le32_to_cpu(region->len));
1430 if (ret != 0) {
1431 cs_dsp_err(dsp,
1432 "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1433 file, regions,
1434 le32_to_cpu(region->len), offset,
1435 region_name, ret);
1436 goto out_fw;
1437 }
1438 }
1439
1440 pos += le32_to_cpu(region->len) + sizeof(*region);
1441 regions++;
1442 }
1443
1444 ret = regmap_async_complete(regmap);
1445 if (ret != 0) {
1446 cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1447 goto out_fw;
1448 }
1449
1450 if (pos > firmware->size)
1451 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1452 file, regions, pos - firmware->size);
1453
1454 cs_dsp_debugfs_save_wmfwname(dsp, file);
1455
1456 out_fw:
1457 regmap_async_complete(regmap);
1458 cs_dsp_buf_free(&buf_list);
1459 kfree(text);
1460
1461 return ret;
1462 }
1463
1464 /**
1465 * cs_dsp_get_ctl() - Finds a matching coefficient control
1466 * @dsp: pointer to DSP structure
1467 * @name: pointer to string to match with a control's subname
1468 * @type: the algorithm type to match
1469 * @alg: the algorithm id to match
1470 *
1471 * Find cs_dsp_coeff_ctl with input name as its subname
1472 *
1473 * Return: pointer to the control on success, NULL if not found
1474 */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1475 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1476 unsigned int alg)
1477 {
1478 struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1479
1480 lockdep_assert_held(&dsp->pwr_lock);
1481
1482 list_for_each_entry(pos, &dsp->ctl_list, list) {
1483 if (!pos->subname)
1484 continue;
1485 if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1486 pos->fw_name == dsp->fw_name &&
1487 pos->alg_region.alg == alg &&
1488 pos->alg_region.type == type) {
1489 rslt = pos;
1490 break;
1491 }
1492 }
1493
1494 return rslt;
1495 }
1496 EXPORT_SYMBOL_GPL(cs_dsp_get_ctl);
1497
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1498 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1499 const struct cs_dsp_alg_region *alg_region)
1500 {
1501 struct cs_dsp_coeff_ctl *ctl;
1502
1503 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1504 if (ctl->fw_name == dsp->fw_name &&
1505 alg_region->alg == ctl->alg_region.alg &&
1506 alg_region->type == ctl->alg_region.type) {
1507 ctl->alg_region.base = alg_region->base;
1508 }
1509 }
1510 }
1511
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1512 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1513 const struct cs_dsp_region *mem,
1514 unsigned int pos, unsigned int len)
1515 {
1516 void *alg;
1517 unsigned int reg;
1518 int ret;
1519 __be32 val;
1520
1521 if (n_algs == 0) {
1522 cs_dsp_err(dsp, "No algorithms\n");
1523 return ERR_PTR(-EINVAL);
1524 }
1525
1526 if (n_algs > 1024) {
1527 cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1528 return ERR_PTR(-EINVAL);
1529 }
1530
1531 /* Read the terminator first to validate the length */
1532 reg = dsp->ops->region_to_reg(mem, pos + len);
1533
1534 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1535 if (ret != 0) {
1536 cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1537 ret);
1538 return ERR_PTR(ret);
1539 }
1540
1541 if (be32_to_cpu(val) != 0xbedead)
1542 cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1543 reg, be32_to_cpu(val));
1544
1545 /* Convert length from DSP words to bytes */
1546 len *= sizeof(u32);
1547
1548 alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1549 if (!alg)
1550 return ERR_PTR(-ENOMEM);
1551
1552 reg = dsp->ops->region_to_reg(mem, pos);
1553
1554 ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1555 if (ret != 0) {
1556 cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1557 kfree(alg);
1558 return ERR_PTR(ret);
1559 }
1560
1561 return alg;
1562 }
1563
1564 /**
1565 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1566 * @dsp: pointer to DSP structure
1567 * @type: the algorithm type to match
1568 * @id: the algorithm id to match
1569 *
1570 * Return: Pointer to matching algorithm region, or NULL if not found.
1571 */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1572 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1573 int type, unsigned int id)
1574 {
1575 struct cs_dsp_alg_region *alg_region;
1576
1577 lockdep_assert_held(&dsp->pwr_lock);
1578
1579 list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1580 if (id == alg_region->alg && type == alg_region->type)
1581 return alg_region;
1582 }
1583
1584 return NULL;
1585 }
1586 EXPORT_SYMBOL_GPL(cs_dsp_find_alg_region);
1587
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1588 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1589 int type, __be32 id,
1590 __be32 ver, __be32 base)
1591 {
1592 struct cs_dsp_alg_region *alg_region;
1593
1594 alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1595 if (!alg_region)
1596 return ERR_PTR(-ENOMEM);
1597
1598 alg_region->type = type;
1599 alg_region->alg = be32_to_cpu(id);
1600 alg_region->ver = be32_to_cpu(ver);
1601 alg_region->base = be32_to_cpu(base);
1602
1603 list_add_tail(&alg_region->list, &dsp->alg_regions);
1604
1605 if (dsp->fw_ver > 0)
1606 cs_dsp_ctl_fixup_base(dsp, alg_region);
1607
1608 return alg_region;
1609 }
1610
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1611 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1612 {
1613 struct cs_dsp_alg_region *alg_region;
1614
1615 while (!list_empty(&dsp->alg_regions)) {
1616 alg_region = list_first_entry(&dsp->alg_regions,
1617 struct cs_dsp_alg_region,
1618 list);
1619 list_del(&alg_region->list);
1620 kfree(alg_region);
1621 }
1622 }
1623
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1624 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1625 struct wmfw_id_hdr *fw, int nalgs)
1626 {
1627 dsp->fw_id = be32_to_cpu(fw->id);
1628 dsp->fw_id_version = be32_to_cpu(fw->ver);
1629
1630 cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1631 dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1632 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1633 nalgs);
1634 }
1635
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1636 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1637 struct wmfw_v3_id_hdr *fw, int nalgs)
1638 {
1639 dsp->fw_id = be32_to_cpu(fw->id);
