1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB 0x00
52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
53 #define GSWIP_MDIO_CTRL 0x08
54 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
55 #define GSWIP_MDIO_CTRL_RD BIT(11)
56 #define GSWIP_MDIO_CTRL_WR BIT(10)
57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
60 #define GSWIP_MDIO_READ 0x09
61 #define GSWIP_MDIO_WRITE 0x0A
62 #define GSWIP_MDIO_MDC_CFG0 0x0B
63 #define GSWIP_MDIO_MDC_CFG1 0x0C
64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
88 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 GSWIP_MDIO_PHY_LINK_MASK | \
91 GSWIP_MDIO_PHY_SPEED_MASK | \
92 GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p) (0x2 * (p))
96 #define GSWIP_MII_CFG_RESET BIT(15)
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_ISOLATE BIT(13)
99 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
100 #define GSWIP_MII_CFG_RGMII_IBS BIT(8)
101 #define GSWIP_MII_CFG_RMII_CLK BIT(7)
102 #define GSWIP_MII_CFG_MODE_MIIP 0x0
103 #define GSWIP_MII_CFG_MODE_MIIM 0x1
104 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
105 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
106 #define GSWIP_MII_CFG_MODE_RGMII 0x4
107 #define GSWIP_MII_CFG_MODE_GMII 0x9
108 #define GSWIP_MII_CFG_MODE_MASK 0xf
109 #define GSWIP_MII_CFG_RATE_M2P5 0x00
110 #define GSWIP_MII_CFG_RATE_M25 0x10
111 #define GSWIP_MII_CFG_RATE_M125 0x20
112 #define GSWIP_MII_CFG_RATE_M50 0x30
113 #define GSWIP_MII_CFG_RATE_AUTO 0x40
114 #define GSWIP_MII_CFG_RATE_MASK 0x70
115 #define GSWIP_MII_PCDU0 0x01
116 #define GSWIP_MII_PCDU1 0x03
117 #define GSWIP_MII_PCDU5 0x05
118 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
119 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES 0x000
123 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
124 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
125 #define GSWIP_VERSION 0x013
126 #define GSWIP_VERSION_REV_SHIFT 0
127 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
128 #define GSWIP_VERSION_MOD_SHIFT 8
129 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
130 #define GSWIP_VERSION_2_0 0x100
131 #define GSWIP_VERSION_2_1 0x021
132 #define GSWIP_VERSION_2_2 0x122
133 #define GSWIP_VERSION_2_2_ETC 0x022
134
135 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR 0x044
137 #define GSWIP_BM_RAM_CTRL 0x045
138 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
139 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
140 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL 0x04A
142 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
145 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
146 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
149 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
150 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK 0x448
155 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR 0x44E
157 #define GSWIP_PCE_TBL_CTRL 0x44F
158 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
159 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
160 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
161 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
162 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
164 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
165 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
166 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
167 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
168 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0 0x456
173 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
174 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
175 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1 0x457
177 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
178 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
180 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
181 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
182 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
183 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
184 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
185 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
186 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
187 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
188 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
190 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
191 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
192 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
193 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
194 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN 0x8C5
198 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC))
199 #define GSWIP_MAC_CTRL_0_PADEN BIT(8)
200 #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7)
201 #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070
202 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000
203 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010
204 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020
205 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030
206 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040
207 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C
208 #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000
209 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004
210 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C
211 #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003
212 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000
213 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001
214 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002
215 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
218
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
221 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
222 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
223 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
224 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
225 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
232 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
233 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
234 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(3) /* Pause Frame Forwarding */
235
236 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
237 #define GSWIP_TABLE_VLAN_MAPPING 0x02
238 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
239 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
240
241 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
242
243 /* Maximum packet size supported by the switch. In theory this should be 10240,
244 * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247 * packet reception. This is probably caused by the PPA engine, which is on the
248 * RX part of the device. Packet transmission works properly up to 10240.
249 */
250 #define GSWIP_MAX_PACKET_LENGTH 2400
251
252 struct gswip_hw_info {
253 int max_ports;
254 int cpu_port;
255 const struct dsa_switch_ops *ops;
256 };
257
258 struct xway_gphy_match_data {
259 char *fe_firmware_name;
260 char *ge_firmware_name;
261 };
262
263 struct gswip_gphy_fw {
264 struct clk *clk_gate;
265 struct reset_control *reset;
266 u32 fw_addr_offset;
267 char *fw_name;
268 };
269
270 struct gswip_vlan {
271 struct net_device *bridge;
272 u16 vid;
273 u8 fid;
274 };
275
276 struct gswip_priv {
277 __iomem void *gswip;
278 __iomem void *mdio;
279 __iomem void *mii;
280 const struct gswip_hw_info *hw_info;
281 const struct xway_gphy_match_data *gphy_fw_name_cfg;
282 struct dsa_switch *ds;
283 struct device *dev;
284 struct regmap *rcu_regmap;
285 struct gswip_vlan vlans[64];
286 int num_gphy_fw;
287 struct gswip_gphy_fw *gphy_fw;
288 u32 port_vlan_filter;
289 struct mutex pce_table_lock;
290 };
291
292 struct gswip_pce_table_entry {
293 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
294 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
295 u16 key[8];
296 u16 val[5];
297 u16 mask;
298 u8 gmap;
299 bool type;
300 bool valid;
301 bool key_mode;
302 };
303
304 struct gswip_rmon_cnt_desc {
305 unsigned int size;
306 unsigned int offset;
307 const char *name;
308 };
309
310 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311
312 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313 /** Receive Packet Count (only packets that are accepted and not discarded). */
314 MIB_DESC(1, 0x1F, "RxGoodPkts"),
315 MIB_DESC(1, 0x23, "RxUnicastPkts"),
316 MIB_DESC(1, 0x22, "RxMulticastPkts"),
317 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324 MIB_DESC(1, 0x12, "Rx64BytePkts"),
325 MIB_DESC(1, 0x13, "Rx127BytePkts"),
326 MIB_DESC(1, 0x14, "Rx255BytePkts"),
327 MIB_DESC(1, 0x15, "Rx511BytePkts"),
328 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331 MIB_DESC(1, 0x18, "RxDroppedPkts"),
332 MIB_DESC(1, 0x19, "RxFilteredPkts"),
333 MIB_DESC(2, 0x24, "RxGoodBytes"),
334 MIB_DESC(2, 0x26, "RxBadBytes"),
335 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336 MIB_DESC(1, 0x0C, "TxGoodPkts"),
337 MIB_DESC(1, 0x06, "TxUnicastPkts"),
338 MIB_DESC(1, 0x07, "TxMulticastPkts"),
339 MIB_DESC(1, 0x00, "Tx64BytePkts"),
