1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net-sysfs.c - network device class and attributes
4 *
5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6 */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26
27 #include "dev.h"
28 #include "net-sysfs.h"
29
30 #ifdef CONFIG_SYSFS
31 static const char fmt_hex[] = "%#x\n";
32 static const char fmt_dec[] = "%d\n";
33 static const char fmt_ulong[] = "%lu\n";
34 static const char fmt_u64[] = "%llu\n";
35
36 /* Caller holds RTNL or dev_base_lock */
dev_isalive(const struct net_device * dev)37 static inline int dev_isalive(const struct net_device *dev)
38 {
39 return dev->reg_state <= NETREG_REGISTERED;
40 }
41
42 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))43 static ssize_t netdev_show(const struct device *dev,
44 struct device_attribute *attr, char *buf,
45 ssize_t (*format)(const struct net_device *, char *))
46 {
47 struct net_device *ndev = to_net_dev(dev);
48 ssize_t ret = -EINVAL;
49
50 read_lock(&dev_base_lock);
51 if (dev_isalive(ndev))
52 ret = (*format)(ndev, buf);
53 read_unlock(&dev_base_lock);
54
55 return ret;
56 }
57
58 /* generate a show function for simple field */
59 #define NETDEVICE_SHOW(field, format_string) \
60 static ssize_t format_##field(const struct net_device *dev, char *buf) \
61 { \
62 return sprintf(buf, format_string, dev->field); \
63 } \
64 static ssize_t field##_show(struct device *dev, \
65 struct device_attribute *attr, char *buf) \
66 { \
67 return netdev_show(dev, attr, buf, format_##field); \
68 } \
69
70 #define NETDEVICE_SHOW_RO(field, format_string) \
71 NETDEVICE_SHOW(field, format_string); \
72 static DEVICE_ATTR_RO(field)
73
74 #define NETDEVICE_SHOW_RW(field, format_string) \
75 NETDEVICE_SHOW(field, format_string); \
76 static DEVICE_ATTR_RW(field)
77
78 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))79 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
80 const char *buf, size_t len,
81 int (*set)(struct net_device *, unsigned long))
82 {
83 struct net_device *netdev = to_net_dev(dev);
84 struct net *net = dev_net(netdev);
85 unsigned long new;
86 int ret;
87
88 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
89 return -EPERM;
90
91 ret = kstrtoul(buf, 0, &new);
92 if (ret)
93 goto err;
94
95 if (!rtnl_trylock())
96 return restart_syscall();
97
98 if (dev_isalive(netdev)) {
99 ret = (*set)(netdev, new);
100 if (ret == 0)
101 ret = len;
102 }
103 rtnl_unlock();
104 err:
105 return ret;
106 }
107
108 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
109 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
110 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
111 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
112 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
113 NETDEVICE_SHOW_RO(type, fmt_dec);
114 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
115
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)116 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
117 char *buf)
118 {
119 struct net_device *ndev = to_net_dev(dev);
120
121 return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
122 }
123 static DEVICE_ATTR_RO(iflink);
124
format_name_assign_type(const struct net_device * dev,char * buf)125 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
126 {
127 return sprintf(buf, fmt_dec, dev->name_assign_type);
128 }
129
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)130 static ssize_t name_assign_type_show(struct device *dev,
131 struct device_attribute *attr,
132 char *buf)
133 {
134 struct net_device *ndev = to_net_dev(dev);
135 ssize_t ret = -EINVAL;
136
137 if (ndev->name_assign_type != NET_NAME_UNKNOWN)
138 ret = netdev_show(dev, attr, buf, format_name_assign_type);
139
140 return ret;
141 }
142 static DEVICE_ATTR_RO(name_assign_type);
143
144 /* use same locking rules as GIFHWADDR ioctl's */
address_show(struct device * dev,struct device_attribute * attr,char * buf)145 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
146 char *buf)
147 {
148 struct net_device *ndev = to_net_dev(dev);
149 ssize_t ret = -EINVAL;
150
151 read_lock(&dev_base_lock);
152 if (dev_isalive(ndev))
153 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
154 read_unlock(&dev_base_lock);
155 return ret;
156 }
157 static DEVICE_ATTR_RO(address);
158
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)159 static ssize_t broadcast_show(struct device *dev,
160 struct device_attribute *attr, char *buf)
161 {
162 struct net_device *ndev = to_net_dev(dev);
163
164 if (dev_isalive(ndev))
165 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
166 return -EINVAL;
167 }
168 static DEVICE_ATTR_RO(broadcast);
169
change_carrier(struct net_device * dev,unsigned long new_carrier)170 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
171 {
172 if (!netif_running(dev))
173 return -EINVAL;
174 return dev_change_carrier(dev, (bool)new_carrier);
175 }
176
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)177 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
178 const char *buf, size_t len)
179 {
180 struct net_device *netdev = to_net_dev(dev);
181
182 /* The check is also done in change_carrier; this helps returning early
183 * without hitting the trylock/restart in netdev_store.
184 */
185 if (!netdev->netdev_ops->ndo_change_carrier)
186 return -EOPNOTSUPP;
187
188 return netdev_store(dev, attr, buf, len, change_carrier);
189 }
190
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t carrier_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct net_device *netdev = to_net_dev(dev);
195
196 if (netif_running(netdev))
197 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
198
199 return -EINVAL;
200 }
201 static DEVICE_ATTR_RW(carrier);
202
speed_show(struct device * dev,struct device_attribute * attr,char * buf)203 static ssize_t speed_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct net_device *netdev = to_net_dev(dev);
207 int ret = -EINVAL;
208
209 /* The check is also done in __ethtool_get_link_ksettings; this helps
210 * returning early without hitting the trylock/restart below.
211 */
212 if (!netdev->ethtool_ops->get_link_ksettings)
213 return ret;
214
215 if (!rtnl_trylock())
216 return restart_syscall();
217
218 if (netif_running(netdev) && netif_device_present(netdev)) {
219 struct ethtool_link_ksettings cmd;
220
221 if (!__ethtool_get_link_ksettings(netdev, &cmd))
222 ret = sprintf(buf, fmt_dec, cmd.base.speed);
223 }
224 rtnl_unlock();
225 return ret;
226 }
227 static DEVICE_ATTR_RO(speed);
228
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t duplex_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct net_device *netdev = to_net_dev(dev);
233 int ret = -EINVAL;
234
235 /* The check is also done in __ethtool_get_link_ksettings; this helps
236 * returning early without hitting the trylock/restart below.
