1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45
46 #include "internal.h"
47
48 /*
49 * Lock order:
50 * 1. slab_mutex (Global Mutex)
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
53 * 4. slab_lock(slab) (Only on some arches or for debugging)
54 * 5. object_map_lock (Only for debugging)
55 *
56 * slab_mutex
57 *
58 * The role of the slab_mutex is to protect the list of all the slabs
59 * and to synchronize major metadata changes to slab cache structures.
60 * Also synchronizes memory hotplug callbacks.
61 *
62 * slab_lock
63 *
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * spinlock.
66 *
67 * The slab_lock is only used for debugging and on arches that do not
68 * have the ability to do a cmpxchg_double. It only protects:
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
73 *
74 * Frozen slabs
75 *
76 * If a slab is frozen then it is exempt from list management. It is not
77 * on any list except per cpu partial list. The processor that froze the
78 * slab is the one who can perform list operations on the slab. Other
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
81 * slab's freelist.
82 *
83 * list_lock
84 *
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
90 *
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
95 * the list lock.
96 *
97 * cpu_slab->lock local lock
98 *
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
106 *
107 * lockless fastpaths
108 *
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
114 * another cpu.
115 *
116 * irq, preemption, migration considerations
117 *
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
121 *
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
126 *
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
129 *
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
132 * freed then the slab will show up again on the partial lists.
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
135 *
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
139 *
140 * slab->frozen The slab is frozen and exempt from list processing.
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
148 *
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
152 * freelist that allows lockless access to
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
155 *
156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
157 * options set. This moves slab handling out of
158 * the fast path and disables lockless freelists.
159 */
160
161 /*
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164 */
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
168 #else
169 #define slub_get_cpu_ptr(var) \
170 ({ \
171 migrate_disable(); \
172 this_cpu_ptr(var); \
173 })
174 #define slub_put_cpu_ptr(var) \
175 do { \
176 (void)(var); \
177 migrate_enable(); \
178 } while (0)
179 #endif
180
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184 #else
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186 #endif
187 #endif /* CONFIG_SLUB_DEBUG */
188
kmem_cache_debug(struct kmem_cache * s)189 static inline bool kmem_cache_debug(struct kmem_cache *s)
190 {
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 }
193
fixup_red_left(struct kmem_cache * s,void * p)194 void *fixup_red_left(struct kmem_cache *s, void *p)
195 {
196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 p += s->red_left_pad;
198
199 return p;
200 }
201
kmem_cache_has_cpu_partial(struct kmem_cache * s)202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203 {
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
206 #else
207 return false;
208 #endif
209 }
210
211 /*
212 * Issues still to be resolved:
213 *
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215 *
216 * - Variable sizing of the per node arrays
217 */
218
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
221
222 /*
223 * Minimum number of partial slabs. These will be left on the partial
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
225 */
226 #define MIN_PARTIAL 5
227
228 /*
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
231 * sort the partial list by the number of objects in use.
232 */
233 #define MAX_PARTIAL 10
234
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 SLAB_POISON | SLAB_STORE_USER)
237
238 /*
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
241 */
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 SLAB_TRACE)
244
245
246 /*
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
249 * metadata.
250 */
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252
253 #define OO_SHIFT 16
254 #define OO_MASK ((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
256
257 /* Internal SLUB flags */
258 /* Poison object */
259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
262
263 /*
264 * Tracking user of a slab.
265 */
266 #define TRACK_ADDRS_COUNT 16
267 struct track {
268 unsigned long addr; /* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
271 #endif
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
275 };
276
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
278
279 #ifdef CONFIG_SYSFS
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
282 #else
sysfs_slab_add(struct kmem_cache * s)283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 { return 0; }
286 #endif
287
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
290 #else
debugfs_slab_add(struct kmem_cache * s)291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 #endif
293
stat(const struct kmem_cache * s,enum stat_item si)294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
295 {
296 #ifdef CONFIG_SLUB_STATS
297 /*
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
300 */
301 raw_cpu_inc(s->cpu_slab->stat[si]);
302 #endif
303 }
304
305 /*
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
310 */
311 static nodemask_t slab_nodes;
312
313 /********************************************************************
314 * Core slab cache functions
315 *******************************************************************/
316
317 /*
318 * Returns freelist pointer (ptr). With hardening, this is obfuscated
319 * with an XOR of the address where the pointer is held and a per-cache
320 * random number.
321 */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 unsigned long ptr_addr)
324 {
325 #ifdef CONFIG_SLAB_FREELIST_HARDENED
326 /*
327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
328 * Normally, this doesn't cause any issues, as both set_freepointer()
329 * and get_freepointer() are called with a pointer with the same tag.
330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 * example, when __free_slub() iterates over objects in a cache, it
332 * passes untagged pointers to check_object(). check_object() in turns
333 * calls get_freepointer() with an untagged pointer, which causes the
334 * freepointer to be restored incorrectly.
335 */
336 return (void *)((unsigned long)ptr ^ s->random ^
337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
338 #else
339 return ptr;
340 #endif
341 }
342
343 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)344 static inline void *freelist_dereference(const struct kmem_cache *s,
345 void *ptr_addr)
346 {
347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 (unsigned long)ptr_addr);
349 }
350
get_freepointer(struct kmem_cache * s,void * object)351 static inline void *get_freepointer(struct kmem_cache *s, void *object)
352 {
353 object = kasan_reset_tag(object);
354 return freelist_dereference(s, object + s->offset);
355 }
356
prefetch_freepointer(const struct kmem_cache * s,void * object)357 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358 {
359 prefetchw(object + s->offset);
360 }
361
get_freepointer_safe(struct kmem_cache * s,void * object)362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363 {
364 unsigned long freepointer_addr;
365 void *p;
366
367 if (!debug_pagealloc_enabled_static())
368 return get_freepointer(s, object);
369
370 object = kasan_reset_tag(object);
371 freepointer_addr = (unsigned long)object + s->offset;
372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
373 return freelist_ptr(s, p, freepointer_addr);
374 }
375
set_freepointer(struct kmem_cache * s,void * object,void * fp)376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377 {
378 unsigned long freeptr_addr = (unsigned long)object + s->offset;
379
380 #ifdef CONFIG_SLAB_FREELIST_HARDENED
381 BUG_ON(object == fp); /* naive detection of double free or corruption */
382 #endif
383
384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
386 }
387
388 /* Loop over all objects in a slab */
389 #define for_each_object(__p, __s, __addr, __objects) \
390 for (__p = fixup_red_left(__s, __addr); \
391 __p < (__addr) + (__objects) * (__s)->size; \
392 __p += (__s)->size)
393
order_objects(unsigned int order,unsigned int size)394 static inline unsigned int order_objects(unsigned int order, unsigned int size)
395 {
396 return ((unsigned int)PAGE_SIZE << order) / size;
397 }
398
oo_make(unsigned int order,unsigned int size)399 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
400 unsigned int size)
401 {
402 struct kmem_cache_order_objects x = {
403 (order << OO_SHIFT) + order_objects(order, size)
404 };
405
406 return x;
407 }
408
oo_order(struct kmem_cache_order_objects x)409 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
410 {
411 return x.x >> OO_SHIFT;
412 }
413
oo_objects(struct kmem_cache_order_objects x)414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
415 {
416 return x.x & OO_MASK;
417 }
418
419 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421 {
422 unsigned int nr_slabs;
423
424 s->cpu_partial = nr_objects;
425
426 /*
427 * We take the number of objects but actually limit the number of
428 * slabs on the per cpu partial list, in order to limit excessive
429 * growth of the list. For simplicity we assume that the slabs will
430 * be half-full.
431 */
432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 s->cpu_partial_slabs = nr_slabs;
434 }
435 #else
436 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438 {
439 }
440 #endif /* CONFIG_SLUB_CPU_PARTIAL */
441
442 /*
443 * Per slab locking using the pagelock
444 */
__slab_lock(struct slab * slab)445 static __always_inline void __slab_lock(struct slab *slab)
446 {
447 struct page *page = slab_page(slab);
448
449 VM_BUG_ON_PAGE(PageTail(page), page);
450 bit_spin_lock(PG_locked, &page->flags);
451 }
452
__slab_unlock(struct slab * slab)453 static __always_inline void __slab_unlock(struct slab *slab)
454 {
455 struct page *page = slab_page(slab);
456
457 VM_BUG_ON_PAGE(PageTail(page), page);
458 __bit_spin_unlock(PG_locked, &page->flags);
459 }
460
slab_lock(struct slab * slab,unsigned long * flags)461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
462 {
463 if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 local_irq_save(*flags);
465 __slab_lock(slab);
466 }
467
slab_unlock(struct slab * slab,unsigned long * flags)468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
469 {
470 __slab_unlock(slab);
471 if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 local_irq_restore(*flags);
473 }
474
475 /*
476 * Interrupts must be disabled (for the fallback code to work right), typically
477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478 * so we disable interrupts as part of slab_[un]lock().
479 */
__cmpxchg_double_slab(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
481 void *freelist_old, unsigned long counters_old,
482 void *freelist_new, unsigned long counters_new,
483 const char *n)
484 {
485 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 lockdep_assert_irqs_disabled();
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 if (s->flags & __CMPXCHG_DOUBLE) {
490 if (cmpxchg_double(&slab->freelist, &slab->counters,
491 freelist_old, counters_old,
492 freelist_new, counters_new))
493 return true;
494 } else
495 #endif
496 {
497 /* init to 0 to prevent spurious warnings */
498 unsigned long flags = 0;
499
500 slab_lock(slab, &flags);
501 if (slab->freelist == freelist_old &&
502 slab->counters == counters_old) {
503 slab->freelist = freelist_new;
504 slab->counters = counters_new;
505 slab_unlock(slab, &flags);
506 return true;
507 }
508 slab_unlock(slab, &flags);
509 }
510
511 cpu_relax();
512 stat(s, CMPXCHG_DOUBLE_FAIL);
513
514 #ifdef SLUB_DEBUG_CMPXCHG
515 pr_info("%s %s: cmpxchg double redo ", n, s->name);
516 #endif
517
518 return false;
519 }
520
cmpxchg_double_slab(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new,
524 const char *n)
525 {
526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
528 if (s->flags & __CMPXCHG_DOUBLE) {
529 if (cmpxchg_double(&slab->freelist, &slab->counters,
530 freelist_old, counters_old,
531 freelist_new, counters_new))
532 return true;
533 } else
534 #endif
535 {
536 unsigned long flags;
537
538 local_irq_save(flags);
539 __slab_lock(slab);
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
544 __slab_unlock(slab);
545 local_irq_restore(flags);
546 return true;
547 }
548 __slab_unlock(slab);
549 local_irq_restore(flags);
550 }
551
552 cpu_relax();
553 stat(s, CMPXCHG_DOUBLE_FAIL);
554
555 #ifdef SLUB_DEBUG_CMPXCHG
556 pr_info("%s %s: cmpxchg double redo ", n, s->name);
557 #endif
558
559 return false;
560 }
561
562 #ifdef CONFIG_SLUB_DEBUG
563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
564 static DEFINE_RAW_SPINLOCK(object_map_lock);
565
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
567 struct slab *slab)
568 {
569 void *addr = slab_address(slab);
570 void *p;
571
572 bitmap_zero(obj_map, slab->objects);
573
574 for (p = slab->freelist; p; p = get_freepointer(s, p))
575 set_bit(__obj_to_index(s, addr, p), obj_map);
576 }
577
578 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)579 static bool slab_add_kunit_errors(void)
580 {
581 struct kunit_resource *resource;
582
583 if (likely(!current->kunit_test))
584 return false;
585
586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 if (!resource)
588 return false;
589
590 (*(int *)resource->data)++;
591 kunit_put_resource(resource);
592 return true;
593 }
594 #else
slab_add_kunit_errors(void)595 static inline bool slab_add_kunit_errors(void) { return false; }
596 #endif
597
598 /*
599 * Determine a map of objects in use in a slab.
600 *
601 * Node listlock must be held to guarantee that the slab does
602 * not vanish from under us.
603 */
get_map(struct kmem_cache * s,struct slab * slab)604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
605 __acquires(&object_map_lock)
606 {
607 VM_BUG_ON(!irqs_disabled());
608
609 raw_spin_lock(&object_map_lock);
610
611 __fill_map(object_map, s, slab);
612
613 return object_map;
614 }
615
put_map(unsigned long * map)616 static void put_map(unsigned long *map) __releases(&object_map_lock)
617 {
618 VM_BUG_ON(map != object_map);
619 raw_spin_unlock(&object_map_lock);
620 }
621
size_from_object(struct kmem_cache * s)622 static inline unsigned int size_from_object(struct kmem_cache *s)
623 {
624 if (s->flags & SLAB_RED_ZONE)
625 return s->size - s->red_left_pad;
626
627 return s->size;
628 }
629
restore_red_left(struct kmem_cache * s,void * p)630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
631 {
632 if (s->flags & SLAB_RED_ZONE)
633 p -= s->red_left_pad;
634
635 return p;
636 }
637
638 /*
639 * Debug settings:
640 */
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
643 #else
644 static slab_flags_t slub_debug;
645 #endif
646
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
649
650 /*
651 * slub is about to manipulate internal object metadata. This memory lies
652 * outside the range of the allocated object, so accessing it would normally
653 * be reported by kasan as a bounds error. metadata_access_enable() is used
654 * to tell kasan that these accesses are OK.
655 */
metadata_access_enable(void)656 static inline void metadata_access_enable(void)
657 {
658 kasan_disable_current();
659 }
660
metadata_access_disable(void)661 static inline void metadata_access_disable(void)
662 {
663 kasan_enable_current();
664 }
665
666 /*
667 * Object debugging
668 */
669
670 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)671 static inline int check_valid_pointer(struct kmem_cache *s,
672 struct slab *slab, void *object)
673 {
674 void *base;
675
676 if (!object)
677 return 1;
678
679 base = slab_address(slab);
680 object = kasan_reset_tag(object);
681 object = restore_red_left(s, object);
682 if (object < base || object >= base + slab->objects * s->size ||
683 (object - base) % s->size) {
684 return 0;
685 }
686
687 return 1;
688 }
689
print_section(char * level,char * text,u8 * addr,unsigned int length)690 static void print_section(char *level, char *text, u8 *addr,
691 unsigned int length)
692 {
693 metadata_access_enable();
694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 16, 1, kasan_reset_tag((void *)addr), length, 1);
696 metadata_access_disable();
697 }
698
699 /*
700 * See comment in calculate_sizes().
701 */
freeptr_outside_object(struct kmem_cache * s)702 static inline bool freeptr_outside_object(struct kmem_cache *s)
703 {
704 return s->offset >= s->inuse;
705 }
706
707 /*
708 * Return offset of the end of info block which is inuse + free pointer if
709 * not overlapping with object.
710 */
get_info_end(struct kmem_cache * s)711 static inline unsigned int get_info_end(struct kmem_cache *s)
712 {
713 if (freeptr_outside_object(s))
714 return s->inuse + sizeof(void *);
715 else
716 return s->inuse;
717 }
718
get_track(struct kmem_cache * s,void * object,enum track_item alloc)719 static struct track *get_track(struct kmem_cache *s, void *object,
720 enum track_item alloc)
721 {
722 struct track *p;
723
724 p = object + get_info_end(s);
725
726 return kasan_reset_tag(p + alloc);
727 }
728
729 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)730 static noinline depot_stack_handle_t set_track_prepare(void)
731 {
732 depot_stack_handle_t handle;
733 unsigned long entries[TRACK_ADDRS_COUNT];
734 unsigned int nr_entries;
735
736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738
739 return handle;
740 }
741 #else
set_track_prepare(void)742 static inline depot_stack_handle_t set_track_prepare(void)
743 {
744 return 0;
745 }
746 #endif
747
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)748 static void set_track_update(struct kmem_cache *s, void *object,
749 enum track_item alloc, unsigned long addr,
750 depot_stack_handle_t handle)
751 {
752 struct track *p = get_track(s, object, alloc);
753
754 #ifdef CONFIG_STACKDEPOT
755 p->handle = handle;
756 #endif
757 p->addr = addr;
758 p->cpu = smp_processor_id();
759 p->pid = current->pid;
760 p->when = jiffies;
761 }
762
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)763 static __always_inline void set_track(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr)
765 {
766 depot_stack_handle_t handle = set_track_prepare();
767
768 set_track_update(s, object, alloc, addr, handle);
769 }
770
init_tracking(struct kmem_cache * s,void * object)771 static void init_tracking(struct kmem_cache *s, void *object)
772 {
773 struct track *p;
774
775 if (!(s->flags & SLAB_STORE_USER))
776 return;
777
778 p = get_track(s, object, TRACK_ALLOC);
779 memset(p, 0, 2*sizeof(struct track));
780 }
781
print_track(const char * s,struct track * t,unsigned long pr_time)782 static void print_track(const char *s, struct track *t, unsigned long pr_time)
783 {
784 depot_stack_handle_t handle __maybe_unused;
785
786 if (!t->addr)
787 return;
788
789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
791 #ifdef CONFIG_STACKDEPOT
792 handle = READ_ONCE(t->handle);
793 if (handle)
794 stack_depot_print(handle);
795 else
796 pr_err("object allocation/free stack trace missing\n");
797 #endif
798 }
799
print_tracking(struct kmem_cache * s,void * object)800 void print_tracking(struct kmem_cache *s, void *object)
801 {
802 unsigned long pr_time = jiffies;
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
808 }
809
print_slab_info(const struct slab * slab)810 static void print_slab_info(const struct slab *slab)
811 {
812 struct folio *folio = (struct folio *)slab_folio(slab);
813
814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 slab, slab->objects, slab->inuse, slab->freelist,
816 folio_flags(folio, 0));
817 }
818
slab_bug(struct kmem_cache * s,char * fmt,...)819 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
820 {
821 struct va_format vaf;
822 va_list args;
823
824 va_start(args, fmt);
825 vaf.fmt = fmt;
826 vaf.va = &args;
827 pr_err("=============================================================================\n");
828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
829 pr_err("-----------------------------------------------------------------------------\n\n");
830 va_end(args);
831 }
832
833 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)834 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
835 {
836 struct va_format vaf;
837 va_list args;
838
839 if (slab_add_kunit_errors())
840 return;
841
842 va_start(args, fmt);
843 vaf.fmt = fmt;
844 vaf.va = &args;
845 pr_err("FIX %s: %pV\n", s->name, &vaf);
846 va_end(args);
847 }
848
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
850 {
851 unsigned int off; /* Offset of last byte */
852 u8 *addr = slab_address(slab);
853
854 print_tracking(s, p);
855
856 print_slab_info(slab);
857
858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
859 p, p - addr, get_freepointer(s, p));
860
861 if (s->flags & SLAB_RED_ZONE)
862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
863 s->red_left_pad);
864 else if (p > addr + 16)
865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
866
867 print_section(KERN_ERR, "Object ", p,
868 min_t(unsigned int, s->object_size, PAGE_SIZE));
869 if (s->flags & SLAB_RED_ZONE)
870 print_section(KERN_ERR, "Redzone ", p + s->object_size,
871 s->inuse - s->object_size);
872
873 off = get_info_end(s);
874
875 if (s->flags & SLAB_STORE_USER)
876 off += 2 * sizeof(struct track);
877
878 off += kasan_metadata_size(s);
879
880 if (off != size_from_object(s))
881 /* Beginning of the filler is the free pointer */
882 print_section(KERN_ERR, "Padding ", p + off,
883 size_from_object(s) - off);
884
885 dump_stack();
886 }
887
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)888 static void object_err(struct kmem_cache *s, struct slab *slab,
889 u8 *object, char *reason)
890 {
891 if (slab_add_kunit_errors())
892 return;
893
894 slab_bug(s, "%s", reason);
895 print_trailer(s, slab, object);
896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
897 }
898
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
900 void **freelist, void *nextfree)
901 {
902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
903 !check_valid_pointer(s, slab, nextfree) && freelist) {
904 object_err(s, slab, *freelist, "Freechain corrupt");
905 *freelist = NULL;
906 slab_fix(s, "Isolate corrupted freechain");
907 return true;
908 }
909
910 return false;
911 }
912
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
914 const char *fmt, ...)
915 {
916 va_list args;
917 char buf[100];
918
919 if (slab_add_kunit_errors())
920 return;
921
922 va_start(args, fmt);
923 vsnprintf(buf, sizeof(buf), fmt, args);
924 va_end(args);
925 slab_bug(s, "%s", buf);
926 print_slab_info(slab);
927 dump_stack();
928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
929 }
930
init_object(struct kmem_cache * s,void * object,u8 val)931 static void init_object(struct kmem_cache *s, void *object, u8 val)
932 {
933 u8 *p = kasan_reset_tag(object);
934
935 if (s->flags & SLAB_RED_ZONE)
936 memset(p - s->red_left_pad, val, s->red_left_pad);
937
938 if (s->flags & __OBJECT_POISON) {
939 memset(p, POISON_FREE, s->object_size - 1);
940 p[s->object_size - 1] = POISON_END;
941 }
942
943 if (s->flags & SLAB_RED_ZONE)
944 memset(p + s->object_size, val, s->inuse - s->object_size);
945 }
946
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
948 void *from, void *to)
949 {
950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
951 memset(from, data, to - from);
952 }
953
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
955 u8 *object, char *what,
956 u8 *start, unsigned int value, unsigned int bytes)
957 {
958 u8 *fault;
959 u8 *end;
960 u8 *addr = slab_address(slab);
961
962 metadata_access_enable();
963 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
964 metadata_access_disable();
965 if (!fault)
966 return 1;
967
968 end = start + bytes;
969 while (end > fault && end[-1] == value)
970 end--;
971
972 if (slab_add_kunit_errors())
973 goto skip_bug_print;
974
975 slab_bug(s, "%s overwritten", what);
976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
977 fault, end - 1, fault - addr,
978 fault[0], value);
979 print_trailer(s, slab, object);
980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
981
982 skip_bug_print:
983 restore_bytes(s, what, value, fault, end);
984 return 0;
985 }
986
987 /*
988 * Object layout:
989 *
990 * object address
991 * Bytes of the object to be managed.
992 * If the freepointer may overlay the object then the free
993 * pointer is at the middle of the object.
994 *
995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
996 * 0xa5 (POISON_END)
997 *
998 * object + s->object_size
999 * Padding to reach word boundary. This is also used for Redzoning.
1000 * Padding is extended by another word if Redzoning is enabled and
1001 * object_size == inuse.
1002 *
1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1004 * 0xcc (RED_ACTIVE) for objects in use.
1005 *
1006 * object + s->inuse
1007 * Meta data starts here.