1640 dsp->fw_id_version = be32_to_cpu(fw->ver);
1641 dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1642
1643 cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1644 dsp->fw_id, dsp->fw_vendor_id,
1645 (dsp->fw_id_version & 0xff0000) >> 16,
1646 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1647 nalgs);
1648 }
1649
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1650 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1651 int nregions, const int *type, __be32 *base)
1652 {
1653 struct cs_dsp_alg_region *alg_region;
1654 int i;
1655
1656 for (i = 0; i < nregions; i++) {
1657 alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1658 if (IS_ERR(alg_region))
1659 return PTR_ERR(alg_region);
1660 }
1661
1662 return 0;
1663 }
1664
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1665 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1666 {
1667 struct wmfw_adsp1_id_hdr adsp1_id;
1668 struct wmfw_adsp1_alg_hdr *adsp1_alg;
1669 struct cs_dsp_alg_region *alg_region;
1670 const struct cs_dsp_region *mem;
1671 unsigned int pos, len;
1672 size_t n_algs;
1673 int i, ret;
1674
1675 mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1676 if (WARN_ON(!mem))
1677 return -EINVAL;
1678
1679 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1680 sizeof(adsp1_id));
1681 if (ret != 0) {
1682 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1683 ret);
1684 return ret;
1685 }
1686
1687 n_algs = be32_to_cpu(adsp1_id.n_algs);
1688
1689 cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1690
1691 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1692 adsp1_id.fw.id, adsp1_id.fw.ver,
1693 adsp1_id.zm);
1694 if (IS_ERR(alg_region))
1695 return PTR_ERR(alg_region);
1696
1697 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1698 adsp1_id.fw.id, adsp1_id.fw.ver,
1699 adsp1_id.dm);
1700 if (IS_ERR(alg_region))
1701 return PTR_ERR(alg_region);
1702
1703 /* Calculate offset and length in DSP words */
1704 pos = sizeof(adsp1_id) / sizeof(u32);
1705 len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1706
1707 adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1708 if (IS_ERR(adsp1_alg))
1709 return PTR_ERR(adsp1_alg);
1710
1711 for (i = 0; i < n_algs; i++) {
1712 cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1713 i, be32_to_cpu(adsp1_alg[i].alg.id),
1714 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1715 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1716 be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1717 be32_to_cpu(adsp1_alg[i].dm),
1718 be32_to_cpu(adsp1_alg[i].zm));
1719
1720 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1721 adsp1_alg[i].alg.id,
1722 adsp1_alg[i].alg.ver,
1723 adsp1_alg[i].dm);
1724 if (IS_ERR(alg_region)) {
1725 ret = PTR_ERR(alg_region);
1726 goto out;
1727 }
1728 if (dsp->fw_ver == 0) {
1729 if (i + 1 < n_algs) {
1730 len = be32_to_cpu(adsp1_alg[i + 1].dm);
1731 len -= be32_to_cpu(adsp1_alg[i].dm);
1732 len *= 4;
1733 cs_dsp_create_control(dsp, alg_region, 0,
1734 len, NULL, 0, 0,
1735 WMFW_CTL_TYPE_BYTES);
1736 } else {
1737 cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1738 be32_to_cpu(adsp1_alg[i].alg.id));
1739 }
1740 }
1741
1742 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1743 adsp1_alg[i].alg.id,
1744 adsp1_alg[i].alg.ver,
1745 adsp1_alg[i].zm);
1746 if (IS_ERR(alg_region)) {
1747 ret = PTR_ERR(alg_region);
1748 goto out;
1749 }
1750 if (dsp->fw_ver == 0) {
1751 if (i + 1 < n_algs) {
1752 len = be32_to_cpu(adsp1_alg[i + 1].zm);
1753 len -= be32_to_cpu(adsp1_alg[i].zm);
1754 len *= 4;
1755 cs_dsp_create_control(dsp, alg_region, 0,
1756 len, NULL, 0, 0,
1757 WMFW_CTL_TYPE_BYTES);
1758 } else {
1759 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1760 be32_to_cpu(adsp1_alg[i].alg.id));
1761 }
1762 }
1763 }
1764
1765 out:
1766 kfree(adsp1_alg);
1767 return ret;
1768 }
1769
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1770 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1771 {
1772 struct wmfw_adsp2_id_hdr adsp2_id;
1773 struct wmfw_adsp2_alg_hdr *adsp2_alg;
1774 struct cs_dsp_alg_region *alg_region;
1775 const struct cs_dsp_region *mem;
1776 unsigned int pos, len;
1777 size_t n_algs;
1778 int i, ret;
1779
1780 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1781 if (WARN_ON(!mem))
1782 return -EINVAL;
1783
1784 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1785 sizeof(adsp2_id));
1786 if (ret != 0) {
1787 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1788 ret);
1789 return ret;
1790 }
1791
1792 n_algs = be32_to_cpu(adsp2_id.n_algs);
1793
1794 cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1795
1796 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1797 adsp2_id.fw.id, adsp2_id.fw.ver,
1798 adsp2_id.xm);
1799 if (IS_ERR(alg_region))
1800 return PTR_ERR(alg_region);
1801
1802 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1803 adsp2_id.fw.id, adsp2_id.fw.ver,
1804 adsp2_id.ym);
1805 if (IS_ERR(alg_region))
1806 return PTR_ERR(alg_region);
1807
1808 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1809 adsp2_id.fw.id, adsp2_id.fw.ver,
1810 adsp2_id.zm);
1811 if (IS_ERR(alg_region))
1812 return PTR_ERR(alg_region);
1813
1814 /* Calculate offset and length in DSP words */
1815 pos = sizeof(adsp2_id) / sizeof(u32);
1816 len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1817
1818 adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1819 if (IS_ERR(adsp2_alg))
1820 return PTR_ERR(adsp2_alg);
1821
1822 for (i = 0; i < n_algs; i++) {
1823 cs_dsp_info(dsp,
1824 "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1825 i, be32_to_cpu(adsp2_alg[i].alg.id),
1826 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1827 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1828 be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1829 be32_to_cpu(adsp2_alg[i].xm),
1830 be32_to_cpu(adsp2_alg[i].ym),
1831 be32_to_cpu(adsp2_alg[i].zm));
1832
1833 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1834 adsp2_alg[i].alg.id,
1835 adsp2_alg[i].alg.ver,
1836 adsp2_alg[i].xm);
1837 if (IS_ERR(alg_region)) {
1838 ret = PTR_ERR(alg_region);
1839 goto out;
1840 }
1841 if (dsp->fw_ver == 0) {
1842 if (i + 1 < n_algs) {
1843 len = be32_to_cpu(adsp2_alg[i + 1].xm);
