1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27
28 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
29
30 enum {
31 OMAP_MCBSP_WORD_8 = 0,
32 OMAP_MCBSP_WORD_12,
33 OMAP_MCBSP_WORD_16,
34 OMAP_MCBSP_WORD_20,
35 OMAP_MCBSP_WORD_24,
36 OMAP_MCBSP_WORD_32,
37 };
38
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 dev_dbg(mcbsp->dev, "***********************\n");
56 }
57
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 struct clk *fck_src;
61 const char *src;
62 int r;
63
64 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 src = "pad_fck";
66 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 src = "prcm_fck";
68 else
69 return -EINVAL;
70
71 fck_src = clk_get(mcbsp->dev, src);
72 if (IS_ERR(fck_src)) {
73 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 return -EINVAL;
75 }
76
77 pm_runtime_put_sync(mcbsp->dev);
78
79 r = clk_set_parent(mcbsp->fclk, fck_src);
80 if (r)
81 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 src);
83
84 pm_runtime_get_sync(mcbsp->dev);
85
86 clk_put(fck_src);
87
88 return r;
89 }
90
omap_mcbsp_irq_handler(int irq,void * data)91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
92 {
93 struct omap_mcbsp *mcbsp = data;
94 u16 irqst;
95
96 irqst = MCBSP_READ(mcbsp, IRQST);
97 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
98
99 if (irqst & RSYNCERREN)
100 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
101 if (irqst & RFSREN)
102 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
103 if (irqst & REOFEN)
104 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
105 if (irqst & RRDYEN)
106 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
107 if (irqst & RUNDFLEN)
108 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
109 if (irqst & ROVFLEN)
110 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
111
112 if (irqst & XSYNCERREN)
113 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
114 if (irqst & XFSXEN)
115 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
116 if (irqst & XEOFEN)
117 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
118 if (irqst & XRDYEN)
119 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
120 if (irqst & XUNDFLEN)
121 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
122 if (irqst & XOVFLEN)
123 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
124 if (irqst & XEMPTYEOFEN)
125 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
126
127 MCBSP_WRITE(mcbsp, IRQST, irqst);
128
129 return IRQ_HANDLED;
130 }
131
omap_mcbsp_tx_irq_handler(int irq,void * data)132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
133 {
134 struct omap_mcbsp *mcbsp = data;
135 u16 irqst_spcr2;
136
137 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
138 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
139
140 if (irqst_spcr2 & XSYNC_ERR) {
141 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
142 irqst_spcr2);
143 /* Writing zero to XSYNC_ERR clears the IRQ */
144 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
145 }
146
147 return IRQ_HANDLED;
148 }
149
omap_mcbsp_rx_irq_handler(int irq,void * data)150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
151 {
152 struct omap_mcbsp *mcbsp = data;
153 u16 irqst_spcr1;
154
155 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
156 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
157
158 if (irqst_spcr1 & RSYNC_ERR) {
159 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
160 irqst_spcr1);
161 /* Writing zero to RSYNC_ERR clears the IRQ */
162 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
163 }
164
165 return IRQ_HANDLED;
166 }
167
168 /*
169 * omap_mcbsp_config simply write a config to the
170 * appropriate McBSP.
171 * You either call this function or set the McBSP registers
172 * by yourself before calling omap_mcbsp_start().
173 */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
175 const struct omap_mcbsp_reg_cfg *config)
176 {
177 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
178 mcbsp->id, mcbsp->phys_base);
179
180 /* We write the given config */
181 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
182 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
183 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
184 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
185 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
186 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
187 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
188 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
189 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
190 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
191 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
192 if (mcbsp->pdata->has_ccr) {
193 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
194 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
195 }
196 /* Enable wakeup behavior */
197 if (mcbsp->pdata->has_wakeup)
198 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
199
200 /* Enable TX/RX sync error interrupts by default */
201 if (mcbsp->irq)
202 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
203 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
204 }
205
206 /**
207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
208 * @mcbsp: omap_mcbsp struct for the McBSP instance
209 * @stream: Stream direction (playback/capture)
210 *
211 * Returns the address of mcbsp data transmit register or data receive register
212 * to be used by DMA for transferring/receiving data
213 */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
215 unsigned int stream)
216 {
217 int data_reg;
218
219 if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
220 if (mcbsp->pdata->reg_size == 2)
221 data_reg = OMAP_MCBSP_REG_DXR1;
222 else
223 data_reg = OMAP_MCBSP_REG_DXR;
224 } else {
225 if (mcbsp->pdata->reg_size == 2)
226 data_reg = OMAP_MCBSP_REG_DRR1;
227 else
228 data_reg = OMAP_MCBSP_REG_DRR;
229 }
230
231 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
232 }
233
234 /*
235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
237 * for the THRSH2 register.
238 */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
240 {
241 if (threshold && threshold <= mcbsp->max_tx_thres)
242 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
243 }
244
245 /*
246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
248 * for the THRSH1 register.
