1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96 ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99 * - enable syscall per default because its emulated by KVM
100 * - enable LME and LMA per default on 64 bit KVM
101 */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func) \
133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
134 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32 __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64 __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
173 * adaptive tuning starting from default advancement of 1000ns. '0' disables
174 * advancement entirely. Any other value is used as-is and disables adaptive
175 * tuning, i.e. allows privileged userspace to set an exact advancement time.
176 */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202 * Restoring the host value for MSRs that are only consumed when running in
203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204 * returns to userspace, i.e. the kernel can run with the guest's value.
205 */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209 struct user_return_notifier urn;
210 bool registered;
211 struct kvm_user_return_msr_values {
212 u64 host;
213 u64 curr;
214 } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 KVM_GENERIC_VM_STATS(),
243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 STATS_DESC_COUNTER(VM, mmu_pte_write),
245 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 STATS_DESC_COUNTER(VM, mmu_flooded),
247 STATS_DESC_COUNTER(VM, mmu_recycled),
248 STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 STATS_DESC_ICOUNTER(VM, pages_4k),
251 STATS_DESC_ICOUNTER(VM, pages_2m),
252 STATS_DESC_ICOUNTER(VM, pages_1g),
253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 .name_size = KVM_STATS_NAME_SIZE,
260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 .id_offset = sizeof(struct kvm_stats_header),
262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 KVM_GENERIC_VCPU_STATS(),
269 STATS_DESC_COUNTER(VCPU, pf_taken),
270 STATS_DESC_COUNTER(VCPU, pf_fixed),
271 STATS_DESC_COUNTER(VCPU, pf_emulate),
272 STATS_DESC_COUNTER(VCPU, pf_spurious),
273 STATS_DESC_COUNTER(VCPU, pf_fast),
274 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275 STATS_DESC_COUNTER(VCPU, pf_guest),
276 STATS_DESC_COUNTER(VCPU, tlb_flush),
277 STATS_DESC_COUNTER(VCPU, invlpg),
278 STATS_DESC_COUNTER(VCPU, exits),
279 STATS_DESC_COUNTER(VCPU, io_exits),
280 STATS_DESC_COUNTER(VCPU, mmio_exits),
281 STATS_DESC_COUNTER(VCPU, signal_exits),
282 STATS_DESC_COUNTER(VCPU, irq_window_exits),
283 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284 STATS_DESC_COUNTER(VCPU, l1d_flush),
285 STATS_DESC_COUNTER(VCPU, halt_exits),
286 STATS_DESC_COUNTER(VCPU, request_irq_exits),
287 STATS_DESC_COUNTER(VCPU, irq_exits),
288 STATS_DESC_COUNTER(VCPU, host_state_reload),
289 STATS_DESC_COUNTER(VCPU, fpu_reload),
290 STATS_DESC_COUNTER(VCPU, insn_emulation),
291 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292 STATS_DESC_COUNTER(VCPU, hypercalls),
293 STATS_DESC_COUNTER(VCPU, irq_injections),
294 STATS_DESC_COUNTER(VCPU, nmi_injections),
295 STATS_DESC_COUNTER(VCPU, req_event),
296 STATS_DESC_COUNTER(VCPU, nested_run),
297 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299 STATS_DESC_COUNTER(VCPU, preemption_reported),
300 STATS_DESC_COUNTER(VCPU, preemption_other),
301 STATS_DESC_IBOOLEAN(VCPU, guest_mode)
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316
317 static struct kmem_cache *x86_emulator_cache;
318
319 /*
320 * When called, it means the previous get/set msr reached an invalid msr.
321 * Return true if we want to ignore/silent this failed msr access.
322 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325 const char *op = write ? "wrmsr" : "rdmsr";
326
327 if (ignore_msrs) {
328 if (report_ignored_msrs)
329 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330 op, msr, data);
331 /* Mask the error */
332 return true;
333 } else {
334 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335 op, msr, data);
336 return false;
337 }
338 }
339
kvm_alloc_emulator_cache(void)340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343 unsigned int size = sizeof(struct x86_emulate_ctxt);
344
345 return kmem_cache_create_usercopy("x86_emulator", size,
346 __alignof__(struct x86_emulate_ctxt),
347 SLAB_ACCOUNT, useroffset,
348 size - useroffset, NULL);
349 }
350
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355 int i;
356 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357 vcpu->arch.apf.gfns[i] = ~0;
358 }
359
kvm_on_user_return(struct user_return_notifier * urn)360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362 unsigned slot;
363 struct kvm_user_return_msrs *msrs
364 = container_of(urn, struct kvm_user_return_msrs, urn);
365 struct kvm_user_return_msr_values *values;
366 unsigned long flags;
367
368 /*
369 * Disabling irqs at this point since the following code could be
370 * interrupted and executed through kvm_arch_hardware_disable()
371 */
372 local_irq_save(flags);
373 if (msrs->registered) {
374 msrs->registered = false;
375 user_return_notifier_unregister(urn);
376 }
377 local_irq_restore(flags);
378 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379 values = &msrs->values[slot];
380 if (values->host != values->curr) {
381 wrmsrl(kvm_uret_msrs_list[slot], values->host);
382 values->curr = values->host;
383 }
384 }
385 }
386
kvm_probe_user_return_msr(u32 msr)387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389 u64 val;
390 int ret;
391
392 preempt_disable();
393 ret = rdmsrl_safe(msr, &val);
394 if (ret)
395 goto out;
396 ret = wrmsrl_safe(msr, val);
397 out:
398 preempt_enable();
399 return ret;
400 }
401
kvm_add_user_return_msr(u32 msr)402 int kvm_add_user_return_msr(u32 msr)
403 {
404 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405
406 if (kvm_probe_user_return_msr(msr))
407 return -1;
408
409 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410 return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413
kvm_find_user_return_msr(u32 msr)414 int kvm_find_user_return_msr(u32 msr)
415 {
416 int i;
417
418 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419 if (kvm_uret_msrs_list[i] == msr)
420 return i;
421 }
422 return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425
kvm_user_return_msr_cpu_online(void)426 static void kvm_user_return_msr_cpu_online(void)
427 {
428 unsigned int cpu = smp_processor_id();
429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 u64 value;
431 int i;
432
433 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435 msrs->values[i].host = value;
436 msrs->values[i].curr = value;
437 }
438 }
439
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442 unsigned int cpu = smp_processor_id();
443 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 int err;
445
446 value = (value & mask) | (msrs->values[slot].host & ~mask);
447 if (value == msrs->values[slot].curr)
448 return 0;
449 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450 if (err)
451 return 1;
452
453 msrs->values[slot].curr = value;
454 if (!msrs->registered) {
455 msrs->urn.on_user_return = kvm_on_user_return;
456 user_return_notifier_register(&msrs->urn);
457 msrs->registered = true;
458 }
459 return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462
drop_user_return_notifiers(void)463 static void drop_user_return_notifiers(void)
464 {
465 unsigned int cpu = smp_processor_id();
466 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467
468 if (msrs->registered)
469 kvm_on_user_return(&msrs->urn);
470 }
471
kvm_get_apic_base(struct kvm_vcpu * vcpu)472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474 return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477
kvm_get_apic_mode(struct kvm_vcpu * vcpu)478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480 return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490
491 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492 return 1;
493 if (!msr_info->host_initiated) {
494 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495 return 1;
496 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 return 1;
498 }
499
500 kvm_lapic_set_base(vcpu, msr_info->data);
501 kvm_recalculate_apic_map(vcpu->kvm);
502 return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
kvm_spurious_fault(void)513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
exception_class(int vector)524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545
exception_type(int vector)546 static int exception_type(int vector)
547 {
548 unsigned int mask;
549
550 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551 return EXCPT_INTERRUPT;
552
553 mask = 1 << vector;
554
555 /* #DB is trap, as instruction watchpoints are handled elsewhere */
556 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557 return EXCPT_TRAP;
558
559 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560 return EXCPT_ABORT;
561
562 /* Reserved exceptions will result in fault */
563 return EXCPT_FAULT;
564 }
565
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568 unsigned nr = vcpu->arch.exception.nr;
569 bool has_payload = vcpu->arch.exception.has_payload;
570 unsigned long payload = vcpu->arch.exception.payload;
571
572 if (!has_payload)
573 return;
574
575 switch (nr) {
576 case DB_VECTOR:
577 /*
578 * "Certain debug exceptions may clear bit 0-3. The
579 * remaining contents of the DR6 register are never
580 * cleared by the processor".
581 */
582 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 /*
584 * In order to reflect the #DB exception payload in guest
585 * dr6, three components need to be considered: active low
586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 * DR6_BS and DR6_BT)
588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 * In the target guest dr6:
590 * FIXED_1 bits should always be set.
591 * Active low bits should be cleared if 1-setting in payload.
592 * Active high bits should be set if 1-setting in payload.
593 *
594 * Note, the payload is compatible with the pending debug
595 * exceptions/exit qualification under VMX, that active_low bits
596 * are active high in payload.
597 * So they need to be flipped for DR6.
598 */
599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 vcpu->arch.dr6 |= payload;
601 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602
603 /*
604 * The #DB payload is defined as compatible with the 'pending
605 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 * defined in the 'pending debug exceptions' field (enabled
607 * breakpoint), it is reserved and must be zero in DR6.
608 */
609 vcpu->arch.dr6 &= ~BIT(12);
610 break;
611 case PF_VECTOR:
612 vcpu->arch.cr2 = payload;
613 break;
614 }
615
616 vcpu->arch.exception.has_payload = false;
617 vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 unsigned nr, bool has_error, u32 error_code,
623 bool has_payload, unsigned long payload, bool reinject)
624 {
625 u32 prev_nr;
626 int class1, class2;
627
628 kvm_make_request(KVM_REQ_EVENT, vcpu);
629
630 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 queue:
632 if (reinject) {
633 /*
634 * On vmentry, vcpu->arch.exception.pending is only
635 * true if an event injection was blocked by
636 * nested_run_pending. In that case, however,
637 * vcpu_enter_guest requests an immediate exit,
638 * and the guest shouldn't proceed far enough to
639 * need reinjection.
640 */
641 WARN_ON_ONCE(vcpu->arch.exception.pending);
642 vcpu->arch.exception.injected = true;
643 if (WARN_ON_ONCE(has_payload)) {
644 /*
645 * A reinjected event has already
646 * delivered its payload.
647 */
648 has_payload = false;
649 payload = 0;
650 }
651 } else {
652 vcpu->arch.exception.pending = true;
653 vcpu->arch.exception.injected = false;
654 }
655 vcpu->arch.exception.has_error_code = has_error;
656 vcpu->arch.exception.nr = nr;
657 vcpu->arch.exception.error_code = error_code;
658 vcpu->arch.exception.has_payload = has_payload;
659 vcpu->arch.exception.payload = payload;
660 if (!is_guest_mode(vcpu))
661 kvm_deliver_exception_payload(vcpu);
662 return;
663 }
664
665 /* to check exception */
666 prev_nr = vcpu->arch.exception.nr;
667 if (prev_nr == DF_VECTOR) {
668 /* triple fault -> shutdown */
669 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 return;
671 }
672 class1 = exception_class(prev_nr);
673 class2 = exception_class(nr);
674 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 /*
677 * Generate double fault per SDM Table 5-5. Set
678 * exception.pending = true so that the double fault
679 * can trigger a nested vmexit.
680 */
681 vcpu->arch.exception.pending = true;
682 vcpu->arch.exception.injected = false;
683 vcpu->arch.exception.has_error_code = true;
684 vcpu->arch.exception.nr = DF_VECTOR;
685 vcpu->arch.exception.error_code = 0;
686 vcpu->arch.exception.has_payload = false;
687 vcpu->arch.exception.payload = 0;
688 } else
689 /* replace previous exception with a new one in a hope
690 that instruction re-execution will regenerate lost
691 exception */
692 goto queue;
693 }
694
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 unsigned long payload)
709 {
710 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 u32 error_code, unsigned long payload)
716 {
717 kvm_multiple_exception(vcpu, nr, true, error_code,
718 true, payload, false);
719 }
720
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 if (err)
724 kvm_inject_gp(vcpu, 0);
725 else
726 return kvm_skip_emulated_instruction(vcpu);
727
728 return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734 if (err) {
735 kvm_inject_gp(vcpu, 0);
736 return 1;
737 }
738
739 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740 EMULTYPE_COMPLETE_USER_EXIT);
741 }
742
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745 ++vcpu->stat.pf_guest;
746 vcpu->arch.exception.nested_apf =
747 is_guest_mode(vcpu) && fault->async_page_fault;
748 if (vcpu->arch.exception.nested_apf) {
749 vcpu->arch.apf.nested_apf_token = fault->address;
750 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751 } else {
752 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753 fault->address);
754 }
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760 struct x86_exception *fault)
761 {
762 struct kvm_mmu *fault_mmu;
763 WARN_ON_ONCE(fault->vector != PF_VECTOR);
764
765 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766 vcpu->arch.walk_mmu;
767
768 /*
769 * Invalidate the TLB entry for the faulting address, if it exists,
770 * else the access will fault indefinitely (and to emulate hardware).
771 */
772 if ((fault->error_code & PFERR_PRESENT_MASK) &&
773 !(fault->error_code & PFERR_RSVD_MASK))
774 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775 fault_mmu->root.hpa);
776
777 /*
778 * A workaround for KVM's bad exception handling. If KVM injected an
779 * exception into L2, and L2 encountered a #PF while vectoring the
780 * injected exception, manually check to see if L1 wants to intercept
781 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782 * In all other cases, defer the check to nested_ops->check_events(),
783 * which will correctly handle priority (this does not). Note, other
784 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786 * shadow paging.
787 *
788 * TODO: Rewrite exception handling to track injected and pending
789 * (VM-Exit) exceptions separately.
790 */
791 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793 return true;
794
795 fault_mmu->inject_page_fault(vcpu, fault);
796 return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799
kvm_inject_nmi(struct kvm_vcpu * vcpu)800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802 atomic_inc(&vcpu->arch.nmi_queued);
803 kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818
819 /*
820 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
821 * a #GP and return false.
822 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826 return true;
827 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828 return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835 return true;
836
837 kvm_queue_exception(vcpu, UD_VECTOR);
838 return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846
847 /*
848 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
849 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854 gpa_t real_gpa;
855 int i;
856 int ret;
857 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858
859 /*
860 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861 * to an L1 GPA.
862 */
863 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865 if (real_gpa == UNMAPPED_GVA)
866 return 0;
867
868 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870 cr3 & GENMASK(11, 5), sizeof(pdpte));
871 if (ret < 0)
872 return 0;
873
874 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875 if ((pdpte[i] & PT_PRESENT_MASK) &&
876 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877 return 0;
878 }
879 }
880
881 /*
882 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883 * Shadow page roots need to be reconstructed instead.
884 */
885 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887
888 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891 vcpu->arch.pdptrs_from_userspace = false;
892
893 return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900 kvm_clear_async_pf_completion_queue(vcpu);
901 kvm_async_pf_hash_reset(vcpu);
902
903 /*
904 * Clearing CR0.PG is defined to flush the TLB from the guest's
905 * perspective.
906 */
907 if (!(cr0 & X86_CR0_PG))
908 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909 }
910
911 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912 kvm_mmu_reset_context(vcpu);
913
914 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923 unsigned long old_cr0 = kvm_read_cr0(vcpu);
924
925 cr0 |= X86_CR0_ET;
926
927 #ifdef CONFIG_X86_64
928 if (cr0 & 0xffffffff00000000UL)
929 return 1;
930 #endif
931
932 cr0 &= ~CR0_RESERVED_BITS;
933
934 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935 return 1;
936
937 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938 return 1;
939
940 #ifdef CONFIG_X86_64
941 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942 (cr0 & X86_CR0_PG)) {
943 int cs_db, cs_l;
944
945 if (!is_pae(vcpu))
946 return 1;
947 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948 if (cs_l)
949 return 1;
950 }
951 #endif
952 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955 return 1;
956
957 if (!(cr0 & X86_CR0_PG) &&
958 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959 return 1;
960
961 static_call(kvm_x86_set_cr0)(vcpu, cr0);
962
963 kvm_post_set_cr0(vcpu, old_cr0, cr0);
964
965 return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977 if (vcpu->arch.guest_state_protected)
978 return;
979
980 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981
982 if (vcpu->arch.xcr0 != host_xcr0)
983 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984
985 if (vcpu->arch.xsaves_enabled &&
986 vcpu->arch.ia32_xss != host_xss)
987 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988 }
989
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991 if (static_cpu_has(X86_FEATURE_PKU) &&
992 vcpu->arch.pkru != vcpu->arch.host_pkru &&
993 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995 write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002 if (vcpu->arch.guest_state_protected)
1003 return;
1004
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006 if (static_cpu_has(X86_FEATURE_PKU) &&
1007 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009 vcpu->arch.pkru = rdpkru();
1010 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011 write_pkru(vcpu->arch.host_pkru);
1012 }
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014
1015 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016
1017 if (vcpu->arch.xcr0 != host_xcr0)
1018 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019
1020 if (vcpu->arch.xsaves_enabled &&
1021 vcpu->arch.ia32_xss != host_xss)
1022 wrmsrl(MSR_IA32_XSS, host_xss);
1023 }
1024
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027
kvm_guest_supported_xcr0(struct kvm_vcpu * vcpu)1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030 return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032
1033 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042 u64 xcr0 = xcr;
1043 u64 old_xcr0 = vcpu->arch.xcr0;
1044 u64 valid_bits;
1045
1046 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1047 if (index != XCR_XFEATURE_ENABLED_MASK)
1048 return 1;
1049 if (!(xcr0 & XFEATURE_MASK_FP))
1050 return 1;
1051 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052 return 1;
1053
1054 /*
1055 * Do not allow the guest to set bits that we do not support
1056 * saving. However, xcr0 bit 0 is always set, even if the
1057 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058 */
1059 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060 if (xcr0 & ~valid_bits)
1061 return 1;
1062
1063 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065 return 1;
1066
1067 if (xcr0 & XFEATURE_MASK_AVX512) {
1068 if (!(xcr0 & XFEATURE_MASK_YMM))
1069 return 1;
1070 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071 return 1;
1072 }
1073
1074 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076 return 1;
1077
1078 vcpu->arch.xcr0 = xcr0;
1079
1080 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081 kvm_update_cpuid_runtime(vcpu);
1082 return 0;
1083 }
1084
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 kvm_inject_gp(vcpu, 0);
1090 return 1;
1091 }
1092
1093 return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 if (cr4 & cr4_reserved_bits)
1100 return false;
1101
1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 return false;
1104
1105 return true;
1106 }
1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1108
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111 return __kvm_is_valid_cr4(vcpu, cr4) &&
1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1113 }
1114
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1116 {
1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1118 kvm_mmu_reset_context(vcpu);
1119
1120 /*
1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1122 * according to the SDM; however, stale prev_roots could be reused
1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1126 * so fall through.
1127 */
1128 if (!tdp_enabled &&
1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1130 kvm_mmu_unload(vcpu);
1131
1132 /*
1133 * The TLB has to be flushed for all PCIDs if any of the following
1134 * (architecturally required) changes happen:
1135 * - CR4.PCIDE is changed from 1 to 0
1136 * - CR4.PGE is toggled
1137 *
1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1139 */
1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143
1144 /*
1145 * The TLB has to be flushed for the current PCID if any of the
1146 * following (architecturally required) changes happen:
1147 * - CR4.SMEP is changed from 0 to 1
1148 * - CR4.PAE is toggled
1149 */
1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1153
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1156
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1158 {
1159 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1160
1161 if (!kvm_is_valid_cr4(vcpu, cr4))
1162 return 1;
1163
1164 if (is_long_mode(vcpu)) {
1165 if (!(cr4 & X86_CR4_PAE))
1166 return 1;
1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1168 return 1;
1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172 return 1;
1173
1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1176 return 1;
1177
1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1180 return 1;
1181 }
1182
1183 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1184
1185 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1186
1187 return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1190
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1192 {
1193 struct kvm_mmu *mmu = vcpu->arch.mmu;
1194 unsigned long roots_to_free = 0;
1195 int i;
1196
1197 /*
1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1200 * also via the emulator. KVM's TDP page tables are not in the scope of
1201 * the invalidation, but the guest's TLB entries need to be flushed as
1202 * the CPU may have cached entries in its TLB for the target PCID.
1203 */
1204 if (unlikely(tdp_enabled)) {
1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1206 return;
1207 }
1208
1209 /*
1210 * If neither the current CR3 nor any of the prev_roots use the given
1211 * PCID, then nothing needs to be done here because a resync will
1212 * happen anyway before switching to any other CR3.
1213 */
1214 if (kvm_get_active_pcid(vcpu) == pcid) {
1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1217 }
1218
1219 /*
1220 * If PCID is disabled, there is no need to free prev_roots even if the
1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1222 * with PCIDE=0.
1223 */
1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1225 return;
1226
1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1230
1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1232 }
1233
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1235 {
1236 bool skip_tlb_flush = false;
1237 unsigned long pcid = 0;
1238 #ifdef CONFIG_X86_64
1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1240
1241 if (pcid_enabled) {
1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1243 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1244 pcid = cr3 & X86_CR3_PCID_MASK;
1245 }
1246 #endif
1247
1248 /* PDPTRs are always reloaded for PAE paging. */
1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1250 goto handle_tlb_flush;
1251
1252 /*
1253 * Do not condition the GPA check on long mode, this helper is used to
1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1255 * the current vCPU mode is accurate.
1256 */
1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1258 return 1;
1259
1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1261 return 1;
1262
1263 if (cr3 != kvm_read_cr3(vcpu))
1264 kvm_mmu_new_pgd(vcpu, cr3);
1265
1266 vcpu->arch.cr3 = cr3;
1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1269
1270 handle_tlb_flush:
1271 /*
1272 * A load of CR3 that flushes the TLB flushes only the current PCID,
1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1274 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1275 * and it's impossible to use a non-zero PCID when PCID is disabled,
1276 * i.e. only PCID=0 can be relevant.
1277 */
1278 if (!skip_tlb_flush)
1279 kvm_invalidate_pcid(vcpu, pcid);
1280
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1284
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1286 {
1287 if (cr8 & CR8_RESERVED_BITS)
1288 return 1;
1289 if (lapic_in_kernel(vcpu))
1290 kvm_lapic_set_tpr(vcpu, cr8);
1291 else
1292 vcpu->arch.cr8 = cr8;
1293 return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1296
kvm_get_cr8(struct kvm_vcpu * vcpu)1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1298 {
1299 if (lapic_in_kernel(vcpu))
1300 return kvm_lapic_get_cr8(vcpu);
1301 else
1302 return vcpu->arch.cr8;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1305
kvm_update_dr0123(struct kvm_vcpu * vcpu)1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1307 {
1308 int i;
1309
1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1311 for (i = 0; i < KVM_NR_DB_REGS; i++)
1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1313 }
1314 }
1315
kvm_update_dr7(struct kvm_vcpu * vcpu)1316 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1317 {
1318 unsigned long dr7;
1319
1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321 dr7 = vcpu->arch.guest_debug_dr7;
1322 else
1323 dr7 = vcpu->arch.dr7;
1324 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1326 if (dr7 & DR7_BP_EN_MASK)
1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1330
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1332 {
1333 u64 fixed = DR6_FIXED_1;
1334
1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1336 fixed |= DR6_RTM;
1337
1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1339 fixed |= DR6_BUS_LOCK;
1340 return fixed;
1341 }
1342
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1344 {
1345 size_t size = ARRAY_SIZE(vcpu->arch.db);
1346
1347 switch (dr) {
1348 case 0 ... 3:
1349 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1351 vcpu->arch.eff_db[dr] = val;
1352 break;
1353 case 4:
1354 case 6:
1355 if (!kvm_dr6_valid(val))
1356 return 1; /* #GP */
1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1358 break;
1359 case 5:
1360 default: /* 7 */
1361 if (!kvm_dr7_valid(val))
1362 return 1; /* #GP */
1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1364 kvm_update_dr7(vcpu);
1365 break;
1366 }
1367
1368 return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_set_dr);
1371
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1373 {
1374 size_t size = ARRAY_SIZE(vcpu->arch.db);
1375
1376 switch (dr) {
1377 case 0 ... 3:
1378 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1379 break;
1380 case 4:
1381 case 6:
1382 *val = vcpu->arch.dr6;
1383 break;
1384 case 5:
1385 default: /* 7 */
1386 *val = vcpu->arch.dr7;
1387 break;
1388 }
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_get_dr);
1391
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1393 {
1394 u32 ecx = kvm_rcx_read(vcpu);
1395 u64 data;
1396
1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1398 kvm_inject_gp(vcpu, 0);
1399 return 1;
1400 }
1401
1402 kvm_rax_write(vcpu, (u32)data);
1403 kvm_rdx_write(vcpu, data >> 32);
1404 return kvm_skip_emulated_instruction(vcpu);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1407
1408 /*
1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1411 *
1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1413 * extract the supported MSRs from the related const lists.
1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1415 * capabilities of the host cpu. This capabilities test skips MSRs that are
1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1417 * may depend on host virtualization features rather than host cpu features.
1418 */
1419
1420 static const u32 msrs_to_save_all[] = {
1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1422 MSR_STAR,
1423 #ifdef CONFIG_X86_64
1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1425 #endif
1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1428 MSR_IA32_SPEC_CTRL,
1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1435 MSR_IA32_UMWAIT_CONTROL,
1436
1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1441 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1442 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1443 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1444 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1445 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1446 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1447 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1448 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1449 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1455 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1456 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1457 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1458 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1459
1460 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1461 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1462 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1463 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1464 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1465 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1470 static unsigned num_msrs_to_save;
1471
1472 static const u32 emulated_msrs_all[] = {
1473 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1474 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1475 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1476 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1477 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1478 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1479 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1480 HV_X64_MSR_RESET,
1481 HV_X64_MSR_VP_INDEX,
1482 HV_X64_MSR_VP_RUNTIME,
1483 HV_X64_MSR_SCONTROL,
1484 HV_X64_MSR_STIMER0_CONFIG,
1485 HV_X64_MSR_VP_ASSIST_PAGE,
1486 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1487 HV_X64_MSR_TSC_EMULATION_STATUS,
1488 HV_X64_MSR_SYNDBG_OPTIONS,
1489 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1490 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1491 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1492
1493 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1494 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1495
1496 MSR_IA32_TSC_ADJUST,
1497 MSR_IA32_TSC_DEADLINE,
1498 MSR_IA32_ARCH_CAPABILITIES,
1499 MSR_IA32_PERF_CAPABILITIES,
1500 MSR_IA32_MISC_ENABLE,
1501 MSR_IA32_MCG_STATUS,
1502 MSR_IA32_MCG_CTL,
1503 MSR_IA32_MCG_EXT_CTL,
1504 MSR_IA32_SMBASE,
1505 MSR_SMI_COUNT,
1506 MSR_PLATFORM_INFO,
1507 MSR_MISC_FEATURES_ENABLES,
1508 MSR_AMD64_VIRT_SPEC_CTRL,
1509 MSR_AMD64_TSC_RATIO,
1510 MSR_IA32_POWER_CTL,
1511 MSR_IA32_UCODE_REV,
1512
1513 /*
1514 * The following list leaves out MSRs whose values are determined
1515 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1516 * We always support the "true" VMX control MSRs, even if the host
1517 * processor does not, so I am putting these registers here rather
1518 * than in msrs_to_save_all.
1519 */
1520 MSR_IA32_VMX_BASIC,
1521 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1522 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1523 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1524 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1525 MSR_IA32_VMX_MISC,
1526 MSR_IA32_VMX_CR0_FIXED0,
1527 MSR_IA32_VMX_CR4_FIXED0,
1528 MSR_IA32_VMX_VMCS_ENUM,
1529 MSR_IA32_VMX_PROCBASED_CTLS2,
1530 MSR_IA32_VMX_EPT_VPID_CAP,
1531 MSR_IA32_VMX_VMFUNC,
1532
1533 MSR_K7_HWCR,
1534 MSR_KVM_POLL_CONTROL,
1535 };
1536
1537 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1538 static unsigned num_emulated_msrs;
1539
1540 /*
1541 * List of msr numbers which are used to expose MSR-based features that
1542 * can be used by a hypervisor to validate requested CPU features.
1543 */
1544 static const u32 msr_based_features_all[] = {
1545 MSR_IA32_VMX_BASIC,
1546 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1547 MSR_IA32_VMX_PINBASED_CTLS,
1548 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1549 MSR_IA32_VMX_PROCBASED_CTLS,
1550 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1551 MSR_IA32_VMX_EXIT_CTLS,
1552 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1553 MSR_IA32_VMX_ENTRY_CTLS,
1554 MSR_IA32_VMX_MISC,
1555 MSR_IA32_VMX_CR0_FIXED0,
1556 MSR_IA32_VMX_CR0_FIXED1,
1557 MSR_IA32_VMX_CR4_FIXED0,
1558 MSR_IA32_VMX_CR4_FIXED1,
1559 MSR_IA32_VMX_VMCS_ENUM,
1560 MSR_IA32_VMX_PROCBASED_CTLS2,
1561 MSR_IA32_VMX_EPT_VPID_CAP,
1562 MSR_IA32_VMX_VMFUNC,
1563
1564 MSR_F10H_DECFG,
1565 MSR_IA32_UCODE_REV,
1566 MSR_IA32_ARCH_CAPABILITIES,
1567 MSR_IA32_PERF_CAPABILITIES,
1568 };
1569
1570 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1571 static unsigned int num_msr_based_features;
1572
1573 /*
1574 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1575 * does not yet virtualize. These include:
1576 * 10 - MISC_PACKAGE_CTRLS
1577 * 11 - ENERGY_FILTERING_CTL
1578 * 12 - DOITM
1579 * 18 - FB_CLEAR_CTRL
1580 * 21 - XAPIC_DISABLE_STATUS
1581 * 23 - OVERCLOCKING_STATUS
1582 */
1583
1584 #define KVM_SUPPORTED_ARCH_CAP \
1585 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1586 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1587 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1588 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1589 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1590
kvm_get_arch_capabilities(void)1591 static u64 kvm_get_arch_capabilities(void)
1592 {
1593 u64 data = 0;
1594
1595 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1596 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1597 data &= KVM_SUPPORTED_ARCH_CAP;
1598 }
1599
1600 /*
1601 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1602 * the nested hypervisor runs with NX huge pages. If it is not,
1603 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1604 * L1 guests, so it need not worry about its own (L2) guests.
1605 */
1606 data |= ARCH_CAP_PSCHANGE_MC_NO;
1607
1608 /*
1609 * If we're doing cache flushes (either "always" or "cond")
1610 * we will do one whenever the guest does a vmlaunch/vmresume.
1611 * If an outer hypervisor is doing the cache flush for us
1612 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1613 * capability to the guest too, and if EPT is disabled we're not
1614 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1615 * require a nested hypervisor to do a flush of its own.
1616 */
1617 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1618 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1619
1620 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1621 data |= ARCH_CAP_RDCL_NO;
1622 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1623 data |= ARCH_CAP_SSB_NO;
1624 if (!boot_cpu_has_bug(X86_BUG_MDS))
1625 data |= ARCH_CAP_MDS_NO;
1626
1627 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 /*
1629 * If RTM=0 because the kernel has disabled TSX, the host might
1630 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1631 * and therefore knows that there cannot be TAA) but keep
1632 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 * and we want to allow migrating those guests to tsx=off hosts.
1634 */
1635 data &= ~ARCH_CAP_TAA_NO;
1636 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 data |= ARCH_CAP_TAA_NO;
1638 } else {
1639 /*
1640 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 * host so the guest can choose between disabling TSX or
1642 * using VERW to clear CPU buffers.
1643 */
1644 }
1645
1646 return data;
1647 }
1648
kvm_get_msr_feature(struct kvm_msr_entry * msr)1649 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1650 {
1651 switch (msr->index) {
1652 case MSR_IA32_ARCH_CAPABILITIES:
1653 msr->data = kvm_get_arch_capabilities();
1654 break;
1655 case MSR_IA32_UCODE_REV:
1656 rdmsrl_safe(msr->index, &msr->data);
1657 break;
1658 default:
1659 return static_call(kvm_x86_get_msr_feature)(msr);
1660 }
1661 return 0;
1662 }
1663
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1664 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1665 {
1666 struct kvm_msr_entry msr;
1667 int r;
1668
1669 msr.index = index;
1670 r = kvm_get_msr_feature(&msr);
1671
1672 if (r == KVM_MSR_RET_INVALID) {
1673 /* Unconditionally clear the output for simplicity */
1674 *data = 0;
1675 if (kvm_msr_ignored_check(index, 0, false))
1676 r = 0;
1677 }
1678
1679 if (r)
1680 return r;
1681
1682 *data = msr.data;
1683
1684 return 0;
1685 }
1686
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1687 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1688 {
1689 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1690 return false;
1691
1692 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1693 return false;
1694
1695 if (efer & (EFER_LME | EFER_LMA) &&
1696 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1697 return false;
1698
1699 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1700 return false;
1701
1702 return true;
1703
1704 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1705 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1706 {
1707 if (efer & efer_reserved_bits)
1708 return false;
1709
1710 return __kvm_valid_efer(vcpu, efer);
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1713
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1714 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1715 {
1716 u64 old_efer = vcpu->arch.efer;
1717 u64 efer = msr_info->data;
1718 int r;
1719
1720 if (efer & efer_reserved_bits)
1721 return 1;
1722
1723 if (!msr_info->host_initiated) {
1724 if (!__kvm_valid_efer(vcpu, efer))
1725 return 1;
1726
1727 if (is_paging(vcpu) &&
1728 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1729 return 1;
1730 }
1731
1732 efer &= ~EFER_LMA;
1733 efer |= vcpu->arch.efer & EFER_LMA;
1734
1735 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1736 if (r) {
1737 WARN_ON(r > 0);
1738 return r;
1739 }
1740
1741 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1742 kvm_mmu_reset_context(vcpu);
1743
1744 return 0;
1745 }
1746
kvm_enable_efer_bits(u64 mask)1747 void kvm_enable_efer_bits(u64 mask)
1748 {
1749 efer_reserved_bits &= ~mask;
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1752
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1753 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1754 {
1755 struct kvm_x86_msr_filter *msr_filter;
1756 struct msr_bitmap_range *ranges;
1757 struct kvm *kvm = vcpu->kvm;
1758 bool allowed;
1759 int idx;
1760 u32 i;
1761
1762 /* x2APIC MSRs do not support filtering. */
1763 if (index >= 0x800 && index <= 0x8ff)
1764 return true;
1765
1766 idx = srcu_read_lock(&kvm->srcu);
1767
1768 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1769 if (!msr_filter) {
1770 allowed = true;
1771 goto out;
1772 }
1773
1774 allowed = msr_filter->default_allow;
1775 ranges = msr_filter->ranges;
1776
1777 for (i = 0; i < msr_filter->count; i++) {
1778 u32 start = ranges[i].base;
1779 u32 end = start + ranges[i].nmsrs;
1780 u32 flags = ranges[i].flags;
1781 unsigned long *bitmap = ranges[i].bitmap;
1782
1783 if ((index >= start) && (index < end) && (flags & type)) {
1784 allowed = !!test_bit(index - start, bitmap);
1785 break;
1786 }
1787 }
1788
1789 out:
1790 srcu_read_unlock(&kvm->srcu, idx);
1791
1792 return allowed;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1795
1796 /*
1797 * Write @data into the MSR specified by @index. Select MSR specific fault
1798 * checks are bypassed if @host_initiated is %true.
1799 * Returns 0 on success, non-0 otherwise.
1800 * Assumes vcpu_load() was already called.
1801 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1802 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1803 bool host_initiated)
1804 {
1805 struct msr_data msr;
1806
1807 switch (index) {
1808 case MSR_FS_BASE:
1809 case MSR_GS_BASE:
1810 case MSR_KERNEL_GS_BASE:
1811 case MSR_CSTAR:
1812 case MSR_LSTAR:
1813 if (is_noncanonical_address(data, vcpu))
1814 return 1;
1815 break;
1816 case MSR_IA32_SYSENTER_EIP:
1817 case MSR_IA32_SYSENTER_ESP:
1818 /*
1819 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1820 * non-canonical address is written on Intel but not on
1821 * AMD (which ignores the top 32-bits, because it does
1822 * not implement 64-bit SYSENTER).
1823 *
1824 * 64-bit code should hence be able to write a non-canonical
1825 * value on AMD. Making the address canonical ensures that
1826 * vmentry does not fail on Intel after writing a non-canonical
1827 * value, and that something deterministic happens if the guest
1828 * invokes 64-bit SYSENTER.
1829 */
1830 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1831 break;
1832 case MSR_TSC_AUX:
1833 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1834 return 1;
1835
1836 if (!host_initiated &&
1837 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1839 return 1;
1840
1841 /*
1842 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1843 * incomplete and conflicting architectural behavior. Current
1844 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1845 * reserved and always read as zeros. Enforce Intel's reserved
1846 * bits check if and only if the guest CPU is Intel, and clear
1847 * the bits in all other cases. This ensures cross-vendor
1848 * migration will provide consistent behavior for the guest.
1849 */
1850 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1851 return 1;
1852
1853 data = (u32)data;
1854 break;
1855 }
1856
1857 msr.data = data;
1858 msr.index = index;
1859 msr.host_initiated = host_initiated;
1860
1861 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1862 }
1863
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1864 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1865 u32 index, u64 data, bool host_initiated)
1866 {
1867 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1868
1869 if (ret == KVM_MSR_RET_INVALID)
1870 if (kvm_msr_ignored_check(index, data, true))
1871 ret = 0;
1872
1873 return ret;
1874 }
1875
1876 /*
1877 * Read the MSR specified by @index into @data. Select MSR specific fault
1878 * checks are bypassed if @host_initiated is %true.
1879 * Returns 0 on success, non-0 otherwise.
1880 * Assumes vcpu_load() was already called.
1881 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1882 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1883 bool host_initiated)
1884 {
1885 struct msr_data msr;
1886 int ret;
1887
1888 switch (index) {
1889 case MSR_TSC_AUX:
1890 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1891 return 1;
1892
1893 if (!host_initiated &&
1894 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1896 return 1;
1897 break;
1898 }
1899
1900 msr.index = index;
1901 msr.host_initiated = host_initiated;
1902
1903 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1904 if (!ret)
1905 *data = msr.data;
1906 return ret;
1907 }
1908
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1909 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1910 u32 index, u64 *data, bool host_initiated)
1911 {
1912 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1913
1914 if (ret == KVM_MSR_RET_INVALID) {
1915 /* Unconditionally clear *data for simplicity */
1916 *data = 0;
1917 if (kvm_msr_ignored_check(index, 0, false))
1918 ret = 0;
1919 }
1920
1921 return ret;
1922 }
1923
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1924 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1925 {
1926 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1927 return KVM_MSR_RET_FILTERED;
1928 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1929 }
1930
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1931 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1932 {
1933 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1934 return KVM_MSR_RET_FILTERED;
1935 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1936 }
1937
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1938 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1939 {
1940 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_get_msr);
1943
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1944 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1945 {
1946 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_set_msr);
1949
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1950 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1951 {
1952 if (!vcpu->run->msr.error) {
1953 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1954 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1955 }
1956 }
1957
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1958 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1959 {
1960 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1961 }
1962
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1963 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1964 {
1965 complete_userspace_rdmsr(vcpu);
1966 return complete_emulated_msr_access(vcpu);
1967 }
1968
complete_fast_msr_access(struct kvm_vcpu * vcpu)1969 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1970 {
1971 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1972 }
1973
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1974 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1975 {
1976 complete_userspace_rdmsr(vcpu);
1977 return complete_fast_msr_access(vcpu);
1978 }
1979
kvm_msr_reason(int r)1980 static u64 kvm_msr_reason(int r)
1981 {
1982 switch (r) {
1983 case KVM_MSR_RET_INVALID:
1984 return KVM_MSR_EXIT_REASON_UNKNOWN;
1985 case KVM_MSR_RET_FILTERED:
1986 return KVM_MSR_EXIT_REASON_FILTER;
1987 default:
1988 return KVM_MSR_EXIT_REASON_INVAL;
1989 }
1990 }
1991
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1992 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1993 u32 exit_reason, u64 data,
1994 int (*completion)(struct kvm_vcpu *vcpu),
1995 int r)
1996 {
1997 u64 msr_reason = kvm_msr_reason(r);
1998
1999 /* Check if the user wanted to know about this MSR fault */
2000 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2001 return 0;
2002
2003 vcpu->run->exit_reason = exit_reason;
2004 vcpu->run->msr.error = 0;
2005 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2006 vcpu->run->msr.reason = msr_reason;
2007 vcpu->run->msr.index = index;
2008 vcpu->run->msr.data = data;
2009 vcpu->arch.complete_userspace_io = completion;
2010
2011 return 1;
2012 }
2013
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2014 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2015 {
2016 u32 ecx = kvm_rcx_read(vcpu);
2017 u64 data;
2018 int r;
2019
2020 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2021
2022 if (!r) {
2023 trace_kvm_msr_read(ecx, data);
2024
2025 kvm_rax_write(vcpu, data & -1u);
2026 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2027 } else {
2028 /* MSR read failed? See if we should ask user space */
2029 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2030 complete_fast_rdmsr, r))
2031 return 0;
2032 trace_kvm_msr_read_ex(ecx);
2033 }
2034
2035 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2038
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2039 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2040 {
2041 u32 ecx = kvm_rcx_read(vcpu);
2042 u64 data = kvm_read_edx_eax(vcpu);
2043 int r;
2044
2045 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2046
2047 if (!r) {
2048 trace_kvm_msr_write(ecx, data);
2049 } else {
2050 /* MSR write failed? See if we should ask user space */
2051 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2052 complete_fast_msr_access, r))
2053 return 0;
2054 /* Signal all other negative errors to userspace */
2055 if (r < 0)
2056 return r;
2057 trace_kvm_msr_write_ex(ecx, data);
2058 }
2059
2060 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2063
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2064 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2065 {
2066 return kvm_skip_emulated_instruction(vcpu);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2069
kvm_emulate_invd(struct kvm_vcpu * vcpu)2070 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2071 {
2072 /* Treat an INVD instruction as a NOP and just skip it. */
2073 return kvm_emulate_as_nop(vcpu);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2076
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2077 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2078 {
2079 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2080 return kvm_emulate_as_nop(vcpu);
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2083
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2084 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2085 {
2086 kvm_queue_exception(vcpu, UD_VECTOR);
2087 return 1;
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2090
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2091 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2092 {
2093 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2094 return kvm_emulate_as_nop(vcpu);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2097
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2098 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2099 {
2100 xfer_to_guest_mode_prepare();
2101 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2102 xfer_to_guest_mode_work_pending();
2103 }
2104
2105 /*
2106 * The fast path for frequent and performance sensitive wrmsr emulation,
2107 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2108 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2109 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2110 * other cases which must be called after interrupts are enabled on the host.
