1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/isolation.h>
25 #include <linux/sched/task_stack.h>
26
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/ptrace.h>
31 #include <linux/screen_info.h>
32 #include <linux/kdebug.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <clocksource/hyperv_timer.h>
39 #include "hyperv_vmbus.h"
40
41 struct vmbus_dynid {
42 struct list_head node;
43 struct hv_vmbus_device_id id;
44 };
45
46 static struct acpi_device *hv_acpi_dev;
47
48 static struct completion probe_event;
49
50 static int hyperv_cpuhp_online;
51
52 static void *hv_panic_page;
53
54 static long __percpu *vmbus_evt;
55
56 /* Values parsed from ACPI DSDT */
57 int vmbus_irq;
58 int vmbus_interrupt;
59
60 /*
61 * Boolean to control whether to report panic messages over Hyper-V.
62 *
63 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
64 */
65 static int sysctl_record_panic_msg = 1;
66
hyperv_report_reg(void)67 static int hyperv_report_reg(void)
68 {
69 return !sysctl_record_panic_msg || !hv_panic_page;
70 }
71
hyperv_panic_event(struct notifier_block * nb,unsigned long val,void * args)72 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74 {
75 struct pt_regs *regs;
76
77 vmbus_initiate_unload(true);
78
79 /*
80 * Hyper-V should be notified only once about a panic. If we will be
81 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
82 * here.
83 */
84 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
85 && hyperv_report_reg()) {
86 regs = current_pt_regs();
87 hyperv_report_panic(regs, val, false);
88 }
89 return NOTIFY_DONE;
90 }
91
hyperv_die_event(struct notifier_block * nb,unsigned long val,void * args)92 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
93 void *args)
94 {
95 struct die_args *die = args;
96 struct pt_regs *regs = die->regs;
97
98 /* Don't notify Hyper-V if the die event is other than oops */
99 if (val != DIE_OOPS)
100 return NOTIFY_DONE;
101
102 /*
103 * Hyper-V should be notified only once about a panic. If we will be
104 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
105 * here.
106 */
107 if (hyperv_report_reg())
108 hyperv_report_panic(regs, val, true);
109 return NOTIFY_DONE;
110 }
111
112 static struct notifier_block hyperv_die_block = {
113 .notifier_call = hyperv_die_event,
114 };
115 static struct notifier_block hyperv_panic_block = {
116 .notifier_call = hyperv_panic_event,
117 };
118
119 static const char *fb_mmio_name = "fb_range";
120 static struct resource *fb_mmio;
121 static struct resource *hyperv_mmio;
122 static DEFINE_MUTEX(hyperv_mmio_lock);
123
vmbus_exists(void)124 static int vmbus_exists(void)
125 {
126 if (hv_acpi_dev == NULL)
127 return -ENODEV;
128
129 return 0;
130 }
131
channel_monitor_group(const struct vmbus_channel * channel)132 static u8 channel_monitor_group(const struct vmbus_channel *channel)
133 {
134 return (u8)channel->offermsg.monitorid / 32;
135 }
136
channel_monitor_offset(const struct vmbus_channel * channel)137 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
138 {
139 return (u8)channel->offermsg.monitorid % 32;
140 }
141
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)142 static u32 channel_pending(const struct vmbus_channel *channel,
143 const struct hv_monitor_page *monitor_page)
144 {
145 u8 monitor_group = channel_monitor_group(channel);
146
147 return monitor_page->trigger_group[monitor_group].pending;
148 }
149
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)150 static u32 channel_latency(const struct vmbus_channel *channel,
151 const struct hv_monitor_page *monitor_page)
152 {
153 u8 monitor_group = channel_monitor_group(channel);
154 u8 monitor_offset = channel_monitor_offset(channel);
155
156 return monitor_page->latency[monitor_group][monitor_offset];
157 }
158
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)159 static u32 channel_conn_id(struct vmbus_channel *channel,
160 struct hv_monitor_page *monitor_page)
161 {
162 u8 monitor_group = channel_monitor_group(channel);
163 u8 monitor_offset = channel_monitor_offset(channel);
164
165 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
166 }
167
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)168 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
169 char *buf)
170 {
171 struct hv_device *hv_dev = device_to_hv_device(dev);
172
173 if (!hv_dev->channel)
174 return -ENODEV;
175 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
176 }
177 static DEVICE_ATTR_RO(id);
178
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)179 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
180 char *buf)
181 {
182 struct hv_device *hv_dev = device_to_hv_device(dev);
183
184 if (!hv_dev->channel)
185 return -ENODEV;
186 return sprintf(buf, "%d\n", hv_dev->channel->state);
187 }
188 static DEVICE_ATTR_RO(state);
189
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)190 static ssize_t monitor_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
192 {
193 struct hv_device *hv_dev = device_to_hv_device(dev);
194
195 if (!hv_dev->channel)
196 return -ENODEV;
197 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
198 }
199 static DEVICE_ATTR_RO(monitor_id);
200
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)201 static ssize_t class_id_show(struct device *dev,
202 struct device_attribute *dev_attr, char *buf)
203 {
204 struct hv_device *hv_dev = device_to_hv_device(dev);
205
206 if (!hv_dev->channel)
207 return -ENODEV;
208 return sprintf(buf, "{%pUl}\n",
209 &hv_dev->channel->offermsg.offer.if_type);
210 }
211 static DEVICE_ATTR_RO(class_id);
212
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)213 static ssize_t device_id_show(struct device *dev,
214 struct device_attribute *dev_attr, char *buf)
215 {
216 struct hv_device *hv_dev = device_to_hv_device(dev);
217
218 if (!hv_dev->channel)
219 return -ENODEV;
220 return sprintf(buf, "{%pUl}\n",
221 &hv_dev->channel->offermsg.offer.if_instance);
222 }
223 static DEVICE_ATTR_RO(device_id);
224
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)225 static ssize_t modalias_show(struct device *dev,
226 struct device_attribute *dev_attr, char *buf)
227 {
228 struct hv_device *hv_dev = device_to_hv_device(dev);
229
230 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
231 }
232 static DEVICE_ATTR_RO(modalias);
233
234 #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t numa_node_show(struct device *dev,
236 struct device_attribute *attr, char *buf)
237 {
238 struct hv_device *hv_dev = device_to_hv_device(dev);
239
240 if (!hv_dev->channel)
241 return -ENODEV;
242
243 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
244 }
245 static DEVICE_ATTR_RO(numa_node);
246 #endif
247
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)248 static ssize_t server_monitor_pending_show(struct device *dev,
249 struct device_attribute *dev_attr,
250 char *buf)
251 {
252 struct hv_device *hv_dev = device_to_hv_device(dev);
253
254 if (!hv_dev->channel)
255 return -ENODEV;
256 return sprintf(buf, "%d\n",
257 channel_pending(hv_dev->channel,
258 vmbus_connection.monitor_pages[0]));
259 }
260 static DEVICE_ATTR_RO(server_monitor_pending);
261
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)262 static ssize_t client_monitor_pending_show(struct device *dev,
263 struct device_attribute *dev_attr,
264 char *buf)
265 {
266 struct hv_device *hv_dev = device_to_hv_device(dev);
267
268 if (!hv_dev->channel)
269 return -ENODEV;
270 return sprintf(buf, "%d\n",
271 channel_pending(hv_dev->channel,
272 vmbus_connection.monitor_pages[1]));
273 }
274 static DEVICE_ATTR_RO(client_monitor_pending);
275
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)276 static ssize_t server_monitor_latency_show(struct device *dev,
277 struct device_attribute *dev_attr,
278 char *buf)
279 {
280 struct hv_device *hv_dev = device_to_hv_device(dev);
281
282 if (!hv_dev->channel)
283 return -ENODEV;
284 return sprintf(buf, "%d\n",
285 channel_latency(hv_dev->channel,
286 vmbus_connection.monitor_pages[0]));
287 }
288 static DEVICE_ATTR_RO(server_monitor_latency);
289
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)290 static ssize_t client_monitor_latency_show(struct device *dev,
291 struct device_attribute *dev_attr,
292 char *buf)
293 {
294 struct hv_device *hv_dev = device_to_hv_device(dev);
295
296 if (!hv_dev->channel)
297 return -ENODEV;
298 return sprintf(buf, "%d\n",
299 channel_latency(hv_dev->channel,
300 vmbus_connection.monitor_pages[1]));
301 }
302 static DEVICE_ATTR_RO(client_monitor_latency);
303
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)304 static ssize_t server_monitor_conn_id_show(struct device *dev,
305 struct device_attribute *dev_attr,
306 char *buf)
307 {
308 struct hv_device *hv_dev = device_to_hv_device(dev);
309
310 if (!hv_dev->channel)
311 return -ENODEV;
312 return sprintf(buf, "%d\n",
313 channel_conn_id(hv_dev->channel,
314 vmbus_connection.monitor_pages[0]));
315 }
316 static DEVICE_ATTR_RO(server_monitor_conn_id);
317
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)318 static ssize_t client_monitor_conn_id_show(struct device *dev,
319 struct device_attribute *dev_attr,
320 char *buf)
321 {
322 struct hv_device *hv_dev = device_to_hv_device(dev);
323
324 if (!hv_dev->channel)
325 return -ENODEV;
326 return sprintf(buf, "%d\n",
327 channel_conn_id(hv_dev->channel,
328 vmbus_connection.monitor_pages[1]));
329 }
330 static DEVICE_ATTR_RO(client_monitor_conn_id);
331
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)332 static ssize_t out_intr_mask_show(struct device *dev,
333 struct device_attribute *dev_attr, char *buf)
334 {
335 struct hv_device *hv_dev = device_to_hv_device(dev);
336 struct hv_ring_buffer_debug_info outbound;
337 int ret;
338
339 if (!hv_dev->channel)
340 return -ENODEV;
341
342 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
343 &outbound);
344 if (ret < 0)
345 return ret;
346
347 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
348 }
349 static DEVICE_ATTR_RO(out_intr_mask);
350
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)351 static ssize_t out_read_index_show(struct device *dev,
352 struct device_attribute *dev_attr, char *buf)
353 {
354 struct hv_device *hv_dev = device_to_hv_device(dev);
355 struct hv_ring_buffer_debug_info outbound;
356 int ret;
357
358 if (!hv_dev->channel)
359 return -ENODEV;
360
361 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
362 &outbound);
363 if (ret < 0)
364 return ret;
365 return sprintf(buf, "%d\n", outbound.current_read_index);
366 }
367 static DEVICE_ATTR_RO(out_read_index);
368
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)369 static ssize_t out_write_index_show(struct device *dev,
370 struct device_attribute *dev_attr,
371 char *buf)
372 {
373 struct hv_device *hv_dev = device_to_hv_device(dev);
374 struct hv_ring_buffer_debug_info outbound;
375 int ret;
376
377 if (!hv_dev->channel)
378 return -ENODEV;
379
380 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
381 &outbound);
382 if (ret < 0)
383 return ret;
384 return sprintf(buf, "%d\n", outbound.current_write_index);
