1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8
9 /* For supporting double VLAN mode, it is necessary to enable or disable certain
10 * boost tcam entries. The metadata labels names that match the following
11 * prefixes will be saved to allow enabling double VLAN mode.
12 */
13 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
14 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
15
16 /* To support tunneling entries by PF, the package will append the PF number to
17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
18 */
19 #define ICE_TNL_PRE "TNL_"
20 static const struct ice_tunnel_type_scan tnls[] = {
21 { TNL_VXLAN, "TNL_VXLAN_PF" },
22 { TNL_GENEVE, "TNL_GENEVE_PF" },
23 { TNL_LAST, "" }
24 };
25
26 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
27 /* SWITCH */
28 {
29 ICE_SID_XLT0_SW,
30 ICE_SID_XLT_KEY_BUILDER_SW,
31 ICE_SID_XLT1_SW,
32 ICE_SID_XLT2_SW,
33 ICE_SID_PROFID_TCAM_SW,
34 ICE_SID_PROFID_REDIR_SW,
35 ICE_SID_FLD_VEC_SW,
36 ICE_SID_CDID_KEY_BUILDER_SW,
37 ICE_SID_CDID_REDIR_SW
38 },
39
40 /* ACL */
41 {
42 ICE_SID_XLT0_ACL,
43 ICE_SID_XLT_KEY_BUILDER_ACL,
44 ICE_SID_XLT1_ACL,
45 ICE_SID_XLT2_ACL,
46 ICE_SID_PROFID_TCAM_ACL,
47 ICE_SID_PROFID_REDIR_ACL,
48 ICE_SID_FLD_VEC_ACL,
49 ICE_SID_CDID_KEY_BUILDER_ACL,
50 ICE_SID_CDID_REDIR_ACL
51 },
52
53 /* FD */
54 {
55 ICE_SID_XLT0_FD,
56 ICE_SID_XLT_KEY_BUILDER_FD,
57 ICE_SID_XLT1_FD,
58 ICE_SID_XLT2_FD,
59 ICE_SID_PROFID_TCAM_FD,
60 ICE_SID_PROFID_REDIR_FD,
61 ICE_SID_FLD_VEC_FD,
62 ICE_SID_CDID_KEY_BUILDER_FD,
63 ICE_SID_CDID_REDIR_FD
64 },
65
66 /* RSS */
67 {
68 ICE_SID_XLT0_RSS,
69 ICE_SID_XLT_KEY_BUILDER_RSS,
70 ICE_SID_XLT1_RSS,
71 ICE_SID_XLT2_RSS,
72 ICE_SID_PROFID_TCAM_RSS,
73 ICE_SID_PROFID_REDIR_RSS,
74 ICE_SID_FLD_VEC_RSS,
75 ICE_SID_CDID_KEY_BUILDER_RSS,
76 ICE_SID_CDID_REDIR_RSS
77 },
78
79 /* PE */
80 {
81 ICE_SID_XLT0_PE,
82 ICE_SID_XLT_KEY_BUILDER_PE,
83 ICE_SID_XLT1_PE,
84 ICE_SID_XLT2_PE,
85 ICE_SID_PROFID_TCAM_PE,
86 ICE_SID_PROFID_REDIR_PE,
87 ICE_SID_FLD_VEC_PE,
88 ICE_SID_CDID_KEY_BUILDER_PE,
89 ICE_SID_CDID_REDIR_PE
90 }
91 };
92
93 /**
94 * ice_sect_id - returns section ID
95 * @blk: block type
96 * @sect: section type
97 *
98 * This helper function returns the proper section ID given a block type and a
99 * section type.
100 */
ice_sect_id(enum ice_block blk,enum ice_sect sect)101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
102 {
103 return ice_sect_lkup[blk][sect];
104 }
105
106 /**
107 * ice_pkg_val_buf
108 * @buf: pointer to the ice buffer
109 *
110 * This helper function validates a buffer's header.
111 */
ice_pkg_val_buf(struct ice_buf * buf)112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
113 {
114 struct ice_buf_hdr *hdr;
115 u16 section_count;
116 u16 data_end;
117
118 hdr = (struct ice_buf_hdr *)buf->buf;
119 /* verify data */
120 section_count = le16_to_cpu(hdr->section_count);
121 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
122 return NULL;
123
124 data_end = le16_to_cpu(hdr->data_end);
125 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
126 return NULL;
127
128 return hdr;
129 }
130
131 /**
132 * ice_find_buf_table
133 * @ice_seg: pointer to the ice segment
134 *
135 * Returns the address of the buffer table within the ice segment.
136 */
ice_find_buf_table(struct ice_seg * ice_seg)137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
138 {
139 struct ice_nvm_table *nvms;
140
141 nvms = (struct ice_nvm_table *)
142 (ice_seg->device_table +
143 le32_to_cpu(ice_seg->device_table_count));
144
145 return (__force struct ice_buf_table *)
146 (nvms->vers + le32_to_cpu(nvms->table_count));
147 }
148
149 /**
150 * ice_pkg_enum_buf
151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
152 * @state: pointer to the enum state
153 *
154 * This function will enumerate all the buffers in the ice segment. The first
155 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
156 * ice_seg is set to NULL which continues the enumeration. When the function
157 * returns a NULL pointer, then the end of the buffers has been reached, or an
158 * unexpected value has been detected (for example an invalid section count or
159 * an invalid buffer end value).
160 */
161 static struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg * ice_seg,struct ice_pkg_enum * state)162 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
163 {
164 if (ice_seg) {
165 state->buf_table = ice_find_buf_table(ice_seg);
166 if (!state->buf_table)
167 return NULL;
168
169 state->buf_idx = 0;
170 return ice_pkg_val_buf(state->buf_table->buf_array);
171 }
172
173 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
174 return ice_pkg_val_buf(state->buf_table->buf_array +
175 state->buf_idx);
176 else
177 return NULL;
178 }
179
180 /**
181 * ice_pkg_advance_sect
182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
183 * @state: pointer to the enum state
184 *
185 * This helper function will advance the section within the ice segment,
186 * also advancing the buffer if needed.
187 */
188 static bool
ice_pkg_advance_sect(struct ice_seg * ice_seg,struct ice_pkg_enum * state)189 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
190 {
191 if (!ice_seg && !state->buf)
192 return false;
193
194 if (!ice_seg && state->buf)
195 if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
196 return true;
197
198 state->buf = ice_pkg_enum_buf(ice_seg, state);
199 if (!state->buf)
200 return false;
201
202 /* start of new buffer, reset section index */
203 state->sect_idx = 0;
204 return true;
205 }
206
207 /**
208 * ice_pkg_enum_section
209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
210 * @state: pointer to the enum state
211 * @sect_type: section type to enumerate
212 *
213 * This function will enumerate all the sections of a particular type in the
214 * ice segment. The first call is made with the ice_seg parameter non-NULL;
215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
216 * When the function returns a NULL pointer, then the end of the matching
217 * sections has been reached.
218 */
219 static void *
ice_pkg_enum_section(struct ice_seg * ice_seg,struct ice_pkg_enum * state,u32 sect_type)220 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
221 u32 sect_type)
222 {
223 u16 offset, size;
224
225 if (ice_seg)
226 state->type = sect_type;
227
228 if (!ice_pkg_advance_sect(ice_seg, state))
229 return NULL;
230
231 /* scan for next matching section */
232 while (state->buf->section_entry[state->sect_idx].type !=
233 cpu_to_le32(state->type))
234 if (!ice_pkg_advance_sect(NULL, state))
235 return NULL;
236
237 /* validate section */
238 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
239 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
240 return NULL;
241
242 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
243 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
244 return NULL;
245
246 /* make sure the section fits in the buffer */
247 if (offset + size > ICE_PKG_BUF_SIZE)
248 return NULL;
249
250 state->sect_type =
251 le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
252
253 /* calc pointer to this section */
254 state->sect = ((u8 *)state->buf) +
255 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
256
257 return state->sect;
258 }
259
260 /**
261 * ice_pkg_enum_entry
262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
263 * @state: pointer to the enum state
264 * @sect_type: section type to enumerate
265 * @offset: pointer to variable that receives the offset in the table (optional)
266 * @handler: function that handles access to the entries into the section type
267 *
268 * This function will enumerate all the entries in particular section type in
269 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
271 * When the function returns a NULL pointer, then the end of the entries has
272 * been reached.
273 *
274 * Since each section may have a different header and entry size, the handler
275 * function is needed to determine the number and location entries in each
276 * section.
277 *
278 * The offset parameter is optional, but should be used for sections that
279 * contain an offset for each section table. For such cases, the section handler
280 * function must return the appropriate offset + index to give the absolution
281 * offset for each entry. For example, if the base for a section's header
282 * indicates a base offset of 10, and the index for the entry is 2, then
283 * section handler function should set the offset to 10 + 2 = 12.
284 */
285 static void *
ice_pkg_enum_entry(struct ice_seg * ice_seg,struct ice_pkg_enum * state,u32 sect_type,u32 * offset,void * (* handler)(u32 sect_type,void * section,u32 index,u32 * offset))286 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
287 u32 sect_type, u32 *offset,
288 void *(*handler)(u32 sect_type, void *section,
289 u32 index, u32 *offset))
290 {
291 void *entry;
292
293 if (ice_seg) {
294 if (!handler)
295 return NULL;
296
297 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
298 return NULL;
299
300 state->entry_idx = 0;
301 state->handler = handler;
302 } else {
303 state->entry_idx++;
304 }
305
306 if (!state->handler)
307 return NULL;
308
309 /* get entry */
310 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
311 offset);
312 if (!entry) {
313 /* end of a section, look for another section of this type */
314 if (!ice_pkg_enum_section(NULL, state, 0))
315 return NULL;
316
317 state->entry_idx = 0;
318 entry = state->handler(state->sect_type, state->sect,
319 state->entry_idx, offset);
320 }
321
322 return entry;
323 }
324
325 /**
326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
327 * @hw: pointer to the HW structure
328 * @ptype: the hardware PTYPE
329 */
ice_hw_ptype_ena(struct ice_hw * hw,u16 ptype)330 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
331 {
332 return ptype < ICE_FLOW_PTYPE_MAX &&
333 test_bit(ptype, hw->hw_ptype);
334 }
335
336 /**
337 * ice_marker_ptype_tcam_handler
338 * @sect_type: section type
339 * @section: pointer to section
340 * @index: index of the Marker PType TCAM entry to be returned
341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
342 *
343 * This is a callback function that can be passed to ice_pkg_enum_entry.
344 * Handles enumeration of individual Marker PType TCAM entries.
345 */
346 static void *
ice_marker_ptype_tcam_handler(u32 sect_type,void * section,u32 index,u32 * offset)347 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
348 u32 *offset)
349 {
350 struct ice_marker_ptype_tcam_section *marker_ptype;
351
352 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
353 return NULL;
354
355 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
356 return NULL;
357
358 if (offset)
359 *offset = 0;
360
361 marker_ptype = section;
362 if (index >= le16_to_cpu(marker_ptype->count))
363 return NULL;
364
365 return marker_ptype->tcam + index;
366 }
367
368 /**
369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information
370 * @hw: pointer to the HW structure
371 */
ice_fill_hw_ptype(struct ice_hw * hw)372 static void ice_fill_hw_ptype(struct ice_hw *hw)
373 {
374 struct ice_marker_ptype_tcam_entry *tcam;
375 struct ice_seg *seg = hw->seg;
376 struct ice_pkg_enum state;
377
378 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
379 if (!seg)
380 return;
381
382 memset(&state, 0, sizeof(state));
383
384 do {
385 tcam = ice_pkg_enum_entry(seg, &state,
386 ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
387 ice_marker_ptype_tcam_handler);
388 if (tcam &&
389 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
390 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
391 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
392
393 seg = NULL;
394 } while (tcam);
395 }
396
397 /**
398 * ice_boost_tcam_handler
399 * @sect_type: section type
400 * @section: pointer to section
401 * @index: index of the boost TCAM entry to be returned
402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
403 *
404 * This is a callback function that can be passed to ice_pkg_enum_entry.
405 * Handles enumeration of individual boost TCAM entries.
406 */
407 static void *
ice_boost_tcam_handler(u32 sect_type,void * section,u32 index,u32 * offset)408 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
409 {
410 struct ice_boost_tcam_section *boost;
411
412 if (!section)
413 return NULL;
414
415 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
416 return NULL;
417
418 /* cppcheck-suppress nullPointer */
419 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
420 return NULL;
421
422 if (offset)
423 *offset = 0;
424
425 boost = section;
426 if (index >= le16_to_cpu(boost->count))
427 return NULL;
428
429 return boost->tcam + index;
430 }
431
432 /**
433 * ice_find_boost_entry
434 * @ice_seg: pointer to the ice segment (non-NULL)
435 * @addr: Boost TCAM address of entry to search for
436 * @entry: returns pointer to the entry
437 *
438 * Finds a particular Boost TCAM entry and returns a pointer to that entry
439 * if it is found. The ice_seg parameter must not be NULL since the first call
440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
441 */
442 static int
ice_find_boost_entry(struct ice_seg * ice_seg,u16 addr,struct ice_boost_tcam_entry ** entry)443 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
444 struct ice_boost_tcam_entry **entry)
445 {
446 struct ice_boost_tcam_entry *tcam;
447 struct ice_pkg_enum state;
448
449 memset(&state, 0, sizeof(state));
450
451 if (!ice_seg)
452 return -EINVAL;
453
454 do {
455 tcam = ice_pkg_enum_entry(ice_seg, &state,
456 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
457 ice_boost_tcam_handler);
458 if (tcam && le16_to_cpu(tcam->addr) == addr) {
459 *entry = tcam;
460 return 0;
461 }
462
463 ice_seg = NULL;
464 } while (tcam);
465
466 *entry = NULL;
467 return -EIO;
468 }
469
470 /**
471 * ice_label_enum_handler
472 * @sect_type: section type
473 * @section: pointer to section
474 * @index: index of the label entry to be returned
475 * @offset: pointer to receive absolute offset, always zero for label sections
476 *
477 * This is a callback function that can be passed to ice_pkg_enum_entry.
478 * Handles enumeration of individual label entries.
479 */
480 static void *
ice_label_enum_handler(u32 __always_unused sect_type,void * section,u32 index,u32 * offset)481 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
482 u32 *offset)
483 {
484 struct ice_label_section *labels;
485
486 if (!section)
487 return NULL;
488
489 /* cppcheck-suppress nullPointer */
490 if (index > ICE_MAX_LABELS_IN_BUF)
491 return NULL;
492
493 if (offset)
494 *offset = 0;
495
496 labels = section;
497 if (index >= le16_to_cpu(labels->count))
498 return NULL;
499
500 return labels->label + index;
501 }
502
503 /**
504 * ice_enum_labels
505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
506 * @type: the section type that will contain the label (0 on subsequent calls)
507 * @state: ice_pkg_enum structure that will hold the state of the enumeration
508 * @value: pointer to a value that will return the label's value if found
509 *
510 * Enumerates a list of labels in the package. The caller will call
511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
513 * the end of the list has been reached.
514 */
515 static char *
ice_enum_labels(struct ice_seg * ice_seg,u32 type,struct ice_pkg_enum * state,u16 * value)516 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
517 u16 *value)
518 {
519 struct ice_label *label;
520
521 /* Check for valid label section on first call */
522 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
523 return NULL;
524
525 label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
526 ice_label_enum_handler);
527 if (!label)
528 return NULL;
529
530 *value = le16_to_cpu(label->value);
531 return label->name;
532 }
533
534 /**
535 * ice_add_tunnel_hint
536 * @hw: pointer to the HW structure
537 * @label_name: label text
538 * @val: value of the tunnel port boost entry
539 */
ice_add_tunnel_hint(struct ice_hw * hw,char * label_name,u16 val)540 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
541 {
542 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
543 u16 i;
544
545 for (i = 0; tnls[i].type != TNL_LAST; i++) {
546 size_t len = strlen(tnls[i].label_prefix);
547
548 /* Look for matching label start, before continuing */
549 if (strncmp(label_name, tnls[i].label_prefix, len))
550 continue;
551
552 /* Make sure this label matches our PF. Note that the PF
553 * character ('0' - '7') will be located where our
554 * prefix string's null terminator is located.
555 */
556 if ((label_name[len] - '0') == hw->pf_id) {
557 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
558 hw->tnl.tbl[hw->tnl.count].valid = false;
559 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
560 hw->tnl.tbl[hw->tnl.count].port = 0;
561 hw->tnl.count++;
562 break;
563 }
564 }
565 }
566 }
567
568 /**
569 * ice_add_dvm_hint
570 * @hw: pointer to the HW structure
571 * @val: value of the boost entry
572 * @enable: true if entry needs to be enabled, or false if needs to be disabled
573 */
ice_add_dvm_hint(struct ice_hw * hw,u16 val,bool enable)574 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
575 {
576 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
577 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
578 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
579 hw->dvm_upd.count++;
580 }
581 }
582
583 /**
584 * ice_init_pkg_hints
585 * @hw: pointer to the HW structure
586 * @ice_seg: pointer to the segment of the package scan (non-NULL)
587 *
588 * This function will scan the package and save off relevant information
589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
590 * since the first call to ice_enum_labels requires a pointer to an actual
591 * ice_seg structure.
592 */
ice_init_pkg_hints(struct ice_hw * hw,struct ice_seg * ice_seg)593 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
594 {
595 struct ice_pkg_enum state;
596 char *label_name;
597 u16 val;
598 int i;
599
600 memset(&hw->tnl, 0, sizeof(hw->tnl));
601 memset(&state, 0, sizeof(state));
602
603 if (!ice_seg)
604 return;
605
606 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
607 &val);
608
609 while (label_name) {
610 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
611 /* check for a tunnel entry */
612 ice_add_tunnel_hint(hw, label_name, val);
613
614 /* check for a dvm mode entry */
615 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
616 ice_add_dvm_hint(hw, val, true);
617
618 /* check for a svm mode entry */
619 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
620 ice_add_dvm_hint(hw, val, false);
621
622 label_name = ice_enum_labels(NULL, 0, &state, &val);
623 }
624
625 /* Cache the appropriate boost TCAM entry pointers for tunnels */
626 for (i = 0; i < hw->tnl.count; i++) {
627 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
628 &hw->tnl.tbl[i].boost_entry);
629 if (hw->tnl.tbl[i].boost_entry) {
630 hw->tnl.tbl[i].valid = true;
631 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
632 hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
633 }
634 }
635
636 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
637 for (i = 0; i < hw->dvm_upd.count; i++)
638 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
639 &hw->dvm_upd.tbl[i].boost_entry);
640 }
641
642 /* Key creation */
643
644 #define ICE_DC_KEY 0x1 /* don't care */
645 #define ICE_DC_KEYINV 0x1
646 #define ICE_NM_KEY 0x0 /* never match */
647 #define ICE_NM_KEYINV 0x0
648 #define ICE_0_KEY 0x1 /* match 0 */
649 #define ICE_0_KEYINV 0x0
650 #define ICE_1_KEY 0x0 /* match 1 */
651 #define ICE_1_KEYINV 0x1
652
653 /**
654 * ice_gen_key_word - generate 16-bits of a key/mask word
655 * @val: the value
656 * @valid: valid bits mask (change only the valid bits)
657 * @dont_care: don't care mask
658 * @nvr_mtch: never match mask
659 * @key: pointer to an array of where the resulting key portion
660 * @key_inv: pointer to an array of where the resulting key invert portion
661 *
662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
664 * of key and 8 bits of key invert.
665 *
666 * '0' = b01, always match a 0 bit
667 * '1' = b10, always match a 1 bit
668 * '?' = b11, don't care bit (always matches)
669 * '~' = b00, never match bit
670 *
671 * Input:
672 * val: b0 1 0 1 0 1
673 * dont_care: b0 0 1 1 0 0
674 * never_mtch: b0 0 0 0 1 1
675 * ------------------------------
676 * Result: key: b01 10 11 11 00 00
677 */
678 static int
ice_gen_key_word(u8 val,u8 valid,u8 dont_care,u8 nvr_mtch,u8 * key,u8 * key_inv)679 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
680 u8 *key_inv)
681 {
682 u8 in_key = *key, in_key_inv = *key_inv;
683 u8 i;
684
685 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
686 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
687 return -EIO;
688
689 *key = 0;
690 *key_inv = 0;
691
692 /* encode the 8 bits into 8-bit key and 8-bit key invert */
693 for (i = 0; i < 8; i++) {
694 *key >>= 1;
695 *key_inv >>= 1;
696
697 if (!(valid & 0x1)) { /* change only valid bits */
698 *key |= (in_key & 0x1) << 7;
699 *key_inv |= (in_key_inv & 0x1) << 7;
700 } else if (dont_care & 0x1) { /* don't care bit */
701 *key |= ICE_DC_KEY << 7;
702 *key_inv |= ICE_DC_KEYINV << 7;
703 } else if (nvr_mtch & 0x1) { /* never match bit */
704 *key |= ICE_NM_KEY << 7;
705 *key_inv |= ICE_NM_KEYINV << 7;
706 } else if (val & 0x01) { /* exact 1 match */
707 *key |= ICE_1_KEY << 7;
708 *key_inv |= ICE_1_KEYINV << 7;
709 } else { /* exact 0 match */
710 *key |= ICE_0_KEY << 7;
711 *key_inv |= ICE_0_KEYINV << 7;
712 }
713
714 dont_care >>= 1;
715 nvr_mtch >>= 1;
716 valid >>= 1;
717 val >>= 1;
718 in_key >>= 1;
719 in_key_inv >>= 1;
720 }
721
722 return 0;
723 }
724
725 /**
726 * ice_bits_max_set - determine if the number of bits set is within a maximum
727 * @mask: pointer to the byte array which is the mask
728 * @size: the number of bytes in the mask
729 * @max: the max number of set bits
730 *
731 * This function determines if there are at most 'max' number of bits set in an
732 * array. Returns true if the number for bits set is <= max or will return false
733 * otherwise.
734 */
ice_bits_max_set(const u8 * mask,u16 size,u16 max)735 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
736 {
737 u16 count = 0;
738 u16 i;
739
740 /* check each byte */
741 for (i = 0; i < size; i++) {
742 /* if 0, go to next byte */
743 if (!mask[i])
744 continue;
745
746 /* We know there is at least one set bit in this byte because of
747 * the above check; if we already have found 'max' number of
748 * bits set, then we can return failure now.
749 */
750 if (count == max)
751 return false;
752
753 /* count the bits in this byte, checking threshold */
754 count += hweight8(mask[i]);
755 if (count > max)
756 return false;
757 }
758
759 return true;
760 }
761
762 /**
763 * ice_set_key - generate a variable sized key with multiples of 16-bits
764 * @key: pointer to where the key will be stored
765 * @size: the size of the complete key in bytes (must be even)
766 * @val: array of 8-bit values that makes up the value portion of the key
767 * @upd: array of 8-bit masks that determine what key portion to update
768 * @dc: array of 8-bit masks that make up the don't care mask
769 * @nm: array of 8-bit masks that make up the never match mask
770 * @off: the offset of the first byte in the key to update
771 * @len: the number of bytes in the key update
772 *
773 * This function generates a key from a value, a don't care mask and a never
774 * match mask.