340 MIB_DESC(1, 0x01, "Tx127BytePkts"),
341 MIB_DESC(1, 0x02, "Tx255BytePkts"),
342 MIB_DESC(1, 0x03, "Tx511BytePkts"),
343 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346 MIB_DESC(1, 0x08, "TxSingleCollCount"),
347 MIB_DESC(1, 0x09, "TxMultCollCount"),
348 MIB_DESC(1, 0x0A, "TxLateCollCount"),
349 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350 MIB_DESC(1, 0x0D, "TxPauseCount"),
351 MIB_DESC(1, 0x10, "TxDroppedPkts"),
352 MIB_DESC(2, 0x0E, "TxGoodBytes"),
353 };
354
gswip_switch_r(struct gswip_priv * priv,u32 offset)355 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356 {
357 return __raw_readl(priv->gswip + (offset * 4));
358 }
359
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)360 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361 {
362 __raw_writel(val, priv->gswip + (offset * 4));
363 }
364
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)365 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366 u32 offset)
367 {
368 u32 val = gswip_switch_r(priv, offset);
369
370 val &= ~(clear);
371 val |= set;
372 gswip_switch_w(priv, val, offset);
373 }
374
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)375 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376 u32 cleared)
377 {
378 u32 val;
379
380 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381 (val & cleared) == 0, 20, 50000);
382 }
383
gswip_mdio_r(struct gswip_priv * priv,u32 offset)384 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385 {
386 return __raw_readl(priv->mdio + (offset * 4));
387 }
388
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)389 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390 {
391 __raw_writel(val, priv->mdio + (offset * 4));
392 }
393
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)394 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395 u32 offset)
396 {
397 u32 val = gswip_mdio_r(priv, offset);
398
399 val &= ~(clear);
400 val |= set;
401 gswip_mdio_w(priv, val, offset);
402 }
403
gswip_mii_r(struct gswip_priv * priv,u32 offset)404 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405 {
406 return __raw_readl(priv->mii + (offset * 4));
407 }
408
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)409 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410 {
411 __raw_writel(val, priv->mii + (offset * 4));
412 }
413
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)414 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415 u32 offset)
416 {
417 u32 val = gswip_mii_r(priv, offset);
418
419 val &= ~(clear);
420 val |= set;
421 gswip_mii_w(priv, val, offset);
422 }
423
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)424 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425 int port)
426 {
427 /* There's no MII_CFG register for the CPU port */
428 if (!dsa_is_cpu_port(priv->ds, port))
429 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430 }
431
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)432 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433 int port)
434 {
435 switch (port) {
436 case 0:
437 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438 break;
439 case 1:
440 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441 break;
442 case 5:
443 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444 break;
445 }
446 }
447
gswip_mdio_poll(struct gswip_priv * priv)448 static int gswip_mdio_poll(struct gswip_priv *priv)
449 {
450 int cnt = 100;
451
452 while (likely(cnt--)) {
453 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454
455 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456 return 0;
457 usleep_range(20, 40);
458 }
459
460 return -ETIMEDOUT;
461 }
462
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)463 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464 {
465 struct gswip_priv *priv = bus->priv;
466 int err;
467
468 err = gswip_mdio_poll(priv);
469 if (err) {
470 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471 return err;
472 }
473
474 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478 GSWIP_MDIO_CTRL);
479
480 return 0;
481 }
482
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)483 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484 {
485 struct gswip_priv *priv = bus->priv;
486 int err;
487
488 err = gswip_mdio_poll(priv);
489 if (err) {
490 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 return err;
492 }
493
494 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497 GSWIP_MDIO_CTRL);
498
499 err = gswip_mdio_poll(priv);
500 if (err) {
501 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502 return err;
503 }
504
505 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506 }
507
gswip_mdio(struct gswip_priv * priv,struct device_node * mdio_np)508 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
509 {
510 struct dsa_switch *ds = priv->ds;
511 int err;
512
513 ds->slave_mii_bus = mdiobus_alloc();
514 if (!ds->slave_mii_bus)
515 return -ENOMEM;
516
517 ds->slave_mii_bus->priv = priv;
518 ds->slave_mii_bus->read = gswip_mdio_rd;
519 ds->slave_mii_bus->write = gswip_mdio_wr;
520 ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
521 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
522 dev_name(priv->dev));
523 ds->slave_mii_bus->parent = priv->dev;
524 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
525
526 err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
527 if (err)
528 mdiobus_free(ds->slave_mii_bus);
529
530 return err;
531 }
532
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)533 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
534 struct gswip_pce_table_entry *tbl)
535 {
536 int i;
537 int err;
538 u16 crtl;
539 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
540 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
541
542 mutex_lock(&priv->pce_table_lock);
543
544 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
545 GSWIP_PCE_TBL_CTRL_BAS);
546 if (err) {
547 mutex_unlock(&priv->pce_table_lock);
548 return err;
549 }
550
551 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
552 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
553 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
554 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
555 GSWIP_PCE_TBL_CTRL);
556
557 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
558 GSWIP_PCE_TBL_CTRL_BAS);
559 if (err) {
560 mutex_unlock(&priv->pce_table_lock);
561 return err;
562 }
563
564 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
565 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
566
567 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
568 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
569
570 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
571
572 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
573
574 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
575 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
576 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
577
578 mutex_unlock(&priv->pce_table_lock);
579
580 return 0;
581 }
582
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)583 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
584 struct gswip_pce_table_entry *tbl)
585 {
586 int i;
587 int err;
588 u16 crtl;
589 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
590 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
591
592 mutex_lock(&priv->pce_table_lock);
593
594 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
595 GSWIP_PCE_TBL_CTRL_BAS);
596 if (err) {
597 mutex_unlock(&priv->pce_table_lock);
598 return err;
599 }
600
601 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
602 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
603 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
604 tbl->table | addr_mode,
605 GSWIP_PCE_TBL_CTRL);
606
607 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
608 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
609
610 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
611 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
612
613 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
614 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
615 tbl->table | addr_mode,
616 GSWIP_PCE_TBL_CTRL);
617
618 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
619
620 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
621 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
622 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
623 if (tbl->type)
624 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
625 if (tbl->valid)
626 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
627 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
628 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
629 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
630
631 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
632 GSWIP_PCE_TBL_CTRL_BAS);
633
634 mutex_unlock(&priv->pce_table_lock);
635
636 return err;
637 }
638
639 /* Add the LAN port into a bridge with the CPU port by
640 * default. This prevents automatic forwarding of
641 * packages between the LAN ports when no explicit
642 * bridge is configured.
