1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44
45 #ifdef CONFIG_PREEMPT_RCU
46
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49
50 /*
51 * Defined as a macro as it is a very low level header included from
52 * areas that don't even know about current. This gives the rcu_read_lock()
53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55 */
56 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
57
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 preempt_disable();
69 }
70
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 preempt_enable();
74 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
75 rcu_read_unlock_strict();
76 }
77
rcu_preempt_depth(void)78 static inline int rcu_preempt_depth(void)
79 {
80 return 0;
81 }
82
83 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
84
85 /* Internal to kernel */
86 void rcu_init(void);
87 extern int rcu_scheduler_active;
88 void rcu_sched_clock_irq(int user);
89 void rcu_report_dead(unsigned int cpu);
90 void rcutree_migrate_callbacks(int cpu);
91
92 #ifdef CONFIG_TASKS_RCU_GENERIC
93 void rcu_init_tasks_generic(void);
94 #else
rcu_init_tasks_generic(void)95 static inline void rcu_init_tasks_generic(void) { }
96 #endif
97
98 #ifdef CONFIG_RCU_STALL_COMMON
99 void rcu_sysrq_start(void);
100 void rcu_sysrq_end(void);
101 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)102 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)103 static inline void rcu_sysrq_end(void) { }
104 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
105
106 #ifdef CONFIG_NO_HZ_FULL
107 void rcu_user_enter(void);
108 void rcu_user_exit(void);
109 #else
rcu_user_enter(void)110 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)111 static inline void rcu_user_exit(void) { }
112 #endif /* CONFIG_NO_HZ_FULL */
113
114 #ifdef CONFIG_RCU_NOCB_CPU
115 void rcu_init_nohz(void);
116 int rcu_nocb_cpu_offload(int cpu);
117 int rcu_nocb_cpu_deoffload(int cpu);
118 void rcu_nocb_flush_deferred_wakeup(void);
119 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)120 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)121 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)122 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)123 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
124 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
125
126 /**
127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
128 * @a: Code that RCU needs to pay attention to.
129 *
130 * RCU read-side critical sections are forbidden in the inner idle loop,
131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
132 * will happily ignore any such read-side critical sections. However,
133 * things like powertop need tracepoints in the inner idle loop.
134 *
135 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
136 * will tell RCU that it needs to pay attention, invoke its argument
137 * (in this example, calling the do_something_with_RCU() function),
138 * and then tell RCU to go back to ignoring this CPU. It is permissible
139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
140 * on the order of a million or so, even on 32-bit systems). It is
141 * not legal to block within RCU_NONIDLE(), nor is it permissible to
142 * transfer control either into or out of RCU_NONIDLE()'s statement.
143 */
144 #define RCU_NONIDLE(a) \
145 do { \
146 rcu_irq_enter_irqson(); \
147 do { a; } while (0); \
148 rcu_irq_exit_irqson(); \
149 } while (0)
150
151 /*
152 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
153 * This is a macro rather than an inline function to avoid #include hell.