1008 *
1009 * A. Free pointer (if we cannot overwrite object on free)
1010 * B. Tracking data for SLAB_STORE_USER
1011 * C. Padding to reach required alignment boundary or at minimum
1012 * one word if debugging is on to be able to detect writes
1013 * before the word boundary.
1014 *
1015 * Padding is done using 0x5a (POISON_INUSE)
1016 *
1017 * object + s->size
1018 * Nothing is used beyond s->size.
1019 *
1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1021 * ignored. And therefore no slab options that rely on these boundaries
1022 * may be used with merged slabcaches.
1023 */
1024
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1026 {
1027 unsigned long off = get_info_end(s); /* The end of info */
1028
1029 if (s->flags & SLAB_STORE_USER)
1030 /* We also have user information there */
1031 off += 2 * sizeof(struct track);
1032
1033 off += kasan_metadata_size(s);
1034
1035 if (size_from_object(s) == off)
1036 return 1;
1037
1038 return check_bytes_and_report(s, slab, p, "Object padding",
1039 p + off, POISON_INUSE, size_from_object(s) - off);
1040 }
1041
1042 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct slab * slab)1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1044 {
1045 u8 *start;
1046 u8 *fault;
1047 u8 *end;
1048 u8 *pad;
1049 int length;
1050 int remainder;
1051
1052 if (!(s->flags & SLAB_POISON))
1053 return;
1054
1055 start = slab_address(slab);
1056 length = slab_size(slab);
1057 end = start + length;
1058 remainder = length % s->size;
1059 if (!remainder)
1060 return;
1061
1062 pad = end - remainder;
1063 metadata_access_enable();
1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1065 metadata_access_disable();
1066 if (!fault)
1067 return;
1068 while (end > fault && end[-1] == POISON_INUSE)
1069 end--;
1070
1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1072 fault, end - 1, fault - start);
1073 print_section(KERN_ERR, "Padding ", pad, remainder);
1074
1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1076 }
1077
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1078 static int check_object(struct kmem_cache *s, struct slab *slab,
1079 void *object, u8 val)
1080 {
1081 u8 *p = object;
1082 u8 *endobject = object + s->object_size;
1083
1084 if (s->flags & SLAB_RED_ZONE) {
1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1086 object - s->red_left_pad, val, s->red_left_pad))
1087 return 0;
1088
1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1090 endobject, val, s->inuse - s->object_size))
1091 return 0;
1092 } else {
1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1094 check_bytes_and_report(s, slab, p, "Alignment padding",
1095 endobject, POISON_INUSE,
1096 s->inuse - s->object_size);
1097 }
1098 }
1099
1100 if (s->flags & SLAB_POISON) {
1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1102 (!check_bytes_and_report(s, slab, p, "Poison", p,
1103 POISON_FREE, s->object_size - 1) ||
1104 !check_bytes_and_report(s, slab, p, "End Poison",
1105 p + s->object_size - 1, POISON_END, 1)))
1106 return 0;
1107 /*
1108 * check_pad_bytes cleans up on its own.
1109 */
1110 check_pad_bytes(s, slab, p);
1111 }
1112
1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1114 /*
1115 * Object and freepointer overlap. Cannot check
1116 * freepointer while object is allocated.
1117 */
1118 return 1;
1119
1120 /* Check free pointer validity */
1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1122 object_err(s, slab, p, "Freepointer corrupt");
1123 /*
1124 * No choice but to zap it and thus lose the remainder
1125 * of the free objects in this slab. May cause
1126 * another error because the object count is now wrong.
1127 */
1128 set_freepointer(s, p, NULL);
1129 return 0;
1130 }
1131 return 1;
1132 }
1133
check_slab(struct kmem_cache * s,struct slab * slab)1134 static int check_slab(struct kmem_cache *s, struct slab *slab)
1135 {
1136 int maxobj;
1137
1138 if (!folio_test_slab(slab_folio(slab))) {
1139 slab_err(s, slab, "Not a valid slab page");
1140 return 0;
1141 }
1142
1143 maxobj = order_objects(slab_order(slab), s->size);
1144 if (slab->objects > maxobj) {
1145 slab_err(s, slab, "objects %u > max %u",
1146 slab->objects, maxobj);
1147 return 0;
1148 }
1149 if (slab->inuse > slab->objects) {
1150 slab_err(s, slab, "inuse %u > max %u",
1151 slab->inuse, slab->objects);
1152 return 0;
1153 }
1154 /* Slab_pad_check fixes things up after itself */
1155 slab_pad_check(s, slab);
1156 return 1;
1157 }
1158
1159 /*
1160 * Determine if a certain object in a slab is on the freelist. Must hold the
1161 * slab lock to guarantee that the chains are in a consistent state.
1162 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1164 {
1165 int nr = 0;
1166 void *fp;
1167 void *object = NULL;
1168 int max_objects;
1169
1170 fp = slab->freelist;
1171 while (fp && nr <= slab->objects) {
1172 if (fp == search)
1173 return 1;
1174 if (!check_valid_pointer(s, slab, fp)) {
1175 if (object) {
1176 object_err(s, slab, object,
1177 "Freechain corrupt");
1178 set_freepointer(s, object, NULL);
1179 } else {
1180 slab_err(s, slab, "Freepointer corrupt");
1181 slab->freelist = NULL;
1182 slab->inuse = slab->objects;
1183 slab_fix(s, "Freelist cleared");
1184 return 0;
1185 }
1186 break;
1187 }
1188 object = fp;
1189 fp = get_freepointer(s, object);
1190 nr++;
1191 }
1192
1193 max_objects = order_objects(slab_order(slab), s->size);
1194 if (max_objects > MAX_OBJS_PER_PAGE)
1195 max_objects = MAX_OBJS_PER_PAGE;
1196
1197 if (slab->objects != max_objects) {
1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1199 slab->objects, max_objects);
1200 slab->objects = max_objects;
1201 slab_fix(s, "Number of objects adjusted");
1202 }
1203 if (slab->inuse != slab->objects - nr) {
1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1205 slab->inuse, slab->objects - nr);
1206 slab->inuse = slab->objects - nr;
1207 slab_fix(s, "Object count adjusted");
1208 }
1209 return search == NULL;
1210 }
1211
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1213 int alloc)
1214 {
1215 if (s->flags & SLAB_TRACE) {
1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1217 s->name,
1218 alloc ? "alloc" : "free",
1219 object, slab->inuse,
1220 slab->freelist);
1221
1222 if (!alloc)
1223 print_section(KERN_INFO, "Object ", (void *)object,
1224 s->object_size);
1225
1226 dump_stack();
1227 }
1228 }
1229
1230 /*
1231 * Tracking of fully allocated slabs for debugging purposes.
1232 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1233 static void add_full(struct kmem_cache *s,
1234 struct kmem_cache_node *n, struct slab *slab)
1235 {
1236 if (!(s->flags & SLAB_STORE_USER))
1237 return;
1238
1239 lockdep_assert_held(&n->list_lock);
1240 list_add(&slab->slab_list, &n->full);
1241 }
1242
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1244 {
1245 if (!(s->flags & SLAB_STORE_USER))
1246 return;
1247
1248 lockdep_assert_held(&n->list_lock);
1249 list_del(&slab->slab_list);
1250 }
1251
1252 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1254 {
1255 struct kmem_cache_node *n = get_node(s, node);
1256
1257 return atomic_long_read(&n->nr_slabs);
1258 }
1259
node_nr_slabs(struct kmem_cache_node * n)1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1261 {
1262 return atomic_long_read(&n->nr_slabs);
1263 }
1264
inc_slabs_node(struct kmem_cache * s,int node,int objects)1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1266 {
1267 struct kmem_cache_node *n = get_node(s, node);
1268
1269 /*
1270 * May be called early in order to allocate a slab for the
1271 * kmem_cache_node structure. Solve the chicken-egg
1272 * dilemma by deferring the increment of the count during
1273 * bootstrap (see early_kmem_cache_node_alloc).
1274 */
1275 if (likely(n)) {
1276 atomic_long_inc(&n->nr_slabs);
1277 atomic_long_add(objects, &n->total_objects);
1278 }
1279 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1281 {
1282 struct kmem_cache_node *n = get_node(s, node);
1283
1284 atomic_long_dec(&n->nr_slabs);
1285 atomic_long_sub(objects, &n->total_objects);
1286 }
1287
1288 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1289 static void setup_object_debug(struct kmem_cache *s, void *object)
1290 {
1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1292 return;
1293
1294 init_object(s, object, SLUB_RED_INACTIVE);
1295 init_tracking(s, object);
1296 }
1297
1298 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1300 {
1301 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1302 return;
1303
1304 metadata_access_enable();
1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1306 metadata_access_disable();
1307 }
1308
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1309 static inline int alloc_consistency_checks(struct kmem_cache *s,
1310 struct slab *slab, void *object)
1311 {
1312 if (!check_slab(s, slab))
1313 return 0;
1314
1315 if (!check_valid_pointer(s, slab, object)) {
1316 object_err(s, slab, object, "Freelist Pointer check fails");
1317 return 0;
1318 }
1319
1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1321 return 0;
1322
1323 return 1;
1324 }
1325
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1326 static noinline int alloc_debug_processing(struct kmem_cache *s,
1327 struct slab *slab,
1328 void *object, unsigned long addr)
1329 {
1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1331 if (!alloc_consistency_checks(s, slab, object))
1332 goto bad;
1333 }
1334
1335 /* Success perform special debug activities for allocs */
1336 if (s->flags & SLAB_STORE_USER)
1337 set_track(s, object, TRACK_ALLOC, addr);
1338 trace(s, slab, object, 1);
1339 init_object(s, object, SLUB_RED_ACTIVE);
1340 return 1;
1341
1342 bad:
1343 if (folio_test_slab(slab_folio(slab))) {
1344 /*
1345 * If this is a slab page then lets do the best we can
1346 * to avoid issues in the future. Marking all objects
1347 * as used avoids touching the remaining objects.
1348 */
1349 slab_fix(s, "Marking all objects used");
1350 slab->inuse = slab->objects;
1351 slab->freelist = NULL;
1352 }
1353 return 0;
1354 }
1355
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1356 static inline int free_consistency_checks(struct kmem_cache *s,
1357 struct slab *slab, void *object, unsigned long addr)
1358 {
1359 if (!check_valid_pointer(s, slab, object)) {
1360 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1361 return 0;
1362 }
1363
1364 if (on_freelist(s, slab, object)) {
1365 object_err(s, slab, object, "Object already free");
1366 return 0;
1367 }
1368
1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1370 return 0;
1371
1372 if (unlikely(s != slab->slab_cache)) {
1373 if (!folio_test_slab(slab_folio(slab))) {
1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1375 object);
1376 } else if (!slab->slab_cache) {
1377 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1378 object);
1379 dump_stack();
1380 } else
1381 object_err(s, slab, object,
1382 "page slab pointer corrupt.");
1383 return 0;
1384 }
1385 return 1;
1386 }
1387
1388 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)1389 static noinline int free_debug_processing(
1390 struct kmem_cache *s, struct slab *slab,
1391 void *head, void *tail, int bulk_cnt,
1392 unsigned long addr)
1393 {
1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1395 void *object = head;
1396 int cnt = 0;
1397 unsigned long flags, flags2;
1398 int ret = 0;
1399 depot_stack_handle_t handle = 0;
1400
1401 if (s->flags & SLAB_STORE_USER)
1402 handle = set_track_prepare();
1403
1404 spin_lock_irqsave(&n->list_lock, flags);
1405 slab_lock(slab, &flags2);
1406
1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1408 if (!check_slab(s, slab))
1409 goto out;
1410 }
1411
1412 next_object:
1413 cnt++;
1414
1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1416 if (!free_consistency_checks(s, slab, object, addr))
1417 goto out;
1418 }
1419
1420 if (s->flags & SLAB_STORE_USER)
1421 set_track_update(s, object, TRACK_FREE, addr, handle);
1422 trace(s, slab, object, 0);
1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1424 init_object(s, object, SLUB_RED_INACTIVE);
1425
1426 /* Reached end of constructed freelist yet? */
1427 if (object != tail) {
1428 object = get_freepointer(s, object);
1429 goto next_object;
1430 }
1431 ret = 1;
1432
1433 out:
1434 if (cnt != bulk_cnt)
1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1436 bulk_cnt, cnt);
1437
1438 slab_unlock(slab, &flags2);
1439 spin_unlock_irqrestore(&n->list_lock, flags);
1440 if (!ret)
1441 slab_fix(s, "Object at 0x%p not freed", object);
1442 return ret;
1443 }
1444
1445 /*
1446 * Parse a block of slub_debug options. Blocks are delimited by ';'
1447 *
1448 * @str: start of block
1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1450 * @slabs: return start of list of slabs, or NULL when there's no list
1451 * @init: assume this is initial parsing and not per-kmem-create parsing
1452 *
1453 * returns the start of next block if there's any, or NULL
1454 */
1455 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1457 {
1458 bool higher_order_disable = false;
1459
1460 /* Skip any completely empty blocks */
1461 while (*str && *str == ';')
1462 str++;
1463
1464 if (*str == ',') {
1465 /*
1466 * No options but restriction on slabs. This means full
1467 * debugging for slabs matching a pattern.
1468 */
1469 *flags = DEBUG_DEFAULT_FLAGS;
1470 goto check_slabs;
1471 }
1472 *flags = 0;
1473
1474 /* Determine which debug features should be switched on */
1475 for (; *str && *str != ',' && *str != ';'; str++) {
1476 switch (tolower(*str)) {
1477 case '-':
1478 *flags = 0;
1479 break;
1480 case 'f':
1481 *flags |= SLAB_CONSISTENCY_CHECKS;
1482 break;
1483 case 'z':
1484 *flags |= SLAB_RED_ZONE;
1485 break;
1486 case 'p':
1487 *flags |= SLAB_POISON;
1488 break;
1489 case 'u':
1490 *flags |= SLAB_STORE_USER;
1491 break;
1492 case 't':
1493 *flags |= SLAB_TRACE;
1494 break;
1495 case 'a':
1496 *flags |= SLAB_FAILSLAB;
1497 break;
1498 case 'o':
1499 /*
1500 * Avoid enabling debugging on caches if its minimum
1501 * order would increase as a result.
1502 */
1503 higher_order_disable = true;
1504 break;
1505 default:
1506 if (init)
1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1508 }
1509 }
1510 check_slabs:
1511 if (*str == ',')
1512 *slabs = ++str;
1513 else
1514 *slabs = NULL;
1515
1516 /* Skip over the slab list */
1517 while (*str && *str != ';')
1518 str++;
1519
1520 /* Skip any completely empty blocks */
1521 while (*str && *str == ';')
1522 str++;
1523
1524 if (init && higher_order_disable)
1525 disable_higher_order_debug = 1;
1526
1527 if (*str)
1528 return str;
1529 else
1530 return NULL;
1531 }
1532
setup_slub_debug(char * str)1533 static int __init setup_slub_debug(char *str)
1534 {
1535 slab_flags_t flags;
1536 slab_flags_t global_flags;
1537 char *saved_str;
1538 char *slab_list;
1539 bool global_slub_debug_changed = false;
1540 bool slab_list_specified = false;
1541
1542 global_flags = DEBUG_DEFAULT_FLAGS;
1543 if (*str++ != '=' || !*str)
1544 /*
1545 * No options specified. Switch on full debugging.
1546 */
1547 goto out;
1548
1549 saved_str = str;
1550 while (str) {
1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1552
1553 if (!slab_list) {
1554 global_flags = flags;
1555 global_slub_debug_changed = true;
1556 } else {
1557 slab_list_specified = true;
1558 if (flags & SLAB_STORE_USER)
1559 stack_depot_want_early_init();
1560 }
1561 }
1562
1563 /*
1564 * For backwards compatibility, a single list of flags with list of
1565 * slabs means debugging is only changed for those slabs, so the global
1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1568 * long as there is no option specifying flags without a slab list.
1569 */
1570 if (slab_list_specified) {
1571 if (!global_slub_debug_changed)
1572 global_flags = slub_debug;
1573 slub_debug_string = saved_str;
1574 }
1575 out:
1576 slub_debug = global_flags;
1577 if (slub_debug & SLAB_STORE_USER)
1578 stack_depot_want_early_init();
1579 if (slub_debug != 0 || slub_debug_string)
1580 static_branch_enable(&slub_debug_enabled);
1581 else
1582 static_branch_disable(&slub_debug_enabled);
1583 if ((static_branch_unlikely(&init_on_alloc) ||
1584 static_branch_unlikely(&init_on_free)) &&
1585 (slub_debug & SLAB_POISON))
1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1587 return 1;
1588 }
1589
1590 __setup("slub_debug", setup_slub_debug);
1591
1592 /*
1593 * kmem_cache_flags - apply debugging options to the cache
1594 * @object_size: the size of an object without meta data
1595 * @flags: flags to set
1596 * @name: name of the cache
1597 *
1598 * Debug option(s) are applied to @flags. In addition to the debug
1599 * option(s), if a slab name (or multiple) is specified i.e.
1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1601 * then only the select slabs will receive the debug option(s).
1602 */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1603 slab_flags_t kmem_cache_flags(unsigned int object_size,
1604 slab_flags_t flags, const char *name)
1605 {
1606 char *iter;
1607 size_t len;
1608 char *next_block;
1609 slab_flags_t block_flags;
1610 slab_flags_t slub_debug_local = slub_debug;
1611
1612 if (flags & SLAB_NO_USER_FLAGS)
1613 return flags;
1614
1615 /*
1616 * If the slab cache is for debugging (e.g. kmemleak) then
1617 * don't store user (stack trace) information by default,
1618 * but let the user enable it via the command line below.
1619 */
1620 if (flags & SLAB_NOLEAKTRACE)
1621 slub_debug_local &= ~SLAB_STORE_USER;
1622
1623 len = strlen(name);
1624 next_block = slub_debug_string;
1625 /* Go through all blocks of debug options, see if any matches our slab's name */
1626 while (next_block) {
1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1628 if (!iter)
1629 continue;
1630 /* Found a block that has a slab list, search it */
1631 while (*iter) {
1632 char *end, *glob;
1633 size_t cmplen;
1634
1635 end = strchrnul(iter, ',');
1636 if (next_block && next_block < end)
1637 end = next_block - 1;
1638
1639 glob = strnchr(iter, end - iter, '*');
1640 if (glob)
1641 cmplen = glob - iter;
1642 else
1643 cmplen = max_t(size_t, len, (end - iter));
1644
1645 if (!strncmp(name, iter, cmplen)) {
1646 flags |= block_flags;
1647 return flags;
1648 }
1649
1650 if (!*end || *end == ';')
1651 break;
1652 iter = end + 1;
1653 }
1654 }
1655
1656 return flags | slub_debug_local;
1657 }
1658 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1660 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1662
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1663 static inline int alloc_debug_processing(struct kmem_cache *s,
1664 struct slab *slab, void *object, unsigned long addr) { return 0; }
1665
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)1666 static inline int free_debug_processing(
1667 struct kmem_cache *s, struct slab *slab,
1668 void *head, void *tail, int bulk_cnt,
1669 unsigned long addr) { return 0; }
1670
slab_pad_check(struct kmem_cache * s,struct slab * slab)1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1672 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1673 void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1675 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1677 struct slab *slab) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1678 slab_flags_t kmem_cache_flags(unsigned int object_size,
1679 slab_flags_t flags, const char *name)
1680 {
1681 return flags;
1682 }
1683 #define slub_debug 0
1684
1685 #define disable_higher_order_debug 0
1686
slabs_node(struct kmem_cache * s,int node)1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1688 { return 0; }
node_nr_slabs(struct kmem_cache_node * n)1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1690 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1691 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1692 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1693 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1694 int objects) {}
1695
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1697 void **freelist, void *nextfree)
1698 {
1699 return false;
1700 }
1701 #endif /* CONFIG_SLUB_DEBUG */
1702
1703 /*
1704 * Hooks for other subsystems that check memory allocations. In a typical
1705 * production configuration these hooks all should produce no code at all.
1706 */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1707 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1708 {
1709 ptr = kasan_kmalloc_large(ptr, size, flags);
1710 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1711 kmemleak_alloc(ptr, size, 1, flags);
1712 return ptr;
1713 }
1714
kfree_hook(void * x)1715 static __always_inline void kfree_hook(void *x)
1716 {
1717 kmemleak_free(x);
1718 kasan_kfree_large(x);
1719 }
1720
slab_free_hook(struct kmem_cache * s,void * x,bool init)1721 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1722 void *x, bool init)
1723 {
1724 kmemleak_free_recursive(x, s->flags);
1725
1726 debug_check_no_locks_freed(x, s->object_size);
1727
1728 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1729 debug_check_no_obj_freed(x, s->object_size);
1730
1731 /* Use KCSAN to help debug racy use-after-free. */
1732 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1733 __kcsan_check_access(x, s->object_size,
1734 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1735
1736 /*
1737 * As memory initialization might be integrated into KASAN,
1738 * kasan_slab_free and initialization memset's must be
1739 * kept together to avoid discrepancies in behavior.
1740 *
1741 * The initialization memset's clear the object and the metadata,
1742 * but don't touch the SLAB redzone.
1743 */
1744 if (init) {
1745 int rsize;
1746
1747 if (!kasan_has_integrated_init())
1748 memset(kasan_reset_tag(x), 0, s->object_size);
1749 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1750 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1751 s->size - s->inuse - rsize);
1752 }
1753 /* KASAN might put x into memory quarantine, delaying its reuse. */
1754 return kasan_slab_free(s, x, init);
1755 }
1756
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1757 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1758 void **head, void **tail,
1759 int *cnt)
1760 {
1761
1762 void *object;
1763 void *next = *head;
1764 void *old_tail = *tail ? *tail : *head;
1765
1766 if (is_kfence_address(next)) {
1767 slab_free_hook(s, next, false);
1768 return true;
1769 }
1770
1771 /* Head and tail of the reconstructed freelist */
1772 *head = NULL;
1773 *tail = NULL;
1774
1775 do {
1776 object = next;
1777 next = get_freepointer(s, object);
1778
1779 /* If object's reuse doesn't have to be delayed */
1780 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1781 /* Move object to the new freelist */
1782 set_freepointer(s, object, *head);
1783 *head = object;
1784 if (!*tail)
1785 *tail = object;
1786 } else {
1787 /*
1788 * Adjust the reconstructed freelist depth
1789 * accordingly if object's reuse is delayed.
