1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 *
5 * CX23888 Integrated Consumer Infrared Controller
6 *
7 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 */
9
10 #include "cx23885.h"
11 #include "cx23888-ir.h"
12
13 #include <linux/kfifo.h>
14 #include <linux/slab.h>
15
16 #include <media/v4l2-device.h>
17 #include <media/rc-core.h>
18
19 static unsigned int ir_888_debug;
20 module_param(ir_888_debug, int, 0644);
21 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
22
23 #define CX23888_IR_REG_BASE 0x170000
24 /*
25 * These CX23888 register offsets have a straightforward one to one mapping
26 * to the CX23885 register offsets of 0x200 through 0x218
27 */
28 #define CX23888_IR_CNTRL_REG 0x170000
29 #define CNTRL_WIN_3_3 0x00000000
30 #define CNTRL_WIN_4_3 0x00000001
31 #define CNTRL_WIN_3_4 0x00000002
32 #define CNTRL_WIN_4_4 0x00000003
33 #define CNTRL_WIN 0x00000003
34 #define CNTRL_EDG_NONE 0x00000000
35 #define CNTRL_EDG_FALL 0x00000004
36 #define CNTRL_EDG_RISE 0x00000008
37 #define CNTRL_EDG_BOTH 0x0000000C
38 #define CNTRL_EDG 0x0000000C
39 #define CNTRL_DMD 0x00000010
40 #define CNTRL_MOD 0x00000020
41 #define CNTRL_RFE 0x00000040
42 #define CNTRL_TFE 0x00000080
43 #define CNTRL_RXE 0x00000100
44 #define CNTRL_TXE 0x00000200
45 #define CNTRL_RIC 0x00000400
46 #define CNTRL_TIC 0x00000800
47 #define CNTRL_CPL 0x00001000
48 #define CNTRL_LBM 0x00002000
49 #define CNTRL_R 0x00004000
50 /* CX23888 specific control flag */
51 #define CNTRL_IVO 0x00008000
52
53 #define CX23888_IR_TXCLK_REG 0x170004
54 #define TXCLK_TCD 0x0000FFFF
55
56 #define CX23888_IR_RXCLK_REG 0x170008
57 #define RXCLK_RCD 0x0000FFFF
58
59 #define CX23888_IR_CDUTY_REG 0x17000C
60 #define CDUTY_CDC 0x0000000F
61
62 #define CX23888_IR_STATS_REG 0x170010
63 #define STATS_RTO 0x00000001
64 #define STATS_ROR 0x00000002
65 #define STATS_RBY 0x00000004
66 #define STATS_TBY 0x00000008
67 #define STATS_RSR 0x00000010
68 #define STATS_TSR 0x00000020
69
70 #define CX23888_IR_IRQEN_REG 0x170014
71 #define IRQEN_RTE 0x00000001
72 #define IRQEN_ROE 0x00000002
73 #define IRQEN_RSE 0x00000010
74 #define IRQEN_TSE 0x00000020
75
76 #define CX23888_IR_FILTR_REG 0x170018
77 #define FILTR_LPF 0x0000FFFF
78
79 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
80 #define CX23888_IR_FIFO_REG 0x170040
81 #define FIFO_RXTX 0x0000FFFF
82 #define FIFO_RXTX_LVL 0x00010000
83 #define FIFO_RXTX_RTO 0x0001FFFF
84 #define FIFO_RX_NDV 0x00020000
85 #define FIFO_RX_DEPTH 8
86 #define FIFO_TX_DEPTH 8
87
88 /* CX23888 unique registers */
89 #define CX23888_IR_SEEDP_REG 0x17001C
90 #define CX23888_IR_TIMOL_REG 0x170020
91 #define CX23888_IR_WAKE0_REG 0x170024
92 #define CX23888_IR_WAKE1_REG 0x170028
93 #define CX23888_IR_WAKE2_REG 0x17002C
94 #define CX23888_IR_MASK0_REG 0x170030
95 #define CX23888_IR_MASK1_REG 0x170034
96 #define CX23888_IR_MAKS2_REG 0x170038
97 #define CX23888_IR_DPIPG_REG 0x17003C
98 #define CX23888_IR_LEARN_REG 0x170044
99
100 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
101 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
102
103 /*
104 * We use this union internally for convenience, but callers to tx_write
105 * and rx_read will be expecting records of type struct ir_raw_event.
106 * Always ensure the size of this union is dictated by struct ir_raw_event.
