1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2021
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39 #include <linux/module.h>
40
41 #include "ap_bus.h"
42 #include "ap_debug.h"
43
44 /*
45 * Module parameters; note though this file itself isn't modular.
46 */
47 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
48 static DEFINE_SPINLOCK(ap_domain_lock);
49 module_param_named(domain, ap_domain_index, int, 0440);
50 MODULE_PARM_DESC(domain, "domain index for ap devices");
51 EXPORT_SYMBOL(ap_domain_index);
52
53 static int ap_thread_flag;
54 module_param_named(poll_thread, ap_thread_flag, int, 0440);
55 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
56
57 static char *apm_str;
58 module_param_named(apmask, apm_str, charp, 0440);
59 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
60
61 static char *aqm_str;
62 module_param_named(aqmask, aqm_str, charp, 0440);
63 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
64
65 static int ap_useirq = 1;
66 module_param_named(useirq, ap_useirq, int, 0440);
67 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
68
69 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
70 EXPORT_SYMBOL(ap_max_msg_size);
71
72 static struct device *ap_root_device;
73
74 /* Hashtable of all queue devices on the AP bus */
75 DEFINE_HASHTABLE(ap_queues, 8);
76 /* lock used for the ap_queues hashtable */
77 DEFINE_SPINLOCK(ap_queues_lock);
78
79 /* Default permissions (ioctl, card and domain masking) */
80 struct ap_perms ap_perms;
81 EXPORT_SYMBOL(ap_perms);
82 DEFINE_MUTEX(ap_perms_mutex);
83 EXPORT_SYMBOL(ap_perms_mutex);
84
85 /* # of bus scans since init */
86 static atomic64_t ap_scan_bus_count;
87
88 /* # of bindings complete since init */
89 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
90
91 /* completion for initial APQN bindings complete */
92 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
93
94 static struct ap_config_info *ap_qci_info;
95 static struct ap_config_info *ap_qci_info_old;
96
97 /*
98 * AP bus related debug feature things.
99 */
100 debug_info_t *ap_dbf_info;
101
102 /*
103 * Workqueue timer for bus rescan.
104 */
105 static struct timer_list ap_config_timer;
106 static int ap_config_time = AP_CONFIG_TIME;
107 static void ap_scan_bus(struct work_struct *);
108 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
109
110 /*
111 * Tasklet & timer for AP request polling and interrupts
112 */
113 static void ap_tasklet_fn(unsigned long);
114 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
115 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
116 static struct task_struct *ap_poll_kthread;
117 static DEFINE_MUTEX(ap_poll_thread_mutex);
118 static DEFINE_SPINLOCK(ap_poll_timer_lock);
119 static struct hrtimer ap_poll_timer;
120 /*
121 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
122 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
123 */
124 static unsigned long long poll_timeout = 250000;
125
126 /* Maximum domain id, if not given via qci */
127 static int ap_max_domain_id = 15;
128 /* Maximum adapter id, if not given via qci */
129 static int ap_max_adapter_id = 63;
130
131 static struct bus_type ap_bus_type;
132
133 /* Adapter interrupt definitions */
134 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
135
136 static bool ap_irq_flag;
137
138 static struct airq_struct ap_airq = {
139 .handler = ap_interrupt_handler,
140 .isc = AP_ISC,
141 };
142
143 /**
144 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
145 *
146 * Returns the address of the local-summary-indicator of the adapter
147 * interrupt handler for AP, or NULL if adapter interrupts are not
148 * available.
149 */
ap_airq_ptr(void)150 void *ap_airq_ptr(void)
151 {
152 if (ap_irq_flag)
153 return ap_airq.lsi_ptr;
154 return NULL;
155 }
156
157 /**
158 * ap_interrupts_available(): Test if AP interrupts are available.
159 *
160 * Returns 1 if AP interrupts are available.
161 */
ap_interrupts_available(void)162 static int ap_interrupts_available(void)
163 {
164 return test_facility(65);
165 }
166
167 /**
168 * ap_qci_available(): Test if AP configuration
169 * information can be queried via QCI subfunction.
170 *
171 * Returns 1 if subfunction PQAP(QCI) is available.
172 */
ap_qci_available(void)173 static int ap_qci_available(void)
174 {
175 return test_facility(12);
176 }
177
178 /**
179 * ap_apft_available(): Test if AP facilities test (APFT)
180 * facility is available.
181 *
182 * Returns 1 if APFT is available.
183 */
ap_apft_available(void)184 static int ap_apft_available(void)
185 {
186 return test_facility(15);
187 }
188
189 /*
190 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
191 *
192 * Returns 1 if the QACT subfunction is available.
193 */
ap_qact_available(void)194 static inline int ap_qact_available(void)
195 {
196 if (ap_qci_info)
197 return ap_qci_info->qact;
198 return 0;
199 }
200
201 /*
202 * ap_fetch_qci_info(): Fetch cryptographic config info
203 *
204 * Returns the ap configuration info fetched via PQAP(QCI).
205 * On success 0 is returned, on failure a negative errno
206 * is returned, e.g. if the PQAP(QCI) instruction is not
207 * available, the return value will be -EOPNOTSUPP.
208 */
ap_fetch_qci_info(struct ap_config_info * info)209 static inline int ap_fetch_qci_info(struct ap_config_info *info)
210 {
211 if (!ap_qci_available())
212 return -EOPNOTSUPP;
213 if (!info)
214 return -EINVAL;
215 return ap_qci(info);
216 }
217
218 /**
219 * ap_init_qci_info(): Allocate and query qci config info.
220 * Does also update the static variables ap_max_domain_id
221 * and ap_max_adapter_id if this info is available.
222 */
ap_init_qci_info(void)223 static void __init ap_init_qci_info(void)
224 {
225 if (!ap_qci_available()) {
226 AP_DBF_INFO("%s QCI not supported\n", __func__);
227 return;
228 }
229
230 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
231 if (!ap_qci_info)
232 return;
233 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
234 if (!ap_qci_info_old)
235 return;
236 if (ap_fetch_qci_info(ap_qci_info) != 0) {
237 kfree(ap_qci_info);
238 kfree(ap_qci_info_old);
239 ap_qci_info = NULL;
240 ap_qci_info_old = NULL;
241 return;
242 }
243 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
244
245 if (ap_qci_info->apxa) {
246 if (ap_qci_info->Na) {
247 ap_max_adapter_id = ap_qci_info->Na;
248 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
249 __func__, ap_max_adapter_id);
250 }
251 if (ap_qci_info->Nd) {
252 ap_max_domain_id = ap_qci_info->Nd;
253 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
254 __func__, ap_max_domain_id);
255 }
256 }
257
258 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
259 }
260
261 /*
262 * ap_test_config(): helper function to extract the nrth bit
263 * within the unsigned int array field.
264 */
ap_test_config(unsigned int * field,unsigned int nr)265 static inline int ap_test_config(unsigned int *field, unsigned int nr)
266 {
267 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268 }
269
270 /*
271 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272 *
273 * Returns 0 if the card is not configured
274 * 1 if the card is configured or
275 * if the configuration information is not available
276 */
ap_test_config_card_id(unsigned int id)277 static inline int ap_test_config_card_id(unsigned int id)
278 {
279 if (id > ap_max_adapter_id)
280 return 0;
281 if (ap_qci_info)
282 return ap_test_config(ap_qci_info->apm, id);
283 return 1;
284 }
285
286 /*
287 * ap_test_config_usage_domain(): Test, whether an AP usage domain
288 * is configured.
289 *
290 * Returns 0 if the usage domain is not configured
291 * 1 if the usage domain is configured or
292 * if the configuration information is not available
293 */
ap_test_config_usage_domain(unsigned int domain)294 int ap_test_config_usage_domain(unsigned int domain)
295 {
296 if (domain > ap_max_domain_id)
297 return 0;
298 if (ap_qci_info)
299 return ap_test_config(ap_qci_info->aqm, domain);
300 return 1;
301 }
302 EXPORT_SYMBOL(ap_test_config_usage_domain);
303
304 /*
305 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306 * is configured.
307 * @domain AP control domain ID
308 *
309 * Returns 1 if the control domain is configured
310 * 0 in all other cases
311 */
ap_test_config_ctrl_domain(unsigned int domain)312 int ap_test_config_ctrl_domain(unsigned int domain)
313 {
314 if (!ap_qci_info || domain > ap_max_domain_id)
315 return 0;
316 return ap_test_config(ap_qci_info->adm, domain);
317 }
318 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319
320 /*
321 * ap_queue_info(): Check and get AP queue info.