249 */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
251 {
252 if (threshold && threshold <= mcbsp->max_rx_thres)
253 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
254 }
255
256 /*
257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
258 */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
260 {
261 u16 buffstat;
262
263 /* Returns the number of free locations in the buffer */
264 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
265
266 /* Number of slots are different in McBSP ports */
267 return mcbsp->pdata->buffer_size - buffstat;
268 }
269
270 /*
271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
272 * to reach the threshold value (when the DMA will be triggered to read it)
273 */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
275 {
276 u16 buffstat, threshold;
277
278 /* Returns the number of used locations in the buffer */
279 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
280 /* RX threshold */
281 threshold = MCBSP_READ(mcbsp, THRSH1);
282
283 /* Return the number of location till we reach the threshold limit */
284 if (threshold <= buffstat)
285 return 0;
286 else
287 return threshold - buffstat;
288 }
289
omap_mcbsp_request(struct omap_mcbsp * mcbsp)290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
291 {
292 void *reg_cache;
293 int err;
294
295 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
296 if (!reg_cache)
297 return -ENOMEM;
298
299 spin_lock(&mcbsp->lock);
300 if (!mcbsp->free) {
301 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
302 err = -EBUSY;
303 goto err_kfree;
304 }
305
306 mcbsp->free = false;
307 mcbsp->reg_cache = reg_cache;
308 spin_unlock(&mcbsp->lock);
309
310 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
311 mcbsp->pdata->ops->request(mcbsp->id - 1);
312
313 /*
314 * Make sure that transmitter, receiver and sample-rate generator are
315 * not running before activating IRQs.
316 */
317 MCBSP_WRITE(mcbsp, SPCR1, 0);
318 MCBSP_WRITE(mcbsp, SPCR2, 0);
319
320 if (mcbsp->irq) {
321 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
322 "McBSP", (void *)mcbsp);
323 if (err != 0) {
324 dev_err(mcbsp->dev, "Unable to request IRQ\n");
325 goto err_clk_disable;
326 }
327 } else {
328 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
329 "McBSP TX", (void *)mcbsp);
330 if (err != 0) {
331 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
332 goto err_clk_disable;
333 }
334
335 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
336 "McBSP RX", (void *)mcbsp);
337 if (err != 0) {
338 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
339 goto err_free_irq;
340 }
341 }
342
343 return 0;
344 err_free_irq:
345 free_irq(mcbsp->tx_irq, (void *)mcbsp);
346 err_clk_disable:
347 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
348 mcbsp->pdata->ops->free(mcbsp->id - 1);
349
350 /* Disable wakeup behavior */
351 if (mcbsp->pdata->has_wakeup)
352 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
353
354 spin_lock(&mcbsp->lock);
355 mcbsp->free = true;
356 mcbsp->reg_cache = NULL;
357 err_kfree:
358 spin_unlock(&mcbsp->lock);
359 kfree(reg_cache);
360
361 return err;
362 }
363
omap_mcbsp_free(struct omap_mcbsp * mcbsp)364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
365 {
366 void *reg_cache;
367
368 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
369 mcbsp->pdata->ops->free(mcbsp->id - 1);
370
371 /* Disable wakeup behavior */
372 if (mcbsp->pdata->has_wakeup)
373 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
374
375 /* Disable interrupt requests */
376 if (mcbsp->irq) {
377 MCBSP_WRITE(mcbsp, IRQEN, 0);
378
379 free_irq(mcbsp->irq, (void *)mcbsp);
380 } else {
381 free_irq(mcbsp->rx_irq, (void *)mcbsp);
382 free_irq(mcbsp->tx_irq, (void *)mcbsp);
383 }
384
385 reg_cache = mcbsp->reg_cache;
386
387 /*
388 * Select CLKS source from internal source unconditionally before
389 * marking the McBSP port as free.
390 * If the external clock source via MCBSP_CLKS pin has been selected the
391 * system will refuse to enter idle if the CLKS pin source is not reset
392 * back to internal source.
393 */
394 if (!mcbsp_omap1())
395 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
396
397 spin_lock(&mcbsp->lock);
398 if (mcbsp->free)
399 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
400 else
401 mcbsp->free = true;
402 mcbsp->reg_cache = NULL;
403 spin_unlock(&mcbsp->lock);
404
405 kfree(reg_cache);
406 }
407
408 /*
409 * Here we start the McBSP, by enabling transmitter, receiver or both.
410 * If no transmitter or receiver is active prior calling, then sample-rate
411 * generator and frame sync are started.
412 */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)413 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
414 {
415 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
416 int rx = !tx;
417 int enable_srg = 0;
418 u16 w;
419
420 if (mcbsp->st_data)
421 omap_mcbsp_st_start(mcbsp);
422
423 /* Only enable SRG, if McBSP is master */
424 w = MCBSP_READ_CACHE(mcbsp, PCR0);
425 if (w & (FSXM | FSRM | CLKXM | CLKRM))
426 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
427 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
428
429 if (enable_srg) {
430 /* Start the sample generator */
431 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
432 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
433 }
434
435 /* Enable transmitter and receiver */
436 tx &= 1;
437 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
438 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
439
440 rx &= 1;
441 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
442 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
443
444 /*
445 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
446 * REVISIT: 100us may give enough time for two CLKSRG, however
447 * due to some unknown PM related, clock gating etc. reason it
448 * is now at 500us.
