1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_QP (1<<16)
40 #define T4_MAX_NUM_CQ (1<<15)
41 #define T4_MAX_NUM_PD (1<<15)
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL - 1)
51 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
56 
57 struct t4_status_page {
58 	__be32 rsvd1;	/* flit 0 - hw owns */
59 	__be16 rsvd2;
60 	__be16 qid;
61 	__be16 cidx;
62 	__be16 pidx;
63 	u8 qp_err;	/* flit 1 - sw owns */
64 	u8 db_off;
65 };
66 
67 #define T4_EQ_ENTRY_SIZE 64
68 
69 #define T4_SQ_NUM_SLOTS 5
70 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
71 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
72 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
73 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
74 			sizeof(struct fw_ri_immd)))
75 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
76 			sizeof(struct fw_ri_rdma_write_wr) - \
77 			sizeof(struct fw_ri_immd)))
78 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
79 			sizeof(struct fw_ri_rdma_write_wr) - \
80 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
81 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
82 			sizeof(struct fw_ri_immd)) & ~31UL)
83 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
84 
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
88 
89 union t4_wr {
90 	struct fw_ri_res_wr res;
91 	struct fw_ri_wr ri;
92 	struct fw_ri_rdma_write_wr write;
93 	struct fw_ri_send_wr send;
94 	struct fw_ri_rdma_read_wr read;
95 	struct fw_ri_bind_mw_wr bind;
96 	struct fw_ri_fr_nsmr_wr fr;
97 	struct fw_ri_inv_lstag_wr inv;
98 	struct t4_status_page status;
99 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100 };
101 
102 union t4_recv_wr {
103 	struct fw_ri_recv_wr recv;
104 	struct t4_status_page status;
105 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106 };
107 
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110 {
111 	wqe->send.opcode = (u8)opcode;
112 	wqe->send.flags = flags;
113 	wqe->send.wrid = wrid;
114 	wqe->send.r1[0] = 0;
115 	wqe->send.r1[1] = 0;
116 	wqe->send.r1[2] = 0;
117 	wqe->send.len16 = len16;
118 }
119 
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS                     0x0
122 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
123 						/* STAG is offlimt, being 0, */
124 						/* or STAG_key mismatch */
125 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
126 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
127 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
128 #define T4_ERR_WRAP                        0x5	/* Wrap error */
129 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
131 						/* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
133 						/* shared memory region */
134 #define T4_ERR_ECC                         0x9	/* ECC error detected */
135 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
136 						/* reading PSTAG for a MW  */
137 						/* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
139 						/* software error */
140 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
141 #define T4_ERR_CRC                         0x10 /* CRC error */
142 #define T4_ERR_MARKER                      0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN                         0x18 /* MSN error */
150 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
152 						/* or READ_REQ */
153 #define T4_ERR_MSN_GAP                     0x1B
154 #define T4_ERR_MSN_RANGE                   0x1C
155 #define T4_ERR_IRD_OVERFLOW                0x1D
156 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
157 						/* software error */
158 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
159 						/* mismatch) */
160 /*
161  * CQE defs
162  */
163 struct t4_cqe {
164 	__be32 header;
165 	__be32 len;
166 	union {
167 		struct {
168 			__be32 stag;
169 			__be32 msn;
170 		} rcqe;
171 		struct {
172 			u32 nada1;
173 			u16 nada2;
174 			u16 cidx;
175 		} scqe;
176 		struct {
177 			__be32 wrid_hi;
178 			__be32 wrid_low;
179 		} gen;
180 	} u;
181 	__be64 reserved;
182 	__be64 bits_type_ts;
183 };
184 
185 /* macros for flit 0 of the cqe */
186 
187 #define S_CQE_QPID        12
188 #define M_CQE_QPID        0xFFFFF
189 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
191 
192 #define S_CQE_SWCQE       11
193 #define M_CQE_SWCQE       0x1
194 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
196 
197 #define S_CQE_STATUS      5
198 #define M_CQE_STATUS      0x1F
199 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
201 
202 #define S_CQE_TYPE        4
203 #define M_CQE_TYPE        0x1
204 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
206 
207 #define S_CQE_OPCODE      0
208 #define M_CQE_OPCODE      0xF