643 */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)644 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
645 {
646 struct gswip_pce_table_entry vlan_active = {0,};
647 struct gswip_pce_table_entry vlan_mapping = {0,};
648 unsigned int cpu_port = priv->hw_info->cpu_port;
649 unsigned int max_ports = priv->hw_info->max_ports;
650 int err;
651
652 if (port >= max_ports) {
653 dev_err(priv->dev, "single port for %i supported\n", port);
654 return -EIO;
655 }
656
657 vlan_active.index = port + 1;
658 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
659 vlan_active.key[0] = 0; /* vid */
660 vlan_active.val[0] = port + 1 /* fid */;
661 vlan_active.valid = add;
662 err = gswip_pce_table_entry_write(priv, &vlan_active);
663 if (err) {
664 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
665 return err;
666 }
667
668 if (!add)
669 return 0;
670
671 vlan_mapping.index = port + 1;
672 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
673 vlan_mapping.val[0] = 0 /* vid */;
674 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
675 vlan_mapping.val[2] = 0;
676 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
677 if (err) {
678 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
679 return err;
680 }
681
682 return 0;
683 }
684
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)685 static int gswip_port_enable(struct dsa_switch *ds, int port,
686 struct phy_device *phydev)
687 {
688 struct gswip_priv *priv = ds->priv;
689 int err;
690
691 if (!dsa_is_user_port(ds, port))
692 return 0;
693
694 if (!dsa_is_cpu_port(ds, port)) {
695 err = gswip_add_single_port_br(priv, port, true);
696 if (err)
697 return err;
698 }
699
700 /* RMON Counter Enable for port */
701 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
702
703 /* enable port fetch/store dma & VLAN Modification */
704 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
705 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
706 GSWIP_FDMA_PCTRLp(port));
707 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
708 GSWIP_SDMA_PCTRLp(port));
709
710 if (!dsa_is_cpu_port(ds, port)) {
711 u32 mdio_phy = 0;
712
713 if (phydev)
714 mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
715
716 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
717 GSWIP_MDIO_PHYp(port));
718 }
719
720 return 0;
721 }
722
gswip_port_disable(struct dsa_switch * ds,int port)723 static void gswip_port_disable(struct dsa_switch *ds, int port)
724 {
725 struct gswip_priv *priv = ds->priv;
726
727 if (!dsa_is_user_port(ds, port))
728 return;
729
730 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
731 GSWIP_FDMA_PCTRLp(port));
732 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
733 GSWIP_SDMA_PCTRLp(port));
734 }
735
gswip_pce_load_microcode(struct gswip_priv * priv)736 static int gswip_pce_load_microcode(struct gswip_priv *priv)
737 {
738 int i;
739 int err;
740
741 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
742 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
743 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
744 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
745
746 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
747 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
748 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
749 GSWIP_PCE_TBL_VAL(0));
750 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
751 GSWIP_PCE_TBL_VAL(1));
752 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
753 GSWIP_PCE_TBL_VAL(2));
754 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
755 GSWIP_PCE_TBL_VAL(3));
756
757 /* start the table access: */
758 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
759 GSWIP_PCE_TBL_CTRL);
760 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
761 GSWIP_PCE_TBL_CTRL_BAS);
762 if (err)
763 return err;
764 }
765
766 /* tell the switch that the microcode is loaded */
767 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
768 GSWIP_PCE_GCTRL_0);
769
770 return 0;
771 }
772
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)773 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
774 bool vlan_filtering,
775 struct netlink_ext_ack *extack)
776 {
777 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
778 struct gswip_priv *priv = ds->priv;
779
780 /* Do not allow changing the VLAN filtering options while in bridge */
781 if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
782 NL_SET_ERR_MSG_MOD(extack,
783 "Dynamic toggling of vlan_filtering not supported");
784 return -EIO;
785 }
786
787 if (vlan_filtering) {
788 /* Use port based VLAN tag */
789 gswip_switch_mask(priv,
790 GSWIP_PCE_VCTRL_VSR,
791 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
792 GSWIP_PCE_VCTRL_VEMR,
793 GSWIP_PCE_VCTRL(port));
794 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
795 GSWIP_PCE_PCTRL_0p(port));
796 } else {
797 /* Use port based VLAN tag */
798 gswip_switch_mask(priv,
799 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
800 GSWIP_PCE_VCTRL_VEMR,
801 GSWIP_PCE_VCTRL_VSR,
802 GSWIP_PCE_VCTRL(port));
803 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
804 GSWIP_PCE_PCTRL_0p(port));
805 }
806
807 return 0;
808 }
809
gswip_setup(struct dsa_switch * ds)810 static int gswip_setup(struct dsa_switch *ds)
811 {
812 struct gswip_priv *priv = ds->priv;
813 unsigned int cpu_port = priv->hw_info->cpu_port;
814 int i;
815 int err;
816
817 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
818 usleep_range(5000, 10000);
819 gswip_switch_w(priv, 0, GSWIP_SWRES);
820
821 /* disable port fetch/store dma on all ports */
822 for (i = 0; i < priv->hw_info->max_ports; i++) {
823 gswip_port_disable(ds, i);
824 gswip_port_vlan_filtering(ds, i, false, NULL);
825 }
826
827 /* enable Switch */
828 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
829
830 err = gswip_pce_load_microcode(priv);
831 if (err) {
832 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
833 return err;
834 }
835
836 /* Default unknown Broadcast/Multicast/Unicast port maps */
837 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
838 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
839 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
840
841 /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
842 * interoperability problem with this auto polling mechanism because
843 * their status registers think that the link is in a different state
844 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
845 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
846 * auto polling state machine consider the link being negotiated with
847 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
848 * to the switch port being completely dead (RX and TX are both not
849 * working).
850 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
851 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
852 * it would work fine for a few minutes to hours and then stop, on
853 * other device it would no traffic could be sent or received at all.
854 * Testing shows that when PHY auto polling is disabled these problems
855 * go away.
856 */
857 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
858
859 /* Configure the MDIO Clock 2.5 MHz */
860 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
861
862 /* Disable the xMII interface and clear it's isolation bit */
863 for (i = 0; i < priv->hw_info->max_ports; i++)
864 gswip_mii_mask_cfg(priv,
865 GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
866 0, i);
867
868 /* enable special tag insertion on cpu port */
869 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
870 GSWIP_FDMA_PCTRLp(cpu_port));
871
872 /* accept special tag in ingress direction */
873 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
874 GSWIP_PCE_PCTRL_0p(cpu_port));
875
876 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
877 GSWIP_BM_QUEUE_GCTRL);
878
879 /* VLAN aware Switching */
880 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
881
882 /* Flush MAC Table */
883 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
884
885 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
886 GSWIP_PCE_GCTRL_0_MTFL);
887 if (err) {
888 dev_err(priv->dev, "MAC flushing didn't finish\n");
889 return err;
890 }
891
892 ds->mtu_enforcement_ingress = true;
893
894 gswip_port_enable(ds, cpu_port, NULL);
895
896 ds->configure_vlan_while_not_filtering = false;
897
898 return 0;
899 }
900
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)901 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
902 int port,
903 enum dsa_tag_protocol mp)
904 {
905 return DSA_TAG_PROTO_GSWIP;
906 }
907
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)908 static int gswip_vlan_active_create(struct gswip_priv *priv,
909 struct net_device *bridge,
910 int fid, u16 vid)
911 {
912 struct gswip_pce_table_entry vlan_active = {0,};
913 unsigned int max_ports = priv->hw_info->max_ports;
914 int idx = -1;
915 int err;
916 int i;
917
918 /* Look for a free slot */
919 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
920 if (!priv->vlans[i].bridge) {
921 idx = i;
922 break;
923 }
924 }
925
926 if (idx == -1)
927 return -ENOSPC;
928
929 if (fid == -1)
930 fid = idx;
931
932 vlan_active.index = idx;
933 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
934 vlan_active.key[0] = vid;
935 vlan_active.val[0] = fid;
936 vlan_active.valid = true;
937
938 err = gswip_pce_table_entry_write(priv, &vlan_active);
939 if (err) {
940 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
941 return err;
942 }
943
944 priv->vlans[idx].bridge = bridge;
945 priv->vlans[idx].vid = vid;
946 priv->vlans[idx].fid = fid;
947
948 return idx;
949 }
950
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)951 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
952 {
953 struct gswip_pce_table_entry vlan_active = {0,};
954 int err;
955
956 vlan_active.index = idx;
957 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
958 vlan_active.valid = false;
959 err = gswip_pce_table_entry_write(priv, &vlan_active);
960 if (err)
961 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
962 priv->vlans[idx].bridge = NULL;
963
964 return err;
965 }
966
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)967 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
968 struct net_device *bridge, int port)
969 {
970 struct gswip_pce_table_entry vlan_mapping = {0,};
971 unsigned int max_ports = priv->hw_info->max_ports;
972 unsigned int cpu_port = priv->hw_info->cpu_port;
973 bool active_vlan_created = false;
974 int idx = -1;
975 int i;
976 int err;
977
978 /* Check if there is already a page for this bridge */
979 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
980 if (priv->vlans[i].bridge == bridge) {
981 idx = i;
982 break;
983 }
984 }
985
986 /* If this bridge is not programmed yet, add a Active VLAN table
987 * entry in a free slot and prepare the VLAN mapping table entry.