154 */
155 #ifdef CONFIG_TASKS_RCU_GENERIC
156
157 # ifdef CONFIG_TASKS_RCU
158 # define rcu_tasks_classic_qs(t, preempt) \
159 do { \
160 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
161 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
162 } while (0)
163 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
164 void synchronize_rcu_tasks(void);
165 # else
166 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
167 # define call_rcu_tasks call_rcu
168 # define synchronize_rcu_tasks synchronize_rcu
169 # endif
170
171 # ifdef CONFIG_TASKS_TRACE_RCU
172 # define rcu_tasks_trace_qs(t) \
173 do { \
174 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
175 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
176 smp_store_release(&(t)->trc_reader_checked, true); \
177 smp_mb(); /* Readers partitioned by store. */ \
178 } \
179 } while (0)
180 # else
181 # define rcu_tasks_trace_qs(t) do { } while (0)
182 # endif
183
184 #define rcu_tasks_qs(t, preempt) \
185 do { \
186 rcu_tasks_classic_qs((t), (preempt)); \
187 rcu_tasks_trace_qs((t)); \
188 } while (0)
189
190 # ifdef CONFIG_TASKS_RUDE_RCU
191 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
192 void synchronize_rcu_tasks_rude(void);
193 # endif
194
195 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
196 void exit_tasks_rcu_start(void);
197 void exit_tasks_rcu_finish(void);
198 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
199 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
200 #define rcu_tasks_qs(t, preempt) do { } while (0)
201 #define rcu_note_voluntary_context_switch(t) do { } while (0)
202 #define call_rcu_tasks call_rcu
203 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)204 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)205 static inline void exit_tasks_rcu_finish(void) { }
206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
207
208 /**
209 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
210 *
211 * This macro resembles cond_resched(), except that it is defined to
212 * report potential quiescent states to RCU-tasks even if the cond_resched()
213 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
214 */
215 #define cond_resched_tasks_rcu_qs() \
216 do { \
217 rcu_tasks_qs(current, false); \
218 cond_resched(); \
219 } while (0)
220
221 /*
222 * Infrastructure to implement the synchronize_() primitives in
223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224 */
225
226 #if defined(CONFIG_TREE_RCU)
227 #include <linux/rcutree.h>
228 #elif defined(CONFIG_TINY_RCU)
229 #include <linux/rcutiny.h>
230 #else
231 #error "Unknown RCU implementation specified to kernel configuration"
232 #endif
233
234 /*
235 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
236 * are needed for dynamic initialization and destruction of rcu_head
237 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
238 * dynamic initialization and destruction of statically allocated rcu_head
239 * structures. However, rcu_head structures allocated dynamically in the
240 * heap don't need any initialization.
241 */
242 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
243 void init_rcu_head(struct rcu_head *head);
244 void destroy_rcu_head(struct rcu_head *head);
245 void init_rcu_head_on_stack(struct rcu_head *head);
246 void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)248 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)249 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)250 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)251 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
252 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
253
254 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
255 bool rcu_lockdep_current_cpu_online(void);
256 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)257 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
258 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
259
260 extern struct lockdep_map rcu_lock_map;
261 extern struct lockdep_map rcu_bh_lock_map;
262 extern struct lockdep_map rcu_sched_lock_map;
263 extern struct lockdep_map rcu_callback_map;
264
265 #ifdef CONFIG_DEBUG_LOCK_ALLOC
266
rcu_lock_acquire(struct lockdep_map * map)267 static inline void rcu_lock_acquire(struct lockdep_map *map)
268 {
269 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
270 }
271
rcu_lock_release(struct lockdep_map * map)272 static inline void rcu_lock_release(struct lockdep_map *map)
273 {
274 lock_release(map, _THIS_IP_);
275 }
276
277 int debug_lockdep_rcu_enabled(void);
278 int rcu_read_lock_held(void);
279 int rcu_read_lock_bh_held(void);
280 int rcu_read_lock_sched_held(void);
281 int rcu_read_lock_any_held(void);
282
283 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
284
285 # define rcu_lock_acquire(a) do { } while (0)
286 # define rcu_lock_release(a) do { } while (0)
287
rcu_read_lock_held(void)288 static inline int rcu_read_lock_held(void)
289 {
290 return 1;
291 }
292
rcu_read_lock_bh_held(void)293 static inline int rcu_read_lock_bh_held(void)
294 {
295 return 1;
296 }
297
rcu_read_lock_sched_held(void)298 static inline int rcu_read_lock_sched_held(void)
299 {
300 return !preemptible();
301 }
302
rcu_read_lock_any_held(void)303 static inline int rcu_read_lock_any_held(void)
304 {
305 return !preemptible();
306 }
307
308 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
309
310 #ifdef CONFIG_PROVE_RCU
311
312 /**
313 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
314 * @c: condition to check
315 * @s: informative message
316 */
317 #define RCU_LOCKDEP_WARN(c, s) \
318 do { \
319 static bool __section(".data.unlikely") __warned; \
320 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \
321 __warned = true; \
322 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
323 } \
324 } while (0)
325
326 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)327 static inline void rcu_preempt_sleep_check(void)
328 {
329 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
330 "Illegal context switch in RCU read-side critical section");
331 }
332 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)333 static inline void rcu_preempt_sleep_check(void) { }
334 #endif /* #else #ifdef CONFIG_PROVE_RCU */
335
336 #define rcu_sleep_check() \
337 do { \
338 rcu_preempt_sleep_check(); \
339 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
340 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
341 "Illegal context switch in RCU-bh read-side critical section"); \
342 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
343 "Illegal context switch in RCU-sched read-side critical section"); \
344 } while (0)
345
346 #else /* #ifdef CONFIG_PROVE_RCU */
347
348 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
349 #define rcu_sleep_check() do { } while (0)
350
351 #endif /* #else #ifdef CONFIG_PROVE_RCU */
352
353 /*
354 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
355 * and rcu_assign_pointer(). Some of these could be folded into their
356 * callers, but they are left separate in order to ease introduction of
357 * multiple pointers markings to match different RCU implementations
358 * (e.g., __srcu), should this make sense in the future.
