1 
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6 
7 #include "cpupri.h"
8 
9 extern __read_mostly int scheduler_running;
10 
11 /*
12  * Convert user-nice values [ -20 ... 0 ... 19 ]
13  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14  * and back.
15  */
16 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
19 
20 /*
21  * 'User priority' is the nice value converted to something we
22  * can work with better when scaling various scheduler parameters,
23  * it's a [ 0 ... 39 ] range.
24  */
25 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
28 
29 /*
30  * Helpers for converting nanosecond timing to jiffy resolution
31  */
32 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33 
34 #define NICE_0_LOAD		SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
36 
37 /*
38  * These are the 'tuning knobs' of the scheduler:
39  */
40 
41 /*
42  * single value that denotes runtime == period, ie unlimited time.
43  */
44 #define RUNTIME_INF	((u64)~0ULL)
45 
rt_policy(int policy)46 static inline int rt_policy(int policy)
47 {
48 	if (policy == SCHED_FIFO || policy == SCHED_RR)
49 		return 1;
50 	return 0;
51 }
52 
task_has_rt_policy(struct task_struct * p)53 static inline int task_has_rt_policy(struct task_struct *p)
54 {
55 	return rt_policy(p->policy);
56 }
57 
58 /*
59  * This is the priority-queue data structure of the RT scheduling class:
60  */
61 struct rt_prio_array {
62 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 	struct list_head queue[MAX_RT_PRIO];
64 };
65 
66 struct rt_bandwidth {
67 	/* nests inside the rq lock: */
68 	raw_spinlock_t		rt_runtime_lock;
69 	ktime_t			rt_period;
70 	u64			rt_runtime;
71 	struct hrtimer		rt_period_timer;
72 };
73 
74 extern struct mutex sched_domains_mutex;
75 
76 #ifdef CONFIG_CGROUP_SCHED
77 
78 #include <linux/cgroup.h>
79 
80 struct cfs_rq;
81 struct rt_rq;
82 
83 extern struct list_head task_groups;
84 
85 struct cfs_bandwidth {
86 #ifdef CONFIG_CFS_BANDWIDTH
87 	raw_spinlock_t lock;
88 	ktime_t period;
89 	u64 quota, runtime;
90 	s64 hierarchal_quota;
91 	u64 runtime_expires;
92 
93 	int idle, timer_active;
94 	struct hrtimer period_timer, slack_timer;
95 	struct list_head throttled_cfs_rq;
96 
97 	/* statistics */
98 	int nr_periods, nr_throttled;
99 	u64 throttled_time;
100 #endif
101 };
102 
103 /* task group related information */
104 struct task_group {
105 	struct cgroup_subsys_state css;
106 
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108 	/* schedulable entities of this group on each cpu */
109 	struct sched_entity **se;
110 	/* runqueue "owned" by this group on each cpu */
111 	struct cfs_rq **cfs_rq;
112 	unsigned long shares;
113 
114 	atomic_t load_weight;
115 #endif
116 
117 #ifdef CONFIG_RT_GROUP_SCHED
118 	struct sched_rt_entity **rt_se;
119 	struct rt_rq **rt_rq;
120 
121 	struct rt_bandwidth rt_bandwidth;
122 #endif
123 
124 	struct rcu_head rcu;
125 	struct list_head list;
126 
127 	struct task_group *parent;
128 	struct list_head siblings;
129 	struct list_head children;
130 
131 #ifdef CONFIG_SCHED_AUTOGROUP
132 	struct autogroup *autogroup;
133 #endif
134 
135 	struct cfs_bandwidth cfs_bandwidth;
136 };
137 
138 #ifdef CONFIG_FAIR_GROUP_SCHED
139 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
140 
141 /*
142  * A weight of 0 or 1 can cause arithmetics problems.
143  * A weight of a cfs_rq is the sum of weights of which entities
144  * are queued on this cfs_rq, so a weight of a entity should not be
145  * too large, so as the shares value of a task group.
146  * (The default weight is 1024 - so there's no practical
147  *  limitation from this.)
148  */
149 #define MIN_SHARES	(1UL <<  1)
150 #define MAX_SHARES	(1UL << 18)
151 #endif
152 
153 /* Default task group.
154  *	Every task in system belong to this group at bootup.
155  */
156 extern struct task_group root_task_group;
157 
158 typedef int (*tg_visitor)(struct task_group *, void *);
159 
160 extern int walk_tg_tree_from(struct task_group *from,
161 			     tg_visitor down, tg_visitor up, void *data);
162 
163 /*
164  * Iterate the full tree, calling @down when first entering a node and @up when
165  * leaving it for the final time.
166  *
167  * Caller must hold rcu_lock or sufficient equivalent.