449 */
450 udelay(500);
451
452 if (enable_srg) {
453 /* Start frame sync */
454 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
455 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
456 }
457
458 if (mcbsp->pdata->has_ccr) {
459 /* Release the transmitter and receiver */
460 w = MCBSP_READ_CACHE(mcbsp, XCCR);
461 w &= ~(tx ? XDISABLE : 0);
462 MCBSP_WRITE(mcbsp, XCCR, w);
463 w = MCBSP_READ_CACHE(mcbsp, RCCR);
464 w &= ~(rx ? RDISABLE : 0);
465 MCBSP_WRITE(mcbsp, RCCR, w);
466 }
467
468 /* Dump McBSP Regs */
469 omap_mcbsp_dump_reg(mcbsp);
470 }
471
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)472 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
473 {
474 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
475 int rx = !tx;
476 int idle;
477 u16 w;
478
479 /* Reset transmitter */
480 tx &= 1;
481 if (mcbsp->pdata->has_ccr) {
482 w = MCBSP_READ_CACHE(mcbsp, XCCR);
483 w |= (tx ? XDISABLE : 0);
484 MCBSP_WRITE(mcbsp, XCCR, w);
485 }
486 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
487 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
488
489 /* Reset receiver */
490 rx &= 1;
491 if (mcbsp->pdata->has_ccr) {
492 w = MCBSP_READ_CACHE(mcbsp, RCCR);
493 w |= (rx ? RDISABLE : 0);
494 MCBSP_WRITE(mcbsp, RCCR, w);
495 }
496 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
497 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
498
499 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
500 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
501
502 if (idle) {
503 /* Reset the sample rate generator */
504 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
505 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
506 }
507
508 if (mcbsp->st_data)
509 omap_mcbsp_st_stop(mcbsp);
510 }
511
512 #define max_thres(m) (mcbsp->pdata->buffer_size)
513 #define valid_threshold(m, val) ((val) <= max_thres(m))
514 #define THRESHOLD_PROP_BUILDER(prop) \
515 static ssize_t prop##_show(struct device *dev, \
516 struct device_attribute *attr, char *buf) \
517 { \
518 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
519 \
520 return sprintf(buf, "%u\n", mcbsp->prop); \
521 } \
522 \
523 static ssize_t prop##_store(struct device *dev, \
524 struct device_attribute *attr, \
525 const char *buf, size_t size) \
526 { \
527 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
528 unsigned long val; \
529 int status; \
530 \
531 status = kstrtoul(buf, 0, &val); \
532 if (status) \
533 return status; \
534 \
535 if (!valid_threshold(mcbsp, val)) \
536 return -EDOM; \
537 \
538 mcbsp->prop = val; \
539 return size; \
540 } \
541 \
542 static DEVICE_ATTR_RW(prop)
543
544 THRESHOLD_PROP_BUILDER(max_tx_thres);
545 THRESHOLD_PROP_BUILDER(max_rx_thres);
546
547 static const char * const dma_op_modes[] = {
548 "element", "threshold",
549 };
550
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)551 static ssize_t dma_op_mode_show(struct device *dev,
552 struct device_attribute *attr, char *buf)
553 {
554 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
555 int dma_op_mode, i = 0;
556 ssize_t len = 0;
557 const char * const *s;
558
559 dma_op_mode = mcbsp->dma_op_mode;
560
561 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
562 if (dma_op_mode == i)
563 len += sprintf(buf + len, "[%s] ", *s);
564 else
565 len += sprintf(buf + len, "%s ", *s);
566 }
567 len += sprintf(buf + len, "\n");
568
569 return len;
570 }
571
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)572 static ssize_t dma_op_mode_store(struct device *dev,
573 struct device_attribute *attr, const char *buf,
574 size_t size)
575 {
576 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
577 int i;
578
579 i = sysfs_match_string(dma_op_modes, buf);
580 if (i < 0)
581 return i;
582
583 spin_lock_irq(&mcbsp->lock);
584 if (!mcbsp->free) {
585 size = -EBUSY;
586 goto unlock;
587 }
588 mcbsp->dma_op_mode = i;
589
590 unlock:
591 spin_unlock_irq(&mcbsp->lock);
592
593 return size;
594 }
595
596 static DEVICE_ATTR_RW(dma_op_mode);
597
598 static const struct attribute *additional_attrs[] = {
599 &dev_attr_max_tx_thres.attr,
600 &dev_attr_max_rx_thres.attr,
601 &dev_attr_dma_op_mode.attr,
602 NULL,
603 };
604
605 static const struct attribute_group additional_attr_group = {
606 .attrs = (struct attribute **)additional_attrs,
607 };
608
609 /*
610 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
611 * 730 has only 2 McBSP, and both of them are MPU peripherals.