322 * Returns true if TAPQ succeeded and the info is filled or
323 * false otherwise.
324 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg,bool * q_cstop)325 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
326 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
327 {
328 struct ap_queue_status status;
329 union {
330 unsigned long value;
331 struct {
332 unsigned int fac : 32; /* facility bits */
333 unsigned int at : 8; /* ap type */
334 unsigned int _res1 : 8;
335 unsigned int _res2 : 4;
336 unsigned int ml : 4; /* apxl ml */
337 unsigned int _res3 : 4;
338 unsigned int qd : 4; /* queue depth */
339 } tapq_gr2;
340 } tapq_info;
341
342 tapq_info.value = 0;
343
344 /* make sure we don't run into a specifiation exception */
345 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
346 AP_QID_QUEUE(qid) > ap_max_domain_id)
347 return false;
348
349 /* call TAPQ on this APQN */
350 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
351 switch (status.response_code) {
352 case AP_RESPONSE_NORMAL:
353 case AP_RESPONSE_RESET_IN_PROGRESS:
354 case AP_RESPONSE_DECONFIGURED:
355 case AP_RESPONSE_CHECKSTOPPED:
356 case AP_RESPONSE_BUSY:
357 /*
358 * According to the architecture in all these cases the
359 * info should be filled. All bits 0 is not possible as
360 * there is at least one of the mode bits set.
361 */
362 if (WARN_ON_ONCE(!tapq_info.value))
363 return false;
364 *q_type = tapq_info.tapq_gr2.at;
365 *q_fac = tapq_info.tapq_gr2.fac;
366 *q_depth = tapq_info.tapq_gr2.qd;
367 *q_ml = tapq_info.tapq_gr2.ml;
368 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
369 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
370 switch (*q_type) {
371 /* For CEX2 and CEX3 the available functions
372 * are not reflected by the facilities bits.
373 * Instead it is coded into the type. So here
374 * modify the function bits based on the type.
375 */
376 case AP_DEVICE_TYPE_CEX2A:
377 case AP_DEVICE_TYPE_CEX3A:
378 *q_fac |= 0x08000000;
379 break;
380 case AP_DEVICE_TYPE_CEX2C:
381 case AP_DEVICE_TYPE_CEX3C:
382 *q_fac |= 0x10000000;
383 break;
384 default:
385 break;
386 }
387 return true;
388 default:
389 /*
390 * A response code which indicates, there is no info available.
391 */
392 return false;
393 }
394 }
395
ap_wait(enum ap_sm_wait wait)396 void ap_wait(enum ap_sm_wait wait)
397 {
398 ktime_t hr_time;
399
400 switch (wait) {
401 case AP_SM_WAIT_AGAIN:
402 case AP_SM_WAIT_INTERRUPT:
403 if (ap_irq_flag)
404 break;
405 if (ap_poll_kthread) {
406 wake_up(&ap_poll_wait);
407 break;
408 }
409 fallthrough;
410 case AP_SM_WAIT_TIMEOUT:
411 spin_lock_bh(&ap_poll_timer_lock);
412 if (!hrtimer_is_queued(&ap_poll_timer)) {
413 hr_time = poll_timeout;
414 hrtimer_forward_now(&ap_poll_timer, hr_time);
415 hrtimer_restart(&ap_poll_timer);
416 }
417 spin_unlock_bh(&ap_poll_timer_lock);
418 break;
419 case AP_SM_WAIT_NONE:
420 default:
421 break;
422 }
423 }
424
425 /**
426 * ap_request_timeout(): Handling of request timeouts
427 * @t: timer making this callback
428 *
429 * Handles request timeouts.
430 */
ap_request_timeout(struct timer_list * t)431 void ap_request_timeout(struct timer_list *t)
432 {
433 struct ap_queue *aq = from_timer(aq, t, timeout);
434
435 spin_lock_bh(&aq->lock);
436 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
437 spin_unlock_bh(&aq->lock);
438 }
439
440 /**
441 * ap_poll_timeout(): AP receive polling for finished AP requests.
442 * @unused: Unused pointer.
443 *
444 * Schedules the AP tasklet using a high resolution timer.
445 */
ap_poll_timeout(struct hrtimer * unused)446 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
447 {
448 tasklet_schedule(&ap_tasklet);
449 return HRTIMER_NORESTART;
450 }
451
452 /**
453 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
454 * @airq: pointer to adapter interrupt descriptor
455 * @floating: ignored
456 */
ap_interrupt_handler(struct airq_struct * airq,bool floating)457 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
458 {
459 inc_irq_stat(IRQIO_APB);
460 tasklet_schedule(&ap_tasklet);
461 }
462
463 /**
464 * ap_tasklet_fn(): Tasklet to poll all AP devices.
465 * @dummy: Unused variable
466 *
467 * Poll all AP devices on the bus.
468 */
ap_tasklet_fn(unsigned long dummy)469 static void ap_tasklet_fn(unsigned long dummy)
470 {
471 int bkt;
472 struct ap_queue *aq;
473 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
474
475 /* Reset the indicator if interrupts are used. Thus new interrupts can
476 * be received. Doing it in the beginning of the tasklet is therefor
477 * important that no requests on any AP get lost.
478 */
479 if (ap_irq_flag)
480 xchg(ap_airq.lsi_ptr, 0);
481
482 spin_lock_bh(&ap_queues_lock);
483 hash_for_each(ap_queues, bkt, aq, hnode) {
484 spin_lock_bh(&aq->lock);
485 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
486 spin_unlock_bh(&aq->lock);
487 }
488 spin_unlock_bh(&ap_queues_lock);
489
490 ap_wait(wait);
491 }
492
ap_pending_requests(void)493 static int ap_pending_requests(void)
494 {
495 int bkt;
496 struct ap_queue *aq;
497
498 spin_lock_bh(&ap_queues_lock);
499 hash_for_each(ap_queues, bkt, aq, hnode) {
500 if (aq->queue_count == 0)
501 continue;
502 spin_unlock_bh(&ap_queues_lock);
503 return 1;
504 }
505 spin_unlock_bh(&ap_queues_lock);
506 return 0;
507 }
508
509 /**
510 * ap_poll_thread(): Thread that polls for finished requests.
511 * @data: Unused pointer
512 *
513 * AP bus poll thread. The purpose of this thread is to poll for
514 * finished requests in a loop if there is a "free" cpu - that is
515 * a cpu that doesn't have anything better to do. The polling stops
516 * as soon as there is another task or if all messages have been
517 * delivered.
518 */
ap_poll_thread(void * data)519 static int ap_poll_thread(void *data)
520 {
521 DECLARE_WAITQUEUE(wait, current);
522
523 set_user_nice(current, MAX_NICE);
524 set_freezable();
525 while (!kthread_should_stop()) {
526 add_wait_queue(&ap_poll_wait, &wait);
527 set_current_state(TASK_INTERRUPTIBLE);
528 if (!ap_pending_requests()) {
529 schedule();
530 try_to_freeze();
531 }
532 set_current_state(TASK_RUNNING);
533 remove_wait_queue(&ap_poll_wait, &wait);
534 if (need_resched()) {
535 schedule();
536 try_to_freeze();
537 continue;
538 }
539 ap_tasklet_fn(0);
540 }
541
542 return 0;
543 }
544
ap_poll_thread_start(void)545 static int ap_poll_thread_start(void)
546 {
547 int rc;
548
549 if (ap_irq_flag || ap_poll_kthread)
550 return 0;
551 mutex_lock(&ap_poll_thread_mutex);
552 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
553 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
554 if (rc)
555 ap_poll_kthread = NULL;
556 mutex_unlock(&ap_poll_thread_mutex);
557 return rc;
558 }
559
ap_poll_thread_stop(void)560 static void ap_poll_thread_stop(void)
561 {
562 if (!ap_poll_kthread)
563 return;
564 mutex_lock(&ap_poll_thread_mutex);
565 kthread_stop(ap_poll_kthread);
566 ap_poll_kthread = NULL;
567 mutex_unlock(&ap_poll_thread_mutex);
568 }
569
570 #define is_card_dev(x) ((x)->parent == ap_root_device)
571 #define is_queue_dev(x) ((x)->parent != ap_root_device)
572
573 /**
574 * ap_bus_match()
575 * @dev: Pointer to device
576 * @drv: Pointer to device_driver
577 *
578 * AP bus driver registration/unregistration.