1790 */
1791 --(*cnt);
1792 }
1793 } while (object != old_tail);
1794
1795 if (*head == *tail)
1796 *tail = NULL;
1797
1798 return *head != NULL;
1799 }
1800
setup_object(struct kmem_cache * s,void * object)1801 static void *setup_object(struct kmem_cache *s, void *object)
1802 {
1803 setup_object_debug(s, object);
1804 object = kasan_init_slab_obj(s, object);
1805 if (unlikely(s->ctor)) {
1806 kasan_unpoison_object_data(s, object);
1807 s->ctor(object);
1808 kasan_poison_object_data(s, object);
1809 }
1810 return object;
1811 }
1812
1813 /*
1814 * Slab allocation and freeing
1815 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)1816 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1817 struct kmem_cache_order_objects oo)
1818 {
1819 struct folio *folio;
1820 struct slab *slab;
1821 unsigned int order = oo_order(oo);
1822
1823 if (node == NUMA_NO_NODE)
1824 folio = (struct folio *)alloc_pages(flags, order);
1825 else
1826 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1827
1828 if (!folio)
1829 return NULL;
1830
1831 slab = folio_slab(folio);
1832 __folio_set_slab(folio);
1833 if (page_is_pfmemalloc(folio_page(folio, 0)))
1834 slab_set_pfmemalloc(slab);
1835
1836 return slab;
1837 }
1838
1839 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1840 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1841 static int init_cache_random_seq(struct kmem_cache *s)
1842 {
1843 unsigned int count = oo_objects(s->oo);
1844 int err;
1845
1846 /* Bailout if already initialised */
1847 if (s->random_seq)
1848 return 0;
1849
1850 err = cache_random_seq_create(s, count, GFP_KERNEL);
1851 if (err) {
1852 pr_err("SLUB: Unable to initialize free list for %s\n",
1853 s->name);
1854 return err;
1855 }
1856
1857 /* Transform to an offset on the set of pages */
1858 if (s->random_seq) {
1859 unsigned int i;
1860
1861 for (i = 0; i < count; i++)
1862 s->random_seq[i] *= s->size;
1863 }
1864 return 0;
1865 }
1866
1867 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1868 static void __init init_freelist_randomization(void)
1869 {
1870 struct kmem_cache *s;
1871
1872 mutex_lock(&slab_mutex);
1873
1874 list_for_each_entry(s, &slab_caches, list)
1875 init_cache_random_seq(s);
1876
1877 mutex_unlock(&slab_mutex);
1878 }
1879
1880 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct slab * slab,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1881 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1882 unsigned long *pos, void *start,
1883 unsigned long page_limit,
1884 unsigned long freelist_count)
1885 {
1886 unsigned int idx;
1887
1888 /*
1889 * If the target page allocation failed, the number of objects on the
1890 * page might be smaller than the usual size defined by the cache.
1891 */
1892 do {
1893 idx = s->random_seq[*pos];
1894 *pos += 1;
1895 if (*pos >= freelist_count)
1896 *pos = 0;
1897 } while (unlikely(idx >= page_limit));
1898
1899 return (char *)start + idx;
1900 }
1901
1902 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1903 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1904 {
1905 void *start;
1906 void *cur;
1907 void *next;
1908 unsigned long idx, pos, page_limit, freelist_count;
1909
1910 if (slab->objects < 2 || !s->random_seq)
1911 return false;
1912
1913 freelist_count = oo_objects(s->oo);
1914 pos = get_random_int() % freelist_count;
1915
1916 page_limit = slab->objects * s->size;
1917 start = fixup_red_left(s, slab_address(slab));
1918
1919 /* First entry is used as the base of the freelist */
1920 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1921 freelist_count);
1922 cur = setup_object(s, cur);
1923 slab->freelist = cur;
1924
1925 for (idx = 1; idx < slab->objects; idx++) {
1926 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1927 freelist_count);
1928 next = setup_object(s, next);
1929 set_freepointer(s, cur, next);
1930 cur = next;
1931 }
1932 set_freepointer(s, cur, NULL);
1933
1934 return true;
1935 }
1936 #else
init_cache_random_seq(struct kmem_cache * s)1937 static inline int init_cache_random_seq(struct kmem_cache *s)
1938 {
1939 return 0;
1940 }
init_freelist_randomization(void)1941 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1942 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1943 {
1944 return false;
1945 }
1946 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1947
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1948 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1949 {
1950 struct slab *slab;
1951 struct kmem_cache_order_objects oo = s->oo;
1952 gfp_t alloc_gfp;
1953 void *start, *p, *next;
1954 int idx;
1955 bool shuffle;
1956
1957 flags &= gfp_allowed_mask;
1958
1959 flags |= s->allocflags;
1960
1961 /*
1962 * Let the initial higher-order allocation fail under memory pressure
1963 * so we fall-back to the minimum order allocation.
1964 */
1965 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1966 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1967 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1968
1969 slab = alloc_slab_page(alloc_gfp, node, oo);
1970 if (unlikely(!slab)) {
1971 oo = s->min;
1972 alloc_gfp = flags;
1973 /*
1974 * Allocation may have failed due to fragmentation.
1975 * Try a lower order alloc if possible
1976 */
1977 slab = alloc_slab_page(alloc_gfp, node, oo);
1978 if (unlikely(!slab))
1979 goto out;
1980 stat(s, ORDER_FALLBACK);
1981 }
1982
1983 slab->objects = oo_objects(oo);
1984
1985 account_slab(slab, oo_order(oo), s, flags);
1986
1987 slab->slab_cache = s;
1988
1989 kasan_poison_slab(slab);
1990
1991 start = slab_address(slab);
1992
1993 setup_slab_debug(s, slab, start);
1994
1995 shuffle = shuffle_freelist(s, slab);
1996
1997 if (!shuffle) {
1998 start = fixup_red_left(s, start);
1999 start = setup_object(s, start);
2000 slab->freelist = start;
2001 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2002 next = p + s->size;
2003 next = setup_object(s, next);
2004 set_freepointer(s, p, next);
2005 p = next;
2006 }
2007 set_freepointer(s, p, NULL);
2008 }
2009
2010 slab->inuse = slab->objects;
2011 slab->frozen = 1;
2012
2013 out:
2014 if (!slab)
2015 return NULL;
2016
2017 inc_slabs_node(s, slab_nid(slab), slab->objects);
2018
2019 return slab;
2020 }
2021
new_slab(struct kmem_cache * s,gfp_t flags,int node)2022 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2023 {
2024 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2025 flags = kmalloc_fix_flags(flags);
2026
2027 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2028
2029 return allocate_slab(s,
2030 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2031 }
2032
__free_slab(struct kmem_cache * s,struct slab * slab)2033 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2034 {
2035 struct folio *folio = slab_folio(slab);
2036 int order = folio_order(folio);
2037 int pages = 1 << order;
2038
2039 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2040 void *p;
2041
2042 slab_pad_check(s, slab);
2043 for_each_object(p, s, slab_address(slab), slab->objects)
2044 check_object(s, slab, p, SLUB_RED_INACTIVE);
2045 }
2046
2047 __slab_clear_pfmemalloc(slab);
2048 __folio_clear_slab(folio);
2049 folio->mapping = NULL;
2050 if (current->reclaim_state)
2051 current->reclaim_state->reclaimed_slab += pages;
2052 unaccount_slab(slab, order, s);
2053 __free_pages(folio_page(folio, 0), order);
2054 }
2055
rcu_free_slab(struct rcu_head * h)2056 static void rcu_free_slab(struct rcu_head *h)
2057 {
2058 struct slab *slab = container_of(h, struct slab, rcu_head);
2059
2060 __free_slab(slab->slab_cache, slab);
2061 }
2062
free_slab(struct kmem_cache * s,struct slab * slab)2063 static void free_slab(struct kmem_cache *s, struct slab *slab)
2064 {
2065 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2066 call_rcu(&slab->rcu_head, rcu_free_slab);
2067 } else
2068 __free_slab(s, slab);
2069 }
2070
discard_slab(struct kmem_cache * s,struct slab * slab)2071 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2072 {
2073 dec_slabs_node(s, slab_nid(slab), slab->objects);
2074 free_slab(s, slab);
2075 }
2076
2077 /*
2078 * Management of partially allocated slabs.
2079 */
2080 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2081 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2082 {
2083 n->nr_partial++;
2084 if (tail == DEACTIVATE_TO_TAIL)
2085 list_add_tail(&slab->slab_list, &n->partial);
2086 else
2087 list_add(&slab->slab_list, &n->partial);
2088 }
2089
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2090 static inline void add_partial(struct kmem_cache_node *n,
2091 struct slab *slab, int tail)
2092 {
2093 lockdep_assert_held(&n->list_lock);
2094 __add_partial(n, slab, tail);
2095 }
2096
remove_partial(struct kmem_cache_node * n,struct slab * slab)2097 static inline void remove_partial(struct kmem_cache_node *n,
2098 struct slab *slab)
2099 {
2100 lockdep_assert_held(&n->list_lock);
2101 list_del(&slab->slab_list);
2102 n->nr_partial--;
2103 }
2104
2105 /*
2106 * Remove slab from the partial list, freeze it and
2107 * return the pointer to the freelist.
2108 *
2109 * Returns a list of objects or NULL if it fails.
2110 */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int mode)2111 static inline void *acquire_slab(struct kmem_cache *s,
2112 struct kmem_cache_node *n, struct slab *slab,
2113 int mode)
2114 {
2115 void *freelist;
2116 unsigned long counters;
2117 struct slab new;
2118
2119 lockdep_assert_held(&n->list_lock);
2120
2121 /*
2122 * Zap the freelist and set the frozen bit.
2123 * The old freelist is the list of objects for the
2124 * per cpu allocation list.
2125 */
2126 freelist = slab->freelist;
2127 counters = slab->counters;
2128 new.counters = counters;
2129 if (mode) {
2130 new.inuse = slab->objects;
2131 new.freelist = NULL;
2132 } else {
2133 new.freelist = freelist;
2134 }
2135
2136 VM_BUG_ON(new.frozen);
2137 new.frozen = 1;
2138
2139 if (!__cmpxchg_double_slab(s, slab,
2140 freelist, counters,
2141 new.freelist, new.counters,
2142 "acquire_slab"))
2143 return NULL;
2144
2145 remove_partial(n, slab);
2146 WARN_ON(!freelist);
2147 return freelist;
2148 }
2149
2150 #ifdef CONFIG_SLUB_CPU_PARTIAL
2151 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2152 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2153 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2154 int drain) { }
2155 #endif
2156 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2157
2158 /*
2159 * Try to allocate a partial slab from a specific node.
2160 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct slab ** ret_slab,gfp_t gfpflags)2161 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2162 struct slab **ret_slab, gfp_t gfpflags)
2163 {
2164 struct slab *slab, *slab2;
2165 void *object = NULL;
2166 unsigned long flags;
2167 unsigned int partial_slabs = 0;
2168
2169 /*
2170 * Racy check. If we mistakenly see no partial slabs then we
2171 * just allocate an empty slab. If we mistakenly try to get a
2172 * partial slab and there is none available then get_partial()
2173 * will return NULL.
2174 */
2175 if (!n || !n->nr_partial)
2176 return NULL;
2177
2178 spin_lock_irqsave(&n->list_lock, flags);
2179 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2180 void *t;
2181
2182 if (!pfmemalloc_match(slab, gfpflags))
2183 continue;
2184
2185 t = acquire_slab(s, n, slab, object == NULL);
2186 if (!t)
2187 break;
2188
2189 if (!object) {
2190 *ret_slab = slab;
2191 stat(s, ALLOC_FROM_PARTIAL);
2192 object = t;
2193 } else {
2194 put_cpu_partial(s, slab, 0);
2195 stat(s, CPU_PARTIAL_NODE);
2196 partial_slabs++;
2197 }
2198 #ifdef CONFIG_SLUB_CPU_PARTIAL
2199 if (!kmem_cache_has_cpu_partial(s)
2200 || partial_slabs > s->cpu_partial_slabs / 2)
2201 break;
2202 #else
2203 break;
2204 #endif
2205
2206 }
2207 spin_unlock_irqrestore(&n->list_lock, flags);
2208 return object;
2209 }
2210
2211 /*
2212 * Get a slab from somewhere. Search in increasing NUMA distances.
2213 */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct slab ** ret_slab)2214 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2215 struct slab **ret_slab)
2216 {
2217 #ifdef CONFIG_NUMA
2218 struct zonelist *zonelist;
2219 struct zoneref *z;
2220 struct zone *zone;
2221 enum zone_type highest_zoneidx = gfp_zone(flags);
2222 void *object;
2223 unsigned int cpuset_mems_cookie;
2224
2225 /*
2226 * The defrag ratio allows a configuration of the tradeoffs between
2227 * inter node defragmentation and node local allocations. A lower
2228 * defrag_ratio increases the tendency to do local allocations
2229 * instead of attempting to obtain partial slabs from other nodes.
2230 *
2231 * If the defrag_ratio is set to 0 then kmalloc() always
2232 * returns node local objects. If the ratio is higher then kmalloc()
2233 * may return off node objects because partial slabs are obtained
2234 * from other nodes and filled up.
2235 *
2236 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2237 * (which makes defrag_ratio = 1000) then every (well almost)
2238 * allocation will first attempt to defrag slab caches on other nodes.
2239 * This means scanning over all nodes to look for partial slabs which
2240 * may be expensive if we do it every time we are trying to find a slab
2241 * with available objects.
2242 */
2243 if (!s->remote_node_defrag_ratio ||
2244 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2245 return NULL;
2246
2247 do {
2248 cpuset_mems_cookie = read_mems_allowed_begin();
2249 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2250 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2251 struct kmem_cache_node *n;
2252
2253 n = get_node(s, zone_to_nid(zone));
2254
2255 if (n && cpuset_zone_allowed(zone, flags) &&
2256 n->nr_partial > s->min_partial) {
2257 object = get_partial_node(s, n, ret_slab, flags);
2258 if (object) {
2259 /*
2260 * Don't check read_mems_allowed_retry()
2261 * here - if mems_allowed was updated in
2262 * parallel, that was a harmless race
2263 * between allocation and the cpuset
2264 * update
2265 */
2266 return object;
2267 }
2268 }
2269 }
2270 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2271 #endif /* CONFIG_NUMA */
2272 return NULL;
2273 }
2274
2275 /*
2276 * Get a partial slab, lock it and return it.
2277 */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct slab ** ret_slab)2278 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2279 struct slab **ret_slab)
2280 {
2281 void *object;
2282 int searchnode = node;
2283
2284 if (node == NUMA_NO_NODE)
2285 searchnode = numa_mem_id();
2286
2287 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2288 if (object || node != NUMA_NO_NODE)
2289 return object;
2290
2291 return get_any_partial(s, flags, ret_slab);
2292 }
2293
2294 #ifdef CONFIG_PREEMPTION
2295 /*
2296 * Calculate the next globally unique transaction for disambiguation
2297 * during cmpxchg. The transactions start with the cpu number and are then
2298 * incremented by CONFIG_NR_CPUS.
2299 */
2300 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2301 #else
2302 /*
2303 * No preemption supported therefore also no need to check for
2304 * different cpus.
2305 */
2306 #define TID_STEP 1
2307 #endif
2308
next_tid(unsigned long tid)2309 static inline unsigned long next_tid(unsigned long tid)
2310 {
2311 return tid + TID_STEP;
2312 }
2313
2314 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2315 static inline unsigned int tid_to_cpu(unsigned long tid)
2316 {
2317 return tid % TID_STEP;
2318 }
2319
tid_to_event(unsigned long tid)2320 static inline unsigned long tid_to_event(unsigned long tid)
2321 {
2322 return tid / TID_STEP;
2323 }
2324 #endif
2325
init_tid(int cpu)2326 static inline unsigned int init_tid(int cpu)
2327 {
2328 return cpu;
2329 }
2330
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2331 static inline void note_cmpxchg_failure(const char *n,
2332 const struct kmem_cache *s, unsigned long tid)
2333 {
2334 #ifdef SLUB_DEBUG_CMPXCHG
2335 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2336
2337 pr_info("%s %s: cmpxchg redo ", n, s->name);
2338
2339 #ifdef CONFIG_PREEMPTION
2340 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2341 pr_warn("due to cpu change %d -> %d\n",
2342 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2343 else
2344 #endif
2345 if (tid_to_event(tid) != tid_to_event(actual_tid))
2346 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2347 tid_to_event(tid), tid_to_event(actual_tid));
2348 else
2349 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2350 actual_tid, tid, next_tid(tid));
2351 #endif
2352 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2353 }
2354
init_kmem_cache_cpus(struct kmem_cache * s)2355 static void init_kmem_cache_cpus(struct kmem_cache *s)
2356 {
2357 int cpu;
2358 struct kmem_cache_cpu *c;
2359
2360 for_each_possible_cpu(cpu) {
2361 c = per_cpu_ptr(s->cpu_slab, cpu);
2362 local_lock_init(&c->lock);
2363 c->tid = init_tid(cpu);
2364 }
2365 }
2366
2367 /*
2368 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2369 * unfreezes the slabs and puts it on the proper list.
2370 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2371 * by the caller.
2372 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)2373 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2374 void *freelist)
2375 {
2376 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2377 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2378 int free_delta = 0;
2379 enum slab_modes mode = M_NONE;
2380 void *nextfree, *freelist_iter, *freelist_tail;
2381 int tail = DEACTIVATE_TO_HEAD;
2382 unsigned long flags = 0;
2383 struct slab new;
2384 struct slab old;
2385
2386 if (slab->freelist) {
2387 stat(s, DEACTIVATE_REMOTE_FREES);
2388 tail = DEACTIVATE_TO_TAIL;
2389 }
2390
2391 /*
2392 * Stage one: Count the objects on cpu's freelist as free_delta and
2393 * remember the last object in freelist_tail for later splicing.
2394 */
2395 freelist_tail = NULL;
2396 freelist_iter = freelist;
2397 while (freelist_iter) {
2398 nextfree = get_freepointer(s, freelist_iter);
2399
2400 /*
2401 * If 'nextfree' is invalid, it is possible that the object at
2402 * 'freelist_iter' is already corrupted. So isolate all objects
2403 * starting at 'freelist_iter' by skipping them.
2404 */
2405 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2406 break;
2407
2408 freelist_tail = freelist_iter;
2409 free_delta++;
2410
2411 freelist_iter = nextfree;
2412 }
2413
2414 /*
2415 * Stage two: Unfreeze the slab while splicing the per-cpu
2416 * freelist to the head of slab's freelist.
2417 *
2418 * Ensure that the slab is unfrozen while the list presence
2419 * reflects the actual number of objects during unfreeze.
2420 *
2421 * We first perform cmpxchg holding lock and insert to list
2422 * when it succeed. If there is mismatch then the slab is not
2423 * unfrozen and number of objects in the slab may have changed.
2424 * Then release lock and retry cmpxchg again.
2425 */
2426 redo:
2427
2428 old.freelist = READ_ONCE(slab->freelist);
2429 old.counters = READ_ONCE(slab->counters);
2430 VM_BUG_ON(!old.frozen);
2431
2432 /* Determine target state of the slab */
2433 new.counters = old.counters;
2434 if (freelist_tail) {
2435 new.inuse -= free_delta;
2436 set_freepointer(s, freelist_tail, old.freelist);
2437 new.freelist = freelist;
2438 } else
2439 new.freelist = old.freelist;
2440
2441 new.frozen = 0;
2442
2443 if (!new.inuse && n->nr_partial >= s->min_partial) {
2444 mode = M_FREE;
2445 } else if (new.freelist) {
2446 mode = M_PARTIAL;
2447 /*
2448 * Taking the spinlock removes the possibility that
2449 * acquire_slab() will see a slab that is frozen
2450 */
2451 spin_lock_irqsave(&n->list_lock, flags);
2452 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2453 mode = M_FULL;
2454 /*
2455 * This also ensures that the scanning of full
2456 * slabs from diagnostic functions will not see
2457 * any frozen slabs.
2458 */
2459 spin_lock_irqsave(&n->list_lock, flags);
2460 } else {
2461 mode = M_FULL_NOLIST;
2462 }
2463
2464
2465 if (!cmpxchg_double_slab(s, slab,
2466 old.freelist, old.counters,
2467 new.freelist, new.counters,
2468 "unfreezing slab")) {
2469 if (mode == M_PARTIAL || mode == M_FULL)
2470 spin_unlock_irqrestore(&n->list_lock, flags);
2471 goto redo;
2472 }
2473
2474
2475 if (mode == M_PARTIAL) {
2476 add_partial(n, slab, tail);
2477 spin_unlock_irqrestore(&n->list_lock, flags);
2478 stat(s, tail);
2479 } else if (mode == M_FREE) {
2480 stat(s, DEACTIVATE_EMPTY);
2481 discard_slab(s, slab);
2482 stat(s, FREE_SLAB);
2483 } else if (mode == M_FULL) {
2484 add_full(s, n, slab);
2485 spin_unlock_irqrestore(&n->list_lock, flags);
2486 stat(s, DEACTIVATE_FULL);
2487 } else if (mode == M_FULL_NOLIST) {
2488 stat(s, DEACTIVATE_FULL);
2489 }
2490 }
2491
2492 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct slab * partial_slab)2493 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2494 {
2495 struct kmem_cache_node *n = NULL, *n2 = NULL;
2496 struct slab *slab, *slab_to_discard = NULL;
2497 unsigned long flags = 0;
2498
2499 while (partial_slab) {
2500 struct slab new;
2501 struct slab old;
2502
2503 slab = partial_slab;
2504 partial_slab = slab->next;
2505
2506 n2 = get_node(s, slab_nid(slab));
2507 if (n != n2) {
2508 if (n)
2509 spin_unlock_irqrestore(&n->list_lock, flags);
2510
2511 n = n2;
2512 spin_lock_irqsave(&n->list_lock, flags);
2513 }
2514
2515 do {
2516
2517 old.freelist = slab->freelist;
2518 old.counters = slab->counters;
2519 VM_BUG_ON(!old.frozen);
2520
2521 new.counters = old.counters;
2522 new.freelist = old.freelist;
2523
2524 new.frozen = 0;
2525
2526 } while (!__cmpxchg_double_slab(s, slab,
2527 old.freelist, old.counters,
2528 new.freelist, new.counters,
2529 "unfreezing slab"));
2530
2531 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2532 slab->next = slab_to_discard;
2533 slab_to_discard = slab;
2534 } else {
2535 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2536 stat(s, FREE_ADD_PARTIAL);
2537 }
2538 }
2539
2540 if (n)
2541 spin_unlock_irqrestore(&n->list_lock, flags);
2542
2543 while (slab_to_discard) {
2544 slab = slab_to_discard;
2545 slab_to_discard = slab_to_discard->next;
2546
2547 stat(s, DEACTIVATE_EMPTY);
2548 discard_slab(s, slab);
2549 stat(s, FREE_SLAB);
2550 }
2551 }
2552
2553 /*
2554 * Unfreeze all the cpu partial slabs.