359 */
360
361 #ifdef __CHECKER__
362 #define rcu_check_sparse(p, space) \
363 ((void)(((typeof(*p) space *)p) == p))
364 #else /* #ifdef __CHECKER__ */
365 #define rcu_check_sparse(p, space)
366 #endif /* #else #ifdef __CHECKER__ */
367
368 #define __unrcu_pointer(p, local) \
369 ({ \
370 typeof(*p) *local = (typeof(*p) *__force)(p); \
371 rcu_check_sparse(p, __rcu); \
372 ((typeof(*p) __force __kernel *)(local)); \
373 })
374 /**
375 * unrcu_pointer - mark a pointer as not being RCU protected
376 * @p: pointer needing to lose its __rcu property
377 *
378 * Converts @p from an __rcu pointer to a __kernel pointer.
379 * This allows an __rcu pointer to be used with xchg() and friends.
380 */
381 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
382
383 #define __rcu_access_pointer(p, local, space) \
384 ({ \
385 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
386 rcu_check_sparse(p, space); \
387 ((typeof(*p) __force __kernel *)(local)); \
388 })
389 #define __rcu_dereference_check(p, local, c, space) \
390 ({ \
391 /* Dependency order vs. p above. */ \
392 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
393 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
394 rcu_check_sparse(p, space); \
395 ((typeof(*p) __force __kernel *)(local)); \
396 })
397 #define __rcu_dereference_protected(p, local, c, space) \
398 ({ \
399 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
400 rcu_check_sparse(p, space); \
401 ((typeof(*p) __force __kernel *)(p)); \
402 })
403 #define __rcu_dereference_raw(p, local) \
404 ({ \
405 /* Dependency order vs. p above. */ \
406 typeof(p) local = READ_ONCE(p); \
407 ((typeof(*p) __force __kernel *)(local)); \
408 })
409 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
410
411 /**
412 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
413 * @v: The value to statically initialize with.
414 */
415 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
416
417 /**
418 * rcu_assign_pointer() - assign to RCU-protected pointer
419 * @p: pointer to assign to
420 * @v: value to assign (publish)
421 *
422 * Assigns the specified value to the specified RCU-protected
423 * pointer, ensuring that any concurrent RCU readers will see
424 * any prior initialization.
425 *
426 * Inserts memory barriers on architectures that require them
427 * (which is most of them), and also prevents the compiler from
428 * reordering the code that initializes the structure after the pointer
429 * assignment. More importantly, this call documents which pointers
430 * will be dereferenced by RCU read-side code.
431 *
432 * In some special cases, you may use RCU_INIT_POINTER() instead
433 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
434 * to the fact that it does not constrain either the CPU or the compiler.
435 * That said, using RCU_INIT_POINTER() when you should have used
436 * rcu_assign_pointer() is a very bad thing that results in
437 * impossible-to-diagnose memory corruption. So please be careful.
438 * See the RCU_INIT_POINTER() comment header for details.
