1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2000, 2001 Broadcom Corporation
4 *
5 * Copyright (C) 2002 MontaVista Software Inc.
6 * Author: jsun@mvista.com or jsun@junsun.net
7 */
8 #include <linux/bcd.h>
9 #include <linux/types.h>
10 #include <linux/time.h>
11
12 #include <asm/time.h>
13 #include <asm/addrspace.h>
14 #include <asm/io.h>
15
16 #include <asm/sibyte/sb1250.h>
17 #include <asm/sibyte/sb1250_regs.h>
18 #include <asm/sibyte/sb1250_smbus.h>
19
20
21 /* M41T81 definitions */
22
23 /*
24 * Register bits
25 */
26
27 #define M41T81REG_SC_ST 0x80 /* stop bit */
28 #define M41T81REG_HR_CB 0x40 /* century bit */
29 #define M41T81REG_HR_CEB 0x80 /* century enable bit */
30 #define M41T81REG_CTL_S 0x20 /* sign bit */
31 #define M41T81REG_CTL_FT 0x40 /* frequency test bit */
32 #define M41T81REG_CTL_OUT 0x80 /* output level */
33 #define M41T81REG_WD_RB0 0x01 /* watchdog resolution bit 0 */
34 #define M41T81REG_WD_RB1 0x02 /* watchdog resolution bit 1 */
35 #define M41T81REG_WD_BMB0 0x04 /* watchdog multiplier bit 0 */
36 #define M41T81REG_WD_BMB1 0x08 /* watchdog multiplier bit 1 */
37 #define M41T81REG_WD_BMB2 0x10 /* watchdog multiplier bit 2 */
38 #define M41T81REG_WD_BMB3 0x20 /* watchdog multiplier bit 3 */
39 #define M41T81REG_WD_BMB4 0x40 /* watchdog multiplier bit 4 */
40 #define M41T81REG_AMO_ABE 0x20 /* alarm in "battery back-up mode" enable bit */
41 #define M41T81REG_AMO_SQWE 0x40 /* square wave enable */
42 #define M41T81REG_AMO_AFE 0x80 /* alarm flag enable flag */
43 #define M41T81REG_ADT_RPT5 0x40 /* alarm repeat mode bit 5 */
44 #define M41T81REG_ADT_RPT4 0x80 /* alarm repeat mode bit 4 */
45 #define M41T81REG_AHR_RPT3 0x80 /* alarm repeat mode bit 3 */
46 #define M41T81REG_AHR_HT 0x40 /* halt update bit */
47 #define M41T81REG_AMN_RPT2 0x80 /* alarm repeat mode bit 2 */
48 #define M41T81REG_ASC_RPT1 0x80 /* alarm repeat mode bit 1 */
49 #define M41T81REG_FLG_AF 0x40 /* alarm flag (read only) */
50 #define M41T81REG_FLG_WDF 0x80 /* watchdog flag (read only) */
51 #define M41T81REG_SQW_RS0 0x10 /* sqw frequency bit 0 */
52 #define M41T81REG_SQW_RS1 0x20 /* sqw frequency bit 1 */
53 #define M41T81REG_SQW_RS2 0x40 /* sqw frequency bit 2 */
54 #define M41T81REG_SQW_RS3 0x80 /* sqw frequency bit 3 */
55
56
57 /*
58 * Register numbers
59 */
60
61 #define M41T81REG_TSC 0x00 /* tenths/hundredths of second */
62 #define M41T81REG_SC 0x01 /* seconds */
63 #define M41T81REG_MN 0x02 /* minute */
64 #define M41T81REG_HR 0x03 /* hour/century */
65 #define M41T81REG_DY 0x04 /* day of week */
66 #define M41T81REG_DT 0x05 /* date of month */
67 #define M41T81REG_MO 0x06 /* month */
68 #define M41T81REG_YR 0x07 /* year */
69 #define M41T81REG_CTL 0x08 /* control */
70 #define M41T81REG_WD 0x09 /* watchdog */
71 #define M41T81REG_AMO 0x0A /* alarm: month */
72 #define M41T81REG_ADT 0x0B /* alarm: date */
73 #define M41T81REG_AHR 0x0C /* alarm: hour */
74 #define M41T81REG_AMN 0x0D /* alarm: minute */
75 #define M41T81REG_ASC 0x0E /* alarm: second */
76 #define M41T81REG_FLG 0x0F /* flags */
77 #define M41T81REG_SQW 0x13 /* square wave register */
78
79 #define M41T81_CCR_ADDRESS 0x68
80
81 #define SMB_CSR(reg) IOADDR(A_SMB_REGISTER(1, reg))
82
m41t81_read(uint8_t addr)83 static int m41t81_read(uint8_t addr)
84 {
85 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
86 ;
87
88 __raw_writeq(addr & 0xff, SMB_CSR(R_SMB_CMD));
89 __raw_writeq(V_SMB_ADDR(M41T81_CCR_ADDRESS) | V_SMB_TT_WR1BYTE,
90 SMB_CSR(R_SMB_START));
91
92 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
93 ;
94
95 __raw_writeq(V_SMB_ADDR(M41T81_CCR_ADDRESS) | V_SMB_TT_RD1BYTE,
96 SMB_CSR(R_SMB_START));
97
98 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