1844 len -= be32_to_cpu(adsp2_alg[i].xm);
1845 len *= 4;
1846 cs_dsp_create_control(dsp, alg_region, 0,
1847 len, NULL, 0, 0,
1848 WMFW_CTL_TYPE_BYTES);
1849 } else {
1850 cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1851 be32_to_cpu(adsp2_alg[i].alg.id));
1852 }
1853 }
1854
1855 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1856 adsp2_alg[i].alg.id,
1857 adsp2_alg[i].alg.ver,
1858 adsp2_alg[i].ym);
1859 if (IS_ERR(alg_region)) {
1860 ret = PTR_ERR(alg_region);
1861 goto out;
1862 }
1863 if (dsp->fw_ver == 0) {
1864 if (i + 1 < n_algs) {
1865 len = be32_to_cpu(adsp2_alg[i + 1].ym);
1866 len -= be32_to_cpu(adsp2_alg[i].ym);
1867 len *= 4;
1868 cs_dsp_create_control(dsp, alg_region, 0,
1869 len, NULL, 0, 0,
1870 WMFW_CTL_TYPE_BYTES);
1871 } else {
1872 cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1873 be32_to_cpu(adsp2_alg[i].alg.id));
1874 }
1875 }
1876
1877 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1878 adsp2_alg[i].alg.id,
1879 adsp2_alg[i].alg.ver,
1880 adsp2_alg[i].zm);
1881 if (IS_ERR(alg_region)) {
1882 ret = PTR_ERR(alg_region);
1883 goto out;
1884 }
1885 if (dsp->fw_ver == 0) {
1886 if (i + 1 < n_algs) {
1887 len = be32_to_cpu(adsp2_alg[i + 1].zm);
1888 len -= be32_to_cpu(adsp2_alg[i].zm);
1889 len *= 4;
1890 cs_dsp_create_control(dsp, alg_region, 0,
1891 len, NULL, 0, 0,
1892 WMFW_CTL_TYPE_BYTES);
1893 } else {
1894 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1895 be32_to_cpu(adsp2_alg[i].alg.id));
1896 }
1897 }
1898 }
1899
1900 out:
1901 kfree(adsp2_alg);
1902 return ret;
1903 }
1904
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)1905 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1906 __be32 xm_base, __be32 ym_base)
1907 {
1908 static const int types[] = {
1909 WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
1910 WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
1911 };
1912 __be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
1913
1914 return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
1915 }
1916
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)1917 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
1918 {
1919 struct wmfw_halo_id_hdr halo_id;
1920 struct wmfw_halo_alg_hdr *halo_alg;
1921 const struct cs_dsp_region *mem;
1922 unsigned int pos, len;
1923 size_t n_algs;
1924 int i, ret;
1925
1926 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1927 if (WARN_ON(!mem))
1928 return -EINVAL;
1929
1930 ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
1931 sizeof(halo_id));
1932 if (ret != 0) {
1933 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1934 ret);
1935 return ret;
1936 }
1937
1938 n_algs = be32_to_cpu(halo_id.n_algs);
1939
1940 cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
1941
1942 ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
1943 halo_id.xm_base, halo_id.ym_base);
1944 if (ret)
1945 return ret;
1946
1947 /* Calculate offset and length in DSP words */
1948 pos = sizeof(halo_id) / sizeof(u32);
1949 len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
1950
1951 halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1952 if (IS_ERR(halo_alg))
1953 return PTR_ERR(halo_alg);
1954
1955 for (i = 0; i < n_algs; i++) {
1956 cs_dsp_info(dsp,
1957 "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
1958 i, be32_to_cpu(halo_alg[i].alg.id),
1959 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
1960 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
1961 be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
1962 be32_to_cpu(halo_alg[i].xm_base),
1963 be32_to_cpu(halo_alg[i].ym_base));
1964
1965 ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
1966 halo_alg[i].alg.ver,
1967 halo_alg[i].xm_base,
1968 halo_alg[i].ym_base);
1969 if (ret)
1970 goto out;
1971 }
1972
1973 out:
1974 kfree(halo_alg);
1975 return ret;
1976 }
1977
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1978 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
1979 const char *file)
1980 {
1981 LIST_HEAD(buf_list);
1982 struct regmap *regmap = dsp->regmap;
1983 struct wmfw_coeff_hdr *hdr;
1984 struct wmfw_coeff_item *blk;
1985 const struct cs_dsp_region *mem;
1986 struct cs_dsp_alg_region *alg_region;
1987 const char *region_name;
1988 int ret, pos, blocks, type, offset, reg, version;
1989 char *text = NULL;
1990 struct cs_dsp_buf *buf;
1991
1992 if (!firmware)
1993 return 0;
1994
1995 ret = -EINVAL;
1996
1997 if (sizeof(*hdr) >= firmware->size) {
1998 cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
1999 file, firmware->size);
2000 goto out_fw;
2001 }
2002
2003 hdr = (void *)&firmware->data[0];
2004 if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2005 cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2006 goto out_fw;
2007 }
2008
2009 switch (be32_to_cpu(hdr->rev) & 0xff) {
2010 case 1:
2011 case 2:
2012 break;
2013 default:
2014 cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2015 file, be32_to_cpu(hdr->rev) & 0xff);
2016 ret = -EINVAL;
2017 goto out_fw;
2018 }
2019
2020 cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
2021 (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2022 (le32_to_cpu(hdr->ver) >> 8) & 0xff,
2023 le32_to_cpu(hdr->ver) & 0xff);
2024
2025 pos = le32_to_cpu(hdr->len);
2026
2027 blocks = 0;
2028 while (pos < firmware->size &&
2029 sizeof(*blk) < firmware->size - pos) {
2030 blk = (void *)(&firmware->data[pos]);
2031
2032 type = le16_to_cpu(blk->type);
2033 offset = le16_to_cpu(blk->offset);
2034 version = le32_to_cpu(blk->ver) >> 8;
2035
2036 cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2037 file, blocks, le32_to_cpu(blk->id),
2038 (le32_to_cpu(blk->ver) >> 16) & 0xff,
2039 (le32_to_cpu(blk->ver) >> 8) & 0xff,
2040 le32_to_cpu(blk->ver) & 0xff);
2041 cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2042 file, blocks, le32_to_cpu(blk->len), offset, type);
2043
2044 reg = 0;
2045 region_name = "Unknown";
2046 switch (type) {
2047 case (WMFW_NAME_TEXT << 8):
2048 text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2049 break;
2050 case (WMFW_INFO_TEXT << 8):
2051 case (WMFW_METADATA << 8):
2052 break;
2053 case (WMFW_ABSOLUTE << 8):
2054 /*
2055 * Old files may use this for global
2056 * coefficients.