775 * upd, dc, and nm are optional parameters, and can be NULL:
776 * upd == NULL --> upd mask is all 1's (update all bits)
777 * dc == NULL --> dc mask is all 0's (no don't care bits)
778 * nm == NULL --> nm mask is all 0's (no never match bits)
779 */
780 static int
ice_set_key(u8 * key,u16 size,u8 * val,u8 * upd,u8 * dc,u8 * nm,u16 off,u16 len)781 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
782 u16 len)
783 {
784 u16 half_size;
785 u16 i;
786
787 /* size must be a multiple of 2 bytes. */
788 if (size % 2)
789 return -EIO;
790
791 half_size = size / 2;
792 if (off + len > half_size)
793 return -EIO;
794
795 /* Make sure at most one bit is set in the never match mask. Having more
796 * than one never match mask bit set will cause HW to consume excessive
797 * power otherwise; this is a power management efficiency check.
798 */
799 #define ICE_NVR_MTCH_BITS_MAX 1
800 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
801 return -EIO;
802
803 for (i = 0; i < len; i++)
804 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
805 dc ? dc[i] : 0, nm ? nm[i] : 0,
806 key + off + i, key + half_size + off + i))
807 return -EIO;
808
809 return 0;
810 }
811
812 /**
813 * ice_acquire_global_cfg_lock
814 * @hw: pointer to the HW structure
815 * @access: access type (read or write)
816 *
817 * This function will request ownership of the global config lock for reading
818 * or writing of the package. When attempting to obtain write access, the
819 * caller must check for the following two return values:
820 *
821 * 0 - Means the caller has acquired the global config lock
822 * and can perform writing of the package.
823 * -EALREADY - Indicates another driver has already written the
824 * package or has found that no update was necessary; in
825 * this case, the caller can just skip performing any
826 * update of the package.
827 */
828 static int
ice_acquire_global_cfg_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)829 ice_acquire_global_cfg_lock(struct ice_hw *hw,
830 enum ice_aq_res_access_type access)
831 {
832 int status;
833
834 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
835 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
836
837 if (!status)
838 mutex_lock(&ice_global_cfg_lock_sw);
839 else if (status == -EALREADY)
840 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
841
842 return status;
843 }
844
845 /**
846 * ice_release_global_cfg_lock
847 * @hw: pointer to the HW structure
848 *
849 * This function will release the global config lock.
850 */
ice_release_global_cfg_lock(struct ice_hw * hw)851 static void ice_release_global_cfg_lock(struct ice_hw *hw)
852 {
853 mutex_unlock(&ice_global_cfg_lock_sw);
854 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
855 }
856
857 /**
858 * ice_acquire_change_lock
859 * @hw: pointer to the HW structure
860 * @access: access type (read or write)
861 *
862 * This function will request ownership of the change lock.
863 */
864 int
ice_acquire_change_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)865 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
866 {
867 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
868 ICE_CHANGE_LOCK_TIMEOUT);
869 }
870
871 /**
872 * ice_release_change_lock
873 * @hw: pointer to the HW structure
874 *
875 * This function will release the change lock using the proper Admin Command.
876 */
ice_release_change_lock(struct ice_hw * hw)877 void ice_release_change_lock(struct ice_hw *hw)
878 {
879 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
880 }
881
882 /**
883 * ice_aq_download_pkg
884 * @hw: pointer to the hardware structure
885 * @pkg_buf: the package buffer to transfer
886 * @buf_size: the size of the package buffer
887 * @last_buf: last buffer indicator
888 * @error_offset: returns error offset
889 * @error_info: returns error information
890 * @cd: pointer to command details structure or NULL
891 *
892 * Download Package (0x0C40)
893 */
894 static int
ice_aq_download_pkg(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,bool last_buf,u32 * error_offset,u32 * error_info,struct ice_sq_cd * cd)895 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
896 u16 buf_size, bool last_buf, u32 *error_offset,
897 u32 *error_info, struct ice_sq_cd *cd)
898 {
899 struct ice_aqc_download_pkg *cmd;
900 struct ice_aq_desc desc;
901 int status;
902
903 if (error_offset)
904 *error_offset = 0;
905 if (error_info)
906 *error_info = 0;
907
908 cmd = &desc.params.download_pkg;
909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
910 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
911
912 if (last_buf)
913 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
914
915 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
916 if (status == -EIO) {
917 /* Read error from buffer only when the FW returned an error */
918 struct ice_aqc_download_pkg_resp *resp;
919
920 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
921 if (error_offset)
922 *error_offset = le32_to_cpu(resp->error_offset);
923 if (error_info)
924 *error_info = le32_to_cpu(resp->error_info);
925 }
926
927 return status;
928 }
929
930 /**
931 * ice_aq_upload_section
932 * @hw: pointer to the hardware structure
933 * @pkg_buf: the package buffer which will receive the section
934 * @buf_size: the size of the package buffer
935 * @cd: pointer to command details structure or NULL
936 *
937 * Upload Section (0x0C41)
938 */
939 int
ice_aq_upload_section(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,struct ice_sq_cd * cd)940 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
941 u16 buf_size, struct ice_sq_cd *cd)
942 {
943 struct ice_aq_desc desc;
944
945 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
946 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
947
948 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
949 }
950
951 /**
952 * ice_aq_update_pkg
953 * @hw: pointer to the hardware structure
954 * @pkg_buf: the package cmd buffer
955 * @buf_size: the size of the package cmd buffer
956 * @last_buf: last buffer indicator
957 * @error_offset: returns error offset
958 * @error_info: returns error information
959 * @cd: pointer to command details structure or NULL
960 *
961 * Update Package (0x0C42)
962 */
963 static int
ice_aq_update_pkg(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,bool last_buf,u32 * error_offset,u32 * error_info,struct ice_sq_cd * cd)964 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
965 bool last_buf, u32 *error_offset, u32 *error_info,
966 struct ice_sq_cd *cd)
967 {
968 struct ice_aqc_download_pkg *cmd;
969 struct ice_aq_desc desc;
970 int status;
971
972 if (error_offset)
973 *error_offset = 0;
974 if (error_info)
975 *error_info = 0;
976
977 cmd = &desc.params.download_pkg;
978 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
979 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
980
981 if (last_buf)
982 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
983
984 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
985 if (status == -EIO) {
986 /* Read error from buffer only when the FW returned an error */
987 struct ice_aqc_download_pkg_resp *resp;
988
989 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
990 if (error_offset)
991 *error_offset = le32_to_cpu(resp->error_offset);
992 if (error_info)
993 *error_info = le32_to_cpu(resp->error_info);
994 }
995
996 return status;
997 }
998
999 /**
1000 * ice_find_seg_in_pkg
1001 * @hw: pointer to the hardware structure
1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1003 * @pkg_hdr: pointer to the package header to be searched
1004 *
1005 * This function searches a package file for a particular segment type. On
1006 * success it returns a pointer to the segment header, otherwise it will
1007 * return NULL.
1008 */
1009 static struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw * hw,u32 seg_type,struct ice_pkg_hdr * pkg_hdr)1010 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1011 struct ice_pkg_hdr *pkg_hdr)
1012 {
1013 u32 i;
1014
1015 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1016 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1017 pkg_hdr->pkg_format_ver.update,
1018 pkg_hdr->pkg_format_ver.draft);
1019
1020 /* Search all package segments for the requested segment type */
1021 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1022 struct ice_generic_seg_hdr *seg;
1023
1024 seg = (struct ice_generic_seg_hdr *)
1025 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
1026
1027 if (le32_to_cpu(seg->seg_type) == seg_type)
1028 return seg;
1029 }
1030
1031 return NULL;
1032 }
1033
1034 /**
1035 * ice_update_pkg_no_lock
1036 * @hw: pointer to the hardware structure
1037 * @bufs: pointer to an array of buffers
1038 * @count: the number of buffers in the array
1039 */
1040 static int
ice_update_pkg_no_lock(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1041 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1042 {
1043 int status = 0;
1044 u32 i;
1045
1046 for (i = 0; i < count; i++) {
1047 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1048 bool last = ((i + 1) == count);
1049 u32 offset, info;
1050
1051 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1052 last, &offset, &info, NULL);
1053
1054 if (status) {
1055 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
1056 status, offset, info);
1057 break;
1058 }
1059 }
1060
1061 return status;
1062 }
1063
1064 /**
1065 * ice_update_pkg
1066 * @hw: pointer to the hardware structure
1067 * @bufs: pointer to an array of buffers
1068 * @count: the number of buffers in the array
1069 *
1070 * Obtains change lock and updates package.
1071 */
ice_update_pkg(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1072 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1073 {
1074 int status;
1075
1076 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1077 if (status)
1078 return status;
1079
1080 status = ice_update_pkg_no_lock(hw, bufs, count);
1081
1082 ice_release_change_lock(hw);
1083
1084 return status;
1085 }
1086
ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)1087 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1088 {
1089 switch (aq_err) {
1090 case ICE_AQ_RC_ENOSEC:
1091 case ICE_AQ_RC_EBADSIG:
1092 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1093 case ICE_AQ_RC_ESVN:
1094 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1095 case ICE_AQ_RC_EBADMAN:
1096 case ICE_AQ_RC_EBADBUF:
1097 return ICE_DDP_PKG_LOAD_ERROR;
1098 default:
1099 return ICE_DDP_PKG_ERR;
1100 }
1101 }
1102
1103 /**
1104 * ice_dwnld_cfg_bufs
1105 * @hw: pointer to the hardware structure
1106 * @bufs: pointer to an array of buffers
1107 * @count: the number of buffers in the array
1108 *
1109 * Obtains global config lock and downloads the package configuration buffers
1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111 * found indicates that the rest of the buffers are all metadata buffers.
1112 */
1113 static enum ice_ddp_state
ice_dwnld_cfg_bufs(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115 {
1116 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1117 struct ice_buf_hdr *bh;
1118 enum ice_aq_err err;
1119 u32 offset, info, i;
1120 int status;
1121
1122 if (!bufs || !count)
1123 return ICE_DDP_PKG_ERR;
1124
1125 /* If the first buffer's first section has its metadata bit set
1126 * then there are no buffers to be downloaded, and the operation is
1127 * considered a success.
1128 */
1129 bh = (struct ice_buf_hdr *)bufs;
1130 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1131 return ICE_DDP_PKG_SUCCESS;
1132
1133 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1134 if (status) {
1135 if (status == -EALREADY)
1136 return ICE_DDP_PKG_ALREADY_LOADED;
1137 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1138 }
1139
1140 for (i = 0; i < count; i++) {
1141 bool last = ((i + 1) == count);
1142
1143 if (!last) {
1144 /* check next buffer for metadata flag */
1145 bh = (struct ice_buf_hdr *)(bufs + i + 1);
1146
1147 /* A set metadata flag in the next buffer will signal
1148 * that the current buffer will be the last buffer
1149 * downloaded
1150 */
1151 if (le16_to_cpu(bh->section_count))
1152 if (le32_to_cpu(bh->section_entry[0].type) &
1153 ICE_METADATA_BUF)
1154 last = true;
1155 }
1156
1157 bh = (struct ice_buf_hdr *)(bufs + i);
1158
1159 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1160 &offset, &info, NULL);
1161
1162 /* Save AQ status from download package */
1163 if (status) {
1164 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1165 status, offset, info);
1166 err = hw->adminq.sq_last_status;
1167 state = ice_map_aq_err_to_ddp_state(err);
1168 break;
1169 }
1170
1171 if (last)
1172 break;
1173 }
1174
1175 if (!status) {
1176 status = ice_set_vlan_mode(hw);
1177 if (status)
1178 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1179 status);
1180 }
1181
1182 ice_release_global_cfg_lock(hw);
1183
1184 return state;
1185 }
1186
1187 /**
1188 * ice_aq_get_pkg_info_list
1189 * @hw: pointer to the hardware structure
1190 * @pkg_info: the buffer which will receive the information list
1191 * @buf_size: the size of the pkg_info information buffer
1192 * @cd: pointer to command details structure or NULL
1193 *
1194 * Get Package Info List (0x0C43)
1195 */
1196 static int
ice_aq_get_pkg_info_list(struct ice_hw * hw,struct ice_aqc_get_pkg_info_resp * pkg_info,u16 buf_size,struct ice_sq_cd * cd)1197 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1198 struct ice_aqc_get_pkg_info_resp *pkg_info,
1199 u16 buf_size, struct ice_sq_cd *cd)
1200 {
1201 struct ice_aq_desc desc;
1202
1203 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1204
1205 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1206 }
1207
1208 /**
1209 * ice_download_pkg
1210 * @hw: pointer to the hardware structure
1211 * @ice_seg: pointer to the segment of the package to be downloaded
1212 *
1213 * Handles the download of a complete package.
1214 */
1215 static enum ice_ddp_state
ice_download_pkg(struct ice_hw * hw,struct ice_seg * ice_seg)1216 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1217 {
1218 struct ice_buf_table *ice_buf_tbl;
1219 int status;
1220
1221 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1222 ice_seg->hdr.seg_format_ver.major,
1223 ice_seg->hdr.seg_format_ver.minor,
1224 ice_seg->hdr.seg_format_ver.update,
1225 ice_seg->hdr.seg_format_ver.draft);
1226
1227 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1228 le32_to_cpu(ice_seg->hdr.seg_type),
1229 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1230
1231 ice_buf_tbl = ice_find_buf_table(ice_seg);
1232
1233 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1234 le32_to_cpu(ice_buf_tbl->buf_count));
1235
1236 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1237 le32_to_cpu(ice_buf_tbl->buf_count));
1238
1239 ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1240
1241 return status;
1242 }
1243
1244 /**
1245 * ice_init_pkg_info
1246 * @hw: pointer to the hardware structure
1247 * @pkg_hdr: pointer to the driver's package hdr
1248 *
1249 * Saves off the package details into the HW structure.
1250 */
1251 static enum ice_ddp_state
ice_init_pkg_info(struct ice_hw * hw,struct ice_pkg_hdr * pkg_hdr)1252 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1253 {
1254 struct ice_generic_seg_hdr *seg_hdr;
1255
1256 if (!pkg_hdr)
1257 return ICE_DDP_PKG_ERR;
1258
1259 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1260 if (seg_hdr) {
1261 struct ice_meta_sect *meta;
1262 struct ice_pkg_enum state;
1263
1264 memset(&state, 0, sizeof(state));
1265
1266 /* Get package information from the Metadata Section */
1267 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1268 ICE_SID_METADATA);
1269 if (!meta) {
1270 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1271 return ICE_DDP_PKG_INVALID_FILE;
1272 }
1273
1274 hw->pkg_ver = meta->ver;
1275 memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1276
1277 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1278 meta->ver.major, meta->ver.minor, meta->ver.update,
1279 meta->ver.draft, meta->name);
1280
1281 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1282 memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1283 sizeof(hw->ice_seg_id));
1284
1285 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1286 seg_hdr->seg_format_ver.major,
1287 seg_hdr->seg_format_ver.minor,
1288 seg_hdr->seg_format_ver.update,
1289 seg_hdr->seg_format_ver.draft,
1290 seg_hdr->seg_id);
1291 } else {
1292 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1293 return ICE_DDP_PKG_INVALID_FILE;
1294 }
1295
1296 return ICE_DDP_PKG_SUCCESS;
1297 }
1298
1299 /**
1300 * ice_get_pkg_info
1301 * @hw: pointer to the hardware structure
1302 *
1303 * Store details of the package currently loaded in HW into the HW structure.
1304 */
ice_get_pkg_info(struct ice_hw * hw)1305 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1306 {
1307 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1308 struct ice_aqc_get_pkg_info_resp *pkg_info;
1309 u16 size;
1310 u32 i;
1311
1312 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1313 pkg_info = kzalloc(size, GFP_KERNEL);
1314 if (!pkg_info)
1315 return ICE_DDP_PKG_ERR;
1316
1317 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
1318 state = ICE_DDP_PKG_ERR;
1319 goto init_pkg_free_alloc;
1320 }
1321
1322 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1323 #define ICE_PKG_FLAG_COUNT 4
1324 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1325 u8 place = 0;
1326
1327 if (pkg_info->pkg_info[i].is_active) {
1328 flags[place++] = 'A';
1329 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1330 hw->active_track_id =
1331 le32_to_cpu(pkg_info->pkg_info[i].track_id);
1332 memcpy(hw->active_pkg_name,
1333 pkg_info->pkg_info[i].name,
1334 sizeof(pkg_info->pkg_info[i].name));
1335 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1336 }
1337 if (pkg_info->pkg_info[i].is_active_at_boot)
1338 flags[place++] = 'B';
1339 if (pkg_info->pkg_info[i].is_modified)
1340 flags[place++] = 'M';
1341 if (pkg_info->pkg_info[i].is_in_nvm)
1342 flags[place++] = 'N';
1343
1344 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1345 i, pkg_info->pkg_info[i].ver.major,
1346 pkg_info->pkg_info[i].ver.minor,
1347 pkg_info->pkg_info[i].ver.update,
1348 pkg_info->pkg_info[i].ver.draft,
1349 pkg_info->pkg_info[i].name, flags);
1350 }
1351
1352 init_pkg_free_alloc:
1353 kfree(pkg_info);
1354
1355 return state;
1356 }
1357
1358 /**
1359 * ice_verify_pkg - verify package
1360 * @pkg: pointer to the package buffer
1361 * @len: size of the package buffer
1362 *
1363 * Verifies various attributes of the package file, including length, format
1364 * version, and the requirement of at least one segment.
1365 */
ice_verify_pkg(struct ice_pkg_hdr * pkg,u32 len)1366 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1367 {
1368 u32 seg_count;
1369 u32 i;
1370
1371 if (len < struct_size(pkg, seg_offset, 1))
1372 return ICE_DDP_PKG_INVALID_FILE;
1373
1374 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1375 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1376 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1377 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1378 return ICE_DDP_PKG_INVALID_FILE;
1379
1380 /* pkg must have at least one segment */
1381 seg_count = le32_to_cpu(pkg->seg_count);
1382 if (seg_count < 1)
1383 return ICE_DDP_PKG_INVALID_FILE;
1384
1385 /* make sure segment array fits in package length */
1386 if (len < struct_size(pkg, seg_offset, seg_count))
1387 return ICE_DDP_PKG_INVALID_FILE;
1388
1389 /* all segments must fit within length */
1390 for (i = 0; i < seg_count; i++) {
1391 u32 off = le32_to_cpu(pkg->seg_offset[i]);
1392 struct ice_generic_seg_hdr *seg;
1393
1394 /* segment header must fit */
1395 if (len < off + sizeof(*seg))
1396 return ICE_DDP_PKG_INVALID_FILE;
1397
1398 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1399
1400 /* segment body must fit */
1401 if (len < off + le32_to_cpu(seg->seg_size))
1402 return ICE_DDP_PKG_INVALID_FILE;
1403 }
1404
1405 return ICE_DDP_PKG_SUCCESS;
1406 }
1407
1408 /**
1409 * ice_free_seg - free package segment pointer
1410 * @hw: pointer to the hardware structure
1411 *
1412 * Frees the package segment pointer in the proper manner, depending on if the
1413 * segment was allocated or just the passed in pointer was stored.
1414 */
ice_free_seg(struct ice_hw * hw)1415 void ice_free_seg(struct ice_hw *hw)
1416 {
1417 if (hw->pkg_copy) {
1418 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1419 hw->pkg_copy = NULL;
1420 hw->pkg_size = 0;
1421 }
1422 hw->seg = NULL;
1423 }
1424
1425 /**
1426 * ice_init_pkg_regs - initialize additional package registers
1427 * @hw: pointer to the hardware structure
1428 */
ice_init_pkg_regs(struct ice_hw * hw)1429 static void ice_init_pkg_regs(struct ice_hw *hw)
1430 {
1431 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1432 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1433 #define ICE_SW_BLK_IDX 0
1434
1435 /* setup Switch block input mask, which is 48-bits in two parts */
1436 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1437 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1438 }
1439
1440 /**
1441 * ice_chk_pkg_version - check package version for compatibility with driver
1442 * @pkg_ver: pointer to a version structure to check
1443 *
1444 * Check to make sure that the package about to be downloaded is compatible with
1445 * the driver. To be compatible, the major and minor components of the package
1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1447 * definitions.
1448 */
ice_chk_pkg_version(struct ice_pkg_ver * pkg_ver)1449 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1450 {
1451 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
1452 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1453 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
1454 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
1455 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
1456 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1457 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
1458 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
1459
1460 return ICE_DDP_PKG_SUCCESS;
1461 }
1462
1463 /**
1464 * ice_chk_pkg_compat
1465 * @hw: pointer to the hardware structure
1466 * @ospkg: pointer to the package hdr
1467 * @seg: pointer to the package segment hdr
1468 *
1469 * This function checks the package version compatibility with driver and NVM
1470 */
1471 static enum ice_ddp_state
ice_chk_pkg_compat(struct ice_hw * hw,struct ice_pkg_hdr * ospkg,struct ice_seg ** seg)1472 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1473 struct ice_seg **seg)
1474 {
1475 struct ice_aqc_get_pkg_info_resp *pkg;
1476 enum ice_ddp_state state;
1477 u16 size;
1478 u32 i;
1479
1480 /* Check package version compatibility */
1481 state = ice_chk_pkg_version(&hw->pkg_ver);
1482 if (state) {
1483 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1484 return state;
1485 }
1486
1487 /* find ICE segment in given package */
1488 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1489 ospkg);
1490 if (!*seg) {
1491 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1492 return ICE_DDP_PKG_INVALID_FILE;
1493 }
1494
1495 /* Check if FW is compatible with the OS package */
1496 size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1497 pkg = kzalloc(size, GFP_KERNEL);
1498 if (!pkg)
1499 return ICE_DDP_PKG_ERR;
1500
1501 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
1502 state = ICE_DDP_PKG_LOAD_ERROR;
1503 goto fw_ddp_compat_free_alloc;
1504 }
1505
1506 for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1507 /* loop till we find the NVM package */
1508 if (!pkg->pkg_info[i].is_in_nvm)
1509 continue;
1510 if ((*seg)->hdr.seg_format_ver.major !=
1511 pkg->pkg_info[i].ver.major ||
1512 (*seg)->hdr.seg_format_ver.minor >
1513 pkg->pkg_info[i].ver.minor) {
1514 state = ICE_DDP_PKG_FW_MISMATCH;
1515 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1516 }
1517 /* done processing NVM package so break */
1518 break;
1519 }
1520 fw_ddp_compat_free_alloc:
1521 kfree(pkg);
1522 return state;
1523 }
1524
1525 /**
1526 * ice_sw_fv_handler
1527 * @sect_type: section type
1528 * @section: pointer to section
1529 * @index: index of the field vector entry to be returned
1530 * @offset: ptr to variable that receives the offset in the field vector table
1531 *
1532 * This is a callback function that can be passed to ice_pkg_enum_entry.
1533 * This function treats the given section as of type ice_sw_fv_section and
1534 * enumerates offset field. "offset" is an index into the field vector table.
1535 */
1536 static void *
ice_sw_fv_handler(u32 sect_type,void * section,u32 index,u32 * offset)1537 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1538 {
1539 struct ice_sw_fv_section *fv_section = section;
1540
1541 if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1542 return NULL;
1543 if (index >= le16_to_cpu(fv_section->count))
1544 return NULL;
1545 if (offset)
1546 /* "index" passed in to this function is relative to a given
1547 * 4k block. To get to the true index into the field vector
1548 * table need to add the relative index to the base_offset
1549 * field of this section
1550 */
1551 *offset = le16_to_cpu(fv_section->base_offset) + index;
1552 return fv_section->fv + index;
1553 }
1554
1555 /**
1556 * ice_get_prof_index_max - get the max profile index for used profile
1557 * @hw: pointer to the HW struct
1558 *
1559 * Calling this function will get the max profile index for used profile
1560 * and store the index number in struct ice_switch_info *switch_info
1561 * in HW for following use.