99 ;
100
101 if (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_ERROR) {
102 /* Clear error bit by writing a 1 */
103 __raw_writeq(M_SMB_ERROR, SMB_CSR(R_SMB_STATUS));
104 return -1;
105 }
106
107 return __raw_readq(SMB_CSR(R_SMB_DATA)) & 0xff;
108 }
109
m41t81_write(uint8_t addr,int b)110 static int m41t81_write(uint8_t addr, int b)
111 {
112 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
113 ;
114
115 __raw_writeq(addr & 0xff, SMB_CSR(R_SMB_CMD));
116 __raw_writeq(b & 0xff, SMB_CSR(R_SMB_DATA));
117 __raw_writeq(V_SMB_ADDR(M41T81_CCR_ADDRESS) | V_SMB_TT_WR2BYTE,
118 SMB_CSR(R_SMB_START));
119
120 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
121 ;
122
123 if (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_ERROR) {
124 /* Clear error bit by writing a 1 */
125 __raw_writeq(M_SMB_ERROR, SMB_CSR(R_SMB_STATUS));
126 return -1;
127 }
128
129 /* read the same byte again to make sure it is written */
130 __raw_writeq(V_SMB_ADDR(M41T81_CCR_ADDRESS) | V_SMB_TT_RD1BYTE,
131 SMB_CSR(R_SMB_START));
132
133 while (__raw_readq(SMB_CSR(R_SMB_STATUS)) & M_SMB_BUSY)
134 ;
135
136 return 0;
137 }
138
m41t81_set_time(time64_t t)139 int m41t81_set_time(time64_t t)
140 {
141 struct rtc_time tm;
142 unsigned long flags;
143
144 /* Note we don't care about the century */
145 rtc_time64_to_tm(t, &tm);
146
147 /*
148 * Note the write order matters as it ensures the correctness.
149 * When we write sec, 10th sec is clear. It is reasonable to
150 * believe we should finish writing min within a second.
151 */
152
153 spin_lock_irqsave(&rtc_lock, flags);
154 tm.tm_sec = bin2bcd(tm.tm_sec);
155 m41t81_write(M41T81REG_SC, tm.tm_sec);
156
157 tm.tm_min = bin2bcd(tm.tm_min);
158 m41t81_write(M41T81REG_MN, tm.tm_min);
159
160 tm.tm_hour = bin2bcd(tm.tm_hour);
161 tm.tm_hour = (tm.tm_hour & 0x3f) | (m41t81_read(M41T81REG_HR) & 0xc0);
162 m41t81_write(M41T81REG_HR, tm.tm_hour);
163
164 /* tm_wday starts from 0 to 6 */
165 if (tm.tm_wday == 0) tm.tm_wday = 7;
166 tm.tm_wday = bin2bcd(tm.tm_wday);
167 m41t81_write(M41T81REG_DY, tm.tm_wday);
168
169 tm.tm_mday = bin2bcd(tm.tm_mday);
170 m41t81_write(M41T81REG_DT, tm.tm_mday);
171
172 /* tm_mon starts from 0, *ick* */
173 tm.tm_mon ++;
174 tm.tm_mon = bin2bcd(tm.tm_mon);
175 m41t81_write(M41T81REG_MO, tm.tm_mon);
176
177 /* we don't do century, everything is beyond 2000 */
178 tm.tm_year %= 100;
179 tm.tm_year = bin2bcd(tm.tm_year);
180 m41t81_write(M41T81REG_YR, tm.tm_year);
181 spin_unlock_irqrestore(&rtc_lock, flags);
182
183 return 0;
184 }
185
m41t81_get_time(void)186 time64_t m41t81_get_time(void)
187 {
188 unsigned int year, mon, day, hour, min, sec;
189 unsigned long flags;
190
191 /*
192 * min is valid if two reads of sec are the same.
193 */
194 for (;;) {
195 spin_lock_irqsave(&rtc_lock, flags);
196 sec = m41t81_read(M41T81REG_SC);
197 min = m41t81_read(M41T81REG_MN);
198 if (sec == m41t81_read(M41T81REG_SC)) break;
199 spin_unlock_irqrestore(&rtc_lock, flags);
200 }
201 hour = m41t81_read(M41T81REG_HR) & 0x3f;
202 day = m41t81_read(M41T81REG_DT);
203 mon = m41t81_read(M41T81REG_MO);
204 year = m41t81_read(M41T81REG_YR);
205 spin_unlock_irqrestore(&rtc_lock, flags);
206
207 sec = bcd2bin(sec);
208 min = bcd2bin(min);
209 hour = bcd2bin(hour);
210 day = bcd2bin(day);
211 mon = bcd2bin(mon);
212 year = bcd2bin(year);
213
214 year += 2000;
215
216 return mktime64(year, mon, day, hour, min, sec);
217 }
218
m41t81_probe(void)219 int m41t81_probe(void)
220 {
221 unsigned int tmp;
222
223 /* enable chip if it is not enabled yet */
224 tmp = m41t81_read(M41T81REG_SC);
225 m41t81_write(M41T81REG_SC, tmp & 0x7f);
226
227 return m41t81_read(M41T81REG_SC) != -1;
228 }
229