988 */
989 if (idx == -1) {
990 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
991 if (idx < 0)
992 return idx;
993 active_vlan_created = true;
994
995 vlan_mapping.index = idx;
996 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
997 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
998 vlan_mapping.val[0] = 0;
999 } else {
1000 /* Read the existing VLAN mapping entry from the switch */
1001 vlan_mapping.index = idx;
1002 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1003 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1004 if (err) {
1005 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1006 err);
1007 return err;
1008 }
1009 }
1010
1011 /* Update the VLAN mapping entry and write it to the switch */
1012 vlan_mapping.val[1] |= BIT(cpu_port);
1013 vlan_mapping.val[1] |= BIT(port);
1014 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1015 if (err) {
1016 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1017 /* In case an Active VLAN was creaetd delete it again */
1018 if (active_vlan_created)
1019 gswip_vlan_active_remove(priv, idx);
1020 return err;
1021 }
1022
1023 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1024 return 0;
1025 }
1026
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1027 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1028 struct net_device *bridge, int port,
1029 u16 vid, bool untagged,
1030 bool pvid)
1031 {
1032 struct gswip_pce_table_entry vlan_mapping = {0,};
1033 unsigned int max_ports = priv->hw_info->max_ports;
1034 unsigned int cpu_port = priv->hw_info->cpu_port;
1035 bool active_vlan_created = false;
1036 int idx = -1;
1037 int fid = -1;
1038 int i;
1039 int err;
1040
1041 /* Check if there is already a page for this bridge */
1042 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1043 if (priv->vlans[i].bridge == bridge) {
1044 if (fid != -1 && fid != priv->vlans[i].fid)
1045 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1046 fid = priv->vlans[i].fid;
1047 if (priv->vlans[i].vid == vid) {
1048 idx = i;
1049 break;
1050 }
1051 }
1052 }
1053
1054 /* If this bridge is not programmed yet, add a Active VLAN table
1055 * entry in a free slot and prepare the VLAN mapping table entry.
1056 */
1057 if (idx == -1) {
1058 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1059 if (idx < 0)
1060 return idx;
1061 active_vlan_created = true;
1062
1063 vlan_mapping.index = idx;
1064 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1066 vlan_mapping.val[0] = vid;
1067 } else {
1068 /* Read the existing VLAN mapping entry from the switch */
1069 vlan_mapping.index = idx;
1070 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072 if (err) {
1073 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1074 err);
1075 return err;
1076 }
1077 }
1078
1079 vlan_mapping.val[0] = vid;
1080 /* Update the VLAN mapping entry and write it to the switch */
1081 vlan_mapping.val[1] |= BIT(cpu_port);
1082 vlan_mapping.val[2] |= BIT(cpu_port);
1083 vlan_mapping.val[1] |= BIT(port);
1084 if (untagged)
1085 vlan_mapping.val[2] &= ~BIT(port);
1086 else
1087 vlan_mapping.val[2] |= BIT(port);
1088 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1089 if (err) {
1090 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1091 /* In case an Active VLAN was creaetd delete it again */
1092 if (active_vlan_created)
1093 gswip_vlan_active_remove(priv, idx);
1094 return err;
1095 }
1096
1097 if (pvid)
1098 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1099
1100 return 0;
1101 }
1102
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1103 static int gswip_vlan_remove(struct gswip_priv *priv,
1104 struct net_device *bridge, int port,
1105 u16 vid, bool pvid, bool vlan_aware)
1106 {
1107 struct gswip_pce_table_entry vlan_mapping = {0,};
1108 unsigned int max_ports = priv->hw_info->max_ports;
1109 unsigned int cpu_port = priv->hw_info->cpu_port;
1110 int idx = -1;
1111 int i;
1112 int err;
1113
1114 /* Check if there is already a page for this bridge */
1115 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1116 if (priv->vlans[i].bridge == bridge &&
1117 (!vlan_aware || priv->vlans[i].vid == vid)) {
1118 idx = i;
1119 break;
1120 }
1121 }
1122
1123 if (idx == -1) {
1124 dev_err(priv->dev, "bridge to leave does not exists\n");
1125 return -ENOENT;
1126 }
1127
1128 vlan_mapping.index = idx;
1129 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1130 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1131 if (err) {
1132 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1133 return err;
1134 }
1135
1136 vlan_mapping.val[1] &= ~BIT(port);
1137 vlan_mapping.val[2] &= ~BIT(port);
1138 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1139 if (err) {
1140 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1141 return err;
1142 }
1143
1144 /* In case all ports are removed from the bridge, remove the VLAN */
1145 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1146 err = gswip_vlan_active_remove(priv, idx);
1147 if (err) {
1148 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1149 err);
1150 return err;
1151 }
1152 }
1153
1154 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1155 if (pvid)
1156 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1157
1158 return 0;
1159 }
1160
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1161 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1162 struct dsa_bridge bridge,
1163 bool *tx_fwd_offload,
1164 struct netlink_ext_ack *extack)
1165 {
1166 struct net_device *br = bridge.dev;
1167 struct gswip_priv *priv = ds->priv;
1168 int err;
1169
1170 /* When the bridge uses VLAN filtering we have to configure VLAN
1171 * specific bridges. No bridge is configured here.
1172 */
1173 if (!br_vlan_enabled(br)) {
1174 err = gswip_vlan_add_unaware(priv, br, port);
1175 if (err)
1176 return err;
1177 priv->port_vlan_filter &= ~BIT(port);
1178 } else {
1179 priv->port_vlan_filter |= BIT(port);
1180 }
1181 return gswip_add_single_port_br(priv, port, false);
1182 }
1183
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1184 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1185 struct dsa_bridge bridge)
1186 {
1187 struct net_device *br = bridge.dev;
1188 struct gswip_priv *priv = ds->priv;
1189
1190 gswip_add_single_port_br(priv, port, true);
1191
1192 /* When the bridge uses VLAN filtering we have to configure VLAN
1193 * specific bridges. No bridge is configured here.
1194 */
1195 if (!br_vlan_enabled(br))
1196 gswip_vlan_remove(priv, br, port, 0, true, false);
1197 }
1198
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1199 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1200 const struct switchdev_obj_port_vlan *vlan,
1201 struct netlink_ext_ack *extack)
1202 {
1203 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1204 struct gswip_priv *priv = ds->priv;
1205 unsigned int max_ports = priv->hw_info->max_ports;
1206 int pos = max_ports;
1207 int i, idx = -1;
1208
1209 /* We only support VLAN filtering on bridges */
1210 if (!dsa_is_cpu_port(ds, port) && !bridge)
1211 return -EOPNOTSUPP;
1212
1213 /* Check if there is already a page for this VLAN */
1214 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1215 if (priv->vlans[i].bridge == bridge &&
1216 priv->vlans[i].vid == vlan->vid) {
1217 idx = i;
1218 break;
1219 }
1220 }
1221
1222 /* If this VLAN is not programmed yet, we have to reserve
1223 * one entry in the VLAN table. Make sure we start at the
1224 * next position round.