1562 */
ice_get_prof_index_max(struct ice_hw * hw)1563 static int ice_get_prof_index_max(struct ice_hw *hw)
1564 {
1565 u16 prof_index = 0, j, max_prof_index = 0;
1566 struct ice_pkg_enum state;
1567 struct ice_seg *ice_seg;
1568 bool flag = false;
1569 struct ice_fv *fv;
1570 u32 offset;
1571
1572 memset(&state, 0, sizeof(state));
1573
1574 if (!hw->seg)
1575 return -EINVAL;
1576
1577 ice_seg = hw->seg;
1578
1579 do {
1580 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1581 &offset, ice_sw_fv_handler);
1582 if (!fv)
1583 break;
1584 ice_seg = NULL;
1585
1586 /* in the profile that not be used, the prot_id is set to 0xff
1587 * and the off is set to 0x1ff for all the field vectors.
1588 */
1589 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1590 if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1591 fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1592 flag = true;
1593 if (flag && prof_index > max_prof_index)
1594 max_prof_index = prof_index;
1595
1596 prof_index++;
1597 flag = false;
1598 } while (fv);
1599
1600 hw->switch_info->max_used_prof_index = max_prof_index;
1601
1602 return 0;
1603 }
1604
1605 /**
1606 * ice_get_ddp_pkg_state - get DDP pkg state after download
1607 * @hw: pointer to the HW struct
1608 * @already_loaded: indicates if pkg was already loaded onto the device
1609 */
1610 static enum ice_ddp_state
ice_get_ddp_pkg_state(struct ice_hw * hw,bool already_loaded)1611 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
1612 {
1613 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
1614 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
1615 hw->pkg_ver.update == hw->active_pkg_ver.update &&
1616 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
1617 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
1618 if (already_loaded)
1619 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
1620 else
1621 return ICE_DDP_PKG_SUCCESS;
1622 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
1623 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
1624 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
1625 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
1626 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
1627 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
1628 } else {
1629 return ICE_DDP_PKG_ERR;
1630 }
1631 }
1632
1633 /**
1634 * ice_init_pkg - initialize/download package
1635 * @hw: pointer to the hardware structure
1636 * @buf: pointer to the package buffer
1637 * @len: size of the package buffer
1638 *
1639 * This function initializes a package. The package contains HW tables
1640 * required to do packet processing. First, the function extracts package
1641 * information such as version. Then it finds the ice configuration segment
1642 * within the package; this function then saves a copy of the segment pointer
1643 * within the supplied package buffer. Next, the function will cache any hints
1644 * from the package, followed by downloading the package itself. Note, that if
1645 * a previous PF driver has already downloaded the package successfully, then
1646 * the current driver will not have to download the package again.
1647 *
1648 * The local package contents will be used to query default behavior and to
1649 * update specific sections of the HW's version of the package (e.g. to update
1650 * the parse graph to understand new protocols).
1651 *
1652 * This function stores a pointer to the package buffer memory, and it is
1653 * expected that the supplied buffer will not be freed immediately. If the
1654 * package buffer needs to be freed, such as when read from a file, use
1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1656 * case.
1657 */
ice_init_pkg(struct ice_hw * hw,u8 * buf,u32 len)1658 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1659 {
1660 bool already_loaded = false;
1661 enum ice_ddp_state state;
1662 struct ice_pkg_hdr *pkg;
1663 struct ice_seg *seg;
1664
1665 if (!buf || !len)
1666 return ICE_DDP_PKG_ERR;
1667
1668 pkg = (struct ice_pkg_hdr *)buf;
1669 state = ice_verify_pkg(pkg, len);
1670 if (state) {
1671 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1672 state);
1673 return state;
1674 }
1675
1676 /* initialize package info */
1677 state = ice_init_pkg_info(hw, pkg);
1678 if (state)
1679 return state;
1680
1681 /* before downloading the package, check package version for
1682 * compatibility with driver
1683 */
1684 state = ice_chk_pkg_compat(hw, pkg, &seg);
1685 if (state)
1686 return state;
1687
1688 /* initialize package hints and then download package */
1689 ice_init_pkg_hints(hw, seg);
1690 state = ice_download_pkg(hw, seg);
1691 if (state == ICE_DDP_PKG_ALREADY_LOADED) {
1692 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1693 already_loaded = true;
1694 }
1695
1696 /* Get information on the package currently loaded in HW, then make sure
1697 * the driver is compatible with this version.
1698 */
1699 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
1700 state = ice_get_pkg_info(hw);
1701 if (!state)
1702 state = ice_get_ddp_pkg_state(hw, already_loaded);
1703 }
1704
1705 if (ice_is_init_pkg_successful(state)) {
1706 hw->seg = seg;
1707 /* on successful package download update other required
1708 * registers to support the package and fill HW tables
1709 * with package content.
1710 */
1711 ice_init_pkg_regs(hw);
1712 ice_fill_blk_tbls(hw);
1713 ice_fill_hw_ptype(hw);
1714 ice_get_prof_index_max(hw);
1715 } else {
1716 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1717 state);
1718 }
1719
1720 return state;
1721 }
1722
1723 /**
1724 * ice_copy_and_init_pkg - initialize/download a copy of the package
1725 * @hw: pointer to the hardware structure
1726 * @buf: pointer to the package buffer
1727 * @len: size of the package buffer
1728 *
1729 * This function copies the package buffer, and then calls ice_init_pkg() to
1730 * initialize the copied package contents.
1731 *
1732 * The copying is necessary if the package buffer supplied is constant, or if
1733 * the memory may disappear shortly after calling this function.
1734 *
1735 * If the package buffer resides in the data segment and can be modified, the
1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1737 *
1738 * However, if the package buffer needs to be copied first, such as when being
1739 * read from a file, the caller should use ice_copy_and_init_pkg().
1740 *
1741 * This function will first copy the package buffer, before calling
1742 * ice_init_pkg(). The caller is free to immediately destroy the original
1743 * package buffer, as the new copy will be managed by this function and
1744 * related routines.
1745 */
1746 enum ice_ddp_state
ice_copy_and_init_pkg(struct ice_hw * hw,const u8 * buf,u32 len)1747 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1748 {
1749 enum ice_ddp_state state;
1750 u8 *buf_copy;
1751
1752 if (!buf || !len)
1753 return ICE_DDP_PKG_ERR;
1754
1755 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1756
1757 state = ice_init_pkg(hw, buf_copy, len);
1758 if (!ice_is_init_pkg_successful(state)) {
1759 /* Free the copy, since we failed to initialize the package */
1760 devm_kfree(ice_hw_to_dev(hw), buf_copy);
1761 } else {
1762 /* Track the copied pkg so we can free it later */
1763 hw->pkg_copy = buf_copy;
1764 hw->pkg_size = len;
1765 }
1766
1767 return state;
1768 }
1769
1770 /**
1771 * ice_is_init_pkg_successful - check if DDP init was successful
1772 * @state: state of the DDP pkg after download
1773 */
ice_is_init_pkg_successful(enum ice_ddp_state state)1774 bool ice_is_init_pkg_successful(enum ice_ddp_state state)
1775 {
1776 switch (state) {
1777 case ICE_DDP_PKG_SUCCESS:
1778 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
1779 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
1780 return true;
1781 default:
1782 return false;
1783 }
1784 }
1785
1786 /**
1787 * ice_pkg_buf_alloc
1788 * @hw: pointer to the HW structure
1789 *
1790 * Allocates a package buffer and returns a pointer to the buffer header.
1791 * Note: all package contents must be in Little Endian form.
1792 */
ice_pkg_buf_alloc(struct ice_hw * hw)1793 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1794 {
1795 struct ice_buf_build *bld;
1796 struct ice_buf_hdr *buf;
1797
1798 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1799 if (!bld)
1800 return NULL;
1801
1802 buf = (struct ice_buf_hdr *)bld;
1803 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1804 section_entry));
1805 return bld;
1806 }
1807
ice_is_gtp_u_profile(u16 prof_idx)1808 static bool ice_is_gtp_u_profile(u16 prof_idx)
1809 {
1810 return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
1811 prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
1812 prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
1813 }
1814
ice_is_gtp_c_profile(u16 prof_idx)1815 static bool ice_is_gtp_c_profile(u16 prof_idx)
1816 {
1817 switch (prof_idx) {
1818 case ICE_PROFID_IPV4_GTPC_TEID:
1819 case ICE_PROFID_IPV4_GTPC_NO_TEID:
1820 case ICE_PROFID_IPV6_GTPC_TEID:
1821 case ICE_PROFID_IPV6_GTPC_NO_TEID:
1822 return true;
1823 default:
1824 return false;
1825 }
1826 }
1827
1828 /**
1829 * ice_get_sw_prof_type - determine switch profile type
1830 * @hw: pointer to the HW structure
1831 * @fv: pointer to the switch field vector
1832 * @prof_idx: profile index to check
1833 */
1834 static enum ice_prof_type
ice_get_sw_prof_type(struct ice_hw * hw,struct ice_fv * fv,u32 prof_idx)1835 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
1836 {
1837 u16 i;
1838
1839 if (ice_is_gtp_c_profile(prof_idx))
1840 return ICE_PROF_TUN_GTPC;
1841
1842 if (ice_is_gtp_u_profile(prof_idx))
1843 return ICE_PROF_TUN_GTPU;
1844
1845 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1846 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1847 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1848 fv->ew[i].off == ICE_VNI_OFFSET)
1849 return ICE_PROF_TUN_UDP;
1850
1851 /* GRE tunnel will have GRE protocol */
1852 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1853 return ICE_PROF_TUN_GRE;
1854 }
1855
1856 return ICE_PROF_NON_TUN;
1857 }
1858
1859 /**
1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1861 * @hw: pointer to hardware structure
1862 * @req_profs: type of profiles requested
1863 * @bm: pointer to memory for returning the bitmap of field vectors
1864 */
1865 void
ice_get_sw_fv_bitmap(struct ice_hw * hw,enum ice_prof_type req_profs,unsigned long * bm)1866 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1867 unsigned long *bm)
1868 {
1869 struct ice_pkg_enum state;
1870 struct ice_seg *ice_seg;
1871 struct ice_fv *fv;
1872
1873 if (req_profs == ICE_PROF_ALL) {
1874 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1875 return;
1876 }
1877
1878 memset(&state, 0, sizeof(state));
1879 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
1880 ice_seg = hw->seg;
1881 do {
1882 enum ice_prof_type prof_type;
1883 u32 offset;
1884
1885 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1886 &offset, ice_sw_fv_handler);
1887 ice_seg = NULL;
1888
1889 if (fv) {
1890 /* Determine field vector type */
1891 prof_type = ice_get_sw_prof_type(hw, fv, offset);
1892
1893 if (req_profs & prof_type)
1894 set_bit((u16)offset, bm);
1895 }
1896 } while (fv);
1897 }
1898
1899 /**
1900 * ice_get_sw_fv_list
1901 * @hw: pointer to the HW structure
1902 * @lkups: list of protocol types
1903 * @bm: bitmap of field vectors to consider
1904 * @fv_list: Head of a list
1905 *
1906 * Finds all the field vector entries from switch block that contain
1907 * a given protocol ID and offset and returns a list of structures of type
1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1909 * definition and profile ID information
1910 * NOTE: The caller of the function is responsible for freeing the memory
1911 * allocated for every list entry.
1912 */
1913 int
ice_get_sw_fv_list(struct ice_hw * hw,struct ice_prot_lkup_ext * lkups,unsigned long * bm,struct list_head * fv_list)1914 ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
1915 unsigned long *bm, struct list_head *fv_list)
1916 {
1917 struct ice_sw_fv_list_entry *fvl;
1918 struct ice_sw_fv_list_entry *tmp;
1919 struct ice_pkg_enum state;
1920 struct ice_seg *ice_seg;
1921 struct ice_fv *fv;
1922 u32 offset;
1923
1924 memset(&state, 0, sizeof(state));
1925
1926 if (!lkups->n_val_words || !hw->seg)
1927 return -EINVAL;
1928
1929 ice_seg = hw->seg;
1930 do {
1931 u16 i;
1932
1933 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1934 &offset, ice_sw_fv_handler);
1935 if (!fv)
1936 break;
1937 ice_seg = NULL;
1938
1939 /* If field vector is not in the bitmap list, then skip this
1940 * profile.
1941 */
1942 if (!test_bit((u16)offset, bm))
1943 continue;
1944
1945 for (i = 0; i < lkups->n_val_words; i++) {
1946 int j;
1947
1948 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1949 if (fv->ew[j].prot_id ==
1950 lkups->fv_words[i].prot_id &&
1951 fv->ew[j].off == lkups->fv_words[i].off)
1952 break;
1953 if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1954 break;
1955 if (i + 1 == lkups->n_val_words) {
1956 fvl = devm_kzalloc(ice_hw_to_dev(hw),
1957 sizeof(*fvl), GFP_KERNEL);
1958 if (!fvl)
1959 goto err;
1960 fvl->fv_ptr = fv;
1961 fvl->profile_id = offset;
1962 list_add(&fvl->list_entry, fv_list);
1963 break;
1964 }
1965 }
1966 } while (fv);
1967 if (list_empty(fv_list))
1968 return -EIO;
1969 return 0;
1970
1971 err:
1972 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
1973 list_del(&fvl->list_entry);
1974 devm_kfree(ice_hw_to_dev(hw), fvl);
1975 }
1976
1977 return -ENOMEM;
1978 }
1979
1980 /**
1981 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1982 * @hw: pointer to hardware structure
1983 */
ice_init_prof_result_bm(struct ice_hw * hw)1984 void ice_init_prof_result_bm(struct ice_hw *hw)
1985 {
1986 struct ice_pkg_enum state;
1987 struct ice_seg *ice_seg;
1988 struct ice_fv *fv;
1989
1990 memset(&state, 0, sizeof(state));
1991
1992 if (!hw->seg)
1993 return;
1994
1995 ice_seg = hw->seg;
1996 do {
1997 u32 off;
1998 u16 i;
1999
2000 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
2001 &off, ice_sw_fv_handler);
2002 ice_seg = NULL;
2003 if (!fv)
2004 break;
2005
2006 bitmap_zero(hw->switch_info->prof_res_bm[off],
2007 ICE_MAX_FV_WORDS);
2008
2009 /* Determine empty field vector indices, these can be
2010 * used for recipe results. Skip index 0, since it is
2011 * always used for Switch ID.
2012 */
2013 for (i = 1; i < ICE_MAX_FV_WORDS; i++)
2014 if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
2015 fv->ew[i].off == ICE_FV_OFFSET_INVAL)
2016 set_bit(i, hw->switch_info->prof_res_bm[off]);
2017 } while (fv);
2018 }
2019
2020 /**
2021 * ice_pkg_buf_free
2022 * @hw: pointer to the HW structure
2023 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2024 *
2025 * Frees a package buffer
2026 */
ice_pkg_buf_free(struct ice_hw * hw,struct ice_buf_build * bld)2027 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
2028 {
2029 devm_kfree(ice_hw_to_dev(hw), bld);
2030 }
2031
2032 /**
2033 * ice_pkg_buf_reserve_section
2034 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2035 * @count: the number of sections to reserve
2036 *
2037 * Reserves one or more section table entries in a package buffer. This routine
2038 * can be called multiple times as long as they are made before calling
2039 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2040 * is called once, the number of sections that can be allocated will not be able
2041 * to be increased; not using all reserved sections is fine, but this will
2042 * result in some wasted space in the buffer.
2043 * Note: all package contents must be in Little Endian form.
2044 */
2045 static int
ice_pkg_buf_reserve_section(struct ice_buf_build * bld,u16 count)2046 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2047 {
2048 struct ice_buf_hdr *buf;
2049 u16 section_count;
2050 u16 data_end;
2051
2052 if (!bld)
2053 return -EINVAL;
2054
2055 buf = (struct ice_buf_hdr *)&bld->buf;
2056
2057 /* already an active section, can't increase table size */
2058 section_count = le16_to_cpu(buf->section_count);
2059 if (section_count > 0)
2060 return -EIO;
2061
2062 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2063 return -EIO;
2064 bld->reserved_section_table_entries += count;
2065
2066 data_end = le16_to_cpu(buf->data_end) +
2067 flex_array_size(buf, section_entry, count);
2068 buf->data_end = cpu_to_le16(data_end);
2069
2070 return 0;
2071 }
2072
2073 /**
2074 * ice_pkg_buf_alloc_section
2075 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2076 * @type: the section type value
2077 * @size: the size of the section to reserve (in bytes)
2078 *
2079 * Reserves memory in the buffer for a section's content and updates the
2080 * buffers' status accordingly. This routine returns a pointer to the first
2081 * byte of the section start within the buffer, which is used to fill in the
2082 * section contents.
2083 * Note: all package contents must be in Little Endian form.
2084 */
2085 static void *
ice_pkg_buf_alloc_section(struct ice_buf_build * bld,u32 type,u16 size)2086 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2087 {
2088 struct ice_buf_hdr *buf;
2089 u16 sect_count;
2090 u16 data_end;
2091
2092 if (!bld || !type || !size)
2093 return NULL;
2094
2095 buf = (struct ice_buf_hdr *)&bld->buf;
2096
2097 /* check for enough space left in buffer */
2098 data_end = le16_to_cpu(buf->data_end);
2099
2100 /* section start must align on 4 byte boundary */
2101 data_end = ALIGN(data_end, 4);
2102
2103 if ((data_end + size) > ICE_MAX_S_DATA_END)
2104 return NULL;
2105
2106 /* check for more available section table entries */
2107 sect_count = le16_to_cpu(buf->section_count);
2108 if (sect_count < bld->reserved_section_table_entries) {
2109 void *section_ptr = ((u8 *)buf) + data_end;
2110
2111 buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
2112 buf->section_entry[sect_count].size = cpu_to_le16(size);
2113 buf->section_entry[sect_count].type = cpu_to_le32(type);
2114
2115 data_end += size;
2116 buf->data_end = cpu_to_le16(data_end);
2117
2118 buf->section_count = cpu_to_le16(sect_count + 1);
2119 return section_ptr;
2120 }
2121
2122 /* no free section table entries */
2123 return NULL;
2124 }
2125
2126 /**
2127 * ice_pkg_buf_alloc_single_section
2128 * @hw: pointer to the HW structure
2129 * @type: the section type value
2130 * @size: the size of the section to reserve (in bytes)
2131 * @section: returns pointer to the section
2132 *
2133 * Allocates a package buffer with a single section.
2134 * Note: all package contents must be in Little Endian form.
2135 */
2136 struct ice_buf_build *
ice_pkg_buf_alloc_single_section(struct ice_hw * hw,u32 type,u16 size,void ** section)2137 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2138 void **section)
2139 {
2140 struct ice_buf_build *buf;
2141
2142 if (!section)
2143 return NULL;
2144
2145 buf = ice_pkg_buf_alloc(hw);
2146 if (!buf)
2147 return NULL;
2148
2149 if (ice_pkg_buf_reserve_section(buf, 1))
2150 goto ice_pkg_buf_alloc_single_section_err;
2151
2152 *section = ice_pkg_buf_alloc_section(buf, type, size);
2153 if (!*section)
2154 goto ice_pkg_buf_alloc_single_section_err;
2155
2156 return buf;
2157
2158 ice_pkg_buf_alloc_single_section_err:
2159 ice_pkg_buf_free(hw, buf);
2160 return NULL;
2161 }
2162
2163 /**
2164 * ice_pkg_buf_get_active_sections
2165 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2166 *
2167 * Returns the number of active sections. Before using the package buffer
2168 * in an update package command, the caller should make sure that there is at
2169 * least one active section - otherwise, the buffer is not legal and should
2170 * not be used.
2171 * Note: all package contents must be in Little Endian form.
2172 */
ice_pkg_buf_get_active_sections(struct ice_buf_build * bld)2173 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2174 {
2175 struct ice_buf_hdr *buf;
2176
2177 if (!bld)
2178 return 0;
2179
2180 buf = (struct ice_buf_hdr *)&bld->buf;
2181 return le16_to_cpu(buf->section_count);
2182 }
2183
2184 /**
2185 * ice_pkg_buf
2186 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2187 *
2188 * Return a pointer to the buffer's header
2189 */
ice_pkg_buf(struct ice_buf_build * bld)2190 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2191 {
2192 if (!bld)
2193 return NULL;
2194
2195 return &bld->buf;
2196 }
2197
2198 /**
2199 * ice_get_open_tunnel_port - retrieve an open tunnel port
2200 * @hw: pointer to the HW structure
2201 * @port: returns open port
2202 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
2203 */
2204 bool
ice_get_open_tunnel_port(struct ice_hw * hw,u16 * port,enum ice_tunnel_type type)2205 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
2206 enum ice_tunnel_type type)
2207 {
2208 bool res = false;
2209 u16 i;
2210
2211 mutex_lock(&hw->tnl_lock);
2212
2213 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2214 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
2215 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
2216 *port = hw->tnl.tbl[i].port;
2217 res = true;
2218 break;
2219 }
2220
2221 mutex_unlock(&hw->tnl_lock);
2222
2223 return res;
2224 }
2225
2226 /**
2227 * ice_upd_dvm_boost_entry
2228 * @hw: pointer to the HW structure
2229 * @entry: pointer to double vlan boost entry info
2230 */
2231 static int
ice_upd_dvm_boost_entry(struct ice_hw * hw,struct ice_dvm_entry * entry)2232 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2233 {
2234 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2235 int status = -ENOSPC;
2236 struct ice_buf_build *bld;
2237 u8 val, dc, nm;
2238
2239 bld = ice_pkg_buf_alloc(hw);
2240 if (!bld)
2241 return -ENOMEM;
2242
2243 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2244 if (ice_pkg_buf_reserve_section(bld, 2))
2245 goto ice_upd_dvm_boost_entry_err;
2246
2247 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2248 struct_size(sect_rx, tcam, 1));
2249 if (!sect_rx)
2250 goto ice_upd_dvm_boost_entry_err;
2251 sect_rx->count = cpu_to_le16(1);
2252
2253 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2254 struct_size(sect_tx, tcam, 1));
2255 if (!sect_tx)
2256 goto ice_upd_dvm_boost_entry_err;
2257 sect_tx->count = cpu_to_le16(1);
2258
2259 /* copy original boost entry to update package buffer */
2260 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
2261
2262 /* re-write the don't care and never match bits accordingly */
2263 if (entry->enable) {
2264 /* all bits are don't care */
2265 val = 0x00;
2266 dc = 0xFF;
2267 nm = 0x00;
2268 } else {
2269 /* disable, one never match bit, the rest are don't care */
2270 val = 0x00;
2271 dc = 0xF7;
2272 nm = 0x08;
2273 }
2274
2275 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2276 &val, NULL, &dc, &nm, 0, sizeof(u8));
2277
2278 /* exact copy of entry to Tx section entry */
2279 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2280
2281 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2282
2283 ice_upd_dvm_boost_entry_err:
2284 ice_pkg_buf_free(hw, bld);
2285
2286 return status;
2287 }
2288
2289 /**
2290 * ice_set_dvm_boost_entries
2291 * @hw: pointer to the HW structure
2292 *
2293 * Enable double vlan by updating the appropriate boost tcam entries.