107 */
108 union cx23888_ir_fifo_rec {
109 u32 hw_fifo_data;
110 struct ir_raw_event ir_core_data;
111 };
112
113 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
114 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
115
116 struct cx23888_ir_state {
117 struct v4l2_subdev sd;
118 struct cx23885_dev *dev;
119
120 struct v4l2_subdev_ir_parameters rx_params;
121 struct mutex rx_params_lock;
122 atomic_t rxclk_divider;
123 atomic_t rx_invert;
124
125 struct kfifo rx_kfifo;
126 spinlock_t rx_kfifo_lock;
127
128 struct v4l2_subdev_ir_parameters tx_params;
129 struct mutex tx_params_lock;
130 atomic_t txclk_divider;
131 };
132
to_state(struct v4l2_subdev * sd)133 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
134 {
135 return v4l2_get_subdevdata(sd);
136 }
137
138 /*
139 * IR register block read and write functions
140 */
141 static
cx23888_ir_write4(struct cx23885_dev * dev,u32 addr,u32 value)142 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
143 {
144 cx_write(addr, value);
145 return 0;
146 }
147
cx23888_ir_read4(struct cx23885_dev * dev,u32 addr)148 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
149 {
150 return cx_read(addr);
151 }
152
cx23888_ir_and_or4(struct cx23885_dev * dev,u32 addr,u32 and_mask,u32 or_value)153 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
154 u32 and_mask, u32 or_value)
155 {
156 cx_andor(addr, ~and_mask, or_value);
157 return 0;
158 }
159
160 /*
161 * Rx and Tx Clock Divider register computations
162 *
163 * Note the largest clock divider value of 0xffff corresponds to:
164 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
165 * which fits in 21 bits, so we'll use unsigned int for time arguments.
166 */
count_to_clock_divider(unsigned int d)167 static inline u16 count_to_clock_divider(unsigned int d)
168 {
169 if (d > RXCLK_RCD + 1)
170 d = RXCLK_RCD;
171 else if (d < 2)
172 d = 1;
173 else
174 d--;
175 return (u16) d;
176 }
177
carrier_freq_to_clock_divider(unsigned int freq)178 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
179 {
180 return count_to_clock_divider(
181 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
182 }
183
clock_divider_to_carrier_freq(unsigned int divider)184 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
185 {
186 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
187 }
188
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)189 static inline unsigned int clock_divider_to_freq(unsigned int divider,
190 unsigned int rollovers)
191 {
192 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
193 (divider + 1) * rollovers);
194 }
195
196 /*
197 * Low Pass Filter register calculations
198 *
199 * Note the largest count value of 0xffff corresponds to:
200 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
201 * which fits in 21 bits, so we'll use unsigned int for time arguments.
202 */
count_to_lpf_count(unsigned int d)203 static inline u16 count_to_lpf_count(unsigned int d)
204 {
205 if (d > FILTR_LPF)
206 d = FILTR_LPF;
207 else if (d < 4)
208 d = 0;
209 return (u16) d;
210 }
211
ns_to_lpf_count(unsigned int ns)212 static inline u16 ns_to_lpf_count(unsigned int ns)
213 {
214 return count_to_lpf_count(
215 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
216 }
217
lpf_count_to_ns(unsigned int count)218 static inline unsigned int lpf_count_to_ns(unsigned int count)
219 {
220 /* Duration of the Low Pass Filter rejection window in ns */
221 return DIV_ROUND_CLOSEST(count * 1000,
222 CX23888_IR_REFCLK_FREQ / 1000000);
223 }
224
lpf_count_to_us(unsigned int count)225 static inline unsigned int lpf_count_to_us(unsigned int count)
226 {
227 /* Duration of the Low Pass Filter rejection window in us */
228 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
229 }
230
231 /*
232 * FIFO register pulse width count computations
233 */
clock_divider_to_resolution(u16 divider)234 static u32 clock_divider_to_resolution(u16 divider)
235 {
236 /*
237 * Resolution is the duration of 1 tick of the readable portion of
238 * of the pulse width counter as read from the FIFO. The two lsb's are
239 * not readable, hence the << 2. This function returns ns.