439 *
440 * Note that rcu_assign_pointer() evaluates each of its arguments only
441 * once, appearances notwithstanding. One of the "extra" evaluations
442 * is in typeof() and the other visible only to sparse (__CHECKER__),
443 * neither of which actually execute the argument. As with most cpp
444 * macros, this execute-arguments-only-once property is important, so
445 * please be careful when making changes to rcu_assign_pointer() and the
446 * other macros that it invokes.
447 */
448 #define rcu_assign_pointer(p, v) \
449 do { \
450 uintptr_t _r_a_p__v = (uintptr_t)(v); \
451 rcu_check_sparse(p, __rcu); \
452 \
453 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
454 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
455 else \
456 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
457 } while (0)
458
459 /**
460 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
461 * @rcu_ptr: RCU pointer, whose old value is returned
462 * @ptr: regular pointer
463 * @c: the lockdep conditions under which the dereference will take place
464 *
465 * Perform a replacement, where @rcu_ptr is an RCU-annotated
466 * pointer and @c is the lockdep argument that is passed to the
467 * rcu_dereference_protected() call used to read that pointer. The old
468 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
469 */
470 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
471 ({ \
472 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
473 rcu_assign_pointer((rcu_ptr), (ptr)); \
474 __tmp; \
475 })
476
477 /**
478 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
479 * @p: The pointer to read
480 *
481 * Return the value of the specified RCU-protected pointer, but omit the
482 * lockdep checks for being in an RCU read-side critical section. This is
483 * useful when the value of this pointer is accessed, but the pointer is
484 * not dereferenced, for example, when testing an RCU-protected pointer
485 * against NULL. Although rcu_access_pointer() may also be used in cases
486 * where update-side locks prevent the value of the pointer from changing,
487 * you should instead use rcu_dereference_protected() for this use case.
488 *
489 * It is also permissible to use rcu_access_pointer() when read-side
490 * access to the pointer was removed at least one grace period ago, as
491 * is the case in the context of the RCU callback that is freeing up
492 * the data, or after a synchronize_rcu() returns. This can be useful
493 * when tearing down multi-linked structures after a grace period
494 * has elapsed.
495 */
496 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
497
498 /**
499 * rcu_dereference_check() - rcu_dereference with debug checking
500 * @p: The pointer to read, prior to dereferencing
501 * @c: The conditions under which the dereference will take place
502 *
503 * Do an rcu_dereference(), but check that the conditions under which the
504 * dereference will take place are correct. Typically the conditions
505 * indicate the various locking conditions that should be held at that
506 * point. The check should return true if the conditions are satisfied.
507 * An implicit check for being in an RCU read-side critical section
508 * (rcu_read_lock()) is included.
509 *
510 * For example:
511 *
512 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
513 *
514 * could be used to indicate to lockdep that foo->bar may only be dereferenced
515 * if either rcu_read_lock() is held, or that the lock required to replace
516 * the bar struct at foo->bar is held.
517 *
518 * Note that the list of conditions may also include indications of when a lock
519 * need not be held, for example during initialisation or destruction of the
520 * target struct:
521 *
522 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
523 * atomic_read(&foo->usage) == 0);
524 *
525 * Inserts memory barriers on architectures that require them
526 * (currently only the Alpha), prevents the compiler from refetching
527 * (and from merging fetches), and, more importantly, documents exactly
528 * which pointers are protected by RCU and checks that the pointer is
529 * annotated as __rcu.
530 */
531 #define rcu_dereference_check(p, c) \
532 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
533 (c) || rcu_read_lock_held(), __rcu)
534
535 /**
536 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
537 * @p: The pointer to read, prior to dereferencing
538 * @c: The conditions under which the dereference will take place
539 *
540 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
541 * please note that starting in v5.0 kernels, vanilla RCU grace periods
542 * wait for local_bh_disable() regions of code in addition to regions of
543 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
544 * that synchronize_rcu(), call_rcu, and friends all take not only
545 * rcu_read_lock() but also rcu_read_lock_bh() into account.
546 */
547 #define rcu_dereference_bh_check(p, c) \
548 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
549 (c) || rcu_read_lock_bh_held(), __rcu)
550
551 /**
552 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
553 * @p: The pointer to read, prior to dereferencing
554 * @c: The conditions under which the dereference will take place
555 *
556 * This is the RCU-sched counterpart to rcu_dereference_check().