385 }
386 static DEVICE_ATTR_RO(out_write_index);
387
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)388 static ssize_t out_read_bytes_avail_show(struct device *dev,
389 struct device_attribute *dev_attr,
390 char *buf)
391 {
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info outbound;
394 int ret;
395
396 if (!hv_dev->channel)
397 return -ENODEV;
398
399 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
400 &outbound);
401 if (ret < 0)
402 return ret;
403 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
404 }
405 static DEVICE_ATTR_RO(out_read_bytes_avail);
406
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)407 static ssize_t out_write_bytes_avail_show(struct device *dev,
408 struct device_attribute *dev_attr,
409 char *buf)
410 {
411 struct hv_device *hv_dev = device_to_hv_device(dev);
412 struct hv_ring_buffer_debug_info outbound;
413 int ret;
414
415 if (!hv_dev->channel)
416 return -ENODEV;
417
418 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
419 &outbound);
420 if (ret < 0)
421 return ret;
422 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
423 }
424 static DEVICE_ATTR_RO(out_write_bytes_avail);
425
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)426 static ssize_t in_intr_mask_show(struct device *dev,
427 struct device_attribute *dev_attr, char *buf)
428 {
429 struct hv_device *hv_dev = device_to_hv_device(dev);
430 struct hv_ring_buffer_debug_info inbound;
431 int ret;
432
433 if (!hv_dev->channel)
434 return -ENODEV;
435
436 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
437 if (ret < 0)
438 return ret;
439
440 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
441 }
442 static DEVICE_ATTR_RO(in_intr_mask);
443
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)444 static ssize_t in_read_index_show(struct device *dev,
445 struct device_attribute *dev_attr, char *buf)
446 {
447 struct hv_device *hv_dev = device_to_hv_device(dev);
448 struct hv_ring_buffer_debug_info inbound;
449 int ret;
450
451 if (!hv_dev->channel)
452 return -ENODEV;
453
454 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
455 if (ret < 0)
456 return ret;
457
458 return sprintf(buf, "%d\n", inbound.current_read_index);
459 }
460 static DEVICE_ATTR_RO(in_read_index);
461
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)462 static ssize_t in_write_index_show(struct device *dev,
463 struct device_attribute *dev_attr, char *buf)
464 {
465 struct hv_device *hv_dev = device_to_hv_device(dev);
466 struct hv_ring_buffer_debug_info inbound;
467 int ret;
468
469 if (!hv_dev->channel)
470 return -ENODEV;
471
472 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
473 if (ret < 0)
474 return ret;
475
476 return sprintf(buf, "%d\n", inbound.current_write_index);
477 }
478 static DEVICE_ATTR_RO(in_write_index);
479
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)480 static ssize_t in_read_bytes_avail_show(struct device *dev,
481 struct device_attribute *dev_attr,
482 char *buf)
483 {
484 struct hv_device *hv_dev = device_to_hv_device(dev);
485 struct hv_ring_buffer_debug_info inbound;
486 int ret;
487
488 if (!hv_dev->channel)
489 return -ENODEV;
490
491 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
492 if (ret < 0)
493 return ret;
494
495 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
496 }
497 static DEVICE_ATTR_RO(in_read_bytes_avail);
498
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)499 static ssize_t in_write_bytes_avail_show(struct device *dev,
500 struct device_attribute *dev_attr,
501 char *buf)
502 {
503 struct hv_device *hv_dev = device_to_hv_device(dev);
504 struct hv_ring_buffer_debug_info inbound;
505 int ret;
506
507 if (!hv_dev->channel)
508 return -ENODEV;
509
510 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
511 if (ret < 0)
512 return ret;
513
514 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
515 }
516 static DEVICE_ATTR_RO(in_write_bytes_avail);
517
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)518 static ssize_t channel_vp_mapping_show(struct device *dev,
519 struct device_attribute *dev_attr,
520 char *buf)
521 {
522 struct hv_device *hv_dev = device_to_hv_device(dev);
523 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
524 int buf_size = PAGE_SIZE, n_written, tot_written;
525 struct list_head *cur;
526
527 if (!channel)
528 return -ENODEV;
529
530 mutex_lock(&vmbus_connection.channel_mutex);
531
532 tot_written = snprintf(buf, buf_size, "%u:%u\n",
533 channel->offermsg.child_relid, channel->target_cpu);
534
535 list_for_each(cur, &channel->sc_list) {
536 if (tot_written >= buf_size - 1)
537 break;
538
539 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
540 n_written = scnprintf(buf + tot_written,
541 buf_size - tot_written,
542 "%u:%u\n",
543 cur_sc->offermsg.child_relid,
544 cur_sc->target_cpu);
545 tot_written += n_written;
546 }
547
548 mutex_unlock(&vmbus_connection.channel_mutex);
549
550 return tot_written;
551 }
552 static DEVICE_ATTR_RO(channel_vp_mapping);
553
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)554 static ssize_t vendor_show(struct device *dev,
555 struct device_attribute *dev_attr,
556 char *buf)
557 {
558 struct hv_device *hv_dev = device_to_hv_device(dev);
559
560 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
561 }
562 static DEVICE_ATTR_RO(vendor);
563
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)564 static ssize_t device_show(struct device *dev,
565 struct device_attribute *dev_attr,
566 char *buf)
567 {
568 struct hv_device *hv_dev = device_to_hv_device(dev);
569
570 return sprintf(buf, "0x%x\n", hv_dev->device_id);
571 }
572 static DEVICE_ATTR_RO(device);
573
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)574 static ssize_t driver_override_store(struct device *dev,
575 struct device_attribute *attr,
576 const char *buf, size_t count)
577 {
578 struct hv_device *hv_dev = device_to_hv_device(dev);
579 int ret;
580
581 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
582 if (ret)
583 return ret;
584
585 return count;
586 }
587
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)588 static ssize_t driver_override_show(struct device *dev,
589 struct device_attribute *attr, char *buf)
590 {
591 struct hv_device *hv_dev = device_to_hv_device(dev);
592 ssize_t len;
593
594 device_lock(dev);
595 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
596 device_unlock(dev);
597
598 return len;
599 }
600 static DEVICE_ATTR_RW(driver_override);
601
602 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
603 static struct attribute *vmbus_dev_attrs[] = {
604 &dev_attr_id.attr,
605 &dev_attr_state.attr,
606 &dev_attr_monitor_id.attr,
607 &dev_attr_class_id.attr,
608 &dev_attr_device_id.attr,
609 &dev_attr_modalias.attr,
610 #ifdef CONFIG_NUMA
611 &dev_attr_numa_node.attr,
612 #endif
613 &dev_attr_server_monitor_pending.attr,
614 &dev_attr_client_monitor_pending.attr,
615 &dev_attr_server_monitor_latency.attr,
616 &dev_attr_client_monitor_latency.attr,
617 &dev_attr_server_monitor_conn_id.attr,
618 &dev_attr_client_monitor_conn_id.attr,
619 &dev_attr_out_intr_mask.attr,
620 &dev_attr_out_read_index.attr,
621 &dev_attr_out_write_index.attr,
622 &dev_attr_out_read_bytes_avail.attr,
623 &dev_attr_out_write_bytes_avail.attr,
624 &dev_attr_in_intr_mask.attr,
625 &dev_attr_in_read_index.attr,
626 &dev_attr_in_write_index.attr,
627 &dev_attr_in_read_bytes_avail.attr,
628 &dev_attr_in_write_bytes_avail.attr,
629 &dev_attr_channel_vp_mapping.attr,
630 &dev_attr_vendor.attr,
631 &dev_attr_device.attr,
632 &dev_attr_driver_override.attr,
633 NULL,
634 };
635
636 /*
637 * Device-level attribute_group callback function. Returns the permission for
638 * each attribute, and returns 0 if an attribute is not visible.
639 */
vmbus_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)640 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
641 struct attribute *attr, int idx)
642 {
643 struct device *dev = kobj_to_dev(kobj);
644 const struct hv_device *hv_dev = device_to_hv_device(dev);
645
646 /* Hide the monitor attributes if the monitor mechanism is not used. */
647 if (!hv_dev->channel->offermsg.monitor_allocated &&
648 (attr == &dev_attr_monitor_id.attr ||
649 attr == &dev_attr_server_monitor_pending.attr ||
650 attr == &dev_attr_client_monitor_pending.attr ||
651 attr == &dev_attr_server_monitor_latency.attr ||
652 attr == &dev_attr_client_monitor_latency.attr ||
653 attr == &dev_attr_server_monitor_conn_id.attr ||
654 attr == &dev_attr_client_monitor_conn_id.attr))
655 return 0;
656
657 return attr->mode;
658 }
659
660 static const struct attribute_group vmbus_dev_group = {
661 .attrs = vmbus_dev_attrs,
662 .is_visible = vmbus_dev_attr_is_visible
663 };
664 __ATTRIBUTE_GROUPS(vmbus_dev);
665
666 /* Set up the attribute for /sys/bus/vmbus/hibernation */
hibernation_show(struct bus_type * bus,char * buf)667 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
668 {
669 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
670 }
671
672 static BUS_ATTR_RO(hibernation);
673
674 static struct attribute *vmbus_bus_attrs[] = {
675 &bus_attr_hibernation.attr,
676 NULL,
677 };
678 static const struct attribute_group vmbus_bus_group = {
679 .attrs = vmbus_bus_attrs,
680 };
681 __ATTRIBUTE_GROUPS(vmbus_bus);
682
683 /*
684 * vmbus_uevent - add uevent for our device
685 *
686 * This routine is invoked when a device is added or removed on the vmbus to
687 * generate a uevent to udev in the userspace. The udev will then look at its
688 * rule and the uevent generated here to load the appropriate driver
689 *
690 * The alias string will be of the form vmbus:guid where guid is the string
691 * representation of the device guid (each byte of the guid will be
692 * represented with two hex characters.
693 */
vmbus_uevent(struct device * device,struct kobj_uevent_env * env)694 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
695 {
696 struct hv_device *dev = device_to_hv_device(device);
697 const char *format = "MODALIAS=vmbus:%*phN";
698
699 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
700 }
701
702 static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id * id,const guid_t * guid)703 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
704 {
705 if (id == NULL)
706 return NULL; /* empty device table */
707
708 for (; !guid_is_null(&id->guid); id++)
709 if (guid_equal(&id->guid, guid))
710 return id;
711
712 return NULL;
713 }
714
715 static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver * drv,const guid_t * guid)716 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
717 {
718 const struct hv_vmbus_device_id *id = NULL;
719 struct vmbus_dynid *dynid;
720
721 spin_lock(&drv->dynids.lock);
722 list_for_each_entry(dynid, &drv->dynids.list, node) {
723 if (guid_equal(&dynid->id.guid, guid)) {
724 id = &dynid->id;
725 break;
726 }
727 }
728 spin_unlock(&drv->dynids.lock);
729
730 return id;
731 }
732
733 static const struct hv_vmbus_device_id vmbus_device_null;
734
735 /*
736 * Return a matching hv_vmbus_device_id pointer.