2294 */
ice_set_dvm_boost_entries(struct ice_hw * hw)2295 int ice_set_dvm_boost_entries(struct ice_hw *hw)
2296 {
2297 int status;
2298 u16 i;
2299
2300 for (i = 0; i < hw->dvm_upd.count; i++) {
2301 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2302 if (status)
2303 return status;
2304 }
2305
2306 return 0;
2307 }
2308
2309 /**
2310 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
2311 * @hw: pointer to the HW structure
2312 * @type: type of tunnel
2313 * @idx: linear index
2314 *
2315 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
2316 * but really the port table may be sprase, and types are mixed, so convert
2317 * the stack index into the device index.
2318 */
ice_tunnel_idx_to_entry(struct ice_hw * hw,enum ice_tunnel_type type,u16 idx)2319 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2320 u16 idx)
2321 {
2322 u16 i;
2323
2324 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2325 if (hw->tnl.tbl[i].valid &&
2326 hw->tnl.tbl[i].type == type &&
2327 idx-- == 0)
2328 return i;
2329
2330 WARN_ON_ONCE(1);
2331 return 0;
2332 }
2333
2334 /**
2335 * ice_create_tunnel
2336 * @hw: pointer to the HW structure
2337 * @index: device table entry
2338 * @type: type of tunnel
2339 * @port: port of tunnel to create
2340 *
2341 * Create a tunnel by updating the parse graph in the parser. We do that by
2342 * creating a package buffer with the tunnel info and issuing an update package
2343 * command.
2344 */
2345 static int
ice_create_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)2346 ice_create_tunnel(struct ice_hw *hw, u16 index,
2347 enum ice_tunnel_type type, u16 port)
2348 {
2349 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2350 struct ice_buf_build *bld;
2351 int status = -ENOSPC;
2352
2353 mutex_lock(&hw->tnl_lock);
2354
2355 bld = ice_pkg_buf_alloc(hw);
2356 if (!bld) {
2357 status = -ENOMEM;
2358 goto ice_create_tunnel_end;
2359 }
2360
2361 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2362 if (ice_pkg_buf_reserve_section(bld, 2))
2363 goto ice_create_tunnel_err;
2364
2365 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2366 struct_size(sect_rx, tcam, 1));
2367 if (!sect_rx)
2368 goto ice_create_tunnel_err;
2369 sect_rx->count = cpu_to_le16(1);
2370
2371 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2372 struct_size(sect_tx, tcam, 1));
2373 if (!sect_tx)
2374 goto ice_create_tunnel_err;
2375 sect_tx->count = cpu_to_le16(1);
2376
2377 /* copy original boost entry to update package buffer */
2378 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2379 sizeof(*sect_rx->tcam));
2380
2381 /* over-write the never-match dest port key bits with the encoded port
2382 * bits
2383 */
2384 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2385 (u8 *)&port, NULL, NULL, NULL,
2386 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2387 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2388
2389 /* exact copy of entry to Tx section entry */
2390 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2391
2392 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2393 if (!status)
2394 hw->tnl.tbl[index].port = port;
2395
2396 ice_create_tunnel_err:
2397 ice_pkg_buf_free(hw, bld);
2398
2399 ice_create_tunnel_end:
2400 mutex_unlock(&hw->tnl_lock);
2401
2402 return status;
2403 }
2404
2405 /**
2406 * ice_destroy_tunnel
2407 * @hw: pointer to the HW structure
2408 * @index: device table entry
2409 * @type: type of tunnel
2410 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2411 *
2412 * Destroys a tunnel or all tunnels by creating an update package buffer
2413 * targeting the specific updates requested and then performing an update
2414 * package.
2415 */
2416 static int
ice_destroy_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)2417 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
2418 u16 port)
2419 {
2420 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2421 struct ice_buf_build *bld;
2422 int status = -ENOSPC;
2423
2424 mutex_lock(&hw->tnl_lock);
2425
2426 if (WARN_ON(!hw->tnl.tbl[index].valid ||
2427 hw->tnl.tbl[index].type != type ||
2428 hw->tnl.tbl[index].port != port)) {
2429 status = -EIO;
2430 goto ice_destroy_tunnel_end;
2431 }
2432
2433 bld = ice_pkg_buf_alloc(hw);
2434 if (!bld) {
2435 status = -ENOMEM;
2436 goto ice_destroy_tunnel_end;
2437 }
2438
2439 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2440 if (ice_pkg_buf_reserve_section(bld, 2))
2441 goto ice_destroy_tunnel_err;
2442
2443 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2444 struct_size(sect_rx, tcam, 1));
2445 if (!sect_rx)
2446 goto ice_destroy_tunnel_err;
2447 sect_rx->count = cpu_to_le16(1);
2448
2449 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2450 struct_size(sect_tx, tcam, 1));
2451 if (!sect_tx)
2452 goto ice_destroy_tunnel_err;
2453 sect_tx->count = cpu_to_le16(1);
2454
2455 /* copy original boost entry to update package buffer, one copy to Rx
2456 * section, another copy to the Tx section
2457 */
2458 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2459 sizeof(*sect_rx->tcam));
2460 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
2461 sizeof(*sect_tx->tcam));
2462
2463 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2464 if (!status)
2465 hw->tnl.tbl[index].port = 0;
2466
2467 ice_destroy_tunnel_err:
2468 ice_pkg_buf_free(hw, bld);
2469
2470 ice_destroy_tunnel_end:
2471 mutex_unlock(&hw->tnl_lock);
2472
2473 return status;
2474 }
2475
ice_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)2476 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
2477 unsigned int idx, struct udp_tunnel_info *ti)
2478 {
2479 struct ice_netdev_priv *np = netdev_priv(netdev);
2480 struct ice_vsi *vsi = np->vsi;
2481 struct ice_pf *pf = vsi->back;
2482 enum ice_tunnel_type tnl_type;
2483 int status;
2484 u16 index;
2485
2486 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2487 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
2488
2489 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
2490 if (status) {
2491 netdev_err(netdev, "Error adding UDP tunnel - %d\n",
2492 status);
2493 return -EIO;
2494 }
2495
2496 udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
2497 return 0;
2498 }
2499
ice_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)2500 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
2501 unsigned int idx, struct udp_tunnel_info *ti)
2502 {
2503 struct ice_netdev_priv *np = netdev_priv(netdev);
2504 struct ice_vsi *vsi = np->vsi;
2505 struct ice_pf *pf = vsi->back;
2506 enum ice_tunnel_type tnl_type;
2507 int status;
2508
2509 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2510
2511 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
2512 ntohs(ti->port));
2513 if (status) {
2514 netdev_err(netdev, "Error removing UDP tunnel - %d\n",
2515 status);
2516 return -EIO;
2517 }
2518
2519 return 0;
2520 }
2521
2522 /**
2523 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2524 * @hw: pointer to the hardware structure
2525 * @blk: hardware block
2526 * @prof: profile ID
2527 * @fv_idx: field vector word index
2528 * @prot: variable to receive the protocol ID
2529 * @off: variable to receive the protocol offset
2530 */
2531 int
ice_find_prot_off(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 fv_idx,u8 * prot,u16 * off)2532 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2533 u8 *prot, u16 *off)
2534 {
2535 struct ice_fv_word *fv_ext;
2536
2537 if (prof >= hw->blk[blk].es.count)
2538 return -EINVAL;
2539
2540 if (fv_idx >= hw->blk[blk].es.fvw)
2541 return -EINVAL;
2542
2543 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2544
2545 *prot = fv_ext[fv_idx].prot_id;
2546 *off = fv_ext[fv_idx].off;
2547
2548 return 0;
2549 }
2550
2551 /* PTG Management */
2552
2553 /**
2554 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2555 * @hw: pointer to the hardware structure
2556 * @blk: HW block
2557 * @ptype: the ptype to search for
2558 * @ptg: pointer to variable that receives the PTG
2559 *
2560 * This function will search the PTGs for a particular ptype, returning the
2561 * PTG ID that contains it through the PTG parameter, with the value of
2562 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2563 */
2564 static int
ice_ptg_find_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 * ptg)2565 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2566 {
2567 if (ptype >= ICE_XLT1_CNT || !ptg)
2568 return -EINVAL;
2569
2570 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2571 return 0;
2572 }
2573
2574 /**
2575 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2576 * @hw: pointer to the hardware structure
2577 * @blk: HW block
2578 * @ptg: the PTG to allocate
2579 *
2580 * This function allocates a given packet type group ID specified by the PTG
2581 * parameter.
2582 */
ice_ptg_alloc_val(struct ice_hw * hw,enum ice_block blk,u8 ptg)2583 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2584 {
2585 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2586 }
2587
2588 /**
2589 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2590 * @hw: pointer to the hardware structure
2591 * @blk: HW block
2592 * @ptype: the ptype to remove
2593 * @ptg: the PTG to remove the ptype from
2594 *
2595 * This function will remove the ptype from the specific PTG, and move it to
2596 * the default PTG (ICE_DEFAULT_PTG).
2597 */
2598 static int
ice_ptg_remove_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)2599 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2600 {
2601 struct ice_ptg_ptype **ch;
2602 struct ice_ptg_ptype *p;
2603
2604 if (ptype > ICE_XLT1_CNT - 1)
2605 return -EINVAL;
2606
2607 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2608 return -ENOENT;
2609
2610 /* Should not happen if .in_use is set, bad config */
2611 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2612 return -EIO;
2613
2614 /* find the ptype within this PTG, and bypass the link over it */
2615 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2616 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2617 while (p) {
2618 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2619 *ch = p->next_ptype;
2620 break;
2621 }
2622
2623 ch = &p->next_ptype;
2624 p = p->next_ptype;
2625 }
2626
2627 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2628 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2629
2630 return 0;
2631 }
2632
2633 /**
2634 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2635 * @hw: pointer to the hardware structure
2636 * @blk: HW block
2637 * @ptype: the ptype to add or move
2638 * @ptg: the PTG to add or move the ptype to
2639 *
2640 * This function will either add or move a ptype to a particular PTG depending
2641 * on if the ptype is already part of another group. Note that using a
2642 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2643 * default PTG.
2644 */
2645 static int
ice_ptg_add_mv_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)2646 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2647 {
2648 u8 original_ptg;
2649 int status;
2650
2651 if (ptype > ICE_XLT1_CNT - 1)
2652 return -EINVAL;
2653
2654 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2655 return -ENOENT;
2656
2657 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2658 if (status)
2659 return status;
2660
2661 /* Is ptype already in the correct PTG? */
2662 if (original_ptg == ptg)
2663 return 0;
2664
2665 /* Remove from original PTG and move back to the default PTG */
2666 if (original_ptg != ICE_DEFAULT_PTG)
2667 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2668
2669 /* Moving to default PTG? Then we're done with this request */
2670 if (ptg == ICE_DEFAULT_PTG)
2671 return 0;
2672
2673 /* Add ptype to PTG at beginning of list */
2674 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2675 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2676 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2677 &hw->blk[blk].xlt1.ptypes[ptype];
2678
2679 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2680 hw->blk[blk].xlt1.t[ptype] = ptg;
2681
2682 return 0;
2683 }
2684
2685 /* Block / table size info */
2686 struct ice_blk_size_details {
2687 u16 xlt1; /* # XLT1 entries */
2688 u16 xlt2; /* # XLT2 entries */
2689 u16 prof_tcam; /* # profile ID TCAM entries */
2690 u16 prof_id; /* # profile IDs */
2691 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
2692 u16 prof_redir; /* # profile redirection entries */
2693 u16 es; /* # extraction sequence entries */
2694 u16 fvw; /* # field vector words */
2695 u8 overwrite; /* overwrite existing entries allowed */
2696 u8 reverse; /* reverse FV order */
2697 };
2698
2699 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2700 /**
2701 * Table Definitions
2702 * XLT1 - Number of entries in XLT1 table
2703 * XLT2 - Number of entries in XLT2 table
2704 * TCAM - Number of entries Profile ID TCAM table
2705 * CDID - Control Domain ID of the hardware block
2706 * PRED - Number of entries in the Profile Redirection Table
2707 * FV - Number of entries in the Field Vector
2708 * FVW - Width (in WORDs) of the Field Vector
2709 * OVR - Overwrite existing table entries
2710 * REV - Reverse FV
2711 */
2712 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2713 /* Overwrite , Reverse FV */
2714 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2715 false, false },
2716 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2717 false, false },
2718 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2719 false, true },
2720 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2721 true, true },
2722 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2723 false, false },
2724 };
2725
2726 enum ice_sid_all {
2727 ICE_SID_XLT1_OFF = 0,
2728 ICE_SID_XLT2_OFF,
2729 ICE_SID_PR_OFF,
2730 ICE_SID_PR_REDIR_OFF,
2731 ICE_SID_ES_OFF,
2732 ICE_SID_OFF_COUNT,
2733 };
2734
2735 /* Characteristic handling */
2736
2737 /**
2738 * ice_match_prop_lst - determine if properties of two lists match
2739 * @list1: first properties list
2740 * @list2: second properties list
2741 *
2742 * Count, cookies and the order must match in order to be considered equivalent.
2743 */
2744 static bool
ice_match_prop_lst(struct list_head * list1,struct list_head * list2)2745 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2746 {
2747 struct ice_vsig_prof *tmp1;
2748 struct ice_vsig_prof *tmp2;
2749 u16 chk_count = 0;
2750 u16 count = 0;
2751
2752 /* compare counts */
2753 list_for_each_entry(tmp1, list1, list)
2754 count++;
2755 list_for_each_entry(tmp2, list2, list)
2756 chk_count++;
2757 /* cppcheck-suppress knownConditionTrueFalse */
2758 if (!count || count != chk_count)
2759 return false;
2760
2761 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2762 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2763
2764 /* profile cookies must compare, and in the exact same order to take
2765 * into account priority
2766 */
2767 while (count--) {
2768 if (tmp2->profile_cookie != tmp1->profile_cookie)
2769 return false;
2770
2771 tmp1 = list_next_entry(tmp1, list);
2772 tmp2 = list_next_entry(tmp2, list);
2773 }
2774
2775 return true;
2776 }
2777
2778 /* VSIG Management */
2779
2780 /**
2781 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2782 * @hw: pointer to the hardware structure
2783 * @blk: HW block
2784 * @vsi: VSI of interest
2785 * @vsig: pointer to receive the VSI group
2786 *
2787 * This function will lookup the VSI entry in the XLT2 list and return
2788 * the VSI group its associated with.
2789 */
2790 static int
ice_vsig_find_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 * vsig)2791 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2792 {
2793 if (!vsig || vsi >= ICE_MAX_VSI)
2794 return -EINVAL;
2795
2796 /* As long as there's a default or valid VSIG associated with the input
2797 * VSI, the functions returns a success. Any handling of VSIG will be
2798 * done by the following add, update or remove functions.
2799 */
2800 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2801
2802 return 0;
2803 }
2804
2805 /**
2806 * ice_vsig_alloc_val - allocate a new VSIG by value
2807 * @hw: pointer to the hardware structure
2808 * @blk: HW block
2809 * @vsig: the VSIG to allocate
2810 *
2811 * This function will allocate a given VSIG specified by the VSIG parameter.
2812 */
ice_vsig_alloc_val(struct ice_hw * hw,enum ice_block blk,u16 vsig)2813 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2814 {
2815 u16 idx = vsig & ICE_VSIG_IDX_M;
2816
2817 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2818 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2819 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2820 }
2821
2822 return ICE_VSIG_VALUE(idx, hw->pf_id);
2823 }
2824
2825 /**
2826 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2827 * @hw: pointer to the hardware structure
2828 * @blk: HW block
2829 *
2830 * This function will iterate through the VSIG list and mark the first
2831 * unused entry for the new VSIG entry as used and return that value.
2832 */
ice_vsig_alloc(struct ice_hw * hw,enum ice_block blk)2833 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2834 {
2835 u16 i;
2836
2837 for (i = 1; i < ICE_MAX_VSIGS; i++)
2838 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2839 return ice_vsig_alloc_val(hw, blk, i);
2840
2841 return ICE_DEFAULT_VSIG;
2842 }
2843
2844 /**
2845 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2846 * @hw: pointer to the hardware structure
2847 * @blk: HW block
2848 * @chs: characteristic list
2849 * @vsig: returns the VSIG with the matching profiles, if found
2850 *
2851 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2852 * a group have the same characteristic set. To check if there exists a VSIG
2853 * which has the same characteristics as the input characteristics; this
2854 * function will iterate through the XLT2 list and return the VSIG that has a
2855 * matching configuration. In order to make sure that priorities are accounted
2856 * for, the list must match exactly, including the order in which the
2857 * characteristics are listed.
2858 */
2859 static int
ice_find_dup_props_vsig(struct ice_hw * hw,enum ice_block blk,struct list_head * chs,u16 * vsig)2860 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2861 struct list_head *chs, u16 *vsig)
2862 {
2863 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2864 u16 i;
2865
2866 for (i = 0; i < xlt2->count; i++)
2867 if (xlt2->vsig_tbl[i].in_use &&
2868 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2869 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2870 return 0;
2871 }
2872
2873 return -ENOENT;
2874 }
2875
2876 /**
2877 * ice_vsig_free - free VSI group
2878 * @hw: pointer to the hardware structure
2879 * @blk: HW block
2880 * @vsig: VSIG to remove
2881 *
2882 * The function will remove all VSIs associated with the input VSIG and move
2883 * them to the DEFAULT_VSIG and mark the VSIG available.
2884 */
ice_vsig_free(struct ice_hw * hw,enum ice_block blk,u16 vsig)2885 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2886 {
2887 struct ice_vsig_prof *dtmp, *del;
2888 struct ice_vsig_vsi *vsi_cur;
2889 u16 idx;
2890
2891 idx = vsig & ICE_VSIG_IDX_M;
2892 if (idx >= ICE_MAX_VSIGS)
2893 return -EINVAL;
2894
2895 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2896 return -ENOENT;
2897
2898 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2899
2900 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2901 /* If the VSIG has at least 1 VSI then iterate through the
2902 * list and remove the VSIs before deleting the group.
2903 */
2904 if (vsi_cur) {
2905 /* remove all vsis associated with this VSIG XLT2 entry */
2906 do {
2907 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2908
2909 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2910 vsi_cur->changed = 1;
2911 vsi_cur->next_vsi = NULL;
2912 vsi_cur = tmp;
2913 } while (vsi_cur);
2914
2915 /* NULL terminate head of VSI list */
2916 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2917 }
2918
2919 /* free characteristic list */
2920 list_for_each_entry_safe(del, dtmp,
2921 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2922 list) {
2923 list_del(&del->list);
2924 devm_kfree(ice_hw_to_dev(hw), del);
2925 }
2926
2927 /* if VSIG characteristic list was cleared for reset
2928 * re-initialize the list head
2929 */
2930 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2931
2932 return 0;
2933 }
2934
2935 /**
2936 * ice_vsig_remove_vsi - remove VSI from VSIG
2937 * @hw: pointer to the hardware structure
2938 * @blk: HW block
2939 * @vsi: VSI to remove
2940 * @vsig: VSI group to remove from
2941 *
2942 * The function will remove the input VSI from its VSI group and move it
2943 * to the DEFAULT_VSIG.
2944 */
2945 static int
ice_vsig_remove_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)2946 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2947 {
2948 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2949 u16 idx;
2950
2951 idx = vsig & ICE_VSIG_IDX_M;
2952
2953 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2954 return -EINVAL;
2955
2956 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2957 return -ENOENT;
2958
2959 /* entry already in default VSIG, don't have to remove */
2960 if (idx == ICE_DEFAULT_VSIG)
2961 return 0;
2962
2963 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2964 if (!(*vsi_head))
2965 return -EIO;
2966
2967 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2968 vsi_cur = (*vsi_head);
2969
2970 /* iterate the VSI list, skip over the entry to be removed */
2971 while (vsi_cur) {
2972 if (vsi_tgt == vsi_cur) {
2973 (*vsi_head) = vsi_cur->next_vsi;
2974 break;
2975 }
2976 vsi_head = &vsi_cur->next_vsi;
2977 vsi_cur = vsi_cur->next_vsi;
2978 }
2979
2980 /* verify if VSI was removed from group list */
2981 if (!vsi_cur)
2982 return -ENOENT;
2983
2984 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2985 vsi_cur->changed = 1;
2986 vsi_cur->next_vsi = NULL;
2987
2988 return 0;
2989 }
2990
2991 /**
2992 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2993 * @hw: pointer to the hardware structure
2994 * @blk: HW block
2995 * @vsi: VSI to move
2996 * @vsig: destination VSI group
2997 *
2998 * This function will move or add the input VSI to the target VSIG.
2999 * The function will find the original VSIG the VSI belongs to and
3000 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3001 * then move entry to the new VSIG.
3002 */
3003 static int
ice_vsig_add_mv_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)3004 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3005 {
3006 struct ice_vsig_vsi *tmp;
3007 u16 orig_vsig, idx;
3008 int status;
3009
3010 idx = vsig & ICE_VSIG_IDX_M;
3011
3012 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3013 return -EINVAL;
3014
3015 /* if VSIG not in use and VSIG is not default type this VSIG
3016 * doesn't exist.
3017 */
3018 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3019 vsig != ICE_DEFAULT_VSIG)
3020 return -ENOENT;
3021
3022 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3023 if (status)
3024 return status;
3025
3026 /* no update required if vsigs match */
3027 if (orig_vsig == vsig)
3028 return 0;
3029
3030 if (orig_vsig != ICE_DEFAULT_VSIG) {
3031 /* remove entry from orig_vsig and add to default VSIG */
3032 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3033 if (status)
3034 return status;
3035 }
3036
3037 if (idx == ICE_DEFAULT_VSIG)
3038 return 0;
3039
3040 /* Create VSI entry and add VSIG and prop_mask values */
3041 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3042 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3043
3044 /* Add new entry to the head of the VSIG list */
3045 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3046 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3047 &hw->blk[blk].xlt2.vsis[vsi];
3048 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3049 hw->blk[blk].xlt2.t[vsi] = vsig;
3050
3051 return 0;
3052 }
3053
3054 /**
3055 * ice_prof_has_mask_idx - determine if profile index masking is identical
3056 * @hw: pointer to the hardware structure
3057 * @blk: HW block
3058 * @prof: profile to check
3059 * @idx: profile index to check
3060 * @mask: mask to match
3061 */
3062 static bool
ice_prof_has_mask_idx(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 idx,u16 mask)3063 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3064 u16 mask)
3065 {
3066 bool expect_no_mask = false;
3067 bool found = false;
3068 bool match = false;
3069 u16 i;
3070
3071 /* If mask is 0x0000 or 0xffff, then there is no masking */
3072 if (mask == 0 || mask == 0xffff)
3073 expect_no_mask = true;
3074
3075 /* Scan the enabled masks on this profile, for the specified idx */
3076 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3077 hw->blk[blk].masks.count; i++)
3078 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3079 if (hw->blk[blk].masks.masks[i].in_use &&
3080 hw->blk[blk].masks.masks[i].idx == idx) {
3081 found = true;
3082 if (hw->blk[blk].masks.masks[i].mask == mask)
3083 match = true;
3084 break;
3085 }
3086
3087 if (expect_no_mask) {
3088 if (found)
3089 return false;
3090 } else {
3091 if (!match)
3092 return false;
3093 }
3094
3095 return true;
3096 }
3097
3098 /**
3099 * ice_prof_has_mask - determine if profile masking is identical
3100 * @hw: pointer to the hardware structure
3101 * @blk: HW block
3102 * @prof: profile to check
3103 * @masks: masks to match
3104 */
3105 static bool
ice_prof_has_mask(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 * masks)3106 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3107 {
3108 u16 i;
3109
3110 /* es->mask_ena[prof] will have the mask */
3111 for (i = 0; i < hw->blk[blk].es.fvw; i++)
3112 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3113 return false;
3114
3115 return true;
3116 }
3117
3118 /**
3119 * ice_find_prof_id_with_mask - find profile ID for a given field vector
3120 * @hw: pointer to the hardware structure
3121 * @blk: HW block
3122 * @fv: field vector to search for
3123 * @masks: masks for FV
3124 * @prof_id: receives the profile ID
3125 */
3126 static int
ice_find_prof_id_with_mask(struct ice_hw * hw,enum ice_block blk,struct ice_fv_word * fv,u16 * masks,u8 * prof_id)3127 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3128 struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3129 {
3130 struct ice_es *es = &hw->blk[blk].es;
3131 u8 i;
3132
3133 /* For FD, we don't want to re-use a existed profile with the same
3134 * field vector and mask. This will cause rule interference.