209 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
211 
212 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
216 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
217 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
219 
220 #define CQE_SEND_OPCODE(x)( \
221 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225 
226 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
227 
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
231 
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
234 
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
237 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
238 
239 /* macros for flit 3 of the cqe */
240 #define S_CQE_GENBIT	63
241 #define M_CQE_GENBIT	0x1
242 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
244 
245 #define S_CQE_OVFBIT	62
246 #define M_CQE_OVFBIT	0x1
247 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
248 
249 #define S_CQE_IQTYPE	60
250 #define M_CQE_IQTYPE	0x3
251 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
252 
253 #define M_CQE_TS	0x0fffffffffffffffULL
254 #define G_CQE_TS(x)	((x) & M_CQE_TS)
255 
256 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
259 
260 struct t4_swsqe {
261 	u64			wr_id;
262 	struct t4_cqe		cqe;
263 	int			read_len;
264 	int			opcode;
265 	int			complete;
266 	int			signaled;
267 	u16			idx;
268 };
269 
t4_pgprot_wc(pgprot_t prot)270 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
271 {
272 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
273 	return pgprot_writecombine(prot);
274 #else
275 	return pgprot_noncached(prot);
276 #endif
277 }
278 
t4_ocqp_supported(void)279 static inline int t4_ocqp_supported(void)
280 {
281 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
282 	return 1;
283 #else
284 	return 0;
285 #endif
286 }
287 
288 enum {
289 	T4_SQ_ONCHIP = (1<<0),
290 };
291 
292 struct t4_sq {
293 	union t4_wr *queue;
294 	dma_addr_t dma_addr;
295 	DEFINE_DMA_UNMAP_ADDR(mapping);
296 	unsigned long phys_addr;
297 	struct t4_swsqe *sw_sq;
298 	struct t4_swsqe *oldest_read;
299 	u64 udb;
300 	size_t memsize;
301 	u32 qid;
302 	u16 in_use;
303 	u16 size;
304 	u16 cidx;
305 	u16 pidx;
306 	u16 wq_pidx;
307 	u16 flags;
308 };
309 
310 struct t4_swrqe {
311 	u64 wr_id;
312 };
313 
314 struct t4_rq {
315 	union  t4_recv_wr *queue;
316 	dma_addr_t dma_addr;
317 	DEFINE_DMA_UNMAP_ADDR(mapping);
318 	struct t4_swrqe *sw_rq;
319 	u64 udb;
320 	size_t memsize;
321 	u32 qid;
322 	u32 msn;
323 	u32 rqt_hwaddr;
324 	u16 rqt_size;
325 	u16 in_use;
326 	u16 size;
327 	u16 cidx;
328 	u16 pidx;
329 	u16 wq_pidx;
330 };
331 
332 struct t4_wq {
333 	struct t4_sq sq;
334 	struct t4_rq rq;
335 	void __iomem *db;
336 	void __iomem *gts;
337 	struct c4iw_rdev *rdev;
338 };
339 
t4_rqes_posted(struct t4_wq * wq)340 static inline int t4_rqes_posted(struct t4_wq *wq)
341 {
342 	return wq->rq.in_use;
343 }
344 
t4_rq_empty(struct t4_wq * wq)345 static inline int t4_rq_empty(struct t4_wq *wq)
346 {
347 	return wq->rq.in_use == 0;
348 }
349 
t4_rq_full(struct t4_wq * wq)350 static inline int t4_rq_full(struct t4_wq *wq)
351 {
352 	return wq->rq.in_use == (wq->rq.size - 1);
353 }
354 
t4_rq_avail(struct t4_wq * wq)355 static inline u32 t4_rq_avail(struct t4_wq *wq)
356 {
357 	return wq->rq.size - 1 - wq->rq.in_use;
358 }
359 
t4_rq_produce(struct t4_wq * wq,u8 len16)360 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
361 {
362 	wq->rq.in_use++;
363 	if (++wq->rq.pidx == wq->rq.size)
364 		wq->rq.pidx = 0;
365 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
368 }
369 
t4_rq_consume(struct t4_wq * wq)370 static inline void t4_rq_consume(struct t4_wq *wq)
371 {
372 	wq->rq.in_use--;
373 	wq->rq.msn++;
374 	if (++wq->rq.cidx == wq->rq.size)
375 		wq->rq.cidx = 0;
376 }
377 
t4_sq_onchip(struct t4_sq * sq)378 static inline int t4_sq_onchip(struct t4_sq *sq)
379 {
380 	return sq->flags & T4_SQ_ONCHIP;
381 }
382 
t4_sq_empty(struct t4_wq * wq)383 static inline int t4_sq_empty(struct t4_wq *wq)
384 {
385 	return wq->sq.in_use == 0;
386 }
387 
t4_sq_full(struct t4_wq * wq)388 static inline int t4_sq_full(struct t4_wq *wq)
389 {
390 	return wq->sq.in_use == (wq->sq.size - 1);
391 }
392 
t4_sq_avail(struct t4_wq * wq)393 static inline u32 t4_sq_avail(struct t4_wq *wq)
394 {
395 	return wq->sq.size - 1 - wq->sq.in_use;
396 }
397 
t4_sq_produce(struct t4_wq * wq,u8 len16)398 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
399 {
400 	wq->sq.in_use++;
401 	if (++wq->sq.pidx == wq->sq.size)
402 		wq->sq.pidx = 0;
403 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
404 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
405 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
406 }
407 