557 * However, please note that starting in v5.0 kernels, vanilla RCU grace
558 * periods wait for preempt_disable() regions of code in addition to
559 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
560 * This means that synchronize_rcu(), call_rcu, and friends all take not
561 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
562 */
563 #define rcu_dereference_sched_check(p, c) \
564 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
565 (c) || rcu_read_lock_sched_held(), \
566 __rcu)
567
568 /*
569 * The tracing infrastructure traces RCU (we want that), but unfortunately
570 * some of the RCU checks causes tracing to lock up the system.
571 *
572 * The no-tracing version of rcu_dereference_raw() must not call
573 * rcu_read_lock_held().
574 */
575 #define rcu_dereference_raw_check(p) \
576 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
577
578 /**
579 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
580 * @p: The pointer to read, prior to dereferencing
581 * @c: The conditions under which the dereference will take place
582 *
583 * Return the value of the specified RCU-protected pointer, but omit
584 * the READ_ONCE(). This is useful in cases where update-side locks
585 * prevent the value of the pointer from changing. Please note that this
586 * primitive does *not* prevent the compiler from repeating this reference
587 * or combining it with other references, so it should not be used without
588 * protection of appropriate locks.
589 *
590 * This function is only for update-side use. Using this function
591 * when protected only by rcu_read_lock() will result in infrequent
592 * but very ugly failures.
593 */
594 #define rcu_dereference_protected(p, c) \
595 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
596
597
598 /**
599 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
600 * @p: The pointer to read, prior to dereferencing
601 *
602 * This is a simple wrapper around rcu_dereference_check().
603 */
604 #define rcu_dereference(p) rcu_dereference_check(p, 0)
605
606 /**
607 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
608 * @p: The pointer to read, prior to dereferencing
609 *
610 * Makes rcu_dereference_check() do the dirty work.
611 */
612 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
613
614 /**
615 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
616 * @p: The pointer to read, prior to dereferencing
617 *
618 * Makes rcu_dereference_check() do the dirty work.
619 */
620 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
621
622 /**
623 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
624 * @p: The pointer to hand off
625 *
626 * This is simply an identity function, but it documents where a pointer
627 * is handed off from RCU to some other synchronization mechanism, for
628 * example, reference counting or locking. In C11, it would map to
629 * kill_dependency(). It could be used as follows::
630 *
631 * rcu_read_lock();
632 * p = rcu_dereference(gp);
633 * long_lived = is_long_lived(p);
634 * if (long_lived) {
635 * if (!atomic_inc_not_zero(p->refcnt))
636 * long_lived = false;
637 * else
638 * p = rcu_pointer_handoff(p);
639 * }
640 * rcu_read_unlock();
641 */
642 #define rcu_pointer_handoff(p) (p)
643
644 /**
645 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
646 *
647 * When synchronize_rcu() is invoked on one CPU while other CPUs
648 * are within RCU read-side critical sections, then the
649 * synchronize_rcu() is guaranteed to block until after all the other
650 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
651 * on one CPU while other CPUs are within RCU read-side critical
652 * sections, invocation of the corresponding RCU callback is deferred
653 * until after the all the other CPUs exit their critical sections.
654 *
655 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
656 * wait for regions of code with preemption disabled, including regions of
657 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
658 * define synchronize_sched(), only code enclosed within rcu_read_lock()
659 * and rcu_read_unlock() are guaranteed to be waited for.
660 *
661 * Note, however, that RCU callbacks are permitted to run concurrently
662 * with new RCU read-side critical sections. One way that this can happen
663 * is via the following sequence of events: (1) CPU 0 enters an RCU
664 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
665 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
666 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
667 * callback is invoked. This is legal, because the RCU read-side critical
668 * section that was running concurrently with the call_rcu() (and which
669 * therefore might be referencing something that the corresponding RCU
670 * callback would free up) has completed before the corresponding
671 * RCU callback is invoked.