2555 */
unfreeze_partials(struct kmem_cache * s)2556 static void unfreeze_partials(struct kmem_cache *s)
2557 {
2558 struct slab *partial_slab;
2559 unsigned long flags;
2560
2561 local_lock_irqsave(&s->cpu_slab->lock, flags);
2562 partial_slab = this_cpu_read(s->cpu_slab->partial);
2563 this_cpu_write(s->cpu_slab->partial, NULL);
2564 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2565
2566 if (partial_slab)
2567 __unfreeze_partials(s, partial_slab);
2568 }
2569
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2570 static void unfreeze_partials_cpu(struct kmem_cache *s,
2571 struct kmem_cache_cpu *c)
2572 {
2573 struct slab *partial_slab;
2574
2575 partial_slab = slub_percpu_partial(c);
2576 c->partial = NULL;
2577
2578 if (partial_slab)
2579 __unfreeze_partials(s, partial_slab);
2580 }
2581
2582 /*
2583 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2584 * partial slab slot if available.
2585 *
2586 * If we did not find a slot then simply move all the partials to the
2587 * per node partial list.
2588 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2589 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2590 {
2591 struct slab *oldslab;
2592 struct slab *slab_to_unfreeze = NULL;
2593 unsigned long flags;
2594 int slabs = 0;
2595
2596 local_lock_irqsave(&s->cpu_slab->lock, flags);
2597
2598 oldslab = this_cpu_read(s->cpu_slab->partial);
2599
2600 if (oldslab) {
2601 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2602 /*
2603 * Partial array is full. Move the existing set to the
2604 * per node partial list. Postpone the actual unfreezing
2605 * outside of the critical section.
2606 */
2607 slab_to_unfreeze = oldslab;
2608 oldslab = NULL;
2609 } else {
2610 slabs = oldslab->slabs;
2611 }
2612 }
2613
2614 slabs++;
2615
2616 slab->slabs = slabs;
2617 slab->next = oldslab;
2618
2619 this_cpu_write(s->cpu_slab->partial, slab);
2620
2621 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2622
2623 if (slab_to_unfreeze) {
2624 __unfreeze_partials(s, slab_to_unfreeze);
2625 stat(s, CPU_PARTIAL_DRAIN);
2626 }
2627 }
2628
2629 #else /* CONFIG_SLUB_CPU_PARTIAL */
2630
unfreeze_partials(struct kmem_cache * s)2631 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2632 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2633 struct kmem_cache_cpu *c) { }
2634
2635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2636
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2637 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2638 {
2639 unsigned long flags;
2640 struct slab *slab;
2641 void *freelist;
2642
2643 local_lock_irqsave(&s->cpu_slab->lock, flags);
2644
2645 slab = c->slab;
2646 freelist = c->freelist;
2647
2648 c->slab = NULL;
2649 c->freelist = NULL;
2650 c->tid = next_tid(c->tid);
2651
2652 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2653
2654 if (slab) {
2655 deactivate_slab(s, slab, freelist);
2656 stat(s, CPUSLAB_FLUSH);
2657 }
2658 }
2659
__flush_cpu_slab(struct kmem_cache * s,int cpu)2660 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2661 {
2662 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2663 void *freelist = c->freelist;
2664 struct slab *slab = c->slab;
2665
2666 c->slab = NULL;
2667 c->freelist = NULL;
2668 c->tid = next_tid(c->tid);
2669
2670 if (slab) {
2671 deactivate_slab(s, slab, freelist);
2672 stat(s, CPUSLAB_FLUSH);
2673 }
2674
2675 unfreeze_partials_cpu(s, c);
2676 }
2677
2678 struct slub_flush_work {
2679 struct work_struct work;
2680 struct kmem_cache *s;
2681 bool skip;
2682 };
2683
2684 /*
2685 * Flush cpu slab.
2686 *
2687 * Called from CPU work handler with migration disabled.
2688 */
flush_cpu_slab(struct work_struct * w)2689 static void flush_cpu_slab(struct work_struct *w)
2690 {
2691 struct kmem_cache *s;
2692 struct kmem_cache_cpu *c;
2693 struct slub_flush_work *sfw;
2694
2695 sfw = container_of(w, struct slub_flush_work, work);
2696
2697 s = sfw->s;
2698 c = this_cpu_ptr(s->cpu_slab);
2699
2700 if (c->slab)
2701 flush_slab(s, c);
2702
2703 unfreeze_partials(s);
2704 }
2705
has_cpu_slab(int cpu,struct kmem_cache * s)2706 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2707 {
2708 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2709
2710 return c->slab || slub_percpu_partial(c);
2711 }
2712
2713 static DEFINE_MUTEX(flush_lock);
2714 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2715
flush_all_cpus_locked(struct kmem_cache * s)2716 static void flush_all_cpus_locked(struct kmem_cache *s)
2717 {
2718 struct slub_flush_work *sfw;
2719 unsigned int cpu;
2720
2721 lockdep_assert_cpus_held();
2722 mutex_lock(&flush_lock);
2723
2724 for_each_online_cpu(cpu) {
2725 sfw = &per_cpu(slub_flush, cpu);
2726 if (!has_cpu_slab(cpu, s)) {
2727 sfw->skip = true;
2728 continue;
2729 }
2730 INIT_WORK(&sfw->work, flush_cpu_slab);
2731 sfw->skip = false;
2732 sfw->s = s;
2733 schedule_work_on(cpu, &sfw->work);
2734 }
2735
2736 for_each_online_cpu(cpu) {
2737 sfw = &per_cpu(slub_flush, cpu);
2738 if (sfw->skip)
2739 continue;
2740 flush_work(&sfw->work);
2741 }
2742
2743 mutex_unlock(&flush_lock);
2744 }
2745
flush_all(struct kmem_cache * s)2746 static void flush_all(struct kmem_cache *s)
2747 {
2748 cpus_read_lock();
2749 flush_all_cpus_locked(s);
2750 cpus_read_unlock();
2751 }
2752
2753 /*
2754 * Use the cpu notifier to insure that the cpu slabs are flushed when
2755 * necessary.
2756 */
slub_cpu_dead(unsigned int cpu)2757 static int slub_cpu_dead(unsigned int cpu)
2758 {
2759 struct kmem_cache *s;
2760
2761 mutex_lock(&slab_mutex);
2762 list_for_each_entry(s, &slab_caches, list)
2763 __flush_cpu_slab(s, cpu);
2764 mutex_unlock(&slab_mutex);
2765 return 0;
2766 }
2767
2768 /*
2769 * Check if the objects in a per cpu structure fit numa
2770 * locality expectations.
2771 */
node_match(struct slab * slab,int node)2772 static inline int node_match(struct slab *slab, int node)
2773 {
2774 #ifdef CONFIG_NUMA
2775 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2776 return 0;
2777 #endif
2778 return 1;
2779 }
2780
2781 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)2782 static int count_free(struct slab *slab)
2783 {
2784 return slab->objects - slab->inuse;
2785 }
2786
node_nr_objs(struct kmem_cache_node * n)2787 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2788 {
2789 return atomic_long_read(&n->total_objects);
2790 }
2791 #endif /* CONFIG_SLUB_DEBUG */
2792
2793 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))2794 static unsigned long count_partial(struct kmem_cache_node *n,
2795 int (*get_count)(struct slab *))
2796 {
2797 unsigned long flags;
2798 unsigned long x = 0;
2799 struct slab *slab;
2800
2801 spin_lock_irqsave(&n->list_lock, flags);
2802 list_for_each_entry(slab, &n->partial, slab_list)
2803 x += get_count(slab);
2804 spin_unlock_irqrestore(&n->list_lock, flags);
2805 return x;
2806 }
2807 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2808
2809 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2810 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2811 {
2812 #ifdef CONFIG_SLUB_DEBUG
2813 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2814 DEFAULT_RATELIMIT_BURST);
2815 int node;
2816 struct kmem_cache_node *n;
2817
2818 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2819 return;
2820
2821 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2822 nid, gfpflags, &gfpflags);
2823 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2824 s->name, s->object_size, s->size, oo_order(s->oo),
2825 oo_order(s->min));
2826
2827 if (oo_order(s->min) > get_order(s->object_size))
2828 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2829 s->name);
2830
2831 for_each_kmem_cache_node(s, node, n) {
2832 unsigned long nr_slabs;
2833 unsigned long nr_objs;
2834 unsigned long nr_free;
2835
2836 nr_free = count_partial(n, count_free);
2837 nr_slabs = node_nr_slabs(n);
2838 nr_objs = node_nr_objs(n);
2839
2840 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2841 node, nr_slabs, nr_objs, nr_free);
2842 }
2843 #endif
2844 }
2845
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)2846 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2847 {
2848 if (unlikely(slab_test_pfmemalloc(slab)))
2849 return gfp_pfmemalloc_allowed(gfpflags);
2850
2851 return true;
2852 }
2853
2854 /*
2855 * Check the slab->freelist and either transfer the freelist to the
2856 * per cpu freelist or deactivate the slab.
2857 *
2858 * The slab is still frozen if the return value is not NULL.
2859 *
2860 * If this function returns NULL then the slab has been unfrozen.
2861 */
get_freelist(struct kmem_cache * s,struct slab * slab)2862 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2863 {
2864 struct slab new;
2865 unsigned long counters;
2866 void *freelist;
2867
2868 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2869
2870 do {
2871 freelist = slab->freelist;
2872 counters = slab->counters;
2873
2874 new.counters = counters;
2875 VM_BUG_ON(!new.frozen);
2876
2877 new.inuse = slab->objects;
2878 new.frozen = freelist != NULL;
2879
2880 } while (!__cmpxchg_double_slab(s, slab,
2881 freelist, counters,
2882 NULL, new.counters,
2883 "get_freelist"));
2884
2885 return freelist;
2886 }
2887
2888 /*
2889 * Slow path. The lockless freelist is empty or we need to perform
2890 * debugging duties.
2891 *
2892 * Processing is still very fast if new objects have been freed to the
2893 * regular freelist. In that case we simply take over the regular freelist
2894 * as the lockless freelist and zap the regular freelist.
2895 *
2896 * If that is not working then we fall back to the partial lists. We take the
2897 * first element of the freelist as the object to allocate now and move the
2898 * rest of the freelist to the lockless freelist.
2899 *
2900 * And if we were unable to get a new slab from the partial slab lists then
2901 * we need to allocate a new slab. This is the slowest path since it involves
2902 * a call to the page allocator and the setup of a new slab.
2903 *
2904 * Version of __slab_alloc to use when we know that preemption is
2905 * already disabled (which is the case for bulk allocation).
2906 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2907 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2908 unsigned long addr, struct kmem_cache_cpu *c)
2909 {
2910 void *freelist;
2911 struct slab *slab;
2912 unsigned long flags;
2913
2914 stat(s, ALLOC_SLOWPATH);
2915
2916 reread_slab:
2917
2918 slab = READ_ONCE(c->slab);
2919 if (!slab) {
2920 /*
2921 * if the node is not online or has no normal memory, just
2922 * ignore the node constraint
2923 */
2924 if (unlikely(node != NUMA_NO_NODE &&
2925 !node_isset(node, slab_nodes)))
2926 node = NUMA_NO_NODE;
2927 goto new_slab;
2928 }
2929 redo:
2930
2931 if (unlikely(!node_match(slab, node))) {
2932 /*
2933 * same as above but node_match() being false already
2934 * implies node != NUMA_NO_NODE
2935 */
2936 if (!node_isset(node, slab_nodes)) {
2937 node = NUMA_NO_NODE;
2938 } else {
2939 stat(s, ALLOC_NODE_MISMATCH);
2940 goto deactivate_slab;
2941 }
2942 }
2943
2944 /*
2945 * By rights, we should be searching for a slab page that was
2946 * PFMEMALLOC but right now, we are losing the pfmemalloc
2947 * information when the page leaves the per-cpu allocator
2948 */
2949 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2950 goto deactivate_slab;
2951
2952 /* must check again c->slab in case we got preempted and it changed */
2953 local_lock_irqsave(&s->cpu_slab->lock, flags);
2954 if (unlikely(slab != c->slab)) {
2955 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2956 goto reread_slab;
2957 }
2958 freelist = c->freelist;
2959 if (freelist)
2960 goto load_freelist;
2961
2962 freelist = get_freelist(s, slab);
2963
2964 if (!freelist) {
2965 c->slab = NULL;
2966 c->tid = next_tid(c->tid);
2967 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2968 stat(s, DEACTIVATE_BYPASS);
2969 goto new_slab;
2970 }
2971
2972 stat(s, ALLOC_REFILL);
2973
2974 load_freelist:
2975
2976 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2977
2978 /*
2979 * freelist is pointing to the list of objects to be used.
2980 * slab is pointing to the slab from which the objects are obtained.
2981 * That slab must be frozen for per cpu allocations to work.
2982 */
2983 VM_BUG_ON(!c->slab->frozen);
2984 c->freelist = get_freepointer(s, freelist);
2985 c->tid = next_tid(c->tid);
2986 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2987 return freelist;
2988
2989 deactivate_slab:
2990
2991 local_lock_irqsave(&s->cpu_slab->lock, flags);
2992 if (slab != c->slab) {
2993 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2994 goto reread_slab;
2995 }
2996 freelist = c->freelist;
2997 c->slab = NULL;
2998 c->freelist = NULL;
2999 c->tid = next_tid(c->tid);
3000 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3001 deactivate_slab(s, slab, freelist);
3002
3003 new_slab:
3004
3005 if (slub_percpu_partial(c)) {
3006 local_lock_irqsave(&s->cpu_slab->lock, flags);
3007 if (unlikely(c->slab)) {
3008 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3009 goto reread_slab;
3010 }
3011 if (unlikely(!slub_percpu_partial(c))) {
3012 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3013 /* we were preempted and partial list got empty */
3014 goto new_objects;
3015 }
3016
3017 slab = c->slab = slub_percpu_partial(c);
3018 slub_set_percpu_partial(c, slab);
3019 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3020 stat(s, CPU_PARTIAL_ALLOC);
3021 goto redo;
3022 }
3023
3024 new_objects:
3025
3026 freelist = get_partial(s, gfpflags, node, &slab);
3027 if (freelist)
3028 goto check_new_slab;
3029
3030 slub_put_cpu_ptr(s->cpu_slab);
3031 slab = new_slab(s, gfpflags, node);
3032 c = slub_get_cpu_ptr(s->cpu_slab);
3033
3034 if (unlikely(!slab)) {
3035 slab_out_of_memory(s, gfpflags, node);
3036 return NULL;
3037 }
3038
3039 /*
3040 * No other reference to the slab yet so we can
3041 * muck around with it freely without cmpxchg
3042 */
3043 freelist = slab->freelist;
3044 slab->freelist = NULL;
3045
3046 stat(s, ALLOC_SLAB);
3047
3048 check_new_slab:
3049
3050 if (kmem_cache_debug(s)) {
3051 if (!alloc_debug_processing(s, slab, freelist, addr)) {
3052 /* Slab failed checks. Next slab needed */
3053 goto new_slab;
3054 } else {
3055 /*
3056 * For debug case, we don't load freelist so that all
3057 * allocations go through alloc_debug_processing()
3058 */
3059 goto return_single;
3060 }
3061 }
3062
3063 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3064 /*
3065 * For !pfmemalloc_match() case we don't load freelist so that
3066 * we don't make further mismatched allocations easier.
3067 */
3068 goto return_single;
3069
3070 retry_load_slab:
3071
3072 local_lock_irqsave(&s->cpu_slab->lock, flags);
3073 if (unlikely(c->slab)) {
3074 void *flush_freelist = c->freelist;
3075 struct slab *flush_slab = c->slab;
3076
3077 c->slab = NULL;
3078 c->freelist = NULL;
3079 c->tid = next_tid(c->tid);
3080
3081 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3082
3083 deactivate_slab(s, flush_slab, flush_freelist);
3084
3085 stat(s, CPUSLAB_FLUSH);
3086
3087 goto retry_load_slab;
3088 }
3089 c->slab = slab;
3090
3091 goto load_freelist;
3092
3093 return_single:
3094
3095 deactivate_slab(s, slab, get_freepointer(s, freelist));
3096 return freelist;
3097 }
3098
3099 /*
3100 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3101 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3102 * pointer.
3103 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)3104 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3105 unsigned long addr, struct kmem_cache_cpu *c)
3106 {
3107 void *p;
3108
3109 #ifdef CONFIG_PREEMPT_COUNT
3110 /*
3111 * We may have been preempted and rescheduled on a different
3112 * cpu before disabling preemption. Need to reload cpu area
3113 * pointer.
3114 */
3115 c = slub_get_cpu_ptr(s->cpu_slab);
3116 #endif
3117
3118 p = ___slab_alloc(s, gfpflags, node, addr, c);
3119 #ifdef CONFIG_PREEMPT_COUNT
3120 slub_put_cpu_ptr(s->cpu_slab);
3121 #endif
3122 return p;
3123 }
3124
3125 /*
3126 * If the object has been wiped upon free, make sure it's fully initialized by
3127 * zeroing out freelist pointer.
3128 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3129 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3130 void *obj)
3131 {
3132 if (unlikely(slab_want_init_on_free(s)) && obj)
3133 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3134 0, sizeof(void *));
3135 }
3136
3137 /*
3138 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3139 * have the fastpath folded into their functions. So no function call
3140 * overhead for requests that can be satisfied on the fastpath.
3141 *
3142 * The fastpath works by first checking if the lockless freelist can be used.
3143 * If not then __slab_alloc is called for slow processing.
3144 *
3145 * Otherwise we can simply pick the next object from the lockless free list.
3146 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3147 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3148 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3149 {
3150 void *object;
3151 struct kmem_cache_cpu *c;
3152 struct slab *slab;
3153 unsigned long tid;
3154 struct obj_cgroup *objcg = NULL;
3155 bool init = false;
3156
3157 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3158 if (!s)
3159 return NULL;
3160
3161 object = kfence_alloc(s, orig_size, gfpflags);
3162 if (unlikely(object))
3163 goto out;
3164
3165 redo:
3166 /*
3167 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3168 * enabled. We may switch back and forth between cpus while
3169 * reading from one cpu area. That does not matter as long
3170 * as we end up on the original cpu again when doing the cmpxchg.
3171 *
3172 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3173 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3174 * the tid. If we are preempted and switched to another cpu between the
3175 * two reads, it's OK as the two are still associated with the same cpu
3176 * and cmpxchg later will validate the cpu.
3177 */
3178 c = raw_cpu_ptr(s->cpu_slab);
3179 tid = READ_ONCE(c->tid);
3180
3181 /*
3182 * Irqless object alloc/free algorithm used here depends on sequence
3183 * of fetching cpu_slab's data. tid should be fetched before anything
3184 * on c to guarantee that object and slab associated with previous tid
3185 * won't be used with current tid. If we fetch tid first, object and
3186 * slab could be one associated with next tid and our alloc/free
3187 * request will be failed. In this case, we will retry. So, no problem.
3188 */
3189 barrier();
3190
3191 /*
3192 * The transaction ids are globally unique per cpu and per operation on
3193 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3194 * occurs on the right processor and that there was no operation on the
3195 * linked list in between.
3196 */
3197
3198 object = c->freelist;
3199 slab = c->slab;
3200 /*
3201 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3202 * slowpath has taken the local_lock_irqsave(), it is not protected
3203 * against a fast path operation in an irq handler. So we need to take
3204 * the slow path which uses local_lock. It is still relatively fast if
3205 * there is a suitable cpu freelist.
3206 */
3207 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3208 unlikely(!object || !slab || !node_match(slab, node))) {
3209 object = __slab_alloc(s, gfpflags, node, addr, c);
3210 } else {
3211 void *next_object = get_freepointer_safe(s, object);
3212
3213 /*
3214 * The cmpxchg will only match if there was no additional
3215 * operation and if we are on the right processor.
3216 *
3217 * The cmpxchg does the following atomically (without lock
3218 * semantics!)
3219 * 1. Relocate first pointer to the current per cpu area.
3220 * 2. Verify that tid and freelist have not been changed
3221 * 3. If they were not changed replace tid and freelist
3222 *
3223 * Since this is without lock semantics the protection is only
3224 * against code executing on this cpu *not* from access by
3225 * other cpus.
3226 */
3227 if (unlikely(!this_cpu_cmpxchg_double(
3228 s->cpu_slab->freelist, s->cpu_slab->tid,
3229 object, tid,
3230 next_object, next_tid(tid)))) {
3231
3232 note_cmpxchg_failure("slab_alloc", s, tid);
3233 goto redo;
3234 }
3235 prefetch_freepointer(s, next_object);
3236 stat(s, ALLOC_FASTPATH);
3237 }
3238
3239 maybe_wipe_obj_freeptr(s, object);
3240 init = slab_want_init_on_alloc(gfpflags, s);
3241
3242 out:
3243 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3244
3245 return object;
3246 }
3247
slab_alloc(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,unsigned long addr,size_t orig_size)3248 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3249 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3250 {
3251 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3252 }
3253
3254 static __always_inline
__kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3255 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3256 gfp_t gfpflags)
3257 {
3258 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3259
3260 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3261 s->size, gfpflags);
3262
3263 return ret;
3264 }
3265
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3266 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3267 {
3268 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3269 }
3270 EXPORT_SYMBOL(kmem_cache_alloc);
3271
kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3272 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3273 gfp_t gfpflags)
3274 {
3275 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3276 }
3277 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3278
3279 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)3280 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3281 {
3282 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3283 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3284 ret = kasan_kmalloc(s, ret, size, gfpflags);
3285 return ret;
3286 }
3287 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3288 #endif
3289
3290 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3291 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3292 {
3293 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3294
3295 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3296 s->object_size, s->size, gfpflags, node);
3297
3298 return ret;
3299 }
3300 EXPORT_SYMBOL(kmem_cache_alloc_node);
3301
3302 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)3303 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3304 gfp_t gfpflags,
3305 int node, size_t size)
3306 {
3307 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3308
3309 trace_kmalloc_node(_RET_IP_, ret,
3310 size, s->size, gfpflags, node);
3311
3312 ret = kasan_kmalloc(s, ret, size, gfpflags);
3313 return ret;
3314 }
3315 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3316 #endif
3317 #endif /* CONFIG_NUMA */
3318
3319 /*
3320 * Slow path handling. This may still be called frequently since objects
3321 * have a longer lifetime than the cpu slabs in most processing loads.