2111 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2112 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2113 {
2114 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2115 return 1;
2116
2117 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2118 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2119 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2120 ((u32)(data >> 32) != X2APIC_BROADCAST))
2121 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2122
2123 return 1;
2124 }
2125
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2126 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2127 {
2128 if (!kvm_can_use_hv_timer(vcpu))
2129 return 1;
2130
2131 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2132 return 0;
2133 }
2134
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2135 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2136 {
2137 u32 msr = kvm_rcx_read(vcpu);
2138 u64 data;
2139 fastpath_t ret = EXIT_FASTPATH_NONE;
2140
2141 switch (msr) {
2142 case APIC_BASE_MSR + (APIC_ICR >> 4):
2143 data = kvm_read_edx_eax(vcpu);
2144 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2145 kvm_skip_emulated_instruction(vcpu);
2146 ret = EXIT_FASTPATH_EXIT_HANDLED;
2147 }
2148 break;
2149 case MSR_IA32_TSC_DEADLINE:
2150 data = kvm_read_edx_eax(vcpu);
2151 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2152 kvm_skip_emulated_instruction(vcpu);
2153 ret = EXIT_FASTPATH_REENTER_GUEST;
2154 }
2155 break;
2156 default:
2157 break;
2158 }
2159
2160 if (ret != EXIT_FASTPATH_NONE)
2161 trace_kvm_msr_write(msr, data);
2162
2163 return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2166
2167 /*
2168 * Adapt set_msr() to msr_io()'s calling convention
2169 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2170 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2171 {
2172 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2173 }
2174
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2175 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2176 {
2177 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2178 }
2179
2180 #ifdef CONFIG_X86_64
2181 struct pvclock_clock {
2182 int vclock_mode;
2183 u64 cycle_last;
2184 u64 mask;
2185 u32 mult;
2186 u32 shift;
2187 u64 base_cycles;
2188 u64 offset;
2189 };
2190
2191 struct pvclock_gtod_data {
2192 seqcount_t seq;
2193
2194 struct pvclock_clock clock; /* extract of a clocksource struct */
2195 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2196
2197 ktime_t offs_boot;
2198 u64 wall_time_sec;
2199 };
2200
2201 static struct pvclock_gtod_data pvclock_gtod_data;
2202
update_pvclock_gtod(struct timekeeper * tk)2203 static void update_pvclock_gtod(struct timekeeper *tk)
2204 {
2205 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2206
2207 write_seqcount_begin(&vdata->seq);
2208
2209 /* copy pvclock gtod data */
2210 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2211 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2212 vdata->clock.mask = tk->tkr_mono.mask;
2213 vdata->clock.mult = tk->tkr_mono.mult;
2214 vdata->clock.shift = tk->tkr_mono.shift;
2215 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2216 vdata->clock.offset = tk->tkr_mono.base;
2217
2218 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2219 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2220 vdata->raw_clock.mask = tk->tkr_raw.mask;
2221 vdata->raw_clock.mult = tk->tkr_raw.mult;
2222 vdata->raw_clock.shift = tk->tkr_raw.shift;
2223 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2224 vdata->raw_clock.offset = tk->tkr_raw.base;
2225
2226 vdata->wall_time_sec = tk->xtime_sec;
2227
2228 vdata->offs_boot = tk->offs_boot;
2229
2230 write_seqcount_end(&vdata->seq);
2231 }
2232
get_kvmclock_base_ns(void)2233 static s64 get_kvmclock_base_ns(void)
2234 {
2235 /* Count up from boot time, but with the frequency of the raw clock. */
2236 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2237 }
2238 #else
get_kvmclock_base_ns(void)2239 static s64 get_kvmclock_base_ns(void)
2240 {
2241 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2242 return ktime_get_boottime_ns();
2243 }
2244 #endif
2245
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2246 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2247 {
2248 int version;
2249 int r;
2250 struct pvclock_wall_clock wc;
2251 u32 wc_sec_hi;
2252 u64 wall_nsec;
2253
2254 if (!wall_clock)
2255 return;
2256
2257 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2258 if (r)
2259 return;
2260
2261 if (version & 1)
2262 ++version; /* first time write, random junk */
2263
2264 ++version;
2265
2266 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2267 return;
2268
2269 /*
2270 * The guest calculates current wall clock time by adding
2271 * system time (updated by kvm_guest_time_update below) to the
2272 * wall clock specified here. We do the reverse here.
2273 */
2274 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2275
2276 wc.nsec = do_div(wall_nsec, 1000000000);
2277 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2278 wc.version = version;
2279
2280 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2281
2282 if (sec_hi_ofs) {
2283 wc_sec_hi = wall_nsec >> 32;
2284 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2285 &wc_sec_hi, sizeof(wc_sec_hi));
2286 }
2287
2288 version++;
2289 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2290 }
2291
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2292 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2293 bool old_msr, bool host_initiated)
2294 {
2295 struct kvm_arch *ka = &vcpu->kvm->arch;
2296
2297 if (vcpu->vcpu_id == 0 && !host_initiated) {
2298 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2299 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2300
2301 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2302 }
2303
2304 vcpu->arch.time = system_time;
2305 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2306
2307 /* we verify if the enable bit is set... */
2308 if (system_time & 1) {
2309 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2310 KVM_HOST_USES_PFN, system_time & ~1ULL,
2311 sizeof(struct pvclock_vcpu_time_info));
2312 } else {
2313 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2314 }
2315
2316 return;
2317 }
2318
div_frac(uint32_t dividend,uint32_t divisor)2319 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2320 {
2321 do_shl32_div32(dividend, divisor);
2322 return dividend;
2323 }
2324
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2325 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2326 s8 *pshift, u32 *pmultiplier)
2327 {
2328 uint64_t scaled64;
2329 int32_t shift = 0;
2330 uint64_t tps64;
2331 uint32_t tps32;
2332
2333 tps64 = base_hz;
2334 scaled64 = scaled_hz;
2335 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2336 tps64 >>= 1;
2337 shift--;
2338 }
2339
2340 tps32 = (uint32_t)tps64;
2341 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2342 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2343 scaled64 >>= 1;
2344 else
2345 tps32 <<= 1;
2346 shift++;
2347 }
2348
2349 *pshift = shift;
2350 *pmultiplier = div_frac(scaled64, tps32);
2351 }
2352
2353 #ifdef CONFIG_X86_64
2354 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2355 #endif
2356
2357 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2358 static unsigned long max_tsc_khz;
2359
adjust_tsc_khz(u32 khz,s32 ppm)2360 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2361 {
2362 u64 v = (u64)khz * (1000000 + ppm);
2363 do_div(v, 1000000);
2364 return v;
2365 }
2366
2367 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2368
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2369 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2370 {
2371 u64 ratio;
2372
2373 /* Guest TSC same frequency as host TSC? */
2374 if (!scale) {
2375 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2376 return 0;
2377 }
2378
2379 /* TSC scaling supported? */
2380 if (!kvm_has_tsc_control) {
2381 if (user_tsc_khz > tsc_khz) {
2382 vcpu->arch.tsc_catchup = 1;
2383 vcpu->arch.tsc_always_catchup = 1;
2384 return 0;
2385 } else {
2386 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2387 return -1;
2388 }
2389 }
2390
2391 /* TSC scaling required - calculate ratio */
2392 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2393 user_tsc_khz, tsc_khz);
2394
2395 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2396 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2397 user_tsc_khz);
2398 return -1;
2399 }
2400
2401 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2402 return 0;
2403 }
2404
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2405 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2406 {
2407 u32 thresh_lo, thresh_hi;
2408 int use_scaling = 0;
2409
2410 /* tsc_khz can be zero if TSC calibration fails */
2411 if (user_tsc_khz == 0) {
2412 /* set tsc_scaling_ratio to a safe value */
2413 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2414 return -1;
2415 }
2416
2417 /* Compute a scale to convert nanoseconds in TSC cycles */
2418 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2419 &vcpu->arch.virtual_tsc_shift,
2420 &vcpu->arch.virtual_tsc_mult);
2421 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2422
2423 /*
2424 * Compute the variation in TSC rate which is acceptable
2425 * within the range of tolerance and decide if the
2426 * rate being applied is within that bounds of the hardware
2427 * rate. If so, no scaling or compensation need be done.
2428 */
2429 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2430 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2431 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2432 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2433 use_scaling = 1;
2434 }
2435 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2436 }
2437
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2438 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2439 {
2440 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2441 vcpu->arch.virtual_tsc_mult,
2442 vcpu->arch.virtual_tsc_shift);
2443 tsc += vcpu->arch.this_tsc_write;
2444 return tsc;
2445 }
2446
2447 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2448 static inline int gtod_is_based_on_tsc(int mode)
2449 {
2450 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2451 }
2452 #endif
2453
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2454 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2455 {
2456 #ifdef CONFIG_X86_64
2457 bool vcpus_matched;
2458 struct kvm_arch *ka = &vcpu->kvm->arch;
2459 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2460
2461 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2462 atomic_read(&vcpu->kvm->online_vcpus));
2463
2464 /*
2465 * Once the masterclock is enabled, always perform request in
2466 * order to update it.
2467 *
2468 * In order to enable masterclock, the host clocksource must be TSC
2469 * and the vcpus need to have matched TSCs. When that happens,
2470 * perform request to enable masterclock.
2471 */
2472 if (ka->use_master_clock ||
2473 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2474 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2475
2476 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2477 atomic_read(&vcpu->kvm->online_vcpus),
2478 ka->use_master_clock, gtod->clock.vclock_mode);
2479 #endif
2480 }
2481
2482 /*
2483 * Multiply tsc by a fixed point number represented by ratio.
2484 *
2485 * The most significant 64-N bits (mult) of ratio represent the
2486 * integral part of the fixed point number; the remaining N bits
2487 * (frac) represent the fractional part, ie. ratio represents a fixed
2488 * point number (mult + frac * 2^(-N)).
2489 *
2490 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2491 */
__scale_tsc(u64 ratio,u64 tsc)2492 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2493 {
2494 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2495 }
2496
kvm_scale_tsc(u64 tsc,u64 ratio)2497 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2498 {
2499 u64 _tsc = tsc;
2500
2501 if (ratio != kvm_default_tsc_scaling_ratio)
2502 _tsc = __scale_tsc(ratio, tsc);
2503
2504 return _tsc;
2505 }
2506 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2507
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2508 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2509 {
2510 u64 tsc;
2511
2512 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2513
2514 return target_tsc - tsc;
2515 }
2516
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2517 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2518 {
2519 return vcpu->arch.l1_tsc_offset +
2520 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2523
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2524 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2525 {
2526 u64 nested_offset;
2527
2528 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2529 nested_offset = l1_offset;
2530 else
2531 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2532 kvm_tsc_scaling_ratio_frac_bits);
2533
2534 nested_offset += l2_offset;
2535 return nested_offset;
2536 }
2537 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2538
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2539 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2540 {
2541 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2542 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2543 kvm_tsc_scaling_ratio_frac_bits);
2544
2545 return l1_multiplier;
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2548
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2549 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2550 {
2551 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2552 vcpu->arch.l1_tsc_offset,
2553 l1_offset);
2554
2555 vcpu->arch.l1_tsc_offset = l1_offset;
2556
2557 /*
2558 * If we are here because L1 chose not to trap WRMSR to TSC then
2559 * according to the spec this should set L1's TSC (as opposed to
2560 * setting L1's offset for L2).
2561 */
2562 if (is_guest_mode(vcpu))
2563 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2564 l1_offset,
2565 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2566 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2567 else
2568 vcpu->arch.tsc_offset = l1_offset;
2569
2570 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2571 }
2572
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2573 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2574 {
2575 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2576
2577 /* Userspace is changing the multiplier while L2 is active */
2578 if (is_guest_mode(vcpu))
2579 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2580 l1_multiplier,
2581 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2582 else
2583 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2584
2585 if (kvm_has_tsc_control)
2586 static_call(kvm_x86_write_tsc_multiplier)(
2587 vcpu, vcpu->arch.tsc_scaling_ratio);
2588 }
2589
kvm_check_tsc_unstable(void)2590 static inline bool kvm_check_tsc_unstable(void)
2591 {
2592 #ifdef CONFIG_X86_64
2593 /*
2594 * TSC is marked unstable when we're running on Hyper-V,
2595 * 'TSC page' clocksource is good.
2596 */
2597 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2598 return false;
2599 #endif
2600 return check_tsc_unstable();
2601 }
2602
2603 /*
2604 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2605 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2606 * participates in.
2607 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2608 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2609 u64 ns, bool matched)
2610 {
2611 struct kvm *kvm = vcpu->kvm;
2612
2613 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2614
2615 /*
2616 * We also track th most recent recorded KHZ, write and time to
2617 * allow the matching interval to be extended at each write.
2618 */
2619 kvm->arch.last_tsc_nsec = ns;
2620 kvm->arch.last_tsc_write = tsc;
2621 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2622 kvm->arch.last_tsc_offset = offset;
2623
2624 vcpu->arch.last_guest_tsc = tsc;
2625
2626 kvm_vcpu_write_tsc_offset(vcpu, offset);
2627
2628 if (!matched) {
2629 /*
2630 * We split periods of matched TSC writes into generations.
2631 * For each generation, we track the original measured
2632 * nanosecond time, offset, and write, so if TSCs are in
2633 * sync, we can match exact offset, and if not, we can match
2634 * exact software computation in compute_guest_tsc()
2635 *
2636 * These values are tracked in kvm->arch.cur_xxx variables.
2637 */
2638 kvm->arch.cur_tsc_generation++;
2639 kvm->arch.cur_tsc_nsec = ns;
2640 kvm->arch.cur_tsc_write = tsc;
2641 kvm->arch.cur_tsc_offset = offset;
2642 kvm->arch.nr_vcpus_matched_tsc = 0;
2643 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2644 kvm->arch.nr_vcpus_matched_tsc++;
2645 }
2646
2647 /* Keep track of which generation this VCPU has synchronized to */
2648 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2649 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2650 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2651
2652 kvm_track_tsc_matching(vcpu);
2653 }
2654
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2655 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2656 {
2657 struct kvm *kvm = vcpu->kvm;
2658 u64 offset, ns, elapsed;
2659 unsigned long flags;
2660 bool matched = false;
2661 bool synchronizing = false;
2662
2663 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2664 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2665 ns = get_kvmclock_base_ns();
2666 elapsed = ns - kvm->arch.last_tsc_nsec;
2667
2668 if (vcpu->arch.virtual_tsc_khz) {
2669 if (data == 0) {
2670 /*
2671 * detection of vcpu initialization -- need to sync
2672 * with other vCPUs. This particularly helps to keep
2673 * kvm_clock stable after CPU hotplug
2674 */
2675 synchronizing = true;
2676 } else {
2677 u64 tsc_exp = kvm->arch.last_tsc_write +
2678 nsec_to_cycles(vcpu, elapsed);
2679 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2680 /*
2681 * Special case: TSC write with a small delta (1 second)
2682 * of virtual cycle time against real time is
2683 * interpreted as an attempt to synchronize the CPU.
2684 */
2685 synchronizing = data < tsc_exp + tsc_hz &&
2686 data + tsc_hz > tsc_exp;
2687 }
2688 }
2689
2690 /*
2691 * For a reliable TSC, we can match TSC offsets, and for an unstable
2692 * TSC, we add elapsed time in this computation. We could let the
2693 * compensation code attempt to catch up if we fall behind, but
2694 * it's better to try to match offsets from the beginning.
2695 */
2696 if (synchronizing &&
2697 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2698 if (!kvm_check_tsc_unstable()) {
2699 offset = kvm->arch.cur_tsc_offset;
2700 } else {
2701 u64 delta = nsec_to_cycles(vcpu, elapsed);
2702 data += delta;
2703 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2704 }
2705 matched = true;
2706 }
2707
2708 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2709 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2710 }
2711
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2712 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2713 s64 adjustment)
2714 {
2715 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2716 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2717 }
2718
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2719 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2720 {
2721 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2722 WARN_ON(adjustment < 0);
2723 adjustment = kvm_scale_tsc((u64) adjustment,
2724 vcpu->arch.l1_tsc_scaling_ratio);
2725 adjust_tsc_offset_guest(vcpu, adjustment);
2726 }
2727
2728 #ifdef CONFIG_X86_64
2729
read_tsc(void)2730 static u64 read_tsc(void)
2731 {
2732 u64 ret = (u64)rdtsc_ordered();
2733 u64 last = pvclock_gtod_data.clock.cycle_last;
2734
2735 if (likely(ret >= last))
2736 return ret;
2737
2738 /*
2739 * GCC likes to generate cmov here, but this branch is extremely
2740 * predictable (it's just a function of time and the likely is
2741 * very likely) and there's a data dependence, so force GCC
2742 * to generate a branch instead. I don't barrier() because
2743 * we don't actually need a barrier, and if this function
2744 * ever gets inlined it will generate worse code.
2745 */
2746 asm volatile ("");
2747 return last;
2748 }
2749
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2750 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2751 int *mode)
2752 {
2753 long v;
2754 u64 tsc_pg_val;
2755
2756 switch (clock->vclock_mode) {
2757 case VDSO_CLOCKMODE_HVCLOCK:
2758 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2759 tsc_timestamp);
2760 if (tsc_pg_val != U64_MAX) {
2761 /* TSC page valid */
2762 *mode = VDSO_CLOCKMODE_HVCLOCK;
2763 v = (tsc_pg_val - clock->cycle_last) &
2764 clock->mask;
2765 } else {
2766 /* TSC page invalid */
2767 *mode = VDSO_CLOCKMODE_NONE;
2768 }
2769 break;
2770 case VDSO_CLOCKMODE_TSC:
2771 *mode = VDSO_CLOCKMODE_TSC;
2772 *tsc_timestamp = read_tsc();
2773 v = (*tsc_timestamp - clock->cycle_last) &
2774 clock->mask;
2775 break;
2776 default:
2777 *mode = VDSO_CLOCKMODE_NONE;
2778 }
2779
2780 if (*mode == VDSO_CLOCKMODE_NONE)
2781 *tsc_timestamp = v = 0;
2782
2783 return v * clock->mult;
2784 }
2785
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2786 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2787 {
2788 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2789 unsigned long seq;
2790 int mode;
2791 u64 ns;
2792
2793 do {
2794 seq = read_seqcount_begin(>od->seq);
2795 ns = gtod->raw_clock.base_cycles;
2796 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2797 ns >>= gtod->raw_clock.shift;
2798 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2799 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2800 *t = ns;
2801
2802 return mode;
2803 }
2804
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2805 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2806 {
2807 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2808 unsigned long seq;
2809 int mode;
2810 u64 ns;
2811
2812 do {
2813 seq = read_seqcount_begin(>od->seq);
2814 ts->tv_sec = gtod->wall_time_sec;
2815 ns = gtod->clock.base_cycles;
2816 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2817 ns >>= gtod->clock.shift;
2818 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2819
2820 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2821 ts->tv_nsec = ns;
2822
2823 return mode;
2824 }
2825
2826 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2827 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2828 {
2829 /* checked again under seqlock below */
2830 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2831 return false;
2832
2833 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2834 tsc_timestamp));
2835 }
2836
2837 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2838 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2839 u64 *tsc_timestamp)
2840 {
2841 /* checked again under seqlock below */
2842 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2843 return false;
2844
2845 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2846 }
2847 #endif
2848
2849 /*
2850 *
2851 * Assuming a stable TSC across physical CPUS, and a stable TSC
2852 * across virtual CPUs, the following condition is possible.
2853 * Each numbered line represents an event visible to both
2854 * CPUs at the next numbered event.
2855 *
2856 * "timespecX" represents host monotonic time. "tscX" represents
2857 * RDTSC value.
2858 *
2859 * VCPU0 on CPU0 | VCPU1 on CPU1
2860 *
2861 * 1. read timespec0,tsc0
2862 * 2. | timespec1 = timespec0 + N
2863 * | tsc1 = tsc0 + M
2864 * 3. transition to guest | transition to guest
2865 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2866 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2867 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2868 *
2869 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2870 *
2871 * - ret0 < ret1
2872 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2873 * ...
2874 * - 0 < N - M => M < N
2875 *
2876 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2877 * always the case (the difference between two distinct xtime instances
2878 * might be smaller then the difference between corresponding TSC reads,
2879 * when updating guest vcpus pvclock areas).
2880 *
2881 * To avoid that problem, do not allow visibility of distinct
2882 * system_timestamp/tsc_timestamp values simultaneously: use a master
2883 * copy of host monotonic time values. Update that master copy
2884 * in lockstep.
2885 *
2886 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2887 *
2888 */
2889
pvclock_update_vm_gtod_copy(struct kvm * kvm)2890 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2891 {
2892 #ifdef CONFIG_X86_64
2893 struct kvm_arch *ka = &kvm->arch;
2894 int vclock_mode;
2895 bool host_tsc_clocksource, vcpus_matched;
2896
2897 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2898 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2899 atomic_read(&kvm->online_vcpus));
2900
2901 /*
2902 * If the host uses TSC clock, then passthrough TSC as stable
2903 * to the guest.
2904 */
2905 host_tsc_clocksource = kvm_get_time_and_clockread(
2906 &ka->master_kernel_ns,
2907 &ka->master_cycle_now);
2908
2909 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2910 && !ka->backwards_tsc_observed
2911 && !ka->boot_vcpu_runs_old_kvmclock;
2912
2913 if (ka->use_master_clock)
2914 atomic_set(&kvm_guest_has_master_clock, 1);
2915
2916 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2917 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2918 vcpus_matched);
2919 #endif
2920 }
2921
kvm_make_mclock_inprogress_request(struct kvm * kvm)2922 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2923 {
2924 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2925 }
2926
__kvm_start_pvclock_update(struct kvm * kvm)2927 static void __kvm_start_pvclock_update(struct kvm *kvm)
2928 {
2929 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2930 write_seqcount_begin(&kvm->arch.pvclock_sc);
2931 }
2932
kvm_start_pvclock_update(struct kvm * kvm)2933 static void kvm_start_pvclock_update(struct kvm *kvm)
2934 {
2935 kvm_make_mclock_inprogress_request(kvm);
2936
2937 /* no guest entries from this point */
2938 __kvm_start_pvclock_update(kvm);
2939 }
2940
kvm_end_pvclock_update(struct kvm * kvm)2941 static void kvm_end_pvclock_update(struct kvm *kvm)
2942 {
2943 struct kvm_arch *ka = &kvm->arch;
2944 struct kvm_vcpu *vcpu;
2945 unsigned long i;
2946
2947 write_seqcount_end(&ka->pvclock_sc);
2948 raw_spin_unlock_irq(&ka->tsc_write_lock);
2949 kvm_for_each_vcpu(i, vcpu, kvm)
2950 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2951
2952 /* guest entries allowed */
2953 kvm_for_each_vcpu(i, vcpu, kvm)
2954 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2955 }
2956
kvm_update_masterclock(struct kvm * kvm)2957 static void kvm_update_masterclock(struct kvm *kvm)
2958 {
2959 kvm_hv_request_tsc_page_update(kvm);
2960 kvm_start_pvclock_update(kvm);
2961 pvclock_update_vm_gtod_copy(kvm);
2962 kvm_end_pvclock_update(kvm);
2963 }
2964
2965 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)2966 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2967 {
2968 struct kvm_arch *ka = &kvm->arch;
2969 struct pvclock_vcpu_time_info hv_clock;
2970
2971 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2972 get_cpu();
2973
2974 data->flags = 0;
2975 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2976 #ifdef CONFIG_X86_64
2977 struct timespec64 ts;
2978
2979 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2980 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2981 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2982 } else
2983 #endif
2984 data->host_tsc = rdtsc();
2985
2986 data->flags |= KVM_CLOCK_TSC_STABLE;
2987 hv_clock.tsc_timestamp = ka->master_cycle_now;
2988 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2989 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2990 &hv_clock.tsc_shift,
2991 &hv_clock.tsc_to_system_mul);
2992 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2993 } else {
2994 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2995 }
2996
2997 put_cpu();
2998 }
2999
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3000 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3001 {
3002 struct kvm_arch *ka = &kvm->arch;
3003 unsigned seq;
3004
3005 do {
3006 seq = read_seqcount_begin(&ka->pvclock_sc);
3007 __get_kvmclock(kvm, data);
3008 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3009 }
3010
get_kvmclock_ns(struct kvm * kvm)3011 u64 get_kvmclock_ns(struct kvm *kvm)
3012 {
3013 struct kvm_clock_data data;
3014
3015 get_kvmclock(kvm, &data);
3016 return data.clock;
3017 }
3018
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3019 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3020 struct gfn_to_pfn_cache *gpc,
3021 unsigned int offset)
3022 {
3023 struct kvm_vcpu_arch *vcpu = &v->arch;
3024 struct pvclock_vcpu_time_info *guest_hv_clock;
3025 unsigned long flags;
3026
3027 read_lock_irqsave(&gpc->lock, flags);
3028 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3029 offset + sizeof(*guest_hv_clock))) {
3030 read_unlock_irqrestore(&gpc->lock, flags);
3031
3032 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3033 offset + sizeof(*guest_hv_clock)))
3034 return;
3035
3036 read_lock_irqsave(&gpc->lock, flags);
3037 }
3038
3039 guest_hv_clock = (void *)(gpc->khva + offset);
3040
3041 /*
3042 * This VCPU is paused, but it's legal for a guest to read another
3043 * VCPU's kvmclock, so we really have to follow the specification where
3044 * it says that version is odd if data is being modified, and even after
3045 * it is consistent.
3046 */
3047
3048 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3049 smp_wmb();
3050
3051 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3052 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3053
3054 if (vcpu->pvclock_set_guest_stopped_request) {
3055 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3056 vcpu->pvclock_set_guest_stopped_request = false;
3057 }
3058
3059 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3060 smp_wmb();
3061
3062 guest_hv_clock->version = ++vcpu->hv_clock.version;
3063
3064 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3065 read_unlock_irqrestore(&gpc->lock, flags);
3066
3067 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3068 }
3069
kvm_guest_time_update(struct kvm_vcpu * v)3070 static int kvm_guest_time_update(struct kvm_vcpu *v)
3071 {
3072 unsigned long flags, tgt_tsc_khz;
3073 unsigned seq;
3074 struct kvm_vcpu_arch *vcpu = &v->arch;
3075 struct kvm_arch *ka = &v->kvm->arch;
3076 s64 kernel_ns;
3077 u64 tsc_timestamp, host_tsc;
3078 u8 pvclock_flags;
3079 bool use_master_clock;
3080
3081 kernel_ns = 0;
3082 host_tsc = 0;
3083
3084 /*
3085 * If the host uses TSC clock, then passthrough TSC as stable
3086 * to the guest.
3087 */
3088 do {
3089 seq = read_seqcount_begin(&ka->pvclock_sc);
3090 use_master_clock = ka->use_master_clock;
3091 if (use_master_clock) {
3092 host_tsc = ka->master_cycle_now;
3093 kernel_ns = ka->master_kernel_ns;
3094 }
3095 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3096
3097 /* Keep irq disabled to prevent changes to the clock */
3098 local_irq_save(flags);
3099 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3100 if (unlikely(tgt_tsc_khz == 0)) {
3101 local_irq_restore(flags);
3102 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3103 return 1;
3104 }
3105 if (!use_master_clock) {
3106 host_tsc = rdtsc();
3107 kernel_ns = get_kvmclock_base_ns();
3108 }
3109
3110 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3111
3112 /*
3113 * We may have to catch up the TSC to match elapsed wall clock
3114 * time for two reasons, even if kvmclock is used.
3115 * 1) CPU could have been running below the maximum TSC rate
3116 * 2) Broken TSC compensation resets the base at each VCPU
3117 * entry to avoid unknown leaps of TSC even when running
3118 * again on the same CPU. This may cause apparent elapsed
3119 * time to disappear, and the guest to stand still or run
3120 * very slowly.
3121 */
3122 if (vcpu->tsc_catchup) {
3123 u64 tsc = compute_guest_tsc(v, kernel_ns);
3124 if (tsc > tsc_timestamp) {
3125 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3126 tsc_timestamp = tsc;
3127 }
3128 }
3129
3130 local_irq_restore(flags);
3131
3132 /* With all the info we got, fill in the values */
3133
3134 if (kvm_has_tsc_control)
3135 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3136 v->arch.l1_tsc_scaling_ratio);
3137
3138 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3139 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3140 &vcpu->hv_clock.tsc_shift,
3141 &vcpu->hv_clock.tsc_to_system_mul);
3142 vcpu->hw_tsc_khz = tgt_tsc_khz;
3143 }
3144
3145 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3146 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3147 vcpu->last_guest_tsc = tsc_timestamp;
3148
3149 /* If the host uses TSC clocksource, then it is stable */
3150 pvclock_flags = 0;
3151 if (use_master_clock)
3152 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3153
3154 vcpu->hv_clock.flags = pvclock_flags;
3155
3156 if (vcpu->pv_time.active)
3157 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3158 if (vcpu->xen.vcpu_info_cache.active)
3159 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3160 offsetof(struct compat_vcpu_info, time));
3161 if (vcpu->xen.vcpu_time_info_cache.active)
3162 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3163 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3164 return 0;
3165 }
3166
3167 /*
3168 * kvmclock updates which are isolated to a given vcpu, such as
3169 * vcpu->cpu migration, should not allow system_timestamp from
3170 * the rest of the vcpus to remain static. Otherwise ntp frequency
3171 * correction applies to one vcpu's system_timestamp but not
3172 * the others.
3173 *
3174 * So in those cases, request a kvmclock update for all vcpus.
3175 * We need to rate-limit these requests though, as they can
3176 * considerably slow guests that have a large number of vcpus.
3177 * The time for a remote vcpu to update its kvmclock is bound
3178 * by the delay we use to rate-limit the updates.
3179 */
3180
3181 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3182
kvmclock_update_fn(struct work_struct * work)3183 static void kvmclock_update_fn(struct work_struct *work)
3184 {
3185 unsigned long i;
3186 struct delayed_work *dwork = to_delayed_work(work);
3187 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3188 kvmclock_update_work);
3189 struct kvm *kvm = container_of(ka, struct kvm, arch);
3190 struct kvm_vcpu *vcpu;
3191
3192 kvm_for_each_vcpu(i, vcpu, kvm) {
3193 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3194 kvm_vcpu_kick(vcpu);
3195 }
3196 }
3197
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3198 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3199 {
3200 struct kvm *kvm = v->kvm;
3201
3202 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3203 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3204 KVMCLOCK_UPDATE_DELAY);
3205 }
3206
3207 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3208
kvmclock_sync_fn(struct work_struct * work)3209 static void kvmclock_sync_fn(struct work_struct *work)
3210 {
3211 struct delayed_work *dwork = to_delayed_work(work);
3212 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3213 kvmclock_sync_work);
3214 struct kvm *kvm = container_of(ka, struct kvm, arch);
3215
3216 if (!kvmclock_periodic_sync)
3217 return;
3218
3219 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3220 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3221 KVMCLOCK_SYNC_PERIOD);
3222 }
3223
3224 /*
3225 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3226 */
can_set_mci_status(struct kvm_vcpu * vcpu)3227 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3228 {
3229 /* McStatusWrEn enabled? */
3230 if (guest_cpuid_is_amd_or_hygon(vcpu))
3231 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3232
3233 return false;
3234 }
3235
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3236 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3237 {
3238 u64 mcg_cap = vcpu->arch.mcg_cap;
3239 unsigned bank_num = mcg_cap & 0xff;
3240 u32 msr = msr_info->index;
3241 u64 data = msr_info->data;
3242
3243 switch (msr) {
3244 case MSR_IA32_MCG_STATUS:
3245 vcpu->arch.mcg_status = data;
3246 break;
3247 case MSR_IA32_MCG_CTL:
3248 if (!(mcg_cap & MCG_CTL_P) &&
3249 (data || !msr_info->host_initiated))
3250 return 1;
3251 if (data != 0 && data != ~(u64)0)
3252 return 1;
3253 vcpu->arch.mcg_ctl = data;
3254 break;
3255 default:
3256 if (msr >= MSR_IA32_MC0_CTL &&
3257 msr < MSR_IA32_MCx_CTL(bank_num)) {
3258 u32 offset = array_index_nospec(
3259 msr - MSR_IA32_MC0_CTL,
3260 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3261
3262 /* only 0 or all 1s can be written to IA32_MCi_CTL
3263 * some Linux kernels though clear bit 10 in bank 4 to
3264 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3265 * this to avoid an uncatched #GP in the guest.
3266 *
3267 * UNIXWARE clears bit 0 of MC1_CTL to ignore
3268 * correctable, single-bit ECC data errors.
3269 */
3270 if ((offset & 0x3) == 0 &&
3271 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3272 return 1;
3273
3274 /* MCi_STATUS */
3275 if (!msr_info->host_initiated &&
3276 (offset & 0x3) == 1 && data != 0) {
3277 if (!can_set_mci_status(vcpu))
3278 return 1;
3279 }
3280
3281 vcpu->arch.mce_banks[offset] = data;
3282 break;
3283 }
3284 return 1;
3285 }
3286 return 0;
3287 }
3288
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3289 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3290 {
3291 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3292
3293 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3294 }
3295
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3296 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3297 {
3298 gpa_t gpa = data & ~0x3f;
3299
3300 /* Bits 4:5 are reserved, Should be zero */
3301 if (data & 0x30)
3302 return 1;
3303
3304 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3305 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3306 return 1;
3307
3308 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3309 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3310 return 1;
3311
3312 if (!lapic_in_kernel(vcpu))
3313 return data ? 1 : 0;
3314
3315 vcpu->arch.apf.msr_en_val = data;
3316
3317 if (!kvm_pv_async_pf_enabled(vcpu)) {
3318 kvm_clear_async_pf_completion_queue(vcpu);
3319 kvm_async_pf_hash_reset(vcpu);
3320 return 0;
3321 }
3322
3323 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3324 sizeof(u64)))
3325 return 1;
3326
3327 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3328 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3329
3330 kvm_async_pf_wakeup_all(vcpu);
3331
3332 return 0;
3333 }
3334
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3335 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3336 {
3337 /* Bits 8-63 are reserved */
3338 if (data >> 8)
3339 return 1;
3340
3341 if (!lapic_in_kernel(vcpu))
3342 return 1;
3343
3344 vcpu->arch.apf.msr_int_val = data;
3345
3346 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3347
3348 return 0;
3349 }
3350
kvmclock_reset(struct kvm_vcpu * vcpu)3351 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3352 {
3353 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3354 vcpu->arch.time = 0;
3355 }
3356
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3357 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3358 {
3359 ++vcpu->stat.tlb_flush;
3360 static_call(kvm_x86_flush_tlb_all)(vcpu);
3361 }
3362
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3363 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3364 {
3365 ++vcpu->stat.tlb_flush;
3366
3367 if (!tdp_enabled) {
3368 /*
3369 * A TLB flush on behalf of the guest is equivalent to
3370 * INVPCID(all), toggling CR4.PGE, etc., which requires
3371 * a forced sync of the shadow page tables. Ensure all the
3372 * roots are synced and the guest TLB in hardware is clean.
3373 */
3374 kvm_mmu_sync_roots(vcpu);
3375 kvm_mmu_sync_prev_roots(vcpu);
3376 }
3377
3378 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3379 }
3380
3381
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3382 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3383 {
3384 ++vcpu->stat.tlb_flush;
3385 static_call(kvm_x86_flush_tlb_current)(vcpu);
3386 }
3387
3388 /*
3389 * Service "local" TLB flush requests, which are specific to the current MMU
3390 * context. In addition to the generic event handling in vcpu_enter_guest(),
3391 * TLB flushes that are targeted at an MMU context also need to be serviced
3392 * prior before nested VM-Enter/VM-Exit.
3393 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3394 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3395 {
3396 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3397 kvm_vcpu_flush_tlb_current(vcpu);
3398
3399 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3400 kvm_vcpu_flush_tlb_guest(vcpu);
3401 }
3402 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3403
record_steal_time(struct kvm_vcpu * vcpu)3404 static void record_steal_time(struct kvm_vcpu *vcpu)
3405 {
3406 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3407 struct kvm_steal_time __user *st;
3408 struct kvm_memslots *slots;
3409 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3410 u64 steal;
3411 u32 version;
3412
3413 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3414 kvm_xen_runstate_set_running(vcpu);
3415 return;
3416 }
3417
3418 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3419 return;
3420
3421 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3422 return;
3423
3424 slots = kvm_memslots(vcpu->kvm);
3425
3426 if (unlikely(slots->generation != ghc->generation ||
3427 gpa != ghc->gpa ||
3428 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3429 /* We rely on the fact that it fits in a single page. */
3430 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3431
3432 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3433 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3434 return;
3435 }
3436
3437 st = (struct kvm_steal_time __user *)ghc->hva;
3438 /*
3439 * Doing a TLB flush here, on the guest's behalf, can avoid
3440 * expensive IPIs.
3441 */
3442 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3443 u8 st_preempted = 0;
3444 int err = -EFAULT;
3445
3446 if (!user_access_begin(st, sizeof(*st)))
3447 return;
3448
3449 asm volatile("1: xchgb %0, %2\n"
3450 "xor %1, %1\n"
3451 "2:\n"
3452 _ASM_EXTABLE_UA(1b, 2b)
3453 : "+q" (st_preempted),
3454 "+&r" (err),
3455 "+m" (st->preempted));
3456 if (err)
3457 goto out;
3458
3459 user_access_end();
3460
3461 vcpu->arch.st.preempted = 0;
3462
3463 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3464 st_preempted & KVM_VCPU_FLUSH_TLB);
3465 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3466 kvm_vcpu_flush_tlb_guest(vcpu);
3467
3468 if (!user_access_begin(st, sizeof(*st)))
3469 goto dirty;
3470 } else {
3471 if (!user_access_begin(st, sizeof(*st)))
3472 return;
3473
3474 unsafe_put_user(0, &st->preempted, out);
3475 vcpu->arch.st.preempted = 0;
3476 }
3477
3478 unsafe_get_user(version, &st->version, out);
3479 if (version & 1)
3480 version += 1; /* first time write, random junk */
3481
3482 version += 1;
3483 unsafe_put_user(version, &st->version, out);
3484
3485 smp_wmb();
3486
3487 unsafe_get_user(steal, &st->steal, out);
3488 steal += current->sched_info.run_delay -
3489 vcpu->arch.st.last_steal;
3490 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3491 unsafe_put_user(steal, &st->steal, out);
3492
3493 version += 1;
3494 unsafe_put_user(version, &st->version, out);
3495
3496 out:
3497 user_access_end();
3498 dirty:
3499 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3500 }
3501
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3502 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3503 {
3504 bool pr = false;
3505 u32 msr = msr_info->index;
3506 u64 data = msr_info->data;
3507
3508 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3509 return kvm_xen_write_hypercall_page(vcpu, data);
3510
3511 switch (msr) {
3512 case MSR_AMD64_NB_CFG:
3513 case MSR_IA32_UCODE_WRITE:
3514 case MSR_VM_HSAVE_PA:
3515 case MSR_AMD64_PATCH_LOADER:
3516 case MSR_AMD64_BU_CFG2:
3517 case MSR_AMD64_DC_CFG:
3518 case MSR_F15H_EX_CFG:
3519 break;
3520
3521 case MSR_IA32_UCODE_REV:
3522 if (msr_info->host_initiated)
3523 vcpu->arch.microcode_version = data;
3524 break;
3525 case MSR_IA32_ARCH_CAPABILITIES:
3526 if (!msr_info->host_initiated)
3527 return 1;
3528 vcpu->arch.arch_capabilities = data;
3529 break;
3530 case MSR_IA32_PERF_CAPABILITIES: {
3531 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3532
3533 if (!msr_info->host_initiated)
3534 return 1;
3535 if (kvm_get_msr_feature(&msr_ent))
3536 return 1;
3537 if (data & ~msr_ent.data)
3538 return 1;
3539
3540 vcpu->arch.perf_capabilities = data;
3541
3542 return 0;
3543 }
3544 case MSR_EFER:
3545 return set_efer(vcpu, msr_info);
3546 case MSR_K7_HWCR:
3547 data &= ~(u64)0x40; /* ignore flush filter disable */
3548 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3549 data &= ~(u64)0x8; /* ignore TLB cache disable */
3550
3551 /* Handle McStatusWrEn */
3552 if (data == BIT_ULL(18)) {
3553 vcpu->arch.msr_hwcr = data;
3554 } else if (data != 0) {
3555 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3556 data);
3557 return 1;
3558 }
3559 break;
3560 case MSR_FAM10H_MMIO_CONF_BASE:
3561 if (data != 0) {
3562 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3563 "0x%llx\n", data);
3564 return 1;
3565 }
3566 break;
3567 case 0x200 ... 0x2ff:
3568 return kvm_mtrr_set_msr(vcpu, msr, data);
3569 case MSR_IA32_APICBASE:
3570 return kvm_set_apic_base(vcpu, msr_info);
3571 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3572 return kvm_x2apic_msr_write(vcpu, msr, data);
3573 case MSR_IA32_TSC_DEADLINE:
3574 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3575 break;
3576 case MSR_IA32_TSC_ADJUST:
3577 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3578 if (!msr_info->host_initiated) {
3579 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3580 adjust_tsc_offset_guest(vcpu, adj);
3581 /* Before back to guest, tsc_timestamp must be adjusted
3582 * as well, otherwise guest's percpu pvclock time could jump.
3583 */
3584 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3585 }
3586 vcpu->arch.ia32_tsc_adjust_msr = data;
3587 }
3588 break;
3589 case MSR_IA32_MISC_ENABLE:
3590 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3591 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3592 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3593 return 1;
3594 vcpu->arch.ia32_misc_enable_msr = data;
3595 kvm_update_cpuid_runtime(vcpu);
3596 } else {
3597 vcpu->arch.ia32_misc_enable_msr = data;
3598 }
3599 break;
3600 case MSR_IA32_SMBASE:
3601 if (!msr_info->host_initiated)
3602 return 1;
3603 vcpu->arch.smbase = data;
3604 break;
3605 case MSR_IA32_POWER_CTL:
3606 vcpu->arch.msr_ia32_power_ctl = data;
3607 break;
3608 case MSR_IA32_TSC:
3609 if (msr_info->host_initiated) {
3610 kvm_synchronize_tsc(vcpu, data);
3611 } else {
3612 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3613 adjust_tsc_offset_guest(vcpu, adj);
3614 vcpu->arch.ia32_tsc_adjust_msr += adj;
3615 }
3616 break;
3617 case MSR_IA32_XSS:
3618 if (!msr_info->host_initiated &&
3619 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3620 return 1;
3621 /*
3622 * KVM supports exposing PT to the guest, but does not support
3623 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3624 * XSAVES/XRSTORS to save/restore PT MSRs.
3625 */
3626 if (data & ~supported_xss)
3627 return 1;
3628 vcpu->arch.ia32_xss = data;
3629 kvm_update_cpuid_runtime(vcpu);
3630 break;
3631 case MSR_SMI_COUNT:
3632 if (!msr_info->host_initiated)
3633 return 1;
3634 vcpu->arch.smi_count = data;
3635 break;
3636 case MSR_KVM_WALL_CLOCK_NEW:
3637 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3638 return 1;
3639
3640 vcpu->kvm->arch.wall_clock = data;
3641 kvm_write_wall_clock(vcpu->kvm, data, 0);
3642 break;
3643 case MSR_KVM_WALL_CLOCK:
3644 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3645 return 1;
3646
3647 vcpu->kvm->arch.wall_clock = data;
3648 kvm_write_wall_clock(vcpu->kvm, data, 0);
3649 break;
3650 case MSR_KVM_SYSTEM_TIME_NEW:
3651 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3652 return 1;
3653
3654 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3655 break;
3656 case MSR_KVM_SYSTEM_TIME:
3657 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3658 return 1;
3659
3660 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3661 break;
3662 case MSR_KVM_ASYNC_PF_EN:
3663 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3664 return 1;
3665
3666 if (kvm_pv_enable_async_pf(vcpu, data))
3667 return 1;
3668 break;
3669 case MSR_KVM_ASYNC_PF_INT:
3670 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3671 return 1;
3672
3673 if (kvm_pv_enable_async_pf_int(vcpu, data))
3674 return 1;
3675 break;
3676 case MSR_KVM_ASYNC_PF_ACK:
3677 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3678 return 1;
3679 if (data & 0x1) {
3680 vcpu->arch.apf.pageready_pending = false;
3681 kvm_check_async_pf_completion(vcpu);
3682 }
3683 break;
3684 case MSR_KVM_STEAL_TIME:
3685 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3686 return 1;
3687
3688 if (unlikely(!sched_info_on()))
3689 return 1;
3690
3691 if (data & KVM_STEAL_RESERVED_MASK)
3692 return 1;
3693
3694 vcpu->arch.st.msr_val = data;
3695
3696 if (!(data & KVM_MSR_ENABLED))
3697 break;
3698
3699 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3700
3701 break;
3702 case MSR_KVM_PV_EOI_EN:
3703 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3704 return 1;
3705
3706 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3707 return 1;
3708 break;
3709
3710 case MSR_KVM_POLL_CONTROL:
3711 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3712 return 1;
3713
3714 /* only enable bit supported */
3715 if (data & (-1ULL << 1))
3716 return 1;
3717
3718 vcpu->arch.msr_kvm_poll_control = data;
3719 break;
3720
3721 case MSR_IA32_MCG_CTL:
3722 case MSR_IA32_MCG_STATUS:
3723 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3724 return set_msr_mce(vcpu, msr_info);
3725
3726 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3727 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3728 pr = true;
3729 fallthrough;
3730 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3731 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3732 if (kvm_pmu_is_valid_msr(vcpu, msr))
3733 return kvm_pmu_set_msr(vcpu, msr_info);
3734
3735 if (pr || data != 0)
3736 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3737 "0x%x data 0x%llx\n", msr, data);
3738 break;
3739 case MSR_K7_CLK_CTL:
3740 /*
3741 * Ignore all writes to this no longer documented MSR.