672 *
673 * RCU read-side critical sections may be nested. Any deferred actions
674 * will be deferred until the outermost RCU read-side critical section
675 * completes.
676 *
677 * You can avoid reading and understanding the next paragraph by
678 * following this rule: don't put anything in an rcu_read_lock() RCU
679 * read-side critical section that would block in a !PREEMPTION kernel.
680 * But if you want the full story, read on!
681 *
682 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
683 * it is illegal to block while in an RCU read-side critical section.
684 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
685 * kernel builds, RCU read-side critical sections may be preempted,
686 * but explicit blocking is illegal. Finally, in preemptible RCU
687 * implementations in real-time (with -rt patchset) kernel builds, RCU
688 * read-side critical sections may be preempted and they may also block, but
689 * only when acquiring spinlocks that are subject to priority inheritance.
690 */
rcu_read_lock(void)691 static __always_inline void rcu_read_lock(void)
692 {
693 __rcu_read_lock();
694 __acquire(RCU);
695 rcu_lock_acquire(&rcu_lock_map);
696 RCU_LOCKDEP_WARN(!rcu_is_watching(),
697 "rcu_read_lock() used illegally while idle");
698 }
699
700 /*
701 * So where is rcu_write_lock()? It does not exist, as there is no
702 * way for writers to lock out RCU readers. This is a feature, not
703 * a bug -- this property is what provides RCU's performance benefits.
704 * Of course, writers must coordinate with each other. The normal
705 * spinlock primitives work well for this, but any other technique may be
706 * used as well. RCU does not care how the writers keep out of each
707 * others' way, as long as they do so.
708 */
709
710 /**
711 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
712 *
713 * In almost all situations, rcu_read_unlock() is immune from deadlock.
714 * In recent kernels that have consolidated synchronize_sched() and
715 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
716 * also extends to the scheduler's runqueue and priority-inheritance
717 * spinlocks, courtesy of the quiescent-state deferral that is carried
718 * out when rcu_read_unlock() is invoked with interrupts disabled.
719 *
720 * See rcu_read_lock() for more information.
721 */
rcu_read_unlock(void)722 static inline void rcu_read_unlock(void)
723 {
724 RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 "rcu_read_unlock() used illegally while idle");
726 __release(RCU);
727 __rcu_read_unlock();
728 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
729 }
730
731 /**
732 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
733 *
734 * This is equivalent to rcu_read_lock(), but also disables softirqs.
735 * Note that anything else that disables softirqs can also serve as an RCU
736 * read-side critical section. However, please note that this equivalence
737 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
738 * rcu_read_lock_bh() were unrelated.
739 *
740 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
741 * must occur in the same context, for example, it is illegal to invoke
742 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
743 * was invoked from some other task.
744 */
rcu_read_lock_bh(void)745 static inline void rcu_read_lock_bh(void)
746 {
747 local_bh_disable();
748 __acquire(RCU_BH);
749 rcu_lock_acquire(&rcu_bh_lock_map);
750 RCU_LOCKDEP_WARN(!rcu_is_watching(),
751 "rcu_read_lock_bh() used illegally while idle");
752 }
753
754 /**
755 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
756 *
757 * See rcu_read_lock_bh() for more information.
758 */
rcu_read_unlock_bh(void)759 static inline void rcu_read_unlock_bh(void)
760 {
761 RCU_LOCKDEP_WARN(!rcu_is_watching(),
762 "rcu_read_unlock_bh() used illegally while idle");
763 rcu_lock_release(&rcu_bh_lock_map);
764 __release(RCU_BH);
765 local_bh_enable();
766 }
767
768 /**
769 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
770 *
771 * This is equivalent to rcu_read_lock(), but also disables preemption.
772 * Read-side critical sections can also be introduced by anything else that
773 * disables preemption, including local_irq_disable() and friends. However,
774 * please note that the equivalence to rcu_read_lock() applies only to
775 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
776 * were unrelated.
777 *
778 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
779 * must occur in the same context, for example, it is illegal to invoke
780 * rcu_read_unlock_sched() from process context if the matching
781 * rcu_read_lock_sched() was invoked from an NMI handler.