237 */
238 if (!netdev->ethtool_ops->get_link_ksettings)
239 return ret;
240
241 if (!rtnl_trylock())
242 return restart_syscall();
243
244 if (netif_running(netdev)) {
245 struct ethtool_link_ksettings cmd;
246
247 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
248 const char *duplex;
249
250 switch (cmd.base.duplex) {
251 case DUPLEX_HALF:
252 duplex = "half";
253 break;
254 case DUPLEX_FULL:
255 duplex = "full";
256 break;
257 default:
258 duplex = "unknown";
259 break;
260 }
261 ret = sprintf(buf, "%s\n", duplex);
262 }
263 }
264 rtnl_unlock();
265 return ret;
266 }
267 static DEVICE_ATTR_RO(duplex);
268
testing_show(struct device * dev,struct device_attribute * attr,char * buf)269 static ssize_t testing_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271 {
272 struct net_device *netdev = to_net_dev(dev);
273
274 if (netif_running(netdev))
275 return sprintf(buf, fmt_dec, !!netif_testing(netdev));
276
277 return -EINVAL;
278 }
279 static DEVICE_ATTR_RO(testing);
280
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t dormant_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct net_device *netdev = to_net_dev(dev);
285
286 if (netif_running(netdev))
287 return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
288
289 return -EINVAL;
290 }
291 static DEVICE_ATTR_RO(dormant);
292
293 static const char *const operstates[] = {
294 "unknown",
295 "notpresent", /* currently unused */
296 "down",
297 "lowerlayerdown",
298 "testing",
299 "dormant",
300 "up"
301 };
302
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)303 static ssize_t operstate_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 const struct net_device *netdev = to_net_dev(dev);
307 unsigned char operstate;
308
309 read_lock(&dev_base_lock);
310 operstate = netdev->operstate;
311 if (!netif_running(netdev))
312 operstate = IF_OPER_DOWN;
313 read_unlock(&dev_base_lock);
314
315 if (operstate >= ARRAY_SIZE(operstates))
316 return -EINVAL; /* should not happen */
317
318 return sprintf(buf, "%s\n", operstates[operstate]);
319 }
320 static DEVICE_ATTR_RO(operstate);
321
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)322 static ssize_t carrier_changes_show(struct device *dev,
323 struct device_attribute *attr,
324 char *buf)
325 {
326 struct net_device *netdev = to_net_dev(dev);
327
328 return sprintf(buf, fmt_dec,
329 atomic_read(&netdev->carrier_up_count) +
330 atomic_read(&netdev->carrier_down_count));
331 }
332 static DEVICE_ATTR_RO(carrier_changes);
333
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)334 static ssize_t carrier_up_count_show(struct device *dev,
335 struct device_attribute *attr,
336 char *buf)
337 {
338 struct net_device *netdev = to_net_dev(dev);
339
340 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
341 }
342 static DEVICE_ATTR_RO(carrier_up_count);
343
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)344 static ssize_t carrier_down_count_show(struct device *dev,
345 struct device_attribute *attr,
346 char *buf)
347 {
348 struct net_device *netdev = to_net_dev(dev);
349
350 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
351 }
352 static DEVICE_ATTR_RO(carrier_down_count);
353
354 /* read-write attributes */
355
change_mtu(struct net_device * dev,unsigned long new_mtu)356 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
357 {
358 return dev_set_mtu(dev, (int)new_mtu);
359 }
360
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)361 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
362 const char *buf, size_t len)
363 {
364 return netdev_store(dev, attr, buf, len, change_mtu);
365 }
366 NETDEVICE_SHOW_RW(mtu, fmt_dec);
367
change_flags(struct net_device * dev,unsigned long new_flags)368 static int change_flags(struct net_device *dev, unsigned long new_flags)
369 {
370 return dev_change_flags(dev, (unsigned int)new_flags, NULL);
371 }
372
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)373 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
374 const char *buf, size_t len)
375 {
376 return netdev_store(dev, attr, buf, len, change_flags);
377 }
378 NETDEVICE_SHOW_RW(flags, fmt_hex);
379
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)380 static ssize_t tx_queue_len_store(struct device *dev,
381 struct device_attribute *attr,
382 const char *buf, size_t len)
383 {
384 if (!capable(CAP_NET_ADMIN))
385 return -EPERM;
386
387 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
388 }
389 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
390
change_gro_flush_timeout(struct net_device * dev,unsigned long val)391 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
392 {
393 WRITE_ONCE(dev->gro_flush_timeout, val);
394 return 0;
395 }
396
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)397 static ssize_t gro_flush_timeout_store(struct device *dev,
398 struct device_attribute *attr,
399 const char *buf, size_t len)
400 {
401 if (!capable(CAP_NET_ADMIN))
402 return -EPERM;
403
404 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
405 }
406 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
407
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)408 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
409 {
410 WRITE_ONCE(dev->napi_defer_hard_irqs, val);
411 return 0;
412 }
413
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)414 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
415 struct device_attribute *attr,
416 const char *buf, size_t len)
417 {
418 if (!capable(CAP_NET_ADMIN))
419 return -EPERM;
420
421 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
422 }
423 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
424
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)425 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
426 const char *buf, size_t len)
427 {
428 struct net_device *netdev = to_net_dev(dev);
429 struct net *net = dev_net(netdev);
430 size_t count = len;
431 ssize_t ret = 0;
432
433 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
434 return -EPERM;
435
436 /* ignore trailing newline */
437 if (len > 0 && buf[len - 1] == '\n')
438 --count;
439
440 if (!rtnl_trylock())
441 return restart_syscall();
442
443 if (dev_isalive(netdev)) {
444 ret = dev_set_alias(netdev, buf, count);
445 if (ret < 0)
446 goto err;
447 ret = len;
448 netdev_state_change(netdev);
449 }
450 err:
451 rtnl_unlock();
452
453 return ret;
454 }
455
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)456 static ssize_t ifalias_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 const struct net_device *netdev = to_net_dev(dev);
460 char tmp[IFALIASZ];
461 ssize_t ret = 0;
462
463 ret = dev_get_alias(netdev, tmp, sizeof(tmp));
464 if (ret > 0)
465 ret = sprintf(buf, "%s\n", tmp);
466 return ret;
467 }
468 static DEVICE_ATTR_RW(ifalias);
469
change_group(struct net_device * dev,unsigned long new_group)470 static int change_group(struct net_device *dev, unsigned long new_group)
471 {
472 dev_set_group(dev, (int)new_group);
473 return 0;
474 }
475
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)476 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
477 const char *buf, size_t len)
478 {
479 return netdev_store(dev, attr, buf, len, change_group);
480 }
481 NETDEVICE_SHOW(group, fmt_dec);
482 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
483
change_proto_down(struct net_device * dev,unsigned long proto_down)484 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
485 {
486 return dev_change_proto_down(dev, (bool)proto_down);
487 }
488
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)489 static ssize_t proto_down_store(struct device *dev,
490 struct device_attribute *attr,
491 const char *buf, size_t len)
492 {
493 return netdev_store(dev, attr, buf, len, change_proto_down);
494 }
495 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
496
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)497 static ssize_t phys_port_id_show(struct device *dev,
498 struct device_attribute *attr, char *buf)
499 {
500 struct net_device *netdev = to_net_dev(dev);
501 ssize_t ret = -EINVAL;
502
503 /* The check is also done in dev_get_phys_port_id; this helps returning
504 * early without hitting the trylock/restart below.
505 */
506 if (!netdev->netdev_ops->ndo_get_phys_port_id)
507 return -EOPNOTSUPP;
508
509 if (!rtnl_trylock())
510 return restart_syscall();
511
512 if (dev_isalive(netdev)) {
513 struct netdev_phys_item_id ppid;
514
515 ret = dev_get_phys_port_id(netdev, &ppid);
516 if (!ret)
517 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
518 }
519 rtnl_unlock();
520
521 return ret;
522 }
523 static DEVICE_ATTR_RO(phys_port_id);
524
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)525 static ssize_t phys_port_name_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct net_device *netdev = to_net_dev(dev);
529 ssize_t ret = -EINVAL;
530
531 /* The checks are also done in dev_get_phys_port_name; this helps
532 * returning early without hitting the trylock/restart below.
533 */
534 if (!netdev->netdev_ops->ndo_get_phys_port_name &&
535 !netdev->netdev_ops->ndo_get_devlink_port)
536 return -EOPNOTSUPP;
537
538 if (!rtnl_trylock())
539 return restart_syscall();
540
541 if (dev_isalive(netdev)) {
542 char name[IFNAMSIZ];
543
544 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
545 if (!ret)
546 ret = sprintf(buf, "%s\n", name);
547 }
548 rtnl_unlock();
549
550 return ret;
551 }
552 static DEVICE_ATTR_RO(phys_port_name);
553
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t phys_switch_id_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct net_device *netdev = to_net_dev(dev);
558 ssize_t ret = -EINVAL;
559
560 /* The checks are also done in dev_get_phys_port_name; this helps
561 * returning early without hitting the trylock/restart below. This works
562 * because recurse is false when calling dev_get_port_parent_id.