737 * If there is no match, return NULL.
738 */
hv_vmbus_get_id(struct hv_driver * drv,struct hv_device * dev)739 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
740 struct hv_device *dev)
741 {
742 const guid_t *guid = &dev->dev_type;
743 const struct hv_vmbus_device_id *id;
744
745 /* When driver_override is set, only bind to the matching driver */
746 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
747 return NULL;
748
749 /* Look at the dynamic ids first, before the static ones */
750 id = hv_vmbus_dynid_match(drv, guid);
751 if (!id)
752 id = hv_vmbus_dev_match(drv->id_table, guid);
753
754 /* driver_override will always match, send a dummy id */
755 if (!id && dev->driver_override)
756 id = &vmbus_device_null;
757
758 return id;
759 }
760
761 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
vmbus_add_dynid(struct hv_driver * drv,guid_t * guid)762 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
763 {
764 struct vmbus_dynid *dynid;
765
766 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
767 if (!dynid)
768 return -ENOMEM;
769
770 dynid->id.guid = *guid;
771
772 spin_lock(&drv->dynids.lock);
773 list_add_tail(&dynid->node, &drv->dynids.list);
774 spin_unlock(&drv->dynids.lock);
775
776 return driver_attach(&drv->driver);
777 }
778
vmbus_free_dynids(struct hv_driver * drv)779 static void vmbus_free_dynids(struct hv_driver *drv)
780 {
781 struct vmbus_dynid *dynid, *n;
782
783 spin_lock(&drv->dynids.lock);
784 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
785 list_del(&dynid->node);
786 kfree(dynid);
787 }
788 spin_unlock(&drv->dynids.lock);
789 }
790
791 /*
792 * store_new_id - sysfs frontend to vmbus_add_dynid()
793 *
794 * Allow GUIDs to be added to an existing driver via sysfs.
795 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)796 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
797 size_t count)
798 {
799 struct hv_driver *drv = drv_to_hv_drv(driver);
800 guid_t guid;
801 ssize_t retval;
802
803 retval = guid_parse(buf, &guid);
804 if (retval)
805 return retval;
806
807 if (hv_vmbus_dynid_match(drv, &guid))
808 return -EEXIST;
809
810 retval = vmbus_add_dynid(drv, &guid);
811 if (retval)
812 return retval;
813 return count;
814 }
815 static DRIVER_ATTR_WO(new_id);
816
817 /*
818 * store_remove_id - remove a PCI device ID from this driver
819 *
820 * Removes a dynamic pci device ID to this driver.
821 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)822 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
823 size_t count)
824 {
825 struct hv_driver *drv = drv_to_hv_drv(driver);
826 struct vmbus_dynid *dynid, *n;
827 guid_t guid;
828 ssize_t retval;
829
830 retval = guid_parse(buf, &guid);
831 if (retval)
832 return retval;
833
834 retval = -ENODEV;
835 spin_lock(&drv->dynids.lock);
836 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
837 struct hv_vmbus_device_id *id = &dynid->id;
838
839 if (guid_equal(&id->guid, &guid)) {
840 list_del(&dynid->node);
841 kfree(dynid);
842 retval = count;
843 break;
844 }
845 }
846 spin_unlock(&drv->dynids.lock);
847
848 return retval;
849 }
850 static DRIVER_ATTR_WO(remove_id);
851
852 static struct attribute *vmbus_drv_attrs[] = {
853 &driver_attr_new_id.attr,
854 &driver_attr_remove_id.attr,
855 NULL,
856 };
857 ATTRIBUTE_GROUPS(vmbus_drv);
858
859
860 /*
861 * vmbus_match - Attempt to match the specified device to the specified driver
862 */
vmbus_match(struct device * device,struct device_driver * driver)863 static int vmbus_match(struct device *device, struct device_driver *driver)
864 {
865 struct hv_driver *drv = drv_to_hv_drv(driver);
866 struct hv_device *hv_dev = device_to_hv_device(device);
867
868 /* The hv_sock driver handles all hv_sock offers. */
869 if (is_hvsock_channel(hv_dev->channel))
870 return drv->hvsock;
871
872 if (hv_vmbus_get_id(drv, hv_dev))
873 return 1;
874
875 return 0;
876 }
877
878 /*
879 * vmbus_probe - Add the new vmbus's child device
880 */
vmbus_probe(struct device * child_device)881 static int vmbus_probe(struct device *child_device)
882 {
883 int ret = 0;
884 struct hv_driver *drv =
885 drv_to_hv_drv(child_device->driver);
886 struct hv_device *dev = device_to_hv_device(child_device);
887 const struct hv_vmbus_device_id *dev_id;
888
889 dev_id = hv_vmbus_get_id(drv, dev);
890 if (drv->probe) {
891 ret = drv->probe(dev, dev_id);
892 if (ret != 0)
893 pr_err("probe failed for device %s (%d)\n",
894 dev_name(child_device), ret);
895
896 } else {
897 pr_err("probe not set for driver %s\n",
898 dev_name(child_device));
899 ret = -ENODEV;
900 }
901 return ret;
902 }
903
904 /*
905 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
906 */
vmbus_dma_configure(struct device * child_device)907 static int vmbus_dma_configure(struct device *child_device)
908 {
909 /*
910 * On ARM64, propagate the DMA coherence setting from the top level
911 * VMbus ACPI device to the child VMbus device being added here.
912 * On x86/x64 coherence is assumed and these calls have no effect.
913 */
914 hv_setup_dma_ops(child_device,
915 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
916 return 0;
917 }
918
919 /*
920 * vmbus_remove - Remove a vmbus device
921 */
vmbus_remove(struct device * child_device)922 static void vmbus_remove(struct device *child_device)
923 {
924 struct hv_driver *drv;
925 struct hv_device *dev = device_to_hv_device(child_device);
926
927 if (child_device->driver) {
928 drv = drv_to_hv_drv(child_device->driver);
929 if (drv->remove)
930 drv->remove(dev);
931 }
932 }
933
934 /*
935 * vmbus_shutdown - Shutdown a vmbus device
936 */
vmbus_shutdown(struct device * child_device)937 static void vmbus_shutdown(struct device *child_device)
938 {
939 struct hv_driver *drv;
940 struct hv_device *dev = device_to_hv_device(child_device);
941
942
943 /* The device may not be attached yet */
944 if (!child_device->driver)
945 return;
946
947 drv = drv_to_hv_drv(child_device->driver);
948
949 if (drv->shutdown)
950 drv->shutdown(dev);
951 }
952
953 #ifdef CONFIG_PM_SLEEP
954 /*
955 * vmbus_suspend - Suspend a vmbus device
956 */
vmbus_suspend(struct device * child_device)957 static int vmbus_suspend(struct device *child_device)
958 {
959 struct hv_driver *drv;
960 struct hv_device *dev = device_to_hv_device(child_device);
961
962 /* The device may not be attached yet */
963 if (!child_device->driver)
964 return 0;
965
966 drv = drv_to_hv_drv(child_device->driver);
967 if (!drv->suspend)
968 return -EOPNOTSUPP;
969
970 return drv->suspend(dev);
971 }
972
973 /*
974 * vmbus_resume - Resume a vmbus device
975 */
vmbus_resume(struct device * child_device)976 static int vmbus_resume(struct device *child_device)
977 {
978 struct hv_driver *drv;
979 struct hv_device *dev = device_to_hv_device(child_device);
980
981 /* The device may not be attached yet */
982 if (!child_device->driver)
983 return 0;
984
985 drv = drv_to_hv_drv(child_device->driver);
986 if (!drv->resume)
987 return -EOPNOTSUPP;
988
989 return drv->resume(dev);
990 }
991 #else
992 #define vmbus_suspend NULL
993 #define vmbus_resume NULL
994 #endif /* CONFIG_PM_SLEEP */
995
996 /*
997 * vmbus_device_release - Final callback release of the vmbus child device
998 */
vmbus_device_release(struct device * device)999 static void vmbus_device_release(struct device *device)
1000 {
1001 struct hv_device *hv_dev = device_to_hv_device(device);
1002 struct vmbus_channel *channel = hv_dev->channel;
1003
1004 hv_debug_rm_dev_dir(hv_dev);
1005
1006 mutex_lock(&vmbus_connection.channel_mutex);
1007 hv_process_channel_removal(channel);
1008 mutex_unlock(&vmbus_connection.channel_mutex);
1009 kfree(hv_dev);
1010 }
1011
1012 /*
1013 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1014 *
1015 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1016 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1017 * is no way to wake up a Generation-2 VM.
1018 *
1019 * The other 4 ops are for hibernation.
1020 */
1021
1022 static const struct dev_pm_ops vmbus_pm = {
1023 .suspend_noirq = NULL,
1024 .resume_noirq = NULL,
1025 .freeze_noirq = vmbus_suspend,
1026 .thaw_noirq = vmbus_resume,
1027 .poweroff_noirq = vmbus_suspend,
1028 .restore_noirq = vmbus_resume,
1029 };
1030
1031 /* The one and only one */
1032 static struct bus_type hv_bus = {
1033 .name = "vmbus",
1034 .match = vmbus_match,
1035 .shutdown = vmbus_shutdown,
1036 .remove = vmbus_remove,
1037 .probe = vmbus_probe,
1038 .uevent = vmbus_uevent,
1039 .dma_configure = vmbus_dma_configure,
1040 .dev_groups = vmbus_dev_groups,
1041 .drv_groups = vmbus_drv_groups,
1042 .bus_groups = vmbus_bus_groups,
1043 .pm = &vmbus_pm,
1044 };
1045
1046 struct onmessage_work_context {
1047 struct work_struct work;
1048 struct {
1049 struct hv_message_header header;
1050 u8 payload[];
1051 } msg;
1052 };
1053
vmbus_onmessage_work(struct work_struct * work)1054 static void vmbus_onmessage_work(struct work_struct *work)
1055 {
1056 struct onmessage_work_context *ctx;
1057
1058 /* Do not process messages if we're in DISCONNECTED state */
1059 if (vmbus_connection.conn_state == DISCONNECTED)
1060 return;
1061
1062 ctx = container_of(work, struct onmessage_work_context,
1063 work);
1064 vmbus_onmessage((struct vmbus_channel_message_header *)
1065 &ctx->msg.payload);
1066 kfree(ctx);
1067 }
1068
vmbus_on_msg_dpc(unsigned long data)1069 void vmbus_on_msg_dpc(unsigned long data)
1070 {
1071 struct hv_per_cpu_context *hv_cpu = (void *)data;
1072 void *page_addr = hv_cpu->synic_message_page;
1073 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1074 VMBUS_MESSAGE_SINT;
1075 struct vmbus_channel_message_header *hdr;
1076 enum vmbus_channel_message_type msgtype;
1077 const struct vmbus_channel_message_table_entry *entry;
1078 struct onmessage_work_context *ctx;
1079 __u8 payload_size;
1080 u32 message_type;
1081
1082 /*
1083 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1084 * it is being used in 'struct vmbus_channel_message_header' definition
1085 * which is supposed to match hypervisor ABI.