1225 */
1226 if (idx == -1) {
1227 /* Look for a free slot */
1228 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1229 if (!priv->vlans[pos].bridge) {
1230 idx = pos;
1231 pos++;
1232 break;
1233 }
1234 }
1235
1236 if (idx == -1) {
1237 NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1238 return -ENOSPC;
1239 }
1240 }
1241
1242 return 0;
1243 }
1244
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1245 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1246 const struct switchdev_obj_port_vlan *vlan,
1247 struct netlink_ext_ack *extack)
1248 {
1249 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1250 struct gswip_priv *priv = ds->priv;
1251 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1252 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1253 int err;
1254
1255 err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1256 if (err)
1257 return err;
1258
1259 /* We have to receive all packets on the CPU port and should not
1260 * do any VLAN filtering here. This is also called with bridge
1261 * NULL and then we do not know for which bridge to configure
1262 * this.
1263 */
1264 if (dsa_is_cpu_port(ds, port))
1265 return 0;
1266
1267 return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1268 untagged, pvid);
1269 }
1270
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1271 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1272 const struct switchdev_obj_port_vlan *vlan)
1273 {
1274 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1275 struct gswip_priv *priv = ds->priv;
1276 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1277
1278 /* We have to receive all packets on the CPU port and should not
1279 * do any VLAN filtering here. This is also called with bridge
1280 * NULL and then we do not know for which bridge to configure
1281 * this.
1282 */
1283 if (dsa_is_cpu_port(ds, port))
1284 return 0;
1285
1286 return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1287 }
1288
gswip_port_fast_age(struct dsa_switch * ds,int port)1289 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1290 {
1291 struct gswip_priv *priv = ds->priv;
1292 struct gswip_pce_table_entry mac_bridge = {0,};
1293 int i;
1294 int err;
1295
1296 for (i = 0; i < 2048; i++) {
1297 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1298 mac_bridge.index = i;
1299
1300 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1301 if (err) {
1302 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1303 err);
1304 return;
1305 }
1306
1307 if (!mac_bridge.valid)
1308 continue;
1309
1310 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1311 continue;
1312
1313 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1314 continue;
1315
1316 mac_bridge.valid = false;
1317 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1318 if (err) {
1319 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1320 err);
1321 return;
1322 }
1323 }
1324 }
1325
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1326 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1327 {
1328 struct gswip_priv *priv = ds->priv;
1329 u32 stp_state;
1330
1331 switch (state) {
1332 case BR_STATE_DISABLED:
1333 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1334 GSWIP_SDMA_PCTRLp(port));
1335 return;
1336 case BR_STATE_BLOCKING:
1337 case BR_STATE_LISTENING:
1338 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1339 break;
1340 case BR_STATE_LEARNING:
1341 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1342 break;
1343 case BR_STATE_FORWARDING:
1344 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1345 break;
1346 default:
1347 dev_err(priv->dev, "invalid STP state: %d\n", state);
1348 return;
1349 }
1350
1351 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1352 GSWIP_SDMA_PCTRLp(port));
1353 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1354 GSWIP_PCE_PCTRL_0p(port));
1355 }
1356
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1357 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1358 const unsigned char *addr, u16 vid, bool add)
1359 {
1360 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1361 struct gswip_priv *priv = ds->priv;
1362 struct gswip_pce_table_entry mac_bridge = {0,};
1363 unsigned int max_ports = priv->hw_info->max_ports;
1364 int fid = -1;
1365 int i;
1366 int err;
1367
1368 if (!bridge)
1369 return -EINVAL;
1370
1371 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1372 if (priv->vlans[i].bridge == bridge) {
1373 fid = priv->vlans[i].fid;
1374 break;
1375 }
1376 }
1377
1378 if (fid == -1) {
1379 dev_err(priv->dev, "Port not part of a bridge\n");
1380 return -EINVAL;
1381 }
1382
1383 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1384 mac_bridge.key_mode = true;
1385 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1386 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1387 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1388 mac_bridge.key[3] = fid;
1389 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1390 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1391 mac_bridge.valid = add;
1392
1393 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1394 if (err)
1395 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1396
1397 return err;
1398 }
1399
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1400 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1401 const unsigned char *addr, u16 vid,
1402 struct dsa_db db)
1403 {
1404 return gswip_port_fdb(ds, port, addr, vid, true);
1405 }
1406
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1407 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1408 const unsigned char *addr, u16 vid,
1409 struct dsa_db db)
1410 {
1411 return gswip_port_fdb(ds, port, addr, vid, false);
1412 }
1413
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1414 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1415 dsa_fdb_dump_cb_t *cb, void *data)
1416 {
1417 struct gswip_priv *priv = ds->priv;
1418 struct gswip_pce_table_entry mac_bridge = {0,};
1419 unsigned char addr[6];
1420 int i;
1421 int err;
1422
1423 for (i = 0; i < 2048; i++) {
1424 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1425 mac_bridge.index = i;
1426
1427 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1428 if (err) {
1429 dev_err(priv->dev,
1430 "failed to read mac bridge entry %d: %d\n",
1431 i, err);
1432 return err;
1433 }
1434
1435 if (!mac_bridge.valid)
1436 continue;
1437
1438 addr[5] = mac_bridge.key[0] & 0xff;
1439 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1440 addr[3] = mac_bridge.key[1] & 0xff;
1441 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1442 addr[1] = mac_bridge.key[2] & 0xff;
1443 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1444 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1445 if (mac_bridge.val[0] & BIT(port)) {
1446 err = cb(addr, 0, true, data);
1447 if (err)
1448 return err;
1449 }
1450 } else {
1451 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1452 err = cb(addr, 0, false, data);
1453 if (err)
1454 return err;
1455 }
1456 }
1457 }
1458 return 0;
1459 }
1460
gswip_port_max_mtu(struct dsa_switch * ds,int port)1461 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1462 {
1463 /* Includes 8 bytes for special header. */
1464 return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1465 }
1466
gswip_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1467 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1468 {
1469 struct gswip_priv *priv = ds->priv;
1470 int cpu_port = priv->hw_info->cpu_port;
1471
1472 /* CPU port always has maximum mtu of user ports, so use it to set
1473 * switch frame size, including 8 byte special header.
1474 */
1475 if (port == cpu_port) {
1476 new_mtu += 8;
1477 gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1478 GSWIP_MAC_FLEN);
1479 }
1480
1481 /* Enable MLEN for ports with non-standard MTUs, including the special
1482 * header on the CPU port added above.