563 */
564 if (!netdev->netdev_ops->ndo_get_port_parent_id &&
565 !netdev->netdev_ops->ndo_get_devlink_port)
566 return -EOPNOTSUPP;
567
568 if (!rtnl_trylock())
569 return restart_syscall();
570
571 if (dev_isalive(netdev)) {
572 struct netdev_phys_item_id ppid = { };
573
574 ret = dev_get_port_parent_id(netdev, &ppid, false);
575 if (!ret)
576 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
577 }
578 rtnl_unlock();
579
580 return ret;
581 }
582 static DEVICE_ATTR_RO(phys_switch_id);
583
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)584 static ssize_t threaded_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586 {
587 struct net_device *netdev = to_net_dev(dev);
588 ssize_t ret = -EINVAL;
589
590 if (!rtnl_trylock())
591 return restart_syscall();
592
593 if (dev_isalive(netdev))
594 ret = sprintf(buf, fmt_dec, netdev->threaded);
595
596 rtnl_unlock();
597 return ret;
598 }
599
modify_napi_threaded(struct net_device * dev,unsigned long val)600 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
601 {
602 int ret;
603
604 if (list_empty(&dev->napi_list))
605 return -EOPNOTSUPP;
606
607 if (val != 0 && val != 1)
608 return -EOPNOTSUPP;
609
610 ret = dev_set_threaded(dev, val);
611
612 return ret;
613 }
614
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)615 static ssize_t threaded_store(struct device *dev,
616 struct device_attribute *attr,
617 const char *buf, size_t len)
618 {
619 return netdev_store(dev, attr, buf, len, modify_napi_threaded);
620 }
621 static DEVICE_ATTR_RW(threaded);
622
623 static struct attribute *net_class_attrs[] __ro_after_init = {
624 &dev_attr_netdev_group.attr,
625 &dev_attr_type.attr,
626 &dev_attr_dev_id.attr,
627 &dev_attr_dev_port.attr,
628 &dev_attr_iflink.attr,
629 &dev_attr_ifindex.attr,
630 &dev_attr_name_assign_type.attr,
631 &dev_attr_addr_assign_type.attr,
632 &dev_attr_addr_len.attr,
633 &dev_attr_link_mode.attr,
634 &dev_attr_address.attr,
635 &dev_attr_broadcast.attr,
636 &dev_attr_speed.attr,
637 &dev_attr_duplex.attr,
638 &dev_attr_dormant.attr,
639 &dev_attr_testing.attr,
640 &dev_attr_operstate.attr,
641 &dev_attr_carrier_changes.attr,
642 &dev_attr_ifalias.attr,
643 &dev_attr_carrier.attr,
644 &dev_attr_mtu.attr,
645 &dev_attr_flags.attr,
646 &dev_attr_tx_queue_len.attr,
647 &dev_attr_gro_flush_timeout.attr,
648 &dev_attr_napi_defer_hard_irqs.attr,
649 &dev_attr_phys_port_id.attr,
650 &dev_attr_phys_port_name.attr,
651 &dev_attr_phys_switch_id.attr,
652 &dev_attr_proto_down.attr,
653 &dev_attr_carrier_up_count.attr,
654 &dev_attr_carrier_down_count.attr,
655 &dev_attr_threaded.attr,
656 NULL,
657 };
658 ATTRIBUTE_GROUPS(net_class);
659
660 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)661 static ssize_t netstat_show(const struct device *d,
662 struct device_attribute *attr, char *buf,
663 unsigned long offset)
664 {
665 struct net_device *dev = to_net_dev(d);
666 ssize_t ret = -EINVAL;
667
668 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
669 offset % sizeof(u64) != 0);
670
671 read_lock(&dev_base_lock);
672 if (dev_isalive(dev)) {
673 struct rtnl_link_stats64 temp;
674 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
675
676 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
677 }
678 read_unlock(&dev_base_lock);
679 return ret;
680 }
681
682 /* generate a read-only statistics attribute */
683 #define NETSTAT_ENTRY(name) \
684 static ssize_t name##_show(struct device *d, \
685 struct device_attribute *attr, char *buf) \
686 { \
687 return netstat_show(d, attr, buf, \
688 offsetof(struct rtnl_link_stats64, name)); \
689 } \
690 static DEVICE_ATTR_RO(name)
691
692 NETSTAT_ENTRY(rx_packets);
693 NETSTAT_ENTRY(tx_packets);
694 NETSTAT_ENTRY(rx_bytes);
695 NETSTAT_ENTRY(tx_bytes);
696 NETSTAT_ENTRY(rx_errors);
697 NETSTAT_ENTRY(tx_errors);
698 NETSTAT_ENTRY(rx_dropped);
699 NETSTAT_ENTRY(tx_dropped);
700 NETSTAT_ENTRY(multicast);
701 NETSTAT_ENTRY(collisions);
702 NETSTAT_ENTRY(rx_length_errors);
703 NETSTAT_ENTRY(rx_over_errors);
704 NETSTAT_ENTRY(rx_crc_errors);
705 NETSTAT_ENTRY(rx_frame_errors);
706 NETSTAT_ENTRY(rx_fifo_errors);
707 NETSTAT_ENTRY(rx_missed_errors);
708 NETSTAT_ENTRY(tx_aborted_errors);
709 NETSTAT_ENTRY(tx_carrier_errors);
710 NETSTAT_ENTRY(tx_fifo_errors);
711 NETSTAT_ENTRY(tx_heartbeat_errors);
712 NETSTAT_ENTRY(tx_window_errors);
713 NETSTAT_ENTRY(rx_compressed);
714 NETSTAT_ENTRY(tx_compressed);
715 NETSTAT_ENTRY(rx_nohandler);
716
717 static struct attribute *netstat_attrs[] __ro_after_init = {
718 &dev_attr_rx_packets.attr,
719 &dev_attr_tx_packets.attr,
720 &dev_attr_rx_bytes.attr,
721 &dev_attr_tx_bytes.attr,
722 &dev_attr_rx_errors.attr,
723 &dev_attr_tx_errors.attr,
724 &dev_attr_rx_dropped.attr,
725 &dev_attr_tx_dropped.attr,
726 &dev_attr_multicast.attr,
727 &dev_attr_collisions.attr,
728 &dev_attr_rx_length_errors.attr,
729 &dev_attr_rx_over_errors.attr,
730 &dev_attr_rx_crc_errors.attr,
731 &dev_attr_rx_frame_errors.attr,
732 &dev_attr_rx_fifo_errors.attr,
733 &dev_attr_rx_missed_errors.attr,
734 &dev_attr_tx_aborted_errors.attr,
735 &dev_attr_tx_carrier_errors.attr,
736 &dev_attr_tx_fifo_errors.attr,
737 &dev_attr_tx_heartbeat_errors.attr,
738 &dev_attr_tx_window_errors.attr,
739 &dev_attr_rx_compressed.attr,
740 &dev_attr_tx_compressed.attr,
741 &dev_attr_rx_nohandler.attr,
742 NULL
743 };
744
745 static const struct attribute_group netstat_group = {
746 .name = "statistics",
747 .attrs = netstat_attrs,
748 };
749
750 static struct attribute *wireless_attrs[] = {
751 NULL
752 };
753
754 static const struct attribute_group wireless_group = {
755 .name = "wireless",
756 .attrs = wireless_attrs,
757 };
758
wireless_group_needed(struct net_device * ndev)759 static bool wireless_group_needed(struct net_device *ndev)
760 {
761 #if IS_ENABLED(CONFIG_CFG80211)
762 if (ndev->ieee80211_ptr)
763 return true;
764 #endif
765 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
766 if (ndev->wireless_handlers)
767 return true;
768 #endif
769 return false;
770 }
771
772 #else /* CONFIG_SYSFS */
773 #define net_class_groups NULL
774 #endif /* CONFIG_SYSFS */
775
776 #ifdef CONFIG_SYSFS
777 #define to_rx_queue_attr(_attr) \
778 container_of(_attr, struct rx_queue_attribute, attr)
779
780 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
781
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)782 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
783 char *buf)
784 {
785 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
786 struct netdev_rx_queue *queue = to_rx_queue(kobj);
787
788 if (!attribute->show)
789 return -EIO;
790
791 return attribute->show(queue, buf);
792 }
793
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)794 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
795 const char *buf, size_t count)
796 {
797 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
798 struct netdev_rx_queue *queue = to_rx_queue(kobj);
799
800 if (!attribute->store)
801 return -EIO;
802
803 return attribute->store(queue, buf, count);
804 }
805
806 static const struct sysfs_ops rx_queue_sysfs_ops = {
807 .show = rx_queue_attr_show,