1086 */
1087 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1088
1089 /*
1090 * Since the message is in memory shared with the host, an erroneous or
1091 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1092 * or individual message handlers are executing; to prevent this, copy
1093 * the message into private memory.
1094 */
1095 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1096
1097 message_type = msg_copy.header.message_type;
1098 if (message_type == HVMSG_NONE)
1099 /* no msg */
1100 return;
1101
1102 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1103 msgtype = hdr->msgtype;
1104
1105 trace_vmbus_on_msg_dpc(hdr);
1106
1107 if (msgtype >= CHANNELMSG_COUNT) {
1108 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1109 goto msg_handled;
1110 }
1111
1112 payload_size = msg_copy.header.payload_size;
1113 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1114 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1115 goto msg_handled;
1116 }
1117
1118 entry = &channel_message_table[msgtype];
1119
1120 if (!entry->message_handler)
1121 goto msg_handled;
1122
1123 if (payload_size < entry->min_payload_len) {
1124 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1125 goto msg_handled;
1126 }
1127
1128 if (entry->handler_type == VMHT_BLOCKING) {
1129 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1130 if (ctx == NULL)
1131 return;
1132
1133 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1134 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1135
1136 /*
1137 * The host can generate a rescind message while we
1138 * may still be handling the original offer. We deal with
1139 * this condition by relying on the synchronization provided
1140 * by offer_in_progress and by channel_mutex. See also the
1141 * inline comments in vmbus_onoffer_rescind().
1142 */
1143 switch (msgtype) {
1144 case CHANNELMSG_RESCIND_CHANNELOFFER:
1145 /*
1146 * If we are handling the rescind message;
1147 * schedule the work on the global work queue.
1148 *
1149 * The OFFER message and the RESCIND message should
1150 * not be handled by the same serialized work queue,
1151 * because the OFFER handler may call vmbus_open(),
1152 * which tries to open the channel by sending an
1153 * OPEN_CHANNEL message to the host and waits for
1154 * the host's response; however, if the host has
1155 * rescinded the channel before it receives the
1156 * OPEN_CHANNEL message, the host just silently
1157 * ignores the OPEN_CHANNEL message; as a result,
1158 * the guest's OFFER handler hangs for ever, if we
1159 * handle the RESCIND message in the same serialized
1160 * work queue: the RESCIND handler can not start to
1161 * run before the OFFER handler finishes.
1162 */
1163 schedule_work(&ctx->work);
1164 break;
1165
1166 case CHANNELMSG_OFFERCHANNEL:
1167 /*
1168 * The host sends the offer message of a given channel
1169 * before sending the rescind message of the same
1170 * channel. These messages are sent to the guest's
1171 * connect CPU; the guest then starts processing them
1172 * in the tasklet handler on this CPU:
1173 *
1174 * VMBUS_CONNECT_CPU
1175 *
1176 * [vmbus_on_msg_dpc()]
1177 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1178 * queue_work()
1179 * ...
1180 * [vmbus_on_msg_dpc()]
1181 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1182 *
1183 * We rely on the memory-ordering properties of the
1184 * queue_work() and schedule_work() primitives, which
1185 * guarantee that the atomic increment will be visible
1186 * to the CPUs which will execute the offer & rescind
1187 * works by the time these works will start execution.
1188 */
1189 atomic_inc(&vmbus_connection.offer_in_progress);
1190 fallthrough;
1191
1192 default:
1193 queue_work(vmbus_connection.work_queue, &ctx->work);
1194 }
1195 } else
1196 entry->message_handler(hdr);
1197
1198 msg_handled:
1199 vmbus_signal_eom(msg, message_type);
1200 }
1201
1202 #ifdef CONFIG_PM_SLEEP
1203 /*
1204 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1205 * hibernation, because hv_sock connections can not persist across hibernation.
1206 */
vmbus_force_channel_rescinded(struct vmbus_channel * channel)1207 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1208 {
1209 struct onmessage_work_context *ctx;
1210 struct vmbus_channel_rescind_offer *rescind;
1211
1212 WARN_ON(!is_hvsock_channel(channel));
1213
1214 /*
1215 * Allocation size is small and the allocation should really not fail,
1216 * otherwise the state of the hv_sock connections ends up in limbo.
1217 */
1218 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1219 GFP_KERNEL | __GFP_NOFAIL);
1220
1221 /*
1222 * So far, these are not really used by Linux. Just set them to the
1223 * reasonable values conforming to the definitions of the fields.
1224 */
1225 ctx->msg.header.message_type = 1;
1226 ctx->msg.header.payload_size = sizeof(*rescind);
1227
1228 /* These values are actually used by Linux. */
1229 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1230 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1231 rescind->child_relid = channel->offermsg.child_relid;
1232
1233 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1234
1235 queue_work(vmbus_connection.work_queue, &ctx->work);
1236 }
1237 #endif /* CONFIG_PM_SLEEP */
1238
1239 /*
1240 * Schedule all channels with events pending
1241 */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)1242 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1243 {
1244 unsigned long *recv_int_page;
1245 u32 maxbits, relid;
1246
1247 /*
1248 * The event page can be directly checked to get the id of
1249 * the channel that has the interrupt pending.
1250 */
1251 void *page_addr = hv_cpu->synic_event_page;
1252 union hv_synic_event_flags *event
1253 = (union hv_synic_event_flags *)page_addr +
1254 VMBUS_MESSAGE_SINT;
1255
1256 maxbits = HV_EVENT_FLAGS_COUNT;
1257 recv_int_page = event->flags;
1258
1259 if (unlikely(!recv_int_page))
1260 return;
1261
1262 for_each_set_bit(relid, recv_int_page, maxbits) {
1263 void (*callback_fn)(void *context);
1264 struct vmbus_channel *channel;
1265
1266 if (!sync_test_and_clear_bit(relid, recv_int_page))
1267 continue;
1268
1269 /* Special case - vmbus channel protocol msg */
1270 if (relid == 0)
1271 continue;
1272
1273 /*
1274 * Pairs with the kfree_rcu() in vmbus_chan_release().
1275 * Guarantees that the channel data structure doesn't
1276 * get freed while the channel pointer below is being
1277 * dereferenced.
1278 */
1279 rcu_read_lock();
1280
1281 /* Find channel based on relid */
1282 channel = relid2channel(relid);
1283 if (channel == NULL)
1284 goto sched_unlock_rcu;
1285
1286 if (channel->rescind)
1287 goto sched_unlock_rcu;
1288
1289 /*
1290 * Make sure that the ring buffer data structure doesn't get
1291 * freed while we dereference the ring buffer pointer. Test
1292 * for the channel's onchannel_callback being NULL within a
1293 * sched_lock critical section. See also the inline comments
1294 * in vmbus_reset_channel_cb().
1295 */
1296 spin_lock(&channel->sched_lock);
1297
1298 callback_fn = channel->onchannel_callback;
1299 if (unlikely(callback_fn == NULL))
1300 goto sched_unlock;
1301
1302 trace_vmbus_chan_sched(channel);
1303
1304 ++channel->interrupts;
1305
1306 switch (channel->callback_mode) {
1307 case HV_CALL_ISR:
1308 (*callback_fn)(channel->channel_callback_context);
1309 break;
1310
1311 case HV_CALL_BATCHED:
1312 hv_begin_read(&channel->inbound);
1313 fallthrough;
1314 case HV_CALL_DIRECT:
1315 tasklet_schedule(&channel->callback_event);
1316 }
1317
1318 sched_unlock:
1319 spin_unlock(&channel->sched_lock);
1320 sched_unlock_rcu:
1321 rcu_read_unlock();
1322 }
1323 }
1324
vmbus_isr(void)1325 static void vmbus_isr(void)
1326 {
1327 struct hv_per_cpu_context *hv_cpu
1328 = this_cpu_ptr(hv_context.cpu_context);
1329 void *page_addr;
1330 struct hv_message *msg;
1331
1332 vmbus_chan_sched(hv_cpu);
1333
1334 page_addr = hv_cpu->synic_message_page;
1335 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1336
1337 /* Check if there are actual msgs to be processed */
1338 if (msg->header.message_type != HVMSG_NONE) {
1339 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1340 hv_stimer0_isr();
1341 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1342 } else
1343 tasklet_schedule(&hv_cpu->msg_dpc);
1344 }
1345
1346 add_interrupt_randomness(vmbus_interrupt);
1347 }
1348
vmbus_percpu_isr(int irq,void * dev_id)1349 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1350 {
1351 vmbus_isr();
1352 return IRQ_HANDLED;
1353 }
1354
1355 /*
1356 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1357 * buffer and call into Hyper-V to transfer the data.
1358 */
hv_kmsg_dump(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)1359 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1360 enum kmsg_dump_reason reason)
1361 {
1362 struct kmsg_dump_iter iter;
1363 size_t bytes_written;
1364
1365 /* We are only interested in panics. */
1366 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1367 return;
1368
1369 /*
1370 * Write dump contents to the page. No need to synchronize; panic should
1371 * be single-threaded.
1372 */
1373 kmsg_dump_rewind(&iter);
1374 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1375 &bytes_written);
1376 if (!bytes_written)
1377 return;
1378 /*
1379 * P3 to contain the physical address of the panic page & P4 to
1380 * contain the size of the panic data in that page. Rest of the
1381 * registers are no-op when the NOTIFY_MSG flag is set.
1382 */
1383 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1384 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1385 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1386 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1387 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1388
1389 /*
1390 * Let Hyper-V know there is crash data available along with
1391 * the panic message.
1392 */
1393 hv_set_register(HV_REGISTER_CRASH_CTL,
1394 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1395 }
1396
1397 static struct kmsg_dumper hv_kmsg_dumper = {
1398 .dump = hv_kmsg_dump,
1399 };
1400
hv_kmsg_dump_register(void)1401 static void hv_kmsg_dump_register(void)
1402 {
1403 int ret;
1404
1405 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1406 if (!hv_panic_page) {
1407 pr_err("Hyper-V: panic message page memory allocation failed\n");
1408 return;
1409 }
1410
1411 ret = kmsg_dump_register(&hv_kmsg_dumper);
1412 if (ret) {
1413 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1414 hv_free_hyperv_page((unsigned long)hv_panic_page);
1415 hv_panic_page = NULL;
1416 }
1417 }
1418
1419 static struct ctl_table_header *hv_ctl_table_hdr;
1420
1421 /*
1422 * sysctl option to allow the user to control whether kmsg data should be
1423 * reported to Hyper-V on panic.