579 */
ap_bus_match(struct device * dev,struct device_driver * drv)580 static int ap_bus_match(struct device *dev, struct device_driver *drv)
581 {
582 struct ap_driver *ap_drv = to_ap_drv(drv);
583 struct ap_device_id *id;
584
585 /*
586 * Compare device type of the device with the list of
587 * supported types of the device_driver.
588 */
589 for (id = ap_drv->ids; id->match_flags; id++) {
590 if (is_card_dev(dev) &&
591 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
592 id->dev_type == to_ap_dev(dev)->device_type)
593 return 1;
594 if (is_queue_dev(dev) &&
595 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
596 id->dev_type == to_ap_dev(dev)->device_type)
597 return 1;
598 }
599 return 0;
600 }
601
602 /**
603 * ap_uevent(): Uevent function for AP devices.
604 * @dev: Pointer to device
605 * @env: Pointer to kobj_uevent_env
606 *
607 * It sets up a single environment variable DEV_TYPE which contains the
608 * hardware device type.
609 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)610 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
611 {
612 int rc = 0;
613 struct ap_device *ap_dev = to_ap_dev(dev);
614
615 /* Uevents from ap bus core don't need extensions to the env */
616 if (dev == ap_root_device)
617 return 0;
618
619 if (is_card_dev(dev)) {
620 struct ap_card *ac = to_ap_card(&ap_dev->device);
621
622 /* Set up DEV_TYPE environment variable. */
623 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
624 if (rc)
625 return rc;
626 /* Add MODALIAS= */
627 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
628 if (rc)
629 return rc;
630
631 /* Add MODE=<accel|cca|ep11> */
632 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
633 rc = add_uevent_var(env, "MODE=accel");
634 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
635 rc = add_uevent_var(env, "MODE=cca");
636 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
637 rc = add_uevent_var(env, "MODE=ep11");
638 if (rc)
639 return rc;
640 } else {
641 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
642
643 /* Add MODE=<accel|cca|ep11> */
644 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
645 rc = add_uevent_var(env, "MODE=accel");
646 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
647 rc = add_uevent_var(env, "MODE=cca");
648 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
649 rc = add_uevent_var(env, "MODE=ep11");
650 if (rc)
651 return rc;
652 }
653
654 return 0;
655 }
656
ap_send_init_scan_done_uevent(void)657 static void ap_send_init_scan_done_uevent(void)
658 {
659 char *envp[] = { "INITSCAN=done", NULL };
660
661 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
662 }
663
ap_send_bindings_complete_uevent(void)664 static void ap_send_bindings_complete_uevent(void)
665 {
666 char buf[32];
667 char *envp[] = { "BINDINGS=complete", buf, NULL };
668
669 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
670 atomic64_inc_return(&ap_bindings_complete_count));
671 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
672 }
673
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)674 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
675 {
676 char buf[16];
677 char *envp[] = { buf, NULL };
678
679 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
680
681 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
682 }
683 EXPORT_SYMBOL(ap_send_config_uevent);
684
ap_send_online_uevent(struct ap_device * ap_dev,int online)685 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
686 {
687 char buf[16];
688 char *envp[] = { buf, NULL };
689
690 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
691
692 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
693 }
694 EXPORT_SYMBOL(ap_send_online_uevent);
695
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)696 static void ap_send_mask_changed_uevent(unsigned long *newapm,
697 unsigned long *newaqm)
698 {
699 char buf[100];
700 char *envp[] = { buf, NULL };
701
702 if (newapm)
703 snprintf(buf, sizeof(buf),
704 "APMASK=0x%016lx%016lx%016lx%016lx\n",
705 newapm[0], newapm[1], newapm[2], newapm[3]);
706 else
707 snprintf(buf, sizeof(buf),
708 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
709 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
710
711 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
712 }
713
714 /*
715 * calc # of bound APQNs
716 */
717
718 struct __ap_calc_ctrs {
719 unsigned int apqns;
720 unsigned int bound;
721 };
722
__ap_calc_helper(struct device * dev,void * arg)723 static int __ap_calc_helper(struct device *dev, void *arg)
724 {
725 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
726
727 if (is_queue_dev(dev)) {
728 pctrs->apqns++;
729 if (dev->driver)
730 pctrs->bound++;
731 }
732
733 return 0;
734 }
735
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)736 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
737 {
738 struct __ap_calc_ctrs ctrs;
739
740 memset(&ctrs, 0, sizeof(ctrs));
741 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
742
743 *apqns = ctrs.apqns;
744 *bound = ctrs.bound;
745 }
746
747 /*
748 * After initial ap bus scan do check if all existing APQNs are
749 * bound to device drivers.
750 */
ap_check_bindings_complete(void)751 static void ap_check_bindings_complete(void)
752 {
753 unsigned int apqns, bound;
754
755 if (atomic64_read(&ap_scan_bus_count) >= 1) {
756 ap_calc_bound_apqns(&apqns, &bound);
757 if (bound == apqns) {
758 if (!completion_done(&ap_init_apqn_bindings_complete)) {
759 complete_all(&ap_init_apqn_bindings_complete);
760 AP_DBF_INFO("%s complete\n", __func__);
761 }
762 ap_send_bindings_complete_uevent();
763 }
764 }
765 }
766
767 /*
768 * Interface to wait for the AP bus to have done one initial ap bus
769 * scan and all detected APQNs have been bound to device drivers.
770 * If these both conditions are not fulfilled, this function blocks
771 * on a condition with wait_for_completion_interruptible_timeout().
772 * If these both conditions are fulfilled (before the timeout hits)
773 * the return value is 0. If the timeout (in jiffies) hits instead
774 * -ETIME is returned. On failures negative return values are
775 * returned to the caller.
776 */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)777 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
778 {
779 long l;
780
781 if (completion_done(&ap_init_apqn_bindings_complete))
782 return 0;
783
784 if (timeout)
785 l = wait_for_completion_interruptible_timeout(
786 &ap_init_apqn_bindings_complete, timeout);
787 else
788 l = wait_for_completion_interruptible(
789 &ap_init_apqn_bindings_complete);
790 if (l < 0)
791 return l == -ERESTARTSYS ? -EINTR : l;
792 else if (l == 0 && timeout)
793 return -ETIME;
794
795 return 0;
796 }
797 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
798
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)799 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
800 {
801 if (is_queue_dev(dev) &&
802 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
803 device_unregister(dev);
804 return 0;
805 }
806
__ap_revise_reserved(struct device * dev,void * dummy)807 static int __ap_revise_reserved(struct device *dev, void *dummy)
808 {
809 int rc, card, queue, devres, drvres;
810
811 if (is_queue_dev(dev)) {
812 card = AP_QID_CARD(to_ap_queue(dev)->qid);
813 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
814 mutex_lock(&ap_perms_mutex);
815 devres = test_bit_inv(card, ap_perms.apm) &&
816 test_bit_inv(queue, ap_perms.aqm);
817 mutex_unlock(&ap_perms_mutex);
818 drvres = to_ap_drv(dev->driver)->flags
819 & AP_DRIVER_FLAG_DEFAULT;
820 if (!!devres != !!drvres) {
821 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
822 __func__, card, queue);
823 rc = device_reprobe(dev);
824 if (rc)
825 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
826 __func__, card, queue);
827 }
828 }
829
830 return 0;
831 }
832
ap_bus_revise_bindings(void)833 static void ap_bus_revise_bindings(void)
834 {
835 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
836 }
837
ap_owned_by_def_drv(int card,int queue)838 int ap_owned_by_def_drv(int card, int queue)
839 {
840 int rc = 0;
841
842 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
843 return -EINVAL;
844
845 mutex_lock(&ap_perms_mutex);
846
847 if (test_bit_inv(card, ap_perms.apm) &&
848 test_bit_inv(queue, ap_perms.aqm))
849 rc = 1;
850
851 mutex_unlock(&ap_perms_mutex);
852
853 return rc;
854 }
855 EXPORT_SYMBOL(ap_owned_by_def_drv);
856
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)857 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
858 unsigned long *aqm)
859 {
860 int card, queue, rc = 0;
861
862 mutex_lock(&ap_perms_mutex);
863
864 for (card = 0; !rc && card < AP_DEVICES; card++)
865 if (test_bit_inv(card, apm) &&
866 test_bit_inv(card, ap_perms.apm))
867 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
868 if (test_bit_inv(queue, aqm) &&
869 test_bit_inv(queue, ap_perms.aqm))
870 rc = 1;
871
872 mutex_unlock(&ap_perms_mutex);
873
874 return rc;
875 }
876 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
877
ap_device_probe(struct device * dev)878 static int ap_device_probe(struct device *dev)
879 {
880 struct ap_device *ap_dev = to_ap_dev(dev);
881 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
882 int card, queue, devres, drvres, rc = -ENODEV;
883
884 if (!get_device(dev))
885 return rc;
886
887 if (is_queue_dev(dev)) {
888 /*
889 * If the apqn is marked as reserved/used by ap bus and
890 * default drivers, only probe with drivers with the default
891 * flag set. If it is not marked, only probe with drivers
892 * with the default flag not set.