1483 */
1484 if (new_mtu != ETH_DATA_LEN)
1485 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1486 GSWIP_MAC_CTRL_2p(port));
1487 else
1488 gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1489 GSWIP_MAC_CTRL_2p(port));
1490
1491 return 0;
1492 }
1493
gswip_xrx200_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1494 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1495 struct phylink_config *config)
1496 {
1497 switch (port) {
1498 case 0:
1499 case 1:
1500 phy_interface_set_rgmii(config->supported_interfaces);
1501 __set_bit(PHY_INTERFACE_MODE_MII,
1502 config->supported_interfaces);
1503 __set_bit(PHY_INTERFACE_MODE_REVMII,
1504 config->supported_interfaces);
1505 __set_bit(PHY_INTERFACE_MODE_RMII,
1506 config->supported_interfaces);
1507 break;
1508
1509 case 2:
1510 case 3:
1511 case 4:
1512 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1513 config->supported_interfaces);
1514 break;
1515
1516 case 5:
1517 phy_interface_set_rgmii(config->supported_interfaces);
1518 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1519 config->supported_interfaces);
1520 break;
1521 }
1522
1523 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1524 MAC_10 | MAC_100 | MAC_1000;
1525 }
1526
gswip_xrx300_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1527 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1528 struct phylink_config *config)
1529 {
1530 switch (port) {
1531 case 0:
1532 phy_interface_set_rgmii(config->supported_interfaces);
1533 __set_bit(PHY_INTERFACE_MODE_GMII,
1534 config->supported_interfaces);
1535 __set_bit(PHY_INTERFACE_MODE_RMII,
1536 config->supported_interfaces);
1537 break;
1538
1539 case 1:
1540 case 2:
1541 case 3:
1542 case 4:
1543 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1544 config->supported_interfaces);
1545 break;
1546
1547 case 5:
1548 phy_interface_set_rgmii(config->supported_interfaces);
1549 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1550 config->supported_interfaces);
1551 __set_bit(PHY_INTERFACE_MODE_RMII,
1552 config->supported_interfaces);
1553 break;
1554 }
1555
1556 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1557 MAC_10 | MAC_100 | MAC_1000;
1558 }
1559
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1560 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1561 {
1562 u32 mdio_phy;
1563
1564 if (link)
1565 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1566 else
1567 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1568
1569 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1570 GSWIP_MDIO_PHYp(port));
1571 }
1572
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1573 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1574 phy_interface_t interface)
1575 {
1576 u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1577
1578 switch (speed) {
1579 case SPEED_10:
1580 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1581
1582 if (interface == PHY_INTERFACE_MODE_RMII)
1583 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1584 else
1585 mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1586
1587 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1588 break;
1589
1590 case SPEED_100:
1591 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1592
1593 if (interface == PHY_INTERFACE_MODE_RMII)
1594 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1595 else
1596 mii_cfg = GSWIP_MII_CFG_RATE_M25;
1597
1598 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1599 break;
1600
1601 case SPEED_1000:
1602 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1603
1604 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1605
1606 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1607 break;
1608 }
1609
1610 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1611 GSWIP_MDIO_PHYp(port));
1612 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1613 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1614 GSWIP_MAC_CTRL_0p(port));
1615 }
1616
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1617 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1618 {
1619 u32 mac_ctrl_0, mdio_phy;
1620
1621 if (duplex == DUPLEX_FULL) {
1622 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1623 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1624 } else {
1625 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1626 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1627 }
1628
1629 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1630 GSWIP_MAC_CTRL_0p(port));
1631 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1632 GSWIP_MDIO_PHYp(port));
1633 }
1634
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1635 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1636 bool tx_pause, bool rx_pause)
1637 {
1638 u32 mac_ctrl_0, mdio_phy;
1639
1640 if (tx_pause && rx_pause) {
1641 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1642 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1643 GSWIP_MDIO_PHY_FCONRX_EN;
1644 } else if (tx_pause) {
1645 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1646 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1647 GSWIP_MDIO_PHY_FCONRX_DIS;
1648 } else if (rx_pause) {
1649 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1650 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1651 GSWIP_MDIO_PHY_FCONRX_EN;
1652 } else {
1653 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1654 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1655 GSWIP_MDIO_PHY_FCONRX_DIS;
1656 }
1657
1658 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1659 mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1660 gswip_mdio_mask(priv,
1661 GSWIP_MDIO_PHY_FCONTX_MASK |
1662 GSWIP_MDIO_PHY_FCONRX_MASK,
1663 mdio_phy, GSWIP_MDIO_PHYp(port));
1664 }
1665
gswip_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)1666 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1667 unsigned int mode,
1668 const struct phylink_link_state *state)
1669 {
1670 struct gswip_priv *priv = ds->priv;
1671 u32 miicfg = 0;
1672
1673 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1674
1675 switch (state->interface) {
1676 case PHY_INTERFACE_MODE_MII:
1677 case PHY_INTERFACE_MODE_INTERNAL:
1678 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1679 break;
1680 case PHY_INTERFACE_MODE_REVMII:
1681 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1682 break;
1683 case PHY_INTERFACE_MODE_RMII:
1684 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1685 break;
1686 case PHY_INTERFACE_MODE_RGMII:
1687 case PHY_INTERFACE_MODE_RGMII_ID:
1688 case PHY_INTERFACE_MODE_RGMII_RXID:
1689 case PHY_INTERFACE_MODE_RGMII_TXID:
1690 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1691 break;
1692 case PHY_INTERFACE_MODE_GMII:
1693 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1694 break;
1695 default:
1696 dev_err(ds->dev,
1697 "Unsupported interface: %d\n", state->interface);
1698 return;
1699 }
1700
1701 gswip_mii_mask_cfg(priv,
1702 GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1703 GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1704 miicfg, port);
1705
1706 switch (state->interface) {
1707 case PHY_INTERFACE_MODE_RGMII_ID:
1708 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1709 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1710 break;
1711 case PHY_INTERFACE_MODE_RGMII_RXID:
1712 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1713 break;
1714 case PHY_INTERFACE_MODE_RGMII_TXID:
1715 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1716 break;
1717 default:
1718 break;
1719 }
1720 }
1721
gswip_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)1722 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1723 unsigned int mode,
1724 phy_interface_t interface)
1725 {
1726 struct gswip_priv *priv = ds->priv;
1727
1728 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1729
1730 if (!dsa_is_cpu_port(ds, port))
1731 gswip_port_set_link(priv, port, false);
1732 }
1733
gswip_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1734 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1735 unsigned int mode,
1736 phy_interface_t interface,
1737 struct phy_device *phydev,
1738 int speed, int duplex,
1739 bool tx_pause, bool rx_pause)
1740 {
1741 struct gswip_priv *priv = ds->priv;
1742
1743 if (!dsa_is_cpu_port(ds, port)) {
1744 gswip_port_set_link(priv, port, true);
1745 gswip_port_set_speed(priv, port, speed, interface);
1746 gswip_port_set_duplex(priv, port, duplex);
1747 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1748 }
1749
1750 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1751 }
1752
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1753 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1754 uint8_t *data)
1755 {
1756 int i;
1757
1758 if (stringset != ETH_SS_STATS)
1759 return;
1760
1761 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1762 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1763 ETH_GSTRING_LEN);