2057 */
2058 if (le32_to_cpu(blk->id) == dsp->fw_id &&
2059 offset == 0) {
2060 region_name = "global coefficients";
2061 mem = cs_dsp_find_region(dsp, type);
2062 if (!mem) {
2063 cs_dsp_err(dsp, "No ZM\n");
2064 break;
2065 }
2066 reg = dsp->ops->region_to_reg(mem, 0);
2067
2068 } else {
2069 region_name = "register";
2070 reg = offset;
2071 }
2072 break;
2073
2074 case WMFW_ADSP1_DM:
2075 case WMFW_ADSP1_ZM:
2076 case WMFW_ADSP2_XM:
2077 case WMFW_ADSP2_YM:
2078 case WMFW_HALO_XM_PACKED:
2079 case WMFW_HALO_YM_PACKED:
2080 case WMFW_HALO_PM_PACKED:
2081 cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2082 file, blocks, le32_to_cpu(blk->len),
2083 type, le32_to_cpu(blk->id));
2084
2085 mem = cs_dsp_find_region(dsp, type);
2086 if (!mem) {
2087 cs_dsp_err(dsp, "No base for region %x\n", type);
2088 break;
2089 }
2090
2091 alg_region = cs_dsp_find_alg_region(dsp, type,
2092 le32_to_cpu(blk->id));
2093 if (alg_region) {
2094 if (version != alg_region->ver)
2095 cs_dsp_warn(dsp,
2096 "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2097 (version >> 16) & 0xFF,
2098 (version >> 8) & 0xFF,
2099 version & 0xFF,
2100 (alg_region->ver >> 16) & 0xFF,
2101 (alg_region->ver >> 8) & 0xFF,
2102 alg_region->ver & 0xFF);
2103
2104 reg = alg_region->base;
2105 reg = dsp->ops->region_to_reg(mem, reg);
2106 reg += offset;
2107 } else {
2108 cs_dsp_err(dsp, "No %x for algorithm %x\n",
2109 type, le32_to_cpu(blk->id));
2110 }
2111 break;
2112
2113 default:
2114 cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2115 file, blocks, type, pos);
2116 break;
2117 }
2118
2119 if (text) {
2120 memcpy(text, blk->data, le32_to_cpu(blk->len));
2121 cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2122 kfree(text);
2123 text = NULL;
2124 }
2125
2126 if (reg) {
2127 if (le32_to_cpu(blk->len) >
2128 firmware->size - pos - sizeof(*blk)) {
2129 cs_dsp_err(dsp,
2130 "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2131 file, blocks, region_name,
2132 le32_to_cpu(blk->len),
2133 firmware->size);
2134 ret = -EINVAL;
2135 goto out_fw;
2136 }
2137
2138 buf = cs_dsp_buf_alloc(blk->data,
2139 le32_to_cpu(blk->len),
2140 &buf_list);
2141 if (!buf) {
2142 cs_dsp_err(dsp, "Out of memory\n");
2143 ret = -ENOMEM;
2144 goto out_fw;
2145 }
2146
2147 cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2148 file, blocks, le32_to_cpu(blk->len),
2149 reg);
2150 ret = regmap_raw_write_async(regmap, reg, buf->buf,
2151 le32_to_cpu(blk->len));
2152 if (ret != 0) {
2153 cs_dsp_err(dsp,
2154 "%s.%d: Failed to write to %x in %s: %d\n",
2155 file, blocks, reg, region_name, ret);
2156 }
2157 }
2158
2159 pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2160 blocks++;
2161 }
2162
2163 ret = regmap_async_complete(regmap);
2164 if (ret != 0)
2165 cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2166
2167 if (pos > firmware->size)
2168 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2169 file, blocks, pos - firmware->size);
2170
2171 cs_dsp_debugfs_save_binname(dsp, file);
2172
2173 out_fw:
2174 regmap_async_complete(regmap);
2175 cs_dsp_buf_free(&buf_list);
2176 kfree(text);
2177 return ret;
2178 }
2179
cs_dsp_create_name(struct cs_dsp * dsp)2180 static int cs_dsp_create_name(struct cs_dsp *dsp)
2181 {
2182 if (!dsp->name) {
2183 dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2184 dsp->num);
2185 if (!dsp->name)
2186 return -ENOMEM;
2187 }
2188
2189 return 0;
2190 }
2191
cs_dsp_common_init(struct cs_dsp * dsp)2192 static int cs_dsp_common_init(struct cs_dsp *dsp)
2193 {
2194 int ret;
2195
2196 ret = cs_dsp_create_name(dsp);
2197 if (ret)
2198 return ret;
2199
2200 INIT_LIST_HEAD(&dsp->alg_regions);
2201 INIT_LIST_HEAD(&dsp->ctl_list);
2202
2203 mutex_init(&dsp->pwr_lock);
2204
2205 return 0;
2206 }
2207
2208 /**
2209 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2210 * @dsp: pointer to DSP structure
2211 *
2212 * Return: Zero for success, a negative number on error.
2213 */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2214 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2215 {
2216 dsp->ops = &cs_dsp_adsp1_ops;
2217
2218 return cs_dsp_common_init(dsp);
2219 }
2220 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_init);
2221
2222 /**
2223 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2224 * @dsp: pointer to DSP structure
2225 * @wmfw_firmware: the firmware to be sent
2226 * @wmfw_filename: file name of firmware to be sent
2227 * @coeff_firmware: the coefficient data to be sent
2228 * @coeff_filename: file name of coefficient to data be sent
2229 * @fw_name: the user-friendly firmware name
2230 *
2231 * Return: Zero for success, a negative number on error.
2232 */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2233 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2234 const struct firmware *wmfw_firmware, char *wmfw_filename,
2235 const struct firmware *coeff_firmware, char *coeff_filename,
2236 const char *fw_name)
2237 {
2238 unsigned int val;
2239 int ret;
2240
2241 mutex_lock(&dsp->pwr_lock);
2242
2243 dsp->fw_name = fw_name;
2244
2245 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2246 ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2247
2248 /*
2249 * For simplicity set the DSP clock rate to be the
2250 * SYSCLK rate rather than making it configurable.
2251 */
2252 if (dsp->sysclk_reg) {
2253 ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2254 if (ret != 0) {
2255 cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2256 goto err_mutex;
2257 }
2258
2259 val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2260
2261 ret = regmap_update_bits(dsp->regmap,
2262 dsp->base + ADSP1_CONTROL_31,
2263 ADSP1_CLK_SEL_MASK, val);
2264 if (ret != 0) {
2265 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2266 goto err_mutex;
2267 }
2268 }
2269
2270 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2271 if (ret != 0)
2272 goto err_ena;
2273
2274 ret = cs_dsp_adsp1_setup_algs(dsp);
2275 if (ret != 0)
2276 goto err_ena;
2277
2278 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2279 if (ret != 0)
2280 goto err_ena;
2281
2282 /* Initialize caches for enabled and unset controls */
2283 ret = cs_dsp_coeff_init_control_caches(dsp);
2284 if (ret != 0)
2285 goto err_ena;
2286
2287 /* Sync set controls */
2288 ret = cs_dsp_coeff_sync_controls(dsp);
2289 if (ret != 0)
2290 goto err_ena;
2291
2292 dsp->booted = true;
2293
2294 /* Start the core running */
2295 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2296 ADSP1_CORE_ENA | ADSP1_START,
2297 ADSP1_CORE_ENA | ADSP1_START);
2298
2299 dsp->running = true;
2300
2301 mutex_unlock(&dsp->pwr_lock);
2302
2303 return 0;
2304
2305 err_ena:
2306 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2307 ADSP1_SYS_ENA, 0);
2308 err_mutex:
2309 mutex_unlock(&dsp->pwr_lock);
2310 return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_up);
2313
2314 /**
2315 * cs_dsp_adsp1_power_down() - Halts the DSP
2316 * @dsp: pointer to DSP structure
2317 */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2318 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2319 {
2320 struct cs_dsp_coeff_ctl *ctl;
2321
2322 mutex_lock(&dsp->pwr_lock);
2323
2324 dsp->running = false;
2325 dsp->booted = false;
2326
2327 /* Halt the core */
2328 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2329 ADSP1_CORE_ENA | ADSP1_START, 0);
2330
2331 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2332 ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2333
2334 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2335 ADSP1_SYS_ENA, 0);
2336
2337 list_for_each_entry(ctl, &dsp->ctl_list, list)
2338 ctl->enabled = 0;
2339
2340 cs_dsp_free_alg_regions(dsp);
2341
2342 mutex_unlock(&dsp->pwr_lock);
2343 }
2344 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_down);
2345
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2346 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2347 {
2348 unsigned int val;
2349 int ret, count;
2350
2351 /* Wait for the RAM to start, should be near instantaneous */
2352 for (count = 0; count < 10; ++count) {