3322 *
3323 * So we still attempt to reduce cache line usage. Just take the slab
3324 * lock and free the item. If there is no additional partial slab
3325 * handling required then we can return immediately.
3326 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3327 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3328 void *head, void *tail, int cnt,
3329 unsigned long addr)
3330
3331 {
3332 void *prior;
3333 int was_frozen;
3334 struct slab new;
3335 unsigned long counters;
3336 struct kmem_cache_node *n = NULL;
3337 unsigned long flags;
3338
3339 stat(s, FREE_SLOWPATH);
3340
3341 if (kfence_free(head))
3342 return;
3343
3344 if (kmem_cache_debug(s) &&
3345 !free_debug_processing(s, slab, head, tail, cnt, addr))
3346 return;
3347
3348 do {
3349 if (unlikely(n)) {
3350 spin_unlock_irqrestore(&n->list_lock, flags);
3351 n = NULL;
3352 }
3353 prior = slab->freelist;
3354 counters = slab->counters;
3355 set_freepointer(s, tail, prior);
3356 new.counters = counters;
3357 was_frozen = new.frozen;
3358 new.inuse -= cnt;
3359 if ((!new.inuse || !prior) && !was_frozen) {
3360
3361 if (kmem_cache_has_cpu_partial(s) && !prior) {
3362
3363 /*
3364 * Slab was on no list before and will be
3365 * partially empty
3366 * We can defer the list move and instead
3367 * freeze it.
3368 */
3369 new.frozen = 1;
3370
3371 } else { /* Needs to be taken off a list */
3372
3373 n = get_node(s, slab_nid(slab));
3374 /*
3375 * Speculatively acquire the list_lock.
3376 * If the cmpxchg does not succeed then we may
3377 * drop the list_lock without any processing.
3378 *
3379 * Otherwise the list_lock will synchronize with
3380 * other processors updating the list of slabs.
3381 */
3382 spin_lock_irqsave(&n->list_lock, flags);
3383
3384 }
3385 }
3386
3387 } while (!cmpxchg_double_slab(s, slab,
3388 prior, counters,
3389 head, new.counters,
3390 "__slab_free"));
3391
3392 if (likely(!n)) {
3393
3394 if (likely(was_frozen)) {
3395 /*
3396 * The list lock was not taken therefore no list
3397 * activity can be necessary.
3398 */
3399 stat(s, FREE_FROZEN);
3400 } else if (new.frozen) {
3401 /*
3402 * If we just froze the slab then put it onto the
3403 * per cpu partial list.
3404 */
3405 put_cpu_partial(s, slab, 1);
3406 stat(s, CPU_PARTIAL_FREE);
3407 }
3408
3409 return;
3410 }
3411
3412 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3413 goto slab_empty;
3414
3415 /*
3416 * Objects left in the slab. If it was not on the partial list before
3417 * then add it.
3418 */
3419 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3420 remove_full(s, n, slab);
3421 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3422 stat(s, FREE_ADD_PARTIAL);
3423 }
3424 spin_unlock_irqrestore(&n->list_lock, flags);
3425 return;
3426
3427 slab_empty:
3428 if (prior) {
3429 /*
3430 * Slab on the partial list.
3431 */
3432 remove_partial(n, slab);
3433 stat(s, FREE_REMOVE_PARTIAL);
3434 } else {
3435 /* Slab must be on the full list */
3436 remove_full(s, n, slab);
3437 }
3438
3439 spin_unlock_irqrestore(&n->list_lock, flags);
3440 stat(s, FREE_SLAB);
3441 discard_slab(s, slab);
3442 }
3443
3444 /*
3445 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3446 * can perform fastpath freeing without additional function calls.
3447 *
3448 * The fastpath is only possible if we are freeing to the current cpu slab
3449 * of this processor. This typically the case if we have just allocated
3450 * the item before.
3451 *
3452 * If fastpath is not possible then fall back to __slab_free where we deal
3453 * with all sorts of special processing.
3454 *
3455 * Bulk free of a freelist with several objects (all pointing to the
3456 * same slab) possible by specifying head and tail ptr, plus objects
3457 * count (cnt). Bulk free indicated by tail pointer being set.
3458 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3459 static __always_inline void do_slab_free(struct kmem_cache *s,
3460 struct slab *slab, void *head, void *tail,
3461 int cnt, unsigned long addr)
3462 {
3463 void *tail_obj = tail ? : head;
3464 struct kmem_cache_cpu *c;
3465 unsigned long tid;
3466
3467 /* memcg_slab_free_hook() is already called for bulk free. */
3468 if (!tail)
3469 memcg_slab_free_hook(s, &head, 1);
3470 redo:
3471 /*
3472 * Determine the currently cpus per cpu slab.
3473 * The cpu may change afterward. However that does not matter since
3474 * data is retrieved via this pointer. If we are on the same cpu
3475 * during the cmpxchg then the free will succeed.
3476 */
3477 c = raw_cpu_ptr(s->cpu_slab);
3478 tid = READ_ONCE(c->tid);
3479
3480 /* Same with comment on barrier() in slab_alloc_node() */
3481 barrier();
3482
3483 if (likely(slab == c->slab)) {
3484 #ifndef CONFIG_PREEMPT_RT
3485 void **freelist = READ_ONCE(c->freelist);
3486
3487 set_freepointer(s, tail_obj, freelist);
3488
3489 if (unlikely(!this_cpu_cmpxchg_double(
3490 s->cpu_slab->freelist, s->cpu_slab->tid,
3491 freelist, tid,
3492 head, next_tid(tid)))) {
3493
3494 note_cmpxchg_failure("slab_free", s, tid);
3495 goto redo;
3496 }
3497 #else /* CONFIG_PREEMPT_RT */
3498 /*
3499 * We cannot use the lockless fastpath on PREEMPT_RT because if
3500 * a slowpath has taken the local_lock_irqsave(), it is not
3501 * protected against a fast path operation in an irq handler. So
3502 * we need to take the local_lock. We shouldn't simply defer to
3503 * __slab_free() as that wouldn't use the cpu freelist at all.
3504 */
3505 void **freelist;
3506
3507 local_lock(&s->cpu_slab->lock);
3508 c = this_cpu_ptr(s->cpu_slab);
3509 if (unlikely(slab != c->slab)) {
3510 local_unlock(&s->cpu_slab->lock);
3511 goto redo;
3512 }
3513 tid = c->tid;
3514 freelist = c->freelist;
3515
3516 set_freepointer(s, tail_obj, freelist);
3517 c->freelist = head;
3518 c->tid = next_tid(tid);
3519
3520 local_unlock(&s->cpu_slab->lock);
3521 #endif
3522 stat(s, FREE_FASTPATH);
3523 } else
3524 __slab_free(s, slab, head, tail_obj, cnt, addr);
3525
3526 }
3527
slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3528 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3529 void *head, void *tail, int cnt,
3530 unsigned long addr)
3531 {
3532 /*
3533 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3534 * to remove objects, whose reuse must be delayed.
3535 */
3536 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3537 do_slab_free(s, slab, head, tail, cnt, addr);
3538 }
3539
3540 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3541 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3542 {
3543 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3544 }
3545 #endif
3546
kmem_cache_free(struct kmem_cache * s,void * x)3547 void kmem_cache_free(struct kmem_cache *s, void *x)
3548 {
3549 s = cache_from_obj(s, x);
3550 if (!s)
3551 return;
3552 trace_kmem_cache_free(_RET_IP_, x, s->name);
3553 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_);
3554 }
3555 EXPORT_SYMBOL(kmem_cache_free);
3556
3557 struct detached_freelist {
3558 struct slab *slab;
3559 void *tail;
3560 void *freelist;
3561 int cnt;
3562 struct kmem_cache *s;
3563 };
3564
free_large_kmalloc(struct folio * folio,void * object)3565 static inline void free_large_kmalloc(struct folio *folio, void *object)
3566 {
3567 unsigned int order = folio_order(folio);
3568
3569 if (WARN_ON_ONCE(order == 0))
3570 pr_warn_once("object pointer: 0x%p\n", object);
3571
3572 kfree_hook(object);
3573 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3574 -(PAGE_SIZE << order));
3575 __free_pages(folio_page(folio, 0), order);
3576 }
3577
3578 /*
3579 * This function progressively scans the array with free objects (with
3580 * a limited look ahead) and extract objects belonging to the same
3581 * slab. It builds a detached freelist directly within the given
3582 * slab/objects. This can happen without any need for
3583 * synchronization, because the objects are owned by running process.
3584 * The freelist is build up as a single linked list in the objects.
3585 * The idea is, that this detached freelist can then be bulk
3586 * transferred to the real freelist(s), but only requiring a single
3587 * synchronization primitive. Look ahead in the array is limited due
3588 * to performance reasons.
3589 */
3590 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3591 int build_detached_freelist(struct kmem_cache *s, size_t size,
3592 void **p, struct detached_freelist *df)
3593 {
3594 size_t first_skipped_index = 0;
3595 int lookahead = 3;
3596 void *object;
3597 struct folio *folio;
3598 struct slab *slab;
3599
3600 /* Always re-init detached_freelist */
3601 df->slab = NULL;
3602
3603 do {
3604 object = p[--size];
3605 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3606 } while (!object && size);
3607
3608 if (!object)
3609 return 0;
3610
3611 folio = virt_to_folio(object);
3612 if (!s) {
3613 /* Handle kalloc'ed objects */
3614 if (unlikely(!folio_test_slab(folio))) {
3615 free_large_kmalloc(folio, object);
3616 p[size] = NULL; /* mark object processed */
3617 return size;
3618 }
3619 /* Derive kmem_cache from object */
3620 slab = folio_slab(folio);
3621 df->s = slab->slab_cache;
3622 } else {
3623 slab = folio_slab(folio);
3624 df->s = cache_from_obj(s, object); /* Support for memcg */
3625 }
3626
3627 if (is_kfence_address(object)) {
3628 slab_free_hook(df->s, object, false);
3629 __kfence_free(object);
3630 p[size] = NULL; /* mark object processed */
3631 return size;
3632 }
3633
3634 /* Start new detached freelist */
3635 df->slab = slab;
3636 set_freepointer(df->s, object, NULL);
3637 df->tail = object;
3638 df->freelist = object;
3639 p[size] = NULL; /* mark object processed */
3640 df->cnt = 1;
3641
3642 while (size) {
3643 object = p[--size];
3644 if (!object)
3645 continue; /* Skip processed objects */
3646
3647 /* df->slab is always set at this point */
3648 if (df->slab == virt_to_slab(object)) {
3649 /* Opportunity build freelist */
3650 set_freepointer(df->s, object, df->freelist);
3651 df->freelist = object;
3652 df->cnt++;
3653 p[size] = NULL; /* mark object processed */
3654
3655 continue;
3656 }
3657
3658 /* Limit look ahead search */
3659 if (!--lookahead)
3660 break;
3661
3662 if (!first_skipped_index)
3663 first_skipped_index = size + 1;
3664 }
3665
3666 return first_skipped_index;
3667 }
3668
3669 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3670 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3671 {
3672 if (WARN_ON(!size))
3673 return;
3674
3675 memcg_slab_free_hook(s, p, size);
3676 do {
3677 struct detached_freelist df;
3678
3679 size = build_detached_freelist(s, size, p, &df);
3680 if (!df.slab)
3681 continue;
3682
3683 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_);
3684 } while (likely(size));
3685 }
3686 EXPORT_SYMBOL(kmem_cache_free_bulk);
3687
3688 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3689 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3690 void **p)
3691 {
3692 struct kmem_cache_cpu *c;
3693 int i;
3694 struct obj_cgroup *objcg = NULL;
3695
3696 /* memcg and kmem_cache debug support */
3697 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3698 if (unlikely(!s))
3699 return false;
3700 /*
3701 * Drain objects in the per cpu slab, while disabling local
3702 * IRQs, which protects against PREEMPT and interrupts
3703 * handlers invoking normal fastpath.
3704 */
3705 c = slub_get_cpu_ptr(s->cpu_slab);
3706 local_lock_irq(&s->cpu_slab->lock);
3707
3708 for (i = 0; i < size; i++) {
3709 void *object = kfence_alloc(s, s->object_size, flags);
3710
3711 if (unlikely(object)) {
3712 p[i] = object;
3713 continue;
3714 }
3715
3716 object = c->freelist;
3717 if (unlikely(!object)) {
3718 /*
3719 * We may have removed an object from c->freelist using
3720 * the fastpath in the previous iteration; in that case,
3721 * c->tid has not been bumped yet.
3722 * Since ___slab_alloc() may reenable interrupts while
3723 * allocating memory, we should bump c->tid now.
3724 */
3725 c->tid = next_tid(c->tid);
3726
3727 local_unlock_irq(&s->cpu_slab->lock);
3728
3729 /*
3730 * Invoking slow path likely have side-effect
3731 * of re-populating per CPU c->freelist
3732 */
3733 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3734 _RET_IP_, c);
3735 if (unlikely(!p[i]))
3736 goto error;
3737
3738 c = this_cpu_ptr(s->cpu_slab);
3739 maybe_wipe_obj_freeptr(s, p[i]);
3740
3741 local_lock_irq(&s->cpu_slab->lock);
3742
3743 continue; /* goto for-loop */
3744 }
3745 c->freelist = get_freepointer(s, object);
3746 p[i] = object;
3747 maybe_wipe_obj_freeptr(s, p[i]);
3748 }
3749 c->tid = next_tid(c->tid);
3750 local_unlock_irq(&s->cpu_slab->lock);
3751 slub_put_cpu_ptr(s->cpu_slab);
3752
3753 /*
3754 * memcg and kmem_cache debug support and memory initialization.
3755 * Done outside of the IRQ disabled fastpath loop.
3756 */
3757 slab_post_alloc_hook(s, objcg, flags, size, p,
3758 slab_want_init_on_alloc(flags, s));
3759 return i;
3760 error:
3761 slub_put_cpu_ptr(s->cpu_slab);
3762 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3763 __kmem_cache_free_bulk(s, i, p);
3764 return 0;
3765 }
3766 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3767
3768
3769 /*
3770 * Object placement in a slab is made very easy because we always start at
3771 * offset 0. If we tune the size of the object to the alignment then we can
3772 * get the required alignment by putting one properly sized object after
3773 * another.
3774 *
3775 * Notice that the allocation order determines the sizes of the per cpu
3776 * caches. Each processor has always one slab available for allocations.
3777 * Increasing the allocation order reduces the number of times that slabs
3778 * must be moved on and off the partial lists and is therefore a factor in
3779 * locking overhead.
3780 */
3781
3782 /*
3783 * Minimum / Maximum order of slab pages. This influences locking overhead
3784 * and slab fragmentation. A higher order reduces the number of partial slabs
3785 * and increases the number of allocations possible without having to
3786 * take the list_lock.
3787 */
3788 static unsigned int slub_min_order;
3789 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3790 static unsigned int slub_min_objects;
3791
3792 /*
3793 * Calculate the order of allocation given an slab object size.
3794 *
3795 * The order of allocation has significant impact on performance and other
3796 * system components. Generally order 0 allocations should be preferred since
3797 * order 0 does not cause fragmentation in the page allocator. Larger objects
3798 * be problematic to put into order 0 slabs because there may be too much
3799 * unused space left. We go to a higher order if more than 1/16th of the slab
3800 * would be wasted.
3801 *
3802 * In order to reach satisfactory performance we must ensure that a minimum
3803 * number of objects is in one slab. Otherwise we may generate too much
3804 * activity on the partial lists which requires taking the list_lock. This is
3805 * less a concern for large slabs though which are rarely used.
3806 *
3807 * slub_max_order specifies the order where we begin to stop considering the
3808 * number of objects in a slab as critical. If we reach slub_max_order then
3809 * we try to keep the page order as low as possible. So we accept more waste
3810 * of space in favor of a small page order.
3811 *
3812 * Higher order allocations also allow the placement of more objects in a
3813 * slab and thereby reduce object handling overhead. If the user has
3814 * requested a higher minimum order then we start with that one instead of
3815 * the smallest order which will fit the object.
3816 */
calc_slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3817 static inline unsigned int calc_slab_order(unsigned int size,
3818 unsigned int min_objects, unsigned int max_order,
3819 unsigned int fract_leftover)
3820 {
3821 unsigned int min_order = slub_min_order;
3822 unsigned int order;
3823
3824 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3825 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3826
3827 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3828 order <= max_order; order++) {
3829
3830 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3831 unsigned int rem;
3832
3833 rem = slab_size % size;
3834
3835 if (rem <= slab_size / fract_leftover)
3836 break;
3837 }
3838
3839 return order;
3840 }
3841
calculate_order(unsigned int size)3842 static inline int calculate_order(unsigned int size)
3843 {
3844 unsigned int order;
3845 unsigned int min_objects;
3846 unsigned int max_objects;
3847 unsigned int nr_cpus;
3848
3849 /*
3850 * Attempt to find best configuration for a slab. This
3851 * works by first attempting to generate a layout with
3852 * the best configuration and backing off gradually.
3853 *
3854 * First we increase the acceptable waste in a slab. Then
3855 * we reduce the minimum objects required in a slab.
3856 */
3857 min_objects = slub_min_objects;
3858 if (!min_objects) {
3859 /*
3860 * Some architectures will only update present cpus when
3861 * onlining them, so don't trust the number if it's just 1. But
3862 * we also don't want to use nr_cpu_ids always, as on some other
3863 * architectures, there can be many possible cpus, but never
3864 * onlined. Here we compromise between trying to avoid too high
3865 * order on systems that appear larger than they are, and too
3866 * low order on systems that appear smaller than they are.
3867 */
3868 nr_cpus = num_present_cpus();
3869 if (nr_cpus <= 1)
3870 nr_cpus = nr_cpu_ids;
3871 min_objects = 4 * (fls(nr_cpus) + 1);
3872 }
3873 max_objects = order_objects(slub_max_order, size);
3874 min_objects = min(min_objects, max_objects);
3875
3876 while (min_objects > 1) {
3877 unsigned int fraction;
3878
3879 fraction = 16;
3880 while (fraction >= 4) {
3881 order = calc_slab_order(size, min_objects,
3882 slub_max_order, fraction);
3883 if (order <= slub_max_order)
3884 return order;
3885 fraction /= 2;
3886 }
3887 min_objects--;
3888 }
3889
3890 /*
3891 * We were unable to place multiple objects in a slab. Now
3892 * lets see if we can place a single object there.
3893 */
3894 order = calc_slab_order(size, 1, slub_max_order, 1);
3895 if (order <= slub_max_order)
3896 return order;
3897
3898 /*
3899 * Doh this slab cannot be placed using slub_max_order.
3900 */
3901 order = calc_slab_order(size, 1, MAX_ORDER, 1);
3902 if (order < MAX_ORDER)
3903 return order;
3904 return -ENOSYS;
3905 }
3906
3907 static void
init_kmem_cache_node(struct kmem_cache_node * n)3908 init_kmem_cache_node(struct kmem_cache_node *n)
3909 {
3910 n->nr_partial = 0;
3911 spin_lock_init(&n->list_lock);
3912 INIT_LIST_HEAD(&n->partial);
3913 #ifdef CONFIG_SLUB_DEBUG
3914 atomic_long_set(&n->nr_slabs, 0);
3915 atomic_long_set(&n->total_objects, 0);
3916 INIT_LIST_HEAD(&n->full);
3917 #endif
3918 }
3919
alloc_kmem_cache_cpus(struct kmem_cache * s)3920 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3921 {
3922 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3923 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3924
3925 /*
3926 * Must align to double word boundary for the double cmpxchg
3927 * instructions to work; see __pcpu_double_call_return_bool().
3928 */
3929 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3930 2 * sizeof(void *));
3931
3932 if (!s->cpu_slab)
3933 return 0;
3934
3935 init_kmem_cache_cpus(s);
3936
3937 return 1;
3938 }
3939
3940 static struct kmem_cache *kmem_cache_node;
3941
3942 /*
3943 * No kmalloc_node yet so do it by hand. We know that this is the first
3944 * slab on the node for this slabcache. There are no concurrent accesses
3945 * possible.
3946 *
3947 * Note that this function only works on the kmem_cache_node
3948 * when allocating for the kmem_cache_node. This is used for bootstrapping
3949 * memory on a fresh node that has no slab structures yet.
3950 */
early_kmem_cache_node_alloc(int node)3951 static void early_kmem_cache_node_alloc(int node)
3952 {
3953 struct slab *slab;
3954 struct kmem_cache_node *n;
3955
3956 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3957
3958 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3959
3960 BUG_ON(!slab);
3961 if (slab_nid(slab) != node) {
3962 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3963 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3964 }
3965
3966 n = slab->freelist;
3967 BUG_ON(!n);
3968 #ifdef CONFIG_SLUB_DEBUG
3969 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3970 init_tracking(kmem_cache_node, n);
3971 #endif
3972 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3973 slab->freelist = get_freepointer(kmem_cache_node, n);
3974 slab->inuse = 1;
3975 slab->frozen = 0;
3976 kmem_cache_node->node[node] = n;
3977 init_kmem_cache_node(n);
3978 inc_slabs_node(kmem_cache_node, node, slab->objects);
3979
3980 /*
3981 * No locks need to be taken here as it has just been
3982 * initialized and there is no concurrent access.
3983 */
3984 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
3985 }
3986
free_kmem_cache_nodes(struct kmem_cache * s)3987 static void free_kmem_cache_nodes(struct kmem_cache *s)
3988 {
3989 int node;
3990 struct kmem_cache_node *n;
3991
3992 for_each_kmem_cache_node(s, node, n) {
3993 s->node[node] = NULL;
3994 kmem_cache_free(kmem_cache_node, n);
3995 }
3996 }
3997
__kmem_cache_release(struct kmem_cache * s)3998 void __kmem_cache_release(struct kmem_cache *s)
3999 {
4000 cache_random_seq_destroy(s);
4001 free_percpu(s->cpu_slab);
4002 free_kmem_cache_nodes(s);
4003 }
4004
init_kmem_cache_nodes(struct kmem_cache * s)4005 static int init_kmem_cache_nodes(struct kmem_cache *s)
4006 {
4007 int node;
4008
4009 for_each_node_mask(node, slab_nodes) {
4010 struct kmem_cache_node *n;
4011
4012 if (slab_state == DOWN) {
4013 early_kmem_cache_node_alloc(node);
4014 continue;
4015 }
4016 n = kmem_cache_alloc_node(kmem_cache_node,
4017 GFP_KERNEL, node);
4018
4019 if (!n) {
4020 free_kmem_cache_nodes(s);
4021 return 0;
4022 }
4023
4024 init_kmem_cache_node(n);
4025 s->node[node] = n;
4026 }
4027 return 1;
4028 }
4029
set_cpu_partial(struct kmem_cache * s)4030 static void set_cpu_partial(struct kmem_cache *s)
4031 {
4032 #ifdef CONFIG_SLUB_CPU_PARTIAL
4033 unsigned int nr_objects;
4034
4035 /*
4036 * cpu_partial determined the maximum number of objects kept in the
4037 * per cpu partial lists of a processor.