240 */
241 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
242 CX23888_IR_REFCLK_FREQ / 1000000);
243 }
244
pulse_width_count_to_ns(u16 count,u16 divider)245 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
246 {
247 u64 n;
248 u32 rem;
249
250 /*
251 * The 2 lsb's of the pulse width timer count are not readable, hence
252 * the (count << 2) | 0x3
253 */
254 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
255 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
256 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
257 n++;
258 return n;
259 }
260
pulse_width_count_to_us(u16 count,u16 divider)261 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
262 {
263 u64 n;
264 u32 rem;
265
266 /*
267 * The 2 lsb's of the pulse width timer count are not readable, hence
268 * the (count << 2) | 0x3
269 */
270 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
271 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
272 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
273 n++;
274 return (unsigned int) n;
275 }
276
277 /*
278 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
279 *
280 * The total pulse clock count is an 18 bit pulse width timer count as the most
281 * significant part and (up to) 16 bit clock divider count as a modulus.
282 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
283 * width timer count's least significant bit.
284 */
ns_to_pulse_clocks(u32 ns)285 static u64 ns_to_pulse_clocks(u32 ns)
286 {
287 u64 clocks;
288 u32 rem;
289 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
290 rem = do_div(clocks, 1000); /* /1000 = cycles */
291 if (rem >= 1000 / 2)
292 clocks++;
293 return clocks;
294 }
295
pulse_clocks_to_clock_divider(u64 count)296 static u16 pulse_clocks_to_clock_divider(u64 count)
297 {
298 do_div(count, (FIFO_RXTX << 2) | 0x3);
299
300 /* net result needs to be rounded down and decremented by 1 */
301 if (count > RXCLK_RCD + 1)
302 count = RXCLK_RCD;
303 else if (count < 2)
304 count = 1;
305 else
306 count--;
307 return (u16) count;
308 }
309
310 /*
311 * IR Control Register helpers
312 */
313 enum tx_fifo_watermark {
314 TX_FIFO_HALF_EMPTY = 0,
315 TX_FIFO_EMPTY = CNTRL_TIC,
316 };
317
318 enum rx_fifo_watermark {
319 RX_FIFO_HALF_FULL = 0,
320 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
321 };
322
control_tx_irq_watermark(struct cx23885_dev * dev,enum tx_fifo_watermark level)323 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
324 enum tx_fifo_watermark level)
325 {
326 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
327 }
328
control_rx_irq_watermark(struct cx23885_dev * dev,enum rx_fifo_watermark level)329 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
330 enum rx_fifo_watermark level)
331 {
332 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
333 }
334
control_tx_enable(struct cx23885_dev * dev,bool enable)335 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
336 {
337 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
338 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
339 }
340
control_rx_enable(struct cx23885_dev * dev,bool enable)341 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
342 {
343 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
344 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
345 }
346
control_tx_modulation_enable(struct cx23885_dev * dev,bool enable)347 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
348 bool enable)
349 {
350 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
351 enable ? CNTRL_MOD : 0);
352 }
353
control_rx_demodulation_enable(struct cx23885_dev * dev,bool enable)354 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
355 bool enable)
356 {
357 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
358 enable ? CNTRL_DMD : 0);
359 }
360
control_rx_s_edge_detection(struct cx23885_dev * dev,u32 edge_types)361 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
362 u32 edge_types)
363 {
364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
365 edge_types & CNTRL_EDG_BOTH);
366 }
367
control_rx_s_carrier_window(struct cx23885_dev * dev,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)368 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
369 unsigned int carrier,
370 unsigned int *carrier_range_low,
371 unsigned int *carrier_range_high)
372 {
373 u32 v;
374 unsigned int c16 = carrier * 16;
375
376 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
377 v = CNTRL_WIN_3_4;
378 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
379 } else {
380 v = CNTRL_WIN_3_3;
381 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
382 }
383
384 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
385 v |= CNTRL_WIN_4_3;
386 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
387 } else {
388 v |= CNTRL_WIN_3_3;
389 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
390 }
391 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
392 }
393
control_tx_polarity_invert(struct cx23885_dev * dev,bool invert)394 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
395 bool invert)
396 {
397 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
398 invert ? CNTRL_CPL : 0);
399 }
400
control_tx_level_invert(struct cx23885_dev * dev,bool invert)401 static inline void control_tx_level_invert(struct cx23885_dev *dev,
402 bool invert)
403 {
404 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
405 invert ? CNTRL_IVO : 0);
406 }
407
408 /*
409 * IR Rx & Tx Clock Register helpers