3742 * Writes are only relevant for old K7 processors,
3743 * all pre-dating SVM, but a recommended workaround from
3744 * AMD for these chips. It is possible to specify the
3745 * affected processor models on the command line, hence
3746 * the need to ignore the workaround.
3747 */
3748 break;
3749 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3750 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3751 case HV_X64_MSR_SYNDBG_OPTIONS:
3752 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3753 case HV_X64_MSR_CRASH_CTL:
3754 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3755 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3756 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3757 case HV_X64_MSR_TSC_EMULATION_STATUS:
3758 return kvm_hv_set_msr_common(vcpu, msr, data,
3759 msr_info->host_initiated);
3760 case MSR_IA32_BBL_CR_CTL3:
3761 /* Drop writes to this legacy MSR -- see rdmsr
3762 * counterpart for further detail.
3763 */
3764 if (report_ignored_msrs)
3765 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3766 msr, data);
3767 break;
3768 case MSR_AMD64_OSVW_ID_LENGTH:
3769 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3770 return 1;
3771 vcpu->arch.osvw.length = data;
3772 break;
3773 case MSR_AMD64_OSVW_STATUS:
3774 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3775 return 1;
3776 vcpu->arch.osvw.status = data;
3777 break;
3778 case MSR_PLATFORM_INFO:
3779 if (!msr_info->host_initiated ||
3780 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3781 cpuid_fault_enabled(vcpu)))
3782 return 1;
3783 vcpu->arch.msr_platform_info = data;
3784 break;
3785 case MSR_MISC_FEATURES_ENABLES:
3786 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3787 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3788 !supports_cpuid_fault(vcpu)))
3789 return 1;
3790 vcpu->arch.msr_misc_features_enables = data;
3791 break;
3792 #ifdef CONFIG_X86_64
3793 case MSR_IA32_XFD:
3794 if (!msr_info->host_initiated &&
3795 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3796 return 1;
3797
3798 if (data & ~kvm_guest_supported_xfd(vcpu))
3799 return 1;
3800
3801 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3802 break;
3803 case MSR_IA32_XFD_ERR:
3804 if (!msr_info->host_initiated &&
3805 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3806 return 1;
3807
3808 if (data & ~kvm_guest_supported_xfd(vcpu))
3809 return 1;
3810
3811 vcpu->arch.guest_fpu.xfd_err = data;
3812 break;
3813 #endif
3814 default:
3815 if (kvm_pmu_is_valid_msr(vcpu, msr))
3816 return kvm_pmu_set_msr(vcpu, msr_info);
3817 return KVM_MSR_RET_INVALID;
3818 }
3819 return 0;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3822
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3823 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3824 {
3825 u64 data;
3826 u64 mcg_cap = vcpu->arch.mcg_cap;
3827 unsigned bank_num = mcg_cap & 0xff;
3828
3829 switch (msr) {
3830 case MSR_IA32_P5_MC_ADDR:
3831 case MSR_IA32_P5_MC_TYPE:
3832 data = 0;
3833 break;
3834 case MSR_IA32_MCG_CAP:
3835 data = vcpu->arch.mcg_cap;
3836 break;
3837 case MSR_IA32_MCG_CTL:
3838 if (!(mcg_cap & MCG_CTL_P) && !host)
3839 return 1;
3840 data = vcpu->arch.mcg_ctl;
3841 break;
3842 case MSR_IA32_MCG_STATUS:
3843 data = vcpu->arch.mcg_status;
3844 break;
3845 default:
3846 if (msr >= MSR_IA32_MC0_CTL &&
3847 msr < MSR_IA32_MCx_CTL(bank_num)) {
3848 u32 offset = array_index_nospec(
3849 msr - MSR_IA32_MC0_CTL,
3850 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3851
3852 data = vcpu->arch.mce_banks[offset];
3853 break;
3854 }
3855 return 1;
3856 }
3857 *pdata = data;
3858 return 0;
3859 }
3860
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3861 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3862 {
3863 switch (msr_info->index) {
3864 case MSR_IA32_PLATFORM_ID:
3865 case MSR_IA32_EBL_CR_POWERON:
3866 case MSR_IA32_LASTBRANCHFROMIP:
3867 case MSR_IA32_LASTBRANCHTOIP:
3868 case MSR_IA32_LASTINTFROMIP:
3869 case MSR_IA32_LASTINTTOIP:
3870 case MSR_AMD64_SYSCFG:
3871 case MSR_K8_TSEG_ADDR:
3872 case MSR_K8_TSEG_MASK:
3873 case MSR_VM_HSAVE_PA:
3874 case MSR_K8_INT_PENDING_MSG:
3875 case MSR_AMD64_NB_CFG:
3876 case MSR_FAM10H_MMIO_CONF_BASE:
3877 case MSR_AMD64_BU_CFG2:
3878 case MSR_IA32_PERF_CTL:
3879 case MSR_AMD64_DC_CFG:
3880 case MSR_F15H_EX_CFG:
3881 /*
3882 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3883 * limit) MSRs. Just return 0, as we do not want to expose the host
3884 * data here. Do not conditionalize this on CPUID, as KVM does not do
3885 * so for existing CPU-specific MSRs.
3886 */
3887 case MSR_RAPL_POWER_UNIT:
3888 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3889 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3890 case MSR_PKG_ENERGY_STATUS: /* Total package */
3891 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3892 msr_info->data = 0;
3893 break;
3894 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3895 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3896 return kvm_pmu_get_msr(vcpu, msr_info);
3897 if (!msr_info->host_initiated)
3898 return 1;
3899 msr_info->data = 0;
3900 break;
3901 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3902 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3903 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3904 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3905 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3906 return kvm_pmu_get_msr(vcpu, msr_info);
3907 msr_info->data = 0;
3908 break;
3909 case MSR_IA32_UCODE_REV:
3910 msr_info->data = vcpu->arch.microcode_version;
3911 break;
3912 case MSR_IA32_ARCH_CAPABILITIES:
3913 if (!msr_info->host_initiated &&
3914 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3915 return 1;
3916 msr_info->data = vcpu->arch.arch_capabilities;
3917 break;
3918 case MSR_IA32_PERF_CAPABILITIES:
3919 if (!msr_info->host_initiated &&
3920 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3921 return 1;
3922 msr_info->data = vcpu->arch.perf_capabilities;
3923 break;
3924 case MSR_IA32_POWER_CTL:
3925 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3926 break;
3927 case MSR_IA32_TSC: {
3928 /*
3929 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3930 * even when not intercepted. AMD manual doesn't explicitly
3931 * state this but appears to behave the same.
3932 *
3933 * On userspace reads and writes, however, we unconditionally
3934 * return L1's TSC value to ensure backwards-compatible
3935 * behavior for migration.
3936 */
3937 u64 offset, ratio;
3938
3939 if (msr_info->host_initiated) {
3940 offset = vcpu->arch.l1_tsc_offset;
3941 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3942 } else {
3943 offset = vcpu->arch.tsc_offset;
3944 ratio = vcpu->arch.tsc_scaling_ratio;
3945 }
3946
3947 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3948 break;
3949 }
3950 case MSR_MTRRcap:
3951 case 0x200 ... 0x2ff:
3952 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3953 case 0xcd: /* fsb frequency */
3954 msr_info->data = 3;
3955 break;
3956 /*
3957 * MSR_EBC_FREQUENCY_ID
3958 * Conservative value valid for even the basic CPU models.
3959 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3960 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3961 * and 266MHz for model 3, or 4. Set Core Clock
3962 * Frequency to System Bus Frequency Ratio to 1 (bits
3963 * 31:24) even though these are only valid for CPU
3964 * models > 2, however guests may end up dividing or
3965 * multiplying by zero otherwise.
3966 */
3967 case MSR_EBC_FREQUENCY_ID:
3968 msr_info->data = 1 << 24;
3969 break;
3970 case MSR_IA32_APICBASE:
3971 msr_info->data = kvm_get_apic_base(vcpu);
3972 break;
3973 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3974 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3975 case MSR_IA32_TSC_DEADLINE:
3976 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3977 break;
3978 case MSR_IA32_TSC_ADJUST:
3979 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3980 break;
3981 case MSR_IA32_MISC_ENABLE:
3982 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3983 break;
3984 case MSR_IA32_SMBASE:
3985 if (!msr_info->host_initiated)
3986 return 1;
3987 msr_info->data = vcpu->arch.smbase;
3988 break;
3989 case MSR_SMI_COUNT:
3990 msr_info->data = vcpu->arch.smi_count;
3991 break;
3992 case MSR_IA32_PERF_STATUS:
3993 /* TSC increment by tick */
3994 msr_info->data = 1000ULL;
3995 /* CPU multiplier */
3996 msr_info->data |= (((uint64_t)4ULL) << 40);
3997 break;
3998 case MSR_EFER:
3999 msr_info->data = vcpu->arch.efer;
4000 break;
4001 case MSR_KVM_WALL_CLOCK:
4002 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4003 return 1;
4004
4005 msr_info->data = vcpu->kvm->arch.wall_clock;
4006 break;
4007 case MSR_KVM_WALL_CLOCK_NEW:
4008 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4009 return 1;
4010
4011 msr_info->data = vcpu->kvm->arch.wall_clock;
4012 break;
4013 case MSR_KVM_SYSTEM_TIME:
4014 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4015 return 1;
4016
4017 msr_info->data = vcpu->arch.time;
4018 break;
4019 case MSR_KVM_SYSTEM_TIME_NEW:
4020 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4021 return 1;
4022
4023 msr_info->data = vcpu->arch.time;
4024 break;
4025 case MSR_KVM_ASYNC_PF_EN:
4026 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4027 return 1;
4028
4029 msr_info->data = vcpu->arch.apf.msr_en_val;
4030 break;
4031 case MSR_KVM_ASYNC_PF_INT:
4032 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4033 return 1;
4034
4035 msr_info->data = vcpu->arch.apf.msr_int_val;
4036 break;
4037 case MSR_KVM_ASYNC_PF_ACK:
4038 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4039 return 1;
4040
4041 msr_info->data = 0;
4042 break;
4043 case MSR_KVM_STEAL_TIME:
4044 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4045 return 1;
4046
4047 msr_info->data = vcpu->arch.st.msr_val;
4048 break;
4049 case MSR_KVM_PV_EOI_EN:
4050 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4051 return 1;
4052
4053 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4054 break;
4055 case MSR_KVM_POLL_CONTROL:
4056 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4057 return 1;
4058
4059 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4060 break;
4061 case MSR_IA32_P5_MC_ADDR:
4062 case MSR_IA32_P5_MC_TYPE:
4063 case MSR_IA32_MCG_CAP:
4064 case MSR_IA32_MCG_CTL:
4065 case MSR_IA32_MCG_STATUS:
4066 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4067 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4068 msr_info->host_initiated);
4069 case MSR_IA32_XSS:
4070 if (!msr_info->host_initiated &&
4071 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4072 return 1;
4073 msr_info->data = vcpu->arch.ia32_xss;
4074 break;
4075 case MSR_K7_CLK_CTL:
4076 /*
4077 * Provide expected ramp-up count for K7. All other
4078 * are set to zero, indicating minimum divisors for
4079 * every field.
4080 *
4081 * This prevents guest kernels on AMD host with CPU
4082 * type 6, model 8 and higher from exploding due to
4083 * the rdmsr failing.
4084 */
4085 msr_info->data = 0x20000000;
4086 break;
4087 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4088 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4089 case HV_X64_MSR_SYNDBG_OPTIONS:
4090 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4091 case HV_X64_MSR_CRASH_CTL:
4092 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4093 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4094 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4095 case HV_X64_MSR_TSC_EMULATION_STATUS:
4096 return kvm_hv_get_msr_common(vcpu,
4097 msr_info->index, &msr_info->data,
4098 msr_info->host_initiated);
4099 case MSR_IA32_BBL_CR_CTL3:
4100 /* This legacy MSR exists but isn't fully documented in current
4101 * silicon. It is however accessed by winxp in very narrow
4102 * scenarios where it sets bit #19, itself documented as
4103 * a "reserved" bit. Best effort attempt to source coherent
4104 * read data here should the balance of the register be
4105 * interpreted by the guest:
4106 *
4107 * L2 cache control register 3: 64GB range, 256KB size,
4108 * enabled, latency 0x1, configured
4109 */
4110 msr_info->data = 0xbe702111;
4111 break;
4112 case MSR_AMD64_OSVW_ID_LENGTH:
4113 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4114 return 1;
4115 msr_info->data = vcpu->arch.osvw.length;
4116 break;
4117 case MSR_AMD64_OSVW_STATUS:
4118 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4119 return 1;
4120 msr_info->data = vcpu->arch.osvw.status;
4121 break;
4122 case MSR_PLATFORM_INFO:
4123 if (!msr_info->host_initiated &&
4124 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4125 return 1;
4126 msr_info->data = vcpu->arch.msr_platform_info;
4127 break;
4128 case MSR_MISC_FEATURES_ENABLES:
4129 msr_info->data = vcpu->arch.msr_misc_features_enables;
4130 break;
4131 case MSR_K7_HWCR:
4132 msr_info->data = vcpu->arch.msr_hwcr;
4133 break;
4134 #ifdef CONFIG_X86_64
4135 case MSR_IA32_XFD:
4136 if (!msr_info->host_initiated &&
4137 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4138 return 1;
4139
4140 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4141 break;
4142 case MSR_IA32_XFD_ERR:
4143 if (!msr_info->host_initiated &&
4144 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4145 return 1;
4146
4147 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4148 break;
4149 #endif
4150 default:
4151 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4152 return kvm_pmu_get_msr(vcpu, msr_info);
4153 return KVM_MSR_RET_INVALID;
4154 }
4155 return 0;
4156 }
4157 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4158
4159 /*
4160 * Read or write a bunch of msrs. All parameters are kernel addresses.
4161 *
4162 * @return number of msrs set successfully.
4163 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4164 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4165 struct kvm_msr_entry *entries,
4166 int (*do_msr)(struct kvm_vcpu *vcpu,
4167 unsigned index, u64 *data))
4168 {
4169 int i;
4170
4171 for (i = 0; i < msrs->nmsrs; ++i)
4172 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4173 break;
4174
4175 return i;
4176 }
4177
4178 /*
4179 * Read or write a bunch of msrs. Parameters are user addresses.
4180 *
4181 * @return number of msrs set successfully.
4182 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4183 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4184 int (*do_msr)(struct kvm_vcpu *vcpu,
4185 unsigned index, u64 *data),
4186 int writeback)
4187 {
4188 struct kvm_msrs msrs;
4189 struct kvm_msr_entry *entries;
4190 int r, n;
4191 unsigned size;
4192
4193 r = -EFAULT;
4194 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4195 goto out;
4196
4197 r = -E2BIG;
4198 if (msrs.nmsrs >= MAX_IO_MSRS)
4199 goto out;
4200
4201 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4202 entries = memdup_user(user_msrs->entries, size);
4203 if (IS_ERR(entries)) {
4204 r = PTR_ERR(entries);
4205 goto out;
4206 }
4207
4208 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4209 if (r < 0)
4210 goto out_free;
4211
4212 r = -EFAULT;
4213 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4214 goto out_free;
4215
4216 r = n;
4217
4218 out_free:
4219 kfree(entries);
4220 out:
4221 return r;
4222 }
4223
kvm_can_mwait_in_guest(void)4224 static inline bool kvm_can_mwait_in_guest(void)
4225 {
4226 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4227 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4228 boot_cpu_has(X86_FEATURE_ARAT);
4229 }
4230
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4231 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4232 struct kvm_cpuid2 __user *cpuid_arg)
4233 {
4234 struct kvm_cpuid2 cpuid;
4235 int r;
4236
4237 r = -EFAULT;
4238 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4239 return r;
4240
4241 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4242 if (r)
4243 return r;
4244
4245 r = -EFAULT;
4246 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4247 return r;
4248
4249 return 0;
4250 }
4251
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4252 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4253 {
4254 int r = 0;
4255
4256 switch (ext) {
4257 case KVM_CAP_IRQCHIP:
4258 case KVM_CAP_HLT:
4259 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4260 case KVM_CAP_SET_TSS_ADDR:
4261 case KVM_CAP_EXT_CPUID:
4262 case KVM_CAP_EXT_EMUL_CPUID:
4263 case KVM_CAP_CLOCKSOURCE:
4264 case KVM_CAP_PIT:
4265 case KVM_CAP_NOP_IO_DELAY:
4266 case KVM_CAP_MP_STATE:
4267 case KVM_CAP_SYNC_MMU:
4268 case KVM_CAP_USER_NMI:
4269 case KVM_CAP_REINJECT_CONTROL:
4270 case KVM_CAP_IRQ_INJECT_STATUS:
4271 case KVM_CAP_IOEVENTFD:
4272 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4273 case KVM_CAP_PIT2:
4274 case KVM_CAP_PIT_STATE2:
4275 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4276 case KVM_CAP_VCPU_EVENTS:
4277 case KVM_CAP_HYPERV:
4278 case KVM_CAP_HYPERV_VAPIC:
4279 case KVM_CAP_HYPERV_SPIN:
4280 case KVM_CAP_HYPERV_SYNIC:
4281 case KVM_CAP_HYPERV_SYNIC2:
4282 case KVM_CAP_HYPERV_VP_INDEX:
4283 case KVM_CAP_HYPERV_EVENTFD:
4284 case KVM_CAP_HYPERV_TLBFLUSH:
4285 case KVM_CAP_HYPERV_SEND_IPI:
4286 case KVM_CAP_HYPERV_CPUID:
4287 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4288 case KVM_CAP_SYS_HYPERV_CPUID:
4289 case KVM_CAP_PCI_SEGMENT:
4290 case KVM_CAP_DEBUGREGS:
4291 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4292 case KVM_CAP_XSAVE:
4293 case KVM_CAP_ASYNC_PF:
4294 case KVM_CAP_ASYNC_PF_INT:
4295 case KVM_CAP_GET_TSC_KHZ:
4296 case KVM_CAP_KVMCLOCK_CTRL:
4297 case KVM_CAP_READONLY_MEM:
4298 case KVM_CAP_HYPERV_TIME:
4299 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4300 case KVM_CAP_TSC_DEADLINE_TIMER:
4301 case KVM_CAP_DISABLE_QUIRKS:
4302 case KVM_CAP_SET_BOOT_CPU_ID:
4303 case KVM_CAP_SPLIT_IRQCHIP:
4304 case KVM_CAP_IMMEDIATE_EXIT:
4305 case KVM_CAP_PMU_EVENT_FILTER:
4306 case KVM_CAP_GET_MSR_FEATURES:
4307 case KVM_CAP_MSR_PLATFORM_INFO:
4308 case KVM_CAP_EXCEPTION_PAYLOAD:
4309 case KVM_CAP_SET_GUEST_DEBUG:
4310 case KVM_CAP_LAST_CPU:
4311 case KVM_CAP_X86_USER_SPACE_MSR:
4312 case KVM_CAP_X86_MSR_FILTER:
4313 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4314 #ifdef CONFIG_X86_SGX_KVM
4315 case KVM_CAP_SGX_ATTRIBUTE:
4316 #endif
4317 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4318 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4319 case KVM_CAP_SREGS2:
4320 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4321 case KVM_CAP_VCPU_ATTRIBUTES:
4322 case KVM_CAP_SYS_ATTRIBUTES:
4323 case KVM_CAP_VAPIC:
4324 case KVM_CAP_ENABLE_CAP:
4325 r = 1;
4326 break;
4327 case KVM_CAP_EXIT_HYPERCALL:
4328 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4329 break;
4330 case KVM_CAP_SET_GUEST_DEBUG2:
4331 return KVM_GUESTDBG_VALID_MASK;
4332 #ifdef CONFIG_KVM_XEN
4333 case KVM_CAP_XEN_HVM:
4334 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4335 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4336 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4337 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4338 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4339 if (sched_info_on())
4340 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4341 break;
4342 #endif
4343 case KVM_CAP_SYNC_REGS:
4344 r = KVM_SYNC_X86_VALID_FIELDS;
4345 break;
4346 case KVM_CAP_ADJUST_CLOCK:
4347 r = KVM_CLOCK_VALID_FLAGS;
4348 break;
4349 case KVM_CAP_X86_DISABLE_EXITS:
4350 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4351 KVM_X86_DISABLE_EXITS_CSTATE;
4352 if(kvm_can_mwait_in_guest())
4353 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4354 break;
4355 case KVM_CAP_X86_SMM:
4356 /* SMBASE is usually relocated above 1M on modern chipsets,
4357 * and SMM handlers might indeed rely on 4G segment limits,
4358 * so do not report SMM to be available if real mode is
4359 * emulated via vm86 mode. Still, do not go to great lengths
4360 * to avoid userspace's usage of the feature, because it is a
4361 * fringe case that is not enabled except via specific settings
4362 * of the module parameters.
4363 */
4364 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4365 break;
4366 case KVM_CAP_NR_VCPUS:
4367 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4368 break;
4369 case KVM_CAP_MAX_VCPUS:
4370 r = KVM_MAX_VCPUS;
4371 break;
4372 case KVM_CAP_MAX_VCPU_ID:
4373 r = KVM_MAX_VCPU_IDS;
4374 break;
4375 case KVM_CAP_PV_MMU: /* obsolete */
4376 r = 0;
4377 break;
4378 case KVM_CAP_MCE:
4379 r = KVM_MAX_MCE_BANKS;
4380 break;
4381 case KVM_CAP_XCRS:
4382 r = boot_cpu_has(X86_FEATURE_XSAVE);
4383 break;
4384 case KVM_CAP_TSC_CONTROL:
4385 case KVM_CAP_VM_TSC_CONTROL:
4386 r = kvm_has_tsc_control;
4387 break;
4388 case KVM_CAP_X2APIC_API:
4389 r = KVM_X2APIC_API_VALID_FLAGS;
4390 break;
4391 case KVM_CAP_NESTED_STATE:
4392 r = kvm_x86_ops.nested_ops->get_state ?
4393 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4394 break;
4395 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4396 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4397 break;
4398 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4399 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4400 break;
4401 case KVM_CAP_SMALLER_MAXPHYADDR:
4402 r = (int) allow_smaller_maxphyaddr;
4403 break;
4404 case KVM_CAP_STEAL_TIME:
4405 r = sched_info_on();
4406 break;
4407 case KVM_CAP_X86_BUS_LOCK_EXIT:
4408 if (kvm_has_bus_lock_exit)
4409 r = KVM_BUS_LOCK_DETECTION_OFF |
4410 KVM_BUS_LOCK_DETECTION_EXIT;
4411 else
4412 r = 0;
4413 break;
4414 case KVM_CAP_XSAVE2: {
4415 u64 guest_perm = xstate_get_guest_group_perm();
4416
4417 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4418 if (r < sizeof(struct kvm_xsave))
4419 r = sizeof(struct kvm_xsave);
4420 break;
4421 }
4422 case KVM_CAP_PMU_CAPABILITY:
4423 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4424 break;
4425 case KVM_CAP_DISABLE_QUIRKS2:
4426 r = KVM_X86_VALID_QUIRKS;
4427 break;
4428 default:
4429 break;
4430 }
4431 return r;
4432 }
4433
kvm_get_attr_addr(struct kvm_device_attr * attr)4434 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4435 {
4436 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4437
4438 if ((u64)(unsigned long)uaddr != attr->addr)
4439 return ERR_PTR_USR(-EFAULT);
4440 return uaddr;
4441 }
4442
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4443 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4444 {
4445 u64 __user *uaddr = kvm_get_attr_addr(attr);
4446
4447 if (attr->group)
4448 return -ENXIO;
4449
4450 if (IS_ERR(uaddr))
4451 return PTR_ERR(uaddr);
4452
4453 switch (attr->attr) {
4454 case KVM_X86_XCOMP_GUEST_SUPP:
4455 if (put_user(supported_xcr0, uaddr))
4456 return -EFAULT;
4457 return 0;
4458 default:
4459 return -ENXIO;
4460 break;
4461 }
4462 }
4463
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4464 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4465 {
4466 if (attr->group)
4467 return -ENXIO;
4468
4469 switch (attr->attr) {
4470 case KVM_X86_XCOMP_GUEST_SUPP:
4471 return 0;
4472 default:
4473 return -ENXIO;
4474 }
4475 }
4476
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4477 long kvm_arch_dev_ioctl(struct file *filp,
4478 unsigned int ioctl, unsigned long arg)
4479 {
4480 void __user *argp = (void __user *)arg;
4481 long r;
4482
4483 switch (ioctl) {
4484 case KVM_GET_MSR_INDEX_LIST: {
4485 struct kvm_msr_list __user *user_msr_list = argp;
4486 struct kvm_msr_list msr_list;
4487 unsigned n;
4488
4489 r = -EFAULT;
4490 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4491 goto out;
4492 n = msr_list.nmsrs;
4493 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4494 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4495 goto out;
4496 r = -E2BIG;
4497 if (n < msr_list.nmsrs)
4498 goto out;
4499 r = -EFAULT;
4500 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4501 num_msrs_to_save * sizeof(u32)))
4502 goto out;
4503 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4504 &emulated_msrs,
4505 num_emulated_msrs * sizeof(u32)))
4506 goto out;
4507 r = 0;
4508 break;
4509 }
4510 case KVM_GET_SUPPORTED_CPUID:
4511 case KVM_GET_EMULATED_CPUID: {
4512 struct kvm_cpuid2 __user *cpuid_arg = argp;
4513 struct kvm_cpuid2 cpuid;
4514
4515 r = -EFAULT;
4516 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4517 goto out;
4518
4519 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4520 ioctl);
4521 if (r)
4522 goto out;
4523
4524 r = -EFAULT;
4525 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4526 goto out;
4527 r = 0;
4528 break;
4529 }
4530 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4531 r = -EFAULT;
4532 if (copy_to_user(argp, &kvm_mce_cap_supported,
4533 sizeof(kvm_mce_cap_supported)))
4534 goto out;
4535 r = 0;
4536 break;
4537 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4538 struct kvm_msr_list __user *user_msr_list = argp;
4539 struct kvm_msr_list msr_list;
4540 unsigned int n;
4541
4542 r = -EFAULT;
4543 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4544 goto out;
4545 n = msr_list.nmsrs;
4546 msr_list.nmsrs = num_msr_based_features;
4547 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4548 goto out;
4549 r = -E2BIG;
4550 if (n < msr_list.nmsrs)
4551 goto out;
4552 r = -EFAULT;
4553 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4554 num_msr_based_features * sizeof(u32)))
4555 goto out;
4556 r = 0;
4557 break;
4558 }
4559 case KVM_GET_MSRS:
4560 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4561 break;
4562 case KVM_GET_SUPPORTED_HV_CPUID:
4563 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4564 break;
4565 case KVM_GET_DEVICE_ATTR: {
4566 struct kvm_device_attr attr;
4567 r = -EFAULT;
4568 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4569 break;
4570 r = kvm_x86_dev_get_attr(&attr);
4571 break;
4572 }
4573 case KVM_HAS_DEVICE_ATTR: {
4574 struct kvm_device_attr attr;
4575 r = -EFAULT;
4576 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4577 break;
4578 r = kvm_x86_dev_has_attr(&attr);
4579 break;
4580 }
4581 default:
4582 r = -EINVAL;
4583 break;
4584 }
4585 out:
4586 return r;
4587 }
4588
wbinvd_ipi(void * garbage)4589 static void wbinvd_ipi(void *garbage)
4590 {
4591 wbinvd();
4592 }
4593
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4594 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4595 {
4596 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4597 }
4598
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4599 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4600 {
4601 /* Address WBINVD may be executed by guest */
4602 if (need_emulate_wbinvd(vcpu)) {
4603 if (static_call(kvm_x86_has_wbinvd_exit)())
4604 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4605 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4606 smp_call_function_single(vcpu->cpu,
4607 wbinvd_ipi, NULL, 1);
4608 }
4609
4610 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4611
4612 /* Save host pkru register if supported */
4613 vcpu->arch.host_pkru = read_pkru();
4614
4615 /* Apply any externally detected TSC adjustments (due to suspend) */
4616 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4617 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4618 vcpu->arch.tsc_offset_adjustment = 0;
4619 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4620 }
4621
4622 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4623 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4624 rdtsc() - vcpu->arch.last_host_tsc;
4625 if (tsc_delta < 0)
4626 mark_tsc_unstable("KVM discovered backwards TSC");
4627
4628 if (kvm_check_tsc_unstable()) {
4629 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4630 vcpu->arch.last_guest_tsc);
4631 kvm_vcpu_write_tsc_offset(vcpu, offset);
4632 vcpu->arch.tsc_catchup = 1;
4633 }
4634
4635 if (kvm_lapic_hv_timer_in_use(vcpu))
4636 kvm_lapic_restart_hv_timer(vcpu);
4637
4638 /*
4639 * On a host with synchronized TSC, there is no need to update
4640 * kvmclock on vcpu->cpu migration
4641 */
4642 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4643 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4644 if (vcpu->cpu != cpu)
4645 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4646 vcpu->cpu = cpu;
4647 }
4648
4649 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4650 }
4651
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4652 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4653 {
4654 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4655 struct kvm_steal_time __user *st;
4656 struct kvm_memslots *slots;
4657 static const u8 preempted = KVM_VCPU_PREEMPTED;
4658 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4659
4660 /*
4661 * The vCPU can be marked preempted if and only if the VM-Exit was on
4662 * an instruction boundary and will not trigger guest emulation of any
4663 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4664 * when this is true, for example allowing the vCPU to be marked
4665 * preempted if and only if the VM-Exit was due to a host interrupt.
4666 */
4667 if (!vcpu->arch.at_instruction_boundary) {
4668 vcpu->stat.preemption_other++;
4669 return;
4670 }
4671
4672 vcpu->stat.preemption_reported++;
4673 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4674 return;
4675
4676 if (vcpu->arch.st.preempted)
4677 return;
4678
4679 /* This happens on process exit */
4680 if (unlikely(current->mm != vcpu->kvm->mm))
4681 return;
4682
4683 slots = kvm_memslots(vcpu->kvm);
4684
4685 if (unlikely(slots->generation != ghc->generation ||
4686 gpa != ghc->gpa ||
4687 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4688 return;
4689
4690 st = (struct kvm_steal_time __user *)ghc->hva;
4691 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4692
4693 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4694 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4695
4696 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4697 }
4698
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4699 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4700 {
4701 int idx;
4702
4703 if (vcpu->preempted) {
4704 if (!vcpu->arch.guest_state_protected)
4705 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4706
4707 /*
4708 * Take the srcu lock as memslots will be accessed to check the gfn
4709 * cache generation against the memslots generation.
4710 */
4711 idx = srcu_read_lock(&vcpu->kvm->srcu);
4712 if (kvm_xen_msr_enabled(vcpu->kvm))
4713 kvm_xen_runstate_set_preempted(vcpu);
4714 else
4715 kvm_steal_time_set_preempted(vcpu);
4716 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4717 }
4718
4719 static_call(kvm_x86_vcpu_put)(vcpu);
4720 vcpu->arch.last_host_tsc = rdtsc();
4721 }
4722
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4723 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4724 struct kvm_lapic_state *s)
4725 {
4726 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4727
4728 return kvm_apic_get_state(vcpu, s);
4729 }
4730
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4731 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4732 struct kvm_lapic_state *s)
4733 {
4734 int r;
4735
4736 r = kvm_apic_set_state(vcpu, s);
4737 if (r)
4738 return r;
4739 update_cr8_intercept(vcpu);
4740
4741 return 0;
4742 }
4743
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4744 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4745 {
4746 /*
4747 * We can accept userspace's request for interrupt injection
4748 * as long as we have a place to store the interrupt number.
4749 * The actual injection will happen when the CPU is able to
4750 * deliver the interrupt.
4751 */
4752 if (kvm_cpu_has_extint(vcpu))
4753 return false;
4754
4755 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4756 return (!lapic_in_kernel(vcpu) ||
4757 kvm_apic_accept_pic_intr(vcpu));
4758 }
4759
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4760 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4761 {
4762 /*
4763 * Do not cause an interrupt window exit if an exception
4764 * is pending or an event needs reinjection; userspace
4765 * might want to inject the interrupt manually using KVM_SET_REGS
4766 * or KVM_SET_SREGS. For that to work, we must be at an
4767 * instruction boundary and with no events half-injected.
4768 */
4769 return (kvm_arch_interrupt_allowed(vcpu) &&
4770 kvm_cpu_accept_dm_intr(vcpu) &&
4771 !kvm_event_needs_reinjection(vcpu) &&
4772 !vcpu->arch.exception.pending);
4773 }
4774
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4775 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4776 struct kvm_interrupt *irq)
4777 {
4778 if (irq->irq >= KVM_NR_INTERRUPTS)
4779 return -EINVAL;
4780
4781 if (!irqchip_in_kernel(vcpu->kvm)) {
4782 kvm_queue_interrupt(vcpu, irq->irq, false);
4783 kvm_make_request(KVM_REQ_EVENT, vcpu);
4784 return 0;
4785 }
4786
4787 /*
4788 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4789 * fail for in-kernel 8259.
4790 */
4791 if (pic_in_kernel(vcpu->kvm))
4792 return -ENXIO;
4793
4794 if (vcpu->arch.pending_external_vector != -1)
4795 return -EEXIST;
4796
4797 vcpu->arch.pending_external_vector = irq->irq;
4798 kvm_make_request(KVM_REQ_EVENT, vcpu);
4799 return 0;
4800 }
4801
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4802 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4803 {
4804 kvm_inject_nmi(vcpu);
4805
4806 return 0;
4807 }
4808
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4809 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4810 {
4811 kvm_make_request(KVM_REQ_SMI, vcpu);
4812
4813 return 0;
4814 }
4815
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4816 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4817 struct kvm_tpr_access_ctl *tac)
4818 {
4819 if (tac->flags)
4820 return -EINVAL;
4821 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4822 return 0;
4823 }
4824
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4825 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4826 u64 mcg_cap)
4827 {
4828 int r;
4829 unsigned bank_num = mcg_cap & 0xff, bank;
4830
4831 r = -EINVAL;
4832 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4833 goto out;
4834 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4835 goto out;
4836 r = 0;
4837 vcpu->arch.mcg_cap = mcg_cap;
4838 /* Init IA32_MCG_CTL to all 1s */
4839 if (mcg_cap & MCG_CTL_P)
4840 vcpu->arch.mcg_ctl = ~(u64)0;
4841 /* Init IA32_MCi_CTL to all 1s */
4842 for (bank = 0; bank < bank_num; bank++)
4843 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4844
4845 static_call(kvm_x86_setup_mce)(vcpu);
4846 out:
4847 return r;
4848 }
4849
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4850 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4851 struct kvm_x86_mce *mce)
4852 {
4853 u64 mcg_cap = vcpu->arch.mcg_cap;
4854 unsigned bank_num = mcg_cap & 0xff;
4855 u64 *banks = vcpu->arch.mce_banks;
4856
4857 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4858 return -EINVAL;
4859 /*
4860 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4861 * reporting is disabled
4862 */
4863 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4864 vcpu->arch.mcg_ctl != ~(u64)0)
4865 return 0;
4866 banks += 4 * mce->bank;
4867 /*
4868 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4869 * reporting is disabled for the bank
4870 */
4871 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4872 return 0;
4873 if (mce->status & MCI_STATUS_UC) {
4874 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4875 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4876 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4877 return 0;
4878 }
4879 if (banks[1] & MCI_STATUS_VAL)
4880 mce->status |= MCI_STATUS_OVER;
4881 banks[2] = mce->addr;
4882 banks[3] = mce->misc;
4883 vcpu->arch.mcg_status = mce->mcg_status;
4884 banks[1] = mce->status;
4885 kvm_queue_exception(vcpu, MC_VECTOR);
4886 } else if (!(banks[1] & MCI_STATUS_VAL)
4887 || !(banks[1] & MCI_STATUS_UC)) {
4888 if (banks[1] & MCI_STATUS_VAL)
4889 mce->status |= MCI_STATUS_OVER;
4890 banks[2] = mce->addr;
4891 banks[3] = mce->misc;
4892 banks[1] = mce->status;
4893 } else
4894 banks[1] |= MCI_STATUS_OVER;
4895 return 0;
4896 }
4897
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4898 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4899 struct kvm_vcpu_events *events)
4900 {
4901 process_nmi(vcpu);
4902
4903 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4904 process_smi(vcpu);
4905
4906 /*
4907 * In guest mode, payload delivery should be deferred,
4908 * so that the L1 hypervisor can intercept #PF before
4909 * CR2 is modified (or intercept #DB before DR6 is
4910 * modified under nVMX). Unless the per-VM capability,
4911 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4912 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4913 * opportunistically defer the exception payload, deliver it if the
4914 * capability hasn't been requested before processing a
4915 * KVM_GET_VCPU_EVENTS.
4916 */
4917 if (!vcpu->kvm->arch.exception_payload_enabled &&
4918 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4919 kvm_deliver_exception_payload(vcpu);
4920
4921 /*
4922 * The API doesn't provide the instruction length for software
4923 * exceptions, so don't report them. As long as the guest RIP
4924 * isn't advanced, we should expect to encounter the exception
4925 * again.
4926 */
4927 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4928 events->exception.injected = 0;
4929 events->exception.pending = 0;
4930 } else {
4931 events->exception.injected = vcpu->arch.exception.injected;
4932 events->exception.pending = vcpu->arch.exception.pending;
4933 /*
4934 * For ABI compatibility, deliberately conflate
4935 * pending and injected exceptions when
4936 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4937 */
4938 if (!vcpu->kvm->arch.exception_payload_enabled)
4939 events->exception.injected |=
4940 vcpu->arch.exception.pending;
4941 }
4942 events->exception.nr = vcpu->arch.exception.nr;
4943 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4944 events->exception.error_code = vcpu->arch.exception.error_code;
4945 events->exception_has_payload = vcpu->arch.exception.has_payload;
4946 events->exception_payload = vcpu->arch.exception.payload;
4947
4948 events->interrupt.injected =
4949 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4950 events->interrupt.nr = vcpu->arch.interrupt.nr;
4951 events->interrupt.soft = 0;
4952 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4953
4954 events->nmi.injected = vcpu->arch.nmi_injected;
4955 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4956 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4957 events->nmi.pad = 0;
4958
4959 events->sipi_vector = 0; /* never valid when reporting to user space */
4960
4961 events->smi.smm = is_smm(vcpu);
4962 events->smi.pending = vcpu->arch.smi_pending;
4963 events->smi.smm_inside_nmi =
4964 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4965 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4966
4967 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4968 | KVM_VCPUEVENT_VALID_SHADOW
4969 | KVM_VCPUEVENT_VALID_SMM);
4970 if (vcpu->kvm->arch.exception_payload_enabled)
4971 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4972
4973 memset(&events->reserved, 0, sizeof(events->reserved));
4974 }
4975
4976 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4977
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4978 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4979 struct kvm_vcpu_events *events)
4980 {
4981 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4982 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4983 | KVM_VCPUEVENT_VALID_SHADOW
4984 | KVM_VCPUEVENT_VALID_SMM
4985 | KVM_VCPUEVENT_VALID_PAYLOAD))
4986 return -EINVAL;
4987
4988 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4989 if (!vcpu->kvm->arch.exception_payload_enabled)
4990 return -EINVAL;
4991 if (events->exception.pending)
4992 events->exception.injected = 0;
4993 else
4994 events->exception_has_payload = 0;
4995 } else {
4996 events->exception.pending = 0;
4997 events->exception_has_payload = 0;
4998 }
4999
5000 if ((events->exception.injected || events->exception.pending) &&
5001 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5002 return -EINVAL;
5003
5004 /* INITs are latched while in SMM */
5005 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5006 (events->smi.smm || events->smi.pending) &&
5007 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5008 return -EINVAL;
5009
5010 process_nmi(vcpu);
5011 vcpu->arch.exception.injected = events->exception.injected;
5012 vcpu->arch.exception.pending = events->exception.pending;
5013 vcpu->arch.exception.nr = events->exception.nr;
5014 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5015 vcpu->arch.exception.error_code = events->exception.error_code;
5016 vcpu->arch.exception.has_payload = events->exception_has_payload;
5017 vcpu->arch.exception.payload = events->exception_payload;
5018
5019 vcpu->arch.interrupt.injected = events->interrupt.injected;
5020 vcpu->arch.interrupt.nr = events->interrupt.nr;
5021 vcpu->arch.interrupt.soft = events->interrupt.soft;
5022 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5023 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5024 events->interrupt.shadow);
5025
5026 vcpu->arch.nmi_injected = events->nmi.injected;
5027 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5028 vcpu->arch.nmi_pending = events->nmi.pending;
5029 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5030
5031 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5032 lapic_in_kernel(vcpu))
5033 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5034
5035 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5036 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5037 kvm_x86_ops.nested_ops->leave_nested(vcpu);
5038 kvm_smm_changed(vcpu, events->smi.smm);
5039 }
5040
5041 vcpu->arch.smi_pending = events->smi.pending;
5042
5043 if (events->smi.smm) {
5044 if (events->smi.smm_inside_nmi)
5045 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5046 else
5047 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5048 }
5049
5050 if (lapic_in_kernel(vcpu)) {
5051 if (events->smi.latched_init)
5052 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5053 else
5054 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5055 }
5056 }
5057
5058 kvm_make_request(KVM_REQ_EVENT, vcpu);
5059
5060 return 0;
5061 }
5062
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5063 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5064 struct kvm_debugregs *dbgregs)
5065 {
5066 unsigned long val;
5067
5068 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5069 kvm_get_dr(vcpu, 6, &val);
5070 dbgregs->dr6 = val;
5071 dbgregs->dr7 = vcpu->arch.dr7;
5072 dbgregs->flags = 0;
5073 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5074 }
5075
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5076 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5077 struct kvm_debugregs *dbgregs)
5078 {
5079 if (dbgregs->flags)
5080 return -EINVAL;
5081
5082 if (!kvm_dr6_valid(dbgregs->dr6))
5083 return -EINVAL;
5084 if (!kvm_dr7_valid(dbgregs->dr7))
5085 return -EINVAL;
5086
5087 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5088 kvm_update_dr0123(vcpu);
5089 vcpu->arch.dr6 = dbgregs->dr6;
5090 vcpu->arch.dr7 = dbgregs->dr7;
5091 kvm_update_dr7(vcpu);
5092
5093 return 0;
5094 }
5095
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5096 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5097 struct kvm_xsave *guest_xsave)
5098 {
5099 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5100 return;
5101
5102 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5103 guest_xsave->region,
5104 sizeof(guest_xsave->region),
5105 vcpu->arch.pkru);
5106 }
5107
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5108 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5109 u8 *state, unsigned int size)
5110 {
5111 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5112 return;
5113
5114 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5115 state, size, vcpu->arch.pkru);
5116 }
5117
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5119 struct kvm_xsave *guest_xsave)
5120 {
5121 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5122 return 0;
5123
5124 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5125 guest_xsave->region,
5126 supported_xcr0, &vcpu->arch.pkru);
5127 }
5128
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5129 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5130 struct kvm_xcrs *guest_xcrs)
5131 {
5132 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5133 guest_xcrs->nr_xcrs = 0;
5134 return;
5135 }
5136
5137 guest_xcrs->nr_xcrs = 1;
5138 guest_xcrs->flags = 0;
5139 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5140 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5141 }
5142
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5143 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5144 struct kvm_xcrs *guest_xcrs)
5145 {
5146 int i, r = 0;
5147
5148 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5149 return -EINVAL;
5150
5151 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5152 return -EINVAL;
5153
5154 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5155 /* Only support XCR0 currently */
5156 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5157 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5158 guest_xcrs->xcrs[i].value);
5159 break;
5160 }
5161 if (r)
5162 r = -EINVAL;
5163 return r;
5164 }
5165
5166 /*
5167 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5168 * stopped by the hypervisor. This function will be called from the host only.