1764 }
1765
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1766 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1767 u32 index)
1768 {
1769 u32 result;
1770 int err;
1771
1772 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1773 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1774 GSWIP_BM_RAM_CTRL_OPMOD,
1775 table | GSWIP_BM_RAM_CTRL_BAS,
1776 GSWIP_BM_RAM_CTRL);
1777
1778 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1779 GSWIP_BM_RAM_CTRL_BAS);
1780 if (err) {
1781 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1782 table, index);
1783 return 0;
1784 }
1785
1786 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1787 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1788
1789 return result;
1790 }
1791
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1792 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1793 uint64_t *data)
1794 {
1795 struct gswip_priv *priv = ds->priv;
1796 const struct gswip_rmon_cnt_desc *rmon_cnt;
1797 int i;
1798 u64 high;
1799
1800 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1801 rmon_cnt = &gswip_rmon_cnt[i];
1802
1803 data[i] = gswip_bcm_ram_entry_read(priv, port,
1804 rmon_cnt->offset);
1805 if (rmon_cnt->size == 2) {
1806 high = gswip_bcm_ram_entry_read(priv, port,
1807 rmon_cnt->offset + 1);
1808 data[i] |= high << 32;
1809 }
1810 }
1811 }
1812
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1813 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1814 {
1815 if (sset != ETH_SS_STATS)
1816 return 0;
1817
1818 return ARRAY_SIZE(gswip_rmon_cnt);
1819 }
1820
1821 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1822 .get_tag_protocol = gswip_get_tag_protocol,
1823 .setup = gswip_setup,
1824 .port_enable = gswip_port_enable,
1825 .port_disable = gswip_port_disable,
1826 .port_bridge_join = gswip_port_bridge_join,
1827 .port_bridge_leave = gswip_port_bridge_leave,
1828 .port_fast_age = gswip_port_fast_age,
1829 .port_vlan_filtering = gswip_port_vlan_filtering,
1830 .port_vlan_add = gswip_port_vlan_add,
1831 .port_vlan_del = gswip_port_vlan_del,
1832 .port_stp_state_set = gswip_port_stp_state_set,
1833 .port_fdb_add = gswip_port_fdb_add,
1834 .port_fdb_del = gswip_port_fdb_del,
1835 .port_fdb_dump = gswip_port_fdb_dump,
1836 .port_change_mtu = gswip_port_change_mtu,
1837 .port_max_mtu = gswip_port_max_mtu,
1838 .phylink_get_caps = gswip_xrx200_phylink_get_caps,
1839 .phylink_mac_config = gswip_phylink_mac_config,
1840 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1841 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1842 .get_strings = gswip_get_strings,
1843 .get_ethtool_stats = gswip_get_ethtool_stats,
1844 .get_sset_count = gswip_get_sset_count,
1845 };
1846
1847 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1848 .get_tag_protocol = gswip_get_tag_protocol,
1849 .setup = gswip_setup,
1850 .port_enable = gswip_port_enable,
1851 .port_disable = gswip_port_disable,
1852 .port_bridge_join = gswip_port_bridge_join,
1853 .port_bridge_leave = gswip_port_bridge_leave,
1854 .port_fast_age = gswip_port_fast_age,
1855 .port_vlan_filtering = gswip_port_vlan_filtering,
1856 .port_vlan_add = gswip_port_vlan_add,
1857 .port_vlan_del = gswip_port_vlan_del,
1858 .port_stp_state_set = gswip_port_stp_state_set,
1859 .port_fdb_add = gswip_port_fdb_add,
1860 .port_fdb_del = gswip_port_fdb_del,
1861 .port_fdb_dump = gswip_port_fdb_dump,
1862 .port_change_mtu = gswip_port_change_mtu,
1863 .port_max_mtu = gswip_port_max_mtu,
1864 .phylink_get_caps = gswip_xrx300_phylink_get_caps,
1865 .phylink_mac_config = gswip_phylink_mac_config,
1866 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1867 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1868 .get_strings = gswip_get_strings,
1869 .get_ethtool_stats = gswip_get_ethtool_stats,
1870 .get_sset_count = gswip_get_sset_count,
1871 };
1872
1873 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1874 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1875 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1876 };
1877
1878 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1879 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1880 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1881 };
1882
1883 static const struct xway_gphy_match_data xrx300_gphy_data = {
1884 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1885 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1886 };
1887
1888 static const struct of_device_id xway_gphy_match[] = {
1889 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1890 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1891 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1892 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1893 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1894 {},
1895 };
1896
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1897 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1898 {
1899 struct device *dev = priv->dev;
1900 const struct firmware *fw;
1901 void *fw_addr;
1902 dma_addr_t dma_addr;
1903 dma_addr_t dev_addr;
1904 size_t size;
1905 int ret;
1906
1907 ret = clk_prepare_enable(gphy_fw->clk_gate);
1908 if (ret)
1909 return ret;
1910
1911 reset_control_assert(gphy_fw->reset);
1912
1913 /* The vendor BSP uses a 200ms delay after asserting the reset line.
1914 * Without this some users are observing that the PHY is not coming up
1915 * on the MDIO bus.
1916 */
1917 msleep(200);
1918
1919 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1920 if (ret) {
1921 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1922 gphy_fw->fw_name, ret);
1923 return ret;
1924 }
1925
1926 /* GPHY cores need the firmware code in a persistent and contiguous
1927 * memory area with a 16 kB boundary aligned start address.
1928 */
1929 size = fw->size + XRX200_GPHY_FW_ALIGN;
1930
1931 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1932 if (fw_addr) {
1933 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1934 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1935 memcpy(fw_addr, fw->data, fw->size);
1936 } else {
1937 dev_err(dev, "failed to alloc firmware memory\n");
1938 release_firmware(fw);
1939 return -ENOMEM;
1940 }
1941
1942 release_firmware(fw);
1943
1944 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1945 if (ret)
1946 return ret;
1947
1948 reset_control_deassert(gphy_fw->reset);
1949
1950 return ret;
1951 }
1952
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1953 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1954 struct gswip_gphy_fw *gphy_fw,
1955 struct device_node *gphy_fw_np, int i)
1956 {
1957 struct device *dev = priv->dev;
1958 u32 gphy_mode;
1959 int ret;
1960 char gphyname[10];
1961
1962 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1963
1964 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1965 if (IS_ERR(gphy_fw->clk_gate)) {
1966 dev_err(dev, "Failed to lookup gate clock\n");
1967 return PTR_ERR(gphy_fw->clk_gate);
1968 }
1969
1970 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1971 if (ret)
1972 return ret;
1973
1974 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1975 /* Default to GE mode */
1976 if (ret)
1977 gphy_mode = GPHY_MODE_GE;
1978
1979 switch (gphy_mode) {
1980 case GPHY_MODE_FE:
1981 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1982 break;
1983 case GPHY_MODE_GE:
1984 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1985 break;
1986 default:
1987 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1988 return -EINVAL;
1989 }
1990
1991 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1992 if (IS_ERR(gphy_fw->reset)) {
1993 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1994 dev_err(dev, "Failed to lookup gphy reset\n");
1995 return PTR_ERR(gphy_fw->reset);
1996 }
1997
1998 return gswip_gphy_fw_load(priv, gphy_fw);
1999 }
2000
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)2001 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2002 struct gswip_gphy_fw *gphy_fw)
2003 {
2004 int ret;
2005
2006 /* check if the device was fully probed */
2007 if (!gphy_fw->fw_name)
2008 return;
2009
2010 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2011 if (ret)
2012 dev_err(priv->dev, "can not reset GPHY FW pointer");
2013
2014 clk_disable_unprepare(gphy_fw->clk_gate);
2015
2016 reset_control_put(gphy_fw->reset);
2017 }
2018
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)2019 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2020 struct device_node *gphy_fw_list_np, u32 version)
2021 {
2022 struct device *dev = priv->dev;
2023 struct device_node *gphy_fw_np;
2024 const struct of_device_id *match;
2025 int err;
2026 int i = 0;
2027
2028 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2029 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2030 * needs a different GPHY firmware.