893 */
894 card = AP_QID_CARD(to_ap_queue(dev)->qid);
895 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
896 mutex_lock(&ap_perms_mutex);
897 devres = test_bit_inv(card, ap_perms.apm) &&
898 test_bit_inv(queue, ap_perms.aqm);
899 mutex_unlock(&ap_perms_mutex);
900 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
901 if (!!devres != !!drvres)
902 goto out;
903 }
904
905 /* Add queue/card to list of active queues/cards */
906 spin_lock_bh(&ap_queues_lock);
907 if (is_queue_dev(dev))
908 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
909 to_ap_queue(dev)->qid);
910 spin_unlock_bh(&ap_queues_lock);
911
912 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
913
914 if (rc) {
915 spin_lock_bh(&ap_queues_lock);
916 if (is_queue_dev(dev))
917 hash_del(&to_ap_queue(dev)->hnode);
918 spin_unlock_bh(&ap_queues_lock);
919 } else {
920 ap_check_bindings_complete();
921 }
922
923 out:
924 if (rc)
925 put_device(dev);
926 return rc;
927 }
928
ap_device_remove(struct device * dev)929 static void ap_device_remove(struct device *dev)
930 {
931 struct ap_device *ap_dev = to_ap_dev(dev);
932 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
933
934 /* prepare ap queue device removal */
935 if (is_queue_dev(dev))
936 ap_queue_prepare_remove(to_ap_queue(dev));
937
938 /* driver's chance to clean up gracefully */
939 if (ap_drv->remove)
940 ap_drv->remove(ap_dev);
941
942 /* now do the ap queue device remove */
943 if (is_queue_dev(dev))
944 ap_queue_remove(to_ap_queue(dev));
945
946 /* Remove queue/card from list of active queues/cards */
947 spin_lock_bh(&ap_queues_lock);
948 if (is_queue_dev(dev))
949 hash_del(&to_ap_queue(dev)->hnode);
950 spin_unlock_bh(&ap_queues_lock);
951
952 put_device(dev);
953 }
954
ap_get_qdev(ap_qid_t qid)955 struct ap_queue *ap_get_qdev(ap_qid_t qid)
956 {
957 int bkt;
958 struct ap_queue *aq;
959
960 spin_lock_bh(&ap_queues_lock);
961 hash_for_each(ap_queues, bkt, aq, hnode) {
962 if (aq->qid == qid) {
963 get_device(&aq->ap_dev.device);
964 spin_unlock_bh(&ap_queues_lock);
965 return aq;
966 }
967 }
968 spin_unlock_bh(&ap_queues_lock);
969
970 return NULL;
971 }
972 EXPORT_SYMBOL(ap_get_qdev);
973
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)974 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
975 char *name)
976 {
977 struct device_driver *drv = &ap_drv->driver;
978
979 drv->bus = &ap_bus_type;
980 drv->owner = owner;
981 drv->name = name;
982 return driver_register(drv);
983 }
984 EXPORT_SYMBOL(ap_driver_register);
985
ap_driver_unregister(struct ap_driver * ap_drv)986 void ap_driver_unregister(struct ap_driver *ap_drv)
987 {
988 driver_unregister(&ap_drv->driver);
989 }
990 EXPORT_SYMBOL(ap_driver_unregister);
991
ap_bus_force_rescan(void)992 void ap_bus_force_rescan(void)
993 {
994 /* processing a asynchronous bus rescan */
995 del_timer(&ap_config_timer);
996 queue_work(system_long_wq, &ap_scan_work);
997 flush_work(&ap_scan_work);
998 }
999 EXPORT_SYMBOL(ap_bus_force_rescan);
1000
1001 /*
1002 * A config change has happened, force an ap bus rescan.
1003 */
ap_bus_cfg_chg(void)1004 void ap_bus_cfg_chg(void)
1005 {
1006 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1007
1008 ap_bus_force_rescan();
1009 }
1010
1011 /*
1012 * hex2bitmap() - parse hex mask string and set bitmap.
1013 * Valid strings are "0x012345678" with at least one valid hex number.
1014 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1015 * within the string, the leading 0x may be omitted.
1016 * Returns the bitmask with exactly the bits set as given by the hex
1017 * string (both in big endian order).
1018 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)1019 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1020 {
1021 int i, n, b;
1022
1023 /* bits needs to be a multiple of 8 */
1024 if (bits & 0x07)
1025 return -EINVAL;
1026
1027 if (str[0] == '0' && str[1] == 'x')
1028 str++;
1029 if (*str == 'x')
1030 str++;
1031
1032 for (i = 0; isxdigit(*str) && i < bits; str++) {
1033 b = hex_to_bin(*str);
1034 for (n = 0; n < 4; n++)
1035 if (b & (0x08 >> n))
1036 set_bit_inv(i + n, bitmap);
1037 i += 4;
1038 }
1039
1040 if (*str == '\n')
1041 str++;
1042 if (*str)
1043 return -EINVAL;
1044 return 0;
1045 }
1046
1047 /*
1048 * modify_bitmap() - parse bitmask argument and modify an existing
1049 * bit mask accordingly. A concatenation (done with ',') of these
1050 * terms is recognized:
1051 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1052 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1053 * 0...bits-1; the leading + or - is required. Here are some examples:
1054 * +0-15,+32,-128,-0xFF
1055 * -0-255,+1-16,+0x128
1056 * +1,+2,+3,+4,-5,-7-10
1057 * Returns the new bitmap after all changes have been applied. Every
1058 * positive value in the string will set a bit and every negative value
1059 * in the string will clear a bit. As a bit may be touched more than once,
1060 * the last 'operation' wins:
1061 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1062 * cleared again. All other bits are unmodified.
1063 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1064 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1065 {
1066 int a, i, z;
1067 char *np, sign;
1068
1069 /* bits needs to be a multiple of 8 */
1070 if (bits & 0x07)
1071 return -EINVAL;
1072
1073 while (*str) {
1074 sign = *str++;
1075 if (sign != '+' && sign != '-')
1076 return -EINVAL;
1077 a = z = simple_strtoul(str, &np, 0);
1078 if (str == np || a >= bits)
1079 return -EINVAL;
1080 str = np;
1081 if (*str == '-') {
1082 z = simple_strtoul(++str, &np, 0);
1083 if (str == np || a > z || z >= bits)
1084 return -EINVAL;
1085 str = np;
1086 }
1087 for (i = a; i <= z; i++)
1088 if (sign == '+')
1089 set_bit_inv(i, bitmap);
1090 else
1091 clear_bit_inv(i, bitmap);
1092 while (*str == ',' || *str == '\n')
1093 str++;
1094 }
1095
1096 return 0;
1097 }
1098
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1099 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1100 unsigned long *newmap)
1101 {
1102 unsigned long size;
1103 int rc;
1104
1105 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1106 if (*str == '+' || *str == '-') {
1107 memcpy(newmap, bitmap, size);
1108 rc = modify_bitmap(str, newmap, bits);
1109 } else {
1110 memset(newmap, 0, size);
1111 rc = hex2bitmap(str, newmap, bits);
1112 }
1113 return rc;
1114 }
1115
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1116 int ap_parse_mask_str(const char *str,
1117 unsigned long *bitmap, int bits,
1118 struct mutex *lock)
1119 {
1120 unsigned long *newmap, size;
1121 int rc;
1122
1123 /* bits needs to be a multiple of 8 */
1124 if (bits & 0x07)
1125 return -EINVAL;
1126
1127 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1128 newmap = kmalloc(size, GFP_KERNEL);
1129 if (!newmap)
1130 return -ENOMEM;
1131 if (mutex_lock_interruptible(lock)) {
1132 kfree(newmap);
1133 return -ERESTARTSYS;
1134 }
1135 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1136 if (rc == 0)
1137 memcpy(bitmap, newmap, size);
1138 mutex_unlock(lock);
1139 kfree(newmap);
1140 return rc;
1141 }
1142 EXPORT_SYMBOL(ap_parse_mask_str);
1143
1144 /*
1145 * AP bus attributes.