808 .store = rx_queue_attr_store,
809 };
810
811 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)812 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
813 {
814 struct rps_map *map;
815 cpumask_var_t mask;
816 int i, len;
817
818 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
819 return -ENOMEM;
820
821 rcu_read_lock();
822 map = rcu_dereference(queue->rps_map);
823 if (map)
824 for (i = 0; i < map->len; i++)
825 cpumask_set_cpu(map->cpus[i], mask);
826
827 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
828 rcu_read_unlock();
829 free_cpumask_var(mask);
830
831 return len < PAGE_SIZE ? len : -EINVAL;
832 }
833
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)834 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
835 const char *buf, size_t len)
836 {
837 struct rps_map *old_map, *map;
838 cpumask_var_t mask;
839 int err, cpu, i;
840 static DEFINE_MUTEX(rps_map_mutex);
841
842 if (!capable(CAP_NET_ADMIN))
843 return -EPERM;
844
845 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
846 return -ENOMEM;
847
848 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
849 if (err) {
850 free_cpumask_var(mask);
851 return err;
852 }
853
854 if (!cpumask_empty(mask)) {
855 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
856 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
857 if (cpumask_empty(mask)) {
858 free_cpumask_var(mask);
859 return -EINVAL;
860 }
861 }
862
863 map = kzalloc(max_t(unsigned int,
864 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
865 GFP_KERNEL);
866 if (!map) {
867 free_cpumask_var(mask);
868 return -ENOMEM;
869 }
870
871 i = 0;
872 for_each_cpu_and(cpu, mask, cpu_online_mask)
873 map->cpus[i++] = cpu;
874
875 if (i) {
876 map->len = i;
877 } else {
878 kfree(map);
879 map = NULL;
880 }
881
882 mutex_lock(&rps_map_mutex);
883 old_map = rcu_dereference_protected(queue->rps_map,
884 mutex_is_locked(&rps_map_mutex));
885 rcu_assign_pointer(queue->rps_map, map);
886
887 if (map)
888 static_branch_inc(&rps_needed);
889 if (old_map)
890 static_branch_dec(&rps_needed);
891
892 mutex_unlock(&rps_map_mutex);
893
894 if (old_map)
895 kfree_rcu(old_map, rcu);
896
897 free_cpumask_var(mask);
898 return len;
899 }
900
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)901 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
902 char *buf)
903 {
904 struct rps_dev_flow_table *flow_table;
905 unsigned long val = 0;
906
907 rcu_read_lock();
908 flow_table = rcu_dereference(queue->rps_flow_table);
909 if (flow_table)
910 val = (unsigned long)flow_table->mask + 1;
911 rcu_read_unlock();
912
913 return sprintf(buf, "%lu\n", val);
914 }
915
rps_dev_flow_table_release(struct rcu_head * rcu)916 static void rps_dev_flow_table_release(struct rcu_head *rcu)
917 {
918 struct rps_dev_flow_table *table = container_of(rcu,
919 struct rps_dev_flow_table, rcu);
920 vfree(table);
921 }
922
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)923 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
924 const char *buf, size_t len)
925 {
926 unsigned long mask, count;
927 struct rps_dev_flow_table *table, *old_table;
928 static DEFINE_SPINLOCK(rps_dev_flow_lock);
929 int rc;
930
931 if (!capable(CAP_NET_ADMIN))
932 return -EPERM;
933
934 rc = kstrtoul(buf, 0, &count);
935 if (rc < 0)
936 return rc;
937
938 if (count) {
939 mask = count - 1;
940 /* mask = roundup_pow_of_two(count) - 1;
941 * without overflows...
942 */
943 while ((mask | (mask >> 1)) != mask)
944 mask |= (mask >> 1);
945 /* On 64 bit arches, must check mask fits in table->mask (u32),
946 * and on 32bit arches, must check
947 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
948 */
949 #if BITS_PER_LONG > 32
950 if (mask > (unsigned long)(u32)mask)
951 return -EINVAL;
952 #else
953 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
954 / sizeof(struct rps_dev_flow)) {
955 /* Enforce a limit to prevent overflow */
956 return -EINVAL;
957 }
958 #endif
959 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
960 if (!table)
961 return -ENOMEM;
962
963 table->mask = mask;
964 for (count = 0; count <= mask; count++)
965 table->flows[count].cpu = RPS_NO_CPU;
966 } else {
967 table = NULL;
968 }
969
970 spin_lock(&rps_dev_flow_lock);
971 old_table = rcu_dereference_protected(queue->rps_flow_table,
972 lockdep_is_held(&rps_dev_flow_lock));
973 rcu_assign_pointer(queue->rps_flow_table, table);
974 spin_unlock(&rps_dev_flow_lock);
975
976 if (old_table)
977 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
978
979 return len;
980 }
981
982 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
983 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
984
985 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
986 = __ATTR(rps_flow_cnt, 0644,
987 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
988 #endif /* CONFIG_RPS */
989
990 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
991 #ifdef CONFIG_RPS
992 &rps_cpus_attribute.attr,
993 &rps_dev_flow_table_cnt_attribute.attr,
994 #endif
995 NULL
996 };
997 ATTRIBUTE_GROUPS(rx_queue_default);
998
rx_queue_release(struct kobject * kobj)999 static void rx_queue_release(struct kobject *kobj)
1000 {
1001 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1002 #ifdef CONFIG_RPS
1003 struct rps_map *map;
1004 struct rps_dev_flow_table *flow_table;
1005
1006 map = rcu_dereference_protected(queue->rps_map, 1);
1007 if (map) {
1008 RCU_INIT_POINTER(queue->rps_map, NULL);
1009 kfree_rcu(map, rcu);
1010 }
1011
1012 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1013 if (flow_table) {
1014 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1015 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1016 }
1017 #endif
1018
1019 memset(kobj, 0, sizeof(*kobj));
1020 dev_put_track(queue->dev, &queue->dev_tracker);
1021 }
1022
rx_queue_namespace(struct kobject * kobj)1023 static const void *rx_queue_namespace(struct kobject *kobj)
1024 {
1025 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1026 struct device *dev = &queue->dev->dev;
1027 const void *ns = NULL;
1028
1029 if (dev->class && dev->class->ns_type)
1030 ns = dev->class->namespace(dev);
1031
1032 return ns;
1033 }
1034
rx_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1035 static void rx_queue_get_ownership(struct kobject *kobj,
1036 kuid_t *uid, kgid_t *gid)
1037 {
1038 const struct net *net = rx_queue_namespace(kobj);
1039
1040 net_ns_get_ownership(net, uid, gid);
1041 }
1042
1043 static struct kobj_type rx_queue_ktype __ro_after_init = {
1044 .sysfs_ops = &rx_queue_sysfs_ops,
1045 .release = rx_queue_release,
1046 .default_groups = rx_queue_default_groups,
1047 .namespace = rx_queue_namespace,
1048 .get_ownership = rx_queue_get_ownership,
1049 };
1050
rx_queue_add_kobject(struct net_device * dev,int index)1051 static int rx_queue_add_kobject(struct net_device *dev, int index)
1052 {
1053 struct netdev_rx_queue *queue = dev->_rx + index;
1054 struct kobject *kobj = &queue->kobj;
1055 int error = 0;
1056
1057 /* Kobject_put later will trigger rx_queue_release call which
1058 * decreases dev refcount: Take that reference here