612 */
omap_mcbsp_init(struct platform_device * pdev)613 static int omap_mcbsp_init(struct platform_device *pdev)
614 {
615 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
616 struct resource *res;
617 int ret = 0;
618
619 spin_lock_init(&mcbsp->lock);
620 mcbsp->free = true;
621
622 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
623 if (!res)
624 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625
626 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
627 if (IS_ERR(mcbsp->io_base))
628 return PTR_ERR(mcbsp->io_base);
629
630 mcbsp->phys_base = res->start;
631 mcbsp->reg_cache_size = resource_size(res);
632
633 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
634 if (!res)
635 mcbsp->phys_dma_base = mcbsp->phys_base;
636 else
637 mcbsp->phys_dma_base = res->start;
638
639 /*
640 * OMAP1, 2 uses two interrupt lines: TX, RX
641 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
642 * OMAP4 and newer SoC only have the combined IRQ line.
643 * Use the combined IRQ if available since it gives better debugging
644 * possibilities.
645 */
646 mcbsp->irq = platform_get_irq_byname(pdev, "common");
647 if (mcbsp->irq == -ENXIO) {
648 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
649
650 if (mcbsp->tx_irq == -ENXIO) {
651 mcbsp->irq = platform_get_irq(pdev, 0);
652 mcbsp->tx_irq = 0;
653 } else {
654 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
655 mcbsp->irq = 0;
656 }
657 }
658
659 if (!pdev->dev.of_node) {
660 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
661 if (!res) {
662 dev_err(&pdev->dev, "invalid tx DMA channel\n");
663 return -ENODEV;
664 }
665 mcbsp->dma_req[0] = res->start;
666 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
667
668 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
669 if (!res) {
670 dev_err(&pdev->dev, "invalid rx DMA channel\n");
671 return -ENODEV;
672 }
673 mcbsp->dma_req[1] = res->start;
674 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
675 } else {
676 mcbsp->dma_data[0].filter_data = "tx";
677 mcbsp->dma_data[1].filter_data = "rx";
678 }
679
680 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
681 SNDRV_PCM_STREAM_PLAYBACK);
682 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
683 SNDRV_PCM_STREAM_CAPTURE);
684
685 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
686 if (IS_ERR(mcbsp->fclk)) {
687 ret = PTR_ERR(mcbsp->fclk);
688 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
689 return ret;
690 }
691
692 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
693 if (mcbsp->pdata->buffer_size) {
694 /*
695 * Initially configure the maximum thresholds to a safe value.
696 * The McBSP FIFO usage with these values should not go under
697 * 16 locations.
698 * If the whole FIFO without safety buffer is used, than there
699 * is a possibility that the DMA will be not able to push the
700 * new data on time, causing channel shifts in runtime.
701 */
702 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
703 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
704
705 ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
706 if (ret) {
707 dev_err(mcbsp->dev,
708 "Unable to create additional controls\n");
709 return ret;
710 }
711 }
712
713 return omap_mcbsp_st_init(pdev);
714 }
715
716 /*
717 * Stream DMA parameters. DMA request line and port address are set runtime
718 * since they are different between OMAP1 and later OMAPs
719 */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)720 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
721 unsigned int packet_size)
722 {
723 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
724 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
725 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
726 int words;
727
728 /* No need to proceed further if McBSP does not have FIFO */
729 if (mcbsp->pdata->buffer_size == 0)
730 return;
731
732 /*
733 * Configure McBSP threshold based on either:
734 * packet_size, when the sDMA is in packet mode, or based on the
735 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
736 * for mono streams.
737 */
738 if (packet_size)
739 words = packet_size;
740 else
741 words = 1;
742
743 /* Configure McBSP internal buffer usage */
744 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
745 omap_mcbsp_set_tx_threshold(mcbsp, words);
746 else
747 omap_mcbsp_set_rx_threshold(mcbsp, words);
748 }
749
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)750 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
751 struct snd_pcm_hw_rule *rule)
752 {
753 struct snd_interval *buffer_size = hw_param_interval(params,
754 SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
755 struct snd_interval *channels = hw_param_interval(params,
756 SNDRV_PCM_HW_PARAM_CHANNELS);
757 struct omap_mcbsp *mcbsp = rule->private;
758 struct snd_interval frames;
759 int size;
760
761 snd_interval_any(&frames);
762 size = mcbsp->pdata->buffer_size;
763
764 frames.min = size / channels->min;
765 frames.integer = 1;
766 return snd_interval_refine(buffer_size, &frames);
767 }
768
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)769 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
770 struct snd_soc_dai *cpu_dai)
771 {
772 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
773 int err = 0;
774
775 if (!snd_soc_dai_active(cpu_dai))
776 err = omap_mcbsp_request(mcbsp);
777
778 /*
779 * OMAP3 McBSP FIFO is word structured.
780 * McBSP2 has 1024 + 256 = 1280 word long buffer,
781 * McBSP1,3,4,5 has 128 word long buffer
782 * This means that the size of the FIFO depends on the sample format.