1146 */
1147
ap_domain_show(struct bus_type * bus,char * buf)1148 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1149 {
1150 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1151 }
1152
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)1153 static ssize_t ap_domain_store(struct bus_type *bus,
1154 const char *buf, size_t count)
1155 {
1156 int domain;
1157
1158 if (sscanf(buf, "%i\n", &domain) != 1 ||
1159 domain < 0 || domain > ap_max_domain_id ||
1160 !test_bit_inv(domain, ap_perms.aqm))
1161 return -EINVAL;
1162
1163 spin_lock_bh(&ap_domain_lock);
1164 ap_domain_index = domain;
1165 spin_unlock_bh(&ap_domain_lock);
1166
1167 AP_DBF_INFO("%s stored new default domain=%d\n",
1168 __func__, domain);
1169
1170 return count;
1171 }
1172
1173 static BUS_ATTR_RW(ap_domain);
1174
ap_control_domain_mask_show(struct bus_type * bus,char * buf)1175 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1176 {
1177 if (!ap_qci_info) /* QCI not supported */
1178 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1179
1180 return scnprintf(buf, PAGE_SIZE,
1181 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1182 ap_qci_info->adm[0], ap_qci_info->adm[1],
1183 ap_qci_info->adm[2], ap_qci_info->adm[3],
1184 ap_qci_info->adm[4], ap_qci_info->adm[5],
1185 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1186 }
1187
1188 static BUS_ATTR_RO(ap_control_domain_mask);
1189
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)1190 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1191 {
1192 if (!ap_qci_info) /* QCI not supported */
1193 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1194
1195 return scnprintf(buf, PAGE_SIZE,
1196 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1197 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1198 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1199 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1200 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1201 }
1202
1203 static BUS_ATTR_RO(ap_usage_domain_mask);
1204
ap_adapter_mask_show(struct bus_type * bus,char * buf)1205 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1206 {
1207 if (!ap_qci_info) /* QCI not supported */
1208 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1209
1210 return scnprintf(buf, PAGE_SIZE,
1211 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1212 ap_qci_info->apm[0], ap_qci_info->apm[1],
1213 ap_qci_info->apm[2], ap_qci_info->apm[3],
1214 ap_qci_info->apm[4], ap_qci_info->apm[5],
1215 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1216 }
1217
1218 static BUS_ATTR_RO(ap_adapter_mask);
1219
ap_interrupts_show(struct bus_type * bus,char * buf)1220 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1221 {
1222 return scnprintf(buf, PAGE_SIZE, "%d\n",
1223 ap_irq_flag ? 1 : 0);
1224 }
1225
1226 static BUS_ATTR_RO(ap_interrupts);
1227
config_time_show(struct bus_type * bus,char * buf)1228 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1229 {
1230 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1231 }
1232
config_time_store(struct bus_type * bus,const char * buf,size_t count)1233 static ssize_t config_time_store(struct bus_type *bus,
1234 const char *buf, size_t count)
1235 {
1236 int time;
1237
1238 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1239 return -EINVAL;
1240 ap_config_time = time;
1241 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1242 return count;
1243 }
1244
1245 static BUS_ATTR_RW(config_time);
1246
poll_thread_show(struct bus_type * bus,char * buf)1247 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1248 {
1249 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1250 }
1251
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1252 static ssize_t poll_thread_store(struct bus_type *bus,
1253 const char *buf, size_t count)
1254 {
1255 int flag, rc;
1256
1257 if (sscanf(buf, "%d\n", &flag) != 1)
1258 return -EINVAL;
1259 if (flag) {
1260 rc = ap_poll_thread_start();
1261 if (rc)
1262 count = rc;
1263 } else {
1264 ap_poll_thread_stop();
1265 }
1266 return count;
1267 }
1268
1269 static BUS_ATTR_RW(poll_thread);
1270
poll_timeout_show(struct bus_type * bus,char * buf)1271 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1272 {
1273 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1274 }
1275
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1276 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1277 size_t count)
1278 {
1279 unsigned long long time;
1280 ktime_t hr_time;
1281
1282 /* 120 seconds = maximum poll interval */
1283 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1284 time > 120000000000ULL)
1285 return -EINVAL;
1286 poll_timeout = time;
1287 hr_time = poll_timeout;
1288
1289 spin_lock_bh(&ap_poll_timer_lock);
1290 hrtimer_cancel(&ap_poll_timer);
1291 hrtimer_set_expires(&ap_poll_timer, hr_time);
1292 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1293 spin_unlock_bh(&ap_poll_timer_lock);
1294
1295 return count;
1296 }
1297
1298 static BUS_ATTR_RW(poll_timeout);
1299
ap_max_domain_id_show(struct bus_type * bus,char * buf)1300 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1301 {
1302 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1303 }
1304
1305 static BUS_ATTR_RO(ap_max_domain_id);
1306
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1307 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1308 {
1309 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1310 }
1311
1312 static BUS_ATTR_RO(ap_max_adapter_id);
1313
apmask_show(struct bus_type * bus,char * buf)1314 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1315 {
1316 int rc;
1317
1318 if (mutex_lock_interruptible(&ap_perms_mutex))
1319 return -ERESTARTSYS;
1320 rc = scnprintf(buf, PAGE_SIZE,
1321 "0x%016lx%016lx%016lx%016lx\n",
1322 ap_perms.apm[0], ap_perms.apm[1],
1323 ap_perms.apm[2], ap_perms.apm[3]);
1324 mutex_unlock(&ap_perms_mutex);
1325
1326 return rc;
1327 }
1328
__verify_card_reservations(struct device_driver * drv,void * data)1329 static int __verify_card_reservations(struct device_driver *drv, void *data)
1330 {
1331 int rc = 0;
1332 struct ap_driver *ap_drv = to_ap_drv(drv);
1333 unsigned long *newapm = (unsigned long *)data;
1334
1335 /*
1336 * increase the driver's module refcounter to be sure it is not
1337 * going away when we invoke the callback function.
1338 */
1339 if (!try_module_get(drv->owner))
1340 return 0;
1341
1342 if (ap_drv->in_use) {
1343 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1344 if (rc)
1345 rc = -EBUSY;
1346 }
1347
1348 /* release the driver's module */
1349 module_put(drv->owner);
1350
1351 return rc;
1352 }
1353
apmask_commit(unsigned long * newapm)1354 static int apmask_commit(unsigned long *newapm)
1355 {
1356 int rc;
1357 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1358
1359 /*
1360 * Check if any bits in the apmask have been set which will
1361 * result in queues being removed from non-default drivers
1362 */
1363 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1364 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1365 __verify_card_reservations);
1366 if (rc)
1367 return rc;
1368 }
1369
1370 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1371
1372 return 0;
1373 }
1374
apmask_store(struct bus_type * bus,const char * buf,size_t count)1375 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1376 size_t count)
1377 {
1378 int rc, changes = 0;
1379 DECLARE_BITMAP(newapm, AP_DEVICES);
1380
1381 if (mutex_lock_interruptible(&ap_perms_mutex))
1382 return -ERESTARTSYS;
1383
1384 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1385 if (rc)
1386 goto done;
1387
1388 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1389 if (changes)
1390 rc = apmask_commit(newapm);
1391
1392 done:
1393 mutex_unlock(&ap_perms_mutex);
1394 if (rc)
1395 return rc;
1396
1397 if (changes) {
1398 ap_bus_revise_bindings();
1399 ap_send_mask_changed_uevent(newapm, NULL);
1400 }
1401
1402 return count;
1403 }
1404
1405 static BUS_ATTR_RW(apmask);
1406
aqmask_show(struct bus_type * bus,char * buf)1407 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1408 {
1409 int rc;
1410
1411 if (mutex_lock_interruptible(&ap_perms_mutex))
1412 return -ERESTARTSYS;
1413 rc = scnprintf(buf, PAGE_SIZE,
1414 "0x%016lx%016lx%016lx%016lx\n",
1415 ap_perms.aqm[0], ap_perms.aqm[1],
1416 ap_perms.aqm[2], ap_perms.aqm[3]);
1417 mutex_unlock(&ap_perms_mutex);
1418
1419 return rc;
1420 }
1421
__verify_queue_reservations(struct device_driver * drv,void * data)1422 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1423 {
1424 int rc = 0;
1425 struct ap_driver *ap_drv = to_ap_drv(drv);
1426 unsigned long *newaqm = (unsigned long *)data;
1427
1428 /*
1429 * increase the driver's module refcounter to be sure it is not
1430 * going away when we invoke the callback function.