3135 */
3136 if (blk == ICE_BLK_FD)
3137 return -ENOENT;
3138
3139 for (i = 0; i < (u8)es->count; i++) {
3140 u16 off = i * es->fvw;
3141
3142 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3143 continue;
3144
3145 /* check if masks settings are the same for this profile */
3146 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3147 continue;
3148
3149 *prof_id = i;
3150 return 0;
3151 }
3152
3153 return -ENOENT;
3154 }
3155
3156 /**
3157 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3158 * @blk: the block type
3159 * @rsrc_type: pointer to variable to receive the resource type
3160 */
ice_prof_id_rsrc_type(enum ice_block blk,u16 * rsrc_type)3161 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3162 {
3163 switch (blk) {
3164 case ICE_BLK_FD:
3165 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3166 break;
3167 case ICE_BLK_RSS:
3168 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3169 break;
3170 default:
3171 return false;
3172 }
3173 return true;
3174 }
3175
3176 /**
3177 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3178 * @blk: the block type
3179 * @rsrc_type: pointer to variable to receive the resource type
3180 */
ice_tcam_ent_rsrc_type(enum ice_block blk,u16 * rsrc_type)3181 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3182 {
3183 switch (blk) {
3184 case ICE_BLK_FD:
3185 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3186 break;
3187 case ICE_BLK_RSS:
3188 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3189 break;
3190 default:
3191 return false;
3192 }
3193 return true;
3194 }
3195
3196 /**
3197 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3198 * @hw: pointer to the HW struct
3199 * @blk: the block to allocate the TCAM for
3200 * @btm: true to allocate from bottom of table, false to allocate from top
3201 * @tcam_idx: pointer to variable to receive the TCAM entry
3202 *
3203 * This function allocates a new entry in a Profile ID TCAM for a specific
3204 * block.
3205 */
3206 static int
ice_alloc_tcam_ent(struct ice_hw * hw,enum ice_block blk,bool btm,u16 * tcam_idx)3207 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3208 u16 *tcam_idx)
3209 {
3210 u16 res_type;
3211
3212 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3213 return -EINVAL;
3214
3215 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3216 }
3217
3218 /**
3219 * ice_free_tcam_ent - free hardware TCAM entry
3220 * @hw: pointer to the HW struct
3221 * @blk: the block from which to free the TCAM entry
3222 * @tcam_idx: the TCAM entry to free
3223 *
3224 * This function frees an entry in a Profile ID TCAM for a specific block.
3225 */
3226 static int
ice_free_tcam_ent(struct ice_hw * hw,enum ice_block blk,u16 tcam_idx)3227 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3228 {
3229 u16 res_type;
3230
3231 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3232 return -EINVAL;
3233
3234 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3235 }
3236
3237 /**
3238 * ice_alloc_prof_id - allocate profile ID
3239 * @hw: pointer to the HW struct
3240 * @blk: the block to allocate the profile ID for
3241 * @prof_id: pointer to variable to receive the profile ID
3242 *
3243 * This function allocates a new profile ID, which also corresponds to a Field
3244 * Vector (Extraction Sequence) entry.
3245 */
ice_alloc_prof_id(struct ice_hw * hw,enum ice_block blk,u8 * prof_id)3246 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3247 {
3248 u16 res_type;
3249 u16 get_prof;
3250 int status;
3251
3252 if (!ice_prof_id_rsrc_type(blk, &res_type))
3253 return -EINVAL;
3254
3255 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3256 if (!status)
3257 *prof_id = (u8)get_prof;
3258
3259 return status;
3260 }
3261
3262 /**
3263 * ice_free_prof_id - free profile ID
3264 * @hw: pointer to the HW struct
3265 * @blk: the block from which to free the profile ID
3266 * @prof_id: the profile ID to free
3267 *
3268 * This function frees a profile ID, which also corresponds to a Field Vector.
3269 */
ice_free_prof_id(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3270 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3271 {
3272 u16 tmp_prof_id = (u16)prof_id;
3273 u16 res_type;
3274
3275 if (!ice_prof_id_rsrc_type(blk, &res_type))
3276 return -EINVAL;
3277
3278 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3279 }
3280
3281 /**
3282 * ice_prof_inc_ref - increment reference count for profile
3283 * @hw: pointer to the HW struct
3284 * @blk: the block from which to free the profile ID
3285 * @prof_id: the profile ID for which to increment the reference count
3286 */
ice_prof_inc_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3287 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3288 {
3289 if (prof_id > hw->blk[blk].es.count)
3290 return -EINVAL;
3291
3292 hw->blk[blk].es.ref_count[prof_id]++;
3293
3294 return 0;
3295 }
3296
3297 /**
3298 * ice_write_prof_mask_reg - write profile mask register
3299 * @hw: pointer to the HW struct
3300 * @blk: hardware block
3301 * @mask_idx: mask index
3302 * @idx: index of the FV which will use the mask
3303 * @mask: the 16-bit mask
3304 */
3305 static void
ice_write_prof_mask_reg(struct ice_hw * hw,enum ice_block blk,u16 mask_idx,u16 idx,u16 mask)3306 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3307 u16 idx, u16 mask)
3308 {
3309 u32 offset;
3310 u32 val;
3311
3312 switch (blk) {
3313 case ICE_BLK_RSS:
3314 offset = GLQF_HMASK(mask_idx);
3315 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
3316 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3317 break;
3318 case ICE_BLK_FD:
3319 offset = GLQF_FDMASK(mask_idx);
3320 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
3321 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
3322 break;
3323 default:
3324 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3325 blk);
3326 return;
3327 }
3328
3329 wr32(hw, offset, val);
3330 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3331 blk, idx, offset, val);
3332 }
3333
3334 /**
3335 * ice_write_prof_mask_enable_res - write profile mask enable register
3336 * @hw: pointer to the HW struct
3337 * @blk: hardware block
3338 * @prof_id: profile ID
3339 * @enable_mask: enable mask
3340 */
3341 static void
ice_write_prof_mask_enable_res(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u32 enable_mask)3342 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3343 u16 prof_id, u32 enable_mask)
3344 {
3345 u32 offset;
3346
3347 switch (blk) {
3348 case ICE_BLK_RSS:
3349 offset = GLQF_HMASK_SEL(prof_id);
3350 break;
3351 case ICE_BLK_FD:
3352 offset = GLQF_FDMASK_SEL(prof_id);
3353 break;
3354 default:
3355 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3356 blk);
3357 return;
3358 }
3359
3360 wr32(hw, offset, enable_mask);
3361 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3362 blk, prof_id, offset, enable_mask);
3363 }
3364
3365 /**
3366 * ice_init_prof_masks - initial prof masks
3367 * @hw: pointer to the HW struct
3368 * @blk: hardware block
3369 */
ice_init_prof_masks(struct ice_hw * hw,enum ice_block blk)3370 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3371 {
3372 u16 per_pf;
3373 u16 i;
3374
3375 mutex_init(&hw->blk[blk].masks.lock);
3376
3377 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3378
3379 hw->blk[blk].masks.count = per_pf;
3380 hw->blk[blk].masks.first = hw->pf_id * per_pf;
3381
3382 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
3383
3384 for (i = hw->blk[blk].masks.first;
3385 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3386 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3387 }
3388
3389 /**
3390 * ice_init_all_prof_masks - initialize all prof masks
3391 * @hw: pointer to the HW struct
3392 */
ice_init_all_prof_masks(struct ice_hw * hw)3393 static void ice_init_all_prof_masks(struct ice_hw *hw)
3394 {
3395 ice_init_prof_masks(hw, ICE_BLK_RSS);
3396 ice_init_prof_masks(hw, ICE_BLK_FD);
3397 }
3398
3399 /**
3400 * ice_alloc_prof_mask - allocate profile mask
3401 * @hw: pointer to the HW struct
3402 * @blk: hardware block
3403 * @idx: index of FV which will use the mask
3404 * @mask: the 16-bit mask
3405 * @mask_idx: variable to receive the mask index
3406 */
3407 static int
ice_alloc_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 idx,u16 mask,u16 * mask_idx)3408 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3409 u16 *mask_idx)
3410 {
3411 bool found_unused = false, found_copy = false;
3412 u16 unused_idx = 0, copy_idx = 0;
3413 int status = -ENOSPC;
3414 u16 i;
3415
3416 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3417 return -EINVAL;
3418
3419 mutex_lock(&hw->blk[blk].masks.lock);
3420
3421 for (i = hw->blk[blk].masks.first;
3422 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3423 if (hw->blk[blk].masks.masks[i].in_use) {
3424 /* if mask is in use and it exactly duplicates the
3425 * desired mask and index, then in can be reused
3426 */
3427 if (hw->blk[blk].masks.masks[i].mask == mask &&
3428 hw->blk[blk].masks.masks[i].idx == idx) {
3429 found_copy = true;
3430 copy_idx = i;
3431 break;
3432 }
3433 } else {
3434 /* save off unused index, but keep searching in case
3435 * there is an exact match later on
3436 */
3437 if (!found_unused) {
3438 found_unused = true;
3439 unused_idx = i;
3440 }
3441 }
3442
3443 if (found_copy)
3444 i = copy_idx;
3445 else if (found_unused)
3446 i = unused_idx;
3447 else
3448 goto err_ice_alloc_prof_mask;
3449
3450 /* update mask for a new entry */
3451 if (found_unused) {
3452 hw->blk[blk].masks.masks[i].in_use = true;
3453 hw->blk[blk].masks.masks[i].mask = mask;
3454 hw->blk[blk].masks.masks[i].idx = idx;
3455 hw->blk[blk].masks.masks[i].ref = 0;
3456 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3457 }
3458
3459 hw->blk[blk].masks.masks[i].ref++;
3460 *mask_idx = i;
3461 status = 0;
3462
3463 err_ice_alloc_prof_mask:
3464 mutex_unlock(&hw->blk[blk].masks.lock);
3465
3466 return status;
3467 }
3468
3469 /**
3470 * ice_free_prof_mask - free profile mask
3471 * @hw: pointer to the HW struct
3472 * @blk: hardware block
3473 * @mask_idx: index of mask
3474 */
3475 static int
ice_free_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 mask_idx)3476 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3477 {
3478 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3479 return -EINVAL;
3480
3481 if (!(mask_idx >= hw->blk[blk].masks.first &&
3482 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3483 return -ENOENT;
3484
3485 mutex_lock(&hw->blk[blk].masks.lock);
3486
3487 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3488 goto exit_ice_free_prof_mask;
3489
3490 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3491 hw->blk[blk].masks.masks[mask_idx].ref--;
3492 goto exit_ice_free_prof_mask;
3493 }
3494
3495 /* remove mask */
3496 hw->blk[blk].masks.masks[mask_idx].in_use = false;
3497 hw->blk[blk].masks.masks[mask_idx].mask = 0;
3498 hw->blk[blk].masks.masks[mask_idx].idx = 0;
3499
3500 /* update mask as unused entry */
3501 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3502 mask_idx);
3503 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3504
3505 exit_ice_free_prof_mask:
3506 mutex_unlock(&hw->blk[blk].masks.lock);
3507
3508 return 0;
3509 }
3510
3511 /**
3512 * ice_free_prof_masks - free all profile masks for a profile
3513 * @hw: pointer to the HW struct
3514 * @blk: hardware block
3515 * @prof_id: profile ID
3516 */
3517 static int
ice_free_prof_masks(struct ice_hw * hw,enum ice_block blk,u16 prof_id)3518 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3519 {
3520 u32 mask_bm;
3521 u16 i;
3522
3523 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3524 return -EINVAL;
3525
3526 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3527 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3528 if (mask_bm & BIT(i))
3529 ice_free_prof_mask(hw, blk, i);
3530
3531 return 0;
3532 }
3533
3534 /**
3535 * ice_shutdown_prof_masks - releases lock for masking
3536 * @hw: pointer to the HW struct
3537 * @blk: hardware block
3538 *
3539 * This should be called before unloading the driver
3540 */
ice_shutdown_prof_masks(struct ice_hw * hw,enum ice_block blk)3541 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3542 {
3543 u16 i;
3544
3545 mutex_lock(&hw->blk[blk].masks.lock);
3546
3547 for (i = hw->blk[blk].masks.first;
3548 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3549 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3550
3551 hw->blk[blk].masks.masks[i].in_use = false;
3552 hw->blk[blk].masks.masks[i].idx = 0;
3553 hw->blk[blk].masks.masks[i].mask = 0;
3554 }
3555
3556 mutex_unlock(&hw->blk[blk].masks.lock);
3557 mutex_destroy(&hw->blk[blk].masks.lock);
3558 }
3559
3560 /**
3561 * ice_shutdown_all_prof_masks - releases all locks for masking
3562 * @hw: pointer to the HW struct
3563 *
3564 * This should be called before unloading the driver
3565 */
ice_shutdown_all_prof_masks(struct ice_hw * hw)3566 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3567 {
3568 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3569 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3570 }
3571
3572 /**
3573 * ice_update_prof_masking - set registers according to masking
3574 * @hw: pointer to the HW struct
3575 * @blk: hardware block
3576 * @prof_id: profile ID
3577 * @masks: masks
3578 */
3579 static int
ice_update_prof_masking(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u16 * masks)3580 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3581 u16 *masks)
3582 {
3583 bool err = false;
3584 u32 ena_mask = 0;
3585 u16 idx;
3586 u16 i;
3587
3588 /* Only support FD and RSS masking, otherwise nothing to be done */
3589 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3590 return 0;
3591
3592 for (i = 0; i < hw->blk[blk].es.fvw; i++)
3593 if (masks[i] && masks[i] != 0xFFFF) {
3594 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3595 ena_mask |= BIT(idx);
3596 } else {
3597 /* not enough bitmaps */
3598 err = true;
3599 break;
3600 }
3601 }
3602
3603 if (err) {
3604 /* free any bitmaps we have allocated */
3605 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3606 if (ena_mask & BIT(i))
3607 ice_free_prof_mask(hw, blk, i);
3608
3609 return -EIO;
3610 }
3611
3612 /* enable the masks for this profile */
3613 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3614
3615 /* store enabled masks with profile so that they can be freed later */
3616 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3617
3618 return 0;
3619 }
3620
3621 /**
3622 * ice_write_es - write an extraction sequence to hardware
3623 * @hw: pointer to the HW struct
3624 * @blk: the block in which to write the extraction sequence
3625 * @prof_id: the profile ID to write
3626 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3627 */
3628 static void
ice_write_es(struct ice_hw * hw,enum ice_block blk,u8 prof_id,struct ice_fv_word * fv)3629 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3630 struct ice_fv_word *fv)
3631 {
3632 u16 off;
3633
3634 off = prof_id * hw->blk[blk].es.fvw;
3635 if (!fv) {
3636 memset(&hw->blk[blk].es.t[off], 0,
3637 hw->blk[blk].es.fvw * sizeof(*fv));
3638 hw->blk[blk].es.written[prof_id] = false;
3639 } else {
3640 memcpy(&hw->blk[blk].es.t[off], fv,
3641 hw->blk[blk].es.fvw * sizeof(*fv));
3642 }
3643 }
3644
3645 /**
3646 * ice_prof_dec_ref - decrement reference count for profile
3647 * @hw: pointer to the HW struct
3648 * @blk: the block from which to free the profile ID
3649 * @prof_id: the profile ID for which to decrement the reference count
3650 */
3651 static int
ice_prof_dec_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3652 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3653 {
3654 if (prof_id > hw->blk[blk].es.count)
3655 return -EINVAL;
3656
3657 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3658 if (!--hw->blk[blk].es.ref_count[prof_id]) {
3659 ice_write_es(hw, blk, prof_id, NULL);
3660 ice_free_prof_masks(hw, blk, prof_id);
3661 return ice_free_prof_id(hw, blk, prof_id);
3662 }
3663 }
3664
3665 return 0;
3666 }
3667
3668 /* Block / table section IDs */
3669 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3670 /* SWITCH */
3671 { ICE_SID_XLT1_SW,
3672 ICE_SID_XLT2_SW,
3673 ICE_SID_PROFID_TCAM_SW,
3674 ICE_SID_PROFID_REDIR_SW,
3675 ICE_SID_FLD_VEC_SW
3676 },
3677
3678 /* ACL */
3679 { ICE_SID_XLT1_ACL,
3680 ICE_SID_XLT2_ACL,
3681 ICE_SID_PROFID_TCAM_ACL,
3682 ICE_SID_PROFID_REDIR_ACL,
3683 ICE_SID_FLD_VEC_ACL
3684 },
3685
3686 /* FD */
3687 { ICE_SID_XLT1_FD,
3688 ICE_SID_XLT2_FD,
3689 ICE_SID_PROFID_TCAM_FD,
3690 ICE_SID_PROFID_REDIR_FD,
3691 ICE_SID_FLD_VEC_FD
3692 },
3693
3694 /* RSS */
3695 { ICE_SID_XLT1_RSS,
3696 ICE_SID_XLT2_RSS,
3697 ICE_SID_PROFID_TCAM_RSS,
3698 ICE_SID_PROFID_REDIR_RSS,
3699 ICE_SID_FLD_VEC_RSS
3700 },
3701
3702 /* PE */
3703 { ICE_SID_XLT1_PE,
3704 ICE_SID_XLT2_PE,
3705 ICE_SID_PROFID_TCAM_PE,
3706 ICE_SID_PROFID_REDIR_PE,
3707 ICE_SID_FLD_VEC_PE
3708 }
3709 };
3710
3711 /**
3712 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3713 * @hw: pointer to the hardware structure
3714 * @blk: the HW block to initialize
3715 */
ice_init_sw_xlt1_db(struct ice_hw * hw,enum ice_block blk)3716 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3717 {
3718 u16 pt;
3719
3720 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3721 u8 ptg;
3722
3723 ptg = hw->blk[blk].xlt1.t[pt];
3724 if (ptg != ICE_DEFAULT_PTG) {
3725 ice_ptg_alloc_val(hw, blk, ptg);
3726 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3727 }
3728 }
3729 }
3730
3731 /**
3732 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3733 * @hw: pointer to the hardware structure
3734 * @blk: the HW block to initialize
3735 */
ice_init_sw_xlt2_db(struct ice_hw * hw,enum ice_block blk)3736 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3737 {
3738 u16 vsi;
3739
3740 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3741 u16 vsig;
3742
3743 vsig = hw->blk[blk].xlt2.t[vsi];
3744 if (vsig) {
3745 ice_vsig_alloc_val(hw, blk, vsig);
3746 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3747 /* no changes at this time, since this has been
3748 * initialized from the original package
3749 */
3750 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3751 }
3752 }
3753 }
3754
3755 /**
3756 * ice_init_sw_db - init software database from HW tables
3757 * @hw: pointer to the hardware structure
3758 */
ice_init_sw_db(struct ice_hw * hw)3759 static void ice_init_sw_db(struct ice_hw *hw)
3760 {
3761 u16 i;
3762
3763 for (i = 0; i < ICE_BLK_COUNT; i++) {
3764 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3765 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3766 }
3767 }
3768
3769 /**
3770 * ice_fill_tbl - Reads content of a single table type into database
3771 * @hw: pointer to the hardware structure
3772 * @block_id: Block ID of the table to copy
3773 * @sid: Section ID of the table to copy
3774 *
3775 * Will attempt to read the entire content of a given table of a single block
3776 * into the driver database. We assume that the buffer will always
3777 * be as large or larger than the data contained in the package. If
3778 * this condition is not met, there is most likely an error in the package
3779 * contents.
3780 */
ice_fill_tbl(struct ice_hw * hw,enum ice_block block_id,u32 sid)3781 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3782 {
3783 u32 dst_len, sect_len, offset = 0;
3784 struct ice_prof_redir_section *pr;
3785 struct ice_prof_id_section *pid;
3786 struct ice_xlt1_section *xlt1;
3787 struct ice_xlt2_section *xlt2;
3788 struct ice_sw_fv_section *es;
3789 struct ice_pkg_enum state;
3790 u8 *src, *dst;
3791 void *sect;
3792
3793 /* if the HW segment pointer is null then the first iteration of
3794 * ice_pkg_enum_section() will fail. In this case the HW tables will
3795 * not be filled and return success.