783 * For example on McBSP3:
784 * 16bit samples: size is 128 * 2 = 256 bytes
785 * 32bit samples: size is 128 * 4 = 512 bytes
786 * It is simpler to place constraint for buffer and period based on
787 * channels.
788 * McBSP3 as example again (16 or 32 bit samples):
789 * 1 channel (mono): size is 128 frames (128 words)
790 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
791 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
792 */
793 if (mcbsp->pdata->buffer_size) {
794 /*
795 * Rule for the buffer size. We should not allow
796 * smaller buffer than the FIFO size to avoid underruns.
797 * This applies only for the playback stream.
798 */
799 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
800 snd_pcm_hw_rule_add(substream->runtime, 0,
801 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
802 omap_mcbsp_hwrule_min_buffersize,
803 mcbsp,
804 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
805
806 /* Make sure, that the period size is always even */
807 snd_pcm_hw_constraint_step(substream->runtime, 0,
808 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
809 }
810
811 return err;
812 }
813
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)814 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
815 struct snd_soc_dai *cpu_dai)
816 {
817 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
818 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
819 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
820 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
821
822 if (mcbsp->latency[stream2])
823 cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
824 mcbsp->latency[stream2]);
825 else if (mcbsp->latency[stream1])
826 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
827
828 mcbsp->latency[stream1] = 0;
829
830 if (!snd_soc_dai_active(cpu_dai)) {
831 omap_mcbsp_free(mcbsp);
832 mcbsp->configured = 0;
833 }
834 }
835
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)836 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
837 struct snd_soc_dai *cpu_dai)
838 {
839 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
840 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
841 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
842 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
843 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
844 int latency = mcbsp->latency[stream2];
845
846 /* Prevent omap hardware from hitting off between FIFO fills */
847 if (!latency || mcbsp->latency[stream1] < latency)
848 latency = mcbsp->latency[stream1];
849
850 if (cpu_latency_qos_request_active(pm_qos_req))
851 cpu_latency_qos_update_request(pm_qos_req, latency);
852 else if (latency)
853 cpu_latency_qos_add_request(pm_qos_req, latency);
854
855 return 0;
856 }
857
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)858 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
859 struct snd_soc_dai *cpu_dai)
860 {
861 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
862
863 switch (cmd) {
864 case SNDRV_PCM_TRIGGER_START:
865 case SNDRV_PCM_TRIGGER_RESUME:
866 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
867 mcbsp->active++;
868 omap_mcbsp_start(mcbsp, substream->stream);
869 break;
870
871 case SNDRV_PCM_TRIGGER_STOP:
872 case SNDRV_PCM_TRIGGER_SUSPEND:
873 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
874 omap_mcbsp_stop(mcbsp, substream->stream);
875 mcbsp->active--;
876 break;
877 default:
878 return -EINVAL;
879 }
880
881 return 0;
882 }
883
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)884 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
885 struct snd_pcm_substream *substream,
886 struct snd_soc_dai *dai)
887 {
888 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
889 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
890 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
891 u16 fifo_use;
892 snd_pcm_sframes_t delay;
893
894 /* No need to proceed further if McBSP does not have FIFO */
895 if (mcbsp->pdata->buffer_size == 0)
896 return 0;
897
898 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
899 fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
900 else
901 fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
902
903 /*
904 * Divide the used locations with the channel count to get the
905 * FIFO usage in samples (don't care about partial samples in the
906 * buffer).
907 */
908 delay = fifo_use / substream->runtime->channels;
909
910 return delay;
911 }
912
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)913 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
914 struct snd_pcm_hw_params *params,
915 struct snd_soc_dai *cpu_dai)
916 {
917 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
918 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
919 struct snd_dmaengine_dai_dma_data *dma_data;
920 int wlen, channels, wpf;
921 int pkt_size = 0;
922 unsigned int format, div, framesize, master;
923 unsigned int buffer_size = mcbsp->pdata->buffer_size;
924
925 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
926 channels = params_channels(params);
927
928 switch (params_format(params)) {
929 case SNDRV_PCM_FORMAT_S16_LE:
930 wlen = 16;
931 break;
932 case SNDRV_PCM_FORMAT_S32_LE:
933 wlen = 32;
934 break;
935 default:
936 return -EINVAL;
937 }
938 if (buffer_size) {
939 int latency;
940
941 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
942 int period_words, max_thrsh;
943 int divider = 0;
944
945 period_words = params_period_bytes(params) / (wlen / 8);
946 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
947 max_thrsh = mcbsp->max_tx_thres;
948 else
949 max_thrsh = mcbsp->max_rx_thres;
950 /*
951 * Use sDMA packet mode if McBSP is in threshold mode:
952 * If period words less than the FIFO size the packet
953 * size is set to the number of period words, otherwise
954 * Look for the biggest threshold value which divides
955 * the period size evenly.