1431 */
1432 if (!try_module_get(drv->owner))
1433 return 0;
1434
1435 if (ap_drv->in_use) {
1436 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1437 if (rc)
1438 rc = -EBUSY;
1439 }
1440
1441 /* release the driver's module */
1442 module_put(drv->owner);
1443
1444 return rc;
1445 }
1446
aqmask_commit(unsigned long * newaqm)1447 static int aqmask_commit(unsigned long *newaqm)
1448 {
1449 int rc;
1450 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1451
1452 /*
1453 * Check if any bits in the aqmask have been set which will
1454 * result in queues being removed from non-default drivers
1455 */
1456 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1457 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1458 __verify_queue_reservations);
1459 if (rc)
1460 return rc;
1461 }
1462
1463 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1464
1465 return 0;
1466 }
1467
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1468 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1469 size_t count)
1470 {
1471 int rc, changes = 0;
1472 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1473
1474 if (mutex_lock_interruptible(&ap_perms_mutex))
1475 return -ERESTARTSYS;
1476
1477 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1478 if (rc)
1479 goto done;
1480
1481 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1482 if (changes)
1483 rc = aqmask_commit(newaqm);
1484
1485 done:
1486 mutex_unlock(&ap_perms_mutex);
1487 if (rc)
1488 return rc;
1489
1490 if (changes) {
1491 ap_bus_revise_bindings();
1492 ap_send_mask_changed_uevent(NULL, newaqm);
1493 }
1494
1495 return count;
1496 }
1497
1498 static BUS_ATTR_RW(aqmask);
1499
scans_show(struct bus_type * bus,char * buf)1500 static ssize_t scans_show(struct bus_type *bus, char *buf)
1501 {
1502 return scnprintf(buf, PAGE_SIZE, "%llu\n",
1503 atomic64_read(&ap_scan_bus_count));
1504 }
1505
scans_store(struct bus_type * bus,const char * buf,size_t count)1506 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1507 size_t count)
1508 {
1509 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1510
1511 ap_bus_force_rescan();
1512
1513 return count;
1514 }
1515
1516 static BUS_ATTR_RW(scans);
1517
bindings_show(struct bus_type * bus,char * buf)1518 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1519 {
1520 int rc;
1521 unsigned int apqns, n;
1522
1523 ap_calc_bound_apqns(&apqns, &n);
1524 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1525 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1526 else
1527 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1528
1529 return rc;
1530 }
1531
1532 static BUS_ATTR_RO(bindings);
1533
1534 static struct attribute *ap_bus_attrs[] = {
1535 &bus_attr_ap_domain.attr,
1536 &bus_attr_ap_control_domain_mask.attr,
1537 &bus_attr_ap_usage_domain_mask.attr,
1538 &bus_attr_ap_adapter_mask.attr,
1539 &bus_attr_config_time.attr,
1540 &bus_attr_poll_thread.attr,
1541 &bus_attr_ap_interrupts.attr,
1542 &bus_attr_poll_timeout.attr,
1543 &bus_attr_ap_max_domain_id.attr,
1544 &bus_attr_ap_max_adapter_id.attr,
1545 &bus_attr_apmask.attr,
1546 &bus_attr_aqmask.attr,
1547 &bus_attr_scans.attr,
1548 &bus_attr_bindings.attr,
1549 NULL,
1550 };
1551 ATTRIBUTE_GROUPS(ap_bus);
1552
1553 static struct bus_type ap_bus_type = {
1554 .name = "ap",
1555 .bus_groups = ap_bus_groups,
1556 .match = &ap_bus_match,
1557 .uevent = &ap_uevent,
1558 .probe = ap_device_probe,
1559 .remove = ap_device_remove,
1560 };
1561
1562 /**
1563 * ap_select_domain(): Select an AP domain if possible and we haven't
1564 * already done so before.
1565 */
ap_select_domain(void)1566 static void ap_select_domain(void)
1567 {
1568 struct ap_queue_status status;
1569 int card, dom;
1570
1571 /*
1572 * Choose the default domain. Either the one specified with
1573 * the "domain=" parameter or the first domain with at least
1574 * one valid APQN.
1575 */
1576 spin_lock_bh(&ap_domain_lock);
1577 if (ap_domain_index >= 0) {
1578 /* Domain has already been selected. */
1579 goto out;
1580 }
1581 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1582 if (!ap_test_config_usage_domain(dom) ||
1583 !test_bit_inv(dom, ap_perms.aqm))
1584 continue;
1585 for (card = 0; card <= ap_max_adapter_id; card++) {
1586 if (!ap_test_config_card_id(card) ||
1587 !test_bit_inv(card, ap_perms.apm))
1588 continue;
1589 status = ap_test_queue(AP_MKQID(card, dom),
1590 ap_apft_available(),
1591 NULL);
1592 if (status.response_code == AP_RESPONSE_NORMAL)
1593 break;
1594 }
1595 if (card <= ap_max_adapter_id)
1596 break;
1597 }
1598 if (dom <= ap_max_domain_id) {
1599 ap_domain_index = dom;
1600 AP_DBF_INFO("%s new default domain is %d\n",
1601 __func__, ap_domain_index);
1602 }
1603 out:
1604 spin_unlock_bh(&ap_domain_lock);
1605 }
1606
1607 /*
1608 * This function checks the type and returns either 0 for not
1609 * supported or the highest compatible type value (which may
1610 * include the input type value).
1611 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1612 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1613 {
1614 int comp_type = 0;
1615
1616 /* < CEX2A is not supported */
1617 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1618 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1619 __func__, AP_QID_CARD(qid),
1620 AP_QID_QUEUE(qid), rawtype);
1621 return 0;
1622 }
1623 /* up to CEX8 known and fully supported */
1624 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1625 return rawtype;
1626 /*
1627 * unknown new type > CEX8, check for compatibility
1628 * to the highest known and supported type which is
1629 * currently CEX8 with the help of the QACT function.
1630 */
1631 if (ap_qact_available()) {
1632 struct ap_queue_status status;
1633 union ap_qact_ap_info apinfo = {0};
1634
1635 apinfo.mode = (func >> 26) & 0x07;
1636 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1637 status = ap_qact(qid, 0, &apinfo);
1638 if (status.response_code == AP_RESPONSE_NORMAL &&
1639 apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1640 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1641 comp_type = apinfo.cat;
1642 }
1643 if (!comp_type)
1644 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1645 __func__, AP_QID_CARD(qid),
1646 AP_QID_QUEUE(qid), rawtype);
1647 else if (comp_type != rawtype)
1648 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1649 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1650 rawtype, comp_type);
1651 return comp_type;
1652 }
1653
1654 /*
1655 * Helper function to be used with bus_find_dev
1656 * matches for the card device with the given id
1657 */
__match_card_device_with_id(struct device * dev,const void * data)1658 static int __match_card_device_with_id(struct device *dev, const void *data)
1659 {
1660 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1661 }
1662
1663 /*
1664 * Helper function to be used with bus_find_dev
1665 * matches for the queue device with a given qid
1666 */
__match_queue_device_with_qid(struct device * dev,const void * data)1667 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1668 {
1669 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1670 }
1671
1672 /*
1673 * Helper function to be used with bus_find_dev
1674 * matches any queue device with given queue id
1675 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1676 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1677 {
1678 return is_queue_dev(dev) &&
1679 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1680 }
1681
1682 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1683 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1684 {
1685 struct ap_driver *ap_drv = to_ap_drv(drv);
1686
1687 if (try_module_get(drv->owner)) {
1688 if (ap_drv->on_config_changed)
1689 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1690 module_put(drv->owner);
1691 }
1692
1693 return 0;
1694 }
1695
1696 /* Notify all drivers about an qci config change */
notify_config_changed(void)1697 static inline void notify_config_changed(void)
1698 {
1699 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1700 __drv_notify_config_changed);
1701 }
1702
1703 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1704 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1705 {
1706 struct ap_driver *ap_drv = to_ap_drv(drv);
1707
1708 if (try_module_get(drv->owner)) {
1709 if (ap_drv->on_scan_complete)
1710 ap_drv->on_scan_complete(ap_qci_info,
1711 ap_qci_info_old);
1712 module_put(drv->owner);
1713 }
1714
1715 return 0;
1716 }
1717
1718 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1719 static inline void notify_scan_complete(void)
1720 {
1721 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1722 __drv_notify_scan_complete);
1723 }
1724
1725 /*
1726 * Helper function for ap_scan_bus().