168  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)169 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170 {
171 	return walk_tg_tree_from(&root_task_group, down, up, data);
172 }
173 
174 extern int tg_nop(struct task_group *tg, void *data);
175 
176 extern void free_fair_sched_group(struct task_group *tg);
177 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 			struct sched_entity *se, int cpu,
181 			struct sched_entity *parent);
182 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184 
185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188 
189 extern void free_rt_sched_group(struct task_group *tg);
190 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 		struct sched_rt_entity *rt_se, int cpu,
193 		struct sched_rt_entity *parent);
194 
195 #else /* CONFIG_CGROUP_SCHED */
196 
197 struct cfs_bandwidth { };
198 
199 #endif	/* CONFIG_CGROUP_SCHED */
200 
201 /* CFS-related fields in a runqueue */
202 struct cfs_rq {
203 	struct load_weight load;
204 	unsigned long nr_running, h_nr_running;
205 
206 	u64 exec_clock;
207 	u64 min_vruntime;
208 #ifndef CONFIG_64BIT
209 	u64 min_vruntime_copy;
210 #endif
211 
212 	struct rb_root tasks_timeline;
213 	struct rb_node *rb_leftmost;
214 
215 	/*
216 	 * 'curr' points to currently running entity on this cfs_rq.
217 	 * It is set to NULL otherwise (i.e when none are currently running).
218 	 */
219 	struct sched_entity *curr, *next, *last, *skip;
220 
221 #ifdef	CONFIG_SCHED_DEBUG
222 	unsigned int nr_spread_over;
223 #endif
224 
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
227 
228 	/*
229 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 	 * (like users, containers etc.)
232 	 *
233 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 	 * list is used during load balance.
235 	 */
236 	int on_list;
237 	struct list_head leaf_cfs_rq_list;
238 	struct task_group *tg;	/* group that "owns" this runqueue */
239 
240 #ifdef CONFIG_SMP
241 	/*
242 	 *   h_load = weight * f(tg)
243 	 *
244 	 * Where f(tg) is the recursive weight fraction assigned to
245 	 * this group.
246 	 */
247 	unsigned long h_load;
248 
249 	/*
250 	 * Maintaining per-cpu shares distribution for group scheduling
251 	 *
252 	 * load_stamp is the last time we updated the load average
253 	 * load_last is the last time we updated the load average and saw load
254 	 * load_unacc_exec_time is currently unaccounted execution time
255 	 */
256 	u64 load_avg;
257 	u64 load_period;
258 	u64 load_stamp, load_last, load_unacc_exec_time;
259 
260 	unsigned long load_contribution;
261 #endif /* CONFIG_SMP */
262 #ifdef CONFIG_CFS_BANDWIDTH
263 	int runtime_enabled;
264 	u64 runtime_expires;
265 	s64 runtime_remaining;
266 
267 	u64 throttled_timestamp;
268 	int throttled, throttle_count;
269 	struct list_head throttled_list;
270 #endif /* CONFIG_CFS_BANDWIDTH */
271 #endif /* CONFIG_FAIR_GROUP_SCHED */
272 };
273 
rt_bandwidth_enabled(void)274 static inline int rt_bandwidth_enabled(void)
275 {
276 	return sysctl_sched_rt_runtime >= 0;
277 }
278 
279 /* Real-Time classes' related field in a runqueue: */
280 struct rt_rq {
281 	struct rt_prio_array active;
282 	unsigned long rt_nr_running;
283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 	struct {
285 		int curr; /* highest queued rt task prio */
286 #ifdef CONFIG_SMP
287 		int next; /* next highest */
288 #endif
289 	} highest_prio;
290 #endif
291 #ifdef CONFIG_SMP
292 	unsigned long rt_nr_migratory;
293 	unsigned long rt_nr_total;
294 	int overloaded;
295 	struct plist_head pushable_tasks;
296 #endif
297 	int rt_throttled;
298 	u64 rt_time;
299 	u64 rt_runtime;
300 	/* Nests inside the rq lock: */
301 	raw_spinlock_t rt_runtime_lock;
302 
303 #ifdef CONFIG_RT_GROUP_SCHED
304 	unsigned long rt_nr_boosted;
305 
306 	struct rq *rq;
307 	struct list_head leaf_rt_rq_list;
308 	struct task_group *tg;
309 #endif
310 };
311 
312 #ifdef CONFIG_SMP
313 
314 /*
315  * We add the notion of a root-domain which will be used to define per-domain
316  * variables. Each exclusive cpuset essentially defines an island domain by
317  * fully partitioning the member cpus from any other cpuset. Whenever a new
318  * exclusive cpuset is created, we also create and attach a new root-domain
319  * object.
320  *
321  */
322 struct root_domain {
323 	atomic_t refcount;
324 	atomic_t rto_count;
325 	struct rcu_head rcu;
326 	cpumask_var_t span;
327 	cpumask_var_t online;
328 
329 	/*
330 	 * The "RT overload" flag: it gets set if a CPU has more than
331 	 * one runnable RT task.
332 	 */
333 	cpumask_var_t rto_mask;
334 	struct cpupri cpupri;
335 };
336 
337 extern struct root_domain def_root_domain;
338 
339 #endif /* CONFIG_SMP */
340 
341 /*
342  * This is the main, per-CPU runqueue data structure.
343  *
344  * Locking rule: those places that want to lock multiple runqueues
345  * (such as the load balancing or the thread migration code), lock
346  * acquire operations must be ordered by ascending &runqueue.
