Searched refs:RAM (Results 1 – 25 of 357) sorted by relevance
12345678910>>...15
/linux-5.19.10/drivers/zorro/ |
D | zorro.ids | 18 0000 Golem RAM Box 2MB [RAM Expansion] 22 1300 Warp Engine [Accelerator, SCSI Host Adapter and RAM Expansion] 24 0200 Megamix 2000 [RAM Expansion] 36 0a00 A590/A2052/A2058/A2091 [RAM Expansion] 37 2000 A560 [RAM Expansion] 40 5000 A2620 68020 [Accelerator and RAM Expansion] 41 5100 A2630 68030 [Accelerator and RAM Expansion] 51 0200 EXP8000 [RAM Expansion] 64 0100 AX2000 [RAM Expansion] 68 0000 StarBoard II [RAM Expansion] [all …]
|
/linux-5.19.10/Documentation/translations/zh_CN/vm/ |
D | frontswap.rst | 14 于交换页被保存在RAM(或类似RAM的设备)中,而不是交换磁盘,因此可以获得巨大的性能 20 储器被认为是一个同步并发安全的面向页面的“伪RAM设备”,符合transcendent memory 21 (如Xen的“tmem”,或内核内压缩内存,又称“zcache”,或未来的类似RAM的设备)的要 22 求;这个伪RAM设备不能被内核直接访问或寻址,其大小未知且可能随时间变化。驱动程序通过 68 移动(对于一些类似RAM的设备来说,这可能对写平衡很有用)时,这个接口是理想的。交换 69 页(和被驱逐的页面缓存页)是这种比RAM慢但比磁盘快得多的“伪RAM设备”的一大用途。 71 Frontswap对内核的影响相当小,为各种系统配置中更动态、更灵活的RAM利用提供了巨大的 75 全保存在RAM中的匿名页面总数。Zcache本质上是用压缩/解压缩的CPU周期换取更好的内存利 81 统的RAM。这使得RAM可以根据需要动态地来回负载平衡,也就是说,当系统A超载时,它可以 87 用。对于RAM来说,这真的很难做到,而且在不改变内核的情况下,要做好这一点的努力基本上 [all …]
|
/linux-5.19.10/Documentation/translations/zh_CN/arm/ |
D | Booting | 40 1、设置和初始化 RAM。 47 1、设置和初始化 RAM 53 引导装载程序应该找到并初始化系统中所有内核用于保持系统变量数据的 RAM。 55 RAM,或可能使用对这个设备已知的 RAM 信息,还可能使用任何引导装载程序 117 标签列表应该保存在系统的 RAM 中。 120 建议放在 RAM 的头 16KiB 中。 126 RAM 中,并用启动数据初始化它。dtb 格式在文档 132 dtb 必须置于内核自解压不会覆盖的内存区。建议将其放置于 RAM 的头 16KiB 146 zImage 也可以被放在系统 RAM(任意位置)中被调用。注意:内核使用映像 147 基地址的前 16KB RAM 空间来保存页表。建议将映像置于 RAM 的 32KB 处。 [all …]
|
/linux-5.19.10/Documentation/admin-guide/blockdev/ |
D | ramdisk.rst | 2 Using the RAM disk block device with Linux 10 4) An Example of Creating a Compressed RAM Disk 16 The RAM disk driver is a way to use main system memory as a block device. It 22 The RAM disk dynamically grows as more space is required. It does this by using 23 RAM from the buffer cache. The driver marks the buffers it is using as dirty 26 The RAM disk supports up to 16 RAM disks by default, and can be reconfigured 27 to support an unlimited number of RAM disks (at your own risk). Just change 31 To use RAM disk support with your system, run './MAKEDEV ram' from the /dev 32 directory. RAM disks are all major number 1, and start with minor number 0 35 The new RAM disk also has the ability to load compressed RAM disk images, [all …]
|
/linux-5.19.10/Documentation/devicetree/bindings/net/can/ |
D | bosch,m_can.yaml | 24 - description: message RAM 55 Message RAM configuration data. 56 Multiple M_CAN instances can share the same Message RAM 58 in Message RAM is also configurable, so this property is 59 telling driver how the shared or private Message RAM are 64 The 'offset' is an address offset of the Message RAM where 66 0x0 if you're using a private Message RAM. The remain cells 78 Please refer to 2.4.1 Message RAM Configuration in Bosch 82 - description: The 'offset' is an address offset of the Message RAM where 84 you're using a private Message RAM.