1424 */
1425 static struct ctl_table hv_ctl_table[] = {
1426 {
1427 .procname = "hyperv_record_panic_msg",
1428 .data = &sysctl_record_panic_msg,
1429 .maxlen = sizeof(int),
1430 .mode = 0644,
1431 .proc_handler = proc_dointvec_minmax,
1432 .extra1 = SYSCTL_ZERO,
1433 .extra2 = SYSCTL_ONE
1434 },
1435 {}
1436 };
1437
1438 static struct ctl_table hv_root_table[] = {
1439 {
1440 .procname = "kernel",
1441 .mode = 0555,
1442 .child = hv_ctl_table
1443 },
1444 {}
1445 };
1446
1447 /*
1448 * vmbus_bus_init -Main vmbus driver initialization routine.
1449 *
1450 * Here, we
1451 * - initialize the vmbus driver context
1452 * - invoke the vmbus hv main init routine
1453 * - retrieve the channel offers
1454 */
vmbus_bus_init(void)1455 static int vmbus_bus_init(void)
1456 {
1457 int ret;
1458
1459 ret = hv_init();
1460 if (ret != 0) {
1461 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1462 return ret;
1463 }
1464
1465 ret = bus_register(&hv_bus);
1466 if (ret)
1467 return ret;
1468
1469 /*
1470 * VMbus interrupts are best modeled as per-cpu interrupts. If
1471 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1472 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1473 * If not on such an architecture (e.g., x86/x64), then rely on
1474 * code in the arch-specific portion of the code tree to connect
1475 * the VMbus interrupt handler.
1476 */
1477
1478 if (vmbus_irq == -1) {
1479 hv_setup_vmbus_handler(vmbus_isr);
1480 } else {
1481 vmbus_evt = alloc_percpu(long);
1482 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1483 "Hyper-V VMbus", vmbus_evt);
1484 if (ret) {
1485 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1486 vmbus_irq, ret);
1487 free_percpu(vmbus_evt);
1488 goto err_setup;
1489 }
1490 }
1491
1492 ret = hv_synic_alloc();
1493 if (ret)
1494 goto err_alloc;
1495
1496 /*
1497 * Initialize the per-cpu interrupt state and stimer state.
1498 * Then connect to the host.
1499 */
1500 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1501 hv_synic_init, hv_synic_cleanup);
1502 if (ret < 0)
1503 goto err_cpuhp;
1504 hyperv_cpuhp_online = ret;
1505
1506 ret = vmbus_connect();
1507 if (ret)
1508 goto err_connect;
1509
1510 if (hv_is_isolation_supported())
1511 sysctl_record_panic_msg = 0;
1512
1513 /*
1514 * Only register if the crash MSRs are available
1515 */
1516 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1517 u64 hyperv_crash_ctl;
1518 /*
1519 * Panic message recording (sysctl_record_panic_msg)
1520 * is enabled by default in non-isolated guests and
1521 * disabled by default in isolated guests; the panic
1522 * message recording won't be available in isolated
1523 * guests should the following registration fail.
1524 */
1525 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1526 if (!hv_ctl_table_hdr)
1527 pr_err("Hyper-V: sysctl table register error");
1528
1529 /*
1530 * Register for panic kmsg callback only if the right
1531 * capability is supported by the hypervisor.
1532 */
1533 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1534 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1535 hv_kmsg_dump_register();
1536
1537 register_die_notifier(&hyperv_die_block);
1538 }
1539
1540 /*
1541 * Always register the panic notifier because we need to unload
1542 * the VMbus channel connection to prevent any VMbus
1543 * activity after the VM panics.
1544 */
1545 atomic_notifier_chain_register(&panic_notifier_list,
1546 &hyperv_panic_block);
1547
1548 vmbus_request_offers();
1549
1550 return 0;
1551
1552 err_connect:
1553 cpuhp_remove_state(hyperv_cpuhp_online);
1554 err_cpuhp:
1555 hv_synic_free();
1556 err_alloc:
1557 if (vmbus_irq == -1) {
1558 hv_remove_vmbus_handler();
1559 } else {
1560 free_percpu_irq(vmbus_irq, vmbus_evt);
1561 free_percpu(vmbus_evt);
1562 }
1563 err_setup:
1564 bus_unregister(&hv_bus);
1565 unregister_sysctl_table(hv_ctl_table_hdr);
1566 hv_ctl_table_hdr = NULL;
1567 return ret;
1568 }
1569
1570 /**
1571 * __vmbus_child_driver_register() - Register a vmbus's driver
1572 * @hv_driver: Pointer to driver structure you want to register
1573 * @owner: owner module of the drv
1574 * @mod_name: module name string
1575 *
1576 * Registers the given driver with Linux through the 'driver_register()' call
1577 * and sets up the hyper-v vmbus handling for this driver.
1578 * It will return the state of the 'driver_register()' call.
1579 *
1580 */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1581 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1582 {
1583 int ret;
1584
1585 pr_info("registering driver %s\n", hv_driver->name);
1586
1587 ret = vmbus_exists();
1588 if (ret < 0)
1589 return ret;
1590
1591 hv_driver->driver.name = hv_driver->name;
1592 hv_driver->driver.owner = owner;
1593 hv_driver->driver.mod_name = mod_name;
1594 hv_driver->driver.bus = &hv_bus;
1595
1596 spin_lock_init(&hv_driver->dynids.lock);
1597 INIT_LIST_HEAD(&hv_driver->dynids.list);
1598
1599 ret = driver_register(&hv_driver->driver);
1600
1601 return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1604
1605 /**
1606 * vmbus_driver_unregister() - Unregister a vmbus's driver
1607 * @hv_driver: Pointer to driver structure you want to
1608 * un-register
1609 *
1610 * Un-register the given driver that was previous registered with a call to
1611 * vmbus_driver_register()
1612 */
vmbus_driver_unregister(struct hv_driver * hv_driver)1613 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1614 {
1615 pr_info("unregistering driver %s\n", hv_driver->name);
1616
1617 if (!vmbus_exists()) {
1618 driver_unregister(&hv_driver->driver);
1619 vmbus_free_dynids(hv_driver);
1620 }
1621 }
1622 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1623
1624
1625 /*
1626 * Called when last reference to channel is gone.
1627 */
vmbus_chan_release(struct kobject * kobj)1628 static void vmbus_chan_release(struct kobject *kobj)
1629 {
1630 struct vmbus_channel *channel
1631 = container_of(kobj, struct vmbus_channel, kobj);
1632
1633 kfree_rcu(channel, rcu);
1634 }
1635
1636 struct vmbus_chan_attribute {
1637 struct attribute attr;
1638 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1639 ssize_t (*store)(struct vmbus_channel *chan,
1640 const char *buf, size_t count);
1641 };
1642 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1643 struct vmbus_chan_attribute chan_attr_##_name \
1644 = __ATTR(_name, _mode, _show, _store)
1645 #define VMBUS_CHAN_ATTR_RW(_name) \
1646 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1647 #define VMBUS_CHAN_ATTR_RO(_name) \
1648 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1649 #define VMBUS_CHAN_ATTR_WO(_name) \
1650 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1651
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1652 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1653 struct attribute *attr, char *buf)
1654 {
1655 const struct vmbus_chan_attribute *attribute
1656 = container_of(attr, struct vmbus_chan_attribute, attr);
1657 struct vmbus_channel *chan
1658 = container_of(kobj, struct vmbus_channel, kobj);
1659
1660 if (!attribute->show)
1661 return -EIO;
1662
1663 return attribute->show(chan, buf);
1664 }
1665
vmbus_chan_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1666 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1667 struct attribute *attr, const char *buf,
1668 size_t count)
1669 {
1670 const struct vmbus_chan_attribute *attribute
1671 = container_of(attr, struct vmbus_chan_attribute, attr);
1672 struct vmbus_channel *chan
1673 = container_of(kobj, struct vmbus_channel, kobj);
1674
1675 if (!attribute->store)
1676 return -EIO;
1677
1678 return attribute->store(chan, buf, count);
1679 }
1680
1681 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1682 .show = vmbus_chan_attr_show,
1683 .store = vmbus_chan_attr_store,
1684 };
1685
out_mask_show(struct vmbus_channel * channel,char * buf)1686 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1687 {
1688 struct hv_ring_buffer_info *rbi = &channel->outbound;
1689 ssize_t ret;
1690
1691 mutex_lock(&rbi->ring_buffer_mutex);
1692 if (!rbi->ring_buffer) {
1693 mutex_unlock(&rbi->ring_buffer_mutex);
1694 return -EINVAL;
1695 }
1696
1697 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1698 mutex_unlock(&rbi->ring_buffer_mutex);
1699 return ret;
1700 }
1701 static VMBUS_CHAN_ATTR_RO(out_mask);
1702
in_mask_show(struct vmbus_channel * channel,char * buf)1703 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1704 {
1705 struct hv_ring_buffer_info *rbi = &channel->inbound;
1706 ssize_t ret;
1707
1708 mutex_lock(&rbi->ring_buffer_mutex);
1709 if (!rbi->ring_buffer) {
1710 mutex_unlock(&rbi->ring_buffer_mutex);
1711 return -EINVAL;
1712 }
1713
1714 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1715 mutex_unlock(&rbi->ring_buffer_mutex);
1716 return ret;
1717 }
1718 static VMBUS_CHAN_ATTR_RO(in_mask);
1719
read_avail_show(struct vmbus_channel * channel,char * buf)1720 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1721 {
1722 struct hv_ring_buffer_info *rbi = &channel->inbound;
1723 ssize_t ret;
1724
1725 mutex_lock(&rbi->ring_buffer_mutex);
1726 if (!rbi->ring_buffer) {
1727 mutex_unlock(&rbi->ring_buffer_mutex);
1728 return -EINVAL;
1729 }
1730
1731 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1732 mutex_unlock(&rbi->ring_buffer_mutex);
1733 return ret;
1734 }
1735 static VMBUS_CHAN_ATTR_RO(read_avail);
1736
write_avail_show(struct vmbus_channel * channel,char * buf)1737 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1738 {
1739 struct hv_ring_buffer_info *rbi = &channel->outbound;
1740 ssize_t ret;
1741
1742 mutex_lock(&rbi->ring_buffer_mutex);
1743 if (!rbi->ring_buffer) {
1744 mutex_unlock(&rbi->ring_buffer_mutex);
1745 return -EINVAL;
1746 }
1747
1748 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1749 mutex_unlock(&rbi->ring_buffer_mutex);
1750 return ret;
1751 }
1752 static VMBUS_CHAN_ATTR_RO(write_avail);
1753
target_cpu_show(struct vmbus_channel * channel,char * buf)1754 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1755 {
1756 return sprintf(buf, "%u\n", channel->target_cpu);
1757 }
target_cpu_store(struct vmbus_channel * channel,const char * buf,size_t count)1758 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1759 const char *buf, size_t count)
1760 {
1761 u32 target_cpu, origin_cpu;
1762 ssize_t ret = count;
1763
1764 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1765 return -EIO;
1766
1767 if (sscanf(buf, "%uu", &target_cpu) != 1)
1768 return -EIO;
1769
1770 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1771 if (target_cpu >= nr_cpumask_bits)
1772 return -EINVAL;
1773
1774 if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1775 return -EINVAL;
1776
1777 /* No CPUs should come up or down during this. */
1778 cpus_read_lock();
1779
1780 if (!cpu_online(target_cpu)) {
1781 cpus_read_unlock();
1782 return -EINVAL;
1783 }
1784
1785 /*
1786 * Synchronizes target_cpu_store() and channel closure:
1787 *
1788 * { Initially: state = CHANNEL_OPENED }
1789 *
1790 * CPU1 CPU2
1791 *
1792 * [target_cpu_store()] [vmbus_disconnect_ring()]
1793 *
1794 * LOCK channel_mutex LOCK channel_mutex
1795 * LOAD r1 = state LOAD r2 = state
1796 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1797 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1798 * [...] SEND CLOSECHANNEL
1799 * UNLOCK channel_mutex UNLOCK channel_mutex
1800 *
1801 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1802 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1803 *
1804 * Note. The host processes the channel messages "sequentially", in
1805 * the order in which they are received on a per-partition basis.