3796 */
3797 if (!hw->seg) {
3798 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3799 return;
3800 }
3801
3802 memset(&state, 0, sizeof(state));
3803
3804 sect = ice_pkg_enum_section(hw->seg, &state, sid);
3805
3806 while (sect) {
3807 switch (sid) {
3808 case ICE_SID_XLT1_SW:
3809 case ICE_SID_XLT1_FD:
3810 case ICE_SID_XLT1_RSS:
3811 case ICE_SID_XLT1_ACL:
3812 case ICE_SID_XLT1_PE:
3813 xlt1 = sect;
3814 src = xlt1->value;
3815 sect_len = le16_to_cpu(xlt1->count) *
3816 sizeof(*hw->blk[block_id].xlt1.t);
3817 dst = hw->blk[block_id].xlt1.t;
3818 dst_len = hw->blk[block_id].xlt1.count *
3819 sizeof(*hw->blk[block_id].xlt1.t);
3820 break;
3821 case ICE_SID_XLT2_SW:
3822 case ICE_SID_XLT2_FD:
3823 case ICE_SID_XLT2_RSS:
3824 case ICE_SID_XLT2_ACL:
3825 case ICE_SID_XLT2_PE:
3826 xlt2 = sect;
3827 src = (__force u8 *)xlt2->value;
3828 sect_len = le16_to_cpu(xlt2->count) *
3829 sizeof(*hw->blk[block_id].xlt2.t);
3830 dst = (u8 *)hw->blk[block_id].xlt2.t;
3831 dst_len = hw->blk[block_id].xlt2.count *
3832 sizeof(*hw->blk[block_id].xlt2.t);
3833 break;
3834 case ICE_SID_PROFID_TCAM_SW:
3835 case ICE_SID_PROFID_TCAM_FD:
3836 case ICE_SID_PROFID_TCAM_RSS:
3837 case ICE_SID_PROFID_TCAM_ACL:
3838 case ICE_SID_PROFID_TCAM_PE:
3839 pid = sect;
3840 src = (u8 *)pid->entry;
3841 sect_len = le16_to_cpu(pid->count) *
3842 sizeof(*hw->blk[block_id].prof.t);
3843 dst = (u8 *)hw->blk[block_id].prof.t;
3844 dst_len = hw->blk[block_id].prof.count *
3845 sizeof(*hw->blk[block_id].prof.t);
3846 break;
3847 case ICE_SID_PROFID_REDIR_SW:
3848 case ICE_SID_PROFID_REDIR_FD:
3849 case ICE_SID_PROFID_REDIR_RSS:
3850 case ICE_SID_PROFID_REDIR_ACL:
3851 case ICE_SID_PROFID_REDIR_PE:
3852 pr = sect;
3853 src = pr->redir_value;
3854 sect_len = le16_to_cpu(pr->count) *
3855 sizeof(*hw->blk[block_id].prof_redir.t);
3856 dst = hw->blk[block_id].prof_redir.t;
3857 dst_len = hw->blk[block_id].prof_redir.count *
3858 sizeof(*hw->blk[block_id].prof_redir.t);
3859 break;
3860 case ICE_SID_FLD_VEC_SW:
3861 case ICE_SID_FLD_VEC_FD:
3862 case ICE_SID_FLD_VEC_RSS:
3863 case ICE_SID_FLD_VEC_ACL:
3864 case ICE_SID_FLD_VEC_PE:
3865 es = sect;
3866 src = (u8 *)es->fv;
3867 sect_len = (u32)(le16_to_cpu(es->count) *
3868 hw->blk[block_id].es.fvw) *
3869 sizeof(*hw->blk[block_id].es.t);
3870 dst = (u8 *)hw->blk[block_id].es.t;
3871 dst_len = (u32)(hw->blk[block_id].es.count *
3872 hw->blk[block_id].es.fvw) *
3873 sizeof(*hw->blk[block_id].es.t);
3874 break;
3875 default:
3876 return;
3877 }
3878
3879 /* if the section offset exceeds destination length, terminate
3880 * table fill.
3881 */
3882 if (offset > dst_len)
3883 return;
3884
3885 /* if the sum of section size and offset exceed destination size
3886 * then we are out of bounds of the HW table size for that PF.
3887 * Changing section length to fill the remaining table space
3888 * of that PF.
3889 */
3890 if ((offset + sect_len) > dst_len)
3891 sect_len = dst_len - offset;
3892
3893 memcpy(dst + offset, src, sect_len);
3894 offset += sect_len;
3895 sect = ice_pkg_enum_section(NULL, &state, sid);
3896 }
3897 }
3898
3899 /**
3900 * ice_fill_blk_tbls - Read package context for tables
3901 * @hw: pointer to the hardware structure
3902 *
3903 * Reads the current package contents and populates the driver
3904 * database with the data iteratively for all advanced feature
3905 * blocks. Assume that the HW tables have been allocated.
3906 */
ice_fill_blk_tbls(struct ice_hw * hw)3907 void ice_fill_blk_tbls(struct ice_hw *hw)
3908 {
3909 u8 i;
3910
3911 for (i = 0; i < ICE_BLK_COUNT; i++) {
3912 enum ice_block blk_id = (enum ice_block)i;
3913
3914 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3915 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3916 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3917 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3918 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3919 }
3920
3921 ice_init_sw_db(hw);
3922 }
3923
3924 /**
3925 * ice_free_prof_map - free profile map
3926 * @hw: pointer to the hardware structure
3927 * @blk_idx: HW block index
3928 */
ice_free_prof_map(struct ice_hw * hw,u8 blk_idx)3929 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3930 {
3931 struct ice_es *es = &hw->blk[blk_idx].es;
3932 struct ice_prof_map *del, *tmp;
3933
3934 mutex_lock(&es->prof_map_lock);
3935 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3936 list_del(&del->list);
3937 devm_kfree(ice_hw_to_dev(hw), del);
3938 }
3939 INIT_LIST_HEAD(&es->prof_map);
3940 mutex_unlock(&es->prof_map_lock);
3941 }
3942
3943 /**
3944 * ice_free_flow_profs - free flow profile entries
3945 * @hw: pointer to the hardware structure
3946 * @blk_idx: HW block index
3947 */
ice_free_flow_profs(struct ice_hw * hw,u8 blk_idx)3948 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3949 {
3950 struct ice_flow_prof *p, *tmp;
3951
3952 mutex_lock(&hw->fl_profs_locks[blk_idx]);
3953 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3954 struct ice_flow_entry *e, *t;
3955
3956 list_for_each_entry_safe(e, t, &p->entries, l_entry)
3957 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3958 ICE_FLOW_ENTRY_HNDL(e));
3959
3960 list_del(&p->l_entry);
3961
3962 mutex_destroy(&p->entries_lock);
3963 devm_kfree(ice_hw_to_dev(hw), p);
3964 }
3965 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3966
3967 /* if driver is in reset and tables are being cleared
3968 * re-initialize the flow profile list heads
3969 */
3970 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3971 }
3972
3973 /**
3974 * ice_free_vsig_tbl - free complete VSIG table entries
3975 * @hw: pointer to the hardware structure
3976 * @blk: the HW block on which to free the VSIG table entries
3977 */
ice_free_vsig_tbl(struct ice_hw * hw,enum ice_block blk)3978 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3979 {
3980 u16 i;
3981
3982 if (!hw->blk[blk].xlt2.vsig_tbl)
3983 return;
3984
3985 for (i = 1; i < ICE_MAX_VSIGS; i++)
3986 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3987 ice_vsig_free(hw, blk, i);
3988 }
3989
3990 /**
3991 * ice_free_hw_tbls - free hardware table memory
3992 * @hw: pointer to the hardware structure
3993 */
ice_free_hw_tbls(struct ice_hw * hw)3994 void ice_free_hw_tbls(struct ice_hw *hw)
3995 {
3996 struct ice_rss_cfg *r, *rt;
3997 u8 i;
3998
3999 for (i = 0; i < ICE_BLK_COUNT; i++) {
4000 if (hw->blk[i].is_list_init) {
4001 struct ice_es *es = &hw->blk[i].es;
4002
4003 ice_free_prof_map(hw, i);
4004 mutex_destroy(&es->prof_map_lock);
4005
4006 ice_free_flow_profs(hw, i);
4007 mutex_destroy(&hw->fl_profs_locks[i]);
4008
4009 hw->blk[i].is_list_init = false;
4010 }
4011 ice_free_vsig_tbl(hw, (enum ice_block)i);
4012 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
4013 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
4014 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
4015 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
4016 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
4017 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
4018 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
4019 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
4020 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
4021 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
4022 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
4023 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
4024 }
4025
4026 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
4027 list_del(&r->l_entry);
4028 devm_kfree(ice_hw_to_dev(hw), r);
4029 }
4030 mutex_destroy(&hw->rss_locks);
4031 ice_shutdown_all_prof_masks(hw);
4032 memset(hw->blk, 0, sizeof(hw->blk));
4033 }
4034
4035 /**
4036 * ice_init_flow_profs - init flow profile locks and list heads
4037 * @hw: pointer to the hardware structure
4038 * @blk_idx: HW block index
4039 */
ice_init_flow_profs(struct ice_hw * hw,u8 blk_idx)4040 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4041 {
4042 mutex_init(&hw->fl_profs_locks[blk_idx]);
4043 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4044 }
4045
4046 /**
4047 * ice_clear_hw_tbls - clear HW tables and flow profiles
4048 * @hw: pointer to the hardware structure
4049 */
ice_clear_hw_tbls(struct ice_hw * hw)4050 void ice_clear_hw_tbls(struct ice_hw *hw)
4051 {
4052 u8 i;
4053
4054 for (i = 0; i < ICE_BLK_COUNT; i++) {
4055 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4056 struct ice_prof_tcam *prof = &hw->blk[i].prof;
4057 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4058 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4059 struct ice_es *es = &hw->blk[i].es;
4060
4061 if (hw->blk[i].is_list_init) {
4062 ice_free_prof_map(hw, i);
4063 ice_free_flow_profs(hw, i);
4064 }
4065
4066 ice_free_vsig_tbl(hw, (enum ice_block)i);
4067
4068 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
4069 memset(xlt1->ptg_tbl, 0,
4070 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
4071 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
4072
4073 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
4074 memset(xlt2->vsig_tbl, 0,
4075 xlt2->count * sizeof(*xlt2->vsig_tbl));
4076 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
4077
4078 memset(prof->t, 0, prof->count * sizeof(*prof->t));
4079 memset(prof_redir->t, 0,
4080 prof_redir->count * sizeof(*prof_redir->t));
4081
4082 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
4083 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
4084 memset(es->written, 0, es->count * sizeof(*es->written));
4085 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
4086 }
4087 }
4088
4089 /**
4090 * ice_init_hw_tbls - init hardware table memory
4091 * @hw: pointer to the hardware structure
4092 */
ice_init_hw_tbls(struct ice_hw * hw)4093 int ice_init_hw_tbls(struct ice_hw *hw)
4094 {
4095 u8 i;
4096
4097 mutex_init(&hw->rss_locks);
4098 INIT_LIST_HEAD(&hw->rss_list_head);
4099 ice_init_all_prof_masks(hw);
4100 for (i = 0; i < ICE_BLK_COUNT; i++) {
4101 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4102 struct ice_prof_tcam *prof = &hw->blk[i].prof;
4103 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4104 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4105 struct ice_es *es = &hw->blk[i].es;
4106 u16 j;
4107
4108 if (hw->blk[i].is_list_init)
4109 continue;
4110
4111 ice_init_flow_profs(hw, i);
4112 mutex_init(&es->prof_map_lock);
4113 INIT_LIST_HEAD(&es->prof_map);
4114 hw->blk[i].is_list_init = true;
4115
4116 hw->blk[i].overwrite = blk_sizes[i].overwrite;
4117 es->reverse = blk_sizes[i].reverse;
4118
4119 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4120 xlt1->count = blk_sizes[i].xlt1;
4121
4122 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4123 sizeof(*xlt1->ptypes), GFP_KERNEL);
4124
4125 if (!xlt1->ptypes)
4126 goto err;
4127
4128 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
4129 sizeof(*xlt1->ptg_tbl),
4130 GFP_KERNEL);
4131
4132 if (!xlt1->ptg_tbl)
4133 goto err;
4134
4135 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4136 sizeof(*xlt1->t), GFP_KERNEL);
4137 if (!xlt1->t)
4138 goto err;
4139
4140 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4141 xlt2->count = blk_sizes[i].xlt2;
4142
4143 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4144 sizeof(*xlt2->vsis), GFP_KERNEL);
4145
4146 if (!xlt2->vsis)
4147 goto err;
4148
4149 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4150 sizeof(*xlt2->vsig_tbl),
4151 GFP_KERNEL);
4152 if (!xlt2->vsig_tbl)
4153 goto err;
4154
4155 for (j = 0; j < xlt2->count; j++)
4156 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4157
4158 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4159 sizeof(*xlt2->t), GFP_KERNEL);
4160 if (!xlt2->t)
4161 goto err;
4162
4163 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4164 prof->count = blk_sizes[i].prof_tcam;
4165 prof->max_prof_id = blk_sizes[i].prof_id;
4166 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4167 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
4168 sizeof(*prof->t), GFP_KERNEL);
4169
4170 if (!prof->t)
4171 goto err;
4172
4173 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4174 prof_redir->count = blk_sizes[i].prof_redir;
4175 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
4176 prof_redir->count,
4177 sizeof(*prof_redir->t),
4178 GFP_KERNEL);
4179
4180 if (!prof_redir->t)
4181 goto err;
4182
4183 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4184 es->count = blk_sizes[i].es;
4185 es->fvw = blk_sizes[i].fvw;
4186 es->t = devm_kcalloc(ice_hw_to_dev(hw),
4187 (u32)(es->count * es->fvw),
4188 sizeof(*es->t), GFP_KERNEL);
4189 if (!es->t)
4190 goto err;
4191
4192 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4193 sizeof(*es->ref_count),
4194 GFP_KERNEL);
4195 if (!es->ref_count)
4196 goto err;
4197
4198 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4199 sizeof(*es->written), GFP_KERNEL);
4200 if (!es->written)
4201 goto err;
4202
4203 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4204 sizeof(*es->mask_ena), GFP_KERNEL);
4205 if (!es->mask_ena)
4206 goto err;
4207 }
4208 return 0;
4209
4210 err:
4211 ice_free_hw_tbls(hw);
4212 return -ENOMEM;
4213 }
4214
4215 /**
4216 * ice_prof_gen_key - generate profile ID key
4217 * @hw: pointer to the HW struct
4218 * @blk: the block in which to write profile ID to
4219 * @ptg: packet type group (PTG) portion of key
4220 * @vsig: VSIG portion of key
4221 * @cdid: CDID portion of key
4222 * @flags: flag portion of key
4223 * @vl_msk: valid mask
4224 * @dc_msk: don't care mask
4225 * @nm_msk: never match mask
4226 * @key: output of profile ID key
4227 */
4228 static int
ice_prof_gen_key(struct ice_hw * hw,enum ice_block blk,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],u8 key[ICE_TCAM_KEY_SZ])4229 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4230 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4231 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4232 u8 key[ICE_TCAM_KEY_SZ])
4233 {
4234 struct ice_prof_id_key inkey;
4235
4236 inkey.xlt1 = ptg;
4237 inkey.xlt2_cdid = cpu_to_le16(vsig);
4238 inkey.flags = cpu_to_le16(flags);
4239
4240 switch (hw->blk[blk].prof.cdid_bits) {
4241 case 0:
4242 break;
4243 case 2:
4244 #define ICE_CD_2_M 0xC000U
4245 #define ICE_CD_2_S 14
4246 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
4247 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
4248 break;
4249 case 4:
4250 #define ICE_CD_4_M 0xF000U
4251 #define ICE_CD_4_S 12
4252 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
4253 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
4254 break;
4255 case 8:
4256 #define ICE_CD_8_M 0xFF00U
4257 #define ICE_CD_8_S 16
4258 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
4259 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
4260 break;
4261 default:
4262 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4263 break;
4264 }
4265
4266 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4267 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4268 }
4269
4270 /**
4271 * ice_tcam_write_entry - write TCAM entry
4272 * @hw: pointer to the HW struct
4273 * @blk: the block in which to write profile ID to
4274 * @idx: the entry index to write to
4275 * @prof_id: profile ID
4276 * @ptg: packet type group (PTG) portion of key
4277 * @vsig: VSIG portion of key
4278 * @cdid: CDID portion of key
4279 * @flags: flag portion of key
4280 * @vl_msk: valid mask
4281 * @dc_msk: don't care mask
4282 * @nm_msk: never match mask
4283 */
4284 static int
ice_tcam_write_entry(struct ice_hw * hw,enum ice_block blk,u16 idx,u8 prof_id,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])4285 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4286 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4287 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4288 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4289 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4290 {
4291 struct ice_prof_tcam_entry;
4292 int status;
4293
4294 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4295 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4296 if (!status) {
4297 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
4298 hw->blk[blk].prof.t[idx].prof_id = prof_id;
4299 }
4300
4301 return status;
4302 }
4303
4304 /**
4305 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4306 * @hw: pointer to the hardware structure
4307 * @blk: HW block
4308 * @vsig: VSIG to query
4309 * @refs: pointer to variable to receive the reference count
4310 */
4311 static int
ice_vsig_get_ref(struct ice_hw * hw,enum ice_block blk,u16 vsig,u16 * refs)4312 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4313 {
4314 u16 idx = vsig & ICE_VSIG_IDX_M;
4315 struct ice_vsig_vsi *ptr;
4316
4317 *refs = 0;
4318
4319 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4320 return -ENOENT;
4321
4322 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4323 while (ptr) {
4324 (*refs)++;
4325 ptr = ptr->next_vsi;
4326 }
4327
4328 return 0;
4329 }
4330
4331 /**
4332 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4333 * @hw: pointer to the hardware structure
4334 * @blk: HW block
4335 * @vsig: VSIG to check against
4336 * @hdl: profile handle
4337 */
4338 static bool
ice_has_prof_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl)4339 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4340 {
4341 u16 idx = vsig & ICE_VSIG_IDX_M;
4342 struct ice_vsig_prof *ent;
4343
4344 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4345 list)
4346 if (ent->profile_cookie == hdl)
4347 return true;
4348
4349 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4350 vsig);
4351 return false;
4352 }
4353
4354 /**
4355 * ice_prof_bld_es - build profile ID extraction sequence changes
4356 * @hw: pointer to the HW struct
4357 * @blk: hardware block
4358 * @bld: the update package buffer build to add to
4359 * @chgs: the list of changes to make in hardware
4360 */
4361 static int
ice_prof_bld_es(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)4362 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4363 struct ice_buf_build *bld, struct list_head *chgs)
4364 {
4365 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4366 struct ice_chs_chg *tmp;
4367
4368 list_for_each_entry(tmp, chgs, list_entry)
4369 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4370 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4371 struct ice_pkg_es *p;
4372 u32 id;
4373
4374 id = ice_sect_id(blk, ICE_VEC_TBL);
4375 p = ice_pkg_buf_alloc_section(bld, id,
4376 struct_size(p, es, 1) +
4377 vec_size -
4378 sizeof(p->es[0]));
4379
4380 if (!p)
4381 return -ENOSPC;
4382
4383 p->count = cpu_to_le16(1);
4384 p->offset = cpu_to_le16(tmp->prof_id);
4385
4386 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
4387 }
4388
4389 return 0;
4390 }
4391
4392 /**
4393 * ice_prof_bld_tcam - build profile ID TCAM changes
4394 * @hw: pointer to the HW struct
4395 * @blk: hardware block
4396 * @bld: the update package buffer build to add to
4397 * @chgs: the list of changes to make in hardware
4398 */
4399 static int
ice_prof_bld_tcam(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)4400 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4401 struct ice_buf_build *bld, struct list_head *chgs)
4402 {
4403 struct ice_chs_chg *tmp;
4404
4405 list_for_each_entry(tmp, chgs, list_entry)
4406 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4407 struct ice_prof_id_section *p;
4408 u32 id;
4409
4410 id = ice_sect_id(blk, ICE_PROF_TCAM);
4411 p = ice_pkg_buf_alloc_section(bld, id,
4412 struct_size(p, entry, 1));
4413
4414 if (!p)
4415 return -ENOSPC;
4416
4417 p->count = cpu_to_le16(1);
4418 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
4419 p->entry[0].prof_id = tmp->prof_id;
4420
4421 memcpy(p->entry[0].key,
4422 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4423 sizeof(hw->blk[blk].prof.t->key));
4424 }
4425
4426 return 0;
4427 }
4428
4429 /**
4430 * ice_prof_bld_xlt1 - build XLT1 changes
4431 * @blk: hardware block
4432 * @bld: the update package buffer build to add to
4433 * @chgs: the list of changes to make in hardware
4434 */
4435 static int
ice_prof_bld_xlt1(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)4436 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4437 struct list_head *chgs)
4438 {
4439 struct ice_chs_chg *tmp;
4440
4441 list_for_each_entry(tmp, chgs, list_entry)
4442 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4443 struct ice_xlt1_section *p;
4444 u32 id;
4445
4446 id = ice_sect_id(blk, ICE_XLT1);
4447 p = ice_pkg_buf_alloc_section(bld, id,
4448 struct_size(p, value, 1));
4449
4450 if (!p)
4451 return -ENOSPC;
4452
4453 p->count = cpu_to_le16(1);
4454 p->offset = cpu_to_le16(tmp->ptype);
4455 p->value[0] = tmp->ptg;
4456 }
4457
4458 return 0;
4459 }
4460
4461 /**
4462 * ice_prof_bld_xlt2 - build XLT2 changes
4463 * @blk: hardware block
4464 * @bld: the update package buffer build to add to
4465 * @chgs: the list of changes to make in hardware
4466 */
4467 static int
ice_prof_bld_xlt2(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)4468 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4469 struct list_head *chgs)
4470 {
4471 struct ice_chs_chg *tmp;
4472
4473 list_for_each_entry(tmp, chgs, list_entry) {
4474 struct ice_xlt2_section *p;
4475 u32 id;
4476
4477 switch (tmp->type) {
4478 case ICE_VSIG_ADD:
4479 case ICE_VSI_MOVE:
4480 case ICE_VSIG_REM:
4481 id = ice_sect_id(blk, ICE_XLT2);
4482 p = ice_pkg_buf_alloc_section(bld, id,
4483 struct_size(p, value, 1));
4484
4485 if (!p)
4486 return -ENOSPC;
4487
4488 p->count = cpu_to_le16(1);
4489 p->offset = cpu_to_le16(tmp->vsi);
4490 p->value[0] = cpu_to_le16(tmp->vsig);
4491 break;
4492 default:
4493 break;
4494 }
4495 }
4496
4497 return 0;
4498 }
4499
4500 /**
4501 * ice_upd_prof_hw - update hardware using the change list
4502 * @hw: pointer to the HW struct
4503 * @blk: hardware block
4504 * @chgs: the list of changes to make in hardware
4505 */
4506 static int
ice_upd_prof_hw(struct ice_hw * hw,enum ice_block blk,struct list_head * chgs)4507 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4508 struct list_head *chgs)
4509 {
4510 struct ice_buf_build *b;
4511 struct ice_chs_chg *tmp;
4512 u16 pkg_sects;
4513 u16 xlt1 = 0;
4514 u16 xlt2 = 0;
4515 u16 tcam = 0;
4516 u16 es = 0;
4517 int status;
4518 u16 sects;
4519
4520 /* count number of sections we need */
4521 list_for_each_entry(tmp, chgs, list_entry) {
4522 switch (tmp->type) {
4523 case ICE_PTG_ES_ADD:
4524 if (tmp->add_ptg)
4525 xlt1++;
4526 if (tmp->add_prof)
4527 es++;
4528 break;
4529 case ICE_TCAM_ADD:
4530 tcam++;
4531 break;
4532 case ICE_VSIG_ADD:
4533 case ICE_VSI_MOVE:
4534 case ICE_VSIG_REM:
4535 xlt2++;
4536 break;
4537 default:
4538 break;
4539 }
4540 }
4541 sects = xlt1 + xlt2 + tcam + es;
4542
4543 if (!sects)
4544 return 0;
4545
4546 /* Build update package buffer */
4547 b = ice_pkg_buf_alloc(hw);
4548 if (!b)
4549 return -ENOMEM;
4550
4551 status = ice_pkg_buf_reserve_section(b, sects);
4552 if (status)
4553 goto error_tmp;
4554
4555 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
4556 if (es) {
4557 status = ice_prof_bld_es(hw, blk, b, chgs);
4558 if (status)
4559 goto error_tmp;
4560 }
4561
4562 if (tcam) {
4563 status = ice_prof_bld_tcam(hw, blk, b, chgs);
4564 if (status)
4565 goto error_tmp;
4566 }
4567
4568 if (xlt1) {
4569 status = ice_prof_bld_xlt1(blk, b, chgs);
4570 if (status)
4571 goto error_tmp;
4572 }
4573
4574 if (xlt2) {
4575 status = ice_prof_bld_xlt2(blk, b, chgs);
4576 if (status)
4577 goto error_tmp;
4578 }
4579
4580 /* After package buffer build check if the section count in buffer is
4581 * non-zero and matches the number of sections detected for package
4582 * update.