956 */
957 divider = period_words / max_thrsh;
958 if (period_words % max_thrsh)
959 divider++;
960 while (period_words % divider &&
961 divider < period_words)
962 divider++;
963 if (divider == period_words)
964 return -EINVAL;
965
966 pkt_size = period_words / divider;
967 } else if (channels > 1) {
968 /* Use packet mode for non mono streams */
969 pkt_size = channels;
970 }
971
972 latency = (buffer_size - pkt_size) / channels;
973 latency = latency * USEC_PER_SEC /
974 (params->rate_num / params->rate_den);
975 mcbsp->latency[substream->stream] = latency;
976
977 omap_mcbsp_set_threshold(substream, pkt_size);
978 }
979
980 dma_data->maxburst = pkt_size;
981
982 if (mcbsp->configured) {
983 /* McBSP already configured by another stream */
984 return 0;
985 }
986
987 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
988 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
989 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
990 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
991 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
992 wpf = channels;
993 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
994 format == SND_SOC_DAIFMT_LEFT_J)) {
995 /* Use dual-phase frames */
996 regs->rcr2 |= RPHASE;
997 regs->xcr2 |= XPHASE;
998 /* Set 1 word per (McBSP) frame for phase1 and phase2 */
999 wpf--;
1000 regs->rcr2 |= RFRLEN2(wpf - 1);
1001 regs->xcr2 |= XFRLEN2(wpf - 1);
1002 }
1003
1004 regs->rcr1 |= RFRLEN1(wpf - 1);
1005 regs->xcr1 |= XFRLEN1(wpf - 1);
1006
1007 switch (params_format(params)) {
1008 case SNDRV_PCM_FORMAT_S16_LE:
1009 /* Set word lengths */
1010 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
1011 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
1012 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
1013 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
1014 break;
1015 case SNDRV_PCM_FORMAT_S32_LE:
1016 /* Set word lengths */
1017 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
1018 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
1019 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
1020 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
1021 break;
1022 default:
1023 /* Unsupported PCM format */
1024 return -EINVAL;
1025 }
1026
1027 /* In McBSP master modes, FRAME (i.e. sample rate) is generated
1028 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1029 master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1030 if (master == SND_SOC_DAIFMT_CBS_CFS) {
1031 div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1032 framesize = (mcbsp->in_freq / div) / params_rate(params);
1033
1034 if (framesize < wlen * channels) {
1035 printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1036 "channels\n", __func__);
1037 return -EINVAL;
1038 }
1039 } else
1040 framesize = wlen * channels;
1041
1042 /* Set FS period and length in terms of bit clock periods */
1043 regs->srgr2 &= ~FPER(0xfff);
1044 regs->srgr1 &= ~FWID(0xff);
1045 switch (format) {
1046 case SND_SOC_DAIFMT_I2S:
1047 case SND_SOC_DAIFMT_LEFT_J:
1048 regs->srgr2 |= FPER(framesize - 1);
1049 regs->srgr1 |= FWID((framesize >> 1) - 1);
1050 break;
1051 case SND_SOC_DAIFMT_DSP_A:
1052 case SND_SOC_DAIFMT_DSP_B:
1053 regs->srgr2 |= FPER(framesize - 1);
1054 regs->srgr1 |= FWID(0);
1055 break;
1056 }
1057
1058 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1059 mcbsp->wlen = wlen;
1060 mcbsp->configured = 1;
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1067 * cache is initialized here
1068 */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1069 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1070 unsigned int fmt)
1071 {
1072 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1073 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1074 bool inv_fs = false;
1075
1076 if (mcbsp->configured)
1077 return 0;
1078
1079 mcbsp->fmt = fmt;
1080 memset(regs, 0, sizeof(*regs));
1081 /* Generic McBSP register settings */
1082 regs->spcr2 |= XINTM(3) | FREE;
1083 regs->spcr1 |= RINTM(3);
1084 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1085 if (!mcbsp->pdata->has_ccr) {
1086 regs->rcr2 |= RFIG;
1087 regs->xcr2 |= XFIG;
1088 }
1089
1090 /* Configure XCCR/RCCR only for revisions which have ccr registers */
1091 if (mcbsp->pdata->has_ccr) {
1092 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1093 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1094 }
1095
1096 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1097 case SND_SOC_DAIFMT_I2S:
1098 /* 1-bit data delay */
1099 regs->rcr2 |= RDATDLY(1);
1100 regs->xcr2 |= XDATDLY(1);
1101 break;
1102 case SND_SOC_DAIFMT_LEFT_J:
1103 /* 0-bit data delay */
1104 regs->rcr2 |= RDATDLY(0);
1105 regs->xcr2 |= XDATDLY(0);
1106 regs->spcr1 |= RJUST(2);
1107 /* Invert FS polarity configuration */
1108 inv_fs = true;
1109 break;
1110 case SND_SOC_DAIFMT_DSP_A:
1111 /* 1-bit data delay */
1112 regs->rcr2 |= RDATDLY(1);
1113 regs->xcr2 |= XDATDLY(1);
1114 /* Invert FS polarity configuration */
1115 inv_fs = true;
1116 break;
1117 case SND_SOC_DAIFMT_DSP_B:
1118 /* 0-bit data delay */
1119 regs->rcr2 |= RDATDLY(0);
1120 regs->xcr2 |= XDATDLY(0);
1121 /* Invert FS polarity configuration */
1122 inv_fs = true;
1123 break;
1124 default:
1125 /* Unsupported data format */
1126 return -EINVAL;
1127 }
1128
1129 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1130 case SND_SOC_DAIFMT_CBS_CFS:
1131 /* McBSP master. Set FS and bit clocks as outputs */
1132 regs->pcr0 |= FSXM | FSRM |
1133 CLKXM | CLKRM;
1134 /* Sample rate generator drives the FS */
1135 regs->srgr2 |= FSGM;
1136 break;
1137 case SND_SOC_DAIFMT_CBM_CFS:
1138 /* McBSP slave. FS clock as output */
1139 regs->srgr2 |= FSGM;
1140 regs->pcr0 |= FSXM | FSRM;
1141 break;
1142 case SND_SOC_DAIFMT_CBM_CFM:
1143 /* McBSP slave */
1144 break;
1145 default:
1146 /* Unsupported master/slave configuration */
1147 return -EINVAL;
1148 }
1149
1150 /* Set bit clock (CLKX/CLKR) and FS polarities */
1151 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1152 case SND_SOC_DAIFMT_NB_NF:
1153 /*
1154 * Normal BCLK + FS.