1059 */
1060 dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1061
1062 kobj->kset = dev->queues_kset;
1063 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1064 "rx-%u", index);
1065 if (error)
1066 goto err;
1067
1068 if (dev->sysfs_rx_queue_group) {
1069 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1070 if (error)
1071 goto err;
1072 }
1073
1074 kobject_uevent(kobj, KOBJ_ADD);
1075
1076 return error;
1077
1078 err:
1079 kobject_put(kobj);
1080 return error;
1081 }
1082
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1083 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1084 kgid_t kgid)
1085 {
1086 struct netdev_rx_queue *queue = dev->_rx + index;
1087 struct kobject *kobj = &queue->kobj;
1088 int error;
1089
1090 error = sysfs_change_owner(kobj, kuid, kgid);
1091 if (error)
1092 return error;
1093
1094 if (dev->sysfs_rx_queue_group)
1095 error = sysfs_group_change_owner(
1096 kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1097
1098 return error;
1099 }
1100 #endif /* CONFIG_SYSFS */
1101
1102 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1103 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1104 {
1105 #ifdef CONFIG_SYSFS
1106 int i;
1107 int error = 0;
1108
1109 #ifndef CONFIG_RPS
1110 if (!dev->sysfs_rx_queue_group)
1111 return 0;
1112 #endif
1113 for (i = old_num; i < new_num; i++) {
1114 error = rx_queue_add_kobject(dev, i);
1115 if (error) {
1116 new_num = old_num;
1117 break;
1118 }
1119 }
1120
1121 while (--i >= new_num) {
1122 struct kobject *kobj = &dev->_rx[i].kobj;
1123
1124 if (!refcount_read(&dev_net(dev)->ns.count))
1125 kobj->uevent_suppress = 1;
1126 if (dev->sysfs_rx_queue_group)
1127 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1128 kobject_put(kobj);
1129 }
1130
1131 return error;
1132 #else
1133 return 0;
1134 #endif
1135 }
1136
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1137 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1138 kuid_t kuid, kgid_t kgid)
1139 {
1140 #ifdef CONFIG_SYSFS
1141 int error = 0;
1142 int i;
1143
1144 #ifndef CONFIG_RPS
1145 if (!dev->sysfs_rx_queue_group)
1146 return 0;
1147 #endif
1148 for (i = 0; i < num; i++) {
1149 error = rx_queue_change_owner(dev, i, kuid, kgid);
1150 if (error)
1151 break;
1152 }
1153
1154 return error;
1155 #else
1156 return 0;
1157 #endif
1158 }
1159
1160 #ifdef CONFIG_SYSFS
1161 /*
1162 * netdev_queue sysfs structures and functions.
1163 */
1164 struct netdev_queue_attribute {
1165 struct attribute attr;
1166 ssize_t (*show)(struct netdev_queue *queue, char *buf);
1167 ssize_t (*store)(struct netdev_queue *queue,
1168 const char *buf, size_t len);
1169 };
1170 #define to_netdev_queue_attr(_attr) \
1171 container_of(_attr, struct netdev_queue_attribute, attr)
1172
1173 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1174
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1175 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1176 struct attribute *attr, char *buf)
1177 {
1178 const struct netdev_queue_attribute *attribute
1179 = to_netdev_queue_attr(attr);
1180 struct netdev_queue *queue = to_netdev_queue(kobj);
1181
1182 if (!attribute->show)
1183 return -EIO;
1184
1185 return attribute->show(queue, buf);
1186 }
1187
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1188 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1189 struct attribute *attr,
1190 const char *buf, size_t count)
1191 {
1192 const struct netdev_queue_attribute *attribute
1193 = to_netdev_queue_attr(attr);
1194 struct netdev_queue *queue = to_netdev_queue(kobj);
1195
1196 if (!attribute->store)
1197 return -EIO;
1198
1199 return attribute->store(queue, buf, count);
1200 }
1201
1202 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1203 .show = netdev_queue_attr_show,
1204 .store = netdev_queue_attr_store,
1205 };
1206
tx_timeout_show(struct netdev_queue * queue,char * buf)1207 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1208 {
1209 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1210
1211 return sprintf(buf, fmt_ulong, trans_timeout);
1212 }
1213
get_netdev_queue_index(struct netdev_queue * queue)1214 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1215 {
1216 struct net_device *dev = queue->dev;
1217 unsigned int i;
1218
1219 i = queue - dev->_tx;
1220 BUG_ON(i >= dev->num_tx_queues);
1221
1222 return i;
1223 }
1224
traffic_class_show(struct netdev_queue * queue,char * buf)1225 static ssize_t traffic_class_show(struct netdev_queue *queue,
1226 char *buf)
1227 {
1228 struct net_device *dev = queue->dev;
1229 int num_tc, tc;
1230 int index;
1231
1232 if (!netif_is_multiqueue(dev))
1233 return -ENOENT;
1234
1235 if (!rtnl_trylock())
1236 return restart_syscall();
1237
1238 index = get_netdev_queue_index(queue);
1239
1240 /* If queue belongs to subordinate dev use its TC mapping */
1241 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1242
1243 num_tc = dev->num_tc;
1244 tc = netdev_txq_to_tc(dev, index);
1245
1246 rtnl_unlock();
1247
1248 if (tc < 0)
1249 return -EINVAL;
1250
1251 /* We can report the traffic class one of two ways:
1252 * Subordinate device traffic classes are reported with the traffic
1253 * class first, and then the subordinate class so for example TC0 on
1254 * subordinate device 2 will be reported as "0-2". If the queue
1255 * belongs to the root device it will be reported with just the
1256 * traffic class, so just "0" for TC 0 for example.
1257 */
1258 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1259 sprintf(buf, "%d\n", tc);
1260 }
1261
1262 #ifdef CONFIG_XPS
tx_maxrate_show(struct netdev_queue * queue,char * buf)1263 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1264 char *buf)
1265 {
1266 return sprintf(buf, "%lu\n", queue->tx_maxrate);
1267 }
1268
tx_maxrate_store(struct netdev_queue * queue,const char * buf,size_t len)1269 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1270 const char *buf, size_t len)
1271 {
1272 struct net_device *dev = queue->dev;
1273 int err, index = get_netdev_queue_index(queue);
1274 u32 rate = 0;
1275
1276 if (!capable(CAP_NET_ADMIN))
1277 return -EPERM;
1278
1279 /* The check is also done later; this helps returning early without
1280 * hitting the trylock/restart below.
1281 */
1282 if (!dev->netdev_ops->ndo_set_tx_maxrate)
1283 return -EOPNOTSUPP;
1284
1285 err = kstrtou32(buf, 10, &rate);
1286 if (err < 0)
1287 return err;
1288
1289 if (!rtnl_trylock())
1290 return restart_syscall();
1291
1292 err = -EOPNOTSUPP;
1293 if (dev->netdev_ops->ndo_set_tx_maxrate)
1294 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1295
1296 rtnl_unlock();
1297 if (!err) {
1298 queue->tx_maxrate = rate;
1299 return len;
1300 }
1301 return err;
1302 }
1303
1304 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1305 = __ATTR_RW(tx_maxrate);
1306 #endif
1307
1308 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1309 = __ATTR_RO(tx_timeout);
1310
1311 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1312 = __ATTR_RO(traffic_class);
1313
1314 #ifdef CONFIG_BQL
1315 /*
1316 * Byte queue limits sysfs structures and functions.