410 */
txclk_tx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)411 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
412 unsigned int freq,
413 u16 *divider)
414 {
415 *divider = carrier_freq_to_clock_divider(freq);
416 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
417 return clock_divider_to_carrier_freq(*divider);
418 }
419
rxclk_rx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)420 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
421 unsigned int freq,
422 u16 *divider)
423 {
424 *divider = carrier_freq_to_clock_divider(freq);
425 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
426 return clock_divider_to_carrier_freq(*divider);
427 }
428
txclk_tx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)429 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
430 u16 *divider)
431 {
432 u64 pulse_clocks;
433
434 if (ns > IR_MAX_DURATION)
435 ns = IR_MAX_DURATION;
436 pulse_clocks = ns_to_pulse_clocks(ns);
437 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
438 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
439 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
440 }
441
rxclk_rx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)442 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
443 u16 *divider)
444 {
445 u64 pulse_clocks;
446
447 if (ns > IR_MAX_DURATION)
448 ns = IR_MAX_DURATION;
449 pulse_clocks = ns_to_pulse_clocks(ns);
450 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
451 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
452 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
453 }
454
455 /*
456 * IR Tx Carrier Duty Cycle register helpers
457 */
cduty_tx_s_duty_cycle(struct cx23885_dev * dev,unsigned int duty_cycle)458 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
459 unsigned int duty_cycle)
460 {
461 u32 n;
462 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
463 if (n != 0)
464 n--;
465 if (n > 15)
466 n = 15;
467 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
468 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
469 }
470
471 /*
472 * IR Filter Register helpers
473 */
filter_rx_s_min_width(struct cx23885_dev * dev,u32 min_width_ns)474 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
475 {
476 u32 count = ns_to_lpf_count(min_width_ns);
477 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
478 return lpf_count_to_ns(count);
479 }
480
481 /*
482 * IR IRQ Enable Register helpers
483 */
irqenable_rx(struct cx23885_dev * dev,u32 mask)484 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
485 {
486 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
487 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
488 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
489 }
490
irqenable_tx(struct cx23885_dev * dev,u32 mask)491 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
492 {
493 mask &= IRQEN_TSE;
494 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
495 }
496
497 /*
498 * V4L2 Subdevice IR Ops
499 */
cx23888_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)500 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
501 bool *handled)
502 {
503 struct cx23888_ir_state *state = to_state(sd);
504 struct cx23885_dev *dev = state->dev;
505 unsigned long flags;
506
507 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
508 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
509 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
510
511 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
512 unsigned int i, j, k;
513 u32 events, v;
514 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
515
516 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
517 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
518 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
519 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
520
521 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
522 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
523 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
524 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
525
526 *handled = false;
527 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
528 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
529 rto ? "rto" : " ", ror ? "ror" : " ",
530 stats & STATS_TBY ? "tby" : " ",
531 stats & STATS_RBY ? "rby" : " ");
532
533 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
534 tse ? "tse" : " ", rse ? "rse" : " ",
535 rte ? "rte" : " ", roe ? "roe" : " ");
536
537 /*
538 * Transmitter interrupt service
539 */
540 if (tse && tsr) {
541 /*
542 * TODO:
543 * Check the watermark threshold setting
544 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
545 * Push the data to the hardware FIFO.
546 * If there was nothing more to send in the tx_kfifo, disable
547 * the TSR IRQ and notify the v4l2_device.
548 * If there was something in the tx_kfifo, check the tx_kfifo
549 * level and notify the v4l2_device, if it is low.
550 */
551 /* For now, inhibit TSR interrupt until Tx is implemented */
552 irqenable_tx(dev, 0);
553 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
554 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
555 *handled = true;
556 }
557
558 /*
559 * Receiver interrupt service
560 */
561 kror = 0;
562 if ((rse && rsr) || (rte && rto)) {
563 /*
564 * Receive data on RSR to clear the STATS_RSR.
565 * Receive data on RTO, since we may not have yet hit the RSR
566 * watermark when we receive the RTO.