1155 * FS active low. TX data driven on falling edge of bit clock
1156 * and RX data sampled on rising edge of bit clock.
1157 */
1158 regs->pcr0 |= FSXP | FSRP |
1159 CLKXP | CLKRP;
1160 break;
1161 case SND_SOC_DAIFMT_NB_IF:
1162 regs->pcr0 |= CLKXP | CLKRP;
1163 break;
1164 case SND_SOC_DAIFMT_IB_NF:
1165 regs->pcr0 |= FSXP | FSRP;
1166 break;
1167 case SND_SOC_DAIFMT_IB_IF:
1168 break;
1169 default:
1170 return -EINVAL;
1171 }
1172 if (inv_fs)
1173 regs->pcr0 ^= FSXP | FSRP;
1174
1175 return 0;
1176 }
1177
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1178 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1179 int div_id, int div)
1180 {
1181 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1182 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1183
1184 if (div_id != OMAP_MCBSP_CLKGDV)
1185 return -ENODEV;
1186
1187 mcbsp->clk_div = div;
1188 regs->srgr1 &= ~CLKGDV(0xff);
1189 regs->srgr1 |= CLKGDV(div - 1);
1190
1191 return 0;
1192 }
1193
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1194 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1195 int clk_id, unsigned int freq,
1196 int dir)
1197 {
1198 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1199 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1200 int err = 0;
1201
1202 if (mcbsp->active) {
1203 if (freq == mcbsp->in_freq)
1204 return 0;
1205 else
1206 return -EBUSY;
1207 }
1208
1209 mcbsp->in_freq = freq;
1210 regs->srgr2 &= ~CLKSM;
1211 regs->pcr0 &= ~SCLKME;
1212
1213 switch (clk_id) {
1214 case OMAP_MCBSP_SYSCLK_CLK:
1215 regs->srgr2 |= CLKSM;
1216 break;
1217 case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1218 if (mcbsp_omap1()) {
1219 err = -EINVAL;
1220 break;
1221 }
1222 err = omap2_mcbsp_set_clks_src(mcbsp,
1223 MCBSP_CLKS_PRCM_SRC);
1224 break;
1225 case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1226 if (mcbsp_omap1()) {
1227 err = 0;
1228 break;
1229 }
1230 err = omap2_mcbsp_set_clks_src(mcbsp,
1231 MCBSP_CLKS_PAD_SRC);
1232 break;
1233
1234 case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1235 regs->srgr2 |= CLKSM;
1236 regs->pcr0 |= SCLKME;
1237 /*
1238 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1239 * disable output on those pins. This enables to inject the
1240 * reference clock through CLKX/CLKR. For this to work
1241 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1242 */
1243 regs->pcr0 &= ~CLKXM;
1244 break;
1245 case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1246 regs->pcr0 |= SCLKME;
1247 /* Disable ouput on CLKR pin in master mode */
1248 regs->pcr0 &= ~CLKRM;
1249 break;
1250 default:
1251 err = -ENODEV;
1252 }
1253
1254 return err;
1255 }
1256
1257 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1258 .startup = omap_mcbsp_dai_startup,
1259 .shutdown = omap_mcbsp_dai_shutdown,
1260 .prepare = omap_mcbsp_dai_prepare,
1261 .trigger = omap_mcbsp_dai_trigger,
1262 .delay = omap_mcbsp_dai_delay,
1263 .hw_params = omap_mcbsp_dai_hw_params,
1264 .set_fmt = omap_mcbsp_dai_set_dai_fmt,
1265 .set_clkdiv = omap_mcbsp_dai_set_clkdiv,
1266 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
1267 };
1268
omap_mcbsp_probe(struct snd_soc_dai * dai)1269 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1270 {
1271 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1272
1273 pm_runtime_enable(mcbsp->dev);
1274
1275 snd_soc_dai_init_dma_data(dai,
1276 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1277 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1278
1279 return 0;
1280 }
1281
omap_mcbsp_remove(struct snd_soc_dai * dai)1282 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1283 {
1284 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285
1286 pm_runtime_disable(mcbsp->dev);
1287
1288 return 0;
1289 }
1290
1291 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1292 .probe = omap_mcbsp_probe,
1293 .remove = omap_mcbsp_remove,
1294 .playback = {
1295 .channels_min = 1,
1296 .channels_max = 16,
1297 .rates = OMAP_MCBSP_RATES,