2353 ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2354 if (ret != 0)
2355 return ret;
2356
2357 if (val & ADSP2_RAM_RDY)
2358 break;
2359
2360 usleep_range(250, 500);
2361 }
2362
2363 if (!(val & ADSP2_RAM_RDY)) {
2364 cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2365 return -EBUSY;
2366 }
2367
2368 cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2369
2370 return 0;
2371 }
2372
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2373 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2374 {
2375 int ret;
2376
2377 ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2378 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2379 if (ret != 0)
2380 return ret;
2381
2382 return cs_dsp_adsp2v2_enable_core(dsp);
2383 }
2384
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2385 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2386 {
2387 struct regmap *regmap = dsp->regmap;
2388 unsigned int code0, code1, lock_reg;
2389
2390 if (!(lock_regions & CS_ADSP2_REGION_ALL))
2391 return 0;
2392
2393 lock_regions &= CS_ADSP2_REGION_ALL;
2394 lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2395
2396 while (lock_regions) {
2397 code0 = code1 = 0;
2398 if (lock_regions & BIT(0)) {
2399 code0 = ADSP2_LOCK_CODE_0;
2400 code1 = ADSP2_LOCK_CODE_1;
2401 }
2402 if (lock_regions & BIT(1)) {
2403 code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2404 code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2405 }
2406 regmap_write(regmap, lock_reg, code0);
2407 regmap_write(regmap, lock_reg, code1);
2408 lock_regions >>= 2;
2409 lock_reg += 2;
2410 }
2411
2412 return 0;
2413 }
2414
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2415 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2416 {
2417 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2418 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2419 }
2420
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2421 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2422 {
2423 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2424 ADSP2_MEM_ENA, 0);
2425 }
2426
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2427 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2428 {
2429 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2430 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2431 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2432
2433 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2434 ADSP2_SYS_ENA, 0);
2435 }
2436
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2437 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2438 {
2439 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2440 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2441 regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2442 }
2443
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2444 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2445 {
2446 struct reg_sequence config[] = {
2447 { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
2448 { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
2449 { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
2450 { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
2451 { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2452 { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
2453 { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
2454 { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
2455 { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
2456 { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2457 { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
2458 { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
2459 { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
2460 { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
2461 { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2462 { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
2463 { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
2464 { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
2465 { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
2466 { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2467 { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
2468 { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
2469 { dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
2470 };
2471
2472 return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2473 }
2474
2475 /**
2476 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2477 * @dsp: pointer to DSP structure
2478 * @freq: clock rate to set
2479 *
2480 * This is only for use on ADSP2 cores.
2481 *
2482 * Return: Zero for success, a negative number on error.
2483 */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2484 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2485 {
2486 int ret;
2487
2488 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2489 ADSP2_CLK_SEL_MASK,
2490 freq << ADSP2_CLK_SEL_SHIFT);
2491 if (ret)
2492 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2493
2494 return ret;
2495 }
2496 EXPORT_SYMBOL_GPL(cs_dsp_set_dspclk);
2497
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2498 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2499 {
2500 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2501 ADSP2_WDT_ENA_MASK, 0);
2502 }
2503
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2504 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2505 {
2506 regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2507 HALO_WDT_EN_MASK, 0);
2508 }
2509
2510 /**
2511 * cs_dsp_power_up() - Downloads firmware to the DSP
2512 * @dsp: pointer to DSP structure
2513 * @wmfw_firmware: the firmware to be sent
2514 * @wmfw_filename: file name of firmware to be sent
2515 * @coeff_firmware: the coefficient data to be sent
2516 * @coeff_filename: file name of coefficient to data be sent
2517 * @fw_name: the user-friendly firmware name
2518 *
2519 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2520 * and downloads the firmware but does not start the firmware running. The
2521 * cs_dsp booted flag will be set once completed and if the core has a low-power
2522 * memory retention mode it will be put into this state after the firmware is
2523 * downloaded.
2524 *
2525 * Return: Zero for success, a negative number on error.
2526 */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2527 int cs_dsp_power_up(struct cs_dsp *dsp,
2528 const struct firmware *wmfw_firmware, char *wmfw_filename,
2529 const struct firmware *coeff_firmware, char *coeff_filename,
2530 const char *fw_name)
2531 {
2532 int ret;
2533
2534 mutex_lock(&dsp->pwr_lock);
2535
2536 dsp->fw_name = fw_name;
2537
2538 if (dsp->ops->enable_memory) {
2539 ret = dsp->ops->enable_memory(dsp);
2540 if (ret != 0)
2541 goto err_mutex;
2542 }
2543
2544 if (dsp->ops->enable_core) {
2545 ret = dsp->ops->enable_core(dsp);
2546 if (ret != 0)
2547 goto err_mem;
2548 }
2549
2550 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2551 if (ret != 0)
2552 goto err_ena;
2553
2554 ret = dsp->ops->setup_algs(dsp);
2555 if (ret != 0)
2556 goto err_ena;
2557
2558 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2559 if (ret != 0)
2560 goto err_ena;
2561
2562 /* Initialize caches for enabled and unset controls */
2563 ret = cs_dsp_coeff_init_control_caches(dsp);
2564 if (ret != 0)
2565 goto err_ena;
2566
2567 if (dsp->ops->disable_core)
2568 dsp->ops->disable_core(dsp);
2569
2570 dsp->booted = true;
2571
2572 mutex_unlock(&dsp->pwr_lock);
2573
2574 return 0;
2575 err_ena:
2576 if (dsp->ops->disable_core)
2577 dsp->ops->disable_core(dsp);
2578 err_mem:
2579 if (dsp->ops->disable_memory)
2580 dsp->ops->disable_memory(dsp);
2581 err_mutex:
2582 mutex_unlock(&dsp->pwr_lock);
2583
2584 return ret;
2585 }
2586 EXPORT_SYMBOL_GPL(cs_dsp_power_up);
2587
2588 /**
2589 * cs_dsp_power_down() - Powers-down the DSP
2590 * @dsp: pointer to DSP structure
2591 *
2592 * cs_dsp_stop() must have been called before this function. The core will be
2593 * fully powered down and so the memory will not be retained.