567 */
568 for (i = 0, v = FIFO_RX_NDV;
569 (v & FIFO_RX_NDV) && !kror; i = 0) {
570 for (j = 0;
571 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
572 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
573 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
574 i++;
575 }
576 if (i == 0)
577 break;
578 j = i * sizeof(union cx23888_ir_fifo_rec);
579 k = kfifo_in_locked(&state->rx_kfifo,
580 (unsigned char *) rx_data, j,
581 &state->rx_kfifo_lock);
582 if (k != j)
583 kror++; /* rx_kfifo over run */
584 }
585 *handled = true;
586 }
587
588 events = 0;
589 v = 0;
590 if (kror) {
591 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
592 v4l2_err(sd, "IR receiver software FIFO overrun\n");
593 }
594 if (roe && ror) {
595 /*
596 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
597 * the Rx FIFO Over Run status (STATS_ROR)
598 */
599 v |= CNTRL_RFE;
600 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
601 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
602 }
603 if (rte && rto) {
604 /*
605 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
606 * the Rx Pulse Width Timer Time Out (STATS_RTO)
607 */
608 v |= CNTRL_RXE;
609 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
610 }
611 if (v) {
612 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
613 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
614 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
615 *handled = true;
616 }
617
618 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
619 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
620 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
621 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
622
623 if (events)
624 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
625 return 0;
626 }
627
628 /* Receiver */
cx23888_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)629 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
630 ssize_t *num)
631 {
632 struct cx23888_ir_state *state = to_state(sd);
633 bool invert = (bool) atomic_read(&state->rx_invert);
634 u16 divider = (u16) atomic_read(&state->rxclk_divider);
635
636 unsigned int i, n;
637 union cx23888_ir_fifo_rec *p;
638 unsigned u, v, w;
639
640 n = count / sizeof(union cx23888_ir_fifo_rec)
641 * sizeof(union cx23888_ir_fifo_rec);
642 if (n == 0) {
643 *num = 0;
644 return 0;
645 }
646
647 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
648
649 n /= sizeof(union cx23888_ir_fifo_rec);
650 *num = n * sizeof(union cx23888_ir_fifo_rec);
651
652 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
653
654 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
655 /* Assume RTO was because of no IR light input */
656 u = 0;
657 w = 1;
658 } else {
659 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
660 if (invert)
661 u = u ? 0 : 1;
662 w = 0;
663 }
664
665 v = (unsigned) pulse_width_count_to_ns(
666 (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
667 if (v > IR_MAX_DURATION)
668 v = IR_MAX_DURATION;
669
670 p->ir_core_data = (struct ir_raw_event)
671 { .pulse = u, .duration = v, .timeout = w };
672
673 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
674 v, u ? "mark" : "space", w ? "(timed out)" : "");
675 if (w)
676 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
677 }
678 return 0;
679 }
680
cx23888_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)681 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
682 struct v4l2_subdev_ir_parameters *p)
683 {
684 struct cx23888_ir_state *state = to_state(sd);
685 mutex_lock(&state->rx_params_lock);
686 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
687 mutex_unlock(&state->rx_params_lock);
688 return 0;
689 }
690
cx23888_ir_rx_shutdown(struct v4l2_subdev * sd)691 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
692 {
693 struct cx23888_ir_state *state = to_state(sd);
694 struct cx23885_dev *dev = state->dev;
695
696 mutex_lock(&state->rx_params_lock);
697
698 /* Disable or slow down all IR Rx circuits and counters */
699 irqenable_rx(dev, 0);
700 control_rx_enable(dev, false);
701 control_rx_demodulation_enable(dev, false);
702 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
703 filter_rx_s_min_width(dev, 0);
704 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
705
706 state->rx_params.shutdown = true;
707
708 mutex_unlock(&state->rx_params_lock);
709 return 0;
710 }
711
cx23888_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)712 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
713 struct v4l2_subdev_ir_parameters *p)
714 {
715 struct cx23888_ir_state *state = to_state(sd);
716 struct cx23885_dev *dev = state->dev;
717 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
718 u16 rxclk_divider;
719
720 if (p->shutdown)
721 return cx23888_ir_rx_shutdown(sd);
722
723 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
724 return -ENOSYS;
725
726 mutex_lock(&state->rx_params_lock);
727
728 o->shutdown = p->shutdown;
729
730 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
731
732 o->bytes_per_data_element = p->bytes_per_data_element
733 = sizeof(union cx23888_ir_fifo_rec);
734
735 /* Before we tweak the hardware, we have to disable the receiver */