1806 */
1807 mutex_lock(&vmbus_connection.channel_mutex);
1808
1809 /*
1810 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1811 * avoid sending the message and fail here for such channels.
1812 */
1813 if (channel->state != CHANNEL_OPENED_STATE) {
1814 ret = -EIO;
1815 goto cpu_store_unlock;
1816 }
1817
1818 origin_cpu = channel->target_cpu;
1819 if (target_cpu == origin_cpu)
1820 goto cpu_store_unlock;
1821
1822 if (vmbus_send_modifychannel(channel,
1823 hv_cpu_number_to_vp_number(target_cpu))) {
1824 ret = -EIO;
1825 goto cpu_store_unlock;
1826 }
1827
1828 /*
1829 * For version before VERSION_WIN10_V5_3, the following warning holds:
1830 *
1831 * Warning. At this point, there is *no* guarantee that the host will
1832 * have successfully processed the vmbus_send_modifychannel() request.
1833 * See the header comment of vmbus_send_modifychannel() for more info.
1834 *
1835 * Lags in the processing of the above vmbus_send_modifychannel() can
1836 * result in missed interrupts if the "old" target CPU is taken offline
1837 * before Hyper-V starts sending interrupts to the "new" target CPU.
1838 * But apart from this offlining scenario, the code tolerates such
1839 * lags. It will function correctly even if a channel interrupt comes
1840 * in on a CPU that is different from the channel target_cpu value.
1841 */
1842
1843 channel->target_cpu = target_cpu;
1844
1845 /* See init_vp_index(). */
1846 if (hv_is_perf_channel(channel))
1847 hv_update_allocated_cpus(origin_cpu, target_cpu);
1848
1849 /* Currently set only for storvsc channels. */
1850 if (channel->change_target_cpu_callback) {
1851 (*channel->change_target_cpu_callback)(channel,
1852 origin_cpu, target_cpu);
1853 }
1854
1855 cpu_store_unlock:
1856 mutex_unlock(&vmbus_connection.channel_mutex);
1857 cpus_read_unlock();
1858 return ret;
1859 }
1860 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1861
channel_pending_show(struct vmbus_channel * channel,char * buf)1862 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1863 char *buf)
1864 {
1865 return sprintf(buf, "%d\n",
1866 channel_pending(channel,
1867 vmbus_connection.monitor_pages[1]));
1868 }
1869 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1870
channel_latency_show(struct vmbus_channel * channel,char * buf)1871 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1872 char *buf)
1873 {
1874 return sprintf(buf, "%d\n",
1875 channel_latency(channel,
1876 vmbus_connection.monitor_pages[1]));
1877 }
1878 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1879
channel_interrupts_show(struct vmbus_channel * channel,char * buf)1880 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1881 {
1882 return sprintf(buf, "%llu\n", channel->interrupts);
1883 }
1884 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1885
channel_events_show(struct vmbus_channel * channel,char * buf)1886 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1887 {
1888 return sprintf(buf, "%llu\n", channel->sig_events);
1889 }
1890 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1891
channel_intr_in_full_show(struct vmbus_channel * channel,char * buf)1892 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1893 char *buf)
1894 {
1895 return sprintf(buf, "%llu\n",
1896 (unsigned long long)channel->intr_in_full);
1897 }
1898 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1899
channel_intr_out_empty_show(struct vmbus_channel * channel,char * buf)1900 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1901 char *buf)
1902 {
1903 return sprintf(buf, "%llu\n",
1904 (unsigned long long)channel->intr_out_empty);
1905 }
1906 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1907
channel_out_full_first_show(struct vmbus_channel * channel,char * buf)1908 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1909 char *buf)
1910 {
1911 return sprintf(buf, "%llu\n",
1912 (unsigned long long)channel->out_full_first);
1913 }
1914 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1915
channel_out_full_total_show(struct vmbus_channel * channel,char * buf)1916 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1917 char *buf)
1918 {
1919 return sprintf(buf, "%llu\n",
1920 (unsigned long long)channel->out_full_total);
1921 }
1922 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1923
subchannel_monitor_id_show(struct vmbus_channel * channel,char * buf)1924 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1925 char *buf)
1926 {
1927 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1928 }
1929 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1930
subchannel_id_show(struct vmbus_channel * channel,char * buf)1931 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1932 char *buf)
1933 {
1934 return sprintf(buf, "%u\n",
1935 channel->offermsg.offer.sub_channel_index);
1936 }
1937 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1938
1939 static struct attribute *vmbus_chan_attrs[] = {
1940 &chan_attr_out_mask.attr,
1941 &chan_attr_in_mask.attr,
1942 &chan_attr_read_avail.attr,
1943 &chan_attr_write_avail.attr,
1944 &chan_attr_cpu.attr,
1945 &chan_attr_pending.attr,
1946 &chan_attr_latency.attr,
1947 &chan_attr_interrupts.attr,
1948 &chan_attr_events.attr,
1949 &chan_attr_intr_in_full.attr,
1950 &chan_attr_intr_out_empty.attr,
1951 &chan_attr_out_full_first.attr,
1952 &chan_attr_out_full_total.attr,
1953 &chan_attr_monitor_id.attr,
1954 &chan_attr_subchannel_id.attr,
1955 NULL
1956 };
1957
1958 /*
1959 * Channel-level attribute_group callback function. Returns the permission for
1960 * each attribute, and returns 0 if an attribute is not visible.
1961 */
vmbus_chan_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1962 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1963 struct attribute *attr, int idx)
1964 {
1965 const struct vmbus_channel *channel =
1966 container_of(kobj, struct vmbus_channel, kobj);
1967
1968 /* Hide the monitor attributes if the monitor mechanism is not used. */
1969 if (!channel->offermsg.monitor_allocated &&
1970 (attr == &chan_attr_pending.attr ||
1971 attr == &chan_attr_latency.attr ||
1972 attr == &chan_attr_monitor_id.attr))
1973 return 0;
1974
1975 return attr->mode;
1976 }
1977
1978 static struct attribute_group vmbus_chan_group = {
1979 .attrs = vmbus_chan_attrs,
1980 .is_visible = vmbus_chan_attr_is_visible
1981 };
1982
1983 static struct kobj_type vmbus_chan_ktype = {
1984 .sysfs_ops = &vmbus_chan_sysfs_ops,
1985 .release = vmbus_chan_release,
1986 };
1987
1988 /*
1989 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1990 */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)1991 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1992 {
1993 const struct device *device = &dev->device;
1994 struct kobject *kobj = &channel->kobj;
1995 u32 relid = channel->offermsg.child_relid;
1996 int ret;
1997
1998 kobj->kset = dev->channels_kset;
1999 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2000 "%u", relid);
2001 if (ret) {
2002 kobject_put(kobj);
2003 return ret;
2004 }
2005
2006 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2007
2008 if (ret) {
2009 /*
2010 * The calling functions' error handling paths will cleanup the
2011 * empty channel directory.
2012 */
2013 kobject_put(kobj);
2014 dev_err(device, "Unable to set up channel sysfs files\n");
2015 return ret;
2016 }
2017
2018 kobject_uevent(kobj, KOBJ_ADD);
2019
2020 return 0;
2021 }
2022
2023 /*
2024 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2025 */
vmbus_remove_channel_attr_group(struct vmbus_channel * channel)2026 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2027 {
2028 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2029 }
2030
2031 /*
2032 * vmbus_device_create - Creates and registers a new child device
2033 * on the vmbus.
2034 */
vmbus_device_create(const guid_t * type,const guid_t * instance,struct vmbus_channel * channel)2035 struct hv_device *vmbus_device_create(const guid_t *type,
2036 const guid_t *instance,
2037 struct vmbus_channel *channel)
2038 {
2039 struct hv_device *child_device_obj;
2040
2041 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2042 if (!child_device_obj) {
2043 pr_err("Unable to allocate device object for child device\n");
2044 return NULL;
2045 }
2046
2047 child_device_obj->channel = channel;
2048 guid_copy(&child_device_obj->dev_type, type);
2049 guid_copy(&child_device_obj->dev_instance, instance);
2050 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2051
2052 return child_device_obj;
2053 }
2054
2055 /*
2056 * vmbus_device_register - Register the child device
2057 */
vmbus_device_register(struct hv_device * child_device_obj)2058 int vmbus_device_register(struct hv_device *child_device_obj)
2059 {
2060 struct kobject *kobj = &child_device_obj->device.kobj;
2061 int ret;
2062
2063 dev_set_name(&child_device_obj->device, "%pUl",
2064 &child_device_obj->channel->offermsg.offer.if_instance);
2065
2066 child_device_obj->device.bus = &hv_bus;
2067 child_device_obj->device.parent = &hv_acpi_dev->dev;
2068 child_device_obj->device.release = vmbus_device_release;
2069
2070 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2071 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2072 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2073
2074 /*
2075 * Register with the LDM. This will kick off the driver/device
2076 * binding...which will eventually call vmbus_match() and vmbus_probe()
2077 */
2078 ret = device_register(&child_device_obj->device);
2079 if (ret) {
2080 pr_err("Unable to register child device\n");
2081 return ret;
2082 }
2083
2084 child_device_obj->channels_kset = kset_create_and_add("channels",
2085 NULL, kobj);
2086 if (!child_device_obj->channels_kset) {
2087 ret = -ENOMEM;
2088 goto err_dev_unregister;
2089 }
2090
2091 ret = vmbus_add_channel_kobj(child_device_obj,
2092 child_device_obj->channel);
2093 if (ret) {
2094 pr_err("Unable to register primary channeln");
2095 goto err_kset_unregister;
2096 }
2097 hv_debug_add_dev_dir(child_device_obj);
2098
2099 return 0;
2100
2101 err_kset_unregister:
2102 kset_unregister(child_device_obj->channels_kset);
2103
2104 err_dev_unregister:
2105 device_unregister(&child_device_obj->device);
2106 return ret;
2107 }
2108
2109 /*
2110 * vmbus_device_unregister - Remove the specified child device
2111 * from the vmbus.