2594 */
cs_dsp_power_down(struct cs_dsp * dsp)2595 void cs_dsp_power_down(struct cs_dsp *dsp)
2596 {
2597 struct cs_dsp_coeff_ctl *ctl;
2598
2599 mutex_lock(&dsp->pwr_lock);
2600
2601 cs_dsp_debugfs_clear(dsp);
2602
2603 dsp->fw_id = 0;
2604 dsp->fw_id_version = 0;
2605
2606 dsp->booted = false;
2607
2608 if (dsp->ops->disable_memory)
2609 dsp->ops->disable_memory(dsp);
2610
2611 list_for_each_entry(ctl, &dsp->ctl_list, list)
2612 ctl->enabled = 0;
2613
2614 cs_dsp_free_alg_regions(dsp);
2615
2616 mutex_unlock(&dsp->pwr_lock);
2617
2618 cs_dsp_dbg(dsp, "Shutdown complete\n");
2619 }
2620 EXPORT_SYMBOL_GPL(cs_dsp_power_down);
2621
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2622 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2623 {
2624 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2625 ADSP2_CORE_ENA | ADSP2_START,
2626 ADSP2_CORE_ENA | ADSP2_START);
2627 }
2628
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2629 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2630 {
2631 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2632 ADSP2_CORE_ENA | ADSP2_START, 0);
2633 }
2634
2635 /**
2636 * cs_dsp_run() - Starts the firmware running
2637 * @dsp: pointer to DSP structure
2638 *
2639 * cs_dsp_power_up() must have previously been called successfully.
2640 *
2641 * Return: Zero for success, a negative number on error.
2642 */
cs_dsp_run(struct cs_dsp * dsp)2643 int cs_dsp_run(struct cs_dsp *dsp)
2644 {
2645 int ret;
2646
2647 mutex_lock(&dsp->pwr_lock);
2648
2649 if (!dsp->booted) {
2650 ret = -EIO;
2651 goto err;
2652 }
2653
2654 if (dsp->ops->enable_core) {
2655 ret = dsp->ops->enable_core(dsp);
2656 if (ret != 0)
2657 goto err;
2658 }
2659
2660 if (dsp->client_ops->pre_run) {
2661 ret = dsp->client_ops->pre_run(dsp);
2662 if (ret)
2663 goto err;
2664 }
2665
2666 /* Sync set controls */
2667 ret = cs_dsp_coeff_sync_controls(dsp);
2668 if (ret != 0)
2669 goto err;
2670
2671 if (dsp->ops->lock_memory) {
2672 ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2673 if (ret != 0) {
2674 cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2675 goto err;
2676 }
2677 }
2678
2679 if (dsp->ops->start_core) {
2680 ret = dsp->ops->start_core(dsp);
2681 if (ret != 0)
2682 goto err;
2683 }
2684
2685 dsp->running = true;
2686
2687 if (dsp->client_ops->post_run) {
2688 ret = dsp->client_ops->post_run(dsp);
2689 if (ret)
2690 goto err;
2691 }
2692
2693 mutex_unlock(&dsp->pwr_lock);
2694
2695 return 0;
2696
2697 err:
2698 if (dsp->ops->stop_core)
2699 dsp->ops->stop_core(dsp);
2700 if (dsp->ops->disable_core)
2701 dsp->ops->disable_core(dsp);
2702 mutex_unlock(&dsp->pwr_lock);
2703
2704 return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(cs_dsp_run);
2707
2708 /**
2709 * cs_dsp_stop() - Stops the firmware
2710 * @dsp: pointer to DSP structure
2711 *
2712 * Memory will not be disabled so firmware will remain loaded.
2713 */
cs_dsp_stop(struct cs_dsp * dsp)2714 void cs_dsp_stop(struct cs_dsp *dsp)
2715 {
2716 /* Tell the firmware to cleanup */
2717 cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2718
2719 if (dsp->ops->stop_watchdog)
2720 dsp->ops->stop_watchdog(dsp);
2721
2722 /* Log firmware state, it can be useful for analysis */
2723 if (dsp->ops->show_fw_status)
2724 dsp->ops->show_fw_status(dsp);
2725
2726 mutex_lock(&dsp->pwr_lock);
2727
2728 if (dsp->client_ops->pre_stop)
2729 dsp->client_ops->pre_stop(dsp);
2730
2731 dsp->running = false;
2732
2733 if (dsp->ops->stop_core)
2734 dsp->ops->stop_core(dsp);
2735 if (dsp->ops->disable_core)
2736 dsp->ops->disable_core(dsp);
2737
2738 if (dsp->client_ops->post_stop)
2739 dsp->client_ops->post_stop(dsp);
2740
2741 mutex_unlock(&dsp->pwr_lock);
2742
2743 cs_dsp_dbg(dsp, "Execution stopped\n");
2744 }
2745 EXPORT_SYMBOL_GPL(cs_dsp_stop);
2746
cs_dsp_halo_start_core(struct cs_dsp * dsp)2747 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2748 {
2749 int ret;
2750
2751 ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2752 HALO_CORE_RESET | HALO_CORE_EN,
2753 HALO_CORE_RESET | HALO_CORE_EN);
2754 if (ret)
2755 return ret;
2756
2757 return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2758 HALO_CORE_RESET, 0);
2759 }
2760
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2761 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2762 {
2763 regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2764 HALO_CORE_EN, 0);
2765
2766 /* reset halo core with CORE_SOFT_RESET */
2767 regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2768 HALO_CORE_SOFT_RESET_MASK, 1);
2769 }
2770
2771 /**
2772 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2773 * @dsp: pointer to DSP structure
2774 *
2775 * Return: Zero for success, a negative number on error.
2776 */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2777 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2778 {
2779 int ret;
2780
2781 switch (dsp->rev) {
2782 case 0:
2783 /*
2784 * Disable the DSP memory by default when in reset for a small
2785 * power saving.
2786 */
2787 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2788 ADSP2_MEM_ENA, 0);
2789 if (ret) {
2790 cs_dsp_err(dsp,
2791 "Failed to clear memory retention: %d\n", ret);
2792 return ret;
2793 }
2794
2795 dsp->ops = &cs_dsp_adsp2_ops[0];
2796 break;
2797 case 1:
2798 dsp->ops = &cs_dsp_adsp2_ops[1];
2799 break;
2800 default:
2801 dsp->ops = &cs_dsp_adsp2_ops[2];
2802 break;
2803 }
2804
2805 return cs_dsp_common_init(dsp);
2806 }
2807 EXPORT_SYMBOL_GPL(cs_dsp_adsp2_init);
2808
2809 /**
2810 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2811 * @dsp: pointer to DSP structure
2812 *
2813 * Return: Zero for success, a negative number on error.
2814 */
cs_dsp_halo_init(struct cs_dsp * dsp)2815 int cs_dsp_halo_init(struct cs_dsp *dsp)
2816 {
2817 dsp->ops = &cs_dsp_halo_ops;
2818
2819 return cs_dsp_common_init(dsp);
2820 }
2821 EXPORT_SYMBOL_GPL(cs_dsp_halo_init);
2822
2823 /**
2824 * cs_dsp_remove() - Clean a cs_dsp before deletion
2825 * @dsp: pointer to DSP structure
2826 */
cs_dsp_remove(struct cs_dsp * dsp)2827 void cs_dsp_remove(struct cs_dsp *dsp)
2828 {
2829 struct cs_dsp_coeff_ctl *ctl;
2830
2831 while (!list_empty(&dsp->ctl_list)) {
2832 ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2833
2834 if (dsp->client_ops->control_remove)
2835 dsp->client_ops->control_remove(ctl);
2836
2837 list_del(&ctl->list);
2838 cs_dsp_free_ctl_blk(ctl);
2839 }
2840 }
2841 EXPORT_SYMBOL_GPL(cs_dsp_remove);
2842
2843 /**
2844 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2845 * @dsp: pointer to DSP structure
2846 * @mem_type: the type of DSP memory containing the data to be read
2847 * @mem_addr: the address of the data within the memory region
2848 * @num_words: the length of the data to read
2849 * @data: a buffer to store the fetched data
2850 *
2851 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2852 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2853 * cs_dsp_remove_padding()
2854 *
2855 * Return: Zero for success, a negative number on error.