5169 * EINVAL is returned when the host attempts to set the flag for a guest that
5170 * does not support pv clocks.
5171 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5172 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5173 {
5174 if (!vcpu->arch.pv_time.active)
5175 return -EINVAL;
5176 vcpu->arch.pvclock_set_guest_stopped_request = true;
5177 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5178 return 0;
5179 }
5180
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5181 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5182 struct kvm_device_attr *attr)
5183 {
5184 int r;
5185
5186 switch (attr->attr) {
5187 case KVM_VCPU_TSC_OFFSET:
5188 r = 0;
5189 break;
5190 default:
5191 r = -ENXIO;
5192 }
5193
5194 return r;
5195 }
5196
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5197 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5198 struct kvm_device_attr *attr)
5199 {
5200 u64 __user *uaddr = kvm_get_attr_addr(attr);
5201 int r;
5202
5203 if (IS_ERR(uaddr))
5204 return PTR_ERR(uaddr);
5205
5206 switch (attr->attr) {
5207 case KVM_VCPU_TSC_OFFSET:
5208 r = -EFAULT;
5209 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5210 break;
5211 r = 0;
5212 break;
5213 default:
5214 r = -ENXIO;
5215 }
5216
5217 return r;
5218 }
5219
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5220 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5221 struct kvm_device_attr *attr)
5222 {
5223 u64 __user *uaddr = kvm_get_attr_addr(attr);
5224 struct kvm *kvm = vcpu->kvm;
5225 int r;
5226
5227 if (IS_ERR(uaddr))
5228 return PTR_ERR(uaddr);
5229
5230 switch (attr->attr) {
5231 case KVM_VCPU_TSC_OFFSET: {
5232 u64 offset, tsc, ns;
5233 unsigned long flags;
5234 bool matched;
5235
5236 r = -EFAULT;
5237 if (get_user(offset, uaddr))
5238 break;
5239
5240 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5241
5242 matched = (vcpu->arch.virtual_tsc_khz &&
5243 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5244 kvm->arch.last_tsc_offset == offset);
5245
5246 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5247 ns = get_kvmclock_base_ns();
5248
5249 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5250 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5251
5252 r = 0;
5253 break;
5254 }
5255 default:
5256 r = -ENXIO;
5257 }
5258
5259 return r;
5260 }
5261
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5262 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5263 unsigned int ioctl,
5264 void __user *argp)
5265 {
5266 struct kvm_device_attr attr;
5267 int r;
5268
5269 if (copy_from_user(&attr, argp, sizeof(attr)))
5270 return -EFAULT;
5271
5272 if (attr.group != KVM_VCPU_TSC_CTRL)
5273 return -ENXIO;
5274
5275 switch (ioctl) {
5276 case KVM_HAS_DEVICE_ATTR:
5277 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5278 break;
5279 case KVM_GET_DEVICE_ATTR:
5280 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5281 break;
5282 case KVM_SET_DEVICE_ATTR:
5283 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5284 break;
5285 }
5286
5287 return r;
5288 }
5289
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5290 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5291 struct kvm_enable_cap *cap)
5292 {
5293 int r;
5294 uint16_t vmcs_version;
5295 void __user *user_ptr;
5296
5297 if (cap->flags)
5298 return -EINVAL;
5299
5300 switch (cap->cap) {
5301 case KVM_CAP_HYPERV_SYNIC2:
5302 if (cap->args[0])
5303 return -EINVAL;
5304 fallthrough;
5305
5306 case KVM_CAP_HYPERV_SYNIC:
5307 if (!irqchip_in_kernel(vcpu->kvm))
5308 return -EINVAL;
5309 return kvm_hv_activate_synic(vcpu, cap->cap ==
5310 KVM_CAP_HYPERV_SYNIC2);
5311 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5312 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5313 return -ENOTTY;
5314 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5315 if (!r) {
5316 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5317 if (copy_to_user(user_ptr, &vmcs_version,
5318 sizeof(vmcs_version)))
5319 r = -EFAULT;
5320 }
5321 return r;
5322 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5323 if (!kvm_x86_ops.enable_direct_tlbflush)
5324 return -ENOTTY;
5325
5326 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5327
5328 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5329 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5330
5331 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5332 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5333 if (vcpu->arch.pv_cpuid.enforce)
5334 kvm_update_pv_runtime(vcpu);
5335
5336 return 0;
5337 default:
5338 return -EINVAL;
5339 }
5340 }
5341
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5342 long kvm_arch_vcpu_ioctl(struct file *filp,
5343 unsigned int ioctl, unsigned long arg)
5344 {
5345 struct kvm_vcpu *vcpu = filp->private_data;
5346 void __user *argp = (void __user *)arg;
5347 int r;
5348 union {
5349 struct kvm_sregs2 *sregs2;
5350 struct kvm_lapic_state *lapic;
5351 struct kvm_xsave *xsave;
5352 struct kvm_xcrs *xcrs;
5353 void *buffer;
5354 } u;
5355
5356 vcpu_load(vcpu);
5357
5358 u.buffer = NULL;
5359 switch (ioctl) {
5360 case KVM_GET_LAPIC: {
5361 r = -EINVAL;
5362 if (!lapic_in_kernel(vcpu))
5363 goto out;
5364 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5365 GFP_KERNEL_ACCOUNT);
5366
5367 r = -ENOMEM;
5368 if (!u.lapic)
5369 goto out;
5370 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5371 if (r)
5372 goto out;
5373 r = -EFAULT;
5374 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5375 goto out;
5376 r = 0;
5377 break;
5378 }
5379 case KVM_SET_LAPIC: {
5380 r = -EINVAL;
5381 if (!lapic_in_kernel(vcpu))
5382 goto out;
5383 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5384 if (IS_ERR(u.lapic)) {
5385 r = PTR_ERR(u.lapic);
5386 goto out_nofree;
5387 }
5388
5389 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5390 break;
5391 }
5392 case KVM_INTERRUPT: {
5393 struct kvm_interrupt irq;
5394
5395 r = -EFAULT;
5396 if (copy_from_user(&irq, argp, sizeof(irq)))
5397 goto out;
5398 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5399 break;
5400 }
5401 case KVM_NMI: {
5402 r = kvm_vcpu_ioctl_nmi(vcpu);
5403 break;
5404 }
5405 case KVM_SMI: {
5406 r = kvm_vcpu_ioctl_smi(vcpu);
5407 break;
5408 }
5409 case KVM_SET_CPUID: {
5410 struct kvm_cpuid __user *cpuid_arg = argp;
5411 struct kvm_cpuid cpuid;
5412
5413 r = -EFAULT;
5414 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5415 goto out;
5416 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5417 break;
5418 }
5419 case KVM_SET_CPUID2: {
5420 struct kvm_cpuid2 __user *cpuid_arg = argp;
5421 struct kvm_cpuid2 cpuid;
5422
5423 r = -EFAULT;
5424 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5425 goto out;
5426 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5427 cpuid_arg->entries);
5428 break;
5429 }
5430 case KVM_GET_CPUID2: {
5431 struct kvm_cpuid2 __user *cpuid_arg = argp;
5432 struct kvm_cpuid2 cpuid;
5433
5434 r = -EFAULT;
5435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5436 goto out;
5437 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5438 cpuid_arg->entries);
5439 if (r)
5440 goto out;
5441 r = -EFAULT;
5442 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5443 goto out;
5444 r = 0;
5445 break;
5446 }
5447 case KVM_GET_MSRS: {
5448 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5449 r = msr_io(vcpu, argp, do_get_msr, 1);
5450 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5451 break;
5452 }
5453 case KVM_SET_MSRS: {
5454 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5455 r = msr_io(vcpu, argp, do_set_msr, 0);
5456 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5457 break;
5458 }
5459 case KVM_TPR_ACCESS_REPORTING: {
5460 struct kvm_tpr_access_ctl tac;
5461
5462 r = -EFAULT;
5463 if (copy_from_user(&tac, argp, sizeof(tac)))
5464 goto out;
5465 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5466 if (r)
5467 goto out;
5468 r = -EFAULT;
5469 if (copy_to_user(argp, &tac, sizeof(tac)))
5470 goto out;
5471 r = 0;
5472 break;
5473 };
5474 case KVM_SET_VAPIC_ADDR: {
5475 struct kvm_vapic_addr va;
5476 int idx;
5477
5478 r = -EINVAL;
5479 if (!lapic_in_kernel(vcpu))
5480 goto out;
5481 r = -EFAULT;
5482 if (copy_from_user(&va, argp, sizeof(va)))
5483 goto out;
5484 idx = srcu_read_lock(&vcpu->kvm->srcu);
5485 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5486 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5487 break;
5488 }
5489 case KVM_X86_SETUP_MCE: {
5490 u64 mcg_cap;
5491
5492 r = -EFAULT;
5493 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5494 goto out;
5495 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5496 break;
5497 }
5498 case KVM_X86_SET_MCE: {
5499 struct kvm_x86_mce mce;
5500
5501 r = -EFAULT;
5502 if (copy_from_user(&mce, argp, sizeof(mce)))
5503 goto out;
5504 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5505 break;
5506 }
5507 case KVM_GET_VCPU_EVENTS: {
5508 struct kvm_vcpu_events events;
5509
5510 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5511
5512 r = -EFAULT;
5513 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5514 break;
5515 r = 0;
5516 break;
5517 }
5518 case KVM_SET_VCPU_EVENTS: {
5519 struct kvm_vcpu_events events;
5520
5521 r = -EFAULT;
5522 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5523 break;
5524
5525 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5526 break;
5527 }
5528 case KVM_GET_DEBUGREGS: {
5529 struct kvm_debugregs dbgregs;
5530
5531 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5532
5533 r = -EFAULT;
5534 if (copy_to_user(argp, &dbgregs,
5535 sizeof(struct kvm_debugregs)))
5536 break;
5537 r = 0;
5538 break;
5539 }
5540 case KVM_SET_DEBUGREGS: {
5541 struct kvm_debugregs dbgregs;
5542
5543 r = -EFAULT;
5544 if (copy_from_user(&dbgregs, argp,
5545 sizeof(struct kvm_debugregs)))
5546 break;
5547
5548 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5549 break;
5550 }
5551 case KVM_GET_XSAVE: {
5552 r = -EINVAL;
5553 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5554 break;
5555
5556 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5557 r = -ENOMEM;
5558 if (!u.xsave)
5559 break;
5560
5561 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5562
5563 r = -EFAULT;
5564 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5565 break;
5566 r = 0;
5567 break;
5568 }
5569 case KVM_SET_XSAVE: {
5570 int size = vcpu->arch.guest_fpu.uabi_size;
5571
5572 u.xsave = memdup_user(argp, size);
5573 if (IS_ERR(u.xsave)) {
5574 r = PTR_ERR(u.xsave);
5575 goto out_nofree;
5576 }
5577
5578 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5579 break;
5580 }
5581
5582 case KVM_GET_XSAVE2: {
5583 int size = vcpu->arch.guest_fpu.uabi_size;
5584
5585 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5586 r = -ENOMEM;
5587 if (!u.xsave)
5588 break;
5589
5590 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5591
5592 r = -EFAULT;
5593 if (copy_to_user(argp, u.xsave, size))
5594 break;
5595
5596 r = 0;
5597 break;
5598 }
5599
5600 case KVM_GET_XCRS: {
5601 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5602 r = -ENOMEM;
5603 if (!u.xcrs)
5604 break;
5605
5606 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5607
5608 r = -EFAULT;
5609 if (copy_to_user(argp, u.xcrs,
5610 sizeof(struct kvm_xcrs)))
5611 break;
5612 r = 0;
5613 break;
5614 }
5615 case KVM_SET_XCRS: {
5616 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5617 if (IS_ERR(u.xcrs)) {
5618 r = PTR_ERR(u.xcrs);
5619 goto out_nofree;
5620 }
5621
5622 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5623 break;
5624 }
5625 case KVM_SET_TSC_KHZ: {
5626 u32 user_tsc_khz;
5627
5628 r = -EINVAL;
5629 user_tsc_khz = (u32)arg;
5630
5631 if (kvm_has_tsc_control &&
5632 user_tsc_khz >= kvm_max_guest_tsc_khz)
5633 goto out;
5634
5635 if (user_tsc_khz == 0)
5636 user_tsc_khz = tsc_khz;
5637
5638 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5639 r = 0;
5640
5641 goto out;
5642 }
5643 case KVM_GET_TSC_KHZ: {
5644 r = vcpu->arch.virtual_tsc_khz;
5645 goto out;
5646 }
5647 case KVM_KVMCLOCK_CTRL: {
5648 r = kvm_set_guest_paused(vcpu);
5649 goto out;
5650 }
5651 case KVM_ENABLE_CAP: {
5652 struct kvm_enable_cap cap;
5653
5654 r = -EFAULT;
5655 if (copy_from_user(&cap, argp, sizeof(cap)))
5656 goto out;
5657 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5658 break;
5659 }
5660 case KVM_GET_NESTED_STATE: {
5661 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5662 u32 user_data_size;
5663
5664 r = -EINVAL;
5665 if (!kvm_x86_ops.nested_ops->get_state)
5666 break;
5667
5668 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5669 r = -EFAULT;
5670 if (get_user(user_data_size, &user_kvm_nested_state->size))
5671 break;
5672
5673 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5674 user_data_size);
5675 if (r < 0)
5676 break;
5677
5678 if (r > user_data_size) {
5679 if (put_user(r, &user_kvm_nested_state->size))
5680 r = -EFAULT;
5681 else
5682 r = -E2BIG;
5683 break;
5684 }
5685
5686 r = 0;
5687 break;
5688 }
5689 case KVM_SET_NESTED_STATE: {
5690 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5691 struct kvm_nested_state kvm_state;
5692 int idx;
5693
5694 r = -EINVAL;
5695 if (!kvm_x86_ops.nested_ops->set_state)
5696 break;
5697
5698 r = -EFAULT;
5699 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5700 break;
5701
5702 r = -EINVAL;
5703 if (kvm_state.size < sizeof(kvm_state))
5704 break;
5705
5706 if (kvm_state.flags &
5707 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5708 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5709 | KVM_STATE_NESTED_GIF_SET))
5710 break;
5711
5712 /* nested_run_pending implies guest_mode. */
5713 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5714 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5715 break;
5716
5717 idx = srcu_read_lock(&vcpu->kvm->srcu);
5718 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5719 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5720 break;
5721 }
5722 case KVM_GET_SUPPORTED_HV_CPUID:
5723 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5724 break;
5725 #ifdef CONFIG_KVM_XEN
5726 case KVM_XEN_VCPU_GET_ATTR: {
5727 struct kvm_xen_vcpu_attr xva;
5728
5729 r = -EFAULT;
5730 if (copy_from_user(&xva, argp, sizeof(xva)))
5731 goto out;
5732 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5733 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5734 r = -EFAULT;
5735 break;
5736 }
5737 case KVM_XEN_VCPU_SET_ATTR: {
5738 struct kvm_xen_vcpu_attr xva;
5739
5740 r = -EFAULT;
5741 if (copy_from_user(&xva, argp, sizeof(xva)))
5742 goto out;
5743 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5744 break;
5745 }
5746 #endif
5747 case KVM_GET_SREGS2: {
5748 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5749 r = -ENOMEM;
5750 if (!u.sregs2)
5751 goto out;
5752 __get_sregs2(vcpu, u.sregs2);
5753 r = -EFAULT;
5754 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5755 goto out;
5756 r = 0;
5757 break;
5758 }
5759 case KVM_SET_SREGS2: {
5760 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5761 if (IS_ERR(u.sregs2)) {
5762 r = PTR_ERR(u.sregs2);
5763 u.sregs2 = NULL;
5764 goto out;
5765 }
5766 r = __set_sregs2(vcpu, u.sregs2);
5767 break;
5768 }
5769 case KVM_HAS_DEVICE_ATTR:
5770 case KVM_GET_DEVICE_ATTR:
5771 case KVM_SET_DEVICE_ATTR:
5772 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5773 break;
5774 default:
5775 r = -EINVAL;
5776 }
5777 out:
5778 kfree(u.buffer);
5779 out_nofree:
5780 vcpu_put(vcpu);
5781 return r;
5782 }
5783
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5784 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5785 {
5786 return VM_FAULT_SIGBUS;
5787 }
5788
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5789 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5790 {
5791 int ret;
5792
5793 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5794 return -EINVAL;
5795 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5796 return ret;
5797 }
5798
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5799 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5800 u64 ident_addr)
5801 {
5802 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5803 }
5804
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5805 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5806 unsigned long kvm_nr_mmu_pages)
5807 {
5808 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5809 return -EINVAL;
5810
5811 mutex_lock(&kvm->slots_lock);
5812
5813 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5814 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5815
5816 mutex_unlock(&kvm->slots_lock);
5817 return 0;
5818 }
5819
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5820 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5821 {
5822 return kvm->arch.n_max_mmu_pages;
5823 }
5824
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5825 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5826 {
5827 struct kvm_pic *pic = kvm->arch.vpic;
5828 int r;
5829
5830 r = 0;
5831 switch (chip->chip_id) {
5832 case KVM_IRQCHIP_PIC_MASTER:
5833 memcpy(&chip->chip.pic, &pic->pics[0],
5834 sizeof(struct kvm_pic_state));
5835 break;
5836 case KVM_IRQCHIP_PIC_SLAVE:
5837 memcpy(&chip->chip.pic, &pic->pics[1],
5838 sizeof(struct kvm_pic_state));
5839 break;
5840 case KVM_IRQCHIP_IOAPIC:
5841 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5842 break;
5843 default:
5844 r = -EINVAL;
5845 break;
5846 }
5847 return r;
5848 }
5849
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5850 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5851 {
5852 struct kvm_pic *pic = kvm->arch.vpic;
5853 int r;
5854
5855 r = 0;
5856 switch (chip->chip_id) {
5857 case KVM_IRQCHIP_PIC_MASTER:
5858 spin_lock(&pic->lock);
5859 memcpy(&pic->pics[0], &chip->chip.pic,
5860 sizeof(struct kvm_pic_state));
5861 spin_unlock(&pic->lock);
5862 break;
5863 case KVM_IRQCHIP_PIC_SLAVE:
5864 spin_lock(&pic->lock);
5865 memcpy(&pic->pics[1], &chip->chip.pic,
5866 sizeof(struct kvm_pic_state));
5867 spin_unlock(&pic->lock);
5868 break;
5869 case KVM_IRQCHIP_IOAPIC:
5870 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5871 break;
5872 default:
5873 r = -EINVAL;
5874 break;
5875 }
5876 kvm_pic_update_irq(pic);
5877 return r;
5878 }
5879
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5880 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5881 {
5882 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5883
5884 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5885
5886 mutex_lock(&kps->lock);
5887 memcpy(ps, &kps->channels, sizeof(*ps));
5888 mutex_unlock(&kps->lock);
5889 return 0;
5890 }
5891
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5892 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5893 {
5894 int i;
5895 struct kvm_pit *pit = kvm->arch.vpit;
5896
5897 mutex_lock(&pit->pit_state.lock);
5898 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5899 for (i = 0; i < 3; i++)
5900 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5901 mutex_unlock(&pit->pit_state.lock);
5902 return 0;
5903 }
5904
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5905 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5906 {
5907 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5908 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5909 sizeof(ps->channels));
5910 ps->flags = kvm->arch.vpit->pit_state.flags;
5911 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5912 memset(&ps->reserved, 0, sizeof(ps->reserved));
5913 return 0;
5914 }
5915
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5916 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5917 {
5918 int start = 0;
5919 int i;
5920 u32 prev_legacy, cur_legacy;
5921 struct kvm_pit *pit = kvm->arch.vpit;
5922
5923 mutex_lock(&pit->pit_state.lock);
5924 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5925 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5926 if (!prev_legacy && cur_legacy)
5927 start = 1;
5928 memcpy(&pit->pit_state.channels, &ps->channels,
5929 sizeof(pit->pit_state.channels));
5930 pit->pit_state.flags = ps->flags;
5931 for (i = 0; i < 3; i++)
5932 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5933 start && i == 0);
5934 mutex_unlock(&pit->pit_state.lock);
5935 return 0;
5936 }
5937
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5938 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5939 struct kvm_reinject_control *control)
5940 {
5941 struct kvm_pit *pit = kvm->arch.vpit;
5942
5943 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5944 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5945 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5946 */
5947 mutex_lock(&pit->pit_state.lock);
5948 kvm_pit_set_reinject(pit, control->pit_reinject);
5949 mutex_unlock(&pit->pit_state.lock);
5950
5951 return 0;
5952 }
5953
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5954 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5955 {
5956
5957 /*
5958 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5959 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5960 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5961 * VM-Exit.
5962 */
5963 struct kvm_vcpu *vcpu;
5964 unsigned long i;
5965
5966 kvm_for_each_vcpu(i, vcpu, kvm)
5967 kvm_vcpu_kick(vcpu);
5968 }
5969
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5970 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5971 bool line_status)
5972 {
5973 if (!irqchip_in_kernel(kvm))
5974 return -ENXIO;
5975
5976 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5977 irq_event->irq, irq_event->level,
5978 line_status);
5979 return 0;
5980 }
5981
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5982 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5983 struct kvm_enable_cap *cap)
5984 {
5985 int r;
5986
5987 if (cap->flags)
5988 return -EINVAL;
5989
5990 switch (cap->cap) {
5991 case KVM_CAP_DISABLE_QUIRKS2:
5992 r = -EINVAL;
5993 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5994 break;
5995 fallthrough;
5996 case KVM_CAP_DISABLE_QUIRKS:
5997 kvm->arch.disabled_quirks = cap->args[0];
5998 r = 0;
5999 break;
6000 case KVM_CAP_SPLIT_IRQCHIP: {
6001 mutex_lock(&kvm->lock);
6002 r = -EINVAL;
6003 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6004 goto split_irqchip_unlock;
6005 r = -EEXIST;
6006 if (irqchip_in_kernel(kvm))
6007 goto split_irqchip_unlock;
6008 if (kvm->created_vcpus)
6009 goto split_irqchip_unlock;
6010 r = kvm_setup_empty_irq_routing(kvm);
6011 if (r)
6012 goto split_irqchip_unlock;
6013 /* Pairs with irqchip_in_kernel. */
6014 smp_wmb();
6015 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6016 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6017 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6018 r = 0;
6019 split_irqchip_unlock:
6020 mutex_unlock(&kvm->lock);
6021 break;
6022 }
6023 case KVM_CAP_X2APIC_API:
6024 r = -EINVAL;
6025 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6026 break;
6027
6028 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6029 kvm->arch.x2apic_format = true;
6030 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6031 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6032
6033 r = 0;
6034 break;
6035 case KVM_CAP_X86_DISABLE_EXITS:
6036 r = -EINVAL;
6037 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6038 break;
6039
6040 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6041 kvm_can_mwait_in_guest())
6042 kvm->arch.mwait_in_guest = true;
6043 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6044 kvm->arch.hlt_in_guest = true;
6045 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6046 kvm->arch.pause_in_guest = true;
6047 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6048 kvm->arch.cstate_in_guest = true;
6049 r = 0;
6050 break;
6051 case KVM_CAP_MSR_PLATFORM_INFO:
6052 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6053 r = 0;
6054 break;
6055 case KVM_CAP_EXCEPTION_PAYLOAD:
6056 kvm->arch.exception_payload_enabled = cap->args[0];
6057 r = 0;
6058 break;
6059 case KVM_CAP_X86_USER_SPACE_MSR:
6060 r = -EINVAL;
6061 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6062 KVM_MSR_EXIT_REASON_UNKNOWN |
6063 KVM_MSR_EXIT_REASON_FILTER))
6064 break;
6065 kvm->arch.user_space_msr_mask = cap->args[0];
6066 r = 0;
6067 break;
6068 case KVM_CAP_X86_BUS_LOCK_EXIT:
6069 r = -EINVAL;
6070 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6071 break;
6072
6073 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6074 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6075 break;
6076
6077 if (kvm_has_bus_lock_exit &&
6078 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6079 kvm->arch.bus_lock_detection_enabled = true;
6080 r = 0;
6081 break;
6082 #ifdef CONFIG_X86_SGX_KVM
6083 case KVM_CAP_SGX_ATTRIBUTE: {
6084 unsigned long allowed_attributes = 0;
6085
6086 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6087 if (r)
6088 break;
6089
6090 /* KVM only supports the PROVISIONKEY privileged attribute. */
6091 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6092 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6093 kvm->arch.sgx_provisioning_allowed = true;
6094 else
6095 r = -EINVAL;
6096 break;
6097 }
6098 #endif
6099 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6100 r = -EINVAL;
6101 if (!kvm_x86_ops.vm_copy_enc_context_from)
6102 break;
6103
6104 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6105 break;
6106 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6107 r = -EINVAL;
6108 if (!kvm_x86_ops.vm_move_enc_context_from)
6109 break;
6110
6111 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6112 break;
6113 case KVM_CAP_EXIT_HYPERCALL:
6114 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6115 r = -EINVAL;
6116 break;
6117 }
6118 kvm->arch.hypercall_exit_enabled = cap->args[0];
6119 r = 0;
6120 break;
6121 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6122 r = -EINVAL;
6123 if (cap->args[0] & ~1)
6124 break;
6125 kvm->arch.exit_on_emulation_error = cap->args[0];
6126 r = 0;
6127 break;
6128 case KVM_CAP_PMU_CAPABILITY:
6129 r = -EINVAL;
6130 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6131 break;
6132
6133 mutex_lock(&kvm->lock);
6134 if (!kvm->created_vcpus) {
6135 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6136 r = 0;
6137 }
6138 mutex_unlock(&kvm->lock);
6139 break;
6140 default:
6141 r = -EINVAL;
6142 break;
6143 }
6144 return r;
6145 }
6146
kvm_alloc_msr_filter(bool default_allow)6147 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6148 {
6149 struct kvm_x86_msr_filter *msr_filter;
6150
6151 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6152 if (!msr_filter)
6153 return NULL;
6154
6155 msr_filter->default_allow = default_allow;
6156 return msr_filter;
6157 }
6158
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6159 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6160 {
6161 u32 i;
6162
6163 if (!msr_filter)
6164 return;
6165
6166 for (i = 0; i < msr_filter->count; i++)
6167 kfree(msr_filter->ranges[i].bitmap);
6168
6169 kfree(msr_filter);
6170 }
6171
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6172 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6173 struct kvm_msr_filter_range *user_range)
6174 {
6175 unsigned long *bitmap = NULL;
6176 size_t bitmap_size;
6177
6178 if (!user_range->nmsrs)
6179 return 0;
6180
6181 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6182 return -EINVAL;
6183
6184 if (!user_range->flags)
6185 return -EINVAL;
6186
6187 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6188 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6189 return -EINVAL;
6190
6191 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6192 if (IS_ERR(bitmap))
6193 return PTR_ERR(bitmap);
6194
6195 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6196 .flags = user_range->flags,
6197 .base = user_range->base,
6198 .nmsrs = user_range->nmsrs,
6199 .bitmap = bitmap,
6200 };
6201
6202 msr_filter->count++;
6203 return 0;
6204 }
6205
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,void __user * argp)6206 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6207 {
6208 struct kvm_msr_filter __user *user_msr_filter = argp;
6209 struct kvm_x86_msr_filter *new_filter, *old_filter;
6210 struct kvm_msr_filter filter;
6211 bool default_allow;
6212 bool empty = true;
6213 int r = 0;
6214 u32 i;
6215
6216 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6217 return -EFAULT;
6218
6219 if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6220 return -EINVAL;
6221
6222 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6223 empty &= !filter.ranges[i].nmsrs;
6224
6225 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6226 if (empty && !default_allow)
6227 return -EINVAL;
6228
6229 new_filter = kvm_alloc_msr_filter(default_allow);
6230 if (!new_filter)
6231 return -ENOMEM;
6232
6233 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6234 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6235 if (r) {
6236 kvm_free_msr_filter(new_filter);
6237 return r;
6238 }
6239 }
6240
6241 mutex_lock(&kvm->lock);
6242
6243 /* The per-VM filter is protected by kvm->lock... */
6244 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6245
6246 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6247 synchronize_srcu(&kvm->srcu);
6248
6249 kvm_free_msr_filter(old_filter);
6250
6251 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6252 mutex_unlock(&kvm->lock);
6253
6254 return 0;
6255 }
6256
6257 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6258 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6259 {
6260 struct kvm_vcpu *vcpu;
6261 unsigned long i;
6262 int ret = 0;
6263
6264 mutex_lock(&kvm->lock);
6265 kvm_for_each_vcpu(i, vcpu, kvm) {
6266 if (!vcpu->arch.pv_time.active)
6267 continue;
6268
6269 ret = kvm_set_guest_paused(vcpu);
6270 if (ret) {
6271 kvm_err("Failed to pause guest VCPU%d: %d\n",
6272 vcpu->vcpu_id, ret);
6273 break;
6274 }
6275 }
6276 mutex_unlock(&kvm->lock);
6277
6278 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6279 }
6280
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6281 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6282 {
6283 switch (state) {
6284 case PM_HIBERNATION_PREPARE:
6285 case PM_SUSPEND_PREPARE:
6286 return kvm_arch_suspend_notifier(kvm);
6287 }
6288
6289 return NOTIFY_DONE;
6290 }
6291 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6292
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6293 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6294 {
6295 struct kvm_clock_data data = { 0 };
6296
6297 get_kvmclock(kvm, &data);
6298 if (copy_to_user(argp, &data, sizeof(data)))
6299 return -EFAULT;
6300
6301 return 0;
6302 }
6303
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6304 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6305 {
6306 struct kvm_arch *ka = &kvm->arch;
6307 struct kvm_clock_data data;
6308 u64 now_raw_ns;
6309
6310 if (copy_from_user(&data, argp, sizeof(data)))
6311 return -EFAULT;
6312
6313 /*
6314 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6315 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6316 */
6317 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6318 return -EINVAL;
6319
6320 kvm_hv_request_tsc_page_update(kvm);
6321 kvm_start_pvclock_update(kvm);
6322 pvclock_update_vm_gtod_copy(kvm);
6323
6324 /*
6325 * This pairs with kvm_guest_time_update(): when masterclock is
6326 * in use, we use master_kernel_ns + kvmclock_offset to set
6327 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6328 * is slightly ahead) here we risk going negative on unsigned
6329 * 'system_time' when 'data.clock' is very small.
6330 */
6331 if (data.flags & KVM_CLOCK_REALTIME) {
6332 u64 now_real_ns = ktime_get_real_ns();
6333
6334 /*
6335 * Avoid stepping the kvmclock backwards.
6336 */
6337 if (now_real_ns > data.realtime)
6338 data.clock += now_real_ns - data.realtime;
6339 }
6340
6341 if (ka->use_master_clock)
6342 now_raw_ns = ka->master_kernel_ns;
6343 else
6344 now_raw_ns = get_kvmclock_base_ns();
6345 ka->kvmclock_offset = data.clock - now_raw_ns;
6346 kvm_end_pvclock_update(kvm);
6347 return 0;
6348 }
6349
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6350 long kvm_arch_vm_ioctl(struct file *filp,
6351 unsigned int ioctl, unsigned long arg)
6352 {
6353 struct kvm *kvm = filp->private_data;
6354 void __user *argp = (void __user *)arg;
6355 int r = -ENOTTY;
6356 /*
6357 * This union makes it completely explicit to gcc-3.x
6358 * that these two variables' stack usage should be
6359 * combined, not added together.
6360 */
6361 union {
6362 struct kvm_pit_state ps;
6363 struct kvm_pit_state2 ps2;
6364 struct kvm_pit_config pit_config;
6365 } u;
6366
6367 switch (ioctl) {
6368 case KVM_SET_TSS_ADDR:
6369 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6370 break;
6371 case KVM_SET_IDENTITY_MAP_ADDR: {
6372 u64 ident_addr;
6373
6374 mutex_lock(&kvm->lock);
6375 r = -EINVAL;
6376 if (kvm->created_vcpus)
6377 goto set_identity_unlock;
6378 r = -EFAULT;
6379 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6380 goto set_identity_unlock;
6381 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6382 set_identity_unlock:
6383 mutex_unlock(&kvm->lock);
6384 break;
6385 }
6386 case KVM_SET_NR_MMU_PAGES:
6387 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6388 break;
6389 case KVM_GET_NR_MMU_PAGES:
6390 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6391 break;
6392 case KVM_CREATE_IRQCHIP: {
6393 mutex_lock(&kvm->lock);
6394
6395 r = -EEXIST;
6396 if (irqchip_in_kernel(kvm))
6397 goto create_irqchip_unlock;
6398
6399 r = -EINVAL;
6400 if (kvm->created_vcpus)
6401 goto create_irqchip_unlock;
6402
6403 r = kvm_pic_init(kvm);
6404 if (r)
6405 goto create_irqchip_unlock;
6406
6407 r = kvm_ioapic_init(kvm);
6408 if (r) {
6409 kvm_pic_destroy(kvm);
6410 goto create_irqchip_unlock;
6411 }
6412
6413 r = kvm_setup_default_irq_routing(kvm);
6414 if (r) {
6415 kvm_ioapic_destroy(kvm);
6416 kvm_pic_destroy(kvm);
6417 goto create_irqchip_unlock;
6418 }
6419 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6420 smp_wmb();
6421 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6422 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6423 create_irqchip_unlock:
6424 mutex_unlock(&kvm->lock);
6425 break;
6426 }
6427 case KVM_CREATE_PIT:
6428 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6429 goto create_pit;
6430 case KVM_CREATE_PIT2:
6431 r = -EFAULT;
6432 if (copy_from_user(&u.pit_config, argp,
6433 sizeof(struct kvm_pit_config)))
6434 goto out;
6435 create_pit:
6436 mutex_lock(&kvm->lock);
6437 r = -EEXIST;
6438 if (kvm->arch.vpit)
6439 goto create_pit_unlock;
6440 r = -ENOMEM;
6441 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6442 if (kvm->arch.vpit)
6443 r = 0;
6444 create_pit_unlock:
6445 mutex_unlock(&kvm->lock);
6446 break;
6447 case KVM_GET_IRQCHIP: {
6448 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6449 struct kvm_irqchip *chip;
6450
6451 chip = memdup_user(argp, sizeof(*chip));
6452 if (IS_ERR(chip)) {
6453 r = PTR_ERR(chip);
6454 goto out;
6455 }
6456
6457 r = -ENXIO;
6458 if (!irqchip_kernel(kvm))
6459 goto get_irqchip_out;
6460 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6461 if (r)
6462 goto get_irqchip_out;
6463 r = -EFAULT;
6464 if (copy_to_user(argp, chip, sizeof(*chip)))
6465 goto get_irqchip_out;
6466 r = 0;
6467 get_irqchip_out:
6468 kfree(chip);
6469 break;
6470 }
6471 case KVM_SET_IRQCHIP: {
6472 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6473 struct kvm_irqchip *chip;
6474
6475 chip = memdup_user(argp, sizeof(*chip));
6476 if (IS_ERR(chip)) {
6477 r = PTR_ERR(chip);
6478 goto out;
6479 }
6480
6481 r = -ENXIO;
6482 if (!irqchip_kernel(kvm))
6483 goto set_irqchip_out;
6484 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6485 set_irqchip_out:
6486 kfree(chip);
6487 break;
6488 }
6489 case KVM_GET_PIT: {
6490 r = -EFAULT;
6491 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6492 goto out;
6493 r = -ENXIO;
6494 if (!kvm->arch.vpit)
6495 goto out;
6496 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6497 if (r)
6498 goto out;
6499 r = -EFAULT;
6500 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6501 goto out;
6502 r = 0;
6503 break;
6504 }
6505 case KVM_SET_PIT: {
6506 r = -EFAULT;
6507 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6508 goto out;
6509 mutex_lock(&kvm->lock);
6510 r = -ENXIO;
6511 if (!kvm->arch.vpit)
6512 goto set_pit_out;
6513 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6514 set_pit_out:
6515 mutex_unlock(&kvm->lock);
6516 break;
6517 }
6518 case KVM_GET_PIT2: {
6519 r = -ENXIO;
6520 if (!kvm->arch.vpit)
6521 goto out;
6522 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6523 if (r)
6524 goto out;
6525 r = -EFAULT;
6526 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6527 goto out;
6528 r = 0;
6529 break;
6530 }
6531 case KVM_SET_PIT2: {
6532 r = -EFAULT;
6533 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6534 goto out;
6535 mutex_lock(&kvm->lock);
6536 r = -ENXIO;
6537 if (!kvm->arch.vpit)
6538 goto set_pit2_out;
6539 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6540 set_pit2_out:
6541 mutex_unlock(&kvm->lock);
6542 break;
6543 }
6544 case KVM_REINJECT_CONTROL: {
6545 struct kvm_reinject_control control;
6546 r = -EFAULT;
6547 if (copy_from_user(&control, argp, sizeof(control)))
6548 goto out;
6549 r = -ENXIO;
6550 if (!kvm->arch.vpit)
6551 goto out;
6552 r = kvm_vm_ioctl_reinject(kvm, &control);
6553 break;
6554 }
6555 case KVM_SET_BOOT_CPU_ID:
6556 r = 0;
6557 mutex_lock(&kvm->lock);
6558 if (kvm->created_vcpus)
6559 r = -EBUSY;
6560 else
6561 kvm->arch.bsp_vcpu_id = arg;
6562 mutex_unlock(&kvm->lock);
6563 break;
6564 #ifdef CONFIG_KVM_XEN
6565 case KVM_XEN_HVM_CONFIG: {
6566 struct kvm_xen_hvm_config xhc;
6567 r = -EFAULT;
6568 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6569 goto out;
6570 r = kvm_xen_hvm_config(kvm, &xhc);
6571 break;
6572 }
6573 case KVM_XEN_HVM_GET_ATTR: {
6574 struct kvm_xen_hvm_attr xha;
6575
6576 r = -EFAULT;
6577 if (copy_from_user(&xha, argp, sizeof(xha)))
6578 goto out;
6579 r = kvm_xen_hvm_get_attr(kvm, &xha);
6580 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6581 r = -EFAULT;
6582 break;
6583 }
6584 case KVM_XEN_HVM_SET_ATTR: {
6585 struct kvm_xen_hvm_attr xha;
6586
6587 r = -EFAULT;
6588 if (copy_from_user(&xha, argp, sizeof(xha)))
6589 goto out;
6590 r = kvm_xen_hvm_set_attr(kvm, &xha);
6591 break;
6592 }
6593 case KVM_XEN_HVM_EVTCHN_SEND: {
6594 struct kvm_irq_routing_xen_evtchn uxe;
6595
6596 r = -EFAULT;
6597 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6598 goto out;
6599 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6600 break;
6601 }
6602 #endif
6603 case KVM_SET_CLOCK:
6604 r = kvm_vm_ioctl_set_clock(kvm, argp);
6605 break;
6606 case KVM_GET_CLOCK:
6607 r = kvm_vm_ioctl_get_clock(kvm, argp);
6608 break;
6609 case KVM_SET_TSC_KHZ: {
6610 u32 user_tsc_khz;
6611
6612 r = -EINVAL;
6613 user_tsc_khz = (u32)arg;
6614
6615 if (kvm_has_tsc_control &&
6616 user_tsc_khz >= kvm_max_guest_tsc_khz)
6617 goto out;
6618
6619 if (user_tsc_khz == 0)
6620 user_tsc_khz = tsc_khz;
6621
6622 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6623 r = 0;
6624
6625 goto out;
6626 }
6627 case KVM_GET_TSC_KHZ: {
6628 r = READ_ONCE(kvm->arch.default_tsc_khz);
6629 goto out;
6630 }
6631 case KVM_MEMORY_ENCRYPT_OP: {
6632 r = -ENOTTY;
6633 if (!kvm_x86_ops.mem_enc_ioctl)
6634 goto out;
6635
6636 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6637 break;
6638 }
6639 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6640 struct kvm_enc_region region;
6641
6642 r = -EFAULT;
6643 if (copy_from_user(®ion, argp, sizeof(region)))
6644 goto out;
6645
6646 r = -ENOTTY;
6647 if (!kvm_x86_ops.mem_enc_register_region)
6648 goto out;
6649
6650 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
6651 break;
6652 }
6653 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6654 struct kvm_enc_region region;
6655
6656 r = -EFAULT;
6657 if (copy_from_user(®ion, argp, sizeof(region)))
6658 goto out;
6659
6660 r = -ENOTTY;
6661 if (!kvm_x86_ops.mem_enc_unregister_region)
6662 goto out;
6663
6664 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
6665 break;
6666 }
6667 case KVM_HYPERV_EVENTFD: {
6668 struct kvm_hyperv_eventfd hvevfd;
6669
6670 r = -EFAULT;
6671 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6672 goto out;
6673 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6674 break;
6675 }
6676 case KVM_SET_PMU_EVENT_FILTER:
6677 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6678 break;
6679 case KVM_X86_SET_MSR_FILTER:
6680 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6681 break;
6682 default:
6683 r = -ENOTTY;
6684 }
6685 out:
6686 return r;
6687 }
6688
kvm_init_msr_list(void)6689 static void kvm_init_msr_list(void)
6690 {
6691 struct x86_pmu_capability x86_pmu;
6692 u32 dummy[2];
6693 unsigned i;
6694
6695 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6696 "Please update the fixed PMCs in msrs_to_saved_all[]");
6697
6698 perf_get_x86_pmu_capability(&x86_pmu);
6699
6700 num_msrs_to_save = 0;
6701 num_emulated_msrs = 0;
6702 num_msr_based_features = 0;
6703
6704 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6705 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6706 continue;
6707
6708 /*
6709 * Even MSRs that are valid in the host may not be exposed
6710 * to the guests in some cases.