|
/linux-5.19.10/Documentation/translations/zh_TW/filesystems/ |
D | tmpfs.rst | 23 一個東西是RAM磁碟(/dev/ram*),可以在物理RAM中模擬固定大小的硬碟,並在 57 size tmpfs實例分配的字節數限制。默認值是不swap時物理RAM的一半。 61 (有高端內存的機器)低端內存RAM的頁數,二者以較低者為準。 65 size參數也接受後綴%用來限制tmpfs實例占用物理RAM的百分比: 136 /mytmpfs上掛載tmpfs實例,分配只能由root用戶訪問的10GB RAM/SWAP,可以有10240個
|
/linux-5.19.10/Documentation/translations/zh_CN/filesystems/ |
D | tmpfs.rst | 22 一个东西是RAM磁盘(/dev/ram*),可以在物理RAM中模拟固定大小的硬盘,并在 56 size tmpfs实例分配的字节数限制。默认值是不swap时物理RAM的一半。 60 (有高端内存的机器)低端内存RAM的页数,二者以较低者为准。 64 size参数也接受后缀%用来限制tmpfs实例占用物理RAM的百分比: 135 /mytmpfs上挂载tmpfs实例,分配只能由root用户访问的10GB RAM/SWAP,可以有10240个
|
/linux-5.19.10/Documentation/translations/zh_CN/arm64/ |
D | booting.txt | 47 1、设置和初始化 RAM 53 1、设置和初始化 RAM 58 引导装载程序应该找到并初始化系统中所有内核用于保持系统变量数据的 RAM。 60 RAM,或可能使用对这个设备已知的 RAM 信息,还可能是引导装载程序设计者 154 x0 = 系统 RAM 中设备树数据块(dtb)的物理地址。
|
/linux-5.19.10/Documentation/translations/zh_TW/arm64/ |
D | booting.txt | 51 1、設置和初始化 RAM 57 1、設置和初始化 RAM 62 引導裝載程序應該找到並初始化系統中所有內核用於保持系統變量數據的 RAM。 64 RAM,或可能使用對這個設備已知的 RAM 信息,還可能是引導裝載程序設計者 158 x0 = 系統 RAM 中設備樹數據塊(dtb)的物理地址。
|
/linux-5.19.10/Documentation/arm/ |
D | porting.rst | 25 to be located in RAM, it can be in flash or other read-only or 30 This must be pointing at RAM. The decompressor will zero initialise 43 Physical address to place the initial RAM disk. Only relevant if 48 Virtual address of the initial RAM disk. The following constraint 62 Physical start address of the first bank of RAM. 65 Virtual start address of the first bank of RAM. During the kernel 101 last virtual RAM address (found using variable high_memory). 105 between virtual RAM and the vmalloc area. We do this to allow 113 `pram` specifies the physical start address of RAM. Must always
|
D | booting.rst | 19 1. Setup and initialise the RAM. 27 1. Setup and initialise RAM 35 The boot loader is expected to find and initialise all RAM that the 38 to automatically locate and size all RAM, or it may use knowledge of 39 the RAM in the machine, or any other method the boot loader designer 120 The tagged list should be stored in system RAM. 124 it. The recommended placement is in the first 16KiB of RAM. 142 A safe location is just above the 128MiB boundary from start of RAM. 158 be loaded just above the 128MiB boundary from the start of RAM as 174 The zImage may also be placed in system RAM and called there. The [all …]
|
D | tcm.rst | 8 This is usually just a few (4-64) KiB of RAM inside the ARM 32 place you put it, it will mask any underlying RAM from the 33 CPU so it is usually wise not to overlap any physical RAM with 55 - Idle loops where all external RAM is set to self-refresh 56 retention mode, so only on-chip RAM is accessible by 61 the external RAM controller. 72 - Have the remaining TCM RAM added to a special 138 printk("Hello TCM executed from ITCM RAM\n");
|
/linux-5.19.10/Documentation/ABI/testing/ |
D | sysfs-bus-coresight-devices-etb10 | 16 Description: (RW) Disables write access to the Trace RAM by stopping the 19 into the Trace RAM following the trigger event is equal to the 26 Description: (Read) Defines the depth, in words, of the trace RAM in powers of 40 Description: (Read) Shows the value held by the ETB RAM Read Pointer register 41 that is used to read entries from the Trace RAM over the APB 49 Description: (Read) Shows the value held by the ETB RAM Write Pointer register 51 the CoreSight bus into the Trace RAM. The value is read directly
|
D | sysfs-bus-coresight-devices-tmc | 5 Description: (RW) Disables write access to the Trace RAM by stopping the 14 Description: (Read) Defines the size, in 32-bit words, of the local RAM buffer. 28 Description: (Read) Shows the value held by the TMC RAM Read Pointer register 29 that is used to read entries from the Trace RAM over the APB 37 Description: (Read) Shows the value held by the TMC RAM Write Pointer register 39 the CoreSight bus into the Trace RAM. The value is read directly
|
/linux-5.19.10/Documentation/devicetree/bindings/memory-controllers/ |
D | baikal,bt1-l2-ctl.yaml | 16 to change the Tag, Data and Way-select RAM access latencies. Baikal-T1 29 description: Cycles of latency for Way-select RAM accesses 36 description: Cycles of latency for Tag RAM accesses 43 description: Cycles of latency for Data RAM accesses