2856 */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)2857 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2858 unsigned int num_words, __be32 *data)
2859 {
2860 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2861 unsigned int reg;
2862 int ret;
2863
2864 lockdep_assert_held(&dsp->pwr_lock);
2865
2866 if (!mem)
2867 return -EINVAL;
2868
2869 reg = dsp->ops->region_to_reg(mem, mem_addr);
2870
2871 ret = regmap_raw_read(dsp->regmap, reg, data,
2872 sizeof(*data) * num_words);
2873 if (ret < 0)
2874 return ret;
2875
2876 return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(cs_dsp_read_raw_data_block);
2879
2880 /**
2881 * cs_dsp_read_data_word() - Reads a word from DSP memory
2882 * @dsp: pointer to DSP structure
2883 * @mem_type: the type of DSP memory containing the data to be read
2884 * @mem_addr: the address of the data within the memory region
2885 * @data: a buffer to store the fetched data
2886 *
2887 * Return: Zero for success, a negative number on error.
2888 */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)2889 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2890 {
2891 __be32 raw;
2892 int ret;
2893
2894 ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
2895 if (ret < 0)
2896 return ret;
2897
2898 *data = be32_to_cpu(raw) & 0x00ffffffu;
2899
2900 return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(cs_dsp_read_data_word);
2903
2904 /**
2905 * cs_dsp_write_data_word() - Writes a word to DSP memory
2906 * @dsp: pointer to DSP structure
2907 * @mem_type: the type of DSP memory containing the data to be written
2908 * @mem_addr: the address of the data within the memory region
2909 * @data: the data to be written
2910 *
2911 * Return: Zero for success, a negative number on error.
2912 */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)2913 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
2914 {
2915 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2916 __be32 val = cpu_to_be32(data & 0x00ffffffu);
2917 unsigned int reg;
2918
2919 lockdep_assert_held(&dsp->pwr_lock);
2920
2921 if (!mem)
2922 return -EINVAL;
2923
2924 reg = dsp->ops->region_to_reg(mem, mem_addr);
2925
2926 return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
2927 }
2928 EXPORT_SYMBOL_GPL(cs_dsp_write_data_word);
2929
2930 /**
2931 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
2932 * @buf: buffer containing DSP words read from DSP memory
2933 * @nwords: number of words to convert
2934 *
2935 * DSP words from the register map have pad bytes and the data bytes
2936 * are in swapped order. This swaps to the native endian order and
2937 * strips the pad bytes.
2938 */
cs_dsp_remove_padding(u32 * buf,int nwords)2939 void cs_dsp_remove_padding(u32 *buf, int nwords)
2940 {
2941 const __be32 *pack_in = (__be32 *)buf;
2942 u8 *pack_out = (u8 *)buf;
2943 int i;
2944
2945 for (i = 0; i < nwords; i++) {
2946 u32 word = be32_to_cpu(*pack_in++);
2947 *pack_out++ = (u8)word;
2948 *pack_out++ = (u8)(word >> 8);
2949 *pack_out++ = (u8)(word >> 16);
2950 }
2951 }
2952 EXPORT_SYMBOL_GPL(cs_dsp_remove_padding);
2953
2954 /**
2955 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
2956 * @dsp: pointer to DSP structure
2957 *
2958 * The firmware and DSP state will be logged for future analysis.
2959 */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)2960 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
2961 {
2962 unsigned int val;
2963 struct regmap *regmap = dsp->regmap;
2964 int ret = 0;
2965
2966 mutex_lock(&dsp->pwr_lock);
2967
2968 ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
2969 if (ret) {
2970 cs_dsp_err(dsp,
2971 "Failed to read Region Lock Ctrl register: %d\n", ret);
2972 goto error;
2973 }
2974
2975 if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
2976 cs_dsp_err(dsp, "watchdog timeout error\n");
2977 dsp->ops->stop_watchdog(dsp);
2978 if (dsp->client_ops->watchdog_expired)
2979 dsp->client_ops->watchdog_expired(dsp);
2980 }
2981
2982 if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
2983 if (val & ADSP2_ADDR_ERR_MASK)
2984 cs_dsp_err(dsp, "bus error: address error\n");
2985 else
2986 cs_dsp_err(dsp, "bus error: region lock error\n");
2987
2988 ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
2989 if (ret) {
2990 cs_dsp_err(dsp,
2991 "Failed to read Bus Err Addr register: %d\n",
2992 ret);
2993 goto error;
2994 }
2995
2996 cs_dsp_err(dsp, "bus error address = 0x%x\n",
2997 val & ADSP2_BUS_ERR_ADDR_MASK);
2998
2999 ret = regmap_read(regmap,
3000 dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3001 &val);
3002 if (ret) {
3003 cs_dsp_err(dsp,
3004 "Failed to read Pmem Xmem Err Addr register: %d\n",
3005 ret);
3006 goto error;
3007 }
3008
3009 cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3010 val & ADSP2_XMEM_ERR_ADDR_MASK);
3011 cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3012 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3013 ADSP2_PMEM_ERR_ADDR_SHIFT);
3014 }
3015
3016 regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3017 ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3018
3019 error:
3020 mutex_unlock(&dsp->pwr_lock);
3021 }
3022 EXPORT_SYMBOL_GPL(cs_dsp_adsp2_bus_error);
3023
3024 /**
3025 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3026 * @dsp: pointer to DSP structure
3027 *
3028 * The firmware and DSP state will be logged for future analysis.
3029 */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3030 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3031 {
3032 struct regmap *regmap = dsp->regmap;
3033 unsigned int fault[6];
3034 struct reg_sequence clear[] = {
3035 { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
3036 { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
3037 { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
3038 };
3039 int ret;
3040
3041 mutex_lock(&dsp->pwr_lock);
3042
3043 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3044 fault);
3045 if (ret) {
3046 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3047 goto exit_unlock;
3048 }
3049
3050 cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3051 *fault & HALO_AHBM_FLAGS_ERR_MASK,
3052 (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3053 HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3054
3055 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3056 fault);
3057 if (ret) {
3058 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3059 goto exit_unlock;
3060 }
3061
3062 cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3063
3064 ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3065 fault, ARRAY_SIZE(fault));
3066 if (ret) {
3067 cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3068 goto exit_unlock;
3069 }
3070
3071 cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3072 cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3073 cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3074
3075 ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3076 if (ret)
3077 cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3078
3079 exit_unlock:
3080 mutex_unlock(&dsp->pwr_lock);
3081 }
3082 EXPORT_SYMBOL_GPL(cs_dsp_halo_bus_error);
3083
3084 /**
3085 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3086 * @dsp: pointer to DSP structure
3087 *
3088 * This is logged for future analysis.