4583 */
4584 pkg_sects = ice_pkg_buf_get_active_sections(b);
4585 if (!pkg_sects || pkg_sects != sects) {
4586 status = -EINVAL;
4587 goto error_tmp;
4588 }
4589
4590 /* update package */
4591 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4592 if (status == -EIO)
4593 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4594
4595 error_tmp:
4596 ice_pkg_buf_free(hw, b);
4597 return status;
4598 }
4599
4600 /**
4601 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4602 * @hw: pointer to the HW struct
4603 * @prof_id: profile ID
4604 * @mask_sel: mask select
4605 *
4606 * This function enable any of the masks selected by the mask select parameter
4607 * for the profile specified.
4608 */
ice_update_fd_mask(struct ice_hw * hw,u16 prof_id,u32 mask_sel)4609 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4610 {
4611 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4612
4613 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4614 GLQF_FDMASK_SEL(prof_id), mask_sel);
4615 }
4616
4617 struct ice_fd_src_dst_pair {
4618 u8 prot_id;
4619 u8 count;
4620 u16 off;
4621 };
4622
4623 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4624 /* These are defined in pairs */
4625 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4626 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4627
4628 { ICE_PROT_IPV4_IL, 2, 12 },
4629 { ICE_PROT_IPV4_IL, 2, 16 },
4630
4631 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4632 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4633
4634 { ICE_PROT_IPV6_IL, 8, 8 },
4635 { ICE_PROT_IPV6_IL, 8, 24 },
4636
4637 { ICE_PROT_TCP_IL, 1, 0 },
4638 { ICE_PROT_TCP_IL, 1, 2 },
4639
4640 { ICE_PROT_UDP_OF, 1, 0 },
4641 { ICE_PROT_UDP_OF, 1, 2 },
4642
4643 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
4644 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
4645
4646 { ICE_PROT_SCTP_IL, 1, 0 },
4647 { ICE_PROT_SCTP_IL, 1, 2 }
4648 };
4649
4650 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
4651
4652 /**
4653 * ice_update_fd_swap - set register appropriately for a FD FV extraction
4654 * @hw: pointer to the HW struct
4655 * @prof_id: profile ID
4656 * @es: extraction sequence (length of array is determined by the block)
4657 */
4658 static int
ice_update_fd_swap(struct ice_hw * hw,u16 prof_id,struct ice_fv_word * es)4659 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4660 {
4661 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4662 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4663 #define ICE_FD_FV_NOT_FOUND (-2)
4664 s8 first_free = ICE_FD_FV_NOT_FOUND;
4665 u8 used[ICE_MAX_FV_WORDS] = { 0 };
4666 s8 orig_free, si;
4667 u32 mask_sel = 0;
4668 u8 i, j, k;
4669
4670 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4671
4672 /* This code assumes that the Flow Director field vectors are assigned
4673 * from the end of the FV indexes working towards the zero index, that
4674 * only complete fields will be included and will be consecutive, and
4675 * that there are no gaps between valid indexes.
4676 */
4677
4678 /* Determine swap fields present */
4679 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4680 /* Find the first free entry, assuming right to left population.
4681 * This is where we can start adding additional pairs if needed.
4682 */
4683 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4684 ICE_PROT_INVALID)
4685 first_free = i - 1;
4686
4687 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4688 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4689 es[i].off == ice_fd_pairs[j].off) {
4690 __set_bit(j, pair_list);
4691 pair_start[j] = i;
4692 }
4693 }
4694
4695 orig_free = first_free;
4696
4697 /* determine missing swap fields that need to be added */
4698 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4699 u8 bit1 = test_bit(i + 1, pair_list);
4700 u8 bit0 = test_bit(i, pair_list);
4701
4702 if (bit0 ^ bit1) {
4703 u8 index;
4704
4705 /* add the appropriate 'paired' entry */
4706 if (!bit0)
4707 index = i;
4708 else
4709 index = i + 1;
4710
4711 /* check for room */
4712 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4713 return -ENOSPC;
4714
4715 /* place in extraction sequence */
4716 for (k = 0; k < ice_fd_pairs[index].count; k++) {
4717 es[first_free - k].prot_id =
4718 ice_fd_pairs[index].prot_id;
4719 es[first_free - k].off =
4720 ice_fd_pairs[index].off + (k * 2);
4721
4722 if (k > first_free)
4723 return -EIO;
4724
4725 /* keep track of non-relevant fields */
4726 mask_sel |= BIT(first_free - k);
4727 }
4728
4729 pair_start[index] = first_free;
4730 first_free -= ice_fd_pairs[index].count;
4731 }
4732 }
4733
4734 /* fill in the swap array */
4735 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4736 while (si >= 0) {
4737 u8 indexes_used = 1;
4738
4739 /* assume flat at this index */
4740 #define ICE_SWAP_VALID 0x80
4741 used[si] = si | ICE_SWAP_VALID;
4742
4743 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4744 si -= indexes_used;
4745 continue;
4746 }
4747
4748 /* check for a swap location */
4749 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4750 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4751 es[si].off == ice_fd_pairs[j].off) {
4752 u8 idx;
4753
4754 /* determine the appropriate matching field */
4755 idx = j + ((j % 2) ? -1 : 1);
4756
4757 indexes_used = ice_fd_pairs[idx].count;
4758 for (k = 0; k < indexes_used; k++) {
4759 used[si - k] = (pair_start[idx] - k) |
4760 ICE_SWAP_VALID;
4761 }
4762
4763 break;
4764 }
4765
4766 si -= indexes_used;
4767 }
4768
4769 /* for each set of 4 swap and 4 inset indexes, write the appropriate
4770 * register
4771 */
4772 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4773 u32 raw_swap = 0;
4774 u32 raw_in = 0;
4775
4776 for (k = 0; k < 4; k++) {
4777 u8 idx;
4778
4779 idx = (j * 4) + k;
4780 if (used[idx] && !(mask_sel & BIT(idx))) {
4781 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4782 #define ICE_INSET_DFLT 0x9f
4783 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4784 }
4785 }
4786
4787 /* write the appropriate swap register set */
4788 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4789
4790 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4791 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4792
4793 /* write the appropriate inset register set */
4794 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4795
4796 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4797 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4798 }
4799
4800 /* initially clear the mask select for this profile */
4801 ice_update_fd_mask(hw, prof_id, 0);
4802
4803 return 0;
4804 }
4805
4806 /* The entries here needs to match the order of enum ice_ptype_attrib */
4807 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4808 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
4809 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
4810 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
4811 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
4812 };
4813
4814 /**
4815 * ice_get_ptype_attrib_info - get PTYPE attribute information
4816 * @type: attribute type
4817 * @info: pointer to variable to the attribute information
4818 */
4819 static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,struct ice_ptype_attrib_info * info)4820 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4821 struct ice_ptype_attrib_info *info)
4822 {
4823 *info = ice_ptype_attributes[type];
4824 }
4825
4826 /**
4827 * ice_add_prof_attrib - add any PTG with attributes to profile
4828 * @prof: pointer to the profile to which PTG entries will be added
4829 * @ptg: PTG to be added
4830 * @ptype: PTYPE that needs to be looked up
4831 * @attr: array of attributes that will be considered
4832 * @attr_cnt: number of elements in the attribute array
4833 */
4834 static int
ice_add_prof_attrib(struct ice_prof_map * prof,u8 ptg,u16 ptype,const struct ice_ptype_attributes * attr,u16 attr_cnt)4835 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4836 const struct ice_ptype_attributes *attr, u16 attr_cnt)
4837 {
4838 bool found = false;
4839 u16 i;
4840
4841 for (i = 0; i < attr_cnt; i++)
4842 if (attr[i].ptype == ptype) {
4843 found = true;
4844
4845 prof->ptg[prof->ptg_cnt] = ptg;
4846 ice_get_ptype_attrib_info(attr[i].attrib,
4847 &prof->attr[prof->ptg_cnt]);
4848
4849 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4850 return -ENOSPC;
4851 }
4852
4853 if (!found)
4854 return -ENOENT;
4855
4856 return 0;
4857 }
4858
4859 /**
4860 * ice_add_prof - add profile
4861 * @hw: pointer to the HW struct
4862 * @blk: hardware block
4863 * @id: profile tracking ID
4864 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4865 * @attr: array of attributes
4866 * @attr_cnt: number of elements in attr array
4867 * @es: extraction sequence (length of array is determined by the block)
4868 * @masks: mask for extraction sequence
4869 *
4870 * This function registers a profile, which matches a set of PTYPES with a
4871 * particular extraction sequence. While the hardware profile is allocated
4872 * it will not be written until the first call to ice_add_flow that specifies
4873 * the ID value used here.
4874 */
4875 int
ice_add_prof(struct ice_hw * hw,enum ice_block blk,u64 id,u8 ptypes[],const struct ice_ptype_attributes * attr,u16 attr_cnt,struct ice_fv_word * es,u16 * masks)4876 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4877 const struct ice_ptype_attributes *attr, u16 attr_cnt,
4878 struct ice_fv_word *es, u16 *masks)
4879 {
4880 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4881 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4882 struct ice_prof_map *prof;
4883 u8 byte = 0;
4884 u8 prof_id;
4885 int status;
4886
4887 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4888
4889 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4890
4891 /* search for existing profile */
4892 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4893 if (status) {
4894 /* allocate profile ID */
4895 status = ice_alloc_prof_id(hw, blk, &prof_id);
4896 if (status)
4897 goto err_ice_add_prof;
4898 if (blk == ICE_BLK_FD) {
4899 /* For Flow Director block, the extraction sequence may
4900 * need to be altered in the case where there are paired
4901 * fields that have no match. This is necessary because
4902 * for Flow Director, src and dest fields need to paired
4903 * for filter programming and these values are swapped
4904 * during Tx.
4905 */
4906 status = ice_update_fd_swap(hw, prof_id, es);
4907 if (status)
4908 goto err_ice_add_prof;
4909 }
4910 status = ice_update_prof_masking(hw, blk, prof_id, masks);
4911 if (status)
4912 goto err_ice_add_prof;
4913
4914 /* and write new es */
4915 ice_write_es(hw, blk, prof_id, es);
4916 }
4917
4918 ice_prof_inc_ref(hw, blk, prof_id);
4919
4920 /* add profile info */
4921 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4922 if (!prof) {
4923 status = -ENOMEM;
4924 goto err_ice_add_prof;
4925 }
4926
4927 prof->profile_cookie = id;
4928 prof->prof_id = prof_id;
4929 prof->ptg_cnt = 0;
4930 prof->context = 0;
4931
4932 /* build list of ptgs */
4933 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4934 u8 bit;
4935
4936 if (!ptypes[byte]) {
4937 bytes--;
4938 byte++;
4939 continue;
4940 }
4941
4942 /* Examine 8 bits per byte */
4943 for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4944 BITS_PER_BYTE) {
4945 u16 ptype;
4946 u8 ptg;
4947
4948 ptype = byte * BITS_PER_BYTE + bit;
4949
4950 /* The package should place all ptypes in a non-zero
4951 * PTG, so the following call should never fail.
4952 */
4953 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4954 continue;
4955
4956 /* If PTG is already added, skip and continue */
4957 if (test_bit(ptg, ptgs_used))
4958 continue;
4959
4960 __set_bit(ptg, ptgs_used);
4961 /* Check to see there are any attributes for
4962 * this PTYPE, and add them if found.
4963 */
4964 status = ice_add_prof_attrib(prof, ptg, ptype,
4965 attr, attr_cnt);
4966 if (status == -ENOSPC)
4967 break;
4968 if (status) {
4969 /* This is simple a PTYPE/PTG with no
4970 * attribute
4971 */
4972 prof->ptg[prof->ptg_cnt] = ptg;
4973 prof->attr[prof->ptg_cnt].flags = 0;
4974 prof->attr[prof->ptg_cnt].mask = 0;
4975
4976 if (++prof->ptg_cnt >=
4977 ICE_MAX_PTG_PER_PROFILE)
4978 break;
4979 }
4980 }
4981
4982 bytes--;
4983 byte++;
4984 }
4985
4986 list_add(&prof->list, &hw->blk[blk].es.prof_map);
4987 status = 0;
4988
4989 err_ice_add_prof:
4990 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4991 return status;
4992 }
4993
4994 /**
4995 * ice_search_prof_id - Search for a profile tracking ID
4996 * @hw: pointer to the HW struct
4997 * @blk: hardware block
4998 * @id: profile tracking ID
4999 *
5000 * This will search for a profile tracking ID which was previously added.
5001 * The profile map lock should be held before calling this function.
5002 */
5003 static struct ice_prof_map *
ice_search_prof_id(struct ice_hw * hw,enum ice_block blk,u64 id)5004 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5005 {
5006 struct ice_prof_map *entry = NULL;
5007 struct ice_prof_map *map;
5008
5009 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
5010 if (map->profile_cookie == id) {
5011 entry = map;
5012 break;
5013 }
5014
5015 return entry;
5016 }
5017
5018 /**
5019 * ice_vsig_prof_id_count - count profiles in a VSIG
5020 * @hw: pointer to the HW struct
5021 * @blk: hardware block
5022 * @vsig: VSIG to remove the profile from
5023 */
5024 static u16
ice_vsig_prof_id_count(struct ice_hw * hw,enum ice_block blk,u16 vsig)5025 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5026 {
5027 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5028 struct ice_vsig_prof *p;
5029
5030 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5031 list)
5032 count++;
5033
5034 return count;
5035 }
5036
5037 /**
5038 * ice_rel_tcam_idx - release a TCAM index
5039 * @hw: pointer to the HW struct
5040 * @blk: hardware block
5041 * @idx: the index to release
5042 */
ice_rel_tcam_idx(struct ice_hw * hw,enum ice_block blk,u16 idx)5043 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
5044 {
5045 /* Masks to invoke a never match entry */
5046 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5047 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5048 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5049 int status;
5050
5051 /* write the TCAM entry */
5052 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5053 dc_msk, nm_msk);
5054 if (status)
5055 return status;
5056
5057 /* release the TCAM entry */
5058 status = ice_free_tcam_ent(hw, blk, idx);
5059
5060 return status;
5061 }
5062
5063 /**
5064 * ice_rem_prof_id - remove one profile from a VSIG
5065 * @hw: pointer to the HW struct
5066 * @blk: hardware block
5067 * @prof: pointer to profile structure to remove
5068 */
5069 static int
ice_rem_prof_id(struct ice_hw * hw,enum ice_block blk,struct ice_vsig_prof * prof)5070 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5071 struct ice_vsig_prof *prof)
5072 {
5073 int status;
5074 u16 i;
5075
5076 for (i = 0; i < prof->tcam_count; i++)
5077 if (prof->tcam[i].in_use) {
5078 prof->tcam[i].in_use = false;
5079 status = ice_rel_tcam_idx(hw, blk,
5080 prof->tcam[i].tcam_idx);
5081 if (status)
5082 return -EIO;
5083 }
5084
5085 return 0;
5086 }
5087
5088 /**
5089 * ice_rem_vsig - remove VSIG
5090 * @hw: pointer to the HW struct
5091 * @blk: hardware block
5092 * @vsig: the VSIG to remove
5093 * @chg: the change list
5094 */
5095 static int
ice_rem_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)5096 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5097 struct list_head *chg)
5098 {
5099 u16 idx = vsig & ICE_VSIG_IDX_M;
5100 struct ice_vsig_vsi *vsi_cur;
5101 struct ice_vsig_prof *d, *t;
5102 int status;
5103
5104 /* remove TCAM entries */
5105 list_for_each_entry_safe(d, t,
5106 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5107 list) {
5108 status = ice_rem_prof_id(hw, blk, d);
5109 if (status)
5110 return status;
5111
5112 list_del(&d->list);
5113 devm_kfree(ice_hw_to_dev(hw), d);
5114 }
5115
5116 /* Move all VSIS associated with this VSIG to the default VSIG */
5117 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5118 /* If the VSIG has at least 1 VSI then iterate through the list
5119 * and remove the VSIs before deleting the group.
5120 */
5121 if (vsi_cur)
5122 do {
5123 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5124 struct ice_chs_chg *p;
5125
5126 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5127 GFP_KERNEL);
5128 if (!p)
5129 return -ENOMEM;
5130
5131 p->type = ICE_VSIG_REM;
5132 p->orig_vsig = vsig;
5133 p->vsig = ICE_DEFAULT_VSIG;
5134 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5135
5136 list_add(&p->list_entry, chg);
5137
5138 vsi_cur = tmp;
5139 } while (vsi_cur);
5140
5141 return ice_vsig_free(hw, blk, vsig);
5142 }
5143
5144 /**
5145 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5146 * @hw: pointer to the HW struct
5147 * @blk: hardware block
5148 * @vsig: VSIG to remove the profile from
5149 * @hdl: profile handle indicating which profile to remove
5150 * @chg: list to receive a record of changes
5151 */
5152 static int
ice_rem_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,struct list_head * chg)5153 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5154 struct list_head *chg)
5155 {
5156 u16 idx = vsig & ICE_VSIG_IDX_M;
5157 struct ice_vsig_prof *p, *t;
5158 int status;
5159
5160 list_for_each_entry_safe(p, t,
5161 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5162 list)
5163 if (p->profile_cookie == hdl) {
5164 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5165 /* this is the last profile, remove the VSIG */
5166 return ice_rem_vsig(hw, blk, vsig, chg);
5167
5168 status = ice_rem_prof_id(hw, blk, p);
5169 if (!status) {
5170 list_del(&p->list);
5171 devm_kfree(ice_hw_to_dev(hw), p);
5172 }
5173 return status;
5174 }
5175
5176 return -ENOENT;
5177 }
5178
5179 /**
5180 * ice_rem_flow_all - remove all flows with a particular profile
5181 * @hw: pointer to the HW struct
5182 * @blk: hardware block
5183 * @id: profile tracking ID
5184 */
ice_rem_flow_all(struct ice_hw * hw,enum ice_block blk,u64 id)5185 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
5186 {
5187 struct ice_chs_chg *del, *tmp;
5188 struct list_head chg;
5189 int status;
5190 u16 i;
5191
5192 INIT_LIST_HEAD(&chg);
5193
5194 for (i = 1; i < ICE_MAX_VSIGS; i++)
5195 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5196 if (ice_has_prof_vsig(hw, blk, i, id)) {
5197 status = ice_rem_prof_id_vsig(hw, blk, i, id,
5198 &chg);
5199 if (status)
5200 goto err_ice_rem_flow_all;
5201 }
5202 }
5203
5204 status = ice_upd_prof_hw(hw, blk, &chg);
5205
5206 err_ice_rem_flow_all:
5207 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5208 list_del(&del->list_entry);
5209 devm_kfree(ice_hw_to_dev(hw), del);
5210 }
5211
5212 return status;
5213 }
5214
5215 /**
5216 * ice_rem_prof - remove profile
5217 * @hw: pointer to the HW struct
5218 * @blk: hardware block
5219 * @id: profile tracking ID
5220 *
5221 * This will remove the profile specified by the ID parameter, which was
5222 * previously created through ice_add_prof. If any existing entries
5223 * are associated with this profile, they will be removed as well.
5224 */
ice_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 id)5225 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5226 {
5227 struct ice_prof_map *pmap;
5228 int status;
5229
5230 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5231
5232 pmap = ice_search_prof_id(hw, blk, id);
5233 if (!pmap) {
5234 status = -ENOENT;
5235 goto err_ice_rem_prof;
5236 }
5237
5238 /* remove all flows with this profile */
5239 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5240 if (status)
5241 goto err_ice_rem_prof;
5242
5243 /* dereference profile, and possibly remove */
5244 ice_prof_dec_ref(hw, blk, pmap->prof_id);
5245
5246 list_del(&pmap->list);
5247 devm_kfree(ice_hw_to_dev(hw), pmap);
5248
5249 err_ice_rem_prof:
5250 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5251 return status;
5252 }
5253
5254 /**
5255 * ice_get_prof - get profile
5256 * @hw: pointer to the HW struct
5257 * @blk: hardware block
5258 * @hdl: profile handle
5259 * @chg: change list
5260 */
5261 static int
ice_get_prof(struct ice_hw * hw,enum ice_block blk,u64 hdl,struct list_head * chg)5262 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5263 struct list_head *chg)
5264 {
5265 struct ice_prof_map *map;
5266 struct ice_chs_chg *p;
5267 int status = 0;
5268 u16 i;
5269
5270 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5271 /* Get the details on the profile specified by the handle ID */
5272 map = ice_search_prof_id(hw, blk, hdl);
5273 if (!map) {
5274 status = -ENOENT;
5275 goto err_ice_get_prof;
5276 }
5277
5278 for (i = 0; i < map->ptg_cnt; i++)
5279 if (!hw->blk[blk].es.written[map->prof_id]) {
5280 /* add ES to change list */
5281 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5282 GFP_KERNEL);
5283 if (!p) {
5284 status = -ENOMEM;
5285 goto err_ice_get_prof;
5286 }
5287
5288 p->type = ICE_PTG_ES_ADD;
5289 p->ptype = 0;
5290 p->ptg = map->ptg[i];
5291 p->add_ptg = 0;
5292
5293 p->add_prof = 1;
5294 p->prof_id = map->prof_id;
5295
5296 hw->blk[blk].es.written[map->prof_id] = true;
5297
5298 list_add(&p->list_entry, chg);
5299 }
5300
5301 err_ice_get_prof:
5302 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5303 /* let caller clean up the change list */
5304 return status;
5305 }
5306
5307 /**
5308 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5309 * @hw: pointer to the HW struct
5310 * @blk: hardware block
5311 * @vsig: VSIG from which to copy the list
5312 * @lst: output list
5313 *
5314 * This routine makes a copy of the list of profiles in the specified VSIG.