1727 * Remove card device and associated queue devices.
1728 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1729 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1730 {
1731 bus_for_each_dev(&ap_bus_type, NULL,
1732 (void *)(long)ac->id,
1733 __ap_queue_devices_with_id_unregister);
1734 device_unregister(&ac->ap_dev.device);
1735 }
1736
1737 /*
1738 * Helper function for ap_scan_bus().
1739 * Does the scan bus job for all the domains within
1740 * a valid adapter given by an ap_card ptr.
1741 */
ap_scan_domains(struct ap_card * ac)1742 static inline void ap_scan_domains(struct ap_card *ac)
1743 {
1744 bool decfg, chkstop;
1745 ap_qid_t qid;
1746 unsigned int func;
1747 struct device *dev;
1748 struct ap_queue *aq;
1749 int rc, dom, depth, type, ml;
1750
1751 /*
1752 * Go through the configuration for the domains and compare them
1753 * to the existing queue devices. Also take care of the config
1754 * and error state for the queue devices.
1755 */
1756
1757 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1758 qid = AP_MKQID(ac->id, dom);
1759 dev = bus_find_device(&ap_bus_type, NULL,
1760 (void *)(long)qid,
1761 __match_queue_device_with_qid);
1762 aq = dev ? to_ap_queue(dev) : NULL;
1763 if (!ap_test_config_usage_domain(dom)) {
1764 if (dev) {
1765 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1766 __func__, ac->id, dom);
1767 device_unregister(dev);
1768 put_device(dev);
1769 }
1770 continue;
1771 }
1772 /* domain is valid, get info from this APQN */
1773 if (!ap_queue_info(qid, &type, &func, &depth,
1774 &ml, &decfg, &chkstop)) {
1775 if (aq) {
1776 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1777 __func__, ac->id, dom);
1778 device_unregister(dev);
1779 put_device(dev);
1780 }
1781 continue;
1782 }
1783 /* if no queue device exists, create a new one */
1784 if (!aq) {
1785 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1786 if (!aq) {
1787 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1788 __func__, ac->id, dom);
1789 continue;
1790 }
1791 aq->card = ac;
1792 aq->config = !decfg;
1793 aq->chkstop = chkstop;
1794 dev = &aq->ap_dev.device;
1795 dev->bus = &ap_bus_type;
1796 dev->parent = &ac->ap_dev.device;
1797 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1798 /* register queue device */
1799 rc = device_register(dev);
1800 if (rc) {
1801 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1802 __func__, ac->id, dom);
1803 goto put_dev_and_continue;
1804 }
1805 /* get it and thus adjust reference counter */
1806 get_device(dev);
1807 if (decfg)
1808 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1809 __func__, ac->id, dom);
1810 else if (chkstop)
1811 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1812 __func__, ac->id, dom);
1813 else
1814 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1815 __func__, ac->id, dom);
1816 goto put_dev_and_continue;
1817 }
1818 /* handle state changes on already existing queue device */
1819 spin_lock_bh(&aq->lock);
1820 /* checkstop state */
1821 if (chkstop && !aq->chkstop) {
1822 /* checkstop on */
1823 aq->chkstop = true;
1824 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1825 aq->dev_state = AP_DEV_STATE_ERROR;
1826 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1827 }
1828 spin_unlock_bh(&aq->lock);
1829 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1830 __func__, ac->id, dom);
1831 /* 'receive' pending messages with -EAGAIN */
1832 ap_flush_queue(aq);
1833 goto put_dev_and_continue;
1834 } else if (!chkstop && aq->chkstop) {
1835 /* checkstop off */
1836 aq->chkstop = false;
1837 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1838 aq->dev_state = AP_DEV_STATE_OPERATING;
1839 aq->sm_state = AP_SM_STATE_RESET_START;
1840 }
1841 spin_unlock_bh(&aq->lock);
1842 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1843 __func__, ac->id, dom);
1844 goto put_dev_and_continue;
1845 }
1846 /* config state change */
1847 if (decfg && aq->config) {
1848 /* config off this queue device */
1849 aq->config = false;
1850 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1851 aq->dev_state = AP_DEV_STATE_ERROR;
1852 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1853 }
1854 spin_unlock_bh(&aq->lock);
1855 AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1856 __func__, ac->id, dom);
1857 ap_send_config_uevent(&aq->ap_dev, aq->config);
1858 /* 'receive' pending messages with -EAGAIN */
1859 ap_flush_queue(aq);
1860 goto put_dev_and_continue;
1861 } else if (!decfg && !aq->config) {
1862 /* config on this queue device */
1863 aq->config = true;
1864 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1865 aq->dev_state = AP_DEV_STATE_OPERATING;
1866 aq->sm_state = AP_SM_STATE_RESET_START;
1867 }
1868 spin_unlock_bh(&aq->lock);
1869 AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1870 __func__, ac->id, dom);
1871 ap_send_config_uevent(&aq->ap_dev, aq->config);
1872 goto put_dev_and_continue;
1873 }
1874 /* handle other error states */
1875 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1876 spin_unlock_bh(&aq->lock);
1877 /* 'receive' pending messages with -EAGAIN */
1878 ap_flush_queue(aq);
1879 /* re-init (with reset) the queue device */
1880 ap_queue_init_state(aq);
1881 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1882 __func__, ac->id, dom);
1883 goto put_dev_and_continue;
1884 }
1885 spin_unlock_bh(&aq->lock);
1886 put_dev_and_continue:
1887 put_device(dev);
1888 }
1889 }
1890
1891 /*
1892 * Helper function for ap_scan_bus().
1893 * Does the scan bus job for the given adapter id.
1894 */
ap_scan_adapter(int ap)1895 static inline void ap_scan_adapter(int ap)
1896 {
1897 bool decfg, chkstop;
1898 ap_qid_t qid;
1899 unsigned int func;
1900 struct device *dev;
1901 struct ap_card *ac;
1902 int rc, dom, depth, type, comp_type, ml;
1903
1904 /* Is there currently a card device for this adapter ? */
1905 dev = bus_find_device(&ap_bus_type, NULL,
1906 (void *)(long)ap,
1907 __match_card_device_with_id);
1908 ac = dev ? to_ap_card(dev) : NULL;
1909
1910 /* Adapter not in configuration ? */
1911 if (!ap_test_config_card_id(ap)) {
1912 if (ac) {
1913 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1914 __func__, ap);
1915 ap_scan_rm_card_dev_and_queue_devs(ac);
1916 put_device(dev);
1917 }
1918 return;
1919 }
1920
1921 /*
1922 * Adapter ap is valid in the current configuration. So do some checks:
1923 * If no card device exists, build one. If a card device exists, check
1924 * for type and functions changed. For all this we need to find a valid
1925 * APQN first.