1317 */
bql_show(char * buf,unsigned int value)1318 static ssize_t bql_show(char *buf, unsigned int value)
1319 {
1320 return sprintf(buf, "%u\n", value);
1321 }
1322
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1323 static ssize_t bql_set(const char *buf, const size_t count,
1324 unsigned int *pvalue)
1325 {
1326 unsigned int value;
1327 int err;
1328
1329 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1330 value = DQL_MAX_LIMIT;
1331 } else {
1332 err = kstrtouint(buf, 10, &value);
1333 if (err < 0)
1334 return err;
1335 if (value > DQL_MAX_LIMIT)
1336 return -EINVAL;
1337 }
1338
1339 *pvalue = value;
1340
1341 return count;
1342 }
1343
bql_show_hold_time(struct netdev_queue * queue,char * buf)1344 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1345 char *buf)
1346 {
1347 struct dql *dql = &queue->dql;
1348
1349 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1350 }
1351
bql_set_hold_time(struct netdev_queue * queue,const char * buf,size_t len)1352 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1353 const char *buf, size_t len)
1354 {
1355 struct dql *dql = &queue->dql;
1356 unsigned int value;
1357 int err;
1358
1359 err = kstrtouint(buf, 10, &value);
1360 if (err < 0)
1361 return err;
1362
1363 dql->slack_hold_time = msecs_to_jiffies(value);
1364
1365 return len;
1366 }
1367
1368 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1369 = __ATTR(hold_time, 0644,
1370 bql_show_hold_time, bql_set_hold_time);
1371
bql_show_inflight(struct netdev_queue * queue,char * buf)1372 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1373 char *buf)
1374 {
1375 struct dql *dql = &queue->dql;
1376
1377 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1378 }
1379
1380 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1381 __ATTR(inflight, 0444, bql_show_inflight, NULL);
1382
1383 #define BQL_ATTR(NAME, FIELD) \
1384 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
1385 char *buf) \
1386 { \
1387 return bql_show(buf, queue->dql.FIELD); \
1388 } \
1389 \
1390 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
1391 const char *buf, size_t len) \
1392 { \
1393 return bql_set(buf, len, &queue->dql.FIELD); \
1394 } \
1395 \
1396 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1397 = __ATTR(NAME, 0644, \
1398 bql_show_ ## NAME, bql_set_ ## NAME)
1399
1400 BQL_ATTR(limit, limit);
1401 BQL_ATTR(limit_max, max_limit);
1402 BQL_ATTR(limit_min, min_limit);
1403
1404 static struct attribute *dql_attrs[] __ro_after_init = {
1405 &bql_limit_attribute.attr,
1406 &bql_limit_max_attribute.attr,
1407 &bql_limit_min_attribute.attr,
1408 &bql_hold_time_attribute.attr,
1409 &bql_inflight_attribute.attr,
1410 NULL
1411 };
1412
1413 static const struct attribute_group dql_group = {
1414 .name = "byte_queue_limits",
1415 .attrs = dql_attrs,
1416 };
1417 #endif /* CONFIG_BQL */
1418
1419 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1420 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1421 int tc, char *buf, enum xps_map_type type)
1422 {
1423 struct xps_dev_maps *dev_maps;
1424 unsigned long *mask;
1425 unsigned int nr_ids;
1426 int j, len;
1427
1428 rcu_read_lock();
1429 dev_maps = rcu_dereference(dev->xps_maps[type]);
1430
1431 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1432 * when dev_maps hasn't been allocated yet, to be backward compatible.
1433 */
1434 nr_ids = dev_maps ? dev_maps->nr_ids :
1435 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1436
1437 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1438 if (!mask) {
1439 rcu_read_unlock();
1440 return -ENOMEM;
1441 }
1442
1443 if (!dev_maps || tc >= dev_maps->num_tc)
1444 goto out_no_maps;
1445
1446 for (j = 0; j < nr_ids; j++) {
1447 int i, tci = j * dev_maps->num_tc + tc;
1448 struct xps_map *map;
1449
1450 map = rcu_dereference(dev_maps->attr_map[tci]);
1451 if (!map)
1452 continue;
1453
1454 for (i = map->len; i--;) {
1455 if (map->queues[i] == index) {
1456 __set_bit(j, mask);
1457 break;
1458 }
1459 }
1460 }
1461 out_no_maps:
1462 rcu_read_unlock();
1463
1464 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1465 bitmap_free(mask);
1466
1467 return len < PAGE_SIZE ? len : -EINVAL;
1468 }
1469
xps_cpus_show(struct netdev_queue * queue,char * buf)1470 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1471 {
1472 struct net_device *dev = queue->dev;
1473 unsigned int index;
1474 int len, tc;
1475
1476 if (!netif_is_multiqueue(dev))
1477 return -ENOENT;
1478
1479 index = get_netdev_queue_index(queue);
1480
1481 if (!rtnl_trylock())
1482 return restart_syscall();
1483
1484 /* If queue belongs to subordinate dev use its map */
1485 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1486
1487 tc = netdev_txq_to_tc(dev, index);
1488 if (tc < 0) {
1489 rtnl_unlock();
1490 return -EINVAL;
1491 }
1492
1493 /* Make sure the subordinate device can't be freed */
1494 get_device(&dev->dev);
1495 rtnl_unlock();
1496
1497 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1498
1499 put_device(&dev->dev);
1500 return len;
1501 }
1502
xps_cpus_store(struct netdev_queue * queue,const char * buf,size_t len)1503 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1504 const char *buf, size_t len)
1505 {
1506 struct net_device *dev = queue->dev;
1507 unsigned int index;
1508 cpumask_var_t mask;
1509 int err;
1510
1511 if (!netif_is_multiqueue(dev))
1512 return -ENOENT;
1513
1514 if (!capable(CAP_NET_ADMIN))
1515 return -EPERM;
1516
1517 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1518 return -ENOMEM;
1519
1520 index = get_netdev_queue_index(queue);
1521
1522 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1523 if (err) {
1524 free_cpumask_var(mask);
1525 return err;
1526 }
1527
1528 if (!rtnl_trylock()) {
1529 free_cpumask_var(mask);
1530 return restart_syscall();
1531 }
1532
1533 err = netif_set_xps_queue(dev, mask, index);
1534 rtnl_unlock();
1535
1536 free_cpumask_var(mask);
1537
1538 return err ? : len;
1539 }
1540
1541 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1542 = __ATTR_RW(xps_cpus);
1543
xps_rxqs_show(struct netdev_queue * queue,char * buf)1544 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1545 {
1546 struct net_device *dev = queue->dev;
1547 unsigned int index;
1548 int tc;
1549
1550 index = get_netdev_queue_index(queue);
1551
1552 if (!rtnl_trylock())
1553 return restart_syscall();
1554
1555 tc = netdev_txq_to_tc(dev, index);
1556 rtnl_unlock();
1557 if (tc < 0)
1558 return -EINVAL;
1559
1560 return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1561 }
1562
xps_rxqs_store(struct netdev_queue * queue,const char * buf,size_t len)1563 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1564 size_t len)
1565 {
1566 struct net_device *dev = queue->dev;
1567 struct net *net = dev_net(dev);
1568 unsigned long *mask;
1569 unsigned int index;
1570 int err;
1571
1572 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1573 return -EPERM;
1574
1575 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1576 if (!mask)
1577 return -ENOMEM;
1578
1579 index = get_netdev_queue_index(queue);
1580
1581 err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1582 if (err) {
1583 bitmap_free(mask);
1584 return err;
1585 }
1586
1587 if (!rtnl_trylock()) {
1588 bitmap_free(mask);
1589 return restart_syscall();
1590 }
1591
1592 cpus_read_lock();
1593 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1594 cpus_read_unlock();
1595
1596 rtnl_unlock();
1597
1598 bitmap_free(mask);
1599 return err ? : len;
1600 }
1601
1602 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1603 = __ATTR_RW(xps_rxqs);
1604 #endif /* CONFIG_XPS */
1605
1606 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1607 &queue_trans_timeout.attr,
1608 &queue_traffic_class.attr,
1609 #ifdef CONFIG_XPS