2112 */
vmbus_device_unregister(struct hv_device * device_obj)2113 void vmbus_device_unregister(struct hv_device *device_obj)
2114 {
2115 pr_debug("child device %s unregistered\n",
2116 dev_name(&device_obj->device));
2117
2118 kset_unregister(device_obj->channels_kset);
2119
2120 /*
2121 * Kick off the process of unregistering the device.
2122 * This will call vmbus_remove() and eventually vmbus_device_release()
2123 */
2124 device_unregister(&device_obj->device);
2125 }
2126
2127
2128 /*
2129 * VMBUS is an acpi enumerated device. Get the information we
2130 * need from DSDT.
2131 */
2132 #define VTPM_BASE_ADDRESS 0xfed40000
vmbus_walk_resources(struct acpi_resource * res,void * ctx)2133 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2134 {
2135 resource_size_t start = 0;
2136 resource_size_t end = 0;
2137 struct resource *new_res;
2138 struct resource **old_res = &hyperv_mmio;
2139 struct resource **prev_res = NULL;
2140 struct resource r;
2141
2142 switch (res->type) {
2143
2144 /*
2145 * "Address" descriptors are for bus windows. Ignore
2146 * "memory" descriptors, which are for registers on
2147 * devices.
2148 */
2149 case ACPI_RESOURCE_TYPE_ADDRESS32:
2150 start = res->data.address32.address.minimum;
2151 end = res->data.address32.address.maximum;
2152 break;
2153
2154 case ACPI_RESOURCE_TYPE_ADDRESS64:
2155 start = res->data.address64.address.minimum;
2156 end = res->data.address64.address.maximum;
2157 break;
2158
2159 /*
2160 * The IRQ information is needed only on ARM64, which Hyper-V
2161 * sets up in the extended format. IRQ information is present
2162 * on x86/x64 in the non-extended format but it is not used by
2163 * Linux. So don't bother checking for the non-extended format.
2164 */
2165 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2166 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2167 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2168 return AE_ERROR;
2169 }
2170 /* ARM64 INTID for VMbus */
2171 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2172 /* Linux IRQ number */
2173 vmbus_irq = r.start;
2174 return AE_OK;
2175
2176 default:
2177 /* Unused resource type */
2178 return AE_OK;
2179
2180 }
2181 /*
2182 * Ignore ranges that are below 1MB, as they're not
2183 * necessary or useful here.
2184 */
2185 if (end < 0x100000)
2186 return AE_OK;
2187
2188 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2189 if (!new_res)
2190 return AE_NO_MEMORY;
2191
2192 /* If this range overlaps the virtual TPM, truncate it. */
2193 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2194 end = VTPM_BASE_ADDRESS;
2195
2196 new_res->name = "hyperv mmio";
2197 new_res->flags = IORESOURCE_MEM;
2198 new_res->start = start;
2199 new_res->end = end;
2200
2201 /*
2202 * If two ranges are adjacent, merge them.
2203 */
2204 do {
2205 if (!*old_res) {
2206 *old_res = new_res;
2207 break;
2208 }
2209
2210 if (((*old_res)->end + 1) == new_res->start) {
2211 (*old_res)->end = new_res->end;
2212 kfree(new_res);
2213 break;
2214 }
2215
2216 if ((*old_res)->start == new_res->end + 1) {
2217 (*old_res)->start = new_res->start;
2218 kfree(new_res);
2219 break;
2220 }
2221
2222 if ((*old_res)->start > new_res->end) {
2223 new_res->sibling = *old_res;
2224 if (prev_res)
2225 (*prev_res)->sibling = new_res;
2226 *old_res = new_res;
2227 break;
2228 }
2229
2230 prev_res = old_res;
2231 old_res = &(*old_res)->sibling;
2232
2233 } while (1);
2234
2235 return AE_OK;
2236 }
2237
vmbus_acpi_remove(struct acpi_device * device)2238 static int vmbus_acpi_remove(struct acpi_device *device)
2239 {
2240 struct resource *cur_res;
2241 struct resource *next_res;
2242
2243 if (hyperv_mmio) {
2244 if (fb_mmio) {
2245 __release_region(hyperv_mmio, fb_mmio->start,
2246 resource_size(fb_mmio));
2247 fb_mmio = NULL;
2248 }
2249
2250 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2251 next_res = cur_res->sibling;
2252 kfree(cur_res);
2253 }
2254 }
2255
2256 return 0;
2257 }
2258
vmbus_reserve_fb(void)2259 static void vmbus_reserve_fb(void)
2260 {
2261 int size;
2262 /*
2263 * Make a claim for the frame buffer in the resource tree under the
2264 * first node, which will be the one below 4GB. The length seems to
2265 * be underreported, particularly in a Generation 1 VM. So start out
2266 * reserving a larger area and make it smaller until it succeeds.
2267 */
2268
2269 if (screen_info.lfb_base) {
2270 if (efi_enabled(EFI_BOOT))
2271 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2272 else
2273 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2274
2275 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2276 fb_mmio = __request_region(hyperv_mmio,
2277 screen_info.lfb_base, size,
2278 fb_mmio_name, 0);
2279 }
2280 }
2281 }
2282
2283 /**
2284 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2285 * @new: If successful, supplied a pointer to the
2286 * allocated MMIO space.
2287 * @device_obj: Identifies the caller
2288 * @min: Minimum guest physical address of the
2289 * allocation
2290 * @max: Maximum guest physical address
2291 * @size: Size of the range to be allocated
2292 * @align: Alignment of the range to be allocated
2293 * @fb_overlap_ok: Whether this allocation can be allowed
2294 * to overlap the video frame buffer.
2295 *
2296 * This function walks the resources granted to VMBus by the
2297 * _CRS object in the ACPI namespace underneath the parent
2298 * "bridge" whether that's a root PCI bus in the Generation 1
2299 * case or a Module Device in the Generation 2 case. It then
2300 * attempts to allocate from the global MMIO pool in a way that
2301 * matches the constraints supplied in these parameters and by
2302 * that _CRS.
2303 *
2304 * Return: 0 on success, -errno on failure
2305 */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)2306 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2307 resource_size_t min, resource_size_t max,
2308 resource_size_t size, resource_size_t align,
2309 bool fb_overlap_ok)
2310 {
2311 struct resource *iter, *shadow;
2312 resource_size_t range_min, range_max, start;
2313 const char *dev_n = dev_name(&device_obj->device);
2314 int retval;
2315
2316 retval = -ENXIO;
2317 mutex_lock(&hyperv_mmio_lock);
2318
2319 /*
2320 * If overlaps with frame buffers are allowed, then first attempt to
2321 * make the allocation from within the reserved region. Because it
2322 * is already reserved, no shadow allocation is necessary.
2323 */
2324 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2325 !(max < fb_mmio->start)) {
2326
2327 range_min = fb_mmio->start;
2328 range_max = fb_mmio->end;
2329 start = (range_min + align - 1) & ~(align - 1);
2330 for (; start + size - 1 <= range_max; start += align) {
2331 *new = request_mem_region_exclusive(start, size, dev_n);
2332 if (*new) {
2333 retval = 0;
2334 goto exit;
2335 }
2336 }
2337 }
2338
2339 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2340 if ((iter->start >= max) || (iter->end <= min))
2341 continue;
2342
2343 range_min = iter->start;
2344 range_max = iter->end;
2345 start = (range_min + align - 1) & ~(align - 1);
2346 for (; start + size - 1 <= range_max; start += align) {
2347 shadow = __request_region(iter, start, size, NULL,
2348 IORESOURCE_BUSY);
2349 if (!shadow)
2350 continue;
2351
2352 *new = request_mem_region_exclusive(start, size, dev_n);
2353 if (*new) {
2354 shadow->name = (char *)*new;
2355 retval = 0;
2356 goto exit;
2357 }
2358
2359 __release_region(iter, start, size);
2360 }
2361 }
2362
2363 exit:
2364 mutex_unlock(&hyperv_mmio_lock);
2365 return retval;
2366 }
2367 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2368
2369 /**
2370 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2371 * @start: Base address of region to release.
2372 * @size: Size of the range to be allocated
2373 *
2374 * This function releases anything requested by
2375 * vmbus_mmio_allocate().
2376 */
vmbus_free_mmio(resource_size_t start,resource_size_t size)2377 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2378 {
2379 struct resource *iter;
2380
2381 mutex_lock(&hyperv_mmio_lock);
2382 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2383 if ((iter->start >= start + size) || (iter->end <= start))
2384 continue;
2385
2386 __release_region(iter, start, size);
2387 }
2388 release_mem_region(start, size);
2389 mutex_unlock(&hyperv_mmio_lock);
2390
2391 }
2392 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2393
vmbus_acpi_add(struct acpi_device * device)2394 static int vmbus_acpi_add(struct acpi_device *device)
2395 {
2396 acpi_status result;
2397 int ret_val = -ENODEV;
2398 struct acpi_device *ancestor;
2399
2400 hv_acpi_dev = device;
2401
2402 /*
2403 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2404 * method on the top level VMbus device in the DSDT. But devices
2405 * are hardware coherent in all current Hyper-V use cases, so fix
2406 * up the ACPI device to behave as if _CCA is present and indicates
2407 * hardware coherence.
2408 */
2409 ACPI_COMPANION_SET(&device->dev, device);
2410 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2411 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2412 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2413 device->flags.cca_seen = true;
2414 device->flags.coherent_dma = true;
2415 }
2416
2417 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2418 vmbus_walk_resources, NULL);
2419
2420 if (ACPI_FAILURE(result))
2421 goto acpi_walk_err;
2422 /*
2423 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2424 * firmware) is the VMOD that has the mmio ranges. Get that.
2425 */
2426 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2427 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2428 vmbus_walk_resources, NULL);
2429
2430 if (ACPI_FAILURE(result))
2431 continue;
2432 if (hyperv_mmio) {
2433 vmbus_reserve_fb();
2434 break;
2435 }
2436 }
2437 ret_val = 0;
2438
2439 acpi_walk_err:
2440 complete(&probe_event);
2441 if (ret_val)
2442 vmbus_acpi_remove(device);
2443 return ret_val;
2444 }
2445
2446 #ifdef CONFIG_PM_SLEEP
vmbus_bus_suspend(struct device * dev)2447 static int vmbus_bus_suspend(struct device *dev)
2448 {
2449 struct vmbus_channel *channel, *sc;
2450
2451 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2452 /*
2453 * We wait here until the completion of any channel
2454 * offers that are currently in progress.