4038 *
4039 * Per cpu partial lists mainly contain slabs that just have one
4040 * object freed. If they are used for allocation then they can be
4041 * filled up again with minimal effort. The slab will never hit the
4042 * per node partial lists and therefore no locking will be required.
4043 *
4044 * For backwards compatibility reasons, this is determined as number
4045 * of objects, even though we now limit maximum number of pages, see
4046 * slub_set_cpu_partial()
4047 */
4048 if (!kmem_cache_has_cpu_partial(s))
4049 nr_objects = 0;
4050 else if (s->size >= PAGE_SIZE)
4051 nr_objects = 6;
4052 else if (s->size >= 1024)
4053 nr_objects = 24;
4054 else if (s->size >= 256)
4055 nr_objects = 52;
4056 else
4057 nr_objects = 120;
4058
4059 slub_set_cpu_partial(s, nr_objects);
4060 #endif
4061 }
4062
4063 /*
4064 * calculate_sizes() determines the order and the distribution of data within
4065 * a slab object.
4066 */
calculate_sizes(struct kmem_cache * s)4067 static int calculate_sizes(struct kmem_cache *s)
4068 {
4069 slab_flags_t flags = s->flags;
4070 unsigned int size = s->object_size;
4071 unsigned int order;
4072
4073 /*
4074 * Round up object size to the next word boundary. We can only
4075 * place the free pointer at word boundaries and this determines
4076 * the possible location of the free pointer.
4077 */
4078 size = ALIGN(size, sizeof(void *));
4079
4080 #ifdef CONFIG_SLUB_DEBUG
4081 /*
4082 * Determine if we can poison the object itself. If the user of
4083 * the slab may touch the object after free or before allocation
4084 * then we should never poison the object itself.
4085 */
4086 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4087 !s->ctor)
4088 s->flags |= __OBJECT_POISON;
4089 else
4090 s->flags &= ~__OBJECT_POISON;
4091
4092
4093 /*
4094 * If we are Redzoning then check if there is some space between the
4095 * end of the object and the free pointer. If not then add an
4096 * additional word to have some bytes to store Redzone information.
4097 */
4098 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4099 size += sizeof(void *);
4100 #endif
4101
4102 /*
4103 * With that we have determined the number of bytes in actual use
4104 * by the object and redzoning.
4105 */
4106 s->inuse = size;
4107
4108 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4109 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4110 s->ctor) {
4111 /*
4112 * Relocate free pointer after the object if it is not
4113 * permitted to overwrite the first word of the object on
4114 * kmem_cache_free.
4115 *
4116 * This is the case if we do RCU, have a constructor or
4117 * destructor, are poisoning the objects, or are
4118 * redzoning an object smaller than sizeof(void *).
4119 *
4120 * The assumption that s->offset >= s->inuse means free
4121 * pointer is outside of the object is used in the
4122 * freeptr_outside_object() function. If that is no
4123 * longer true, the function needs to be modified.
4124 */
4125 s->offset = size;
4126 size += sizeof(void *);
4127 } else {
4128 /*
4129 * Store freelist pointer near middle of object to keep
4130 * it away from the edges of the object to avoid small
4131 * sized over/underflows from neighboring allocations.
4132 */
4133 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4134 }
4135
4136 #ifdef CONFIG_SLUB_DEBUG
4137 if (flags & SLAB_STORE_USER)
4138 /*
4139 * Need to store information about allocs and frees after
4140 * the object.
4141 */
4142 size += 2 * sizeof(struct track);
4143 #endif
4144
4145 kasan_cache_create(s, &size, &s->flags);
4146 #ifdef CONFIG_SLUB_DEBUG
4147 if (flags & SLAB_RED_ZONE) {
4148 /*
4149 * Add some empty padding so that we can catch
4150 * overwrites from earlier objects rather than let
4151 * tracking information or the free pointer be
4152 * corrupted if a user writes before the start
4153 * of the object.
4154 */
4155 size += sizeof(void *);
4156
4157 s->red_left_pad = sizeof(void *);
4158 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4159 size += s->red_left_pad;
4160 }
4161 #endif
4162
4163 /*
4164 * SLUB stores one object immediately after another beginning from
4165 * offset 0. In order to align the objects we have to simply size
4166 * each object to conform to the alignment.
4167 */
4168 size = ALIGN(size, s->align);
4169 s->size = size;
4170 s->reciprocal_size = reciprocal_value(size);
4171 order = calculate_order(size);
4172
4173 if ((int)order < 0)
4174 return 0;
4175
4176 s->allocflags = 0;
4177 if (order)
4178 s->allocflags |= __GFP_COMP;
4179
4180 if (s->flags & SLAB_CACHE_DMA)
4181 s->allocflags |= GFP_DMA;
4182
4183 if (s->flags & SLAB_CACHE_DMA32)
4184 s->allocflags |= GFP_DMA32;
4185
4186 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4187 s->allocflags |= __GFP_RECLAIMABLE;
4188
4189 /*
4190 * Determine the number of objects per slab
4191 */
4192 s->oo = oo_make(order, size);
4193 s->min = oo_make(get_order(size), size);
4194
4195 return !!oo_objects(s->oo);
4196 }
4197
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4198 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4199 {
4200 s->flags = kmem_cache_flags(s->size, flags, s->name);
4201 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4202 s->random = get_random_long();
4203 #endif
4204
4205 if (!calculate_sizes(s))
4206 goto error;
4207 if (disable_higher_order_debug) {
4208 /*
4209 * Disable debugging flags that store metadata if the min slab
4210 * order increased.
4211 */
4212 if (get_order(s->size) > get_order(s->object_size)) {
4213 s->flags &= ~DEBUG_METADATA_FLAGS;
4214 s->offset = 0;
4215 if (!calculate_sizes(s))
4216 goto error;
4217 }
4218 }
4219
4220 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4221 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4222 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4223 /* Enable fast mode */
4224 s->flags |= __CMPXCHG_DOUBLE;
4225 #endif
4226
4227 /*
4228 * The larger the object size is, the more slabs we want on the partial
4229 * list to avoid pounding the page allocator excessively.
4230 */
4231 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4232 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4233
4234 set_cpu_partial(s);
4235
4236 #ifdef CONFIG_NUMA
4237 s->remote_node_defrag_ratio = 1000;
4238 #endif
4239
4240 /* Initialize the pre-computed randomized freelist if slab is up */
4241 if (slab_state >= UP) {
4242 if (init_cache_random_seq(s))
4243 goto error;
4244 }
4245
4246 if (!init_kmem_cache_nodes(s))
4247 goto error;
4248
4249 if (alloc_kmem_cache_cpus(s))
4250 return 0;
4251
4252 error:
4253 __kmem_cache_release(s);
4254 return -EINVAL;
4255 }
4256
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)4257 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4258 const char *text)
4259 {
4260 #ifdef CONFIG_SLUB_DEBUG
4261 void *addr = slab_address(slab);
4262 unsigned long flags;
4263 unsigned long *map;
4264 void *p;
4265
4266 slab_err(s, slab, text, s->name);
4267 slab_lock(slab, &flags);
4268
4269 map = get_map(s, slab);
4270 for_each_object(p, s, addr, slab->objects) {
4271
4272 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4273 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4274 print_tracking(s, p);
4275 }
4276 }
4277 put_map(map);
4278 slab_unlock(slab, &flags);
4279 #endif
4280 }
4281
4282 /*
4283 * Attempt to free all partial slabs on a node.
4284 * This is called from __kmem_cache_shutdown(). We must take list_lock
4285 * because sysfs file might still access partial list after the shutdowning.
4286 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4287 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4288 {
4289 LIST_HEAD(discard);
4290 struct slab *slab, *h;
4291
4292 BUG_ON(irqs_disabled());
4293 spin_lock_irq(&n->list_lock);
4294 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4295 if (!slab->inuse) {
4296 remove_partial(n, slab);
4297 list_add(&slab->slab_list, &discard);
4298 } else {
4299 list_slab_objects(s, slab,
4300 "Objects remaining in %s on __kmem_cache_shutdown()");
4301 }
4302 }
4303 spin_unlock_irq(&n->list_lock);
4304
4305 list_for_each_entry_safe(slab, h, &discard, slab_list)
4306 discard_slab(s, slab);
4307 }
4308
__kmem_cache_empty(struct kmem_cache * s)4309 bool __kmem_cache_empty(struct kmem_cache *s)
4310 {
4311 int node;
4312 struct kmem_cache_node *n;
4313
4314 for_each_kmem_cache_node(s, node, n)
4315 if (n->nr_partial || slabs_node(s, node))
4316 return false;
4317 return true;
4318 }
4319
4320 /*
4321 * Release all resources used by a slab cache.
4322 */
__kmem_cache_shutdown(struct kmem_cache * s)4323 int __kmem_cache_shutdown(struct kmem_cache *s)
4324 {
4325 int node;
4326 struct kmem_cache_node *n;
4327
4328 flush_all_cpus_locked(s);
4329 /* Attempt to free all objects */
4330 for_each_kmem_cache_node(s, node, n) {
4331 free_partial(s, n);
4332 if (n->nr_partial || slabs_node(s, node))
4333 return 1;
4334 }
4335 return 0;
4336 }
4337
4338 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)4339 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4340 {
4341 void *base;
4342 int __maybe_unused i;
4343 unsigned int objnr;
4344 void *objp;
4345 void *objp0;
4346 struct kmem_cache *s = slab->slab_cache;
4347 struct track __maybe_unused *trackp;
4348
4349 kpp->kp_ptr = object;
4350 kpp->kp_slab = slab;
4351 kpp->kp_slab_cache = s;
4352 base = slab_address(slab);
4353 objp0 = kasan_reset_tag(object);
4354 #ifdef CONFIG_SLUB_DEBUG
4355 objp = restore_red_left(s, objp0);
4356 #else
4357 objp = objp0;
4358 #endif
4359 objnr = obj_to_index(s, slab, objp);
4360 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4361 objp = base + s->size * objnr;
4362 kpp->kp_objp = objp;
4363 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4364 || (objp - base) % s->size) ||
4365 !(s->flags & SLAB_STORE_USER))
4366 return;
4367 #ifdef CONFIG_SLUB_DEBUG
4368 objp = fixup_red_left(s, objp);
4369 trackp = get_track(s, objp, TRACK_ALLOC);
4370 kpp->kp_ret = (void *)trackp->addr;
4371 #ifdef CONFIG_STACKDEPOT
4372 {
4373 depot_stack_handle_t handle;
4374 unsigned long *entries;
4375 unsigned int nr_entries;
4376
4377 handle = READ_ONCE(trackp->handle);
4378 if (handle) {
4379 nr_entries = stack_depot_fetch(handle, &entries);
4380 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4381 kpp->kp_stack[i] = (void *)entries[i];
4382 }
4383
4384 trackp = get_track(s, objp, TRACK_FREE);
4385 handle = READ_ONCE(trackp->handle);
4386 if (handle) {
4387 nr_entries = stack_depot_fetch(handle, &entries);
4388 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4389 kpp->kp_free_stack[i] = (void *)entries[i];
4390 }
4391 }
4392 #endif
4393 #endif
4394 }
4395 #endif
4396
4397 /********************************************************************
4398 * Kmalloc subsystem
4399 *******************************************************************/
4400
setup_slub_min_order(char * str)4401 static int __init setup_slub_min_order(char *str)
4402 {
4403 get_option(&str, (int *)&slub_min_order);
4404
4405 return 1;
4406 }
4407
4408 __setup("slub_min_order=", setup_slub_min_order);
4409
setup_slub_max_order(char * str)4410 static int __init setup_slub_max_order(char *str)
4411 {
4412 get_option(&str, (int *)&slub_max_order);
4413 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4414
4415 return 1;
4416 }
4417
4418 __setup("slub_max_order=", setup_slub_max_order);
4419
setup_slub_min_objects(char * str)4420 static int __init setup_slub_min_objects(char *str)
4421 {
4422 get_option(&str, (int *)&slub_min_objects);
4423
4424 return 1;
4425 }
4426
4427 __setup("slub_min_objects=", setup_slub_min_objects);
4428
__kmalloc(size_t size,gfp_t flags)4429 void *__kmalloc(size_t size, gfp_t flags)
4430 {
4431 struct kmem_cache *s;
4432 void *ret;
4433
4434 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4435 return kmalloc_large(size, flags);
4436
4437 s = kmalloc_slab(size, flags);
4438
4439 if (unlikely(ZERO_OR_NULL_PTR(s)))
4440 return s;
4441
4442 ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4443
4444 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4445
4446 ret = kasan_kmalloc(s, ret, size, flags);
4447
4448 return ret;
4449 }
4450 EXPORT_SYMBOL(__kmalloc);
4451
4452 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)4453 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4454 {
4455 struct page *page;
4456 void *ptr = NULL;
4457 unsigned int order = get_order(size);
4458
4459 flags |= __GFP_COMP;
4460 page = alloc_pages_node(node, flags, order);
4461 if (page) {
4462 ptr = page_address(page);
4463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4464 PAGE_SIZE << order);
4465 }
4466
4467 return kmalloc_large_node_hook(ptr, size, flags);
4468 }
4469
__kmalloc_node(size_t size,gfp_t flags,int node)4470 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4471 {
4472 struct kmem_cache *s;
4473 void *ret;
4474
4475 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4476 ret = kmalloc_large_node(size, flags, node);
4477
4478 trace_kmalloc_node(_RET_IP_, ret,
4479 size, PAGE_SIZE << get_order(size),
4480 flags, node);
4481
4482 return ret;
4483 }
4484
4485 s = kmalloc_slab(size, flags);
4486
4487 if (unlikely(ZERO_OR_NULL_PTR(s)))
4488 return s;
4489
4490 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4491
4492 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4493
4494 ret = kasan_kmalloc(s, ret, size, flags);
4495
4496 return ret;
4497 }
4498 EXPORT_SYMBOL(__kmalloc_node);
4499 #endif /* CONFIG_NUMA */
4500
4501 #ifdef CONFIG_HARDENED_USERCOPY
4502 /*
4503 * Rejects incorrectly sized objects and objects that are to be copied
4504 * to/from userspace but do not fall entirely within the containing slab
4505 * cache's usercopy region.
4506 *
4507 * Returns NULL if check passes, otherwise const char * to name of cache
4508 * to indicate an error.
4509 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)4510 void __check_heap_object(const void *ptr, unsigned long n,
4511 const struct slab *slab, bool to_user)
4512 {
4513 struct kmem_cache *s;
4514 unsigned int offset;
4515 bool is_kfence = is_kfence_address(ptr);
4516
4517 ptr = kasan_reset_tag(ptr);
4518
4519 /* Find object and usable object size. */
4520 s = slab->slab_cache;
4521
4522 /* Reject impossible pointers. */
4523 if (ptr < slab_address(slab))
4524 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4525 to_user, 0, n);
4526
4527 /* Find offset within object. */
4528 if (is_kfence)
4529 offset = ptr - kfence_object_start(ptr);
4530 else
4531 offset = (ptr - slab_address(slab)) % s->size;
4532
4533 /* Adjust for redzone and reject if within the redzone. */
4534 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4535 if (offset < s->red_left_pad)
4536 usercopy_abort("SLUB object in left red zone",
4537 s->name, to_user, offset, n);
4538 offset -= s->red_left_pad;
4539 }
4540
4541 /* Allow address range falling entirely within usercopy region. */
4542 if (offset >= s->useroffset &&
4543 offset - s->useroffset <= s->usersize &&
4544 n <= s->useroffset - offset + s->usersize)
4545 return;
4546
4547 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4548 }
4549 #endif /* CONFIG_HARDENED_USERCOPY */
4550
__ksize(const void * object)4551 size_t __ksize(const void *object)
4552 {
4553 struct folio *folio;
4554
4555 if (unlikely(object == ZERO_SIZE_PTR))
4556 return 0;
4557
4558 folio = virt_to_folio(object);
4559
4560 if (unlikely(!folio_test_slab(folio)))
4561 return folio_size(folio);
4562
4563 return slab_ksize(folio_slab(folio)->slab_cache);
4564 }
4565 EXPORT_SYMBOL(__ksize);
4566
kfree(const void * x)4567 void kfree(const void *x)
4568 {
4569 struct folio *folio;
4570 struct slab *slab;
4571 void *object = (void *)x;
4572
4573 trace_kfree(_RET_IP_, x);
4574
4575 if (unlikely(ZERO_OR_NULL_PTR(x)))
4576 return;
4577
4578 folio = virt_to_folio(x);
4579 if (unlikely(!folio_test_slab(folio))) {
4580 free_large_kmalloc(folio, object);
4581 return;
4582 }
4583 slab = folio_slab(folio);
4584 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_);
4585 }
4586 EXPORT_SYMBOL(kfree);
4587
4588 #define SHRINK_PROMOTE_MAX 32
4589
4590 /*
4591 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4592 * up most to the head of the partial lists. New allocations will then
4593 * fill those up and thus they can be removed from the partial lists.
4594 *
4595 * The slabs with the least items are placed last. This results in them
4596 * being allocated from last increasing the chance that the last objects
4597 * are freed in them.
4598 */
__kmem_cache_do_shrink(struct kmem_cache * s)4599 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4600 {
4601 int node;
4602 int i;
4603 struct kmem_cache_node *n;
4604 struct slab *slab;
4605 struct slab *t;
4606 struct list_head discard;
4607 struct list_head promote[SHRINK_PROMOTE_MAX];
4608 unsigned long flags;
4609 int ret = 0;
4610
4611 for_each_kmem_cache_node(s, node, n) {
4612 INIT_LIST_HEAD(&discard);
4613 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4614 INIT_LIST_HEAD(promote + i);
4615
4616 spin_lock_irqsave(&n->list_lock, flags);
4617
4618 /*
4619 * Build lists of slabs to discard or promote.
4620 *
4621 * Note that concurrent frees may occur while we hold the
4622 * list_lock. slab->inuse here is the upper limit.
4623 */
4624 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4625 int free = slab->objects - slab->inuse;
4626
4627 /* Do not reread slab->inuse */
4628 barrier();
4629
4630 /* We do not keep full slabs on the list */
4631 BUG_ON(free <= 0);
4632
4633 if (free == slab->objects) {
4634 list_move(&slab->slab_list, &discard);
4635 n->nr_partial--;
4636 } else if (free <= SHRINK_PROMOTE_MAX)
4637 list_move(&slab->slab_list, promote + free - 1);
4638 }
4639
4640 /*
4641 * Promote the slabs filled up most to the head of the
4642 * partial list.
4643 */
4644 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4645 list_splice(promote + i, &n->partial);
4646
4647 spin_unlock_irqrestore(&n->list_lock, flags);
4648
4649 /* Release empty slabs */
4650 list_for_each_entry_safe(slab, t, &discard, slab_list)
4651 discard_slab(s, slab);
4652
4653 if (slabs_node(s, node))
4654 ret = 1;
4655 }
4656
4657 return ret;
4658 }
4659
__kmem_cache_shrink(struct kmem_cache * s)4660 int __kmem_cache_shrink(struct kmem_cache *s)
4661 {
4662 flush_all(s);
4663 return __kmem_cache_do_shrink(s);
4664 }
4665
slab_mem_going_offline_callback(void * arg)4666 static int slab_mem_going_offline_callback(void *arg)
4667 {
4668 struct kmem_cache *s;
4669
4670 mutex_lock(&slab_mutex);
4671 list_for_each_entry(s, &slab_caches, list) {
4672 flush_all_cpus_locked(s);
4673 __kmem_cache_do_shrink(s);
4674 }
4675 mutex_unlock(&slab_mutex);
4676
4677 return 0;
4678 }
4679
slab_mem_offline_callback(void * arg)4680 static void slab_mem_offline_callback(void *arg)
4681 {
4682 struct memory_notify *marg = arg;
4683 int offline_node;
4684
4685 offline_node = marg->status_change_nid_normal;
4686
4687 /*
4688 * If the node still has available memory. we need kmem_cache_node
4689 * for it yet.
4690 */
4691 if (offline_node < 0)
4692 return;
4693
4694 mutex_lock(&slab_mutex);
4695 node_clear(offline_node, slab_nodes);
4696 /*
4697 * We no longer free kmem_cache_node structures here, as it would be
4698 * racy with all get_node() users, and infeasible to protect them with
4699 * slab_mutex.
4700 */
4701 mutex_unlock(&slab_mutex);
4702 }
4703
slab_mem_going_online_callback(void * arg)4704 static int slab_mem_going_online_callback(void *arg)
4705 {
4706 struct kmem_cache_node *n;
4707 struct kmem_cache *s;
4708 struct memory_notify *marg = arg;
4709 int nid = marg->status_change_nid_normal;
4710 int ret = 0;
4711
4712 /*
4713 * If the node's memory is already available, then kmem_cache_node is
4714 * already created. Nothing to do.
4715 */
4716 if (nid < 0)
4717 return 0;
4718
4719 /*
4720 * We are bringing a node online. No memory is available yet. We must
4721 * allocate a kmem_cache_node structure in order to bring the node
4722 * online.
4723 */
4724 mutex_lock(&slab_mutex);
4725 list_for_each_entry(s, &slab_caches, list) {
4726 /*
4727 * The structure may already exist if the node was previously
4728 * onlined and offlined.
4729 */
4730 if (get_node(s, nid))
4731 continue;
4732 /*
4733 * XXX: kmem_cache_alloc_node will fallback to other nodes
4734 * since memory is not yet available from the node that
4735 * is brought up.
4736 */
4737 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4738 if (!n) {
4739 ret = -ENOMEM;
4740 goto out;
4741 }
4742 init_kmem_cache_node(n);
4743 s->node[nid] = n;
4744 }
4745 /*
4746 * Any cache created after this point will also have kmem_cache_node
4747 * initialized for the new node.