5315 */
5316 static int
ice_get_profs_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * lst)5317 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5318 struct list_head *lst)
5319 {
5320 struct ice_vsig_prof *ent1, *ent2;
5321 u16 idx = vsig & ICE_VSIG_IDX_M;
5322
5323 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5324 list) {
5325 struct ice_vsig_prof *p;
5326
5327 /* copy to the input list */
5328 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
5329 GFP_KERNEL);
5330 if (!p)
5331 goto err_ice_get_profs_vsig;
5332
5333 list_add_tail(&p->list, lst);
5334 }
5335
5336 return 0;
5337
5338 err_ice_get_profs_vsig:
5339 list_for_each_entry_safe(ent1, ent2, lst, list) {
5340 list_del(&ent1->list);
5341 devm_kfree(ice_hw_to_dev(hw), ent1);
5342 }
5343
5344 return -ENOMEM;
5345 }
5346
5347 /**
5348 * ice_add_prof_to_lst - add profile entry to a list
5349 * @hw: pointer to the HW struct
5350 * @blk: hardware block
5351 * @lst: the list to be added to
5352 * @hdl: profile handle of entry to add
5353 */
5354 static int
ice_add_prof_to_lst(struct ice_hw * hw,enum ice_block blk,struct list_head * lst,u64 hdl)5355 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5356 struct list_head *lst, u64 hdl)
5357 {
5358 struct ice_prof_map *map;
5359 struct ice_vsig_prof *p;
5360 int status = 0;
5361 u16 i;
5362
5363 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5364 map = ice_search_prof_id(hw, blk, hdl);
5365 if (!map) {
5366 status = -ENOENT;
5367 goto err_ice_add_prof_to_lst;
5368 }
5369
5370 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5371 if (!p) {
5372 status = -ENOMEM;
5373 goto err_ice_add_prof_to_lst;
5374 }
5375
5376 p->profile_cookie = map->profile_cookie;
5377 p->prof_id = map->prof_id;
5378 p->tcam_count = map->ptg_cnt;
5379
5380 for (i = 0; i < map->ptg_cnt; i++) {
5381 p->tcam[i].prof_id = map->prof_id;
5382 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5383 p->tcam[i].ptg = map->ptg[i];
5384 }
5385
5386 list_add(&p->list, lst);
5387
5388 err_ice_add_prof_to_lst:
5389 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5390 return status;
5391 }
5392
5393 /**
5394 * ice_move_vsi - move VSI to another VSIG
5395 * @hw: pointer to the HW struct
5396 * @blk: hardware block
5397 * @vsi: the VSI to move
5398 * @vsig: the VSIG to move the VSI to
5399 * @chg: the change list
5400 */
5401 static int
ice_move_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig,struct list_head * chg)5402 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5403 struct list_head *chg)
5404 {
5405 struct ice_chs_chg *p;
5406 u16 orig_vsig;
5407 int status;
5408
5409 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5410 if (!p)
5411 return -ENOMEM;
5412
5413 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5414 if (!status)
5415 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5416
5417 if (status) {
5418 devm_kfree(ice_hw_to_dev(hw), p);
5419 return status;
5420 }
5421
5422 p->type = ICE_VSI_MOVE;
5423 p->vsi = vsi;
5424 p->orig_vsig = orig_vsig;
5425 p->vsig = vsig;
5426
5427 list_add(&p->list_entry, chg);
5428
5429 return 0;
5430 }
5431
5432 /**
5433 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5434 * @hw: pointer to the HW struct
5435 * @idx: the index of the TCAM entry to remove
5436 * @chg: the list of change structures to search
5437 */
5438 static void
ice_rem_chg_tcam_ent(struct ice_hw * hw,u16 idx,struct list_head * chg)5439 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
5440 {
5441 struct ice_chs_chg *pos, *tmp;
5442
5443 list_for_each_entry_safe(tmp, pos, chg, list_entry)
5444 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5445 list_del(&tmp->list_entry);
5446 devm_kfree(ice_hw_to_dev(hw), tmp);
5447 }
5448 }
5449
5450 /**
5451 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5452 * @hw: pointer to the HW struct
5453 * @blk: hardware block
5454 * @enable: true to enable, false to disable
5455 * @vsig: the VSIG of the TCAM entry
5456 * @tcam: pointer the TCAM info structure of the TCAM to disable
5457 * @chg: the change list
5458 *
5459 * This function appends an enable or disable TCAM entry in the change log
5460 */
5461 static int
ice_prof_tcam_ena_dis(struct ice_hw * hw,enum ice_block blk,bool enable,u16 vsig,struct ice_tcam_inf * tcam,struct list_head * chg)5462 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5463 u16 vsig, struct ice_tcam_inf *tcam,
5464 struct list_head *chg)
5465 {
5466 struct ice_chs_chg *p;
5467 int status;
5468
5469 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5470 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5471 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5472
5473 /* if disabling, free the TCAM */
5474 if (!enable) {
5475 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5476
5477 /* if we have already created a change for this TCAM entry, then
5478 * we need to remove that entry, in order to prevent writing to
5479 * a TCAM entry we no longer will have ownership of.
5480 */
5481 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5482 tcam->tcam_idx = 0;
5483 tcam->in_use = 0;
5484 return status;
5485 }
5486
5487 /* for re-enabling, reallocate a TCAM */
5488 /* for entries with empty attribute masks, allocate entry from
5489 * the bottom of the TCAM table; otherwise, allocate from the
5490 * top of the table in order to give it higher priority
5491 */
5492 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5493 &tcam->tcam_idx);
5494 if (status)
5495 return status;
5496
5497 /* add TCAM to change list */
5498 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5499 if (!p)
5500 return -ENOMEM;
5501
5502 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5503 tcam->ptg, vsig, 0, tcam->attr.flags,
5504 vl_msk, dc_msk, nm_msk);
5505 if (status)
5506 goto err_ice_prof_tcam_ena_dis;
5507
5508 tcam->in_use = 1;
5509
5510 p->type = ICE_TCAM_ADD;
5511 p->add_tcam_idx = true;
5512 p->prof_id = tcam->prof_id;
5513 p->ptg = tcam->ptg;
5514 p->vsig = 0;
5515 p->tcam_idx = tcam->tcam_idx;
5516
5517 /* log change */
5518 list_add(&p->list_entry, chg);
5519
5520 return 0;
5521
5522 err_ice_prof_tcam_ena_dis:
5523 devm_kfree(ice_hw_to_dev(hw), p);
5524 return status;
5525 }
5526
5527 /**
5528 * ice_adj_prof_priorities - adjust profile based on priorities
5529 * @hw: pointer to the HW struct
5530 * @blk: hardware block
5531 * @vsig: the VSIG for which to adjust profile priorities
5532 * @chg: the change list
5533 */
5534 static int
ice_adj_prof_priorities(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)5535 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5536 struct list_head *chg)
5537 {
5538 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
5539 struct ice_vsig_prof *t;
5540 int status;
5541 u16 idx;
5542
5543 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
5544 idx = vsig & ICE_VSIG_IDX_M;
5545
5546 /* Priority is based on the order in which the profiles are added. The
5547 * newest added profile has highest priority and the oldest added
5548 * profile has the lowest priority. Since the profile property list for
5549 * a VSIG is sorted from newest to oldest, this code traverses the list
5550 * in order and enables the first of each PTG that it finds (that is not
5551 * already enabled); it also disables any duplicate PTGs that it finds
5552 * in the older profiles (that are currently enabled).
5553 */
5554
5555 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5556 list) {
5557 u16 i;
5558
5559 for (i = 0; i < t->tcam_count; i++) {
5560 /* Scan the priorities from newest to oldest.
5561 * Make sure that the newest profiles take priority.
5562 */
5563 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
5564 t->tcam[i].in_use) {
5565 /* need to mark this PTG as never match, as it
5566 * was already in use and therefore duplicate
5567 * (and lower priority)
5568 */
5569 status = ice_prof_tcam_ena_dis(hw, blk, false,
5570 vsig,
5571 &t->tcam[i],
5572 chg);
5573 if (status)
5574 return status;
5575 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
5576 !t->tcam[i].in_use) {
5577 /* need to enable this PTG, as it in not in use
5578 * and not enabled (highest priority)
5579 */
5580 status = ice_prof_tcam_ena_dis(hw, blk, true,
5581 vsig,
5582 &t->tcam[i],
5583 chg);
5584 if (status)
5585 return status;
5586 }
5587
5588 /* keep track of used ptgs */
5589 __set_bit(t->tcam[i].ptg, ptgs_used);
5590 }
5591 }
5592
5593 return 0;
5594 }
5595
5596 /**
5597 * ice_add_prof_id_vsig - add profile to VSIG
5598 * @hw: pointer to the HW struct
5599 * @blk: hardware block
5600 * @vsig: the VSIG to which this profile is to be added
5601 * @hdl: the profile handle indicating the profile to add
5602 * @rev: true to add entries to the end of the list
5603 * @chg: the change list
5604 */
5605 static int
ice_add_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,bool rev,struct list_head * chg)5606 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5607 bool rev, struct list_head *chg)
5608 {
5609 /* Masks that ignore flags */
5610 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5611 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5612 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5613 struct ice_prof_map *map;
5614 struct ice_vsig_prof *t;
5615 struct ice_chs_chg *p;
5616 u16 vsig_idx, i;
5617 int status = 0;
5618
5619 /* Error, if this VSIG already has this profile */
5620 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5621 return -EEXIST;
5622
5623 /* new VSIG profile structure */
5624 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
5625 if (!t)
5626 return -ENOMEM;
5627
5628 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5629 /* Get the details on the profile specified by the handle ID */
5630 map = ice_search_prof_id(hw, blk, hdl);
5631 if (!map) {
5632 status = -ENOENT;
5633 goto err_ice_add_prof_id_vsig;
5634 }
5635
5636 t->profile_cookie = map->profile_cookie;
5637 t->prof_id = map->prof_id;
5638 t->tcam_count = map->ptg_cnt;
5639
5640 /* create TCAM entries */
5641 for (i = 0; i < map->ptg_cnt; i++) {
5642 u16 tcam_idx;
5643
5644 /* add TCAM to change list */
5645 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5646 if (!p) {
5647 status = -ENOMEM;
5648 goto err_ice_add_prof_id_vsig;
5649 }
5650
5651 /* allocate the TCAM entry index */
5652 /* for entries with empty attribute masks, allocate entry from
5653 * the bottom of the TCAM table; otherwise, allocate from the
5654 * top of the table in order to give it higher priority
5655 */
5656 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5657 &tcam_idx);
5658 if (status) {
5659 devm_kfree(ice_hw_to_dev(hw), p);
5660 goto err_ice_add_prof_id_vsig;
5661 }
5662
5663 t->tcam[i].ptg = map->ptg[i];
5664 t->tcam[i].prof_id = map->prof_id;
5665 t->tcam[i].tcam_idx = tcam_idx;
5666 t->tcam[i].attr = map->attr[i];
5667 t->tcam[i].in_use = true;
5668
5669 p->type = ICE_TCAM_ADD;
5670 p->add_tcam_idx = true;
5671 p->prof_id = t->tcam[i].prof_id;
5672 p->ptg = t->tcam[i].ptg;
5673 p->vsig = vsig;
5674 p->tcam_idx = t->tcam[i].tcam_idx;
5675
5676 /* write the TCAM entry */
5677 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5678 t->tcam[i].prof_id,
5679 t->tcam[i].ptg, vsig, 0, 0,
5680 vl_msk, dc_msk, nm_msk);
5681 if (status) {
5682 devm_kfree(ice_hw_to_dev(hw), p);
5683 goto err_ice_add_prof_id_vsig;
5684 }
5685
5686 /* log change */
5687 list_add(&p->list_entry, chg);
5688 }
5689
5690 /* add profile to VSIG */
5691 vsig_idx = vsig & ICE_VSIG_IDX_M;
5692 if (rev)
5693 list_add_tail(&t->list,
5694 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5695 else
5696 list_add(&t->list,
5697 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5698
5699 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5700 return status;
5701
5702 err_ice_add_prof_id_vsig:
5703 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5704 /* let caller clean up the change list */
5705 devm_kfree(ice_hw_to_dev(hw), t);
5706 return status;
5707 }
5708
5709 /**
5710 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5711 * @hw: pointer to the HW struct
5712 * @blk: hardware block
5713 * @vsi: the initial VSI that will be in VSIG
5714 * @hdl: the profile handle of the profile that will be added to the VSIG
5715 * @chg: the change list
5716 */
5717 static int
ice_create_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl,struct list_head * chg)5718 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5719 struct list_head *chg)
5720 {
5721 struct ice_chs_chg *p;
5722 u16 new_vsig;
5723 int status;
5724
5725 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5726 if (!p)
5727 return -ENOMEM;
5728
5729 new_vsig = ice_vsig_alloc(hw, blk);
5730 if (!new_vsig) {
5731 status = -EIO;
5732 goto err_ice_create_prof_id_vsig;
5733 }
5734
5735 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5736 if (status)
5737 goto err_ice_create_prof_id_vsig;
5738
5739 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5740 if (status)
5741 goto err_ice_create_prof_id_vsig;
5742
5743 p->type = ICE_VSIG_ADD;
5744 p->vsi = vsi;
5745 p->orig_vsig = ICE_DEFAULT_VSIG;
5746 p->vsig = new_vsig;
5747
5748 list_add(&p->list_entry, chg);
5749
5750 return 0;
5751
5752 err_ice_create_prof_id_vsig:
5753 /* let caller clean up the change list */
5754 devm_kfree(ice_hw_to_dev(hw), p);
5755 return status;
5756 }
5757
5758 /**
5759 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5760 * @hw: pointer to the HW struct
5761 * @blk: hardware block
5762 * @vsi: the initial VSI that will be in VSIG
5763 * @lst: the list of profile that will be added to the VSIG
5764 * @new_vsig: return of new VSIG
5765 * @chg: the change list
5766 */
5767 static int
ice_create_vsig_from_lst(struct ice_hw * hw,enum ice_block blk,u16 vsi,struct list_head * lst,u16 * new_vsig,struct list_head * chg)5768 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5769 struct list_head *lst, u16 *new_vsig,
5770 struct list_head *chg)
5771 {
5772 struct ice_vsig_prof *t;
5773 int status;
5774 u16 vsig;
5775
5776 vsig = ice_vsig_alloc(hw, blk);
5777 if (!vsig)
5778 return -EIO;
5779
5780 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5781 if (status)
5782 return status;
5783
5784 list_for_each_entry(t, lst, list) {
5785 /* Reverse the order here since we are copying the list */
5786 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5787 true, chg);
5788 if (status)
5789 return status;
5790 }
5791
5792 *new_vsig = vsig;
5793
5794 return 0;
5795 }
5796
5797 /**
5798 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5799 * @hw: pointer to the HW struct
5800 * @blk: hardware block
5801 * @hdl: the profile handle of the profile to search for
5802 * @vsig: returns the VSIG with the matching profile
5803 */
5804 static bool
ice_find_prof_vsig(struct ice_hw * hw,enum ice_block blk,u64 hdl,u16 * vsig)5805 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5806 {
5807 struct ice_vsig_prof *t;
5808 struct list_head lst;
5809 int status;
5810
5811 INIT_LIST_HEAD(&lst);
5812
5813 t = kzalloc(sizeof(*t), GFP_KERNEL);
5814 if (!t)
5815 return false;
5816
5817 t->profile_cookie = hdl;
5818 list_add(&t->list, &lst);
5819
5820 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5821
5822 list_del(&t->list);
5823 kfree(t);
5824
5825 return !status;
5826 }
5827
5828 /**
5829 * ice_add_prof_id_flow - add profile flow
5830 * @hw: pointer to the HW struct
5831 * @blk: hardware block
5832 * @vsi: the VSI to enable with the profile specified by ID
5833 * @hdl: profile handle
5834 *
5835 * Calling this function will update the hardware tables to enable the
5836 * profile indicated by the ID parameter for the VSIs specified in the VSI
5837 * array. Once successfully called, the flow will be enabled.
5838 */
5839 int
ice_add_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)5840 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5841 {
5842 struct ice_vsig_prof *tmp1, *del1;
5843 struct ice_chs_chg *tmp, *del;
5844 struct list_head union_lst;
5845 struct list_head chg;
5846 int status;
5847 u16 vsig;
5848
5849 INIT_LIST_HEAD(&union_lst);
5850 INIT_LIST_HEAD(&chg);
5851
5852 /* Get profile */
5853 status = ice_get_prof(hw, blk, hdl, &chg);
5854 if (status)
5855 return status;
5856
5857 /* determine if VSI is already part of a VSIG */
5858 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5859 if (!status && vsig) {
5860 bool only_vsi;
5861 u16 or_vsig;
5862 u16 ref;
5863
5864 /* found in VSIG */
5865 or_vsig = vsig;
5866
5867 /* make sure that there is no overlap/conflict between the new
5868 * characteristics and the existing ones; we don't support that
5869 * scenario
5870 */
5871 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5872 status = -EEXIST;
5873 goto err_ice_add_prof_id_flow;
5874 }
5875
5876 /* last VSI in the VSIG? */
5877 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5878 if (status)
5879 goto err_ice_add_prof_id_flow;
5880 only_vsi = (ref == 1);
5881
5882 /* create a union of the current profiles and the one being
5883 * added
5884 */
5885 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5886 if (status)
5887 goto err_ice_add_prof_id_flow;
5888
5889 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5890 if (status)
5891 goto err_ice_add_prof_id_flow;
5892
5893 /* search for an existing VSIG with an exact charc match */
5894 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5895 if (!status) {
5896 /* move VSI to the VSIG that matches */
5897 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5898 if (status)
5899 goto err_ice_add_prof_id_flow;
5900
5901 /* VSI has been moved out of or_vsig. If the or_vsig had
5902 * only that VSI it is now empty and can be removed.
5903 */
5904 if (only_vsi) {
5905 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5906 if (status)
5907 goto err_ice_add_prof_id_flow;
5908 }
5909 } else if (only_vsi) {
5910 /* If the original VSIG only contains one VSI, then it
5911 * will be the requesting VSI. In this case the VSI is
5912 * not sharing entries and we can simply add the new
5913 * profile to the VSIG.
5914 */
5915 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5916 &chg);
5917 if (status)
5918 goto err_ice_add_prof_id_flow;
5919
5920 /* Adjust priorities */
5921 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5922 if (status)
5923 goto err_ice_add_prof_id_flow;
5924 } else {
5925 /* No match, so we need a new VSIG */
5926 status = ice_create_vsig_from_lst(hw, blk, vsi,
5927 &union_lst, &vsig,
5928 &chg);
5929 if (status)
5930 goto err_ice_add_prof_id_flow;
5931
5932 /* Adjust priorities */
5933 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5934 if (status)
5935 goto err_ice_add_prof_id_flow;
5936 }
5937 } else {
5938 /* need to find or add a VSIG */
5939 /* search for an existing VSIG with an exact charc match */
5940 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5941 /* found an exact match */
5942 /* add or move VSI to the VSIG that matches */
5943 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5944 if (status)
5945 goto err_ice_add_prof_id_flow;
5946 } else {
5947 /* we did not find an exact match */
5948 /* we need to add a VSIG */
5949 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5950 &chg);
5951 if (status)
5952 goto err_ice_add_prof_id_flow;
5953 }
5954 }
5955
5956 /* update hardware */
5957 if (!status)
5958 status = ice_upd_prof_hw(hw, blk, &chg);
5959
5960 err_ice_add_prof_id_flow:
5961 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5962 list_del(&del->list_entry);
5963 devm_kfree(ice_hw_to_dev(hw), del);
5964 }
5965
5966 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5967 list_del(&del1->list);
5968 devm_kfree(ice_hw_to_dev(hw), del1);
5969 }
5970
5971 return status;
5972 }
5973
5974 /**
5975 * ice_rem_prof_from_list - remove a profile from list
5976 * @hw: pointer to the HW struct
5977 * @lst: list to remove the profile from
5978 * @hdl: the profile handle indicating the profile to remove
5979 */
5980 static int
ice_rem_prof_from_list(struct ice_hw * hw,struct list_head * lst,u64 hdl)5981 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5982 {
5983 struct ice_vsig_prof *ent, *tmp;
5984
5985 list_for_each_entry_safe(ent, tmp, lst, list)
5986 if (ent->profile_cookie == hdl) {
5987 list_del(&ent->list);
5988 devm_kfree(ice_hw_to_dev(hw), ent);
5989 return 0;
5990 }
5991
5992 return -ENOENT;
5993 }
5994
5995 /**
5996 * ice_rem_prof_id_flow - remove flow
5997 * @hw: pointer to the HW struct
5998 * @blk: hardware block
5999 * @vsi: the VSI from which to remove the profile specified by ID
6000 * @hdl: profile tracking handle
6001 *
6002 * Calling this function will update the hardware tables to remove the
6003 * profile indicated by the ID parameter for the VSIs specified in the VSI
6004 * array. Once successfully called, the flow will be disabled.
6005 */
6006 int
ice_rem_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)6007 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6008 {
6009 struct ice_vsig_prof *tmp1, *del1;
6010 struct ice_chs_chg *tmp, *del;
6011 struct list_head chg, copy;
6012 int status;
6013 u16 vsig;
6014
6015 INIT_LIST_HEAD(©);
6016 INIT_LIST_HEAD(&chg);
6017
6018 /* determine if VSI is already part of a VSIG */
6019 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6020 if (!status && vsig) {
6021 bool last_profile;
6022 bool only_vsi;
6023 u16 ref;
6024
6025 /* found in VSIG */
6026 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6027 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6028 if (status)
6029 goto err_ice_rem_prof_id_flow;
6030 only_vsi = (ref == 1);
6031
6032 if (only_vsi) {
6033 /* If the original VSIG only contains one reference,
6034 * which will be the requesting VSI, then the VSI is not
6035 * sharing entries and we can simply remove the specific
6036 * characteristics from the VSIG.
6037 */
6038
6039 if (last_profile) {
6040 /* If there are no profiles left for this VSIG,
6041 * then simply remove the VSIG.
6042 */
6043 status = ice_rem_vsig(hw, blk, vsig, &chg);
6044 if (status)
6045 goto err_ice_rem_prof_id_flow;
6046 } else {
6047 status = ice_rem_prof_id_vsig(hw, blk, vsig,
6048 hdl, &chg);
6049 if (status)
6050 goto err_ice_rem_prof_id_flow;
6051
6052 /* Adjust priorities */
6053 status = ice_adj_prof_priorities(hw, blk, vsig,
6054 &chg);
6055 if (status)
6056 goto err_ice_rem_prof_id_flow;
6057 }
6058
6059 } else {
6060 /* Make a copy of the VSIG's list of Profiles */
6061 status = ice_get_profs_vsig(hw, blk, vsig, ©);
6062 if (status)
6063 goto err_ice_rem_prof_id_flow;
6064
6065 /* Remove specified profile entry from the list */
6066 status = ice_rem_prof_from_list(hw, ©, hdl);
6067 if (status)
6068 goto err_ice_rem_prof_id_flow;
6069
6070 if (list_empty(©)) {
6071 status = ice_move_vsi(hw, blk, vsi,
6072 ICE_DEFAULT_VSIG, &chg);
6073 if (status)
6074 goto err_ice_rem_prof_id_flow;
6075
6076 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
6077 &vsig)) {
6078 /* found an exact match */
6079 /* add or move VSI to the VSIG that matches */
6080 /* Search for a VSIG with a matching profile
6081 * list
6082 */
6083
6084 /* Found match, move VSI to the matching VSIG */
6085 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6086 if (status)
6087 goto err_ice_rem_prof_id_flow;
6088 } else {
6089 /* since no existing VSIG supports this
6090 * characteristic pattern, we need to create a
6091 * new VSIG and TCAM entries
6092 */
6093 status = ice_create_vsig_from_lst(hw, blk, vsi,
6094 ©, &vsig,
6095 &chg);
6096 if (status)
6097 goto err_ice_rem_prof_id_flow;
6098
6099 /* Adjust priorities */
6100 status = ice_adj_prof_priorities(hw, blk, vsig,
6101 &chg);
6102 if (status)
6103 goto err_ice_rem_prof_id_flow;
6104 }
6105 }
6106 } else {
6107 status = -ENOENT;
6108 }
6109
6110 /* update hardware tables */
6111 if (!status)
6112 status = ice_upd_prof_hw(hw, blk, &chg);
6113
6114 err_ice_rem_prof_id_flow:
6115 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
6116 list_del(&del->list_entry);
6117 devm_kfree(ice_hw_to_dev(hw), del);
6118 }
6119
6120 list_for_each_entry_safe(del1, tmp1, ©, list) {
6121 list_del(&del1->list);
6122 devm_kfree(ice_hw_to_dev(hw), del1);
6123 }
6124
6125 return status;
6126 }
6127