|
/linux-5.19.10/Documentation/vm/ |
D | frontswap.rst | 9 swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk. 15 a synchronous concurrency-safe page-oriented "pseudo-RAM device" conforming 17 in-kernel compressed memory, aka "zcache", or future RAM-like devices); 18 this pseudo-RAM device is not directly accessible or addressable by the 76 useful for write-balancing for some RAM-like devices). Swap pages (and 77 evicted page-cache pages) are a great use for this kind of slower-than-RAM- 78 but-much-faster-than-disk "pseudo-RAM device". 81 provides a huge amount of flexibility for more dynamic, flexible RAM 86 that can be safely kept in RAM. Zcache essentially trades off CPU 94 as in zcache, but then "remotified" to another system's RAM. This [all …]
|
/linux-5.19.10/Documentation/arm/keystone/ |
D | knav-qmss.rst | 12 processors(PDSP), linking RAM, descriptor pools and infrastructure 18 Linking RAM registers are used to link the descriptors which are stored in 19 descriptor RAM. Descriptor RAM is configurable as internal or external memory. 20 The QMSS driver manages the PDSP setups, linking RAM regions,
|
/linux-5.19.10/Documentation/admin-guide/ |
D | initrd.rst | 1 Using the initial RAM disk (initrd) 8 initrd provides the capability to load a RAM disk by the boot loader. 9 This RAM disk can then be mounted as the root file system and programs 27 1) the boot loader loads the kernel and the initial RAM disk 28 2) the kernel converts initrd into a "normal" RAM disk and 58 Loads the specified file as the initial RAM disk. When using LILO, you 59 have to specify the RAM disk image file in /etc/lilo.conf, using the 64 initrd data is preserved but it is not converted to a RAM disk and 77 with the RAM disk mounted as root. 117 Second, the kernel has to be compiled with RAM disk support and with [all …]
|
D | ramoops.rst | 11 Ramoops is an oops/panic logger that writes its logs to RAM before the system 13 needs a system with persistent RAM so that the content of that area can 54 to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat 121 You can specify either RAM memory or peripheral devices' memory. However, when 122 specifying RAM, be sure to reserve the memory by issuing memblock_reserve() 140 a stored record from RAM, simply unlink the respective pstore file.
|
/linux-5.19.10/arch/m68k/ |
D | Kconfig.machine | 369 comment "RAM configuration" 372 hex "Address of the base of RAM" 375 Define the address that RAM starts at. On many platforms this is 377 platforms choose to setup their RAM at other addresses within the 381 hex "Size of RAM (in bytes), or 0 for automatic" 384 Define the size of the system RAM. If you select 0 then the 385 kernel will try to probe the RAM size at runtime. This is not 393 put at the start of RAM, but it doesn't have to be. On ColdFire 424 of RAM, but usually some small offset from it. Define the start 426 processor vectors at the base of RAM and then the start of the [all …]
|
/linux-5.19.10/arch/arm/mach-socfpga/ |
D | Kconfig | 25 bool "Suspend to RAM on SOCFPGA" 27 Select this if you want to enable Suspend-to-RAM on SOCFPGA
|
/linux-5.19.10/Documentation/networking/devlink/ |
D | iosm.rst | 49 * - ``PSI RAM`` 56 PSI RAM and EBL are the RAM images which are injected to the device when the 70 1) When modem is in Boot ROM stage, user can use below command to inject PSI RAM 112 device (RAM dump).
|
/linux-5.19.10/arch/powerpc/platforms/powernv/ |
D | Kconfig | 30 bool "Enable runtime allocation of RAM for tracing" 33 Enabling this option allows for runtime allocation of memory (RAM)
|
/linux-5.19.10/Documentation/devicetree/bindings/mips/img/ |
D | xilfpga.txt | 20 - 128Mbyte DDR RAM at 0x0000_0000 21 - 8Kbyte RAM at 0x1000_0000 69 The BootRAM is a writeable "RAM" in FPGA at 0x1FC0_0000.
|
/linux-5.19.10/Documentation/devicetree/bindings/reserved-memory/ |
D | phram.yaml | 7 title: MTD/block device in RAM 13 The "phram" node is named after the "MTD in PHysical RAM" driver which
|
12345678910>>...15