736 irqenable_rx(dev, 0);
737 control_rx_enable(dev, false);
738
739 control_rx_demodulation_enable(dev, p->modulation);
740 o->modulation = p->modulation;
741
742 if (p->modulation) {
743 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
744 &rxclk_divider);
745
746 o->carrier_freq = p->carrier_freq;
747
748 o->duty_cycle = p->duty_cycle = 50;
749
750 control_rx_s_carrier_window(dev, p->carrier_freq,
751 &p->carrier_range_lower,
752 &p->carrier_range_upper);
753 o->carrier_range_lower = p->carrier_range_lower;
754 o->carrier_range_upper = p->carrier_range_upper;
755
756 p->max_pulse_width =
757 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
758 } else {
759 p->max_pulse_width =
760 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
761 &rxclk_divider);
762 }
763 o->max_pulse_width = p->max_pulse_width;
764 atomic_set(&state->rxclk_divider, rxclk_divider);
765
766 p->noise_filter_min_width =
767 filter_rx_s_min_width(dev, p->noise_filter_min_width);
768 o->noise_filter_min_width = p->noise_filter_min_width;
769
770 p->resolution = clock_divider_to_resolution(rxclk_divider);
771 o->resolution = p->resolution;
772
773 /* FIXME - make this dependent on resolution for better performance */
774 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
775
776 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
777
778 o->invert_level = p->invert_level;
779 atomic_set(&state->rx_invert, p->invert_level);
780
781 o->interrupt_enable = p->interrupt_enable;
782 o->enable = p->enable;
783 if (p->enable) {
784 unsigned long flags;
785
786 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
787 kfifo_reset(&state->rx_kfifo);
788 /* reset tx_fifo too if there is one... */
789 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
790 if (p->interrupt_enable)
791 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
792 control_rx_enable(dev, p->enable);
793 }
794
795 mutex_unlock(&state->rx_params_lock);
796 return 0;
797 }
798
799 /* Transmitter */
cx23888_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)800 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
801 ssize_t *num)
802 {
803 struct cx23888_ir_state *state = to_state(sd);
804 struct cx23885_dev *dev = state->dev;
805 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
806 irqenable_tx(dev, IRQEN_TSE);
807 *num = count;
808 return 0;
809 }
810
cx23888_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)811 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
812 struct v4l2_subdev_ir_parameters *p)
813 {
814 struct cx23888_ir_state *state = to_state(sd);
815 mutex_lock(&state->tx_params_lock);
816 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
817 mutex_unlock(&state->tx_params_lock);
818 return 0;
819 }
820
cx23888_ir_tx_shutdown(struct v4l2_subdev * sd)821 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
822 {
823 struct cx23888_ir_state *state = to_state(sd);
824 struct cx23885_dev *dev = state->dev;
825
826 mutex_lock(&state->tx_params_lock);
827
828 /* Disable or slow down all IR Tx circuits and counters */
829 irqenable_tx(dev, 0);
830 control_tx_enable(dev, false);
831 control_tx_modulation_enable(dev, false);
832 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
833
834 state->tx_params.shutdown = true;
835
836 mutex_unlock(&state->tx_params_lock);
837 return 0;
838 }
839
cx23888_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)840 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
841 struct v4l2_subdev_ir_parameters *p)
842 {
843 struct cx23888_ir_state *state = to_state(sd);
844 struct cx23885_dev *dev = state->dev;
845 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
846 u16 txclk_divider;
847
848 if (p->shutdown)
849 return cx23888_ir_tx_shutdown(sd);
850
851 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
852 return -ENOSYS;
853
854 mutex_lock(&state->tx_params_lock);
855
856 o->shutdown = p->shutdown;
857
858 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
859
860 o->bytes_per_data_element = p->bytes_per_data_element
861 = sizeof(union cx23888_ir_fifo_rec);
862
863 /* Before we tweak the hardware, we have to disable the transmitter */
864 irqenable_tx(dev, 0);
865 control_tx_enable(dev, false);
866
867 control_tx_modulation_enable(dev, p->modulation);
868 o->modulation = p->modulation;
869
870 if (p->modulation) {
871 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
872 &txclk_divider);
873 o->carrier_freq = p->carrier_freq;
874
875 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
876 o->duty_cycle = p->duty_cycle;
877
878 p->max_pulse_width =
879 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
880 } else {
881 p->max_pulse_width =
882 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
883 &txclk_divider);
884 }
885 o->max_pulse_width = p->max_pulse_width;
886 atomic_set(&state->txclk_divider, txclk_divider);
887
888 p->resolution = clock_divider_to_resolution(txclk_divider);
889 o->resolution = p->resolution;
890
891 /* FIXME - make this dependent on resolution for better performance */
892 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
893