6711 */
6712 switch (msrs_to_save_all[i]) {
6713 case MSR_IA32_BNDCFGS:
6714 if (!kvm_mpx_supported())
6715 continue;
6716 break;
6717 case MSR_TSC_AUX:
6718 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6719 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6720 continue;
6721 break;
6722 case MSR_IA32_UMWAIT_CONTROL:
6723 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6724 continue;
6725 break;
6726 case MSR_IA32_RTIT_CTL:
6727 case MSR_IA32_RTIT_STATUS:
6728 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6729 continue;
6730 break;
6731 case MSR_IA32_RTIT_CR3_MATCH:
6732 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6733 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6734 continue;
6735 break;
6736 case MSR_IA32_RTIT_OUTPUT_BASE:
6737 case MSR_IA32_RTIT_OUTPUT_MASK:
6738 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6739 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6740 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6741 continue;
6742 break;
6743 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6744 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6745 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6746 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6747 continue;
6748 break;
6749 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6750 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6751 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6752 continue;
6753 break;
6754 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6755 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6756 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6757 continue;
6758 break;
6759 case MSR_IA32_XFD:
6760 case MSR_IA32_XFD_ERR:
6761 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6762 continue;
6763 break;
6764 default:
6765 break;
6766 }
6767
6768 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6769 }
6770
6771 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6772 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6773 continue;
6774
6775 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6776 }
6777
6778 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6779 struct kvm_msr_entry msr;
6780
6781 msr.index = msr_based_features_all[i];
6782 if (kvm_get_msr_feature(&msr))
6783 continue;
6784
6785 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6786 }
6787 }
6788
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)6789 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6790 const void *v)
6791 {
6792 int handled = 0;
6793 int n;
6794
6795 do {
6796 n = min(len, 8);
6797 if (!(lapic_in_kernel(vcpu) &&
6798 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6799 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6800 break;
6801 handled += n;
6802 addr += n;
6803 len -= n;
6804 v += n;
6805 } while (len);
6806
6807 return handled;
6808 }
6809
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6810 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6811 {
6812 int handled = 0;
6813 int n;
6814
6815 do {
6816 n = min(len, 8);
6817 if (!(lapic_in_kernel(vcpu) &&
6818 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6819 addr, n, v))
6820 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6821 break;
6822 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6823 handled += n;
6824 addr += n;
6825 len -= n;
6826 v += n;
6827 } while (len);
6828
6829 return handled;
6830 }
6831
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6832 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6833 struct kvm_segment *var, int seg)
6834 {
6835 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6836 }
6837
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6838 void kvm_get_segment(struct kvm_vcpu *vcpu,
6839 struct kvm_segment *var, int seg)
6840 {
6841 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6842 }
6843
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)6844 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6845 struct x86_exception *exception)
6846 {
6847 struct kvm_mmu *mmu = vcpu->arch.mmu;
6848 gpa_t t_gpa;
6849
6850 BUG_ON(!mmu_is_nested(vcpu));
6851
6852 /* NPT walks are always user-walks */
6853 access |= PFERR_USER_MASK;
6854 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6855
6856 return t_gpa;
6857 }
6858
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6859 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6860 struct x86_exception *exception)
6861 {
6862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6863
6864 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6865 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6866 }
6867 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6868
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6869 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6870 struct x86_exception *exception)
6871 {
6872 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6873
6874 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6875 access |= PFERR_FETCH_MASK;
6876 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6877 }
6878
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6879 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6880 struct x86_exception *exception)
6881 {
6882 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6883
6884 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6885 access |= PFERR_WRITE_MASK;
6886 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6887 }
6888 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6889
6890 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6891 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6892 struct x86_exception *exception)
6893 {
6894 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6895
6896 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6897 }
6898
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)6899 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6900 struct kvm_vcpu *vcpu, u64 access,
6901 struct x86_exception *exception)
6902 {
6903 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6904 void *data = val;
6905 int r = X86EMUL_CONTINUE;
6906
6907 while (bytes) {
6908 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6909 unsigned offset = addr & (PAGE_SIZE-1);
6910 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6911 int ret;
6912
6913 if (gpa == UNMAPPED_GVA)
6914 return X86EMUL_PROPAGATE_FAULT;
6915 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6916 offset, toread);
6917 if (ret < 0) {
6918 r = X86EMUL_IO_NEEDED;
6919 goto out;
6920 }
6921
6922 bytes -= toread;
6923 data += toread;
6924 addr += toread;
6925 }
6926 out:
6927 return r;
6928 }
6929
6930 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6931 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6932 gva_t addr, void *val, unsigned int bytes,
6933 struct x86_exception *exception)
6934 {
6935 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6936 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6937 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6938 unsigned offset;
6939 int ret;
6940
6941 /* Inline kvm_read_guest_virt_helper for speed. */
6942 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6943 exception);
6944 if (unlikely(gpa == UNMAPPED_GVA))
6945 return X86EMUL_PROPAGATE_FAULT;
6946
6947 offset = addr & (PAGE_SIZE-1);
6948 if (WARN_ON(offset + bytes > PAGE_SIZE))
6949 bytes = (unsigned)PAGE_SIZE - offset;
6950 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6951 offset, bytes);
6952 if (unlikely(ret < 0))
6953 return X86EMUL_IO_NEEDED;
6954
6955 return X86EMUL_CONTINUE;
6956 }
6957
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6958 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6959 gva_t addr, void *val, unsigned int bytes,
6960 struct x86_exception *exception)
6961 {
6962 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6963
6964 /*
6965 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6966 * is returned, but our callers are not ready for that and they blindly
6967 * call kvm_inject_page_fault. Ensure that they at least do not leak
6968 * uninitialized kernel stack memory into cr2 and error code.
6969 */
6970 memset(exception, 0, sizeof(*exception));
6971 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6972 exception);
6973 }
6974 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6975
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6976 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6977 gva_t addr, void *val, unsigned int bytes,
6978 struct x86_exception *exception, bool system)
6979 {
6980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6981 u64 access = 0;
6982
6983 if (system)
6984 access |= PFERR_IMPLICIT_ACCESS;
6985 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6986 access |= PFERR_USER_MASK;
6987
6988 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6989 }
6990
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6991 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6992 unsigned long addr, void *val, unsigned int bytes)
6993 {
6994 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6995 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6996
6997 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6998 }
6999
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7000 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7001 struct kvm_vcpu *vcpu, u64 access,
7002 struct x86_exception *exception)
7003 {
7004 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7005 void *data = val;
7006 int r = X86EMUL_CONTINUE;
7007
7008 while (bytes) {
7009 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7010 unsigned offset = addr & (PAGE_SIZE-1);
7011 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7012 int ret;
7013
7014 if (gpa == UNMAPPED_GVA)
7015 return X86EMUL_PROPAGATE_FAULT;
7016 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7017 if (ret < 0) {
7018 r = X86EMUL_IO_NEEDED;
7019 goto out;
7020 }
7021
7022 bytes -= towrite;
7023 data += towrite;
7024 addr += towrite;
7025 }
7026 out:
7027 return r;
7028 }
7029
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7030 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7031 unsigned int bytes, struct x86_exception *exception,
7032 bool system)
7033 {
7034 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7035 u64 access = PFERR_WRITE_MASK;
7036
7037 if (system)
7038 access |= PFERR_IMPLICIT_ACCESS;
7039 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7040 access |= PFERR_USER_MASK;
7041
7042 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7043 access, exception);
7044 }
7045
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7046 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7047 unsigned int bytes, struct x86_exception *exception)
7048 {
7049 /* kvm_write_guest_virt_system can pull in tons of pages. */
7050 vcpu->arch.l1tf_flush_l1d = true;
7051
7052 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7053 PFERR_WRITE_MASK, exception);
7054 }
7055 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7056
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7057 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7058 void *insn, int insn_len)
7059 {
7060 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7061 insn, insn_len);
7062 }
7063
handle_ud(struct kvm_vcpu * vcpu)7064 int handle_ud(struct kvm_vcpu *vcpu)
7065 {
7066 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7067 int emul_type = EMULTYPE_TRAP_UD;
7068 char sig[5]; /* ud2; .ascii "kvm" */
7069 struct x86_exception e;
7070
7071 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7072 return 1;
7073
7074 if (force_emulation_prefix &&
7075 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7076 sig, sizeof(sig), &e) == 0 &&
7077 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7078 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7079 emul_type = EMULTYPE_TRAP_UD_FORCED;
7080 }
7081
7082 return kvm_emulate_instruction(vcpu, emul_type);
7083 }
7084 EXPORT_SYMBOL_GPL(handle_ud);
7085
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7086 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7087 gpa_t gpa, bool write)
7088 {
7089 /* For APIC access vmexit */
7090 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7091 return 1;
7092
7093 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7094 trace_vcpu_match_mmio(gva, gpa, write, true);
7095 return 1;
7096 }
7097
7098 return 0;
7099 }
7100
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7101 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7102 gpa_t *gpa, struct x86_exception *exception,
7103 bool write)
7104 {
7105 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7106 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7107 | (write ? PFERR_WRITE_MASK : 0);
7108
7109 /*
7110 * currently PKRU is only applied to ept enabled guest so
7111 * there is no pkey in EPT page table for L1 guest or EPT
7112 * shadow page table for L2 guest.
7113 */
7114 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7115 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7116 vcpu->arch.mmio_access, 0, access))) {
7117 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7118 (gva & (PAGE_SIZE - 1));
7119 trace_vcpu_match_mmio(gva, *gpa, write, false);
7120 return 1;
7121 }
7122
7123 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7124
7125 if (*gpa == UNMAPPED_GVA)
7126 return -1;
7127
7128 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7129 }
7130
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7131 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7132 const void *val, int bytes)
7133 {
7134 int ret;
7135
7136 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7137 if (ret < 0)
7138 return 0;
7139 kvm_page_track_write(vcpu, gpa, val, bytes);
7140 return 1;
7141 }
7142
7143 struct read_write_emulator_ops {
7144 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7145 int bytes);
7146 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7147 void *val, int bytes);
7148 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7149 int bytes, void *val);
7150 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7151 void *val, int bytes);
7152 bool write;
7153 };
7154
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7155 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7156 {
7157 if (vcpu->mmio_read_completed) {
7158 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7159 vcpu->mmio_fragments[0].gpa, val);
7160 vcpu->mmio_read_completed = 0;
7161 return 1;
7162 }
7163
7164 return 0;
7165 }
7166
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7167 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7168 void *val, int bytes)
7169 {
7170 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7171 }
7172
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7173 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7174 void *val, int bytes)
7175 {
7176 return emulator_write_phys(vcpu, gpa, val, bytes);
7177 }
7178
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7179 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7180 {
7181 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7182 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7183 }
7184
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7185 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7186 void *val, int bytes)
7187 {
7188 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7189 return X86EMUL_IO_NEEDED;
7190 }
7191
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7192 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7193 void *val, int bytes)
7194 {
7195 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7196
7197 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7198 return X86EMUL_CONTINUE;
7199 }
7200
7201 static const struct read_write_emulator_ops read_emultor = {
7202 .read_write_prepare = read_prepare,
7203 .read_write_emulate = read_emulate,
7204 .read_write_mmio = vcpu_mmio_read,
7205 .read_write_exit_mmio = read_exit_mmio,
7206 };
7207
7208 static const struct read_write_emulator_ops write_emultor = {
7209 .read_write_emulate = write_emulate,
7210 .read_write_mmio = write_mmio,
7211 .read_write_exit_mmio = write_exit_mmio,
7212 .write = true,
7213 };
7214
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7215 static int emulator_read_write_onepage(unsigned long addr, void *val,
7216 unsigned int bytes,
7217 struct x86_exception *exception,
7218 struct kvm_vcpu *vcpu,
7219 const struct read_write_emulator_ops *ops)
7220 {
7221 gpa_t gpa;
7222 int handled, ret;
7223 bool write = ops->write;
7224 struct kvm_mmio_fragment *frag;
7225 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7226
7227 /*
7228 * If the exit was due to a NPF we may already have a GPA.
7229 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7230 * Note, this cannot be used on string operations since string
7231 * operation using rep will only have the initial GPA from the NPF
7232 * occurred.
7233 */
7234 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7235 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7236 gpa = ctxt->gpa_val;
7237 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7238 } else {
7239 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7240 if (ret < 0)
7241 return X86EMUL_PROPAGATE_FAULT;
7242 }
7243
7244 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7245 return X86EMUL_CONTINUE;
7246
7247 /*
7248 * Is this MMIO handled locally?
7249 */
7250 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7251 if (handled == bytes)
7252 return X86EMUL_CONTINUE;
7253
7254 gpa += handled;
7255 bytes -= handled;
7256 val += handled;
7257
7258 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7259 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7260 frag->gpa = gpa;
7261 frag->data = val;
7262 frag->len = bytes;
7263 return X86EMUL_CONTINUE;
7264 }
7265
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7266 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7267 unsigned long addr,
7268 void *val, unsigned int bytes,
7269 struct x86_exception *exception,
7270 const struct read_write_emulator_ops *ops)
7271 {
7272 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7273 gpa_t gpa;
7274 int rc;
7275
7276 if (ops->read_write_prepare &&
7277 ops->read_write_prepare(vcpu, val, bytes))
7278 return X86EMUL_CONTINUE;
7279
7280 vcpu->mmio_nr_fragments = 0;
7281
7282 /* Crossing a page boundary? */
7283 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7284 int now;
7285
7286 now = -addr & ~PAGE_MASK;
7287 rc = emulator_read_write_onepage(addr, val, now, exception,
7288 vcpu, ops);
7289
7290 if (rc != X86EMUL_CONTINUE)
7291 return rc;
7292 addr += now;
7293 if (ctxt->mode != X86EMUL_MODE_PROT64)
7294 addr = (u32)addr;
7295 val += now;
7296 bytes -= now;
7297 }
7298
7299 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7300 vcpu, ops);
7301 if (rc != X86EMUL_CONTINUE)
7302 return rc;
7303
7304 if (!vcpu->mmio_nr_fragments)
7305 return rc;
7306
7307 gpa = vcpu->mmio_fragments[0].gpa;
7308
7309 vcpu->mmio_needed = 1;
7310 vcpu->mmio_cur_fragment = 0;
7311
7312 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7313 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7314 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7315 vcpu->run->mmio.phys_addr = gpa;
7316
7317 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7318 }
7319
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7320 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7321 unsigned long addr,
7322 void *val,
7323 unsigned int bytes,
7324 struct x86_exception *exception)
7325 {
7326 return emulator_read_write(ctxt, addr, val, bytes,
7327 exception, &read_emultor);
7328 }
7329
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7330 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7331 unsigned long addr,
7332 const void *val,
7333 unsigned int bytes,
7334 struct x86_exception *exception)
7335 {
7336 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7337 exception, &write_emultor);
7338 }
7339
7340 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7341 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7342
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7343 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7344 unsigned long addr,
7345 const void *old,
7346 const void *new,
7347 unsigned int bytes,
7348 struct x86_exception *exception)
7349 {
7350 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7351 u64 page_line_mask;
7352 unsigned long hva;
7353 gpa_t gpa;
7354 int r;
7355
7356 /* guests cmpxchg8b have to be emulated atomically */
7357 if (bytes > 8 || (bytes & (bytes - 1)))
7358 goto emul_write;
7359
7360 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7361
7362 if (gpa == UNMAPPED_GVA ||
7363 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7364 goto emul_write;
7365
7366 /*
7367 * Emulate the atomic as a straight write to avoid #AC if SLD is
7368 * enabled in the host and the access splits a cache line.
7369 */
7370 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7371 page_line_mask = ~(cache_line_size() - 1);
7372 else
7373 page_line_mask = PAGE_MASK;
7374
7375 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7376 goto emul_write;
7377
7378 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7379 if (kvm_is_error_hva(hva))
7380 goto emul_write;
7381
7382 hva += offset_in_page(gpa);
7383
7384 switch (bytes) {
7385 case 1:
7386 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7387 break;
7388 case 2:
7389 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7390 break;
7391 case 4:
7392 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7393 break;
7394 case 8:
7395 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7396 break;
7397 default:
7398 BUG();
7399 }
7400
7401 if (r < 0)
7402 return X86EMUL_UNHANDLEABLE;
7403 if (r)
7404 return X86EMUL_CMPXCHG_FAILED;
7405
7406 kvm_page_track_write(vcpu, gpa, new, bytes);
7407
7408 return X86EMUL_CONTINUE;
7409
7410 emul_write:
7411 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7412
7413 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7414 }
7415
kernel_pio(struct kvm_vcpu * vcpu,void * pd)7416 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7417 {
7418 int r = 0, i;
7419
7420 for (i = 0; i < vcpu->arch.pio.count; i++) {
7421 if (vcpu->arch.pio.in)
7422 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7423 vcpu->arch.pio.size, pd);
7424 else
7425 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7426 vcpu->arch.pio.port, vcpu->arch.pio.size,
7427 pd);
7428 if (r)
7429 break;
7430 pd += vcpu->arch.pio.size;
7431 }
7432 return r;
7433 }
7434
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count,bool in)7435 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7436 unsigned short port,
7437 unsigned int count, bool in)
7438 {
7439 vcpu->arch.pio.port = port;
7440 vcpu->arch.pio.in = in;
7441 vcpu->arch.pio.count = count;
7442 vcpu->arch.pio.size = size;
7443
7444 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7445 return 1;
7446
7447 vcpu->run->exit_reason = KVM_EXIT_IO;
7448 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7449 vcpu->run->io.size = size;
7450 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7451 vcpu->run->io.count = count;
7452 vcpu->run->io.port = port;
7453
7454 return 0;
7455 }
7456
__emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count)7457 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7458 unsigned short port, unsigned int count)
7459 {
7460 WARN_ON(vcpu->arch.pio.count);
7461 memset(vcpu->arch.pio_data, 0, size * count);
7462 return emulator_pio_in_out(vcpu, size, port, count, true);
7463 }
7464
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7465 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7466 {
7467 int size = vcpu->arch.pio.size;
7468 unsigned count = vcpu->arch.pio.count;
7469 memcpy(val, vcpu->arch.pio_data, size * count);
7470 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7471 vcpu->arch.pio.count = 0;
7472 }
7473
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7474 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7475 unsigned short port, void *val, unsigned int count)
7476 {
7477 if (vcpu->arch.pio.count) {
7478 /*
7479 * Complete a previous iteration that required userspace I/O.
7480 * Note, @count isn't guaranteed to match pio.count as userspace
7481 * can modify ECX before rerunning the vCPU. Ignore any such
7482 * shenanigans as KVM doesn't support modifying the rep count,
7483 * and the emulator ensures @count doesn't overflow the buffer.
7484 */
7485 } else {
7486 int r = __emulator_pio_in(vcpu, size, port, count);
7487 if (!r)
7488 return r;
7489
7490 /* Results already available, fall through. */
7491 }
7492
7493 complete_emulator_pio_in(vcpu, val);
7494 return 1;
7495 }
7496
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7497 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7498 int size, unsigned short port, void *val,
7499 unsigned int count)
7500 {
7501 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7502
7503 }
7504
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7505 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7506 unsigned short port, const void *val,
7507 unsigned int count)
7508 {
7509 int ret;
7510
7511 memcpy(vcpu->arch.pio_data, val, size * count);
7512 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7513 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7514 if (ret)
7515 vcpu->arch.pio.count = 0;
7516
7517 return ret;
7518 }
7519
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7520 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7521 int size, unsigned short port,
7522 const void *val, unsigned int count)
7523 {
7524 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7525 }
7526
get_segment_base(struct kvm_vcpu * vcpu,int seg)7527 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7528 {
7529 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7530 }
7531
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7532 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7533 {
7534 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7535 }
7536
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7537 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7538 {
7539 if (!need_emulate_wbinvd(vcpu))
7540 return X86EMUL_CONTINUE;
7541
7542 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7543 int cpu = get_cpu();
7544
7545 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7546 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7547 wbinvd_ipi, NULL, 1);
7548 put_cpu();
7549 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7550 } else
7551 wbinvd();
7552 return X86EMUL_CONTINUE;
7553 }
7554
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7555 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7556 {
7557 kvm_emulate_wbinvd_noskip(vcpu);
7558 return kvm_skip_emulated_instruction(vcpu);
7559 }
7560 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7561
7562
7563
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7564 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7565 {
7566 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7567 }
7568
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)7569 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7570 unsigned long *dest)
7571 {
7572 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7573 }
7574
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)7575 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7576 unsigned long value)
7577 {
7578
7579 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7580 }
7581
mk_cr_64(u64 curr_cr,u32 new_val)7582 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7583 {
7584 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7585 }
7586
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)7587 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7588 {
7589 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7590 unsigned long value;
7591
7592 switch (cr) {
7593 case 0:
7594 value = kvm_read_cr0(vcpu);
7595 break;
7596 case 2:
7597 value = vcpu->arch.cr2;
7598 break;
7599 case 3:
7600 value = kvm_read_cr3(vcpu);
7601 break;
7602 case 4:
7603 value = kvm_read_cr4(vcpu);
7604 break;
7605 case 8:
7606 value = kvm_get_cr8(vcpu);
7607 break;
7608 default:
7609 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7610 return 0;
7611 }
7612
7613 return value;
7614 }
7615
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)7616 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7617 {
7618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7619 int res = 0;
7620
7621 switch (cr) {
7622 case 0:
7623 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7624 break;
7625 case 2:
7626 vcpu->arch.cr2 = val;
7627 break;
7628 case 3:
7629 res = kvm_set_cr3(vcpu, val);
7630 break;
7631 case 4:
7632 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7633 break;
7634 case 8:
7635 res = kvm_set_cr8(vcpu, val);
7636 break;
7637 default:
7638 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7639 res = -1;
7640 }
7641
7642 return res;
7643 }
7644
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)7645 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7646 {
7647 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7648 }
7649
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7650 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7651 {
7652 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7653 }
7654
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7655 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7656 {
7657 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7658 }
7659
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7660 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7661 {
7662 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7663 }
7664
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7665 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7666 {
7667 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7668 }
7669
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)7670 static unsigned long emulator_get_cached_segment_base(
7671 struct x86_emulate_ctxt *ctxt, int seg)
7672 {
7673 return get_segment_base(emul_to_vcpu(ctxt), seg);
7674 }
7675
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)7676 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7677 struct desc_struct *desc, u32 *base3,
7678 int seg)
7679 {
7680 struct kvm_segment var;
7681
7682 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7683 *selector = var.selector;
7684
7685 if (var.unusable) {
7686 memset(desc, 0, sizeof(*desc));
7687 if (base3)
7688 *base3 = 0;
7689 return false;
7690 }
7691
7692 if (var.g)
7693 var.limit >>= 12;
7694 set_desc_limit(desc, var.limit);
7695 set_desc_base(desc, (unsigned long)var.base);
7696 #ifdef CONFIG_X86_64
7697 if (base3)
7698 *base3 = var.base >> 32;
7699 #endif
7700 desc->type = var.type;
7701 desc->s = var.s;
7702 desc->dpl = var.dpl;
7703 desc->p = var.present;
7704 desc->avl = var.avl;
7705 desc->l = var.l;
7706 desc->d = var.db;
7707 desc->g = var.g;
7708
7709 return true;
7710 }
7711
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)7712 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7713 struct desc_struct *desc, u32 base3,
7714 int seg)
7715 {
7716 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7717 struct kvm_segment var;
7718
7719 var.selector = selector;
7720 var.base = get_desc_base(desc);
7721 #ifdef CONFIG_X86_64
7722 var.base |= ((u64)base3) << 32;
7723 #endif
7724 var.limit = get_desc_limit(desc);
7725 if (desc->g)
7726 var.limit = (var.limit << 12) | 0xfff;
7727 var.type = desc->type;
7728 var.dpl = desc->dpl;
7729 var.db = desc->d;
7730 var.s = desc->s;
7731 var.l = desc->l;
7732 var.g = desc->g;
7733 var.avl = desc->avl;
7734 var.present = desc->p;
7735 var.unusable = !var.present;
7736 var.padding = 0;
7737
7738 kvm_set_segment(vcpu, &var, seg);
7739 return;
7740 }
7741
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)7742 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7743 u32 msr_index, u64 *pdata)
7744 {
7745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7746 int r;
7747
7748 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7749
7750 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7751 complete_emulated_rdmsr, r)) {
7752 /* Bounce to user space */
7753 return X86EMUL_IO_NEEDED;
7754 }
7755
7756 return r;
7757 }
7758
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)7759 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7760 u32 msr_index, u64 data)
7761 {
7762 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7763 int r;
7764
7765 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7766
7767 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7768 complete_emulated_msr_access, r)) {
7769 /* Bounce to user space */
7770 return X86EMUL_IO_NEEDED;
7771 }
7772
7773 return r;
7774 }
7775
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)7776 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7777 u32 msr_index, u64 *pdata)
7778 {
7779 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7780 }
7781
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)7782 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7783 u32 msr_index, u64 data)
7784 {
7785 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7786 }
7787
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)7788 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7789 {
7790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7791
7792 return vcpu->arch.smbase;
7793 }
7794
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)7795 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7796 {
7797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7798
7799 vcpu->arch.smbase = smbase;
7800 }
7801
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)7802 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7803 u32 pmc)
7804 {
7805 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7806 return 0;
7807 return -EINVAL;
7808 }
7809
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)7810 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7811 u32 pmc, u64 *pdata)
7812 {
7813 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7814 }
7815
emulator_halt(struct x86_emulate_ctxt * ctxt)7816 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7817 {
7818 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7819 }
7820
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)7821 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7822 struct x86_instruction_info *info,
7823 enum x86_intercept_stage stage)
7824 {
7825 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7826 &ctxt->exception);
7827 }
7828
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)7829 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7830 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7831 bool exact_only)
7832 {
7833 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7834 }
7835
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)7836 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7837 {
7838 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7839 }
7840
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)7841 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7842 {
7843 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7844 }
7845
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)7846 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7847 {
7848 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7849 }
7850
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)7851 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7852 {
7853 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7854 }
7855
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)7856 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7857 {
7858 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7859 }
7860
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7861 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7862 {
7863 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7864 }
7865
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7866 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7867 {
7868 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7869 }
7870
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7871 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7872 {
7873 return emul_to_vcpu(ctxt)->arch.hflags;
7874 }
7875
emulator_exiting_smm(struct x86_emulate_ctxt * ctxt)7876 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7877 {
7878 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7879
7880 kvm_smm_changed(vcpu, false);
7881 }
7882
emulator_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7883 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7884 const char *smstate)
7885 {
7886 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7887 }
7888
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)7889 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7890 {
7891 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7892 }
7893
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7894 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7895 {
7896 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7897 }
7898
7899 static const struct x86_emulate_ops emulate_ops = {
7900 .read_gpr = emulator_read_gpr,
7901 .write_gpr = emulator_write_gpr,
7902 .read_std = emulator_read_std,
7903 .write_std = emulator_write_std,
7904 .read_phys = kvm_read_guest_phys_system,
7905 .fetch = kvm_fetch_guest_virt,
7906 .read_emulated = emulator_read_emulated,
7907 .write_emulated = emulator_write_emulated,
7908 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7909 .invlpg = emulator_invlpg,
7910 .pio_in_emulated = emulator_pio_in_emulated,
7911 .pio_out_emulated = emulator_pio_out_emulated,
7912 .get_segment = emulator_get_segment,
7913 .set_segment = emulator_set_segment,
7914 .get_cached_segment_base = emulator_get_cached_segment_base,
7915 .get_gdt = emulator_get_gdt,
7916 .get_idt = emulator_get_idt,
7917 .set_gdt = emulator_set_gdt,
7918 .set_idt = emulator_set_idt,
7919 .get_cr = emulator_get_cr,
7920 .set_cr = emulator_set_cr,
7921 .cpl = emulator_get_cpl,
7922 .get_dr = emulator_get_dr,
7923 .set_dr = emulator_set_dr,
7924 .get_smbase = emulator_get_smbase,
7925 .set_smbase = emulator_set_smbase,
7926 .set_msr_with_filter = emulator_set_msr_with_filter,
7927 .get_msr_with_filter = emulator_get_msr_with_filter,
7928 .set_msr = emulator_set_msr,
7929 .get_msr = emulator_get_msr,
7930 .check_pmc = emulator_check_pmc,
7931 .read_pmc = emulator_read_pmc,
7932 .halt = emulator_halt,
7933 .wbinvd = emulator_wbinvd,
7934 .fix_hypercall = emulator_fix_hypercall,
7935 .intercept = emulator_intercept,
7936 .get_cpuid = emulator_get_cpuid,
7937 .guest_has_long_mode = emulator_guest_has_long_mode,
7938 .guest_has_movbe = emulator_guest_has_movbe,
7939 .guest_has_fxsr = emulator_guest_has_fxsr,
7940 .guest_has_rdpid = emulator_guest_has_rdpid,
7941 .set_nmi_mask = emulator_set_nmi_mask,
7942 .get_hflags = emulator_get_hflags,
7943 .exiting_smm = emulator_exiting_smm,
7944 .leave_smm = emulator_leave_smm,
7945 .triple_fault = emulator_triple_fault,
7946 .set_xcr = emulator_set_xcr,
7947 };
7948
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7949 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7950 {
7951 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7952 /*
7953 * an sti; sti; sequence only disable interrupts for the first
7954 * instruction. So, if the last instruction, be it emulated or
7955 * not, left the system with the INT_STI flag enabled, it
7956 * means that the last instruction is an sti. We should not
7957 * leave the flag on in this case. The same goes for mov ss
7958 */
7959 if (int_shadow & mask)
7960 mask = 0;
7961 if (unlikely(int_shadow || mask)) {
7962 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7963 if (!mask)
7964 kvm_make_request(KVM_REQ_EVENT, vcpu);
7965 }
7966 }
7967
inject_emulated_exception(struct kvm_vcpu * vcpu)7968 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7969 {
7970 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7971 if (ctxt->exception.vector == PF_VECTOR)
7972 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7973
7974 if (ctxt->exception.error_code_valid)
7975 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7976 ctxt->exception.error_code);
7977 else
7978 kvm_queue_exception(vcpu, ctxt->exception.vector);
7979 return false;
7980 }
7981
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7982 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7983 {
7984 struct x86_emulate_ctxt *ctxt;
7985
7986 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7987 if (!ctxt) {
7988 pr_err("kvm: failed to allocate vcpu's emulator\n");
7989 return NULL;
7990 }
7991
7992 ctxt->vcpu = vcpu;
7993 ctxt->ops = &emulate_ops;
7994 vcpu->arch.emulate_ctxt = ctxt;
7995
7996 return ctxt;
7997 }
7998
init_emulate_ctxt(struct kvm_vcpu * vcpu)7999 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8000 {
8001 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8002 int cs_db, cs_l;
8003
8004 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8005
8006 ctxt->gpa_available = false;
8007 ctxt->eflags = kvm_get_rflags(vcpu);
8008 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8009
8010 ctxt->eip = kvm_rip_read(vcpu);
8011 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8012 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8013 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8014 cs_db ? X86EMUL_MODE_PROT32 :
8015 X86EMUL_MODE_PROT16;
8016 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8017 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8018 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8019
8020 ctxt->interruptibility = 0;
8021 ctxt->have_exception = false;
8022 ctxt->exception.vector = -1;
8023 ctxt->perm_ok = false;
8024
8025 init_decode_cache(ctxt);
8026 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8027 }
8028
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8029 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8030 {
8031 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8032 int ret;
8033
8034 init_emulate_ctxt(vcpu);
8035
8036 ctxt->op_bytes = 2;
8037 ctxt->ad_bytes = 2;
8038 ctxt->_eip = ctxt->eip + inc_eip;
8039 ret = emulate_int_real(ctxt, irq);
8040
8041 if (ret != X86EMUL_CONTINUE) {
8042 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8043 } else {
8044 ctxt->eip = ctxt->_eip;
8045 kvm_rip_write(vcpu, ctxt->eip);
8046 kvm_set_rflags(vcpu, ctxt->eflags);
8047 }
8048 }
8049 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8050
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8051 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8052 u8 ndata, u8 *insn_bytes, u8 insn_size)
8053 {
8054 struct kvm_run *run = vcpu->run;
8055 u64 info[5];
8056 u8 info_start;
8057
8058 /*
8059 * Zero the whole array used to retrieve the exit info, as casting to
8060 * u32 for select entries will leave some chunks uninitialized.
8061 */
8062 memset(&info, 0, sizeof(info));
8063
8064 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8065 &info[2], (u32 *)&info[3],
8066 (u32 *)&info[4]);
8067
8068 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8069 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8070
8071 /*
8072 * There's currently space for 13 entries, but 5 are used for the exit
8073 * reason and info. Restrict to 4 to reduce the maintenance burden
8074 * when expanding kvm_run.emulation_failure in the future.
8075 */
8076 if (WARN_ON_ONCE(ndata > 4))
8077 ndata = 4;
8078
8079 /* Always include the flags as a 'data' entry. */
8080 info_start = 1;
8081 run->emulation_failure.flags = 0;
8082
8083 if (insn_size) {
8084 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8085 sizeof(run->emulation_failure.insn_bytes) != 16));
8086 info_start += 2;
8087 run->emulation_failure.flags |=
8088 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8089 run->emulation_failure.insn_size = insn_size;
8090 memset(run->emulation_failure.insn_bytes, 0x90,
8091 sizeof(run->emulation_failure.insn_bytes));
8092 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8093 }
8094
8095 memcpy(&run->internal.data[info_start], info, sizeof(info));
8096 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8097 ndata * sizeof(data[0]));
8098
8099 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8100 }
8101
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8102 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8103 {
8104 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8105
8106 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8107 ctxt->fetch.end - ctxt->fetch.data);
8108 }
8109
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8110 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8111 u8 ndata)
8112 {
8113 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8114 }
8115 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8116
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8117 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8118 {
8119 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8120 }
8121 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8122
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8123 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8124 {
8125 struct kvm *kvm = vcpu->kvm;
8126
8127 ++vcpu->stat.insn_emulation_fail;
8128 trace_kvm_emulate_insn_failed(vcpu);
8129
8130 if (emulation_type & EMULTYPE_VMWARE_GP) {
8131 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8132 return 1;
8133 }
8134
8135 if (kvm->arch.exit_on_emulation_error ||
8136 (emulation_type & EMULTYPE_SKIP)) {
8137 prepare_emulation_ctxt_failure_exit(vcpu);
8138 return 0;
8139 }
8140
8141 kvm_queue_exception(vcpu, UD_VECTOR);
8142
8143 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8144 prepare_emulation_ctxt_failure_exit(vcpu);
8145 return 0;
8146 }
8147
8148 return 1;
8149 }
8150
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)8151 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8152 bool write_fault_to_shadow_pgtable,
8153 int emulation_type)
8154 {
8155 gpa_t gpa = cr2_or_gpa;
8156 kvm_pfn_t pfn;
8157
8158 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8159 return false;
8160
8161 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8162 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8163 return false;
8164
8165 if (!vcpu->arch.mmu->root_role.direct) {
8166 /*
8167 * Write permission should be allowed since only
8168 * write access need to be emulated.
8169 */
8170 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8171
8172 /*
8173 * If the mapping is invalid in guest, let cpu retry
8174 * it to generate fault.
8175 */
8176 if (gpa == UNMAPPED_GVA)
8177 return true;
8178 }
8179
8180 /*
8181 * Do not retry the unhandleable instruction if it faults on the
8182 * readonly host memory, otherwise it will goto a infinite loop:
8183 * retry instruction -> write #PF -> emulation fail -> retry
8184 * instruction -> ...
8185 */
8186 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8187
8188 /*
8189 * If the instruction failed on the error pfn, it can not be fixed,
8190 * report the error to userspace.
8191 */
8192 if (is_error_noslot_pfn(pfn))
8193 return false;
8194
8195 kvm_release_pfn_clean(pfn);
8196
8197 /* The instructions are well-emulated on direct mmu. */
8198 if (vcpu->arch.mmu->root_role.direct) {
8199 unsigned int indirect_shadow_pages;
8200
8201 write_lock(&vcpu->kvm->mmu_lock);
8202 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8203 write_unlock(&vcpu->kvm->mmu_lock);
8204
8205 if (indirect_shadow_pages)
8206 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8207
8208 return true;
8209 }
8210
8211 /*
8212 * if emulation was due to access to shadowed page table
8213 * and it failed try to unshadow page and re-enter the
8214 * guest to let CPU execute the instruction.
8215 */
8216 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8217
8218 /*
8219 * If the access faults on its page table, it can not
8220 * be fixed by unprotecting shadow page and it should
8221 * be reported to userspace.
8222 */
8223 return !write_fault_to_shadow_pgtable;
8224 }
8225
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8226 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8227 gpa_t cr2_or_gpa, int emulation_type)
8228 {
8229 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8230 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8231
8232 last_retry_eip = vcpu->arch.last_retry_eip;
8233 last_retry_addr = vcpu->arch.last_retry_addr;
8234
8235 /*
8236 * If the emulation is caused by #PF and it is non-page_table
8237 * writing instruction, it means the VM-EXIT is caused by shadow
8238 * page protected, we can zap the shadow page and retry this
8239 * instruction directly.
8240 *
8241 * Note: if the guest uses a non-page-table modifying instruction
8242 * on the PDE that points to the instruction, then we will unmap
8243 * the instruction and go to an infinite loop. So, we cache the
8244 * last retried eip and the last fault address, if we meet the eip
8245 * and the address again, we can break out of the potential infinite
8246 * loop.
8247 */
8248 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8249
8250 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8251 return false;
8252
8253 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8254 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8255 return false;
8256
8257 if (x86_page_table_writing_insn(ctxt))
8258 return false;
8259
8260 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8261 return false;
8262
8263 vcpu->arch.last_retry_eip = ctxt->eip;
8264 vcpu->arch.last_retry_addr = cr2_or_gpa;
8265
8266 if (!vcpu->arch.mmu->root_role.direct)
8267 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8268
8269 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8270
8271 return true;
8272 }
8273
8274 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8275 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8276
kvm_smm_changed(struct kvm_vcpu * vcpu,bool entering_smm)8277 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8278 {
8279 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8280
8281 if (entering_smm) {
8282 vcpu->arch.hflags |= HF_SMM_MASK;
8283 } else {
8284 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8285
8286 /* Process a latched INIT or SMI, if any. */
8287 kvm_make_request(KVM_REQ_EVENT, vcpu);
8288
8289 /*
8290 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8291 * on SMM exit we still need to reload them from
8292 * guest memory
8293 */
8294 vcpu->arch.pdptrs_from_userspace = false;
8295 }
8296
8297 kvm_mmu_reset_context(vcpu);
8298 }
8299
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8300 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8301 unsigned long *db)
8302 {
8303 u32 dr6 = 0;
8304 int i;
8305 u32 enable, rwlen;
8306
8307 enable = dr7;
8308 rwlen = dr7 >> 16;
8309 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8310 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8311 dr6 |= (1 << i);
8312 return dr6;
8313 }
8314
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8315 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8316 {
8317 struct kvm_run *kvm_run = vcpu->run;
8318
8319 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8320 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8321 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8322 kvm_run->debug.arch.exception = DB_VECTOR;
8323 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8324 return 0;
8325 }
8326 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8327 return 1;
8328 }
8329
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8330 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8331 {
8332 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8333 int r;
8334
8335 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8336 if (unlikely(!r))
8337 return 0;
8338
8339 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8340
8341 /*
8342 * rflags is the old, "raw" value of the flags. The new value has
8343 * not been saved yet.
8344 *
8345 * This is correct even for TF set by the guest, because "the
8346 * processor will not generate this exception after the instruction
8347 * that sets the TF flag".
8348 */
8349 if (unlikely(rflags & X86_EFLAGS_TF))
8350 r = kvm_vcpu_do_singlestep(vcpu);
8351 return r;
8352 }
8353 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8354
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)8355 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8356 {
8357 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8358 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8359 struct kvm_run *kvm_run = vcpu->run;
8360 unsigned long eip = kvm_get_linear_rip(vcpu);
8361 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8362 vcpu->arch.guest_debug_dr7,
8363 vcpu->arch.eff_db);
8364
8365 if (dr6 != 0) {
8366 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8367 kvm_run->debug.arch.pc = eip;
8368 kvm_run->debug.arch.exception = DB_VECTOR;
8369 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8370 *r = 0;
8371 return true;
8372 }
8373 }
8374
8375 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8376 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8377 unsigned long eip = kvm_get_linear_rip(vcpu);
8378 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8379 vcpu->arch.dr7,
8380 vcpu->arch.db);
8381
8382 if (dr6 != 0) {
8383 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8384 *r = 1;
8385 return true;
8386 }
8387 }
8388
8389 return false;
8390 }
8391
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8392 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8393 {
8394 switch (ctxt->opcode_len) {
8395 case 1:
8396 switch (ctxt->b) {
8397 case 0xe4: /* IN */
8398 case 0xe5:
8399 case 0xec:
8400 case 0xed:
8401 case 0xe6: /* OUT */
8402 case 0xe7:
8403 case 0xee:
8404 case 0xef:
8405 case 0x6c: /* INS */
8406 case 0x6d:
8407 case 0x6e: /* OUTS */
8408 case 0x6f:
8409 return true;
8410 }
8411 break;
8412 case 2:
8413 switch (ctxt->b) {
8414 case 0x33: /* RDPMC */
8415 return true;
8416 }
8417 break;
8418 }
8419
8420 return false;
8421 }
8422
8423 /*
8424 * Decode an instruction for emulation. The caller is responsible for handling
8425 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8426 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8427 * code breakpoints have higher priority and thus have already been done by
8428 * hardware.
8429 *
8430 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8431 * response to a machine check.
8432 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8433 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8434 void *insn, int insn_len)
8435 {
8436 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8437 int r;
8438
8439 init_emulate_ctxt(vcpu);
8440
8441 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8442
8443 trace_kvm_emulate_insn_start(vcpu);
8444 ++vcpu->stat.insn_emulation;
8445
8446 return r;
8447 }
8448 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8449
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8450 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8451 int emulation_type, void *insn, int insn_len)
8452 {
8453 int r;
8454 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8455 bool writeback = true;
8456 bool write_fault_to_spt;
8457
8458 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8459 return 1;
8460
8461 vcpu->arch.l1tf_flush_l1d = true;
8462
8463 /*
8464 * Clear write_fault_to_shadow_pgtable here to ensure it is
8465 * never reused.
8466 */
8467 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8468 vcpu->arch.write_fault_to_shadow_pgtable = false;
8469
8470 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8471 kvm_clear_exception_queue(vcpu);
8472
8473 /*
8474 * Return immediately if RIP hits a code breakpoint, such #DBs
8475 * are fault-like and are higher priority than any faults on
8476 * the code fetch itself.
8477 */
8478 if (!(emulation_type & EMULTYPE_SKIP) &&
8479 kvm_vcpu_check_code_breakpoint(vcpu, &r))
8480 return r;
8481
8482 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8483 insn, insn_len);
8484 if (r != EMULATION_OK) {
8485 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8486 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8487 kvm_queue_exception(vcpu, UD_VECTOR);
8488 return 1;
8489 }
8490 if (reexecute_instruction(vcpu, cr2_or_gpa,
8491 write_fault_to_spt,
8492 emulation_type))
8493 return 1;
8494 if (ctxt->have_exception) {
8495 /*
8496 * #UD should result in just EMULATION_FAILED, and trap-like
8497 * exception should not be encountered during decode.
8498 */
8499 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8500 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8501 inject_emulated_exception(vcpu);
8502 return 1;
8503 }
8504 return handle_emulation_failure(vcpu, emulation_type);
8505 }
8506 }
8507
8508 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8509 !is_vmware_backdoor_opcode(ctxt)) {
8510 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8511 return 1;
8512 }
8513
8514 /*
8515 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8516 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8517 * The caller is responsible for updating interruptibility state and
8518 * injecting single-step #DBs.