1298 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1299 },
1300 .capture = {
1301 .channels_min = 1,
1302 .channels_max = 16,
1303 .rates = OMAP_MCBSP_RATES,
1304 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1305 },
1306 .ops = &mcbsp_dai_ops,
1307 };
1308
1309 static const struct snd_soc_component_driver omap_mcbsp_component = {
1310 .name = "omap-mcbsp",
1311 };
1312
1313 static struct omap_mcbsp_platform_data omap2420_pdata = {
1314 .reg_step = 4,
1315 .reg_size = 2,
1316 };
1317
1318 static struct omap_mcbsp_platform_data omap2430_pdata = {
1319 .reg_step = 4,
1320 .reg_size = 4,
1321 .has_ccr = true,
1322 };
1323
1324 static struct omap_mcbsp_platform_data omap3_pdata = {
1325 .reg_step = 4,
1326 .reg_size = 4,
1327 .has_ccr = true,
1328 .has_wakeup = true,
1329 };
1330
1331 static struct omap_mcbsp_platform_data omap4_pdata = {
1332 .reg_step = 4,
1333 .reg_size = 4,
1334 .has_ccr = true,
1335 .has_wakeup = true,
1336 };
1337
1338 static const struct of_device_id omap_mcbsp_of_match[] = {
1339 {
1340 .compatible = "ti,omap2420-mcbsp",
1341 .data = &omap2420_pdata,
1342 },
1343 {
1344 .compatible = "ti,omap2430-mcbsp",
1345 .data = &omap2430_pdata,
1346 },
1347 {
1348 .compatible = "ti,omap3-mcbsp",
1349 .data = &omap3_pdata,
1350 },
1351 {
1352 .compatible = "ti,omap4-mcbsp",
1353 .data = &omap4_pdata,
1354 },
1355 { },
1356 };
1357 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1358
asoc_mcbsp_probe(struct platform_device * pdev)1359 static int asoc_mcbsp_probe(struct platform_device *pdev)
1360 {
1361 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1362 struct omap_mcbsp *mcbsp;
1363 const struct of_device_id *match;
1364 int ret;
1365
1366 match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1367 if (match) {
1368 struct device_node *node = pdev->dev.of_node;
1369 struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1370 int buffer_size;
1371
1372 pdata = devm_kzalloc(&pdev->dev,
1373 sizeof(struct omap_mcbsp_platform_data),
1374 GFP_KERNEL);
1375 if (!pdata)
1376 return -ENOMEM;
1377
1378 memcpy(pdata, match->data, sizeof(*pdata));
1379 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1380 pdata->buffer_size = buffer_size;
1381 if (pdata_quirk)
1382 pdata->force_ick_on = pdata_quirk->force_ick_on;
1383 } else if (!pdata) {
1384 dev_err(&pdev->dev, "missing platform data.\n");
1385 return -EINVAL;
1386 }
1387 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1388 if (!mcbsp)
1389 return -ENOMEM;
1390
1391 mcbsp->id = pdev->id;
1392 mcbsp->pdata = pdata;
1393 mcbsp->dev = &pdev->dev;
1394 platform_set_drvdata(pdev, mcbsp);
1395
1396 ret = omap_mcbsp_init(pdev);
1397 if (ret)
1398 return ret;
1399
1400 if (mcbsp->pdata->reg_size == 2) {
1401 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1402 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403 }
1404
1405 ret = devm_snd_soc_register_component(&pdev->dev,
1406 &omap_mcbsp_component,
1407 &omap_mcbsp_dai, 1);
1408 if (ret)
1409 return ret;
1410
1411 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1412 }
1413
asoc_mcbsp_remove(struct platform_device * pdev)1414 static int asoc_mcbsp_remove(struct platform_device *pdev)
1415 {
1416 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1417
1418 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1419 mcbsp->pdata->ops->free(mcbsp->id);
1420
1421 if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1422 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1423
1424 return 0;
1425 }
1426
1427 static struct platform_driver asoc_mcbsp_driver = {
1428 .driver = {
1429 .name = "omap-mcbsp",
1430 .of_match_table = omap_mcbsp_of_match,
1431 },
1432
1433 .probe = asoc_mcbsp_probe,
1434 .remove = asoc_mcbsp_remove,
1435 };
1436
1437 module_platform_driver(asoc_mcbsp_driver);
1438
1439 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1440 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1441 MODULE_LICENSE("GPL");
1442 MODULE_ALIAS("platform:omap-mcbsp");
1443