4748 */
4749 node_set(nid, slab_nodes);
4750 out:
4751 mutex_unlock(&slab_mutex);
4752 return ret;
4753 }
4754
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4755 static int slab_memory_callback(struct notifier_block *self,
4756 unsigned long action, void *arg)
4757 {
4758 int ret = 0;
4759
4760 switch (action) {
4761 case MEM_GOING_ONLINE:
4762 ret = slab_mem_going_online_callback(arg);
4763 break;
4764 case MEM_GOING_OFFLINE:
4765 ret = slab_mem_going_offline_callback(arg);
4766 break;
4767 case MEM_OFFLINE:
4768 case MEM_CANCEL_ONLINE:
4769 slab_mem_offline_callback(arg);
4770 break;
4771 case MEM_ONLINE:
4772 case MEM_CANCEL_OFFLINE:
4773 break;
4774 }
4775 if (ret)
4776 ret = notifier_from_errno(ret);
4777 else
4778 ret = NOTIFY_OK;
4779 return ret;
4780 }
4781
4782 static struct notifier_block slab_memory_callback_nb = {
4783 .notifier_call = slab_memory_callback,
4784 .priority = SLAB_CALLBACK_PRI,
4785 };
4786
4787 /********************************************************************
4788 * Basic setup of slabs
4789 *******************************************************************/
4790
4791 /*
4792 * Used for early kmem_cache structures that were allocated using
4793 * the page allocator. Allocate them properly then fix up the pointers
4794 * that may be pointing to the wrong kmem_cache structure.
4795 */
4796
bootstrap(struct kmem_cache * static_cache)4797 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4798 {
4799 int node;
4800 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4801 struct kmem_cache_node *n;
4802
4803 memcpy(s, static_cache, kmem_cache->object_size);
4804
4805 /*
4806 * This runs very early, and only the boot processor is supposed to be
4807 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4808 * IPIs around.
4809 */
4810 __flush_cpu_slab(s, smp_processor_id());
4811 for_each_kmem_cache_node(s, node, n) {
4812 struct slab *p;
4813
4814 list_for_each_entry(p, &n->partial, slab_list)
4815 p->slab_cache = s;
4816
4817 #ifdef CONFIG_SLUB_DEBUG
4818 list_for_each_entry(p, &n->full, slab_list)
4819 p->slab_cache = s;
4820 #endif
4821 }
4822 list_add(&s->list, &slab_caches);
4823 return s;
4824 }
4825
kmem_cache_init(void)4826 void __init kmem_cache_init(void)
4827 {
4828 static __initdata struct kmem_cache boot_kmem_cache,
4829 boot_kmem_cache_node;
4830 int node;
4831
4832 if (debug_guardpage_minorder())
4833 slub_max_order = 0;
4834
4835 /* Print slub debugging pointers without hashing */
4836 if (__slub_debug_enabled())
4837 no_hash_pointers_enable(NULL);
4838
4839 kmem_cache_node = &boot_kmem_cache_node;
4840 kmem_cache = &boot_kmem_cache;
4841
4842 /*
4843 * Initialize the nodemask for which we will allocate per node
4844 * structures. Here we don't need taking slab_mutex yet.
4845 */
4846 for_each_node_state(node, N_NORMAL_MEMORY)
4847 node_set(node, slab_nodes);
4848
4849 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4850 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4851
4852 register_hotmemory_notifier(&slab_memory_callback_nb);
4853
4854 /* Able to allocate the per node structures */
4855 slab_state = PARTIAL;
4856
4857 create_boot_cache(kmem_cache, "kmem_cache",
4858 offsetof(struct kmem_cache, node) +
4859 nr_node_ids * sizeof(struct kmem_cache_node *),
4860 SLAB_HWCACHE_ALIGN, 0, 0);
4861
4862 kmem_cache = bootstrap(&boot_kmem_cache);
4863 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4864
4865 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4866 setup_kmalloc_cache_index_table();
4867 create_kmalloc_caches(0);
4868
4869 /* Setup random freelists for each cache */
4870 init_freelist_randomization();
4871
4872 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4873 slub_cpu_dead);
4874
4875 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4876 cache_line_size(),
4877 slub_min_order, slub_max_order, slub_min_objects,
4878 nr_cpu_ids, nr_node_ids);
4879 }
4880
kmem_cache_init_late(void)4881 void __init kmem_cache_init_late(void)
4882 {
4883 }
4884
4885 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4887 slab_flags_t flags, void (*ctor)(void *))
4888 {
4889 struct kmem_cache *s;
4890
4891 s = find_mergeable(size, align, flags, name, ctor);
4892 if (s) {
4893 s->refcount++;
4894
4895 /*
4896 * Adjust the object sizes so that we clear
4897 * the complete object on kzalloc.
4898 */
4899 s->object_size = max(s->object_size, size);
4900 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4901
4902 if (sysfs_slab_alias(s, name)) {
4903 s->refcount--;
4904 s = NULL;
4905 }
4906 }
4907
4908 return s;
4909 }
4910
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4911 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4912 {
4913 int err;
4914
4915 err = kmem_cache_open(s, flags);
4916 if (err)
4917 return err;
4918
4919 /* Mutex is not taken during early boot */
4920 if (slab_state <= UP)
4921 return 0;
4922
4923 err = sysfs_slab_add(s);
4924 if (err) {
4925 __kmem_cache_release(s);
4926 return err;
4927 }
4928
4929 if (s->flags & SLAB_STORE_USER)
4930 debugfs_slab_add(s);
4931
4932 return 0;
4933 }
4934
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4935 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4936 {
4937 struct kmem_cache *s;
4938 void *ret;
4939
4940 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4941 return kmalloc_large(size, gfpflags);
4942
4943 s = kmalloc_slab(size, gfpflags);
4944
4945 if (unlikely(ZERO_OR_NULL_PTR(s)))
4946 return s;
4947
4948 ret = slab_alloc(s, NULL, gfpflags, caller, size);
4949
4950 /* Honor the call site pointer we received. */
4951 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4952
4953 return ret;
4954 }
4955 EXPORT_SYMBOL(__kmalloc_track_caller);
4956
4957 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4958 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4959 int node, unsigned long caller)
4960 {
4961 struct kmem_cache *s;
4962 void *ret;
4963
4964 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4965 ret = kmalloc_large_node(size, gfpflags, node);
4966
4967 trace_kmalloc_node(caller, ret,
4968 size, PAGE_SIZE << get_order(size),
4969 gfpflags, node);
4970
4971 return ret;
4972 }
4973
4974 s = kmalloc_slab(size, gfpflags);
4975
4976 if (unlikely(ZERO_OR_NULL_PTR(s)))
4977 return s;
4978
4979 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4980
4981 /* Honor the call site pointer we received. */
4982 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4983
4984 return ret;
4985 }
4986 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4987 #endif
4988
4989 #ifdef CONFIG_SYSFS
count_inuse(struct slab * slab)4990 static int count_inuse(struct slab *slab)
4991 {
4992 return slab->inuse;
4993 }
4994
count_total(struct slab * slab)4995 static int count_total(struct slab *slab)
4996 {
4997 return slab->objects;
4998 }
4999 #endif
5000
5001 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)5002 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5003 unsigned long *obj_map)
5004 {
5005 void *p;
5006 void *addr = slab_address(slab);
5007 unsigned long flags;
5008
5009 slab_lock(slab, &flags);
5010
5011 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5012 goto unlock;
5013
5014 /* Now we know that a valid freelist exists */
5015 __fill_map(obj_map, s, slab);
5016 for_each_object(p, s, addr, slab->objects) {
5017 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5018 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5019
5020 if (!check_object(s, slab, p, val))
5021 break;
5022 }
5023 unlock:
5024 slab_unlock(slab, &flags);
5025 }
5026
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5027 static int validate_slab_node(struct kmem_cache *s,
5028 struct kmem_cache_node *n, unsigned long *obj_map)
5029 {
5030 unsigned long count = 0;
5031 struct slab *slab;
5032 unsigned long flags;
5033
5034 spin_lock_irqsave(&n->list_lock, flags);
5035
5036 list_for_each_entry(slab, &n->partial, slab_list) {
5037 validate_slab(s, slab, obj_map);
5038 count++;
5039 }
5040 if (count != n->nr_partial) {
5041 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5042 s->name, count, n->nr_partial);
5043 slab_add_kunit_errors();
5044 }
5045
5046 if (!(s->flags & SLAB_STORE_USER))
5047 goto out;
5048
5049 list_for_each_entry(slab, &n->full, slab_list) {
5050 validate_slab(s, slab, obj_map);
5051 count++;
5052 }
5053 if (count != atomic_long_read(&n->nr_slabs)) {
5054 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5055 s->name, count, atomic_long_read(&n->nr_slabs));
5056 slab_add_kunit_errors();
5057 }
5058
5059 out:
5060 spin_unlock_irqrestore(&n->list_lock, flags);
5061 return count;
5062 }
5063
validate_slab_cache(struct kmem_cache * s)5064 long validate_slab_cache(struct kmem_cache *s)
5065 {
5066 int node;
5067 unsigned long count = 0;
5068 struct kmem_cache_node *n;
5069 unsigned long *obj_map;
5070
5071 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5072 if (!obj_map)
5073 return -ENOMEM;
5074
5075 flush_all(s);
5076 for_each_kmem_cache_node(s, node, n)
5077 count += validate_slab_node(s, n, obj_map);
5078
5079 bitmap_free(obj_map);
5080
5081 return count;
5082 }
5083 EXPORT_SYMBOL(validate_slab_cache);
5084
5085 #ifdef CONFIG_DEBUG_FS
5086 /*
5087 * Generate lists of code addresses where slabcache objects are allocated
5088 * and freed.
5089 */
5090
5091 struct location {
5092 depot_stack_handle_t handle;
5093 unsigned long count;
5094 unsigned long addr;
5095 long long sum_time;
5096 long min_time;
5097 long max_time;
5098 long min_pid;
5099 long max_pid;
5100 DECLARE_BITMAP(cpus, NR_CPUS);
5101 nodemask_t nodes;
5102 };
5103
5104 struct loc_track {
5105 unsigned long max;
5106 unsigned long count;
5107 struct location *loc;
5108 loff_t idx;
5109 };
5110
5111 static struct dentry *slab_debugfs_root;
5112
free_loc_track(struct loc_track * t)5113 static void free_loc_track(struct loc_track *t)
5114 {
5115 if (t->max)
5116 free_pages((unsigned long)t->loc,
5117 get_order(sizeof(struct location) * t->max));
5118 }
5119
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5120 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5121 {
5122 struct location *l;
5123 int order;
5124
5125 order = get_order(sizeof(struct location) * max);
5126
5127 l = (void *)__get_free_pages(flags, order);
5128 if (!l)
5129 return 0;
5130
5131 if (t->count) {
5132 memcpy(l, t->loc, sizeof(struct location) * t->count);
5133 free_loc_track(t);
5134 }
5135 t->max = max;
5136 t->loc = l;
5137 return 1;
5138 }
5139
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)5140 static int add_location(struct loc_track *t, struct kmem_cache *s,
5141 const struct track *track)
5142 {
5143 long start, end, pos;
5144 struct location *l;
5145 unsigned long caddr, chandle;
5146 unsigned long age = jiffies - track->when;
5147 depot_stack_handle_t handle = 0;
5148
5149 #ifdef CONFIG_STACKDEPOT
5150 handle = READ_ONCE(track->handle);
5151 #endif
5152 start = -1;
5153 end = t->count;
5154
5155 for ( ; ; ) {
5156 pos = start + (end - start + 1) / 2;
5157
5158 /*
5159 * There is nothing at "end". If we end up there
5160 * we need to add something to before end.
5161 */
5162 if (pos == end)
5163 break;
5164
5165 caddr = t->loc[pos].addr;
5166 chandle = t->loc[pos].handle;
5167 if ((track->addr == caddr) && (handle == chandle)) {
5168
5169 l = &t->loc[pos];
5170 l->count++;
5171 if (track->when) {
5172 l->sum_time += age;
5173 if (age < l->min_time)
5174 l->min_time = age;
5175 if (age > l->max_time)
5176 l->max_time = age;
5177
5178 if (track->pid < l->min_pid)
5179 l->min_pid = track->pid;
5180 if (track->pid > l->max_pid)
5181 l->max_pid = track->pid;
5182
5183 cpumask_set_cpu(track->cpu,
5184 to_cpumask(l->cpus));
5185 }
5186 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5187 return 1;
5188 }
5189
5190 if (track->addr < caddr)
5191 end = pos;
5192 else if (track->addr == caddr && handle < chandle)
5193 end = pos;
5194 else
5195 start = pos;
5196 }
5197
5198 /*
5199 * Not found. Insert new tracking element.
5200 */
5201 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5202 return 0;
5203
5204 l = t->loc + pos;
5205 if (pos < t->count)
5206 memmove(l + 1, l,
5207 (t->count - pos) * sizeof(struct location));
5208 t->count++;
5209 l->count = 1;
5210 l->addr = track->addr;
5211 l->sum_time = age;
5212 l->min_time = age;
5213 l->max_time = age;
5214 l->min_pid = track->pid;
5215 l->max_pid = track->pid;
5216 l->handle = handle;
5217 cpumask_clear(to_cpumask(l->cpus));
5218 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5219 nodes_clear(l->nodes);
5220 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5221 return 1;
5222 }
5223
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)5224 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5225 struct slab *slab, enum track_item alloc,
5226 unsigned long *obj_map)
5227 {
5228 void *addr = slab_address(slab);
5229 void *p;
5230
5231 __fill_map(obj_map, s, slab);
5232
5233 for_each_object(p, s, addr, slab->objects)
5234 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5235 add_location(t, s, get_track(s, p, alloc));
5236 }
5237 #endif /* CONFIG_DEBUG_FS */
5238 #endif /* CONFIG_SLUB_DEBUG */
5239
5240 #ifdef CONFIG_SYSFS
5241 enum slab_stat_type {
5242 SL_ALL, /* All slabs */
5243 SL_PARTIAL, /* Only partially allocated slabs */
5244 SL_CPU, /* Only slabs used for cpu caches */
5245 SL_OBJECTS, /* Determine allocated objects not slabs */
5246 SL_TOTAL /* Determine object capacity not slabs */
5247 };
5248
5249 #define SO_ALL (1 << SL_ALL)
5250 #define SO_PARTIAL (1 << SL_PARTIAL)
5251 #define SO_CPU (1 << SL_CPU)
5252 #define SO_OBJECTS (1 << SL_OBJECTS)
5253 #define SO_TOTAL (1 << SL_TOTAL)
5254
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5255 static ssize_t show_slab_objects(struct kmem_cache *s,
5256 char *buf, unsigned long flags)
5257 {
5258 unsigned long total = 0;
5259 int node;
5260 int x;
5261 unsigned long *nodes;
5262 int len = 0;
5263
5264 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5265 if (!nodes)
5266 return -ENOMEM;
5267
5268 if (flags & SO_CPU) {
5269 int cpu;
5270
5271 for_each_possible_cpu(cpu) {
5272 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5273 cpu);
5274 int node;
5275 struct slab *slab;
5276
5277 slab = READ_ONCE(c->slab);
5278 if (!slab)
5279 continue;
5280
5281 node = slab_nid(slab);
5282 if (flags & SO_TOTAL)
5283 x = slab->objects;
5284 else if (flags & SO_OBJECTS)
5285 x = slab->inuse;
5286 else
5287 x = 1;
5288
5289 total += x;
5290 nodes[node] += x;
5291
5292 #ifdef CONFIG_SLUB_CPU_PARTIAL
5293 slab = slub_percpu_partial_read_once(c);
5294 if (slab) {
5295 node = slab_nid(slab);
5296 if (flags & SO_TOTAL)
5297 WARN_ON_ONCE(1);
5298 else if (flags & SO_OBJECTS)
5299 WARN_ON_ONCE(1);
5300 else
5301 x = slab->slabs;
5302 total += x;
5303 nodes[node] += x;
5304 }
5305 #endif
5306 }
5307 }
5308
5309 /*
5310 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5311 * already held which will conflict with an existing lock order:
5312 *
5313 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5314 *
5315 * We don't really need mem_hotplug_lock (to hold off
5316 * slab_mem_going_offline_callback) here because slab's memory hot
5317 * unplug code doesn't destroy the kmem_cache->node[] data.