8519 */
8520 if (emulation_type & EMULTYPE_SKIP) {
8521 if (ctxt->mode != X86EMUL_MODE_PROT64)
8522 ctxt->eip = (u32)ctxt->_eip;
8523 else
8524 ctxt->eip = ctxt->_eip;
8525
8526 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8527 r = 1;
8528 goto writeback;
8529 }
8530
8531 kvm_rip_write(vcpu, ctxt->eip);
8532 if (ctxt->eflags & X86_EFLAGS_RF)
8533 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8534 return 1;
8535 }
8536
8537 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8538 return 1;
8539
8540 /* this is needed for vmware backdoor interface to work since it
8541 changes registers values during IO operation */
8542 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8543 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8544 emulator_invalidate_register_cache(ctxt);
8545 }
8546
8547 restart:
8548 if (emulation_type & EMULTYPE_PF) {
8549 /* Save the faulting GPA (cr2) in the address field */
8550 ctxt->exception.address = cr2_or_gpa;
8551
8552 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8553 if (vcpu->arch.mmu->root_role.direct) {
8554 ctxt->gpa_available = true;
8555 ctxt->gpa_val = cr2_or_gpa;
8556 }
8557 } else {
8558 /* Sanitize the address out of an abundance of paranoia. */
8559 ctxt->exception.address = 0;
8560 }
8561
8562 r = x86_emulate_insn(ctxt);
8563
8564 if (r == EMULATION_INTERCEPTED)
8565 return 1;
8566
8567 if (r == EMULATION_FAILED) {
8568 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8569 emulation_type))
8570 return 1;
8571
8572 return handle_emulation_failure(vcpu, emulation_type);
8573 }
8574
8575 if (ctxt->have_exception) {
8576 r = 1;
8577 if (inject_emulated_exception(vcpu))
8578 return r;
8579 } else if (vcpu->arch.pio.count) {
8580 if (!vcpu->arch.pio.in) {
8581 /* FIXME: return into emulator if single-stepping. */
8582 vcpu->arch.pio.count = 0;
8583 } else {
8584 writeback = false;
8585 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8586 }
8587 r = 0;
8588 } else if (vcpu->mmio_needed) {
8589 ++vcpu->stat.mmio_exits;
8590
8591 if (!vcpu->mmio_is_write)
8592 writeback = false;
8593 r = 0;
8594 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8595 } else if (vcpu->arch.complete_userspace_io) {
8596 writeback = false;
8597 r = 0;
8598 } else if (r == EMULATION_RESTART)
8599 goto restart;
8600 else
8601 r = 1;
8602
8603 writeback:
8604 if (writeback) {
8605 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8606 toggle_interruptibility(vcpu, ctxt->interruptibility);
8607 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8608 if (!ctxt->have_exception ||
8609 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8610 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8611 if (ctxt->is_branch)
8612 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8613 kvm_rip_write(vcpu, ctxt->eip);
8614 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8615 r = kvm_vcpu_do_singlestep(vcpu);
8616 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8617 __kvm_set_rflags(vcpu, ctxt->eflags);
8618 }
8619
8620 /*
8621 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8622 * do nothing, and it will be requested again as soon as
8623 * the shadow expires. But we still need to check here,
8624 * because POPF has no interrupt shadow.
8625 */
8626 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8627 kvm_make_request(KVM_REQ_EVENT, vcpu);
8628 } else
8629 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8630
8631 return r;
8632 }
8633
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)8634 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8635 {
8636 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8637 }
8638 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8639
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)8640 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8641 void *insn, int insn_len)
8642 {
8643 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8644 }
8645 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8646
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)8647 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8648 {
8649 vcpu->arch.pio.count = 0;
8650 return 1;
8651 }
8652
complete_fast_pio_out(struct kvm_vcpu * vcpu)8653 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8654 {
8655 vcpu->arch.pio.count = 0;
8656
8657 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8658 return 1;
8659
8660 return kvm_skip_emulated_instruction(vcpu);
8661 }
8662
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)8663 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8664 unsigned short port)
8665 {
8666 unsigned long val = kvm_rax_read(vcpu);
8667 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8668
8669 if (ret)
8670 return ret;
8671
8672 /*
8673 * Workaround userspace that relies on old KVM behavior of %rip being
8674 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8675 */
8676 if (port == 0x7e &&
8677 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8678 vcpu->arch.complete_userspace_io =
8679 complete_fast_pio_out_port_0x7e;
8680 kvm_skip_emulated_instruction(vcpu);
8681 } else {
8682 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8683 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8684 }
8685 return 0;
8686 }
8687
complete_fast_pio_in(struct kvm_vcpu * vcpu)8688 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8689 {
8690 unsigned long val;
8691
8692 /* We should only ever be called with arch.pio.count equal to 1 */
8693 BUG_ON(vcpu->arch.pio.count != 1);
8694
8695 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8696 vcpu->arch.pio.count = 0;
8697 return 1;
8698 }
8699
8700 /* For size less than 4 we merge, else we zero extend */
8701 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8702
8703 /*
8704 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8705 * the copy and tracing
8706 */
8707 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8708 kvm_rax_write(vcpu, val);
8709
8710 return kvm_skip_emulated_instruction(vcpu);
8711 }
8712
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)8713 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8714 unsigned short port)
8715 {
8716 unsigned long val;
8717 int ret;
8718
8719 /* For size less than 4 we merge, else we zero extend */
8720 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8721
8722 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8723 if (ret) {
8724 kvm_rax_write(vcpu, val);
8725 return ret;
8726 }
8727
8728 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8729 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8730
8731 return 0;
8732 }
8733
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)8734 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8735 {
8736 int ret;
8737
8738 if (in)
8739 ret = kvm_fast_pio_in(vcpu, size, port);
8740 else
8741 ret = kvm_fast_pio_out(vcpu, size, port);
8742 return ret && kvm_skip_emulated_instruction(vcpu);
8743 }
8744 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8745
kvmclock_cpu_down_prep(unsigned int cpu)8746 static int kvmclock_cpu_down_prep(unsigned int cpu)
8747 {
8748 __this_cpu_write(cpu_tsc_khz, 0);
8749 return 0;
8750 }
8751
tsc_khz_changed(void * data)8752 static void tsc_khz_changed(void *data)
8753 {
8754 struct cpufreq_freqs *freq = data;
8755 unsigned long khz = 0;
8756
8757 if (data)
8758 khz = freq->new;
8759 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8760 khz = cpufreq_quick_get(raw_smp_processor_id());
8761 if (!khz)
8762 khz = tsc_khz;
8763 __this_cpu_write(cpu_tsc_khz, khz);
8764 }
8765
8766 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)8767 static void kvm_hyperv_tsc_notifier(void)
8768 {
8769 struct kvm *kvm;
8770 int cpu;
8771
8772 mutex_lock(&kvm_lock);
8773 list_for_each_entry(kvm, &vm_list, vm_list)
8774 kvm_make_mclock_inprogress_request(kvm);
8775
8776 /* no guest entries from this point */
8777 hyperv_stop_tsc_emulation();
8778
8779 /* TSC frequency always matches when on Hyper-V */
8780 for_each_present_cpu(cpu)
8781 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8782 kvm_max_guest_tsc_khz = tsc_khz;
8783
8784 list_for_each_entry(kvm, &vm_list, vm_list) {
8785 __kvm_start_pvclock_update(kvm);
8786 pvclock_update_vm_gtod_copy(kvm);
8787 kvm_end_pvclock_update(kvm);
8788 }
8789
8790 mutex_unlock(&kvm_lock);
8791 }
8792 #endif
8793
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)8794 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8795 {
8796 struct kvm *kvm;
8797 struct kvm_vcpu *vcpu;
8798 int send_ipi = 0;
8799 unsigned long i;
8800
8801 /*
8802 * We allow guests to temporarily run on slowing clocks,
8803 * provided we notify them after, or to run on accelerating
8804 * clocks, provided we notify them before. Thus time never
8805 * goes backwards.
8806 *
8807 * However, we have a problem. We can't atomically update
8808 * the frequency of a given CPU from this function; it is
8809 * merely a notifier, which can be called from any CPU.
8810 * Changing the TSC frequency at arbitrary points in time
8811 * requires a recomputation of local variables related to
8812 * the TSC for each VCPU. We must flag these local variables
8813 * to be updated and be sure the update takes place with the
8814 * new frequency before any guests proceed.
8815 *
8816 * Unfortunately, the combination of hotplug CPU and frequency
8817 * change creates an intractable locking scenario; the order
8818 * of when these callouts happen is undefined with respect to
8819 * CPU hotplug, and they can race with each other. As such,
8820 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8821 * undefined; you can actually have a CPU frequency change take
8822 * place in between the computation of X and the setting of the
8823 * variable. To protect against this problem, all updates of
8824 * the per_cpu tsc_khz variable are done in an interrupt
8825 * protected IPI, and all callers wishing to update the value
8826 * must wait for a synchronous IPI to complete (which is trivial
8827 * if the caller is on the CPU already). This establishes the
8828 * necessary total order on variable updates.
8829 *
8830 * Note that because a guest time update may take place
8831 * anytime after the setting of the VCPU's request bit, the
8832 * correct TSC value must be set before the request. However,
8833 * to ensure the update actually makes it to any guest which
8834 * starts running in hardware virtualization between the set
8835 * and the acquisition of the spinlock, we must also ping the
8836 * CPU after setting the request bit.
8837 *
8838 */
8839
8840 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8841
8842 mutex_lock(&kvm_lock);
8843 list_for_each_entry(kvm, &vm_list, vm_list) {
8844 kvm_for_each_vcpu(i, vcpu, kvm) {
8845 if (vcpu->cpu != cpu)
8846 continue;
8847 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8848 if (vcpu->cpu != raw_smp_processor_id())
8849 send_ipi = 1;
8850 }
8851 }
8852 mutex_unlock(&kvm_lock);
8853
8854 if (freq->old < freq->new && send_ipi) {
8855 /*
8856 * We upscale the frequency. Must make the guest
8857 * doesn't see old kvmclock values while running with
8858 * the new frequency, otherwise we risk the guest sees
8859 * time go backwards.
8860 *
8861 * In case we update the frequency for another cpu
8862 * (which might be in guest context) send an interrupt
8863 * to kick the cpu out of guest context. Next time
8864 * guest context is entered kvmclock will be updated,
8865 * so the guest will not see stale values.
8866 */
8867 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8868 }
8869 }
8870
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)8871 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8872 void *data)
8873 {
8874 struct cpufreq_freqs *freq = data;
8875 int cpu;
8876
8877 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8878 return 0;
8879 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8880 return 0;
8881
8882 for_each_cpu(cpu, freq->policy->cpus)
8883 __kvmclock_cpufreq_notifier(freq, cpu);
8884
8885 return 0;
8886 }
8887
8888 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8889 .notifier_call = kvmclock_cpufreq_notifier
8890 };
8891
kvmclock_cpu_online(unsigned int cpu)8892 static int kvmclock_cpu_online(unsigned int cpu)
8893 {
8894 tsc_khz_changed(NULL);
8895 return 0;
8896 }
8897
kvm_timer_init(void)8898 static void kvm_timer_init(void)
8899 {
8900 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8901 max_tsc_khz = tsc_khz;
8902
8903 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8904 struct cpufreq_policy *policy;
8905 int cpu;
8906
8907 cpu = get_cpu();
8908 policy = cpufreq_cpu_get(cpu);
8909 if (policy) {
8910 if (policy->cpuinfo.max_freq)
8911 max_tsc_khz = policy->cpuinfo.max_freq;
8912 cpufreq_cpu_put(policy);
8913 }
8914 put_cpu();
8915 }
8916 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8917 CPUFREQ_TRANSITION_NOTIFIER);
8918 }
8919
8920 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8921 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8922 }
8923
8924 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8925 static void pvclock_gtod_update_fn(struct work_struct *work)
8926 {
8927 struct kvm *kvm;
8928 struct kvm_vcpu *vcpu;
8929 unsigned long i;
8930
8931 mutex_lock(&kvm_lock);
8932 list_for_each_entry(kvm, &vm_list, vm_list)
8933 kvm_for_each_vcpu(i, vcpu, kvm)
8934 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8935 atomic_set(&kvm_guest_has_master_clock, 0);
8936 mutex_unlock(&kvm_lock);
8937 }
8938
8939 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8940
8941 /*
8942 * Indirection to move queue_work() out of the tk_core.seq write held
8943 * region to prevent possible deadlocks against time accessors which
8944 * are invoked with work related locks held.
8945 */
pvclock_irq_work_fn(struct irq_work * w)8946 static void pvclock_irq_work_fn(struct irq_work *w)
8947 {
8948 queue_work(system_long_wq, &pvclock_gtod_work);
8949 }
8950
8951 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8952
8953 /*
8954 * Notification about pvclock gtod data update.
8955 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8956 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8957 void *priv)
8958 {
8959 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8960 struct timekeeper *tk = priv;
8961
8962 update_pvclock_gtod(tk);
8963
8964 /*
8965 * Disable master clock if host does not trust, or does not use,
8966 * TSC based clocksource. Delegate queue_work() to irq_work as
8967 * this is invoked with tk_core.seq write held.
8968 */
8969 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8970 atomic_read(&kvm_guest_has_master_clock) != 0)
8971 irq_work_queue(&pvclock_irq_work);
8972 return 0;
8973 }
8974
8975 static struct notifier_block pvclock_gtod_notifier = {
8976 .notifier_call = pvclock_gtod_notify,
8977 };
8978 #endif
8979
kvm_arch_init(void * opaque)8980 int kvm_arch_init(void *opaque)
8981 {
8982 struct kvm_x86_init_ops *ops = opaque;
8983 int r;
8984
8985 if (kvm_x86_ops.hardware_enable) {
8986 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8987 r = -EEXIST;
8988 goto out;
8989 }
8990
8991 if (!ops->cpu_has_kvm_support()) {
8992 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8993 ops->runtime_ops->name);
8994 r = -EOPNOTSUPP;
8995 goto out;
8996 }
8997 if (ops->disabled_by_bios()) {
8998 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8999 ops->runtime_ops->name);
9000 r = -EOPNOTSUPP;
9001 goto out;
9002 }
9003
9004 /*
9005 * KVM explicitly assumes that the guest has an FPU and
9006 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9007 * vCPU's FPU state as a fxregs_state struct.
9008 */
9009 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9010 printk(KERN_ERR "kvm: inadequate fpu\n");
9011 r = -EOPNOTSUPP;
9012 goto out;
9013 }
9014
9015 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9016 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9017 r = -EOPNOTSUPP;
9018 goto out;
9019 }
9020
9021 r = -ENOMEM;
9022
9023 x86_emulator_cache = kvm_alloc_emulator_cache();
9024 if (!x86_emulator_cache) {
9025 pr_err("kvm: failed to allocate cache for x86 emulator\n");
9026 goto out;
9027 }
9028
9029 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9030 if (!user_return_msrs) {
9031 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9032 goto out_free_x86_emulator_cache;
9033 }
9034 kvm_nr_uret_msrs = 0;
9035
9036 r = kvm_mmu_vendor_module_init();
9037 if (r)
9038 goto out_free_percpu;
9039
9040 kvm_timer_init();
9041
9042 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9043 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9044 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9045 }
9046
9047 if (pi_inject_timer == -1)
9048 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9049 #ifdef CONFIG_X86_64
9050 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9051
9052 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9053 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9054 #endif
9055
9056 return 0;
9057
9058 out_free_percpu:
9059 free_percpu(user_return_msrs);
9060 out_free_x86_emulator_cache:
9061 kmem_cache_destroy(x86_emulator_cache);
9062 out:
9063 return r;
9064 }
9065
kvm_arch_exit(void)9066 void kvm_arch_exit(void)
9067 {
9068 #ifdef CONFIG_X86_64
9069 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9070 clear_hv_tscchange_cb();
9071 #endif
9072 kvm_lapic_exit();
9073
9074 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9075 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9076 CPUFREQ_TRANSITION_NOTIFIER);
9077 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9078 #ifdef CONFIG_X86_64
9079 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9080 irq_work_sync(&pvclock_irq_work);
9081 cancel_work_sync(&pvclock_gtod_work);
9082 #endif
9083 kvm_x86_ops.hardware_enable = NULL;
9084 kvm_mmu_vendor_module_exit();
9085 free_percpu(user_return_msrs);
9086 kmem_cache_destroy(x86_emulator_cache);
9087 #ifdef CONFIG_KVM_XEN
9088 static_key_deferred_flush(&kvm_xen_enabled);
9089 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9090 #endif
9091 }
9092
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9093 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9094 {
9095 /*
9096 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9097 * local APIC is in-kernel, the run loop will detect the non-runnable
9098 * state and halt the vCPU. Exit to userspace if the local APIC is
9099 * managed by userspace, in which case userspace is responsible for
9100 * handling wake events.
9101 */
9102 ++vcpu->stat.halt_exits;
9103 if (lapic_in_kernel(vcpu)) {
9104 vcpu->arch.mp_state = state;
9105 return 1;
9106 } else {
9107 vcpu->run->exit_reason = reason;
9108 return 0;
9109 }
9110 }
9111
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9112 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9113 {
9114 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9115 }
9116 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9117
kvm_emulate_halt(struct kvm_vcpu * vcpu)9118 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9119 {
9120 int ret = kvm_skip_emulated_instruction(vcpu);
9121 /*
9122 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9123 * KVM_EXIT_DEBUG here.
9124 */
9125 return kvm_emulate_halt_noskip(vcpu) && ret;
9126 }
9127 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9128
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9129 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9130 {
9131 int ret = kvm_skip_emulated_instruction(vcpu);
9132
9133 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9134 KVM_EXIT_AP_RESET_HOLD) && ret;
9135 }
9136 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9137
9138 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9139 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9140 unsigned long clock_type)
9141 {
9142 struct kvm_clock_pairing clock_pairing;
9143 struct timespec64 ts;
9144 u64 cycle;
9145 int ret;
9146
9147 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9148 return -KVM_EOPNOTSUPP;
9149
9150 /*
9151 * When tsc is in permanent catchup mode guests won't be able to use
9152 * pvclock_read_retry loop to get consistent view of pvclock
9153 */
9154 if (vcpu->arch.tsc_always_catchup)
9155 return -KVM_EOPNOTSUPP;
9156
9157 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9158 return -KVM_EOPNOTSUPP;
9159
9160 clock_pairing.sec = ts.tv_sec;
9161 clock_pairing.nsec = ts.tv_nsec;
9162 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9163 clock_pairing.flags = 0;
9164 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9165
9166 ret = 0;
9167 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9168 sizeof(struct kvm_clock_pairing)))
9169 ret = -KVM_EFAULT;
9170
9171 return ret;
9172 }
9173 #endif
9174
9175 /*
9176 * kvm_pv_kick_cpu_op: Kick a vcpu.
9177 *
9178 * @apicid - apicid of vcpu to be kicked.
9179 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9180 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9181 {
9182 /*
9183 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9184 * common code, e.g. for tracing. Defer initialization to the compiler.
9185 */
9186 struct kvm_lapic_irq lapic_irq = {
9187 .delivery_mode = APIC_DM_REMRD,
9188 .dest_mode = APIC_DEST_PHYSICAL,
9189 .shorthand = APIC_DEST_NOSHORT,
9190 .dest_id = apicid,
9191 };
9192
9193 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9194 }
9195
kvm_apicv_activated(struct kvm * kvm)9196 bool kvm_apicv_activated(struct kvm *kvm)
9197 {
9198 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9199 }
9200 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9201
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9202 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9203 {
9204 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9205 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9206
9207 return (vm_reasons | vcpu_reasons) == 0;
9208 }
9209 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9210
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9211 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9212 enum kvm_apicv_inhibit reason, bool set)
9213 {
9214 if (set)
9215 __set_bit(reason, inhibits);
9216 else
9217 __clear_bit(reason, inhibits);
9218
9219 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9220 }
9221
kvm_apicv_init(struct kvm * kvm)9222 static void kvm_apicv_init(struct kvm *kvm)
9223 {
9224 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9225
9226 init_rwsem(&kvm->arch.apicv_update_lock);
9227
9228 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9229
9230 if (!enable_apicv)
9231 set_or_clear_apicv_inhibit(inhibits,
9232 APICV_INHIBIT_REASON_DISABLE, true);
9233 }
9234
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9235 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9236 {
9237 struct kvm_vcpu *target = NULL;
9238 struct kvm_apic_map *map;
9239
9240 vcpu->stat.directed_yield_attempted++;
9241
9242 if (single_task_running())
9243 goto no_yield;
9244
9245 rcu_read_lock();
9246 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9247
9248 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9249 target = map->phys_map[dest_id]->vcpu;
9250
9251 rcu_read_unlock();
9252
9253 if (!target || !READ_ONCE(target->ready))
9254 goto no_yield;
9255
9256 /* Ignore requests to yield to self */
9257 if (vcpu == target)
9258 goto no_yield;
9259
9260 if (kvm_vcpu_yield_to(target) <= 0)
9261 goto no_yield;
9262
9263 vcpu->stat.directed_yield_successful++;
9264
9265 no_yield:
9266 return;
9267 }
9268
complete_hypercall_exit(struct kvm_vcpu * vcpu)9269 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9270 {
9271 u64 ret = vcpu->run->hypercall.ret;
9272
9273 if (!is_64_bit_mode(vcpu))
9274 ret = (u32)ret;
9275 kvm_rax_write(vcpu, ret);
9276 ++vcpu->stat.hypercalls;
9277 return kvm_skip_emulated_instruction(vcpu);
9278 }
9279
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9280 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9281 {
9282 unsigned long nr, a0, a1, a2, a3, ret;
9283 int op_64_bit;
9284
9285 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9286 return kvm_xen_hypercall(vcpu);
9287
9288 if (kvm_hv_hypercall_enabled(vcpu))
9289 return kvm_hv_hypercall(vcpu);
9290
9291 nr = kvm_rax_read(vcpu);
9292 a0 = kvm_rbx_read(vcpu);
9293 a1 = kvm_rcx_read(vcpu);
9294 a2 = kvm_rdx_read(vcpu);
9295 a3 = kvm_rsi_read(vcpu);
9296
9297 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9298
9299 op_64_bit = is_64_bit_hypercall(vcpu);
9300 if (!op_64_bit) {
9301 nr &= 0xFFFFFFFF;
9302 a0 &= 0xFFFFFFFF;
9303 a1 &= 0xFFFFFFFF;
9304 a2 &= 0xFFFFFFFF;
9305 a3 &= 0xFFFFFFFF;
9306 }
9307
9308 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9309 ret = -KVM_EPERM;
9310 goto out;
9311 }
9312
9313 ret = -KVM_ENOSYS;
9314
9315 switch (nr) {
9316 case KVM_HC_VAPIC_POLL_IRQ:
9317 ret = 0;
9318 break;
9319 case KVM_HC_KICK_CPU:
9320 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9321 break;
9322
9323 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9324 kvm_sched_yield(vcpu, a1);
9325 ret = 0;
9326 break;
9327 #ifdef CONFIG_X86_64
9328 case KVM_HC_CLOCK_PAIRING:
9329 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9330 break;
9331 #endif
9332 case KVM_HC_SEND_IPI:
9333 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9334 break;
9335
9336 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9337 break;
9338 case KVM_HC_SCHED_YIELD:
9339 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9340 break;
9341
9342 kvm_sched_yield(vcpu, a0);
9343 ret = 0;
9344 break;
9345 case KVM_HC_MAP_GPA_RANGE: {
9346 u64 gpa = a0, npages = a1, attrs = a2;
9347
9348 ret = -KVM_ENOSYS;
9349 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9350 break;
9351
9352 if (!PAGE_ALIGNED(gpa) || !npages ||
9353 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9354 ret = -KVM_EINVAL;
9355 break;
9356 }
9357
9358 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9359 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9360 vcpu->run->hypercall.args[0] = gpa;
9361 vcpu->run->hypercall.args[1] = npages;
9362 vcpu->run->hypercall.args[2] = attrs;
9363 vcpu->run->hypercall.longmode = op_64_bit;
9364 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9365 return 0;
9366 }
9367 default:
9368 ret = -KVM_ENOSYS;
9369 break;
9370 }
9371 out:
9372 if (!op_64_bit)
9373 ret = (u32)ret;
9374 kvm_rax_write(vcpu, ret);
9375
9376 ++vcpu->stat.hypercalls;
9377 return kvm_skip_emulated_instruction(vcpu);
9378 }
9379 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9380
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9381 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9382 {
9383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9384 char instruction[3];
9385 unsigned long rip = kvm_rip_read(vcpu);
9386
9387 /*
9388 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9389 * the pieces.
9390 */
9391 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9392 ctxt->exception.error_code_valid = false;
9393 ctxt->exception.vector = UD_VECTOR;
9394 ctxt->have_exception = true;
9395 return X86EMUL_PROPAGATE_FAULT;
9396 }
9397
9398 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9399
9400 return emulator_write_emulated(ctxt, rip, instruction, 3,
9401 &ctxt->exception);
9402 }
9403
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9404 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9405 {
9406 return vcpu->run->request_interrupt_window &&
9407 likely(!pic_in_kernel(vcpu->kvm));
9408 }
9409
9410 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)9411 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9412 {
9413 struct kvm_run *kvm_run = vcpu->run;
9414
9415 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9416 kvm_run->cr8 = kvm_get_cr8(vcpu);
9417 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9418
9419 kvm_run->ready_for_interrupt_injection =
9420 pic_in_kernel(vcpu->kvm) ||
9421 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9422
9423 if (is_smm(vcpu))
9424 kvm_run->flags |= KVM_RUN_X86_SMM;
9425 }
9426
update_cr8_intercept(struct kvm_vcpu * vcpu)9427 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9428 {
9429 int max_irr, tpr;
9430
9431 if (!kvm_x86_ops.update_cr8_intercept)
9432 return;
9433
9434 if (!lapic_in_kernel(vcpu))
9435 return;
9436
9437 if (vcpu->arch.apicv_active)
9438 return;
9439
9440 if (!vcpu->arch.apic->vapic_addr)
9441 max_irr = kvm_lapic_find_highest_irr(vcpu);
9442 else
9443 max_irr = -1;
9444
9445 if (max_irr != -1)
9446 max_irr >>= 4;
9447
9448 tpr = kvm_lapic_get_cr8(vcpu);
9449
9450 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9451 }
9452
9453
kvm_check_nested_events(struct kvm_vcpu * vcpu)9454 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9455 {
9456 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9457 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9458 return 1;
9459 }
9460
9461 return kvm_x86_ops.nested_ops->check_events(vcpu);
9462 }
9463
kvm_inject_exception(struct kvm_vcpu * vcpu)9464 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9465 {
9466 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9467 vcpu->arch.exception.error_code = false;
9468 static_call(kvm_x86_queue_exception)(vcpu);
9469 }
9470
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)9471 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9472 {
9473 int r;
9474 bool can_inject = true;
9475
9476 /* try to reinject previous events if any */
9477
9478 if (vcpu->arch.exception.injected) {
9479 kvm_inject_exception(vcpu);
9480 can_inject = false;
9481 }
9482 /*
9483 * Do not inject an NMI or interrupt if there is a pending
9484 * exception. Exceptions and interrupts are recognized at
9485 * instruction boundaries, i.e. the start of an instruction.
9486 * Trap-like exceptions, e.g. #DB, have higher priority than
9487 * NMIs and interrupts, i.e. traps are recognized before an
9488 * NMI/interrupt that's pending on the same instruction.
9489 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9490 * priority, but are only generated (pended) during instruction
9491 * execution, i.e. a pending fault-like exception means the
9492 * fault occurred on the *previous* instruction and must be
9493 * serviced prior to recognizing any new events in order to
9494 * fully complete the previous instruction.
9495 */
9496 else if (!vcpu->arch.exception.pending) {
9497 if (vcpu->arch.nmi_injected) {
9498 static_call(kvm_x86_inject_nmi)(vcpu);
9499 can_inject = false;
9500 } else if (vcpu->arch.interrupt.injected) {
9501 static_call(kvm_x86_inject_irq)(vcpu);
9502 can_inject = false;
9503 }
9504 }
9505
9506 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9507 vcpu->arch.exception.pending);
9508
9509 /*
9510 * Call check_nested_events() even if we reinjected a previous event
9511 * in order for caller to determine if it should require immediate-exit
9512 * from L2 to L1 due to pending L1 events which require exit
9513 * from L2 to L1.
9514 */
9515 if (is_guest_mode(vcpu)) {
9516 r = kvm_check_nested_events(vcpu);
9517 if (r < 0)
9518 goto out;
9519 }
9520
9521 /* try to inject new event if pending */
9522 if (vcpu->arch.exception.pending) {
9523 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9524 vcpu->arch.exception.has_error_code,
9525 vcpu->arch.exception.error_code);
9526
9527 vcpu->arch.exception.pending = false;
9528 vcpu->arch.exception.injected = true;
9529
9530 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9531 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9532 X86_EFLAGS_RF);
9533
9534 if (vcpu->arch.exception.nr == DB_VECTOR) {
9535 kvm_deliver_exception_payload(vcpu);
9536 if (vcpu->arch.dr7 & DR7_GD) {
9537 vcpu->arch.dr7 &= ~DR7_GD;
9538 kvm_update_dr7(vcpu);
9539 }
9540 }
9541
9542 kvm_inject_exception(vcpu);
9543 can_inject = false;
9544 }
9545
9546 /* Don't inject interrupts if the user asked to avoid doing so */
9547 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9548 return 0;
9549
9550 /*
9551 * Finally, inject interrupt events. If an event cannot be injected
9552 * due to architectural conditions (e.g. IF=0) a window-open exit
9553 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9554 * and can architecturally be injected, but we cannot do it right now:
9555 * an interrupt could have arrived just now and we have to inject it
9556 * as a vmexit, or there could already an event in the queue, which is
9557 * indicated by can_inject. In that case we request an immediate exit
9558 * in order to make progress and get back here for another iteration.
9559 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9560 */
9561 if (vcpu->arch.smi_pending) {
9562 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9563 if (r < 0)
9564 goto out;
9565 if (r) {
9566 vcpu->arch.smi_pending = false;
9567 ++vcpu->arch.smi_count;
9568 enter_smm(vcpu);
9569 can_inject = false;
9570 } else
9571 static_call(kvm_x86_enable_smi_window)(vcpu);
9572 }
9573
9574 if (vcpu->arch.nmi_pending) {
9575 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9576 if (r < 0)
9577 goto out;
9578 if (r) {
9579 --vcpu->arch.nmi_pending;
9580 vcpu->arch.nmi_injected = true;
9581 static_call(kvm_x86_inject_nmi)(vcpu);
9582 can_inject = false;
9583 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9584 }
9585 if (vcpu->arch.nmi_pending)
9586 static_call(kvm_x86_enable_nmi_window)(vcpu);
9587 }
9588
9589 if (kvm_cpu_has_injectable_intr(vcpu)) {
9590 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9591 if (r < 0)
9592 goto out;
9593 if (r) {
9594 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9595 static_call(kvm_x86_inject_irq)(vcpu);
9596 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9597 }
9598 if (kvm_cpu_has_injectable_intr(vcpu))
9599 static_call(kvm_x86_enable_irq_window)(vcpu);
9600 }
9601
9602 if (is_guest_mode(vcpu) &&
9603 kvm_x86_ops.nested_ops->hv_timer_pending &&
9604 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9605 *req_immediate_exit = true;
9606
9607 WARN_ON(vcpu->arch.exception.pending);
9608 return 0;
9609
9610 out:
9611 if (r == -EBUSY) {
9612 *req_immediate_exit = true;
9613 r = 0;
9614 }
9615 return r;
9616 }
9617
process_nmi(struct kvm_vcpu * vcpu)9618 static void process_nmi(struct kvm_vcpu *vcpu)
9619 {
9620 unsigned limit = 2;
9621
9622 /*
9623 * x86 is limited to one NMI running, and one NMI pending after it.
9624 * If an NMI is already in progress, limit further NMIs to just one.
9625 * Otherwise, allow two (and we'll inject the first one immediately).
9626 */
9627 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9628 limit = 1;
9629
9630 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9631 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9632 kvm_make_request(KVM_REQ_EVENT, vcpu);
9633 }
9634
enter_smm_get_segment_flags(struct kvm_segment * seg)9635 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9636 {
9637 u32 flags = 0;
9638 flags |= seg->g << 23;
9639 flags |= seg->db << 22;
9640 flags |= seg->l << 21;
9641 flags |= seg->avl << 20;
9642 flags |= seg->present << 15;
9643 flags |= seg->dpl << 13;
9644 flags |= seg->s << 12;
9645 flags |= seg->type << 8;
9646 return flags;
9647 }
9648
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)9649 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9650 {
9651 struct kvm_segment seg;
9652 int offset;
9653
9654 kvm_get_segment(vcpu, &seg, n);
9655 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9656
9657 if (n < 3)
9658 offset = 0x7f84 + n * 12;
9659 else
9660 offset = 0x7f2c + (n - 3) * 12;
9661
9662 put_smstate(u32, buf, offset + 8, seg.base);
9663 put_smstate(u32, buf, offset + 4, seg.limit);
9664 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9665 }
9666
9667 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)9668 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9669 {
9670 struct kvm_segment seg;
9671 int offset;
9672 u16 flags;
9673
9674 kvm_get_segment(vcpu, &seg, n);
9675 offset = 0x7e00 + n * 16;
9676
9677 flags = enter_smm_get_segment_flags(&seg) >> 8;
9678 put_smstate(u16, buf, offset, seg.selector);
9679 put_smstate(u16, buf, offset + 2, flags);
9680 put_smstate(u32, buf, offset + 4, seg.limit);
9681 put_smstate(u64, buf, offset + 8, seg.base);
9682 }
9683 #endif
9684
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)9685 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9686 {
9687 struct desc_ptr dt;
9688 struct kvm_segment seg;
9689 unsigned long val;
9690 int i;
9691
9692 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9693 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9694 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9695 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9696
9697 for (i = 0; i < 8; i++)
9698 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9699
9700 kvm_get_dr(vcpu, 6, &val);
9701 put_smstate(u32, buf, 0x7fcc, (u32)val);
9702 kvm_get_dr(vcpu, 7, &val);
9703 put_smstate(u32, buf, 0x7fc8, (u32)val);
9704
9705 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9706 put_smstate(u32, buf, 0x7fc4, seg.selector);
9707 put_smstate(u32, buf, 0x7f64, seg.base);
9708 put_smstate(u32, buf, 0x7f60, seg.limit);
9709 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9710
9711 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9712 put_smstate(u32, buf, 0x7fc0, seg.selector);
9713 put_smstate(u32, buf, 0x7f80, seg.base);
9714 put_smstate(u32, buf, 0x7f7c, seg.limit);
9715 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9716
9717 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9718 put_smstate(u32, buf, 0x7f74, dt.address);
9719 put_smstate(u32, buf, 0x7f70, dt.size);
9720
9721 static_call(kvm_x86_get_idt)(vcpu, &dt);
9722 put_smstate(u32, buf, 0x7f58, dt.address);
9723 put_smstate(u32, buf, 0x7f54, dt.size);
9724
9725 for (i = 0; i < 6; i++)
9726 enter_smm_save_seg_32(vcpu, buf, i);
9727
9728 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9729
9730 /* revision id */
9731 put_smstate(u32, buf, 0x7efc, 0x00020000);
9732 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9733 }
9734
9735 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)9736 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9737 {
9738 struct desc_ptr dt;
9739 struct kvm_segment seg;
9740 unsigned long val;
9741 int i;
9742
9743 for (i = 0; i < 16; i++)
9744 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9745
9746 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9747 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9748
9749 kvm_get_dr(vcpu, 6, &val);
9750 put_smstate(u64, buf, 0x7f68, val);
9751 kvm_get_dr(vcpu, 7, &val);
9752 put_smstate(u64, buf, 0x7f60, val);
9753
9754 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9755 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9756 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9757
9758 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9759
9760 /* revision id */
9761 put_smstate(u32, buf, 0x7efc, 0x00020064);
9762
9763 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9764
9765 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9766 put_smstate(u16, buf, 0x7e90, seg.selector);
9767 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9768 put_smstate(u32, buf, 0x7e94, seg.limit);
9769 put_smstate(u64, buf, 0x7e98, seg.base);
9770
9771 static_call(kvm_x86_get_idt)(vcpu, &dt);
9772 put_smstate(u32, buf, 0x7e84, dt.size);
9773 put_smstate(u64, buf, 0x7e88, dt.address);
9774
9775 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9776 put_smstate(u16, buf, 0x7e70, seg.selector);
9777 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9778 put_smstate(u32, buf, 0x7e74, seg.limit);
9779 put_smstate(u64, buf, 0x7e78, seg.base);
9780
9781 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9782 put_smstate(u32, buf, 0x7e64, dt.size);
9783 put_smstate(u64, buf, 0x7e68, dt.address);
9784
9785 for (i = 0; i < 6; i++)
9786 enter_smm_save_seg_64(vcpu, buf, i);
9787 }
9788 #endif
9789
enter_smm(struct kvm_vcpu * vcpu)9790 static void enter_smm(struct kvm_vcpu *vcpu)
9791 {
9792 struct kvm_segment cs, ds;
9793 struct desc_ptr dt;
9794 unsigned long cr0;
9795 char buf[512];
9796
9797 memset(buf, 0, 512);
9798 #ifdef CONFIG_X86_64
9799 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9800 enter_smm_save_state_64(vcpu, buf);
9801 else
9802 #endif
9803 enter_smm_save_state_32(vcpu, buf);
9804
9805 /*
9806 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9807 * state (e.g. leave guest mode) after we've saved the state into the
9808 * SMM state-save area.
9809 */
9810 static_call(kvm_x86_enter_smm)(vcpu, buf);
9811
9812 kvm_smm_changed(vcpu, true);
9813 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9814
9815 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9816 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9817 else
9818 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9819
9820 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9821 kvm_rip_write(vcpu, 0x8000);
9822
9823 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9824 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9825 vcpu->arch.cr0 = cr0;
9826
9827 static_call(kvm_x86_set_cr4)(vcpu, 0);
9828
9829 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9830 dt.address = dt.size = 0;
9831 static_call(kvm_x86_set_idt)(vcpu, &dt);
9832
9833 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9834
9835 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9836 cs.base = vcpu->arch.smbase;
9837
9838 ds.selector = 0;
9839 ds.base = 0;
9840
9841 cs.limit = ds.limit = 0xffffffff;
9842 cs.type = ds.type = 0x3;
9843 cs.dpl = ds.dpl = 0;
9844 cs.db = ds.db = 0;
9845 cs.s = ds.s = 1;
9846 cs.l = ds.l = 0;
9847 cs.g = ds.g = 1;
9848 cs.avl = ds.avl = 0;
9849 cs.present = ds.present = 1;
9850 cs.unusable = ds.unusable = 0;
9851 cs.padding = ds.padding = 0;
9852
9853 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9854 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9855 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9856 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9857 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9858 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9859
9860 #ifdef CONFIG_X86_64
9861 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9862 static_call(kvm_x86_set_efer)(vcpu, 0);
9863 #endif
9864
9865 kvm_update_cpuid_runtime(vcpu);
9866 kvm_mmu_reset_context(vcpu);
9867 }
9868
process_smi(struct kvm_vcpu * vcpu)9869 static void process_smi(struct kvm_vcpu *vcpu)
9870 {
9871 vcpu->arch.smi_pending = true;
9872 kvm_make_request(KVM_REQ_EVENT, vcpu);
9873 }
9874
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)9875 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9876 unsigned long *vcpu_bitmap)
9877 {
9878 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9879 }
9880
kvm_make_scan_ioapic_request(struct kvm * kvm)9881 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9882 {
9883 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9884 }
9885
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)9886 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9887 {
9888 bool activate;
9889
9890 if (!lapic_in_kernel(vcpu))
9891 return;
9892
9893 down_read(&vcpu->kvm->arch.apicv_update_lock);
9894 preempt_disable();
9895
9896 activate = kvm_vcpu_apicv_activated(vcpu);
9897
9898 if (vcpu->arch.apicv_active == activate)
9899 goto out;
9900
9901 vcpu->arch.apicv_active = activate;
9902 kvm_apic_update_apicv(vcpu);
9903 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9904
9905 /*
9906 * When APICv gets disabled, we may still have injected interrupts
9907 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9908 * still active when the interrupt got accepted. Make sure
9909 * inject_pending_event() is called to check for that.
9910 */
9911 if (!vcpu->arch.apicv_active)
9912 kvm_make_request(KVM_REQ_EVENT, vcpu);
9913
9914 out:
9915 preempt_enable();
9916 up_read(&vcpu->kvm->arch.apicv_update_lock);
9917 }
9918 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9919
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)9920 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9921 enum kvm_apicv_inhibit reason, bool set)
9922 {
9923 unsigned long old, new;
9924
9925 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9926
9927 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9928 return;
9929
9930 old = new = kvm->arch.apicv_inhibit_reasons;
9931
9932 set_or_clear_apicv_inhibit(&new, reason, set);
9933
9934 if (!!old != !!new) {
9935 /*
9936 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9937 * false positives in the sanity check WARN in svm_vcpu_run().
9938 * This task will wait for all vCPUs to ack the kick IRQ before
9939 * updating apicv_inhibit_reasons, and all other vCPUs will
9940 * block on acquiring apicv_update_lock so that vCPUs can't
9941 * redo svm_vcpu_run() without seeing the new inhibit state.
9942 *
9943 * Note, holding apicv_update_lock and taking it in the read
9944 * side (handling the request) also prevents other vCPUs from
9945 * servicing the request with a stale apicv_inhibit_reasons.
9946 */
9947 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9948 kvm->arch.apicv_inhibit_reasons = new;
9949 if (new) {
9950 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9951 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9952 }
9953 } else {
9954 kvm->arch.apicv_inhibit_reasons = new;
9955 }
9956 }
9957
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)9958 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9959 enum kvm_apicv_inhibit reason, bool set)
9960 {
9961 if (!enable_apicv)
9962 return;
9963
9964 down_write(&kvm->arch.apicv_update_lock);
9965 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9966 up_write(&kvm->arch.apicv_update_lock);
9967 }
9968 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9969
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)9970 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9971 {
9972 if (!kvm_apic_present(vcpu))
9973 return;
9974
9975 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9976
9977 if (irqchip_split(vcpu->kvm))
9978 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9979 else {
9980 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9981 if (ioapic_in_kernel(vcpu->kvm))
9982 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9983 }
9984
9985 if (is_guest_mode(vcpu))
9986 vcpu->arch.load_eoi_exitmap_pending = true;
9987 else
9988 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9989 }
9990
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)9991 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9992 {
9993 u64 eoi_exit_bitmap[4];
9994
9995 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9996 return;
9997
9998 if (to_hv_vcpu(vcpu)) {
9999 bitmap_or((ulong *)eoi_exit_bitmap,
10000 vcpu->arch.ioapic_handled_vectors,
10001 to_hv_synic(vcpu)->vec_bitmap, 256);
10002 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10003 return;
10004 }
10005
10006 static_call_cond(kvm_x86_load_eoi_exitmap)(
10007 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10008 }
10009
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)10010 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10011 unsigned long start, unsigned long end)
10012 {
10013 unsigned long apic_address;
10014
10015 /*
10016 * The physical address of apic access page is stored in the VMCS.
10017 * Update it when it becomes invalid.
10018 */
10019 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10020 if (start <= apic_address && apic_address < end)
10021 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10022 }
10023
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10024 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10025 {
10026 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10027 }
10028
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10029 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10030 {
10031 if (!lapic_in_kernel(vcpu))
10032 return;
10033
10034 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10035 }
10036
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10037 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10038 {
10039 smp_send_reschedule(vcpu->cpu);
10040 }
10041 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10042
10043 /*
10044 * Called within kvm->srcu read side.
10045 * Returns 1 to let vcpu_run() continue the guest execution loop without
10046 * exiting to the userspace. Otherwise, the value will be returned to the
10047 * userspace.