2031 */
2032 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2033 switch (version) {
2034 case GSWIP_VERSION_2_0:
2035 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2036 break;
2037 case GSWIP_VERSION_2_1:
2038 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2039 break;
2040 default:
2041 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2042 return -ENOENT;
2043 }
2044 }
2045
2046 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2047 if (match && match->data)
2048 priv->gphy_fw_name_cfg = match->data;
2049
2050 if (!priv->gphy_fw_name_cfg) {
2051 dev_err(dev, "GPHY compatible type not supported");
2052 return -ENOENT;
2053 }
2054
2055 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2056 if (!priv->num_gphy_fw)
2057 return -ENOENT;
2058
2059 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2060 "lantiq,rcu");
2061 if (IS_ERR(priv->rcu_regmap))
2062 return PTR_ERR(priv->rcu_regmap);
2063
2064 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2065 sizeof(*priv->gphy_fw),
2066 GFP_KERNEL | __GFP_ZERO);
2067 if (!priv->gphy_fw)
2068 return -ENOMEM;
2069
2070 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2071 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2072 gphy_fw_np, i);
2073 if (err) {
2074 of_node_put(gphy_fw_np);
2075 goto remove_gphy;
2076 }
2077 i++;
2078 }
2079
2080 /* The standalone PHY11G requires 300ms to be fully
2081 * initialized and ready for any MDIO communication after being
2082 * taken out of reset. For the SoC-internal GPHY variant there
2083 * is no (known) documentation for the minimum time after a
2084 * reset. Use the same value as for the standalone variant as
2085 * some users have reported internal PHYs not being detected
2086 * without any delay.
2087 */
2088 msleep(300);
2089
2090 return 0;
2091
2092 remove_gphy:
2093 for (i = 0; i < priv->num_gphy_fw; i++)
2094 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2095 return err;
2096 }
2097
gswip_probe(struct platform_device * pdev)2098 static int gswip_probe(struct platform_device *pdev)
2099 {
2100 struct gswip_priv *priv;
2101 struct device_node *np, *mdio_np, *gphy_fw_np;
2102 struct device *dev = &pdev->dev;
2103 int err;
2104 int i;
2105 u32 version;
2106
2107 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2108 if (!priv)
2109 return -ENOMEM;
2110
2111 priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2112 if (IS_ERR(priv->gswip))
2113 return PTR_ERR(priv->gswip);
2114
2115 priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2116 if (IS_ERR(priv->mdio))
2117 return PTR_ERR(priv->mdio);
2118
2119 priv->mii = devm_platform_ioremap_resource(pdev, 2);
2120 if (IS_ERR(priv->mii))
2121 return PTR_ERR(priv->mii);
2122
2123 priv->hw_info = of_device_get_match_data(dev);
2124 if (!priv->hw_info)
2125 return -EINVAL;
2126
2127 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2128 if (!priv->ds)
2129 return -ENOMEM;
2130
2131 priv->ds->dev = dev;
2132 priv->ds->num_ports = priv->hw_info->max_ports;
2133 priv->ds->priv = priv;
2134 priv->ds->ops = priv->hw_info->ops;
2135 priv->dev = dev;
2136 mutex_init(&priv->pce_table_lock);
2137 version = gswip_switch_r(priv, GSWIP_VERSION);
2138
2139 np = dev->of_node;
2140 switch (version) {
2141 case GSWIP_VERSION_2_0:
2142 case GSWIP_VERSION_2_1:
2143 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2144 return -EINVAL;
2145 break;
2146 case GSWIP_VERSION_2_2:
2147 case GSWIP_VERSION_2_2_ETC:
2148 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2149 !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2150 return -EINVAL;
2151 break;
2152 default:
2153 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2154 return -ENOENT;
2155 }
2156
2157 /* bring up the mdio bus */
2158 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2159 if (gphy_fw_np) {
2160 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2161 of_node_put(gphy_fw_np);
2162 if (err) {
2163 dev_err(dev, "gphy fw probe failed\n");
2164 return err;
2165 }
2166 }
2167
2168 /* bring up the mdio bus */
2169 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2170 if (mdio_np) {
2171 err = gswip_mdio(priv, mdio_np);
2172 if (err) {
2173 dev_err(dev, "mdio probe failed\n");
2174 goto put_mdio_node;
2175 }
2176 }
2177
2178 err = dsa_register_switch(priv->ds);
2179 if (err) {
2180 dev_err(dev, "dsa switch register failed: %i\n", err);
2181 goto mdio_bus;
2182 }
2183 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2184 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2185 priv->hw_info->cpu_port);
2186 err = -EINVAL;
2187 goto disable_switch;
2188 }
2189
2190 platform_set_drvdata(pdev, priv);
2191
2192 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2193 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2194 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2195 return 0;
2196
2197 disable_switch:
2198 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2199 dsa_unregister_switch(priv->ds);
2200 mdio_bus:
2201 if (mdio_np) {
2202 mdiobus_unregister(priv->ds->slave_mii_bus);
2203 mdiobus_free(priv->ds->slave_mii_bus);
2204 }
2205 put_mdio_node:
2206 of_node_put(mdio_np);
2207 for (i = 0; i < priv->num_gphy_fw; i++)
2208 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2209 return err;
2210 }
2211
gswip_remove(struct platform_device * pdev)2212 static int gswip_remove(struct platform_device *pdev)
2213 {
2214 struct gswip_priv *priv = platform_get_drvdata(pdev);
2215 int i;
2216
2217 if (!priv)
2218 return 0;
2219
2220 /* disable the switch */
2221 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2222
2223 dsa_unregister_switch(priv->ds);
2224
2225 if (priv->ds->slave_mii_bus) {
2226 mdiobus_unregister(priv->ds->slave_mii_bus);
2227 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2228 mdiobus_free(priv->ds->slave_mii_bus);
2229 }
2230
2231 for (i = 0; i < priv->num_gphy_fw; i++)
2232 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2233
2234 platform_set_drvdata(pdev, NULL);
2235
2236 return 0;
2237 }
2238
gswip_shutdown(struct platform_device * pdev)2239 static void gswip_shutdown(struct platform_device *pdev)
2240 {
2241 struct gswip_priv *priv = platform_get_drvdata(pdev);
2242
2243 if (!priv)
2244 return;
2245
2246 dsa_switch_shutdown(priv->ds);
2247
2248 platform_set_drvdata(pdev, NULL);
2249 }
2250
2251 static const struct gswip_hw_info gswip_xrx200 = {
2252 .max_ports = 7,
2253 .cpu_port = 6,
2254 .ops = &gswip_xrx200_switch_ops,
2255 };
2256
2257 static const struct gswip_hw_info gswip_xrx300 = {
2258 .max_ports = 7,
2259 .cpu_port = 6,
2260 .ops = &gswip_xrx300_switch_ops,
2261 };
2262
2263 static const struct of_device_id gswip_of_match[] = {
2264 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2265 { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2266 { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2267 {},
2268 };
2269 MODULE_DEVICE_TABLE(of, gswip_of_match);
2270
2271 static struct platform_driver gswip_driver = {
2272 .probe = gswip_probe,
2273 .remove = gswip_remove,
2274 .shutdown = gswip_shutdown,
2275 .driver = {
2276 .name = "gswip",
2277 .of_match_table = gswip_of_match,
2278 },
2279 };
2280
2281 module_platform_driver(gswip_driver);
2282
2283 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2284 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2285 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2286 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2287 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2288 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2289 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2290 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2291 MODULE_LICENSE("GPL v2");
2292