5318 */
5319
5320 #ifdef CONFIG_SLUB_DEBUG
5321 if (flags & SO_ALL) {
5322 struct kmem_cache_node *n;
5323
5324 for_each_kmem_cache_node(s, node, n) {
5325
5326 if (flags & SO_TOTAL)
5327 x = atomic_long_read(&n->total_objects);
5328 else if (flags & SO_OBJECTS)
5329 x = atomic_long_read(&n->total_objects) -
5330 count_partial(n, count_free);
5331 else
5332 x = atomic_long_read(&n->nr_slabs);
5333 total += x;
5334 nodes[node] += x;
5335 }
5336
5337 } else
5338 #endif
5339 if (flags & SO_PARTIAL) {
5340 struct kmem_cache_node *n;
5341
5342 for_each_kmem_cache_node(s, node, n) {
5343 if (flags & SO_TOTAL)
5344 x = count_partial(n, count_total);
5345 else if (flags & SO_OBJECTS)
5346 x = count_partial(n, count_inuse);
5347 else
5348 x = n->nr_partial;
5349 total += x;
5350 nodes[node] += x;
5351 }
5352 }
5353
5354 len += sysfs_emit_at(buf, len, "%lu", total);
5355 #ifdef CONFIG_NUMA
5356 for (node = 0; node < nr_node_ids; node++) {
5357 if (nodes[node])
5358 len += sysfs_emit_at(buf, len, " N%d=%lu",
5359 node, nodes[node]);
5360 }
5361 #endif
5362 len += sysfs_emit_at(buf, len, "\n");
5363 kfree(nodes);
5364
5365 return len;
5366 }
5367
5368 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5369 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5370
5371 struct slab_attribute {
5372 struct attribute attr;
5373 ssize_t (*show)(struct kmem_cache *s, char *buf);
5374 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5375 };
5376
5377 #define SLAB_ATTR_RO(_name) \
5378 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5379
5380 #define SLAB_ATTR(_name) \
5381 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5382
slab_size_show(struct kmem_cache * s,char * buf)5383 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5384 {
5385 return sysfs_emit(buf, "%u\n", s->size);
5386 }
5387 SLAB_ATTR_RO(slab_size);
5388
align_show(struct kmem_cache * s,char * buf)5389 static ssize_t align_show(struct kmem_cache *s, char *buf)
5390 {
5391 return sysfs_emit(buf, "%u\n", s->align);
5392 }
5393 SLAB_ATTR_RO(align);
5394
object_size_show(struct kmem_cache * s,char * buf)5395 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5396 {
5397 return sysfs_emit(buf, "%u\n", s->object_size);
5398 }
5399 SLAB_ATTR_RO(object_size);
5400
objs_per_slab_show(struct kmem_cache * s,char * buf)5401 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5402 {
5403 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5404 }
5405 SLAB_ATTR_RO(objs_per_slab);
5406
order_show(struct kmem_cache * s,char * buf)5407 static ssize_t order_show(struct kmem_cache *s, char *buf)
5408 {
5409 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5410 }
5411 SLAB_ATTR_RO(order);
5412
min_partial_show(struct kmem_cache * s,char * buf)5413 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5414 {
5415 return sysfs_emit(buf, "%lu\n", s->min_partial);
5416 }
5417
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5418 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5419 size_t length)
5420 {
5421 unsigned long min;
5422 int err;
5423
5424 err = kstrtoul(buf, 10, &min);
5425 if (err)
5426 return err;
5427
5428 s->min_partial = min;
5429 return length;
5430 }
5431 SLAB_ATTR(min_partial);
5432
cpu_partial_show(struct kmem_cache * s,char * buf)5433 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5434 {
5435 unsigned int nr_partial = 0;
5436 #ifdef CONFIG_SLUB_CPU_PARTIAL
5437 nr_partial = s->cpu_partial;
5438 #endif
5439
5440 return sysfs_emit(buf, "%u\n", nr_partial);
5441 }
5442
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5443 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5444 size_t length)
5445 {
5446 unsigned int objects;
5447 int err;
5448
5449 err = kstrtouint(buf, 10, &objects);
5450 if (err)
5451 return err;
5452 if (objects && !kmem_cache_has_cpu_partial(s))
5453 return -EINVAL;
5454
5455 slub_set_cpu_partial(s, objects);
5456 flush_all(s);
5457 return length;
5458 }
5459 SLAB_ATTR(cpu_partial);
5460
ctor_show(struct kmem_cache * s,char * buf)5461 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5462 {
5463 if (!s->ctor)
5464 return 0;
5465 return sysfs_emit(buf, "%pS\n", s->ctor);
5466 }
5467 SLAB_ATTR_RO(ctor);
5468
aliases_show(struct kmem_cache * s,char * buf)5469 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5470 {
5471 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5472 }
5473 SLAB_ATTR_RO(aliases);
5474
partial_show(struct kmem_cache * s,char * buf)5475 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5476 {
5477 return show_slab_objects(s, buf, SO_PARTIAL);
5478 }
5479 SLAB_ATTR_RO(partial);
5480
cpu_slabs_show(struct kmem_cache * s,char * buf)5481 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5482 {
5483 return show_slab_objects(s, buf, SO_CPU);
5484 }
5485 SLAB_ATTR_RO(cpu_slabs);
5486
objects_show(struct kmem_cache * s,char * buf)5487 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5488 {
5489 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5490 }
5491 SLAB_ATTR_RO(objects);
5492
objects_partial_show(struct kmem_cache * s,char * buf)5493 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5494 {
5495 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5496 }
5497 SLAB_ATTR_RO(objects_partial);
5498
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5499 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5500 {
5501 int objects = 0;
5502 int slabs = 0;
5503 int cpu __maybe_unused;
5504 int len = 0;
5505
5506 #ifdef CONFIG_SLUB_CPU_PARTIAL
5507 for_each_online_cpu(cpu) {
5508 struct slab *slab;
5509
5510 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5511
5512 if (slab)
5513 slabs += slab->slabs;
5514 }
5515 #endif
5516
5517 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5518 objects = (slabs * oo_objects(s->oo)) / 2;
5519 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5520
5521 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5522 for_each_online_cpu(cpu) {
5523 struct slab *slab;
5524
5525 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5526 if (slab) {
5527 slabs = READ_ONCE(slab->slabs);
5528 objects = (slabs * oo_objects(s->oo)) / 2;
5529 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5530 cpu, objects, slabs);
5531 }
5532 }
5533 #endif
5534 len += sysfs_emit_at(buf, len, "\n");
5535
5536 return len;
5537 }
5538 SLAB_ATTR_RO(slabs_cpu_partial);
5539
reclaim_account_show(struct kmem_cache * s,char * buf)5540 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5541 {
5542 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5543 }
5544 SLAB_ATTR_RO(reclaim_account);
5545
hwcache_align_show(struct kmem_cache * s,char * buf)5546 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5547 {
5548 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5549 }
5550 SLAB_ATTR_RO(hwcache_align);
5551
5552 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5553 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5554 {
5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5556 }
5557 SLAB_ATTR_RO(cache_dma);
5558 #endif
5559
usersize_show(struct kmem_cache * s,char * buf)5560 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5561 {
5562 return sysfs_emit(buf, "%u\n", s->usersize);
5563 }
5564 SLAB_ATTR_RO(usersize);
5565
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5567 {
5568 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5569 }
5570 SLAB_ATTR_RO(destroy_by_rcu);
5571
5572 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5573 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5574 {
5575 return show_slab_objects(s, buf, SO_ALL);
5576 }
5577 SLAB_ATTR_RO(slabs);
5578
total_objects_show(struct kmem_cache * s,char * buf)5579 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5580 {
5581 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5582 }
5583 SLAB_ATTR_RO(total_objects);
5584
sanity_checks_show(struct kmem_cache * s,char * buf)5585 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5586 {
5587 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5588 }
5589 SLAB_ATTR_RO(sanity_checks);
5590
trace_show(struct kmem_cache * s,char * buf)5591 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5592 {
5593 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5594 }
5595 SLAB_ATTR_RO(trace);
5596
red_zone_show(struct kmem_cache * s,char * buf)5597 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5598 {
5599 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5600 }
5601
5602 SLAB_ATTR_RO(red_zone);
5603
poison_show(struct kmem_cache * s,char * buf)5604 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5605 {
5606 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5607 }
5608
5609 SLAB_ATTR_RO(poison);
5610
store_user_show(struct kmem_cache * s,char * buf)5611 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5612 {
5613 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5614 }
5615
5616 SLAB_ATTR_RO(store_user);
5617
validate_show(struct kmem_cache * s,char * buf)5618 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5619 {
5620 return 0;
5621 }
5622
validate_store(struct kmem_cache * s,const char * buf,size_t length)5623 static ssize_t validate_store(struct kmem_cache *s,
5624 const char *buf, size_t length)
5625 {
5626 int ret = -EINVAL;
5627
5628 if (buf[0] == '1') {
5629 ret = validate_slab_cache(s);
5630 if (ret >= 0)
5631 ret = length;
5632 }
5633 return ret;
5634 }
5635 SLAB_ATTR(validate);
5636
5637 #endif /* CONFIG_SLUB_DEBUG */
5638
5639 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5640 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5641 {
5642 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5643 }
5644 SLAB_ATTR_RO(failslab);
5645 #endif
5646
shrink_show(struct kmem_cache * s,char * buf)5647 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5648 {
5649 return 0;
5650 }
5651
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5652 static ssize_t shrink_store(struct kmem_cache *s,
5653 const char *buf, size_t length)
5654 {
5655 if (buf[0] == '1')
5656 kmem_cache_shrink(s);
5657 else
5658 return -EINVAL;
5659 return length;
5660 }
5661 SLAB_ATTR(shrink);
5662
5663 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5664 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5665 {
5666 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5667 }
5668
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5669 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5670 const char *buf, size_t length)
5671 {
5672 unsigned int ratio;
5673 int err;
5674
5675 err = kstrtouint(buf, 10, &ratio);
5676 if (err)
5677 return err;
5678 if (ratio > 100)
5679 return -ERANGE;
5680
5681 s->remote_node_defrag_ratio = ratio * 10;
5682
5683 return length;
5684 }
5685 SLAB_ATTR(remote_node_defrag_ratio);
5686 #endif
5687
5688 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5689 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5690 {
5691 unsigned long sum = 0;
5692 int cpu;
5693 int len = 0;
5694 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5695
5696 if (!data)
5697 return -ENOMEM;
5698
5699 for_each_online_cpu(cpu) {
5700 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5701
5702 data[cpu] = x;
5703 sum += x;
5704 }
5705
5706 len += sysfs_emit_at(buf, len, "%lu", sum);
5707
5708 #ifdef CONFIG_SMP
5709 for_each_online_cpu(cpu) {
5710 if (data[cpu])
5711 len += sysfs_emit_at(buf, len, " C%d=%u",
5712 cpu, data[cpu]);
5713 }
5714 #endif
5715 kfree(data);
5716 len += sysfs_emit_at(buf, len, "\n");
5717
5718 return len;
5719 }
5720
clear_stat(struct kmem_cache * s,enum stat_item si)5721 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5722 {
5723 int cpu;
5724
5725 for_each_online_cpu(cpu)
5726 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5727 }
5728
5729 #define STAT_ATTR(si, text) \
5730 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5731 { \
5732 return show_stat(s, buf, si); \
5733 } \
5734 static ssize_t text##_store(struct kmem_cache *s, \
5735 const char *buf, size_t length) \
5736 { \
5737 if (buf[0] != '0') \
5738 return -EINVAL; \
5739 clear_stat(s, si); \
5740 return length; \
5741 } \
5742 SLAB_ATTR(text); \
5743
5744 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5745 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5746 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5747 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5748 STAT_ATTR(FREE_FROZEN, free_frozen);
5749 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5750 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5751 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5752 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5753 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5754 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5755 STAT_ATTR(FREE_SLAB, free_slab);
5756 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5757 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5758 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5759 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5760 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5761 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5762 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5763 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5764 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5765 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5766 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5767 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5768 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5769 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5770 #endif /* CONFIG_SLUB_STATS */
5771
5772 static struct attribute *slab_attrs[] = {
5773 &slab_size_attr.attr,
5774 &object_size_attr.attr,
5775 &objs_per_slab_attr.attr,
5776 &order_attr.attr,
5777 &min_partial_attr.attr,
5778 &cpu_partial_attr.attr,
5779 &objects_attr.attr,
5780 &objects_partial_attr.attr,
5781 &partial_attr.attr,
5782 &cpu_slabs_attr.attr,
5783 &ctor_attr.attr,
5784 &aliases_attr.attr,
5785 &align_attr.attr,
5786 &hwcache_align_attr.attr,
5787 &reclaim_account_attr.attr,
5788 &destroy_by_rcu_attr.attr,
5789 &shrink_attr.attr,
5790 &slabs_cpu_partial_attr.attr,
5791 #ifdef CONFIG_SLUB_DEBUG
5792 &total_objects_attr.attr,
5793 &slabs_attr.attr,
5794 &sanity_checks_attr.attr,
5795 &trace_attr.attr,
5796 &red_zone_attr.attr,
5797 &poison_attr.attr,
5798 &store_user_attr.attr,
5799 &validate_attr.attr,
5800 #endif
5801 #ifdef CONFIG_ZONE_DMA
5802 &cache_dma_attr.attr,
5803 #endif
5804 #ifdef CONFIG_NUMA
5805 &remote_node_defrag_ratio_attr.attr,
5806 #endif
5807 #ifdef CONFIG_SLUB_STATS
5808 &alloc_fastpath_attr.attr,
5809 &alloc_slowpath_attr.attr,
5810 &free_fastpath_attr.attr,
5811 &free_slowpath_attr.attr,
5812 &free_frozen_attr.attr,
5813 &free_add_partial_attr.attr,
5814 &free_remove_partial_attr.attr,
5815 &alloc_from_partial_attr.attr,
5816 &alloc_slab_attr.attr,
5817 &alloc_refill_attr.attr,
5818 &alloc_node_mismatch_attr.attr,
5819 &free_slab_attr.attr,
5820 &cpuslab_flush_attr.attr,
5821 &deactivate_full_attr.attr,
5822 &deactivate_empty_attr.attr,
5823 &deactivate_to_head_attr.attr,
5824 &deactivate_to_tail_attr.attr,
5825 &deactivate_remote_frees_attr.attr,
5826 &deactivate_bypass_attr.attr,
5827 &order_fallback_attr.attr,
5828 &cmpxchg_double_fail_attr.attr,
5829 &cmpxchg_double_cpu_fail_attr.attr,
5830 &cpu_partial_alloc_attr.attr,
5831 &cpu_partial_free_attr.attr,
5832 &cpu_partial_node_attr.attr,
5833 &cpu_partial_drain_attr.attr,
5834 #endif
5835 #ifdef CONFIG_FAILSLAB
5836 &failslab_attr.attr,
5837 #endif
5838 &usersize_attr.attr,
5839
5840 NULL
5841 };
5842
5843 static const struct attribute_group slab_attr_group = {
5844 .attrs = slab_attrs,
5845 };
5846
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5847 static ssize_t slab_attr_show(struct kobject *kobj,
5848 struct attribute *attr,
5849 char *buf)
5850 {
5851 struct slab_attribute *attribute;
5852 struct kmem_cache *s;
5853 int err;
5854
5855 attribute = to_slab_attr(attr);
5856 s = to_slab(kobj);
5857
5858 if (!attribute->show)
5859 return -EIO;
5860
5861 err = attribute->show(s, buf);
5862
5863 return err;
5864 }
5865
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5866 static ssize_t slab_attr_store(struct kobject *kobj,
5867 struct attribute *attr,
5868 const char *buf, size_t len)
5869 {
5870 struct slab_attribute *attribute;
5871 struct kmem_cache *s;
5872 int err;
5873
5874 attribute = to_slab_attr(attr);
5875 s = to_slab(kobj);
5876
5877 if (!attribute->store)
5878 return -EIO;
5879
5880 err = attribute->store(s, buf, len);
5881 return err;
5882 }
5883
kmem_cache_release(struct kobject * k)5884 static void kmem_cache_release(struct kobject *k)
5885 {
5886 slab_kmem_cache_release(to_slab(k));
5887 }
5888
5889 static const struct sysfs_ops slab_sysfs_ops = {
5890 .show = slab_attr_show,
5891 .store = slab_attr_store,
5892 };
5893
5894 static struct kobj_type slab_ktype = {
5895 .sysfs_ops = &slab_sysfs_ops,
5896 .release = kmem_cache_release,
5897 };
5898
5899 static struct kset *slab_kset;
5900
cache_kset(struct kmem_cache * s)5901 static inline struct kset *cache_kset(struct kmem_cache *s)
5902 {
5903 return slab_kset;
5904 }
5905
5906 #define ID_STR_LENGTH 64
5907
5908 /* Create a unique string id for a slab cache:
5909 *
5910 * Format :[flags-]size
5911 */
create_unique_id(struct kmem_cache * s)5912 static char *create_unique_id(struct kmem_cache *s)
5913 {
5914 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5915 char *p = name;
5916
5917 BUG_ON(!name);
5918
5919 *p++ = ':';
5920 /*
5921 * First flags affecting slabcache operations. We will only
5922 * get here for aliasable slabs so we do not need to support
5923 * too many flags. The flags here must cover all flags that
5924 * are matched during merging to guarantee that the id is
5925 * unique.
5926 */
5927 if (s->flags & SLAB_CACHE_DMA)
5928 *p++ = 'd';
5929 if (s->flags & SLAB_CACHE_DMA32)
5930 *p++ = 'D';
5931 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5932 *p++ = 'a';
5933 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5934 *p++ = 'F';
5935 if (s->flags & SLAB_ACCOUNT)
5936 *p++ = 'A';
5937 if (p != name + 1)
5938 *p++ = '-';
5939 p += sprintf(p, "%07u", s->size);
5940
5941 BUG_ON(p > name + ID_STR_LENGTH - 1);
5942 return name;
5943 }
5944
sysfs_slab_add(struct kmem_cache * s)5945 static int sysfs_slab_add(struct kmem_cache *s)
5946 {
5947 int err;
5948 const char *name;
5949 struct kset *kset = cache_kset(s);
5950 int unmergeable = slab_unmergeable(s);
5951
5952 if (!kset) {
5953 kobject_init(&s->kobj, &slab_ktype);
5954 return 0;
5955 }
5956
5957 if (!unmergeable && disable_higher_order_debug &&
5958 (slub_debug & DEBUG_METADATA_FLAGS))
5959 unmergeable = 1;
5960
5961 if (unmergeable) {
5962 /*
5963 * Slabcache can never be merged so we can use the name proper.
5964 * This is typically the case for debug situations. In that
5965 * case we can catch duplicate names easily.
5966 */
5967 sysfs_remove_link(&slab_kset->kobj, s->name);
5968 name = s->name;
5969 } else {
5970 /*
5971 * Create a unique name for the slab as a target
5972 * for the symlinks.
5973 */
5974 name = create_unique_id(s);
5975 }
5976
5977 s->kobj.kset = kset;
5978 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5979 if (err)
5980 goto out;
5981
5982 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5983 if (err)
5984 goto out_del_kobj;
5985
5986 if (!unmergeable) {
5987 /* Setup first alias */
5988 sysfs_slab_alias(s, s->name);
5989 }
5990 out:
5991 if (!unmergeable)
5992 kfree(name);
5993 return err;
5994 out_del_kobj:
5995 kobject_del(&s->kobj);
5996 goto out;
5997 }
5998
sysfs_slab_unlink(struct kmem_cache * s)5999 void sysfs_slab_unlink(struct kmem_cache *s)
6000 {
6001 if (slab_state >= FULL)
6002 kobject_del(&s->kobj);
6003 }
6004
sysfs_slab_release(struct kmem_cache * s)6005 void sysfs_slab_release(struct kmem_cache *s)
6006 {
6007 if (slab_state >= FULL)
6008 kobject_put(&s->kobj);
6009 }
6010
6011 /*
6012 * Need to buffer aliases during bootup until sysfs becomes
6013 * available lest we lose that information.
6014 */
6015 struct saved_alias {
6016 struct kmem_cache *s;
6017 const char *name;
6018 struct saved_alias *next;
6019 };
6020
6021 static struct saved_alias *alias_list;
6022
sysfs_slab_alias(struct kmem_cache * s,const char * name)6023 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6024 {
6025 struct saved_alias *al;
6026
6027 if (slab_state == FULL) {
6028 /*
6029 * If we have a leftover link then remove it.
6030 */
6031 sysfs_remove_link(&slab_kset->kobj, name);
6032 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6033 }
6034
6035 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6036 if (!al)
6037 return -ENOMEM;
6038
6039 al->s = s;
6040 al->name = name;
6041 al->next = alias_list;
6042 alias_list = al;
6043 return 0;
6044 }
6045
slab_sysfs_init(void)6046 static int __init slab_sysfs_init(void)
6047 {
6048 struct kmem_cache *s;
6049 int err;
6050
6051 mutex_lock(&slab_mutex);
6052
6053 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6054 if (!slab_kset) {
6055 mutex_unlock(&slab_mutex);
6056 pr_err("Cannot register slab subsystem.\n");
6057 return -ENOSYS;
6058 }
6059
6060 slab_state = FULL;
6061
6062 list_for_each_entry(s, &slab_caches, list) {
6063 err = sysfs_slab_add(s);
6064 if (err)
6065 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6066 s->name);
6067 }
6068
6069 while (alias_list) {
6070 struct saved_alias *al = alias_list;
6071
6072 alias_list = alias_list->next;
6073 err = sysfs_slab_alias(al->s, al->name);
6074 if (err)
6075 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6076 al->name);
6077 kfree(al);
6078 }
6079
6080 mutex_unlock(&slab_mutex);
6081 return 0;
6082 }
6083
6084 __initcall(slab_sysfs_init);
6085 #endif /* CONFIG_SYSFS */
6086
6087 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6088 static int slab_debugfs_show(struct seq_file *seq, void *v)
6089 {
6090 struct loc_track *t = seq->private;
6091 struct location *l;
6092 unsigned long idx;
6093
6094 idx = (unsigned long) t->idx;
6095 if (idx < t->count) {
6096 l = &t->loc[idx];
6097
6098 seq_printf(seq, "%7ld ", l->count);
6099
6100 if (l->addr)
6101 seq_printf(seq, "%pS", (void *)l->addr);
6102 else
6103 seq_puts(seq, "<not-available>");
6104
6105 if (l->sum_time != l->min_time) {
6106 seq_printf(seq, " age=%ld/%llu/%ld",
6107 l->min_time, div_u64(l->sum_time, l->count),
6108 l->max_time);
6109 } else
6110 seq_printf(seq, " age=%ld", l->min_time);
6111
6112 if (l->min_pid != l->max_pid)
6113 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6114 else
6115 seq_printf(seq, " pid=%ld",
6116 l->min_pid);
6117
6118 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6119 seq_printf(seq, " cpus=%*pbl",
6120 cpumask_pr_args(to_cpumask(l->cpus)));
6121
6122 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6123 seq_printf(seq, " nodes=%*pbl",
6124 nodemask_pr_args(&l->nodes));
6125
6126 #ifdef CONFIG_STACKDEPOT
6127 {
6128 depot_stack_handle_t handle;
6129 unsigned long *entries;
6130 unsigned int nr_entries, j;
6131
6132 handle = READ_ONCE(l->handle);
6133 if (handle) {
6134 nr_entries = stack_depot_fetch(handle, &entries);
6135 seq_puts(seq, "\n");
6136 for (j = 0; j < nr_entries; j++)
6137 seq_printf(seq, " %pS\n", (void *)entries[j]);
6138 }
6139 }
6140 #endif
6141 seq_puts(seq, "\n");
6142 }
6143
6144 if (!idx && !t->count)
6145 seq_puts(seq, "No data\n");
6146
6147 return 0;
6148 }
6149
slab_debugfs_stop(struct seq_file * seq,void * v)6150 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6151 {
6152 }
6153
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6154 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6155 {
6156 struct loc_track *t = seq->private;
6157
6158 t->idx = ++(*ppos);
6159 if (*ppos <= t->count)
6160 return ppos;
6161
6162 return NULL;
6163 }
6164
cmp_loc_by_count(const void * a,const void * b,const void * data)6165 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6166 {
6167 struct location *loc1 = (struct location *)a;
6168 struct location *loc2 = (struct location *)b;
6169
6170 if (loc1->count > loc2->count)
6171 return -1;
6172 else
6173 return 1;
6174 }
6175
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6176 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6177 {
6178 struct loc_track *t = seq->private;
6179
6180 t->idx = *ppos;
6181 return ppos;
6182 }
6183
6184 static const struct seq_operations slab_debugfs_sops = {
6185 .start = slab_debugfs_start,
6186 .next = slab_debugfs_next,
6187 .stop = slab_debugfs_stop,
6188 .show = slab_debugfs_show,
6189 };
6190
slab_debug_trace_open(struct inode * inode,struct file * filep)6191 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6192 {
6193
6194 struct kmem_cache_node *n;
6195 enum track_item alloc;
6196 int node;
6197 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6198 sizeof(struct loc_track));
6199 struct kmem_cache *s = file_inode(filep)->i_private;
6200 unsigned long *obj_map;
6201
6202 if (!t)
6203 return -ENOMEM;
6204
6205 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6206 if (!obj_map) {
6207 seq_release_private(inode, filep);
6208 return -ENOMEM;
6209 }
6210
6211 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6212 alloc = TRACK_ALLOC;
6213 else
6214 alloc = TRACK_FREE;
6215
6216 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6217 bitmap_free(obj_map);
6218 seq_release_private(inode, filep);
6219 return -ENOMEM;
6220 }
6221
6222 for_each_kmem_cache_node(s, node, n) {
6223 unsigned long flags;
6224 struct slab *slab;
6225
6226 if (!atomic_long_read(&n->nr_slabs))
6227 continue;
6228
6229 spin_lock_irqsave(&n->list_lock, flags);
6230 list_for_each_entry(slab, &n->partial, slab_list)
6231 process_slab(t, s, slab, alloc, obj_map);
6232 list_for_each_entry(slab, &n->full, slab_list)
6233 process_slab(t, s, slab, alloc, obj_map);
6234 spin_unlock_irqrestore(&n->list_lock, flags);
6235 }
6236
6237 /* Sort locations by count */
6238 sort_r(t->loc, t->count, sizeof(struct location),
6239 cmp_loc_by_count, NULL, NULL);
6240
6241 bitmap_free(obj_map);
6242 return 0;
6243 }
6244
slab_debug_trace_release(struct inode * inode,struct file * file)6245 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6246 {
6247 struct seq_file *seq = file->private_data;
6248 struct loc_track *t = seq->private;
6249
6250 free_loc_track(t);
6251 return seq_release_private(inode, file);
6252 }
6253
6254 static const struct file_operations slab_debugfs_fops = {
6255 .open = slab_debug_trace_open,
6256 .read = seq_read,
6257 .llseek = seq_lseek,
6258 .release = slab_debug_trace_release,
6259 };
6260
debugfs_slab_add(struct kmem_cache * s)6261 static void debugfs_slab_add(struct kmem_cache *s)
6262 {
6263 struct dentry *slab_cache_dir;
6264
6265 if (unlikely(!slab_debugfs_root))
6266 return;
6267
6268 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6269
6270 debugfs_create_file("alloc_traces", 0400,
6271 slab_cache_dir, s, &slab_debugfs_fops);
6272
6273 debugfs_create_file("free_traces", 0400,
6274 slab_cache_dir, s, &slab_debugfs_fops);
6275 }
6276
debugfs_slab_release(struct kmem_cache * s)6277 void debugfs_slab_release(struct kmem_cache *s)
6278 {
6279 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6280 }
6281
slab_debugfs_init(void)6282 static int __init slab_debugfs_init(void)
6283 {
6284 struct kmem_cache *s;
6285
6286 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6287
6288 list_for_each_entry(s, &slab_caches, list)
6289 if (s->flags & SLAB_STORE_USER)
6290 debugfs_slab_add(s);
6291
6292 return 0;
6293
6294 }
6295 __initcall(slab_debugfs_init);
6296 #endif
6297 /*
6298 * The /proc/slabinfo ABI
6299 */
6300 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6301 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6302 {
6303 unsigned long nr_slabs = 0;
6304 unsigned long nr_objs = 0;
6305 unsigned long nr_free = 0;
6306 int node;
6307 struct kmem_cache_node *n;
6308
6309 for_each_kmem_cache_node(s, node, n) {
6310 nr_slabs += node_nr_slabs(n);
6311 nr_objs += node_nr_objs(n);
6312 nr_free += count_partial(n, count_free);
6313 }
6314
6315 sinfo->active_objs = nr_objs - nr_free;
6316 sinfo->num_objs = nr_objs;
6317 sinfo->active_slabs = nr_slabs;
6318 sinfo->num_slabs = nr_slabs;
6319 sinfo->objects_per_slab = oo_objects(s->oo);
6320 sinfo->cache_order = oo_order(s->oo);
6321 }
6322
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6323 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6324 {
6325 }
6326
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6327 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6328 size_t count, loff_t *ppos)
6329 {
6330 return -EIO;
6331 }
6332 #endif /* CONFIG_SLUB_DEBUG */
6333