t4_sq_consume(struct t4_wq * wq)408 static inline void t4_sq_consume(struct t4_wq *wq)
409 {
410 	wq->sq.in_use--;
411 	if (++wq->sq.cidx == wq->sq.size)
412 		wq->sq.cidx = 0;
413 }
414 
t4_ring_sq_db(struct t4_wq * wq,u16 inc)415 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
416 {
417 	wmb();
418 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
419 }
420 
t4_ring_rq_db(struct t4_wq * wq,u16 inc)421 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
422 {
423 	wmb();
424 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
425 }
426 
t4_wq_in_error(struct t4_wq * wq)427 static inline int t4_wq_in_error(struct t4_wq *wq)
428 {
429 	return wq->rq.queue[wq->rq.size].status.qp_err;
430 }
431 
t4_set_wq_in_error(struct t4_wq * wq)432 static inline void t4_set_wq_in_error(struct t4_wq *wq)
433 {
434 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
435 }
436 
t4_disable_wq_db(struct t4_wq * wq)437 static inline void t4_disable_wq_db(struct t4_wq *wq)
438 {
439 	wq->rq.queue[wq->rq.size].status.db_off = 1;
440 }
441 
t4_enable_wq_db(struct t4_wq * wq)442 static inline void t4_enable_wq_db(struct t4_wq *wq)
443 {
444 	wq->rq.queue[wq->rq.size].status.db_off = 0;
445 }
446 
t4_wq_db_enabled(struct t4_wq * wq)447 static inline int t4_wq_db_enabled(struct t4_wq *wq)
448 {
449 	return !wq->rq.queue[wq->rq.size].status.db_off;
450 }
451 
452 struct t4_cq {
453 	struct t4_cqe *queue;
454 	dma_addr_t dma_addr;
455 	DEFINE_DMA_UNMAP_ADDR(mapping);
456 	struct t4_cqe *sw_queue;
457 	void __iomem *gts;
458 	struct c4iw_rdev *rdev;
459 	u64 ugts;
460 	size_t memsize;
461 	__be64 bits_type_ts;
462 	u32 cqid;
463 	u16 size; /* including status page */
464 	u16 cidx;
465 	u16 sw_pidx;
466 	u16 sw_cidx;
467 	u16 sw_in_use;
468 	u16 cidx_inc;
469 	u8 gen;
470 	u8 error;
471 };
472 
t4_arm_cq(struct t4_cq * cq,int se)473 static inline int t4_arm_cq(struct t4_cq *cq, int se)
474 {
475 	u32 val;
476 
477 	while (cq->cidx_inc > CIDXINC_MASK) {
478 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
479 		      INGRESSQID(cq->cqid);
480 		writel(val, cq->gts);
481 		cq->cidx_inc -= CIDXINC_MASK;
482 	}
483 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
484 	      INGRESSQID(cq->cqid);
485 	writel(val, cq->gts);
486 	cq->cidx_inc = 0;
487 	return 0;
488 }
489 
t4_swcq_produce(struct t4_cq * cq)490 static inline void t4_swcq_produce(struct t4_cq *cq)
491 {
492 	cq->sw_in_use++;
493 	if (++cq->sw_pidx == cq->size)
494 		cq->sw_pidx = 0;
495 }
496 
t4_swcq_consume(struct t4_cq * cq)497 static inline void t4_swcq_consume(struct t4_cq *cq)
498 {
499 	cq->sw_in_use--;
500 	if (++cq->sw_cidx == cq->size)
501 		cq->sw_cidx = 0;
502 }
503 
t4_hwcq_consume(struct t4_cq * cq)504 static inline void t4_hwcq_consume(struct t4_cq *cq)
505 {
506 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
507 	if (++cq->cidx_inc == (cq->size >> 4)) {
508 		u32 val;
509 
510 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
511 		      INGRESSQID(cq->cqid);
512 		writel(val, cq->gts);
513 		cq->cidx_inc = 0;
514 	}
515 	if (++cq->cidx == cq->size) {
516 		cq->cidx = 0;
517 		cq->gen ^= 1;
518 	}
519 }
520 
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)521 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
522 {
523 	return (CQE_GENBIT(cqe) == cq->gen);
524 }
525 
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)526 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
527 {
528 	int ret;
529 	u16 prev_cidx;
530 
531 	if (cq->cidx == 0)
532 		prev_cidx = cq->size - 1;
533 	else
534 		prev_cidx = cq->cidx - 1;
535 
536 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
537 		ret = -EOVERFLOW;
538 		cq->error = 1;
539 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
540 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
541 		*cqe = &cq->queue[cq->cidx];
542 		ret = 0;
543 	} else
544 		ret = -ENODATA;
545 	return ret;
546 }
547 
t4_next_sw_cqe(struct t4_cq * cq)548 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
549 {
550 	if (cq->sw_in_use)
551 		return &cq->sw_queue[cq->sw_cidx];
552 	return NULL;
553 }
554 
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)555 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
556 {
557 	int ret = 0;
558 
559 	if (cq->error)
560 		ret = -ENODATA;
561 	else if (cq->sw_in_use)
562 		*cqe = &cq->sw_queue[cq->sw_cidx];
563 	else
564 		ret = t4_next_hw_cqe(cq, cqe);
565 	return ret;
566 }
567 
t4_cq_in_error(struct t4_cq * cq)568 static inline int t4_cq_in_error(struct t4_cq *cq)
569 {
570 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
571 }
572 
t4_set_cq_in_error(struct t4_cq * cq)573 static inline void t4_set_cq_in_error(struct t4_cq *cq)
574 {
575 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
576 }
577 #endif
578