1610 &xps_cpus_attribute.attr,
1611 &xps_rxqs_attribute.attr,
1612 &queue_tx_maxrate.attr,
1613 #endif
1614 NULL
1615 };
1616 ATTRIBUTE_GROUPS(netdev_queue_default);
1617
netdev_queue_release(struct kobject * kobj)1618 static void netdev_queue_release(struct kobject *kobj)
1619 {
1620 struct netdev_queue *queue = to_netdev_queue(kobj);
1621
1622 memset(kobj, 0, sizeof(*kobj));
1623 dev_put_track(queue->dev, &queue->dev_tracker);
1624 }
1625
netdev_queue_namespace(struct kobject * kobj)1626 static const void *netdev_queue_namespace(struct kobject *kobj)
1627 {
1628 struct netdev_queue *queue = to_netdev_queue(kobj);
1629 struct device *dev = &queue->dev->dev;
1630 const void *ns = NULL;
1631
1632 if (dev->class && dev->class->ns_type)
1633 ns = dev->class->namespace(dev);
1634
1635 return ns;
1636 }
1637
netdev_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1638 static void netdev_queue_get_ownership(struct kobject *kobj,
1639 kuid_t *uid, kgid_t *gid)
1640 {
1641 const struct net *net = netdev_queue_namespace(kobj);
1642
1643 net_ns_get_ownership(net, uid, gid);
1644 }
1645
1646 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1647 .sysfs_ops = &netdev_queue_sysfs_ops,
1648 .release = netdev_queue_release,
1649 .default_groups = netdev_queue_default_groups,
1650 .namespace = netdev_queue_namespace,
1651 .get_ownership = netdev_queue_get_ownership,
1652 };
1653
netdev_queue_add_kobject(struct net_device * dev,int index)1654 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1655 {
1656 struct netdev_queue *queue = dev->_tx + index;
1657 struct kobject *kobj = &queue->kobj;
1658 int error = 0;
1659
1660 /* Kobject_put later will trigger netdev_queue_release call
1661 * which decreases dev refcount: Take that reference here
1662 */
1663 dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1664
1665 kobj->kset = dev->queues_kset;
1666 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1667 "tx-%u", index);
1668 if (error)
1669 goto err;
1670
1671 #ifdef CONFIG_BQL
1672 error = sysfs_create_group(kobj, &dql_group);
1673 if (error)
1674 goto err;
1675 #endif
1676
1677 kobject_uevent(kobj, KOBJ_ADD);
1678 return 0;
1679
1680 err:
1681 kobject_put(kobj);
1682 return error;
1683 }
1684
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)1685 static int tx_queue_change_owner(struct net_device *ndev, int index,
1686 kuid_t kuid, kgid_t kgid)
1687 {
1688 struct netdev_queue *queue = ndev->_tx + index;
1689 struct kobject *kobj = &queue->kobj;
1690 int error;
1691
1692 error = sysfs_change_owner(kobj, kuid, kgid);
1693 if (error)
1694 return error;
1695
1696 #ifdef CONFIG_BQL
1697 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1698 #endif
1699 return error;
1700 }
1701 #endif /* CONFIG_SYSFS */
1702
1703 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1704 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1705 {
1706 #ifdef CONFIG_SYSFS
1707 int i;
1708 int error = 0;
1709
1710 /* Tx queue kobjects are allowed to be updated when a device is being
1711 * unregistered, but solely to remove queues from qdiscs. Any path
1712 * adding queues should be fixed.
1713 */
1714 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1715 "New queues can't be registered after device unregistration.");
1716
1717 for (i = old_num; i < new_num; i++) {
1718 error = netdev_queue_add_kobject(dev, i);
1719 if (error) {
1720 new_num = old_num;
1721 break;
1722 }
1723 }
1724
1725 while (--i >= new_num) {
1726 struct netdev_queue *queue = dev->_tx + i;
1727
1728 if (!refcount_read(&dev_net(dev)->ns.count))
1729 queue->kobj.uevent_suppress = 1;
1730 #ifdef CONFIG_BQL
1731 sysfs_remove_group(&queue->kobj, &dql_group);
1732 #endif
1733 kobject_put(&queue->kobj);
1734 }
1735
1736 return error;
1737 #else
1738 return 0;
1739 #endif /* CONFIG_SYSFS */
1740 }
1741
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1742 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1743 kuid_t kuid, kgid_t kgid)
1744 {
1745 #ifdef CONFIG_SYSFS
1746 int error = 0;
1747 int i;
1748
1749 for (i = 0; i < num; i++) {
1750 error = tx_queue_change_owner(dev, i, kuid, kgid);
1751 if (error)
1752 break;
1753 }
1754
1755 return error;
1756 #else
1757 return 0;
1758 #endif /* CONFIG_SYSFS */
1759 }
1760
register_queue_kobjects(struct net_device * dev)1761 static int register_queue_kobjects(struct net_device *dev)
1762 {
1763 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1764
1765 #ifdef CONFIG_SYSFS
1766 dev->queues_kset = kset_create_and_add("queues",
1767 NULL, &dev->dev.kobj);
1768 if (!dev->queues_kset)
1769 return -ENOMEM;
1770 real_rx = dev->real_num_rx_queues;
1771 #endif
1772 real_tx = dev->real_num_tx_queues;
1773
1774 error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1775 if (error)
1776 goto error;
1777 rxq = real_rx;
1778
1779 error = netdev_queue_update_kobjects(dev, 0, real_tx);
1780 if (error)
1781 goto error;
1782 txq = real_tx;
1783
1784 return 0;
1785
1786 error:
1787 netdev_queue_update_kobjects(dev, txq, 0);
1788 net_rx_queue_update_kobjects(dev, rxq, 0);
1789 #ifdef CONFIG_SYSFS
1790 kset_unregister(dev->queues_kset);
1791 #endif
1792 return error;
1793 }
1794
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)1795 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1796 {
1797 int error = 0, real_rx = 0, real_tx = 0;
1798
1799 #ifdef CONFIG_SYSFS
1800 if (ndev->queues_kset) {
1801 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1802 if (error)
1803 return error;
1804 }
1805 real_rx = ndev->real_num_rx_queues;
1806 #endif
1807 real_tx = ndev->real_num_tx_queues;
1808
1809 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1810 if (error)
1811 return error;
1812
1813 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1814 if (error)
1815 return error;
1816
1817 return 0;
1818 }
1819
remove_queue_kobjects(struct net_device * dev)1820 static void remove_queue_kobjects(struct net_device *dev)
1821 {
1822 int real_rx = 0, real_tx = 0;
1823
1824 #ifdef CONFIG_SYSFS
1825 real_rx = dev->real_num_rx_queues;
1826 #endif
1827 real_tx = dev->real_num_tx_queues;
1828
1829 net_rx_queue_update_kobjects(dev, real_rx, 0);
1830 netdev_queue_update_kobjects(dev, real_tx, 0);
1831
1832 dev->real_num_rx_queues = 0;
1833 dev->real_num_tx_queues = 0;
1834 #ifdef CONFIG_SYSFS
1835 kset_unregister(dev->queues_kset);
1836 #endif
1837 }
1838
net_current_may_mount(void)1839 static bool net_current_may_mount(void)
1840 {
1841 struct net *net = current->nsproxy->net_ns;
1842
1843 return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1844 }
1845
net_grab_current_ns(void)1846 static void *net_grab_current_ns(void)
1847 {
1848 struct net *ns = current->nsproxy->net_ns;
1849 #ifdef CONFIG_NET_NS
1850 if (ns)
1851 refcount_inc(&ns->passive);
1852 #endif
1853 return ns;
1854 }
1855
net_initial_ns(void)1856 static const void *net_initial_ns(void)
1857 {
1858 return &init_net;
1859 }
1860
net_netlink_ns(struct sock * sk)1861 static const void *net_netlink_ns(struct sock *sk)
1862 {
1863 return sock_net(sk);
1864 }
1865
1866 const struct kobj_ns_type_operations net_ns_type_operations = {
1867 .type = KOBJ_NS_TYPE_NET,
1868 .current_may_mount = net_current_may_mount,
1869 .grab_current_ns = net_grab_current_ns,
1870 .netlink_ns = net_netlink_ns,
1871 .initial_ns = net_initial_ns,
1872 .drop_ns = net_drop_ns,
1873 };
1874 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1875
netdev_uevent(struct device * d,struct kobj_uevent_env * env)1876 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1877 {
1878 struct net_device *dev = to_net_dev(d);
1879 int retval;
1880
1881 /* pass interface to uevent. */
1882 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1883 if (retval)
1884 goto exit;
1885
1886 /* pass ifindex to uevent.