10048 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10049 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10050 {
10051 int r;
10052 bool req_int_win =
10053 dm_request_for_irq_injection(vcpu) &&
10054 kvm_cpu_accept_dm_intr(vcpu);
10055 fastpath_t exit_fastpath;
10056
10057 bool req_immediate_exit = false;
10058
10059 /* Forbid vmenter if vcpu dirty ring is soft-full */
10060 if (unlikely(vcpu->kvm->dirty_ring_size &&
10061 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10062 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10063 trace_kvm_dirty_ring_exit(vcpu);
10064 r = 0;
10065 goto out;
10066 }
10067
10068 if (kvm_request_pending(vcpu)) {
10069 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10070 r = -EIO;
10071 goto out;
10072 }
10073 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10074 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10075 r = 0;
10076 goto out;
10077 }
10078 }
10079 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10080 kvm_mmu_free_obsolete_roots(vcpu);
10081 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10082 __kvm_migrate_timers(vcpu);
10083 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10084 kvm_update_masterclock(vcpu->kvm);
10085 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10086 kvm_gen_kvmclock_update(vcpu);
10087 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10088 r = kvm_guest_time_update(vcpu);
10089 if (unlikely(r))
10090 goto out;
10091 }
10092 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10093 kvm_mmu_sync_roots(vcpu);
10094 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10095 kvm_mmu_load_pgd(vcpu);
10096 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10097 kvm_vcpu_flush_tlb_all(vcpu);
10098
10099 /* Flushing all ASIDs flushes the current ASID... */
10100 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10101 }
10102 kvm_service_local_tlb_flush_requests(vcpu);
10103
10104 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10105 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10106 r = 0;
10107 goto out;
10108 }
10109 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10110 if (is_guest_mode(vcpu)) {
10111 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10112 } else {
10113 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10114 vcpu->mmio_needed = 0;
10115 r = 0;
10116 goto out;
10117 }
10118 }
10119 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10120 /* Page is swapped out. Do synthetic halt */
10121 vcpu->arch.apf.halted = true;
10122 r = 1;
10123 goto out;
10124 }
10125 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10126 record_steal_time(vcpu);
10127 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10128 process_smi(vcpu);
10129 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10130 process_nmi(vcpu);
10131 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10132 kvm_pmu_handle_event(vcpu);
10133 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10134 kvm_pmu_deliver_pmi(vcpu);
10135 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10136 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10137 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10138 vcpu->arch.ioapic_handled_vectors)) {
10139 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10140 vcpu->run->eoi.vector =
10141 vcpu->arch.pending_ioapic_eoi;
10142 r = 0;
10143 goto out;
10144 }
10145 }
10146 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10147 vcpu_scan_ioapic(vcpu);
10148 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10149 vcpu_load_eoi_exitmap(vcpu);
10150 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10151 kvm_vcpu_reload_apic_access_page(vcpu);
10152 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10153 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10154 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10155 vcpu->run->system_event.ndata = 0;
10156 r = 0;
10157 goto out;
10158 }
10159 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10160 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10161 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10162 vcpu->run->system_event.ndata = 0;
10163 r = 0;
10164 goto out;
10165 }
10166 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10167 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10168
10169 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10170 vcpu->run->hyperv = hv_vcpu->exit;
10171 r = 0;
10172 goto out;
10173 }
10174
10175 /*
10176 * KVM_REQ_HV_STIMER has to be processed after
10177 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10178 * depend on the guest clock being up-to-date
10179 */
10180 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10181 kvm_hv_process_stimers(vcpu);
10182 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10183 kvm_vcpu_update_apicv(vcpu);
10184 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10185 kvm_check_async_pf_completion(vcpu);
10186 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10187 static_call(kvm_x86_msr_filter_changed)(vcpu);
10188
10189 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10190 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10191 }
10192
10193 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10194 kvm_xen_has_interrupt(vcpu)) {
10195 ++vcpu->stat.req_event;
10196 r = kvm_apic_accept_events(vcpu);
10197 if (r < 0) {
10198 r = 0;
10199 goto out;
10200 }
10201 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10202 r = 1;
10203 goto out;
10204 }
10205
10206 r = inject_pending_event(vcpu, &req_immediate_exit);
10207 if (r < 0) {
10208 r = 0;
10209 goto out;
10210 }
10211 if (req_int_win)
10212 static_call(kvm_x86_enable_irq_window)(vcpu);
10213
10214 if (kvm_lapic_enabled(vcpu)) {
10215 update_cr8_intercept(vcpu);
10216 kvm_lapic_sync_to_vapic(vcpu);
10217 }
10218 }
10219
10220 r = kvm_mmu_reload(vcpu);
10221 if (unlikely(r)) {
10222 goto cancel_injection;
10223 }
10224
10225 preempt_disable();
10226
10227 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10228
10229 /*
10230 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10231 * IPI are then delayed after guest entry, which ensures that they
10232 * result in virtual interrupt delivery.
10233 */
10234 local_irq_disable();
10235
10236 /* Store vcpu->apicv_active before vcpu->mode. */
10237 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10238
10239 kvm_vcpu_srcu_read_unlock(vcpu);
10240
10241 /*
10242 * 1) We should set ->mode before checking ->requests. Please see
10243 * the comment in kvm_vcpu_exiting_guest_mode().
10244 *
10245 * 2) For APICv, we should set ->mode before checking PID.ON. This
10246 * pairs with the memory barrier implicit in pi_test_and_set_on
10247 * (see vmx_deliver_posted_interrupt).
10248 *
10249 * 3) This also orders the write to mode from any reads to the page
10250 * tables done while the VCPU is running. Please see the comment
10251 * in kvm_flush_remote_tlbs.
10252 */
10253 smp_mb__after_srcu_read_unlock();
10254
10255 /*
10256 * Process pending posted interrupts to handle the case where the
10257 * notification IRQ arrived in the host, or was never sent (because the
10258 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10259 * status, KVM doesn't update assigned devices when APICv is inhibited,
10260 * i.e. they can post interrupts even if APICv is temporarily disabled.
10261 */
10262 if (kvm_lapic_enabled(vcpu))
10263 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10264
10265 if (kvm_vcpu_exit_request(vcpu)) {
10266 vcpu->mode = OUTSIDE_GUEST_MODE;
10267 smp_wmb();
10268 local_irq_enable();
10269 preempt_enable();
10270 kvm_vcpu_srcu_read_lock(vcpu);
10271 r = 1;
10272 goto cancel_injection;
10273 }
10274
10275 if (req_immediate_exit) {
10276 kvm_make_request(KVM_REQ_EVENT, vcpu);
10277 static_call(kvm_x86_request_immediate_exit)(vcpu);
10278 }
10279
10280 fpregs_assert_state_consistent();
10281 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10282 switch_fpu_return();
10283
10284 if (vcpu->arch.guest_fpu.xfd_err)
10285 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10286
10287 if (unlikely(vcpu->arch.switch_db_regs)) {
10288 set_debugreg(0, 7);
10289 set_debugreg(vcpu->arch.eff_db[0], 0);
10290 set_debugreg(vcpu->arch.eff_db[1], 1);
10291 set_debugreg(vcpu->arch.eff_db[2], 2);
10292 set_debugreg(vcpu->arch.eff_db[3], 3);
10293 } else if (unlikely(hw_breakpoint_active())) {
10294 set_debugreg(0, 7);
10295 }
10296
10297 guest_timing_enter_irqoff();
10298
10299 for (;;) {
10300 /*
10301 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10302 * update must kick and wait for all vCPUs before toggling the
10303 * per-VM state, and responsing vCPUs must wait for the update
10304 * to complete before servicing KVM_REQ_APICV_UPDATE.
10305 */
10306 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10307
10308 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10309 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10310 break;
10311
10312 if (kvm_lapic_enabled(vcpu))
10313 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10314
10315 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10316 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10317 break;
10318 }
10319 }
10320
10321 /*
10322 * Do this here before restoring debug registers on the host. And
10323 * since we do this before handling the vmexit, a DR access vmexit
10324 * can (a) read the correct value of the debug registers, (b) set
10325 * KVM_DEBUGREG_WONT_EXIT again.
10326 */
10327 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10328 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10329 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10330 kvm_update_dr0123(vcpu);
10331 kvm_update_dr7(vcpu);
10332 }
10333
10334 /*
10335 * If the guest has used debug registers, at least dr7
10336 * will be disabled while returning to the host.
10337 * If we don't have active breakpoints in the host, we don't
10338 * care about the messed up debug address registers. But if
10339 * we have some of them active, restore the old state.
10340 */
10341 if (hw_breakpoint_active())
10342 hw_breakpoint_restore();
10343
10344 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10345 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10346
10347 vcpu->mode = OUTSIDE_GUEST_MODE;
10348 smp_wmb();
10349
10350 /*
10351 * Sync xfd before calling handle_exit_irqoff() which may
10352 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10353 * in #NM irqoff handler).
10354 */
10355 if (vcpu->arch.xfd_no_write_intercept)
10356 fpu_sync_guest_vmexit_xfd_state();
10357
10358 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10359
10360 if (vcpu->arch.guest_fpu.xfd_err)
10361 wrmsrl(MSR_IA32_XFD_ERR, 0);
10362
10363 /*
10364 * Consume any pending interrupts, including the possible source of
10365 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10366 * An instruction is required after local_irq_enable() to fully unblock
10367 * interrupts on processors that implement an interrupt shadow, the
10368 * stat.exits increment will do nicely.
10369 */
10370 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10371 local_irq_enable();
10372 ++vcpu->stat.exits;
10373 local_irq_disable();
10374 kvm_after_interrupt(vcpu);
10375
10376 /*
10377 * Wait until after servicing IRQs to account guest time so that any
10378 * ticks that occurred while running the guest are properly accounted
10379 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10380 * of accounting via context tracking, but the loss of accuracy is
10381 * acceptable for all known use cases.
10382 */
10383 guest_timing_exit_irqoff();
10384
10385 local_irq_enable();
10386 preempt_enable();
10387
10388 kvm_vcpu_srcu_read_lock(vcpu);
10389
10390 /*
10391 * Profile KVM exit RIPs:
10392 */
10393 if (unlikely(prof_on == KVM_PROFILING)) {
10394 unsigned long rip = kvm_rip_read(vcpu);
10395 profile_hit(KVM_PROFILING, (void *)rip);
10396 }
10397
10398 if (unlikely(vcpu->arch.tsc_always_catchup))
10399 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10400
10401 if (vcpu->arch.apic_attention)
10402 kvm_lapic_sync_from_vapic(vcpu);
10403
10404 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10405 return r;
10406
10407 cancel_injection:
10408 if (req_immediate_exit)
10409 kvm_make_request(KVM_REQ_EVENT, vcpu);
10410 static_call(kvm_x86_cancel_injection)(vcpu);
10411 if (unlikely(vcpu->arch.apic_attention))
10412 kvm_lapic_sync_from_vapic(vcpu);
10413 out:
10414 return r;
10415 }
10416
10417 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)10418 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10419 {
10420 bool hv_timer;
10421
10422 if (!kvm_arch_vcpu_runnable(vcpu)) {
10423 /*
10424 * Switch to the software timer before halt-polling/blocking as
10425 * the guest's timer may be a break event for the vCPU, and the
10426 * hypervisor timer runs only when the CPU is in guest mode.
10427 * Switch before halt-polling so that KVM recognizes an expired
10428 * timer before blocking.
10429 */
10430 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10431 if (hv_timer)
10432 kvm_lapic_switch_to_sw_timer(vcpu);
10433
10434 kvm_vcpu_srcu_read_unlock(vcpu);
10435 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10436 kvm_vcpu_halt(vcpu);
10437 else
10438 kvm_vcpu_block(vcpu);
10439 kvm_vcpu_srcu_read_lock(vcpu);
10440
10441 if (hv_timer)
10442 kvm_lapic_switch_to_hv_timer(vcpu);
10443
10444 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10445 return 1;
10446 }
10447
10448 if (kvm_apic_accept_events(vcpu) < 0)
10449 return 0;
10450 switch(vcpu->arch.mp_state) {
10451 case KVM_MP_STATE_HALTED:
10452 case KVM_MP_STATE_AP_RESET_HOLD:
10453 vcpu->arch.pv.pv_unhalted = false;
10454 vcpu->arch.mp_state =
10455 KVM_MP_STATE_RUNNABLE;
10456 fallthrough;
10457 case KVM_MP_STATE_RUNNABLE:
10458 vcpu->arch.apf.halted = false;
10459 break;
10460 case KVM_MP_STATE_INIT_RECEIVED:
10461 break;
10462 default:
10463 return -EINTR;
10464 }
10465 return 1;
10466 }
10467
kvm_vcpu_running(struct kvm_vcpu * vcpu)10468 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10469 {
10470 if (is_guest_mode(vcpu))
10471 kvm_check_nested_events(vcpu);
10472
10473 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10474 !vcpu->arch.apf.halted);
10475 }
10476
10477 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)10478 static int vcpu_run(struct kvm_vcpu *vcpu)
10479 {
10480 int r;
10481
10482 vcpu->arch.l1tf_flush_l1d = true;
10483
10484 for (;;) {
10485 /*
10486 * If another guest vCPU requests a PV TLB flush in the middle
10487 * of instruction emulation, the rest of the emulation could
10488 * use a stale page translation. Assume that any code after
10489 * this point can start executing an instruction.
10490 */
10491 vcpu->arch.at_instruction_boundary = false;
10492 if (kvm_vcpu_running(vcpu)) {
10493 r = vcpu_enter_guest(vcpu);
10494 } else {
10495 r = vcpu_block(vcpu);
10496 }
10497
10498 if (r <= 0)
10499 break;
10500
10501 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10502 if (kvm_xen_has_pending_events(vcpu))
10503 kvm_xen_inject_pending_events(vcpu);
10504
10505 if (kvm_cpu_has_pending_timer(vcpu))
10506 kvm_inject_pending_timer_irqs(vcpu);
10507
10508 if (dm_request_for_irq_injection(vcpu) &&
10509 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10510 r = 0;
10511 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10512 ++vcpu->stat.request_irq_exits;
10513 break;
10514 }
10515
10516 if (__xfer_to_guest_mode_work_pending()) {
10517 kvm_vcpu_srcu_read_unlock(vcpu);
10518 r = xfer_to_guest_mode_handle_work(vcpu);
10519 kvm_vcpu_srcu_read_lock(vcpu);
10520 if (r)
10521 return r;
10522 }
10523 }
10524
10525 return r;
10526 }
10527
complete_emulated_io(struct kvm_vcpu * vcpu)10528 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10529 {
10530 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10531 }
10532
complete_emulated_pio(struct kvm_vcpu * vcpu)10533 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10534 {
10535 BUG_ON(!vcpu->arch.pio.count);
10536
10537 return complete_emulated_io(vcpu);
10538 }
10539
10540 /*
10541 * Implements the following, as a state machine:
10542 *
10543 * read:
10544 * for each fragment
10545 * for each mmio piece in the fragment
10546 * write gpa, len
10547 * exit
10548 * copy data
10549 * execute insn
10550 *
10551 * write:
10552 * for each fragment
10553 * for each mmio piece in the fragment
10554 * write gpa, len
10555 * copy data
10556 * exit
10557 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)10558 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10559 {
10560 struct kvm_run *run = vcpu->run;
10561 struct kvm_mmio_fragment *frag;
10562 unsigned len;
10563
10564 BUG_ON(!vcpu->mmio_needed);
10565
10566 /* Complete previous fragment */
10567 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10568 len = min(8u, frag->len);
10569 if (!vcpu->mmio_is_write)
10570 memcpy(frag->data, run->mmio.data, len);
10571
10572 if (frag->len <= 8) {
10573 /* Switch to the next fragment. */
10574 frag++;
10575 vcpu->mmio_cur_fragment++;
10576 } else {
10577 /* Go forward to the next mmio piece. */
10578 frag->data += len;
10579 frag->gpa += len;
10580 frag->len -= len;
10581 }
10582
10583 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10584 vcpu->mmio_needed = 0;
10585
10586 /* FIXME: return into emulator if single-stepping. */
10587 if (vcpu->mmio_is_write)
10588 return 1;
10589 vcpu->mmio_read_completed = 1;
10590 return complete_emulated_io(vcpu);
10591 }
10592
10593 run->exit_reason = KVM_EXIT_MMIO;
10594 run->mmio.phys_addr = frag->gpa;
10595 if (vcpu->mmio_is_write)
10596 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10597 run->mmio.len = min(8u, frag->len);
10598 run->mmio.is_write = vcpu->mmio_is_write;
10599 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10600 return 0;
10601 }
10602
10603 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)10604 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10605 {
10606 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10607 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10608 trace_kvm_fpu(1);
10609 }
10610
10611 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)10612 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10613 {
10614 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10615 ++vcpu->stat.fpu_reload;
10616 trace_kvm_fpu(0);
10617 }
10618
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)10619 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10620 {
10621 struct kvm_run *kvm_run = vcpu->run;
10622 int r;
10623
10624 vcpu_load(vcpu);
10625 kvm_sigset_activate(vcpu);
10626 kvm_run->flags = 0;
10627 kvm_load_guest_fpu(vcpu);
10628
10629 kvm_vcpu_srcu_read_lock(vcpu);
10630 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10631 if (kvm_run->immediate_exit) {
10632 r = -EINTR;
10633 goto out;
10634 }
10635 /*
10636 * It should be impossible for the hypervisor timer to be in
10637 * use before KVM has ever run the vCPU.
10638 */
10639 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10640
10641 kvm_vcpu_srcu_read_unlock(vcpu);
10642 kvm_vcpu_block(vcpu);
10643 kvm_vcpu_srcu_read_lock(vcpu);
10644
10645 if (kvm_apic_accept_events(vcpu) < 0) {
10646 r = 0;
10647 goto out;
10648 }
10649 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10650 r = -EAGAIN;
10651 if (signal_pending(current)) {
10652 r = -EINTR;
10653 kvm_run->exit_reason = KVM_EXIT_INTR;
10654 ++vcpu->stat.signal_exits;
10655 }
10656 goto out;
10657 }
10658
10659 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10660 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10661 r = -EINVAL;
10662 goto out;
10663 }
10664
10665 if (kvm_run->kvm_dirty_regs) {
10666 r = sync_regs(vcpu);
10667 if (r != 0)
10668 goto out;
10669 }
10670
10671 /* re-sync apic's tpr */
10672 if (!lapic_in_kernel(vcpu)) {
10673 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10674 r = -EINVAL;
10675 goto out;
10676 }
10677 }
10678
10679 if (unlikely(vcpu->arch.complete_userspace_io)) {
10680 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10681 vcpu->arch.complete_userspace_io = NULL;
10682 r = cui(vcpu);
10683 if (r <= 0)
10684 goto out;
10685 } else
10686 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10687
10688 if (kvm_run->immediate_exit) {
10689 r = -EINTR;
10690 goto out;
10691 }
10692
10693 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10694 if (r <= 0)
10695 goto out;
10696
10697 r = vcpu_run(vcpu);
10698
10699 out:
10700 kvm_put_guest_fpu(vcpu);
10701 if (kvm_run->kvm_valid_regs)
10702 store_regs(vcpu);
10703 post_kvm_run_save(vcpu);
10704 kvm_vcpu_srcu_read_unlock(vcpu);
10705
10706 kvm_sigset_deactivate(vcpu);
10707 vcpu_put(vcpu);
10708 return r;
10709 }
10710
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10711 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10712 {
10713 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10714 /*
10715 * We are here if userspace calls get_regs() in the middle of
10716 * instruction emulation. Registers state needs to be copied
10717 * back from emulation context to vcpu. Userspace shouldn't do
10718 * that usually, but some bad designed PV devices (vmware
10719 * backdoor interface) need this to work
10720 */
10721 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10722 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10723 }
10724 regs->rax = kvm_rax_read(vcpu);
10725 regs->rbx = kvm_rbx_read(vcpu);
10726 regs->rcx = kvm_rcx_read(vcpu);
10727 regs->rdx = kvm_rdx_read(vcpu);
10728 regs->rsi = kvm_rsi_read(vcpu);
10729 regs->rdi = kvm_rdi_read(vcpu);
10730 regs->rsp = kvm_rsp_read(vcpu);
10731 regs->rbp = kvm_rbp_read(vcpu);
10732 #ifdef CONFIG_X86_64
10733 regs->r8 = kvm_r8_read(vcpu);
10734 regs->r9 = kvm_r9_read(vcpu);
10735 regs->r10 = kvm_r10_read(vcpu);
10736 regs->r11 = kvm_r11_read(vcpu);
10737 regs->r12 = kvm_r12_read(vcpu);
10738 regs->r13 = kvm_r13_read(vcpu);
10739 regs->r14 = kvm_r14_read(vcpu);
10740 regs->r15 = kvm_r15_read(vcpu);
10741 #endif
10742
10743 regs->rip = kvm_rip_read(vcpu);
10744 regs->rflags = kvm_get_rflags(vcpu);
10745 }
10746
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10747 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10748 {
10749 vcpu_load(vcpu);
10750 __get_regs(vcpu, regs);
10751 vcpu_put(vcpu);
10752 return 0;
10753 }
10754
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10755 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10756 {
10757 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10758 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10759
10760 kvm_rax_write(vcpu, regs->rax);
10761 kvm_rbx_write(vcpu, regs->rbx);
10762 kvm_rcx_write(vcpu, regs->rcx);
10763 kvm_rdx_write(vcpu, regs->rdx);
10764 kvm_rsi_write(vcpu, regs->rsi);
10765 kvm_rdi_write(vcpu, regs->rdi);
10766 kvm_rsp_write(vcpu, regs->rsp);
10767 kvm_rbp_write(vcpu, regs->rbp);
10768 #ifdef CONFIG_X86_64
10769 kvm_r8_write(vcpu, regs->r8);
10770 kvm_r9_write(vcpu, regs->r9);
10771 kvm_r10_write(vcpu, regs->r10);
10772 kvm_r11_write(vcpu, regs->r11);
10773 kvm_r12_write(vcpu, regs->r12);
10774 kvm_r13_write(vcpu, regs->r13);
10775 kvm_r14_write(vcpu, regs->r14);
10776 kvm_r15_write(vcpu, regs->r15);
10777 #endif
10778
10779 kvm_rip_write(vcpu, regs->rip);
10780 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10781
10782 vcpu->arch.exception.pending = false;
10783
10784 kvm_make_request(KVM_REQ_EVENT, vcpu);
10785 }
10786
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10787 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10788 {
10789 vcpu_load(vcpu);
10790 __set_regs(vcpu, regs);
10791 vcpu_put(vcpu);
10792 return 0;
10793 }
10794
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10795 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10796 {
10797 struct desc_ptr dt;
10798
10799 if (vcpu->arch.guest_state_protected)
10800 goto skip_protected_regs;
10801
10802 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10803 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10804 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10805 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10806 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10807 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10808
10809 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10810 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10811
10812 static_call(kvm_x86_get_idt)(vcpu, &dt);
10813 sregs->idt.limit = dt.size;
10814 sregs->idt.base = dt.address;
10815 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10816 sregs->gdt.limit = dt.size;
10817 sregs->gdt.base = dt.address;
10818
10819 sregs->cr2 = vcpu->arch.cr2;
10820 sregs->cr3 = kvm_read_cr3(vcpu);
10821
10822 skip_protected_regs:
10823 sregs->cr0 = kvm_read_cr0(vcpu);
10824 sregs->cr4 = kvm_read_cr4(vcpu);
10825 sregs->cr8 = kvm_get_cr8(vcpu);
10826 sregs->efer = vcpu->arch.efer;
10827 sregs->apic_base = kvm_get_apic_base(vcpu);
10828 }
10829
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10830 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10831 {
10832 __get_sregs_common(vcpu, sregs);
10833
10834 if (vcpu->arch.guest_state_protected)
10835 return;
10836
10837 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10838 set_bit(vcpu->arch.interrupt.nr,
10839 (unsigned long *)sregs->interrupt_bitmap);
10840 }
10841
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)10842 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10843 {
10844 int i;
10845
10846 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10847
10848 if (vcpu->arch.guest_state_protected)
10849 return;
10850
10851 if (is_pae_paging(vcpu)) {
10852 for (i = 0 ; i < 4 ; i++)
10853 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10854 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10855 }
10856 }
10857
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10858 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10859 struct kvm_sregs *sregs)
10860 {
10861 vcpu_load(vcpu);
10862 __get_sregs(vcpu, sregs);
10863 vcpu_put(vcpu);
10864 return 0;
10865 }
10866
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10867 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10868 struct kvm_mp_state *mp_state)
10869 {
10870 int r;
10871
10872 vcpu_load(vcpu);
10873 if (kvm_mpx_supported())
10874 kvm_load_guest_fpu(vcpu);
10875
10876 r = kvm_apic_accept_events(vcpu);
10877 if (r < 0)
10878 goto out;
10879 r = 0;
10880
10881 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10882 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10883 vcpu->arch.pv.pv_unhalted)
10884 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10885 else
10886 mp_state->mp_state = vcpu->arch.mp_state;
10887
10888 out:
10889 if (kvm_mpx_supported())
10890 kvm_put_guest_fpu(vcpu);
10891 vcpu_put(vcpu);
10892 return r;
10893 }
10894
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10895 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10896 struct kvm_mp_state *mp_state)
10897 {
10898 int ret = -EINVAL;
10899
10900 vcpu_load(vcpu);
10901
10902 if (!lapic_in_kernel(vcpu) &&
10903 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10904 goto out;
10905
10906 /*
10907 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10908 * INIT state; latched init should be reported using
10909 * KVM_SET_VCPU_EVENTS, so reject it here.
10910 */
10911 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10912 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10913 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10914 goto out;
10915
10916 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10917 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10918 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10919 } else
10920 vcpu->arch.mp_state = mp_state->mp_state;
10921 kvm_make_request(KVM_REQ_EVENT, vcpu);
10922
10923 ret = 0;
10924 out:
10925 vcpu_put(vcpu);
10926 return ret;
10927 }
10928
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)10929 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10930 int reason, bool has_error_code, u32 error_code)
10931 {
10932 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10933 int ret;
10934
10935 init_emulate_ctxt(vcpu);
10936
10937 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10938 has_error_code, error_code);
10939 if (ret) {
10940 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10941 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10942 vcpu->run->internal.ndata = 0;
10943 return 0;
10944 }
10945
10946 kvm_rip_write(vcpu, ctxt->eip);
10947 kvm_set_rflags(vcpu, ctxt->eflags);
10948 return 1;
10949 }
10950 EXPORT_SYMBOL_GPL(kvm_task_switch);
10951
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10952 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10953 {
10954 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10955 /*
10956 * When EFER.LME and CR0.PG are set, the processor is in
10957 * 64-bit mode (though maybe in a 32-bit code segment).
10958 * CR4.PAE and EFER.LMA must be set.
10959 */
10960 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10961 return false;
10962 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10963 return false;
10964 } else {
10965 /*
10966 * Not in 64-bit mode: EFER.LMA is clear and the code
10967 * segment cannot be 64-bit.
10968 */
10969 if (sregs->efer & EFER_LMA || sregs->cs.l)
10970 return false;
10971 }
10972
10973 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10974 }
10975
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)10976 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10977 int *mmu_reset_needed, bool update_pdptrs)
10978 {
10979 struct msr_data apic_base_msr;
10980 int idx;
10981 struct desc_ptr dt;
10982
10983 if (!kvm_is_valid_sregs(vcpu, sregs))
10984 return -EINVAL;
10985
10986 apic_base_msr.data = sregs->apic_base;
10987 apic_base_msr.host_initiated = true;
10988 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10989 return -EINVAL;
10990
10991 if (vcpu->arch.guest_state_protected)
10992 return 0;
10993
10994 dt.size = sregs->idt.limit;
10995 dt.address = sregs->idt.base;
10996 static_call(kvm_x86_set_idt)(vcpu, &dt);
10997 dt.size = sregs->gdt.limit;
10998 dt.address = sregs->gdt.base;
10999 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11000
11001 vcpu->arch.cr2 = sregs->cr2;
11002 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11003 vcpu->arch.cr3 = sregs->cr3;
11004 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11005 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11006
11007 kvm_set_cr8(vcpu, sregs->cr8);
11008
11009 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11010 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11011
11012 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11013 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11014 vcpu->arch.cr0 = sregs->cr0;
11015
11016 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11017 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11018
11019 if (update_pdptrs) {
11020 idx = srcu_read_lock(&vcpu->kvm->srcu);
11021 if (is_pae_paging(vcpu)) {
11022 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11023 *mmu_reset_needed = 1;
11024 }
11025 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11026 }
11027
11028 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11029 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11030 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11031 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11032 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11033 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11034
11035 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11036 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11037
11038 update_cr8_intercept(vcpu);
11039
11040 /* Older userspace won't unhalt the vcpu on reset. */
11041 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11042 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11043 !is_protmode(vcpu))
11044 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11045
11046 return 0;
11047 }
11048
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11049 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11050 {
11051 int pending_vec, max_bits;
11052 int mmu_reset_needed = 0;
11053 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11054
11055 if (ret)
11056 return ret;
11057
11058 if (mmu_reset_needed)
11059 kvm_mmu_reset_context(vcpu);
11060
11061 max_bits = KVM_NR_INTERRUPTS;
11062 pending_vec = find_first_bit(
11063 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11064
11065 if (pending_vec < max_bits) {
11066 kvm_queue_interrupt(vcpu, pending_vec, false);
11067 pr_debug("Set back pending irq %d\n", pending_vec);
11068 kvm_make_request(KVM_REQ_EVENT, vcpu);
11069 }
11070 return 0;
11071 }
11072
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11073 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11074 {
11075 int mmu_reset_needed = 0;
11076 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11077 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11078 !(sregs2->efer & EFER_LMA);
11079 int i, ret;
11080
11081 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11082 return -EINVAL;
11083
11084 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11085 return -EINVAL;
11086
11087 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11088 &mmu_reset_needed, !valid_pdptrs);
11089 if (ret)
11090 return ret;
11091
11092 if (valid_pdptrs) {
11093 for (i = 0; i < 4 ; i++)
11094 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11095
11096 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11097 mmu_reset_needed = 1;
11098 vcpu->arch.pdptrs_from_userspace = true;
11099 }
11100 if (mmu_reset_needed)
11101 kvm_mmu_reset_context(vcpu);
11102 return 0;
11103 }
11104
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11105 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11106 struct kvm_sregs *sregs)
11107 {
11108 int ret;
11109
11110 vcpu_load(vcpu);
11111 ret = __set_sregs(vcpu, sregs);
11112 vcpu_put(vcpu);
11113 return ret;
11114 }
11115
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11116 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11117 {
11118 bool set = false;
11119 struct kvm_vcpu *vcpu;
11120 unsigned long i;
11121
11122 if (!enable_apicv)
11123 return;
11124
11125 down_write(&kvm->arch.apicv_update_lock);
11126
11127 kvm_for_each_vcpu(i, vcpu, kvm) {
11128 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11129 set = true;
11130 break;
11131 }
11132 }
11133 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11134 up_write(&kvm->arch.apicv_update_lock);
11135 }
11136
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11137 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11138 struct kvm_guest_debug *dbg)
11139 {
11140 unsigned long rflags;
11141 int i, r;
11142
11143 if (vcpu->arch.guest_state_protected)
11144 return -EINVAL;
11145
11146 vcpu_load(vcpu);
11147
11148 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11149 r = -EBUSY;
11150 if (vcpu->arch.exception.pending)
11151 goto out;
11152 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11153 kvm_queue_exception(vcpu, DB_VECTOR);
11154 else
11155 kvm_queue_exception(vcpu, BP_VECTOR);
11156 }
11157
11158 /*
11159 * Read rflags as long as potentially injected trace flags are still
11160 * filtered out.
11161 */
11162 rflags = kvm_get_rflags(vcpu);
11163
11164 vcpu->guest_debug = dbg->control;
11165 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11166 vcpu->guest_debug = 0;
11167
11168 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11169 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11170 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11171 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11172 } else {
11173 for (i = 0; i < KVM_NR_DB_REGS; i++)
11174 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11175 }
11176 kvm_update_dr7(vcpu);
11177
11178 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11179 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11180
11181 /*
11182 * Trigger an rflags update that will inject or remove the trace
11183 * flags.
11184 */
11185 kvm_set_rflags(vcpu, rflags);
11186
11187 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11188
11189 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11190
11191 r = 0;
11192
11193 out:
11194 vcpu_put(vcpu);
11195 return r;
11196 }
11197
11198 /*
11199 * Translate a guest virtual address to a guest physical address.
11200 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11201 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11202 struct kvm_translation *tr)
11203 {
11204 unsigned long vaddr = tr->linear_address;
11205 gpa_t gpa;
11206 int idx;
11207
11208 vcpu_load(vcpu);
11209
11210 idx = srcu_read_lock(&vcpu->kvm->srcu);
11211 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11212 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11213 tr->physical_address = gpa;
11214 tr->valid = gpa != UNMAPPED_GVA;
11215 tr->writeable = 1;
11216 tr->usermode = 0;
11217
11218 vcpu_put(vcpu);
11219 return 0;
11220 }
11221
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11222 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11223 {
11224 struct fxregs_state *fxsave;
11225
11226 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11227 return 0;
11228
11229 vcpu_load(vcpu);
11230
11231 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11232 memcpy(fpu->fpr, fxsave->st_space, 128);
11233 fpu->fcw = fxsave->cwd;
11234 fpu->fsw = fxsave->swd;
11235 fpu->ftwx = fxsave->twd;
11236 fpu->last_opcode = fxsave->fop;
11237 fpu->last_ip = fxsave->rip;
11238 fpu->last_dp = fxsave->rdp;
11239 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11240
11241 vcpu_put(vcpu);
11242 return 0;
11243 }
11244
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11245 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11246 {
11247 struct fxregs_state *fxsave;
11248
11249 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11250 return 0;
11251
11252 vcpu_load(vcpu);
11253
11254 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11255
11256 memcpy(fxsave->st_space, fpu->fpr, 128);
11257 fxsave->cwd = fpu->fcw;
11258 fxsave->swd = fpu->fsw;
11259 fxsave->twd = fpu->ftwx;
11260 fxsave->fop = fpu->last_opcode;
11261 fxsave->rip = fpu->last_ip;
11262 fxsave->rdp = fpu->last_dp;
11263 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11264
11265 vcpu_put(vcpu);
11266 return 0;
11267 }
11268
store_regs(struct kvm_vcpu * vcpu)11269 static void store_regs(struct kvm_vcpu *vcpu)
11270 {
11271 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11272
11273 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11274 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11275
11276 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11277 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11278
11279 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11280 kvm_vcpu_ioctl_x86_get_vcpu_events(
11281 vcpu, &vcpu->run->s.regs.events);
11282 }
11283
sync_regs(struct kvm_vcpu * vcpu)11284 static int sync_regs(struct kvm_vcpu *vcpu)
11285 {
11286 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11287 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11288 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11289 }
11290 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11291 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11292 return -EINVAL;
11293 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11294 }
11295 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11296 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11297 vcpu, &vcpu->run->s.regs.events))
11298 return -EINVAL;
11299 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11300 }
11301
11302 return 0;
11303 }
11304
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11305 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11306 {
11307 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11308 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11309 "guest TSC will not be reliable\n");
11310
11311 return 0;
11312 }
11313
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11315 {
11316 struct page *page;
11317 int r;
11318
11319 vcpu->arch.last_vmentry_cpu = -1;
11320 vcpu->arch.regs_avail = ~0;
11321 vcpu->arch.regs_dirty = ~0;
11322
11323 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11324 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11325 else
11326 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11327
11328 r = kvm_mmu_create(vcpu);
11329 if (r < 0)
11330 return r;
11331
11332 if (irqchip_in_kernel(vcpu->kvm)) {
11333 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11334 if (r < 0)
11335 goto fail_mmu_destroy;
11336
11337 /*
11338 * Defer evaluating inhibits until the vCPU is first run, as
11339 * this vCPU will not get notified of any changes until this
11340 * vCPU is visible to other vCPUs (marked online and added to
11341 * the set of vCPUs). Opportunistically mark APICv active as
11342 * VMX in particularly is highly unlikely to have inhibits.
11343 * Ignore the current per-VM APICv state so that vCPU creation
11344 * is guaranteed to run with a deterministic value, the request
11345 * will ensure the vCPU gets the correct state before VM-Entry.
11346 */
11347 if (enable_apicv) {
11348 vcpu->arch.apicv_active = true;
11349 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11350 }
11351 } else
11352 static_branch_inc(&kvm_has_noapic_vcpu);
11353
11354 r = -ENOMEM;
11355
11356 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11357 if (!page)
11358 goto fail_free_lapic;
11359 vcpu->arch.pio_data = page_address(page);
11360
11361 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11362 GFP_KERNEL_ACCOUNT);
11363 if (!vcpu->arch.mce_banks)
11364 goto fail_free_pio_data;
11365 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11366
11367 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11368 GFP_KERNEL_ACCOUNT))
11369 goto fail_free_mce_banks;
11370
11371 if (!alloc_emulate_ctxt(vcpu))
11372 goto free_wbinvd_dirty_mask;
11373
11374 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11375 pr_err("kvm: failed to allocate vcpu's fpu\n");
11376 goto free_emulate_ctxt;
11377 }
11378
11379 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11380 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11381
11382 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11383
11384 kvm_async_pf_hash_reset(vcpu);
11385 kvm_pmu_init(vcpu);
11386
11387 vcpu->arch.pending_external_vector = -1;
11388 vcpu->arch.preempted_in_kernel = false;
11389
11390 #if IS_ENABLED(CONFIG_HYPERV)
11391 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11392 #endif
11393
11394 r = static_call(kvm_x86_vcpu_create)(vcpu);
11395 if (r)
11396 goto free_guest_fpu;
11397
11398 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11399 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11400 kvm_xen_init_vcpu(vcpu);
11401 kvm_vcpu_mtrr_init(vcpu);
11402 vcpu_load(vcpu);
11403 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11404 kvm_vcpu_reset(vcpu, false);
11405 kvm_init_mmu(vcpu);
11406 vcpu_put(vcpu);
11407 return 0;
11408
11409 free_guest_fpu:
11410 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11411 free_emulate_ctxt:
11412 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11413 free_wbinvd_dirty_mask:
11414 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11415 fail_free_mce_banks:
11416 kfree(vcpu->arch.mce_banks);
11417 fail_free_pio_data:
11418 free_page((unsigned long)vcpu->arch.pio_data);
11419 fail_free_lapic:
11420 kvm_free_lapic(vcpu);
11421 fail_mmu_destroy:
11422 kvm_mmu_destroy(vcpu);
11423 return r;
11424 }
11425
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11426 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11427 {
11428 struct kvm *kvm = vcpu->kvm;
11429
11430 if (mutex_lock_killable(&vcpu->mutex))
11431 return;
11432 vcpu_load(vcpu);
11433 kvm_synchronize_tsc(vcpu, 0);
11434 vcpu_put(vcpu);
11435
11436 /* poll control enabled by default */
11437 vcpu->arch.msr_kvm_poll_control = 1;
11438
11439 mutex_unlock(&vcpu->mutex);
11440
11441 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11442 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11443 KVMCLOCK_SYNC_PERIOD);
11444 }
11445
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11446 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11447 {
11448 int idx;
11449
11450 kvmclock_reset(vcpu);
11451
11452 static_call(kvm_x86_vcpu_free)(vcpu);
11453
11454 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11455 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11456 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11457
11458 kvm_xen_destroy_vcpu(vcpu);
11459 kvm_hv_vcpu_uninit(vcpu);
11460 kvm_pmu_destroy(vcpu);
11461 kfree(vcpu->arch.mce_banks);
11462 kvm_free_lapic(vcpu);
11463 idx = srcu_read_lock(&vcpu->kvm->srcu);
11464 kvm_mmu_destroy(vcpu);
11465 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11466 free_page((unsigned long)vcpu->arch.pio_data);
11467 kvfree(vcpu->arch.cpuid_entries);
11468 if (!lapic_in_kernel(vcpu))
11469 static_branch_dec(&kvm_has_noapic_vcpu);
11470 }
11471
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)11472 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11473 {
11474 struct kvm_cpuid_entry2 *cpuid_0x1;
11475 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11476 unsigned long new_cr0;
11477
11478 /*
11479 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11480 * to handle side effects. RESET emulation hits those flows and relies
11481 * on emulated/virtualized registers, including those that are loaded
11482 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11483 * to detect improper or missing initialization.
11484 */
11485 WARN_ON_ONCE(!init_event &&
11486 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11487
11488 kvm_lapic_reset(vcpu, init_event);
11489
11490 vcpu->arch.hflags = 0;
11491
11492 vcpu->arch.smi_pending = 0;
11493 vcpu->arch.smi_count = 0;
11494 atomic_set(&vcpu->arch.nmi_queued, 0);
11495 vcpu->arch.nmi_pending = 0;
11496 vcpu->arch.nmi_injected = false;
11497 kvm_clear_interrupt_queue(vcpu);
11498 kvm_clear_exception_queue(vcpu);
11499
11500 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11501 kvm_update_dr0123(vcpu);
11502 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11503 vcpu->arch.dr7 = DR7_FIXED_1;
11504 kvm_update_dr7(vcpu);
11505
11506 vcpu->arch.cr2 = 0;
11507
11508 kvm_make_request(KVM_REQ_EVENT, vcpu);
11509 vcpu->arch.apf.msr_en_val = 0;
11510 vcpu->arch.apf.msr_int_val = 0;
11511 vcpu->arch.st.msr_val = 0;
11512
11513 kvmclock_reset(vcpu);
11514
11515 kvm_clear_async_pf_completion_queue(vcpu);
11516 kvm_async_pf_hash_reset(vcpu);
11517 vcpu->arch.apf.halted = false;
11518
11519 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11520 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11521
11522 /*
11523 * To avoid have the INIT path from kvm_apic_has_events() that be
11524 * called with loaded FPU and does not let userspace fix the state.
11525 */
11526 if (init_event)
11527 kvm_put_guest_fpu(vcpu);
11528
11529 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11530 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11531
11532 if (init_event)
11533 kvm_load_guest_fpu(vcpu);
11534 }
11535
11536 if (!init_event) {
11537 kvm_pmu_reset(vcpu);
11538 vcpu->arch.smbase = 0x30000;
11539
11540 vcpu->arch.msr_misc_features_enables = 0;
11541
11542 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11543 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11544 }
11545
11546 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11547 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11548 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11549
11550 /*
11551 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11552 * if no CPUID match is found. Note, it's impossible to get a match at
11553 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11554 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11555 * on RESET. But, go through the motions in case that's ever remedied.
11556 */
11557 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11558 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11559
11560 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11561
11562 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11563 kvm_rip_write(vcpu, 0xfff0);
11564
11565 vcpu->arch.cr3 = 0;
11566 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11567
11568 /*
11569 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11570 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11571 * (or qualify) that with a footnote stating that CD/NW are preserved.
11572 */
11573 new_cr0 = X86_CR0_ET;
11574 if (init_event)
11575 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11576 else
11577 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11578
11579 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11580 static_call(kvm_x86_set_cr4)(vcpu, 0);
11581 static_call(kvm_x86_set_efer)(vcpu, 0);
11582 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11583
11584 /*
11585 * On the standard CR0/CR4/EFER modification paths, there are several
11586 * complex conditions determining whether the MMU has to be reset and/or
11587 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
11588 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11589 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11590 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
11591 */
11592 if (old_cr0 & X86_CR0_PG) {
11593 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11594 kvm_mmu_reset_context(vcpu);
11595 }
11596
11597 /*
11598 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11599 * APM states the TLBs are untouched by INIT, but it also states that
11600 * the TLBs are flushed on "External initialization of the processor."
11601 * Flush the guest TLB regardless of vendor, there is no meaningful
11602 * benefit in relying on the guest to flush the TLB immediately after
11603 * INIT. A spurious TLB flush is benign and likely negligible from a
11604 * performance perspective.