1926 */
1927
1928 for (dom = 0; dom <= ap_max_domain_id; dom++)
1929 if (ap_test_config_usage_domain(dom)) {
1930 qid = AP_MKQID(ap, dom);
1931 if (ap_queue_info(qid, &type, &func, &depth,
1932 &ml, &decfg, &chkstop))
1933 break;
1934 }
1935 if (dom > ap_max_domain_id) {
1936 /* Could not find a valid APQN for this adapter */
1937 if (ac) {
1938 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1939 __func__, ap);
1940 ap_scan_rm_card_dev_and_queue_devs(ac);
1941 put_device(dev);
1942 } else {
1943 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1944 __func__, ap);
1945 }
1946 return;
1947 }
1948 if (!type) {
1949 /* No apdater type info available, an unusable adapter */
1950 if (ac) {
1951 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1952 __func__, ap);
1953 ap_scan_rm_card_dev_and_queue_devs(ac);
1954 put_device(dev);
1955 } else {
1956 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1957 __func__, ap);
1958 }
1959 return;
1960 }
1961
1962 if (ac) {
1963 /* Check APQN against existing card device for changes */
1964 if (ac->raw_hwtype != type) {
1965 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1966 __func__, ap, type);
1967 ap_scan_rm_card_dev_and_queue_devs(ac);
1968 put_device(dev);
1969 ac = NULL;
1970 } else if (ac->functions != func) {
1971 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1972 __func__, ap, type);
1973 ap_scan_rm_card_dev_and_queue_devs(ac);
1974 put_device(dev);
1975 ac = NULL;
1976 } else {
1977 /* handle checkstop state change */
1978 if (chkstop && !ac->chkstop) {
1979 /* checkstop on */
1980 ac->chkstop = true;
1981 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
1982 __func__, ap);
1983 } else if (!chkstop && ac->chkstop) {
1984 /* checkstop off */
1985 ac->chkstop = false;
1986 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
1987 __func__, ap);
1988 }
1989 /* handle config state change */
1990 if (decfg && ac->config) {
1991 ac->config = false;
1992 AP_DBF_INFO("%s(%d) card dev config off\n",
1993 __func__, ap);
1994 ap_send_config_uevent(&ac->ap_dev, ac->config);
1995 } else if (!decfg && !ac->config) {
1996 ac->config = true;
1997 AP_DBF_INFO("%s(%d) card dev config on\n",
1998 __func__, ap);
1999 ap_send_config_uevent(&ac->ap_dev, ac->config);
2000 }
2001 }
2002 }
2003
2004 if (!ac) {
2005 /* Build a new card device */
2006 comp_type = ap_get_compatible_type(qid, type, func);
2007 if (!comp_type) {
2008 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2009 __func__, ap, type);
2010 return;
2011 }
2012 ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2013 if (!ac) {
2014 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2015 __func__, ap);
2016 return;
2017 }
2018 ac->config = !decfg;
2019 ac->chkstop = chkstop;
2020 dev = &ac->ap_dev.device;
2021 dev->bus = &ap_bus_type;
2022 dev->parent = ap_root_device;
2023 dev_set_name(dev, "card%02x", ap);
2024 /* maybe enlarge ap_max_msg_size to support this card */
2025 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2026 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2027 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2028 __func__, ap,
2029 atomic_read(&ap_max_msg_size));
2030 }
2031 /* Register the new card device with AP bus */
2032 rc = device_register(dev);
2033 if (rc) {
2034 AP_DBF_WARN("%s(%d) device_register() failed\n",
2035 __func__, ap);
2036 put_device(dev);
2037 return;
2038 }
2039 /* get it and thus adjust reference counter */
2040 get_device(dev);
2041 if (decfg)
2042 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2043 __func__, ap, type, func);
2044 else if (chkstop)
2045 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2046 __func__, ap, type, func);
2047 else
2048 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2049 __func__, ap, type, func);
2050 }
2051
2052 /* Verify the domains and the queue devices for this card */
2053 ap_scan_domains(ac);
2054
2055 /* release the card device */
2056 put_device(&ac->ap_dev.device);
2057 }
2058
2059 /**
2060 * ap_get_configuration - get the host AP configuration
2061 *
2062 * Stores the host AP configuration information returned from the previous call
2063 * to Query Configuration Information (QCI), then retrieves and stores the
2064 * current AP configuration returned from QCI.
2065 *
2066 * Return: true if the host AP configuration changed between calls to QCI;
2067 * otherwise, return false.
2068 */
ap_get_configuration(void)2069 static bool ap_get_configuration(void)
2070 {
2071 if (!ap_qci_info) /* QCI not supported */
2072 return false;
2073
2074 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2075 ap_fetch_qci_info(ap_qci_info);
2076
2077 return memcmp(ap_qci_info, ap_qci_info_old,
2078 sizeof(struct ap_config_info)) != 0;
2079 }
2080
2081 /**
2082 * ap_scan_bus(): Scan the AP bus for new devices
2083 * Runs periodically, workqueue timer (ap_config_time)
2084 * @unused: Unused pointer.
2085 */
ap_scan_bus(struct work_struct * unused)2086 static void ap_scan_bus(struct work_struct *unused)
2087 {
2088 int ap, config_changed = 0;
2089
2090 /* config change notify */
2091 config_changed = ap_get_configuration();
2092 if (config_changed)
2093 notify_config_changed();
2094 ap_select_domain();
2095
2096 AP_DBF_DBG("%s running\n", __func__);
2097
2098 /* loop over all possible adapters */
2099 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2100 ap_scan_adapter(ap);
2101
2102 /* scan complete notify */
2103 if (config_changed)
2104 notify_scan_complete();
2105
2106 /* check if there is at least one queue available with default domain */
2107 if (ap_domain_index >= 0) {
2108 struct device *dev =
2109 bus_find_device(&ap_bus_type, NULL,
2110 (void *)(long)ap_domain_index,
2111 __match_queue_device_with_queue_id);
2112 if (dev)
2113 put_device(dev);
2114 else
2115 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2116 __func__, ap_domain_index);
2117 }
2118
2119 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2120 AP_DBF_DBG("%s init scan complete\n", __func__);
2121 ap_send_init_scan_done_uevent();
2122 ap_check_bindings_complete();
2123 }
2124
2125 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2126 }
2127
ap_config_timeout(struct timer_list * unused)2128 static void ap_config_timeout(struct timer_list *unused)
2129 {
2130 queue_work(system_long_wq, &ap_scan_work);
2131 }
2132
ap_debug_init(void)2133 static int __init ap_debug_init(void)
2134 {
2135 ap_dbf_info = debug_register("ap", 2, 1,
2136 DBF_MAX_SPRINTF_ARGS * sizeof(long));
2137 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2138 debug_set_level(ap_dbf_info, DBF_ERR);
2139
2140 return 0;
2141 }
2142
ap_perms_init(void)2143 static void __init ap_perms_init(void)
2144 {
2145 /* all resources usable if no kernel parameter string given */
2146 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2147 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2148 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2149
2150 /* apm kernel parameter string */
2151 if (apm_str) {
2152 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2153 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2154 &ap_perms_mutex);
2155 }
2156
2157 /* aqm kernel parameter string */
2158 if (aqm_str) {
2159 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2160 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2161 &ap_perms_mutex);
2162 }
2163 }
2164
2165 /**
2166 * ap_module_init(): The module initialization code.
2167 *
2168 * Initializes the module.
2169 */
ap_module_init(void)2170 static int __init ap_module_init(void)
2171 {
2172 int rc;
2173
2174 rc = ap_debug_init();
2175 if (rc)
2176 return rc;
2177
2178 if (!ap_instructions_available()) {
2179 pr_warn("The hardware system does not support AP instructions\n");
2180 return -ENODEV;
2181 }
2182
2183 /* init ap_queue hashtable */
2184 hash_init(ap_queues);
2185
2186 /* set up the AP permissions (ioctls, ap and aq masks) */
2187 ap_perms_init();
2188
2189 /* Get AP configuration data if available */
2190 ap_init_qci_info();
2191
2192 /* check default domain setting */
2193 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2194 (ap_domain_index >= 0 &&
2195 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2196 pr_warn("%d is not a valid cryptographic domain\n",
2197 ap_domain_index);
2198 ap_domain_index = -1;
2199 }
2200
2201 /* enable interrupts if available */
2202 if (ap_interrupts_available() && ap_useirq) {
2203 rc = register_adapter_interrupt(&ap_airq);
2204 ap_irq_flag = (rc == 0);
2205 }
2206
2207 /* Create /sys/bus/ap. */
2208 rc = bus_register(&ap_bus_type);
2209 if (rc)
2210 goto out;
2211
2212 /* Create /sys/devices/ap. */
2213 ap_root_device = root_device_register("ap");
2214 rc = PTR_ERR_OR_ZERO(ap_root_device);
2215 if (rc)
2216 goto out_bus;
2217 ap_root_device->bus = &ap_bus_type;
2218
2219 /* Setup the AP bus rescan timer. */
2220 timer_setup(&ap_config_timer, ap_config_timeout, 0);
2221
2222 /*
2223 * Setup the high resultion poll timer.
2224 * If we are running under z/VM adjust polling to z/VM polling rate.
2225 */
2226 if (MACHINE_IS_VM)
2227 poll_timeout = 1500000;
2228 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2229 ap_poll_timer.function = ap_poll_timeout;
2230
2231 /* Start the low priority AP bus poll thread. */
2232 if (ap_thread_flag) {
2233 rc = ap_poll_thread_start();
2234 if (rc)
2235 goto out_work;
2236 }
2237
2238 queue_work(system_long_wq, &ap_scan_work);
2239
2240 return 0;
2241
2242 out_work:
2243 hrtimer_cancel(&ap_poll_timer);
2244 root_device_unregister(ap_root_device);
2245 out_bus:
2246 bus_unregister(&ap_bus_type);
2247 out:
2248 if (ap_irq_flag)
2249 unregister_adapter_interrupt(&ap_airq);
2250 kfree(ap_qci_info);
2251 return rc;
2252 }
2253 device_initcall(ap_module_init);
2254