3089 */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3090 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3091 {
3092 mutex_lock(&dsp->pwr_lock);
3093
3094 cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3095
3096 dsp->ops->stop_watchdog(dsp);
3097 if (dsp->client_ops->watchdog_expired)
3098 dsp->client_ops->watchdog_expired(dsp);
3099
3100 mutex_unlock(&dsp->pwr_lock);
3101 }
3102 EXPORT_SYMBOL_GPL(cs_dsp_halo_wdt_expire);
3103
3104 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3105 .validate_version = cs_dsp_validate_version,
3106 .parse_sizes = cs_dsp_adsp1_parse_sizes,
3107 .region_to_reg = cs_dsp_region_to_reg,
3108 };
3109
3110 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3111 {
3112 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3113 .validate_version = cs_dsp_validate_version,
3114 .setup_algs = cs_dsp_adsp2_setup_algs,
3115 .region_to_reg = cs_dsp_region_to_reg,
3116
3117 .show_fw_status = cs_dsp_adsp2_show_fw_status,
3118
3119 .enable_memory = cs_dsp_adsp2_enable_memory,
3120 .disable_memory = cs_dsp_adsp2_disable_memory,
3121
3122 .enable_core = cs_dsp_adsp2_enable_core,
3123 .disable_core = cs_dsp_adsp2_disable_core,
3124
3125 .start_core = cs_dsp_adsp2_start_core,
3126 .stop_core = cs_dsp_adsp2_stop_core,
3127
3128 },
3129 {
3130 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3131 .validate_version = cs_dsp_validate_version,
3132 .setup_algs = cs_dsp_adsp2_setup_algs,
3133 .region_to_reg = cs_dsp_region_to_reg,
3134
3135 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3136
3137 .enable_memory = cs_dsp_adsp2_enable_memory,
3138 .disable_memory = cs_dsp_adsp2_disable_memory,
3139 .lock_memory = cs_dsp_adsp2_lock,
3140
3141 .enable_core = cs_dsp_adsp2v2_enable_core,
3142 .disable_core = cs_dsp_adsp2v2_disable_core,
3143
3144 .start_core = cs_dsp_adsp2_start_core,
3145 .stop_core = cs_dsp_adsp2_stop_core,
3146 },
3147 {
3148 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3149 .validate_version = cs_dsp_validate_version,
3150 .setup_algs = cs_dsp_adsp2_setup_algs,
3151 .region_to_reg = cs_dsp_region_to_reg,
3152
3153 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3154 .stop_watchdog = cs_dsp_stop_watchdog,
3155
3156 .enable_memory = cs_dsp_adsp2_enable_memory,
3157 .disable_memory = cs_dsp_adsp2_disable_memory,
3158 .lock_memory = cs_dsp_adsp2_lock,
3159
3160 .enable_core = cs_dsp_adsp2v2_enable_core,
3161 .disable_core = cs_dsp_adsp2v2_disable_core,
3162
3163 .start_core = cs_dsp_adsp2_start_core,
3164 .stop_core = cs_dsp_adsp2_stop_core,
3165 },
3166 };
3167
3168 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3169 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3170 .validate_version = cs_dsp_halo_validate_version,
3171 .setup_algs = cs_dsp_halo_setup_algs,
3172 .region_to_reg = cs_dsp_halo_region_to_reg,
3173
3174 .show_fw_status = cs_dsp_halo_show_fw_status,
3175 .stop_watchdog = cs_dsp_halo_stop_watchdog,
3176
3177 .lock_memory = cs_dsp_halo_configure_mpu,
3178
3179 .start_core = cs_dsp_halo_start_core,
3180 .stop_core = cs_dsp_halo_stop_core,
3181 };
3182
3183 /**
3184 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3185 * @ch: Pointer to the chunk structure
3186 * @nbits: Number of bits to write
3187 * @val: Value to write
3188 *
3189 * This function sequentially writes values into the format required for DSP
3190 * memory, it handles both inserting of the padding bytes and converting to
3191 * big endian. Note that data is only committed to the chunk when a whole DSP
3192 * words worth of data is available.
3193 *
3194 * Return: Zero for success, a negative number on error.
3195 */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3196 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3197 {
3198 int nwrite, i;
3199
3200 nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3201
3202 ch->cache <<= nwrite;
3203 ch->cache |= val >> (nbits - nwrite);
3204 ch->cachebits += nwrite;
3205 nbits -= nwrite;
3206
3207 if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3208 if (cs_dsp_chunk_end(ch))
3209 return -ENOSPC;
3210
3211 ch->cache &= 0xFFFFFF;
3212 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3213 *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3214
3215 ch->bytes += sizeof(ch->cache);
3216 ch->cachebits = 0;
3217 }
3218
3219 if (nbits)
3220 return cs_dsp_chunk_write(ch, nbits, val);
3221
3222 return 0;
3223 }
3224 EXPORT_SYMBOL_GPL(cs_dsp_chunk_write);
3225
3226 /**
3227 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3228 * @ch: Pointer to the chunk structure
3229 *
3230 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3231 * be written out it is possible that some data will remain in the cache, this
3232 * function will pad that data with zeros upto a whole DSP word and write out.
3233 *
3234 * Return: Zero for success, a negative number on error.
3235 */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3236 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3237 {
3238 if (!ch->cachebits)
3239 return 0;
3240
3241 return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3242 }
3243 EXPORT_SYMBOL_GPL(cs_dsp_chunk_flush);
3244
3245 /**
3246 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3247 * @ch: Pointer to the chunk structure
3248 * @nbits: Number of bits to read
3249 *
3250 * This function sequentially reads values from a DSP memory formatted buffer,
3251 * it handles both removing of the padding bytes and converting from big endian.
3252 *
3253 * Return: A negative number is returned on error, otherwise the read value.
3254 */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3255 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3256 {
3257 int nread, i;
3258 u32 result;
3259
3260 if (!ch->cachebits) {
3261 if (cs_dsp_chunk_end(ch))
3262 return -ENOSPC;
3263
3264 ch->cache = 0;
3265 ch->cachebits = CS_DSP_DATA_WORD_BITS;
3266
3267 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3268 ch->cache |= *ch->data++;
3269
3270 ch->bytes += sizeof(ch->cache);
3271 }
3272
3273 nread = min(ch->cachebits, nbits);
3274 nbits -= nread;
3275
3276 result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3277 ch->cache <<= nread;
3278 ch->cachebits -= nread;
3279
3280 if (nbits)
3281 result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3282
3283 return result;
3284 }
3285 EXPORT_SYMBOL_GPL(cs_dsp_chunk_read);
3286
3287 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3288 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3289 MODULE_LICENSE("GPL v2");
3290