894 control_tx_polarity_invert(dev, p->invert_carrier_sense);
895 o->invert_carrier_sense = p->invert_carrier_sense;
896
897 control_tx_level_invert(dev, p->invert_level);
898 o->invert_level = p->invert_level;
899
900 o->interrupt_enable = p->interrupt_enable;
901 o->enable = p->enable;
902 if (p->enable) {
903 if (p->interrupt_enable)
904 irqenable_tx(dev, IRQEN_TSE);
905 control_tx_enable(dev, p->enable);
906 }
907
908 mutex_unlock(&state->tx_params_lock);
909 return 0;
910 }
911
912
913 /*
914 * V4L2 Subdevice Core Ops
915 */
cx23888_ir_log_status(struct v4l2_subdev * sd)916 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
917 {
918 struct cx23888_ir_state *state = to_state(sd);
919 struct cx23885_dev *dev = state->dev;
920 char *s;
921 int i, j;
922
923 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
924 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
925 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
926 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
927 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
928 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
929 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
930
931 v4l2_info(sd, "IR Receiver:\n");
932 v4l2_info(sd, "\tEnabled: %s\n",
933 cntrl & CNTRL_RXE ? "yes" : "no");
934 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
935 cntrl & CNTRL_DMD ? "enabled" : "disabled");
936 v4l2_info(sd, "\tFIFO: %s\n",
937 cntrl & CNTRL_RFE ? "enabled" : "disabled");
938 switch (cntrl & CNTRL_EDG) {
939 case CNTRL_EDG_NONE:
940 s = "disabled";
941 break;
942 case CNTRL_EDG_FALL:
943 s = "falling edge";
944 break;
945 case CNTRL_EDG_RISE:
946 s = "rising edge";
947 break;
948 case CNTRL_EDG_BOTH:
949 s = "rising & falling edges";
950 break;
951 default:
952 s = "??? edge";
953 break;
954 }
955 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
956 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
957 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
958 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
959 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
960 v4l2_info(sd, "\tLoopback mode: %s\n",
961 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
962 if (cntrl & CNTRL_DMD) {
963 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
964 clock_divider_to_carrier_freq(rxclk));
965 switch (cntrl & CNTRL_WIN) {
966 case CNTRL_WIN_3_3:
967 i = 3;
968 j = 3;
969 break;
970 case CNTRL_WIN_4_3:
971 i = 4;
972 j = 3;
973 break;
974 case CNTRL_WIN_3_4:
975 i = 3;
976 j = 4;
977 break;
978 case CNTRL_WIN_4_4:
979 i = 4;
980 j = 4;
981 break;
982 default:
983 i = 0;
984 j = 0;
985 break;
986 }
987 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
988 i, j,
989 clock_divider_to_freq(rxclk, 16 + j),
990 clock_divider_to_freq(rxclk, 16 - i));
991 }
992 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
993 pulse_width_count_to_us(FIFO_RXTX, rxclk),
994 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
995 v4l2_info(sd, "\tLow pass filter: %s\n",
996 filtr ? "enabled" : "disabled");
997 if (filtr)
998 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
999 lpf_count_to_us(filtr),
1000 lpf_count_to_ns(filtr));
1001 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1002 stats & STATS_RTO ? "yes" : "no");
1003 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1004 irqen & IRQEN_RTE ? "enabled" : "disabled");
1005 v4l2_info(sd, "\tFIFO overrun: %s\n",
1006 stats & STATS_ROR ? "yes" : "no");
1007 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1008 irqen & IRQEN_ROE ? "enabled" : "disabled");
1009 v4l2_info(sd, "\tBusy: %s\n",
1010 stats & STATS_RBY ? "yes" : "no");
1011 v4l2_info(sd, "\tFIFO service requested: %s\n",
1012 stats & STATS_RSR ? "yes" : "no");
1013 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1014 irqen & IRQEN_RSE ? "enabled" : "disabled");
1015
1016 v4l2_info(sd, "IR Transmitter:\n");
1017 v4l2_info(sd, "\tEnabled: %s\n",
1018 cntrl & CNTRL_TXE ? "yes" : "no");
1019 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1020 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1021 v4l2_info(sd, "\tFIFO: %s\n",
1022 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1023 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1024 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1025 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1026 cntrl & CNTRL_IVO ? "yes" : "no");
1027 v4l2_info(sd, "\tCarrier polarity: %s\n",
1028 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1029 : "space:noburst mark:burst");
1030 if (cntrl & CNTRL_MOD) {
1031 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1032 clock_divider_to_carrier_freq(txclk));
1033 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1034 cduty + 1);
1035 }
1036 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1037 pulse_width_count_to_us(FIFO_RXTX, txclk),
1038 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1039 v4l2_info(sd, "\tBusy: %s\n",
1040 stats & STATS_TBY ? "yes" : "no");
1041 v4l2_info(sd, "\tFIFO service requested: %s\n",
1042 stats & STATS_TSR ? "yes" : "no");
1043 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1044 irqen & IRQEN_TSE ? "enabled" : "disabled");