2455 */
2456 usleep_range(1000, 2000);
2457 }
2458
2459 mutex_lock(&vmbus_connection.channel_mutex);
2460 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2461 if (!is_hvsock_channel(channel))
2462 continue;
2463
2464 vmbus_force_channel_rescinded(channel);
2465 }
2466 mutex_unlock(&vmbus_connection.channel_mutex);
2467
2468 /*
2469 * Wait until all the sub-channels and hv_sock channels have been
2470 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2471 * they would conflict with the new sub-channels that will be created
2472 * in the resume path. hv_sock channels should also be destroyed, but
2473 * a hv_sock channel of an established hv_sock connection can not be
2474 * really destroyed since it may still be referenced by the userspace
2475 * application, so we just force the hv_sock channel to be rescinded
2476 * by vmbus_force_channel_rescinded(), and the userspace application
2477 * will thoroughly destroy the channel after hibernation.
2478 *
2479 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2480 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2481 */
2482 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2483 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2484
2485 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2486 pr_err("Can not suspend due to a previous failed resuming\n");
2487 return -EBUSY;
2488 }
2489
2490 mutex_lock(&vmbus_connection.channel_mutex);
2491
2492 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2493 /*
2494 * Remove the channel from the array of channels and invalidate
2495 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2496 * up the relid (and other fields, if necessary) and add the
2497 * channel back to the array.
2498 */
2499 vmbus_channel_unmap_relid(channel);
2500 channel->offermsg.child_relid = INVALID_RELID;
2501
2502 if (is_hvsock_channel(channel)) {
2503 if (!channel->rescind) {
2504 pr_err("hv_sock channel not rescinded!\n");
2505 WARN_ON_ONCE(1);
2506 }
2507 continue;
2508 }
2509
2510 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2511 pr_err("Sub-channel not deleted!\n");
2512 WARN_ON_ONCE(1);
2513 }
2514
2515 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2516 }
2517
2518 mutex_unlock(&vmbus_connection.channel_mutex);
2519
2520 vmbus_initiate_unload(false);
2521
2522 /* Reset the event for the next resume. */
2523 reinit_completion(&vmbus_connection.ready_for_resume_event);
2524
2525 return 0;
2526 }
2527
vmbus_bus_resume(struct device * dev)2528 static int vmbus_bus_resume(struct device *dev)
2529 {
2530 struct vmbus_channel_msginfo *msginfo;
2531 size_t msgsize;
2532 int ret;
2533
2534 /*
2535 * We only use the 'vmbus_proto_version', which was in use before
2536 * hibernation, to re-negotiate with the host.
2537 */
2538 if (!vmbus_proto_version) {
2539 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2540 return -EINVAL;
2541 }
2542
2543 msgsize = sizeof(*msginfo) +
2544 sizeof(struct vmbus_channel_initiate_contact);
2545
2546 msginfo = kzalloc(msgsize, GFP_KERNEL);
2547
2548 if (msginfo == NULL)
2549 return -ENOMEM;
2550
2551 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2552
2553 kfree(msginfo);
2554
2555 if (ret != 0)
2556 return ret;
2557
2558 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2559
2560 vmbus_request_offers();
2561
2562 if (wait_for_completion_timeout(
2563 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2564 pr_err("Some vmbus device is missing after suspending?\n");
2565
2566 /* Reset the event for the next suspend. */
2567 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2568
2569 return 0;
2570 }
2571 #else
2572 #define vmbus_bus_suspend NULL
2573 #define vmbus_bus_resume NULL
2574 #endif /* CONFIG_PM_SLEEP */
2575
2576 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2577 {"VMBUS", 0},
2578 {"VMBus", 0},
2579 {"", 0},
2580 };
2581 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2582
2583 /*
2584 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2585 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2586 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2587 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2588 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2589 * resume callback must also run via the "noirq" ops.
2590 *
2591 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2592 * earlier in this file before vmbus_pm.
2593 */
2594
2595 static const struct dev_pm_ops vmbus_bus_pm = {
2596 .suspend_noirq = NULL,
2597 .resume_noirq = NULL,
2598 .freeze_noirq = vmbus_bus_suspend,
2599 .thaw_noirq = vmbus_bus_resume,
2600 .poweroff_noirq = vmbus_bus_suspend,
2601 .restore_noirq = vmbus_bus_resume
2602 };
2603
2604 static struct acpi_driver vmbus_acpi_driver = {
2605 .name = "vmbus",
2606 .ids = vmbus_acpi_device_ids,
2607 .ops = {
2608 .add = vmbus_acpi_add,
2609 .remove = vmbus_acpi_remove,
2610 },
2611 .drv.pm = &vmbus_bus_pm,
2612 };
2613
hv_kexec_handler(void)2614 static void hv_kexec_handler(void)
2615 {
2616 hv_stimer_global_cleanup();
2617 vmbus_initiate_unload(false);
2618 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2619 mb();
2620 cpuhp_remove_state(hyperv_cpuhp_online);
2621 };
2622
hv_crash_handler(struct pt_regs * regs)2623 static void hv_crash_handler(struct pt_regs *regs)
2624 {
2625 int cpu;
2626
2627 vmbus_initiate_unload(true);
2628 /*
2629 * In crash handler we can't schedule synic cleanup for all CPUs,
2630 * doing the cleanup for current CPU only. This should be sufficient
2631 * for kdump.
2632 */
2633 cpu = smp_processor_id();
2634 hv_stimer_cleanup(cpu);
2635 hv_synic_disable_regs(cpu);
2636 };
2637
hv_synic_suspend(void)2638 static int hv_synic_suspend(void)
2639 {
2640 /*
2641 * When we reach here, all the non-boot CPUs have been offlined.
2642 * If we're in a legacy configuration where stimer Direct Mode is
2643 * not enabled, the stimers on the non-boot CPUs have been unbound
2644 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2645 * hv_stimer_cleanup() -> clockevents_unbind_device().
2646 *
2647 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2648 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2649 * 1) it's unnecessary as interrupts remain disabled between
2650 * syscore_suspend() and syscore_resume(): see create_image() and
2651 * resume_target_kernel()
2652 * 2) the stimer on CPU0 is automatically disabled later by
2653 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2654 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2655 * 3) a warning would be triggered if we call
2656 * clockevents_unbind_device(), which may sleep, in an
2657 * interrupts-disabled context.
2658 */
2659
2660 hv_synic_disable_regs(0);
2661
2662 return 0;
2663 }
2664
hv_synic_resume(void)2665 static void hv_synic_resume(void)
2666 {
2667 hv_synic_enable_regs(0);
2668
2669 /*
2670 * Note: we don't need to call hv_stimer_init(0), because the timer
2671 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2672 * automatically re-enabled in timekeeping_resume().
2673 */
2674 }
2675
2676 /* The callbacks run only on CPU0, with irqs_disabled. */
2677 static struct syscore_ops hv_synic_syscore_ops = {
2678 .suspend = hv_synic_suspend,
2679 .resume = hv_synic_resume,
2680 };
2681
hv_acpi_init(void)2682 static int __init hv_acpi_init(void)
2683 {
2684 int ret, t;
2685
2686 if (!hv_is_hyperv_initialized())
2687 return -ENODEV;
2688
2689 if (hv_root_partition)
2690 return 0;
2691
2692 init_completion(&probe_event);
2693
2694 /*
2695 * Get ACPI resources first.
2696 */
2697 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2698
2699 if (ret)
2700 return ret;
2701
2702 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2703 if (t == 0) {
2704 ret = -ETIMEDOUT;
2705 goto cleanup;
2706 }
2707
2708 /*
2709 * If we're on an architecture with a hardcoded hypervisor
2710 * vector (i.e. x86/x64), override the VMbus interrupt found
2711 * in the ACPI tables. Ensure vmbus_irq is not set since the
2712 * normal Linux IRQ mechanism is not used in this case.
2713 */
2714 #ifdef HYPERVISOR_CALLBACK_VECTOR
2715 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2716 vmbus_irq = -1;
2717 #endif
2718
2719 hv_debug_init();
2720
2721 ret = vmbus_bus_init();
2722 if (ret)
2723 goto cleanup;
2724
2725 hv_setup_kexec_handler(hv_kexec_handler);
2726 hv_setup_crash_handler(hv_crash_handler);
2727
2728 register_syscore_ops(&hv_synic_syscore_ops);
2729
2730 return 0;
2731
2732 cleanup:
2733 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2734 hv_acpi_dev = NULL;
2735 return ret;
2736 }
2737
vmbus_exit(void)2738 static void __exit vmbus_exit(void)
2739 {
2740 int cpu;
2741
2742 unregister_syscore_ops(&hv_synic_syscore_ops);
2743
2744 hv_remove_kexec_handler();
2745 hv_remove_crash_handler();
2746 vmbus_connection.conn_state = DISCONNECTED;
2747 hv_stimer_global_cleanup();
2748 vmbus_disconnect();
2749 if (vmbus_irq == -1) {
2750 hv_remove_vmbus_handler();
2751 } else {
2752 free_percpu_irq(vmbus_irq, vmbus_evt);
2753 free_percpu(vmbus_evt);
2754 }
2755 for_each_online_cpu(cpu) {
2756 struct hv_per_cpu_context *hv_cpu
2757 = per_cpu_ptr(hv_context.cpu_context, cpu);
2758
2759 tasklet_kill(&hv_cpu->msg_dpc);
2760 }
2761 hv_debug_rm_all_dir();
2762
2763 vmbus_free_channels();
2764 kfree(vmbus_connection.channels);
2765
2766 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2767 kmsg_dump_unregister(&hv_kmsg_dumper);
2768 unregister_die_notifier(&hyperv_die_block);
2769 }
2770
2771 /*
2772 * The panic notifier is always registered, hence we should
2773 * also unconditionally unregister it here as well.
2774 */
2775 atomic_notifier_chain_unregister(&panic_notifier_list,
2776 &hyperv_panic_block);
2777
2778 free_page((unsigned long)hv_panic_page);
2779 unregister_sysctl_table(hv_ctl_table_hdr);
2780 hv_ctl_table_hdr = NULL;
2781 bus_unregister(&hv_bus);
2782
2783 cpuhp_remove_state(hyperv_cpuhp_online);
2784 hv_synic_free();
2785 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2786 }
2787
2788
2789 MODULE_LICENSE("GPL");
2790 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2791
2792 subsys_initcall(hv_acpi_init);
2793 module_exit(vmbus_exit);
2794