782 */
rcu_read_lock_sched(void)783 static inline void rcu_read_lock_sched(void)
784 {
785 preempt_disable();
786 __acquire(RCU_SCHED);
787 rcu_lock_acquire(&rcu_sched_lock_map);
788 RCU_LOCKDEP_WARN(!rcu_is_watching(),
789 "rcu_read_lock_sched() used illegally while idle");
790 }
791
792 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)793 static inline notrace void rcu_read_lock_sched_notrace(void)
794 {
795 preempt_disable_notrace();
796 __acquire(RCU_SCHED);
797 }
798
799 /**
800 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
801 *
802 * See rcu_read_lock_sched() for more information.
803 */
rcu_read_unlock_sched(void)804 static inline void rcu_read_unlock_sched(void)
805 {
806 RCU_LOCKDEP_WARN(!rcu_is_watching(),
807 "rcu_read_unlock_sched() used illegally while idle");
808 rcu_lock_release(&rcu_sched_lock_map);
809 __release(RCU_SCHED);
810 preempt_enable();
811 }
812
813 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)814 static inline notrace void rcu_read_unlock_sched_notrace(void)
815 {
816 __release(RCU_SCHED);
817 preempt_enable_notrace();
818 }
819
820 /**
821 * RCU_INIT_POINTER() - initialize an RCU protected pointer
822 * @p: The pointer to be initialized.
823 * @v: The value to initialized the pointer to.
824 *
825 * Initialize an RCU-protected pointer in special cases where readers
826 * do not need ordering constraints on the CPU or the compiler. These
827 * special cases are:
828 *
829 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
830 * 2. The caller has taken whatever steps are required to prevent
831 * RCU readers from concurrently accessing this pointer *or*
832 * 3. The referenced data structure has already been exposed to
833 * readers either at compile time or via rcu_assign_pointer() *and*
834 *
835 * a. You have not made *any* reader-visible changes to
836 * this structure since then *or*
837 * b. It is OK for readers accessing this structure from its
838 * new location to see the old state of the structure. (For
839 * example, the changes were to statistical counters or to
840 * other state where exact synchronization is not required.)
841 *
842 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
843 * result in impossible-to-diagnose memory corruption. As in the structures
844 * will look OK in crash dumps, but any concurrent RCU readers might
845 * see pre-initialized values of the referenced data structure. So
846 * please be very careful how you use RCU_INIT_POINTER()!!!
847 *
848 * If you are creating an RCU-protected linked structure that is accessed
849 * by a single external-to-structure RCU-protected pointer, then you may
850 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
851 * pointers, but you must use rcu_assign_pointer() to initialize the
852 * external-to-structure pointer *after* you have completely initialized
853 * the reader-accessible portions of the linked structure.
854 *
855 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
856 * ordering guarantees for either the CPU or the compiler.
857 */
858 #define RCU_INIT_POINTER(p, v) \
859 do { \
860 rcu_check_sparse(p, __rcu); \
861 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
862 } while (0)
863
864 /**
865 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
866 * @p: The pointer to be initialized.
867 * @v: The value to initialized the pointer to.
868 *
869 * GCC-style initialization for an RCU-protected pointer in a structure field.
870 */
871 #define RCU_POINTER_INITIALIZER(p, v) \
872 .p = RCU_INITIALIZER(v)
873
874 /*
875 * Does the specified offset indicate that the corresponding rcu_head
876 * structure can be handled by kvfree_rcu()?
877 */
878 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
879
880 /**
881 * kfree_rcu() - kfree an object after a grace period.
882 * @ptr: pointer to kfree for both single- and double-argument invocations.
883 * @rhf: the name of the struct rcu_head within the type of @ptr,
884 * but only for double-argument invocations.
885 *
886 * Many rcu callbacks functions just call kfree() on the base structure.
887 * These functions are trivial, but their size adds up, and furthermore
888 * when they are used in a kernel module, that module must invoke the
889 * high-latency rcu_barrier() function at module-unload time.