1045
1046 return 0;
1047 }
1048
1049 #ifdef CONFIG_VIDEO_ADV_DEBUG
cx23888_ir_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1050 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1051 struct v4l2_dbg_register *reg)
1052 {
1053 struct cx23888_ir_state *state = to_state(sd);
1054 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1055
1056 if ((addr & 0x3) != 0)
1057 return -EINVAL;
1058 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1059 return -EINVAL;
1060 reg->size = 4;
1061 reg->val = cx23888_ir_read4(state->dev, addr);
1062 return 0;
1063 }
1064
cx23888_ir_s_register(struct v4l2_subdev * sd,const struct v4l2_dbg_register * reg)1065 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1066 const struct v4l2_dbg_register *reg)
1067 {
1068 struct cx23888_ir_state *state = to_state(sd);
1069 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1070
1071 if ((addr & 0x3) != 0)
1072 return -EINVAL;
1073 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1074 return -EINVAL;
1075 cx23888_ir_write4(state->dev, addr, reg->val);
1076 return 0;
1077 }
1078 #endif
1079
1080 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1081 .log_status = cx23888_ir_log_status,
1082 #ifdef CONFIG_VIDEO_ADV_DEBUG
1083 .g_register = cx23888_ir_g_register,
1084 .s_register = cx23888_ir_s_register,
1085 #endif
1086 .interrupt_service_routine = cx23888_ir_irq_handler,
1087 };
1088
1089 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1090 .rx_read = cx23888_ir_rx_read,
1091 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1092 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1093
1094 .tx_write = cx23888_ir_tx_write,
1095 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1096 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1097 };
1098
1099 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1100 .core = &cx23888_ir_core_ops,
1101 .ir = &cx23888_ir_ir_ops,
1102 };
1103
1104 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1105 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1106 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1107
1108 .enable = false,
1109 .interrupt_enable = false,
1110 .shutdown = true,
1111
1112 .modulation = true,
1113 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1114
1115 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1116 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1117 .noise_filter_min_width = 333333, /* ns */
1118 .carrier_range_lower = 35000,
1119 .carrier_range_upper = 37000,
1120 .invert_level = false,
1121 };
1122
1123 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1124 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1125 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1126
1127 .enable = false,
1128 .interrupt_enable = false,
1129 .shutdown = true,
1130
1131 .modulation = true,
1132 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1133 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1134 .invert_level = false,
1135 .invert_carrier_sense = false,
1136 };
1137
cx23888_ir_probe(struct cx23885_dev * dev)1138 int cx23888_ir_probe(struct cx23885_dev *dev)
1139 {
1140 struct cx23888_ir_state *state;
1141 struct v4l2_subdev *sd;
1142 struct v4l2_subdev_ir_parameters default_params;
1143 int ret;
1144
1145 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1146 if (state == NULL)
1147 return -ENOMEM;
1148
1149 spin_lock_init(&state->rx_kfifo_lock);
1150 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE,
1151 GFP_KERNEL)) {
1152 kfree(state);
1153 return -ENOMEM;
1154 }
1155
1156 state->dev = dev;
1157 sd = &state->sd;
1158
1159 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1160 v4l2_set_subdevdata(sd, state);
1161 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1162 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1163 sd->grp_id = CX23885_HW_888_IR;
1164
1165 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1166 if (ret == 0) {
1167 /*
1168 * Ensure no interrupts arrive from '888 specific conditions,
1169 * since we ignore them in this driver to have commonality with
1170 * similar IR controller cores.
1171 */
1172 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1173
1174 mutex_init(&state->rx_params_lock);
1175 default_params = default_rx_params;
1176 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1177
1178 mutex_init(&state->tx_params_lock);
1179 default_params = default_tx_params;
1180 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1181 } else {
1182 kfifo_free(&state->rx_kfifo);
1183 }
1184 return ret;
1185 }
1186
cx23888_ir_remove(struct cx23885_dev * dev)1187 int cx23888_ir_remove(struct cx23885_dev *dev)
1188 {
1189 struct v4l2_subdev *sd;
1190 struct cx23888_ir_state *state;
1191
1192 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1193 if (sd == NULL)
1194 return -ENODEV;
1195
1196 cx23888_ir_rx_shutdown(sd);
1197 cx23888_ir_tx_shutdown(sd);
1198
1199 state = to_state(sd);
1200 v4l2_device_unregister_subdev(sd);
1201 kfifo_free(&state->rx_kfifo);
1202 kfree(state);
1203 /* Nothing more to free() as state held the actual v4l2_subdev object */
1204 return 0;
1205 }
1206