1887 * ifindex is useful as it won't change (interface name may change)
1888 * and is what RtNetlink uses natively.
1889 */
1890 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1891
1892 exit:
1893 return retval;
1894 }
1895
1896 /*
1897 * netdev_release -- destroy and free a dead device.
1898 * Called when last reference to device kobject is gone.
1899 */
netdev_release(struct device * d)1900 static void netdev_release(struct device *d)
1901 {
1902 struct net_device *dev = to_net_dev(d);
1903
1904 BUG_ON(dev->reg_state != NETREG_RELEASED);
1905
1906 /* no need to wait for rcu grace period:
1907 * device is dead and about to be freed.
1908 */
1909 kfree(rcu_access_pointer(dev->ifalias));
1910 netdev_freemem(dev);
1911 }
1912
net_namespace(struct device * d)1913 static const void *net_namespace(struct device *d)
1914 {
1915 struct net_device *dev = to_net_dev(d);
1916
1917 return dev_net(dev);
1918 }
1919
net_get_ownership(struct device * d,kuid_t * uid,kgid_t * gid)1920 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1921 {
1922 struct net_device *dev = to_net_dev(d);
1923 const struct net *net = dev_net(dev);
1924
1925 net_ns_get_ownership(net, uid, gid);
1926 }
1927
1928 static struct class net_class __ro_after_init = {
1929 .name = "net",
1930 .dev_release = netdev_release,
1931 .dev_groups = net_class_groups,
1932 .dev_uevent = netdev_uevent,
1933 .ns_type = &net_ns_type_operations,
1934 .namespace = net_namespace,
1935 .get_ownership = net_get_ownership,
1936 };
1937
1938 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)1939 static int of_dev_node_match(struct device *dev, const void *data)
1940 {
1941 for (; dev; dev = dev->parent) {
1942 if (dev->of_node == data)
1943 return 1;
1944 }
1945
1946 return 0;
1947 }
1948
1949 /*
1950 * of_find_net_device_by_node - lookup the net device for the device node
1951 * @np: OF device node
1952 *
1953 * Looks up the net_device structure corresponding with the device node.
1954 * If successful, returns a pointer to the net_device with the embedded
1955 * struct device refcount incremented by one, or NULL on failure. The
1956 * refcount must be dropped when done with the net_device.
1957 */
of_find_net_device_by_node(struct device_node * np)1958 struct net_device *of_find_net_device_by_node(struct device_node *np)
1959 {
1960 struct device *dev;
1961
1962 dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1963 if (!dev)
1964 return NULL;
1965
1966 return to_net_dev(dev);
1967 }
1968 EXPORT_SYMBOL(of_find_net_device_by_node);
1969 #endif
1970
1971 /* Delete sysfs entries but hold kobject reference until after all
1972 * netdev references are gone.
1973 */
netdev_unregister_kobject(struct net_device * ndev)1974 void netdev_unregister_kobject(struct net_device *ndev)
1975 {
1976 struct device *dev = &ndev->dev;
1977
1978 if (!refcount_read(&dev_net(ndev)->ns.count))
1979 dev_set_uevent_suppress(dev, 1);
1980
1981 kobject_get(&dev->kobj);
1982
1983 remove_queue_kobjects(ndev);
1984
1985 pm_runtime_set_memalloc_noio(dev, false);
1986
1987 device_del(dev);
1988 }
1989
1990 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)1991 int netdev_register_kobject(struct net_device *ndev)
1992 {
1993 struct device *dev = &ndev->dev;
1994 const struct attribute_group **groups = ndev->sysfs_groups;
1995 int error = 0;
1996
1997 device_initialize(dev);
1998 dev->class = &net_class;
1999 dev->platform_data = ndev;
2000 dev->groups = groups;
2001
2002 dev_set_name(dev, "%s", ndev->name);
2003
2004 #ifdef CONFIG_SYSFS
2005 /* Allow for a device specific group */
2006 if (*groups)
2007 groups++;
2008
2009 *groups++ = &netstat_group;
2010
2011 if (wireless_group_needed(ndev))
2012 *groups++ = &wireless_group;
2013 #endif /* CONFIG_SYSFS */
2014
2015 error = device_add(dev);
2016 if (error)
2017 return error;
2018
2019 error = register_queue_kobjects(ndev);
2020 if (error) {
2021 device_del(dev);
2022 return error;
2023 }
2024
2025 pm_runtime_set_memalloc_noio(dev, true);
2026
2027 return error;
2028 }
2029
2030 /* Change owner for sysfs entries when moving network devices across network
2031 * namespaces owned by different user namespaces.
2032 */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2033 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2034 const struct net *net_new)
2035 {
2036 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2037 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2038 struct device *dev = &ndev->dev;
2039 int error;
2040
2041 net_ns_get_ownership(net_old, &old_uid, &old_gid);
2042 net_ns_get_ownership(net_new, &new_uid, &new_gid);
2043
2044 /* The network namespace was changed but the owning user namespace is
2045 * identical so there's no need to change the owner of sysfs entries.
2046 */
2047 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2048 return 0;
2049
2050 error = device_change_owner(dev, new_uid, new_gid);
2051 if (error)
2052 return error;
2053
2054 error = queue_change_owner(ndev, new_uid, new_gid);
2055 if (error)
2056 return error;
2057
2058 return 0;
2059 }
2060
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2061 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2062 const void *ns)
2063 {
2064 return class_create_file_ns(&net_class, class_attr, ns);
2065 }
2066 EXPORT_SYMBOL(netdev_class_create_file_ns);
2067
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2068 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2069 const void *ns)
2070 {
2071 class_remove_file_ns(&net_class, class_attr, ns);
2072 }
2073 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2074
netdev_kobject_init(void)2075 int __init netdev_kobject_init(void)
2076 {
2077 kobj_ns_type_register(&net_ns_type_operations);
2078 return class_register(&net_class);
2079 }
2080