890 *
891 * The kfree_rcu() function handles this issue. Rather than encoding a
892 * function address in the embedded rcu_head structure, kfree_rcu() instead
893 * encodes the offset of the rcu_head structure within the base structure.
894 * Because the functions are not allowed in the low-order 4096 bytes of
895 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
896 * If the offset is larger than 4095 bytes, a compile-time error will
897 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
898 * either fall back to use of call_rcu() or rearrange the structure to
899 * position the rcu_head structure into the first 4096 bytes.
900 *
901 * Note that the allowable offset might decrease in the future, for example,
902 * to allow something like kmem_cache_free_rcu().
903 *
904 * The BUILD_BUG_ON check must not involve any function calls, hence the
905 * checks are done in macros here.
906 */
907 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
908
909 /**
910 * kvfree_rcu() - kvfree an object after a grace period.
911 *
912 * This macro consists of one or two arguments and it is
913 * based on whether an object is head-less or not. If it
914 * has a head then a semantic stays the same as it used
915 * to be before:
916 *
917 * kvfree_rcu(ptr, rhf);
918 *
919 * where @ptr is a pointer to kvfree(), @rhf is the name
920 * of the rcu_head structure within the type of @ptr.
921 *
922 * When it comes to head-less variant, only one argument
923 * is passed and that is just a pointer which has to be
924 * freed after a grace period. Therefore the semantic is
925 *
926 * kvfree_rcu(ptr);
927 *
928 * where @ptr is the pointer to be freed by kvfree().
929 *
930 * Please note, head-less way of freeing is permitted to
931 * use from a context that has to follow might_sleep()
932 * annotation. Otherwise, please switch and embed the
933 * rcu_head structure within the type of @ptr.
934 */
935 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
936 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
937
938 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
939 #define kvfree_rcu_arg_2(ptr, rhf) \
940 do { \
941 typeof (ptr) ___p = (ptr); \
942 \
943 if (___p) { \
944 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
945 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
946 (offsetof(typeof(*(ptr)), rhf))); \
947 } \
948 } while (0)
949
950 #define kvfree_rcu_arg_1(ptr) \
951 do { \
952 typeof(ptr) ___p = (ptr); \
953 \
954 if (___p) \
955 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
956 } while (0)
957
958 /*
959 * Place this after a lock-acquisition primitive to guarantee that
960 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
961 * if the UNLOCK and LOCK are executed by the same CPU or if the
962 * UNLOCK and LOCK operate on the same lock variable.
963 */
964 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
965 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
966 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
967 #define smp_mb__after_unlock_lock() do { } while (0)
968 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
969
970
971 /* Has the specified rcu_head structure been handed to call_rcu()? */
972
973 /**
974 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
975 * @rhp: The rcu_head structure to initialize.
976 *
977 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
978 * given rcu_head structure has already been passed to call_rcu(), then
979 * you must also invoke this rcu_head_init() function on it just after
980 * allocating that structure. Calls to this function must not race with
981 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
982 */
rcu_head_init(struct rcu_head * rhp)983 static inline void rcu_head_init(struct rcu_head *rhp)
984 {
985 rhp->func = (rcu_callback_t)~0L;
986 }
987
988 /**
989 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
990 * @rhp: The rcu_head structure to test.
991 * @f: The function passed to call_rcu() along with @rhp.
992 *
993 * Returns @true if the @rhp has been passed to call_rcu() with @func,
994 * and @false otherwise. Emits a warning in any other case, including
995 * the case where @rhp has already been invoked after a grace period.
996 * Calls to this function must not race with callback invocation. One way
997 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
998 * in an RCU read-side critical section that includes a read-side fetch
999 * of the pointer to the structure containing @rhp.
1000 */
1001 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1002 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1003 {
1004 rcu_callback_t func = READ_ONCE(rhp->func);
1005
1006 if (func == f)
1007 return true;
1008 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1009 return false;
1010 }
1011
1012 /* kernel/ksysfs.c definitions */
1013 extern int rcu_expedited;
1014 extern int rcu_normal;
1015
1016 #endif /* __LINUX_RCUPDATE_H */
1017