11605 */
11606 if (init_event)
11607 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11608 }
11609 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11610
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)11611 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11612 {
11613 struct kvm_segment cs;
11614
11615 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11616 cs.selector = vector << 8;
11617 cs.base = vector << 12;
11618 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11619 kvm_rip_write(vcpu, 0);
11620 }
11621 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11622
kvm_arch_hardware_enable(void)11623 int kvm_arch_hardware_enable(void)
11624 {
11625 struct kvm *kvm;
11626 struct kvm_vcpu *vcpu;
11627 unsigned long i;
11628 int ret;
11629 u64 local_tsc;
11630 u64 max_tsc = 0;
11631 bool stable, backwards_tsc = false;
11632
11633 kvm_user_return_msr_cpu_online();
11634 ret = static_call(kvm_x86_hardware_enable)();
11635 if (ret != 0)
11636 return ret;
11637
11638 local_tsc = rdtsc();
11639 stable = !kvm_check_tsc_unstable();
11640 list_for_each_entry(kvm, &vm_list, vm_list) {
11641 kvm_for_each_vcpu(i, vcpu, kvm) {
11642 if (!stable && vcpu->cpu == smp_processor_id())
11643 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11644 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11645 backwards_tsc = true;
11646 if (vcpu->arch.last_host_tsc > max_tsc)
11647 max_tsc = vcpu->arch.last_host_tsc;
11648 }
11649 }
11650 }
11651
11652 /*
11653 * Sometimes, even reliable TSCs go backwards. This happens on
11654 * platforms that reset TSC during suspend or hibernate actions, but
11655 * maintain synchronization. We must compensate. Fortunately, we can
11656 * detect that condition here, which happens early in CPU bringup,
11657 * before any KVM threads can be running. Unfortunately, we can't
11658 * bring the TSCs fully up to date with real time, as we aren't yet far
11659 * enough into CPU bringup that we know how much real time has actually
11660 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11661 * variables that haven't been updated yet.
11662 *
11663 * So we simply find the maximum observed TSC above, then record the
11664 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11665 * the adjustment will be applied. Note that we accumulate
11666 * adjustments, in case multiple suspend cycles happen before some VCPU
11667 * gets a chance to run again. In the event that no KVM threads get a
11668 * chance to run, we will miss the entire elapsed period, as we'll have
11669 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11670 * loose cycle time. This isn't too big a deal, since the loss will be
11671 * uniform across all VCPUs (not to mention the scenario is extremely
11672 * unlikely). It is possible that a second hibernate recovery happens
11673 * much faster than a first, causing the observed TSC here to be
11674 * smaller; this would require additional padding adjustment, which is
11675 * why we set last_host_tsc to the local tsc observed here.
11676 *
11677 * N.B. - this code below runs only on platforms with reliable TSC,
11678 * as that is the only way backwards_tsc is set above. Also note
11679 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11680 * have the same delta_cyc adjustment applied if backwards_tsc
11681 * is detected. Note further, this adjustment is only done once,
11682 * as we reset last_host_tsc on all VCPUs to stop this from being
11683 * called multiple times (one for each physical CPU bringup).
11684 *
11685 * Platforms with unreliable TSCs don't have to deal with this, they
11686 * will be compensated by the logic in vcpu_load, which sets the TSC to
11687 * catchup mode. This will catchup all VCPUs to real time, but cannot
11688 * guarantee that they stay in perfect synchronization.
11689 */
11690 if (backwards_tsc) {
11691 u64 delta_cyc = max_tsc - local_tsc;
11692 list_for_each_entry(kvm, &vm_list, vm_list) {
11693 kvm->arch.backwards_tsc_observed = true;
11694 kvm_for_each_vcpu(i, vcpu, kvm) {
11695 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11696 vcpu->arch.last_host_tsc = local_tsc;
11697 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11698 }
11699
11700 /*
11701 * We have to disable TSC offset matching.. if you were
11702 * booting a VM while issuing an S4 host suspend....
11703 * you may have some problem. Solving this issue is
11704 * left as an exercise to the reader.
11705 */
11706 kvm->arch.last_tsc_nsec = 0;
11707 kvm->arch.last_tsc_write = 0;
11708 }
11709
11710 }
11711 return 0;
11712 }
11713
kvm_arch_hardware_disable(void)11714 void kvm_arch_hardware_disable(void)
11715 {
11716 static_call(kvm_x86_hardware_disable)();
11717 drop_user_return_notifiers();
11718 }
11719
kvm_ops_update(struct kvm_x86_init_ops * ops)11720 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11721 {
11722 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11723
11724 #define __KVM_X86_OP(func) \
11725 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11726 #define KVM_X86_OP(func) \
11727 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11728 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11729 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11730 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11731 (void *)__static_call_return0);
11732 #include <asm/kvm-x86-ops.h>
11733 #undef __KVM_X86_OP
11734
11735 kvm_pmu_ops_update(ops->pmu_ops);
11736 }
11737
kvm_arch_hardware_setup(void * opaque)11738 int kvm_arch_hardware_setup(void *opaque)
11739 {
11740 struct kvm_x86_init_ops *ops = opaque;
11741 int r;
11742
11743 rdmsrl_safe(MSR_EFER, &host_efer);
11744
11745 if (boot_cpu_has(X86_FEATURE_XSAVES))
11746 rdmsrl(MSR_IA32_XSS, host_xss);
11747
11748 r = ops->hardware_setup();
11749 if (r != 0)
11750 return r;
11751
11752 kvm_ops_update(ops);
11753
11754 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11755
11756 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11757 supported_xss = 0;
11758
11759 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11760 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11761 #undef __kvm_cpu_cap_has
11762
11763 if (kvm_has_tsc_control) {
11764 /*
11765 * Make sure the user can only configure tsc_khz values that
11766 * fit into a signed integer.
11767 * A min value is not calculated because it will always
11768 * be 1 on all machines.
11769 */
11770 u64 max = min(0x7fffffffULL,
11771 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11772 kvm_max_guest_tsc_khz = max;
11773 }
11774 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11775 kvm_init_msr_list();
11776 return 0;
11777 }
11778
kvm_arch_hardware_unsetup(void)11779 void kvm_arch_hardware_unsetup(void)
11780 {
11781 kvm_unregister_perf_callbacks();
11782
11783 static_call(kvm_x86_hardware_unsetup)();
11784 }
11785
kvm_arch_check_processor_compat(void * opaque)11786 int kvm_arch_check_processor_compat(void *opaque)
11787 {
11788 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11789 struct kvm_x86_init_ops *ops = opaque;
11790
11791 WARN_ON(!irqs_disabled());
11792
11793 if (__cr4_reserved_bits(cpu_has, c) !=
11794 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11795 return -EIO;
11796
11797 return ops->check_processor_compatibility();
11798 }
11799
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)11800 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11801 {
11802 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11803 }
11804 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11805
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)11806 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11807 {
11808 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11809 }
11810
11811 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11812 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11813
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)11814 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11815 {
11816 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11817
11818 vcpu->arch.l1tf_flush_l1d = true;
11819 if (pmu->version && unlikely(pmu->event_count)) {
11820 pmu->need_cleanup = true;
11821 kvm_make_request(KVM_REQ_PMU, vcpu);
11822 }
11823 static_call(kvm_x86_sched_in)(vcpu, cpu);
11824 }
11825
kvm_arch_free_vm(struct kvm * kvm)11826 void kvm_arch_free_vm(struct kvm *kvm)
11827 {
11828 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11829 __kvm_arch_free_vm(kvm);
11830 }
11831
11832
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)11833 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11834 {
11835 int ret;
11836 unsigned long flags;
11837
11838 if (type)
11839 return -EINVAL;
11840
11841 ret = kvm_page_track_init(kvm);
11842 if (ret)
11843 goto out;
11844
11845 ret = kvm_mmu_init_vm(kvm);
11846 if (ret)
11847 goto out_page_track;
11848
11849 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11850 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11851 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11852
11853 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11854 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11855 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11856 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11857 &kvm->arch.irq_sources_bitmap);
11858
11859 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11860 mutex_init(&kvm->arch.apic_map_lock);
11861 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11862 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11863
11864 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11865 pvclock_update_vm_gtod_copy(kvm);
11866 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11867
11868 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11869 kvm->arch.guest_can_read_msr_platform_info = true;
11870 kvm->arch.enable_pmu = enable_pmu;
11871
11872 #if IS_ENABLED(CONFIG_HYPERV)
11873 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11874 kvm->arch.hv_root_tdp = INVALID_PAGE;
11875 #endif
11876
11877 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11878 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11879
11880 kvm_apicv_init(kvm);
11881 kvm_hv_init_vm(kvm);
11882 kvm_xen_init_vm(kvm);
11883
11884 return static_call(kvm_x86_vm_init)(kvm);
11885
11886 out_page_track:
11887 kvm_page_track_cleanup(kvm);
11888 out:
11889 return ret;
11890 }
11891
kvm_arch_post_init_vm(struct kvm * kvm)11892 int kvm_arch_post_init_vm(struct kvm *kvm)
11893 {
11894 return kvm_mmu_post_init_vm(kvm);
11895 }
11896
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)11897 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11898 {
11899 vcpu_load(vcpu);
11900 kvm_mmu_unload(vcpu);
11901 vcpu_put(vcpu);
11902 }
11903
kvm_unload_vcpu_mmus(struct kvm * kvm)11904 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11905 {
11906 unsigned long i;
11907 struct kvm_vcpu *vcpu;
11908
11909 kvm_for_each_vcpu(i, vcpu, kvm) {
11910 kvm_clear_async_pf_completion_queue(vcpu);
11911 kvm_unload_vcpu_mmu(vcpu);
11912 }
11913 }
11914
kvm_arch_sync_events(struct kvm * kvm)11915 void kvm_arch_sync_events(struct kvm *kvm)
11916 {
11917 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11918 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11919 kvm_free_pit(kvm);
11920 }
11921
11922 /**
11923 * __x86_set_memory_region: Setup KVM internal memory slot
11924 *
11925 * @kvm: the kvm pointer to the VM.
11926 * @id: the slot ID to setup.
11927 * @gpa: the GPA to install the slot (unused when @size == 0).
11928 * @size: the size of the slot. Set to zero to uninstall a slot.
11929 *
11930 * This function helps to setup a KVM internal memory slot. Specify
11931 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11932 * slot. The return code can be one of the following:
11933 *
11934 * HVA: on success (uninstall will return a bogus HVA)
11935 * -errno: on error
11936 *
11937 * The caller should always use IS_ERR() to check the return value
11938 * before use. Note, the KVM internal memory slots are guaranteed to
11939 * remain valid and unchanged until the VM is destroyed, i.e., the
11940 * GPA->HVA translation will not change. However, the HVA is a user
11941 * address, i.e. its accessibility is not guaranteed, and must be
11942 * accessed via __copy_{to,from}_user().
11943 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)11944 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11945 u32 size)
11946 {
11947 int i, r;
11948 unsigned long hva, old_npages;
11949 struct kvm_memslots *slots = kvm_memslots(kvm);
11950 struct kvm_memory_slot *slot;
11951
11952 /* Called with kvm->slots_lock held. */
11953 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11954 return ERR_PTR_USR(-EINVAL);
11955
11956 slot = id_to_memslot(slots, id);
11957 if (size) {
11958 if (slot && slot->npages)
11959 return ERR_PTR_USR(-EEXIST);
11960
11961 /*
11962 * MAP_SHARED to prevent internal slot pages from being moved
11963 * by fork()/COW.
11964 */
11965 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11966 MAP_SHARED | MAP_ANONYMOUS, 0);
11967 if (IS_ERR((void *)hva))
11968 return (void __user *)hva;
11969 } else {
11970 if (!slot || !slot->npages)
11971 return NULL;
11972
11973 old_npages = slot->npages;
11974 hva = slot->userspace_addr;
11975 }
11976
11977 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11978 struct kvm_userspace_memory_region m;
11979
11980 m.slot = id | (i << 16);
11981 m.flags = 0;
11982 m.guest_phys_addr = gpa;
11983 m.userspace_addr = hva;
11984 m.memory_size = size;
11985 r = __kvm_set_memory_region(kvm, &m);
11986 if (r < 0)
11987 return ERR_PTR_USR(r);
11988 }
11989
11990 if (!size)
11991 vm_munmap(hva, old_npages * PAGE_SIZE);
11992
11993 return (void __user *)hva;
11994 }
11995 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11996
kvm_arch_pre_destroy_vm(struct kvm * kvm)11997 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11998 {
11999 kvm_mmu_pre_destroy_vm(kvm);
12000 }
12001
kvm_arch_destroy_vm(struct kvm * kvm)12002 void kvm_arch_destroy_vm(struct kvm *kvm)
12003 {
12004 if (current->mm == kvm->mm) {
12005 /*
12006 * Free memory regions allocated on behalf of userspace,
12007 * unless the memory map has changed due to process exit
12008 * or fd copying.
12009 */
12010 mutex_lock(&kvm->slots_lock);
12011 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12012 0, 0);
12013 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12014 0, 0);
12015 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12016 mutex_unlock(&kvm->slots_lock);
12017 }
12018 kvm_unload_vcpu_mmus(kvm);
12019 static_call_cond(kvm_x86_vm_destroy)(kvm);
12020 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12021 kvm_pic_destroy(kvm);
12022 kvm_ioapic_destroy(kvm);
12023 kvm_destroy_vcpus(kvm);
12024 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12025 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12026 kvm_mmu_uninit_vm(kvm);
12027 kvm_page_track_cleanup(kvm);
12028 kvm_xen_destroy_vm(kvm);
12029 kvm_hv_destroy_vm(kvm);
12030 }
12031
memslot_rmap_free(struct kvm_memory_slot * slot)12032 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12033 {
12034 int i;
12035
12036 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12037 kvfree(slot->arch.rmap[i]);
12038 slot->arch.rmap[i] = NULL;
12039 }
12040 }
12041
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12042 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12043 {
12044 int i;
12045
12046 memslot_rmap_free(slot);
12047
12048 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12049 kvfree(slot->arch.lpage_info[i - 1]);
12050 slot->arch.lpage_info[i - 1] = NULL;
12051 }
12052
12053 kvm_page_track_free_memslot(slot);
12054 }
12055
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12056 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12057 {
12058 const int sz = sizeof(*slot->arch.rmap[0]);
12059 int i;
12060
12061 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12062 int level = i + 1;
12063 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12064
12065 if (slot->arch.rmap[i])
12066 continue;
12067
12068 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12069 if (!slot->arch.rmap[i]) {
12070 memslot_rmap_free(slot);
12071 return -ENOMEM;
12072 }
12073 }
12074
12075 return 0;
12076 }
12077
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12078 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12079 struct kvm_memory_slot *slot)
12080 {
12081 unsigned long npages = slot->npages;
12082 int i, r;
12083
12084 /*
12085 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12086 * old arrays will be freed by __kvm_set_memory_region() if installing
12087 * the new memslot is successful.
12088 */
12089 memset(&slot->arch, 0, sizeof(slot->arch));
12090
12091 if (kvm_memslots_have_rmaps(kvm)) {
12092 r = memslot_rmap_alloc(slot, npages);
12093 if (r)
12094 return r;
12095 }
12096
12097 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12098 struct kvm_lpage_info *linfo;
12099 unsigned long ugfn;
12100 int lpages;
12101 int level = i + 1;
12102
12103 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12104
12105 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12106 if (!linfo)
12107 goto out_free;
12108
12109 slot->arch.lpage_info[i - 1] = linfo;
12110
12111 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12112 linfo[0].disallow_lpage = 1;
12113 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12114 linfo[lpages - 1].disallow_lpage = 1;
12115 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12116 /*
12117 * If the gfn and userspace address are not aligned wrt each
12118 * other, disable large page support for this slot.
12119 */
12120 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12121 unsigned long j;
12122
12123 for (j = 0; j < lpages; ++j)
12124 linfo[j].disallow_lpage = 1;
12125 }
12126 }
12127
12128 if (kvm_page_track_create_memslot(kvm, slot, npages))
12129 goto out_free;
12130
12131 return 0;
12132
12133 out_free:
12134 memslot_rmap_free(slot);
12135
12136 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12137 kvfree(slot->arch.lpage_info[i - 1]);
12138 slot->arch.lpage_info[i - 1] = NULL;
12139 }
12140 return -ENOMEM;
12141 }
12142
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12143 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12144 {
12145 struct kvm_vcpu *vcpu;
12146 unsigned long i;
12147
12148 /*
12149 * memslots->generation has been incremented.
12150 * mmio generation may have reached its maximum value.
12151 */
12152 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12153
12154 /* Force re-initialization of steal_time cache */
12155 kvm_for_each_vcpu(i, vcpu, kvm)
12156 kvm_vcpu_kick(vcpu);
12157 }
12158
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12159 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12160 const struct kvm_memory_slot *old,
12161 struct kvm_memory_slot *new,
12162 enum kvm_mr_change change)
12163 {
12164 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12165 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12166 return -EINVAL;
12167
12168 return kvm_alloc_memslot_metadata(kvm, new);
12169 }
12170
12171 if (change == KVM_MR_FLAGS_ONLY)
12172 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12173 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12174 return -EIO;
12175
12176 return 0;
12177 }
12178
12179
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12180 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12181 {
12182 struct kvm_arch *ka = &kvm->arch;
12183
12184 if (!kvm_x86_ops.cpu_dirty_log_size)
12185 return;
12186
12187 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12188 (!enable && --ka->cpu_dirty_logging_count == 0))
12189 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12190
12191 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12192 }
12193
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12194 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12195 struct kvm_memory_slot *old,
12196 const struct kvm_memory_slot *new,
12197 enum kvm_mr_change change)
12198 {
12199 u32 old_flags = old ? old->flags : 0;
12200 u32 new_flags = new ? new->flags : 0;
12201 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12202
12203 /*
12204 * Update CPU dirty logging if dirty logging is being toggled. This
12205 * applies to all operations.
12206 */
12207 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12208 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12209
12210 /*
12211 * Nothing more to do for RO slots (which can't be dirtied and can't be
12212 * made writable) or CREATE/MOVE/DELETE of a slot.
12213 *
12214 * For a memslot with dirty logging disabled:
12215 * CREATE: No dirty mappings will already exist.
12216 * MOVE/DELETE: The old mappings will already have been cleaned up by
12217 * kvm_arch_flush_shadow_memslot()
12218 *
12219 * For a memslot with dirty logging enabled:
12220 * CREATE: No shadow pages exist, thus nothing to write-protect
12221 * and no dirty bits to clear.
12222 * MOVE/DELETE: The old mappings will already have been cleaned up by
12223 * kvm_arch_flush_shadow_memslot().
12224 */
12225 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12226 return;
12227
12228 /*
12229 * READONLY and non-flags changes were filtered out above, and the only
12230 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12231 * logging isn't being toggled on or off.
12232 */
12233 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12234 return;
12235
12236 if (!log_dirty_pages) {
12237 /*
12238 * Dirty logging tracks sptes in 4k granularity, meaning that
12239 * large sptes have to be split. If live migration succeeds,
12240 * the guest in the source machine will be destroyed and large
12241 * sptes will be created in the destination. However, if the
12242 * guest continues to run in the source machine (for example if
12243 * live migration fails), small sptes will remain around and
12244 * cause bad performance.
12245 *
12246 * Scan sptes if dirty logging has been stopped, dropping those
12247 * which can be collapsed into a single large-page spte. Later
12248 * page faults will create the large-page sptes.
12249 */
12250 kvm_mmu_zap_collapsible_sptes(kvm, new);
12251 } else {
12252 /*
12253 * Initially-all-set does not require write protecting any page,
12254 * because they're all assumed to be dirty.
12255 */
12256 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12257 return;
12258
12259 if (READ_ONCE(eager_page_split))
12260 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12261
12262 if (kvm_x86_ops.cpu_dirty_log_size) {
12263 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12264 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12265 } else {
12266 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12267 }
12268
12269 /*
12270 * Unconditionally flush the TLBs after enabling dirty logging.
12271 * A flush is almost always going to be necessary (see below),
12272 * and unconditionally flushing allows the helpers to omit
12273 * the subtly complex checks when removing write access.
12274 *
12275 * Do the flush outside of mmu_lock to reduce the amount of
12276 * time mmu_lock is held. Flushing after dropping mmu_lock is
12277 * safe as KVM only needs to guarantee the slot is fully
12278 * write-protected before returning to userspace, i.e. before
12279 * userspace can consume the dirty status.
12280 *
12281 * Flushing outside of mmu_lock requires KVM to be careful when
12282 * making decisions based on writable status of an SPTE, e.g. a
12283 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12284 *
12285 * Specifically, KVM also write-protects guest page tables to
12286 * monitor changes when using shadow paging, and must guarantee
12287 * no CPUs can write to those page before mmu_lock is dropped.
12288 * Because CPUs may have stale TLB entries at this point, a
12289 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12290 *
12291 * KVM also allows making SPTES writable outside of mmu_lock,
12292 * e.g. to allow dirty logging without taking mmu_lock.
12293 *
12294 * To handle these scenarios, KVM uses a separate software-only
12295 * bit (MMU-writable) to track if a SPTE is !writable due to
12296 * a guest page table being write-protected (KVM clears the
12297 * MMU-writable flag when write-protecting for shadow paging).
12298 *
12299 * The use of MMU-writable is also the primary motivation for
12300 * the unconditional flush. Because KVM must guarantee that a
12301 * CPU doesn't contain stale, writable TLB entries for a
12302 * !MMU-writable SPTE, KVM must flush if it encounters any
12303 * MMU-writable SPTE regardless of whether the actual hardware
12304 * writable bit was set. I.e. KVM is almost guaranteed to need
12305 * to flush, while unconditionally flushing allows the "remove
12306 * write access" helpers to ignore MMU-writable entirely.
12307 *
12308 * See is_writable_pte() for more details (the case involving
12309 * access-tracked SPTEs is particularly relevant).
12310 */
12311 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12312 }
12313 }
12314
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12315 void kvm_arch_commit_memory_region(struct kvm *kvm,
12316 struct kvm_memory_slot *old,
12317 const struct kvm_memory_slot *new,
12318 enum kvm_mr_change change)
12319 {
12320 if (!kvm->arch.n_requested_mmu_pages &&
12321 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12322 unsigned long nr_mmu_pages;
12323
12324 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12325 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12326 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12327 }
12328
12329 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12330
12331 /* Free the arrays associated with the old memslot. */
12332 if (change == KVM_MR_MOVE)
12333 kvm_arch_free_memslot(kvm, old);
12334 }
12335
kvm_arch_flush_shadow_all(struct kvm * kvm)12336 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12337 {
12338 kvm_mmu_zap_all(kvm);
12339 }
12340
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12341 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12342 struct kvm_memory_slot *slot)
12343 {
12344 kvm_page_track_flush_slot(kvm, slot);
12345 }
12346
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12347 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12348 {
12349 return (is_guest_mode(vcpu) &&
12350 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12351 }
12352
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12353 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12354 {
12355 if (!list_empty_careful(&vcpu->async_pf.done))
12356 return true;
12357
12358 if (kvm_apic_has_events(vcpu))
12359 return true;
12360
12361 if (vcpu->arch.pv.pv_unhalted)
12362 return true;
12363
12364 if (vcpu->arch.exception.pending)
12365 return true;
12366
12367 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12368 (vcpu->arch.nmi_pending &&
12369 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12370 return true;
12371
12372 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12373 (vcpu->arch.smi_pending &&
12374 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12375 return true;
12376
12377 if (kvm_arch_interrupt_allowed(vcpu) &&
12378 (kvm_cpu_has_interrupt(vcpu) ||
12379 kvm_guest_apic_has_interrupt(vcpu)))
12380 return true;
12381
12382 if (kvm_hv_has_stimer_pending(vcpu))
12383 return true;
12384
12385 if (is_guest_mode(vcpu) &&
12386 kvm_x86_ops.nested_ops->hv_timer_pending &&
12387 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12388 return true;
12389
12390 if (kvm_xen_has_pending_events(vcpu))
12391 return true;
12392
12393 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12394 return true;
12395
12396 return false;
12397 }
12398
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12399 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12400 {
12401 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12402 }
12403
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12404 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12405 {
12406 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12407 return true;
12408
12409 return false;
12410 }
12411
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12412 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12413 {
12414 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12415 return true;
12416
12417 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12418 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12419 kvm_test_request(KVM_REQ_EVENT, vcpu))
12420 return true;
12421
12422 return kvm_arch_dy_has_pending_interrupt(vcpu);
12423 }
12424
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12425 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12426 {
12427 if (vcpu->arch.guest_state_protected)
12428 return true;
12429
12430 return vcpu->arch.preempted_in_kernel;
12431 }
12432
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12433 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12434 {
12435 return kvm_rip_read(vcpu);
12436 }
12437
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12438 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12439 {
12440 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12441 }
12442
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12443 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12444 {
12445 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12446 }
12447
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12448 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12449 {
12450 /* Can't read the RIP when guest state is protected, just return 0 */
12451 if (vcpu->arch.guest_state_protected)
12452 return 0;
12453
12454 if (is_64_bit_mode(vcpu))
12455 return kvm_rip_read(vcpu);
12456 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12457 kvm_rip_read(vcpu));
12458 }
12459 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12460
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12461 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12462 {
12463 return kvm_get_linear_rip(vcpu) == linear_rip;
12464 }
12465 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12466
kvm_get_rflags(struct kvm_vcpu * vcpu)12467 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12468 {
12469 unsigned long rflags;
12470
12471 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12472 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12473 rflags &= ~X86_EFLAGS_TF;
12474 return rflags;
12475 }
12476 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12477
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12478 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12479 {
12480 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12481 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12482 rflags |= X86_EFLAGS_TF;
12483 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12484 }
12485
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12486 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12487 {
12488 __kvm_set_rflags(vcpu, rflags);
12489 kvm_make_request(KVM_REQ_EVENT, vcpu);
12490 }
12491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12492
kvm_async_pf_hash_fn(gfn_t gfn)12493 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12494 {
12495 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12496
12497 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12498 }
12499
kvm_async_pf_next_probe(u32 key)12500 static inline u32 kvm_async_pf_next_probe(u32 key)
12501 {
12502 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12503 }
12504
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12505 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12506 {
12507 u32 key = kvm_async_pf_hash_fn(gfn);
12508
12509 while (vcpu->arch.apf.gfns[key] != ~0)
12510 key = kvm_async_pf_next_probe(key);
12511
12512 vcpu->arch.apf.gfns[key] = gfn;
12513 }
12514
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)12515 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12516 {
12517 int i;
12518 u32 key = kvm_async_pf_hash_fn(gfn);
12519
12520 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12521 (vcpu->arch.apf.gfns[key] != gfn &&
12522 vcpu->arch.apf.gfns[key] != ~0); i++)
12523 key = kvm_async_pf_next_probe(key);
12524
12525 return key;
12526 }
12527
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12528 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12529 {
12530 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12531 }
12532
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12533 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12534 {
12535 u32 i, j, k;
12536
12537 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12538
12539 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12540 return;
12541
12542 while (true) {
12543 vcpu->arch.apf.gfns[i] = ~0;
12544 do {
12545 j = kvm_async_pf_next_probe(j);
12546 if (vcpu->arch.apf.gfns[j] == ~0)
12547 return;
12548 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12549 /*
12550 * k lies cyclically in ]i,j]
12551 * | i.k.j |
12552 * |....j i.k.| or |.k..j i...|
12553 */
12554 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12555 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12556 i = j;
12557 }
12558 }
12559
apf_put_user_notpresent(struct kvm_vcpu * vcpu)12560 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12561 {
12562 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12563
12564 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12565 sizeof(reason));
12566 }
12567
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)12568 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12569 {
12570 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12571
12572 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12573 &token, offset, sizeof(token));
12574 }
12575
apf_pageready_slot_free(struct kvm_vcpu * vcpu)12576 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12577 {
12578 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12579 u32 val;
12580
12581 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12582 &val, offset, sizeof(val)))
12583 return false;
12584
12585 return !val;
12586 }
12587
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)12588 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12589 {
12590
12591 if (!kvm_pv_async_pf_enabled(vcpu))
12592 return false;
12593
12594 if (vcpu->arch.apf.send_user_only &&
12595 static_call(kvm_x86_get_cpl)(vcpu) == 0)
12596 return false;
12597
12598 if (is_guest_mode(vcpu)) {
12599 /*
12600 * L1 needs to opt into the special #PF vmexits that are
12601 * used to deliver async page faults.
12602 */
12603 return vcpu->arch.apf.delivery_as_pf_vmexit;
12604 } else {
12605 /*
12606 * Play it safe in case the guest temporarily disables paging.
12607 * The real mode IDT in particular is unlikely to have a #PF
12608 * exception setup.
12609 */
12610 return is_paging(vcpu);
12611 }
12612 }
12613
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)12614 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12615 {
12616 if (unlikely(!lapic_in_kernel(vcpu) ||
12617 kvm_event_needs_reinjection(vcpu) ||
12618 vcpu->arch.exception.pending))
12619 return false;
12620
12621 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12622 return false;
12623
12624 /*
12625 * If interrupts are off we cannot even use an artificial
12626 * halt state.
12627 */
12628 return kvm_arch_interrupt_allowed(vcpu);
12629 }
12630
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12631 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12632 struct kvm_async_pf *work)
12633 {
12634 struct x86_exception fault;
12635
12636 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12637 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12638
12639 if (kvm_can_deliver_async_pf(vcpu) &&
12640 !apf_put_user_notpresent(vcpu)) {
12641 fault.vector = PF_VECTOR;
12642 fault.error_code_valid = true;
12643 fault.error_code = 0;
12644 fault.nested_page_fault = false;
12645 fault.address = work->arch.token;
12646 fault.async_page_fault = true;
12647 kvm_inject_page_fault(vcpu, &fault);
12648 return true;
12649 } else {
12650 /*
12651 * It is not possible to deliver a paravirtualized asynchronous
12652 * page fault, but putting the guest in an artificial halt state
12653 * can be beneficial nevertheless: if an interrupt arrives, we
12654 * can deliver it timely and perhaps the guest will schedule
12655 * another process. When the instruction that triggered a page
12656 * fault is retried, hopefully the page will be ready in the host.
12657 */
12658 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12659 return false;
12660 }
12661 }
12662
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12663 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12664 struct kvm_async_pf *work)
12665 {
12666 struct kvm_lapic_irq irq = {
12667 .delivery_mode = APIC_DM_FIXED,
12668 .vector = vcpu->arch.apf.vec
12669 };
12670
12671 if (work->wakeup_all)
12672 work->arch.token = ~0; /* broadcast wakeup */
12673 else
12674 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12675 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12676
12677 if ((work->wakeup_all || work->notpresent_injected) &&
12678 kvm_pv_async_pf_enabled(vcpu) &&
12679 !apf_put_user_ready(vcpu, work->arch.token)) {
12680 vcpu->arch.apf.pageready_pending = true;
12681 kvm_apic_set_irq(vcpu, &irq, NULL);
12682 }
12683
12684 vcpu->arch.apf.halted = false;
12685 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12686 }
12687
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)12688 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12689 {
12690 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12691 if (!vcpu->arch.apf.pageready_pending)
12692 kvm_vcpu_kick(vcpu);
12693 }
12694
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)12695 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12696 {
12697 if (!kvm_pv_async_pf_enabled(vcpu))
12698 return true;
12699 else
12700 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12701 }
12702
kvm_arch_start_assignment(struct kvm * kvm)12703 void kvm_arch_start_assignment(struct kvm *kvm)
12704 {
12705 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12706 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12707 }
12708 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12709
kvm_arch_end_assignment(struct kvm * kvm)12710 void kvm_arch_end_assignment(struct kvm *kvm)
12711 {
12712 atomic_dec(&kvm->arch.assigned_device_count);
12713 }
12714 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12715
kvm_arch_has_assigned_device(struct kvm * kvm)12716 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12717 {
12718 return arch_atomic_read(&kvm->arch.assigned_device_count);
12719 }
12720 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12721
kvm_arch_register_noncoherent_dma(struct kvm * kvm)12722 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12723 {
12724 atomic_inc(&kvm->arch.noncoherent_dma_count);
12725 }
12726 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12727
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)12728 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12729 {
12730 atomic_dec(&kvm->arch.noncoherent_dma_count);
12731 }
12732 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12733
kvm_arch_has_noncoherent_dma(struct kvm * kvm)12734 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12735 {
12736 return atomic_read(&kvm->arch.noncoherent_dma_count);
12737 }
12738 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12739
kvm_arch_has_irq_bypass(void)12740 bool kvm_arch_has_irq_bypass(void)
12741 {
12742 return true;
12743 }
12744
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12745 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12746 struct irq_bypass_producer *prod)
12747 {
12748 struct kvm_kernel_irqfd *irqfd =
12749 container_of(cons, struct kvm_kernel_irqfd, consumer);
12750 int ret;
12751
12752 irqfd->producer = prod;
12753 kvm_arch_start_assignment(irqfd->kvm);
12754 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12755 prod->irq, irqfd->gsi, 1);
12756
12757 if (ret)
12758 kvm_arch_end_assignment(irqfd->kvm);
12759
12760 return ret;
12761 }
12762
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12763 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12764 struct irq_bypass_producer *prod)
12765 {
12766 int ret;
12767 struct kvm_kernel_irqfd *irqfd =
12768 container_of(cons, struct kvm_kernel_irqfd, consumer);
12769
12770 WARN_ON(irqfd->producer != prod);
12771 irqfd->producer = NULL;
12772
12773 /*
12774 * When producer of consumer is unregistered, we change back to
12775 * remapped mode, so we can re-use the current implementation
12776 * when the irq is masked/disabled or the consumer side (KVM
12777 * int this case doesn't want to receive the interrupts.
12778 */
12779 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12780 if (ret)
12781 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12782 " fails: %d\n", irqfd->consumer.token, ret);
12783
12784 kvm_arch_end_assignment(irqfd->kvm);
12785 }
12786
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)12787 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12788 uint32_t guest_irq, bool set)
12789 {
12790 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12791 }
12792
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)12793 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12794 struct kvm_kernel_irq_routing_entry *new)
12795 {
12796 if (new->type != KVM_IRQ_ROUTING_MSI)
12797 return true;
12798
12799 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12800 }
12801
kvm_vector_hashing_enabled(void)12802 bool kvm_vector_hashing_enabled(void)
12803 {
12804 return vector_hashing;
12805 }
12806
kvm_arch_no_poll(struct kvm_vcpu * vcpu)12807 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12808 {
12809 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12810 }
12811 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12812
12813
kvm_spec_ctrl_test_value(u64 value)12814 int kvm_spec_ctrl_test_value(u64 value)
12815 {
12816 /*
12817 * test that setting IA32_SPEC_CTRL to given value
12818 * is allowed by the host processor
12819 */
12820
12821 u64 saved_value;
12822 unsigned long flags;
12823 int ret = 0;
12824
12825 local_irq_save(flags);
12826
12827 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12828 ret = 1;
12829 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12830 ret = 1;
12831 else
12832 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12833
12834 local_irq_restore(flags);
12835
12836 return ret;
12837 }
12838 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12839
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)12840 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12841 {
12842 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12843 struct x86_exception fault;
12844 u64 access = error_code &
12845 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12846
12847 if (!(error_code & PFERR_PRESENT_MASK) ||
12848 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12849 /*
12850 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12851 * tables probably do not match the TLB. Just proceed
12852 * with the error code that the processor gave.
12853 */
12854 fault.vector = PF_VECTOR;
12855 fault.error_code_valid = true;
12856 fault.error_code = error_code;
12857 fault.nested_page_fault = false;
12858 fault.address = gva;
12859 }
12860 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12861 }
12862 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12863
12864 /*
12865 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12866 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12867 * indicates whether exit to userspace is needed.
12868 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)12869 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12870 struct x86_exception *e)
12871 {
12872 if (r == X86EMUL_PROPAGATE_FAULT) {
12873 kvm_inject_emulated_page_fault(vcpu, e);
12874 return 1;
12875 }
12876
12877 /*
12878 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12879 * while handling a VMX instruction KVM could've handled the request
12880 * correctly by exiting to userspace and performing I/O but there
12881 * doesn't seem to be a real use-case behind such requests, just return
12882 * KVM_EXIT_INTERNAL_ERROR for now.
12883 */
12884 kvm_prepare_emulation_failure_exit(vcpu);
12885
12886 return 0;
12887 }
12888 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12889
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)12890 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12891 {
12892 bool pcid_enabled;
12893 struct x86_exception e;
12894 struct {
12895 u64 pcid;
12896 u64 gla;
12897 } operand;
12898 int r;
12899
12900 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12901 if (r != X86EMUL_CONTINUE)
12902 return kvm_handle_memory_failure(vcpu, r, &e);
12903
12904 if (operand.pcid >> 12 != 0) {
12905 kvm_inject_gp(vcpu, 0);
12906 return 1;
12907 }
12908
12909 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12910
12911 switch (type) {
12912 case INVPCID_TYPE_INDIV_ADDR:
12913 if ((!pcid_enabled && (operand.pcid != 0)) ||
12914 is_noncanonical_address(operand.gla, vcpu)) {
12915 kvm_inject_gp(vcpu, 0);
12916 return 1;
12917 }
12918 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12919 return kvm_skip_emulated_instruction(vcpu);
12920
12921 case INVPCID_TYPE_SINGLE_CTXT:
12922 if (!pcid_enabled && (operand.pcid != 0)) {
12923 kvm_inject_gp(vcpu, 0);
12924 return 1;
12925 }
12926
12927 kvm_invalidate_pcid(vcpu, operand.pcid);
12928 return kvm_skip_emulated_instruction(vcpu);
12929
12930 case INVPCID_TYPE_ALL_NON_GLOBAL:
12931 /*
12932 * Currently, KVM doesn't mark global entries in the shadow
12933 * page tables, so a non-global flush just degenerates to a
12934 * global flush. If needed, we could optimize this later by
12935 * keeping track of global entries in shadow page tables.
12936 */
12937
12938 fallthrough;
12939 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12940 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12941 return kvm_skip_emulated_instruction(vcpu);
12942
12943 default:
12944 kvm_inject_gp(vcpu, 0);
12945 return 1;
12946 }
12947 }
12948 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12949
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)12950 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12951 {
12952 struct kvm_run *run = vcpu->run;
12953 struct kvm_mmio_fragment *frag;
12954 unsigned int len;
12955
12956 BUG_ON(!vcpu->mmio_needed);
12957
12958 /* Complete previous fragment */
12959 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12960 len = min(8u, frag->len);
12961 if (!vcpu->mmio_is_write)
12962 memcpy(frag->data, run->mmio.data, len);
12963
12964 if (frag->len <= 8) {
12965 /* Switch to the next fragment. */
12966 frag++;
12967 vcpu->mmio_cur_fragment++;
12968 } else {
12969 /* Go forward to the next mmio piece. */
12970 frag->data += len;
12971 frag->gpa += len;
12972 frag->len -= len;
12973 }
12974
12975 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12976 vcpu->mmio_needed = 0;
12977
12978 // VMG change, at this point, we're always done
12979 // RIP has already been advanced
12980 return 1;
12981 }
12982
12983 // More MMIO is needed
12984 run->mmio.phys_addr = frag->gpa;
12985 run->mmio.len = min(8u, frag->len);
12986 run->mmio.is_write = vcpu->mmio_is_write;
12987 if (run->mmio.is_write)
12988 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12989 run->exit_reason = KVM_EXIT_MMIO;
12990
12991 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12992
12993 return 0;
12994 }
12995
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)12996 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12997 void *data)
12998 {
12999 int handled;
13000 struct kvm_mmio_fragment *frag;
13001
13002 if (!data)
13003 return -EINVAL;
13004
13005 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13006 if (handled == bytes)
13007 return 1;
13008
13009 bytes -= handled;
13010 gpa += handled;
13011 data += handled;
13012
13013 /*TODO: Check if need to increment number of frags */
13014 frag = vcpu->mmio_fragments;
13015 vcpu->mmio_nr_fragments = 1;
13016 frag->len = bytes;
13017 frag->gpa = gpa;
13018 frag->data = data;
13019
13020 vcpu->mmio_needed = 1;
13021 vcpu->mmio_cur_fragment = 0;
13022
13023 vcpu->run->mmio.phys_addr = gpa;
13024 vcpu->run->mmio.len = min(8u, frag->len);
13025 vcpu->run->mmio.is_write = 1;
13026 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13027 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13028
13029 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13030
13031 return 0;
13032 }
13033 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13034
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13035 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13036 void *data)
13037 {
13038 int handled;
13039 struct kvm_mmio_fragment *frag;
13040
13041 if (!data)
13042 return -EINVAL;
13043
13044 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13045 if (handled == bytes)
13046 return 1;
13047
13048 bytes -= handled;
13049 gpa += handled;
13050 data += handled;
13051
13052 /*TODO: Check if need to increment number of frags */
13053 frag = vcpu->mmio_fragments;
13054 vcpu->mmio_nr_fragments = 1;
13055 frag->len = bytes;
13056 frag->gpa = gpa;
13057 frag->data = data;
13058
13059 vcpu->mmio_needed = 1;
13060 vcpu->mmio_cur_fragment = 0;
13061
13062 vcpu->run->mmio.phys_addr = gpa;
13063 vcpu->run->mmio.len = min(8u, frag->len);
13064 vcpu->run->mmio.is_write = 0;
13065 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13066
13067 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13068
13069 return 0;
13070 }
13071 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13072
13073 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13074 unsigned int port);
13075
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13076 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13077 {
13078 int size = vcpu->arch.pio.size;
13079 int port = vcpu->arch.pio.port;
13080
13081 vcpu->arch.pio.count = 0;
13082 if (vcpu->arch.sev_pio_count)
13083 return kvm_sev_es_outs(vcpu, size, port);
13084 return 1;
13085 }
13086
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13087 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13088 unsigned int port)
13089 {
13090 for (;;) {
13091 unsigned int count =
13092 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13093 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13094
13095 /* memcpy done already by emulator_pio_out. */
13096 vcpu->arch.sev_pio_count -= count;
13097 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13098 if (!ret)
13099 break;
13100
13101 /* Emulation done by the kernel. */
13102 if (!vcpu->arch.sev_pio_count)
13103 return 1;
13104 }
13105
13106 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13107 return 0;
13108 }
13109
13110 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13111 unsigned int port);
13112
advance_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13113 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13114 {
13115 unsigned count = vcpu->arch.pio.count;
13116 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13117 vcpu->arch.sev_pio_count -= count;
13118 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13119 }
13120
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13121 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13122 {
13123 int size = vcpu->arch.pio.size;
13124 int port = vcpu->arch.pio.port;
13125
13126 advance_sev_es_emulated_ins(vcpu);
13127 if (vcpu->arch.sev_pio_count)
13128 return kvm_sev_es_ins(vcpu, size, port);
13129 return 1;
13130 }
13131
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13132 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13133 unsigned int port)
13134 {
13135 for (;;) {
13136 unsigned int count =
13137 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13138 if (!__emulator_pio_in(vcpu, size, port, count))
13139 break;
13140
13141 /* Emulation done by the kernel. */
13142 advance_sev_es_emulated_ins(vcpu);
13143 if (!vcpu->arch.sev_pio_count)
13144 return 1;
13145 }
13146
13147 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13148 return 0;
13149 }
13150
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13151 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13152 unsigned int port, void *data, unsigned int count,
13153 int in)
13154 {
13155 vcpu->arch.sev_pio_data = data;
13156 vcpu->arch.sev_pio_count = count;
13157 return in ? kvm_sev_es_ins(vcpu, size, port)
13158 : kvm_sev_es_outs(vcpu, size, port);
13159 }
13160 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13161
13162 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13163 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13164 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13165 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13166 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13167 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13168 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13169 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13170 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13171 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13172 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13173 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13174 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13175 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13176 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13177 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13178 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13179 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13180 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13181 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13182 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13183 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13184 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13190
kvm_x86_init(void)13191 static int __init kvm_x86_init(void)
13192 {
13193 kvm_mmu_x86_module_init();
13194 return 0;
13195 }
13196 module_init(kvm_x86_init);
13197
kvm_x86_exit(void)13198 static void __exit kvm_x86_exit(void)
13199 {
13200 /*
13201 * If module_init() is implemented, module_exit() must also be
13202 * implemented to allow module unload.
13203 */
13204 }
13205 module_exit(kvm_x86_exit);
13206