347  */
348 struct rq {
349 	/* runqueue lock: */
350 	raw_spinlock_t lock;
351 
352 	/*
353 	 * nr_running and cpu_load should be in the same cacheline because
354 	 * remote CPUs use both these fields when doing load calculation.
355 	 */
356 	unsigned long nr_running;
357 	#define CPU_LOAD_IDX_MAX 5
358 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 	unsigned long last_load_update_tick;
360 #ifdef CONFIG_NO_HZ
361 	u64 nohz_stamp;
362 	unsigned long nohz_flags;
363 #endif
364 	int skip_clock_update;
365 
366 	/* capture load from *all* tasks on this cpu: */
367 	struct load_weight load;
368 	unsigned long nr_load_updates;
369 	u64 nr_switches;
370 
371 	struct cfs_rq cfs;
372 	struct rt_rq rt;
373 
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 	/* list of leaf cfs_rq on this cpu: */
376 	struct list_head leaf_cfs_rq_list;
377 #endif
378 #ifdef CONFIG_RT_GROUP_SCHED
379 	struct list_head leaf_rt_rq_list;
380 #endif
381 
382 	/*
383 	 * This is part of a global counter where only the total sum
384 	 * over all CPUs matters. A task can increase this counter on
385 	 * one CPU and if it got migrated afterwards it may decrease
386 	 * it on another CPU. Always updated under the runqueue lock:
387 	 */
388 	unsigned long nr_uninterruptible;
389 
390 	struct task_struct *curr, *idle, *stop;
391 	unsigned long next_balance;
392 	struct mm_struct *prev_mm;
393 
394 	u64 clock;
395 	u64 clock_task;
396 
397 	atomic_t nr_iowait;
398 
399 #ifdef CONFIG_SMP
400 	struct root_domain *rd;
401 	struct sched_domain *sd;
402 
403 	unsigned long cpu_power;
404 
405 	unsigned char idle_balance;
406 	/* For active balancing */
407 	int post_schedule;
408 	int active_balance;
409 	int push_cpu;
410 	struct cpu_stop_work active_balance_work;
411 	/* cpu of this runqueue: */
412 	int cpu;
413 	int online;
414 
415 	struct list_head cfs_tasks;
416 
417 	u64 rt_avg;
418 	u64 age_stamp;
419 	u64 idle_stamp;
420 	u64 avg_idle;
421 #endif
422 
423 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
424 	u64 prev_irq_time;
425 #endif
426 #ifdef CONFIG_PARAVIRT
427 	u64 prev_steal_time;
428 #endif
429 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
430 	u64 prev_steal_time_rq;
431 #endif
432 
433 	/* calc_load related fields */
434 	unsigned long calc_load_update;
435 	long calc_load_active;
436 
437 #ifdef CONFIG_SCHED_HRTICK
438 #ifdef CONFIG_SMP
439 	int hrtick_csd_pending;
440 	struct call_single_data hrtick_csd;
441 #endif
442 	struct hrtimer hrtick_timer;
443 #endif
444 
445 #ifdef CONFIG_SCHEDSTATS
446 	/* latency stats */
447 	struct sched_info rq_sched_info;
448 	unsigned long long rq_cpu_time;
449 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
450 
451 	/* sys_sched_yield() stats */
452 	unsigned int yld_count;
453 
454 	/* schedule() stats */
455 	unsigned int sched_count;
456 	unsigned int sched_goidle;
457 
458 	/* try_to_wake_up() stats */
459 	unsigned int ttwu_count;
460 	unsigned int ttwu_local;
461 #endif
462 
463 #ifdef CONFIG_SMP
464 	struct llist_head wake_list;
465 #endif
466 };
467 
cpu_of(struct rq * rq)468 static inline int cpu_of(struct rq *rq)
469 {
470 #ifdef CONFIG_SMP
471 	return rq->cpu;
472 #else
473 	return 0;
474 #endif
475 }
476 
477 DECLARE_PER_CPU(struct rq, runqueues);
478 
479 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
480 #define this_rq()		(&__get_cpu_var(runqueues))
481 #define task_rq(p)		cpu_rq(task_cpu(p))
482 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
483 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
484 
485 #ifdef CONFIG_SMP
486 
487 #define rcu_dereference_check_sched_domain(p) \
488 	rcu_dereference_check((p), \
489 			      lockdep_is_held(&sched_domains_mutex))
490 
491 /*
492  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
493  * See detach_destroy_domains: synchronize_sched for details.
494  *
495  * The domain tree of any CPU may only be accessed from within
496  * preempt-disabled sections.
497  */
498 #define for_each_domain(cpu, __sd) \
499 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
500 			__sd; __sd = __sd->parent)
501 
502 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
503 
504 /**
505  * highest_flag_domain - Return highest sched_domain containing flag.
506  * @cpu:	The cpu whose highest level of sched domain is to
507  *		be returned.
508  * @flag:	The flag to check for the highest sched_domain
509  *		for the given cpu.
510  *
511  * Returns the highest sched_domain of a cpu which contains the given flag.
512  */
highest_flag_domain(int cpu,int flag)513 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
514 {
515 	struct sched_domain *sd, *hsd = NULL;
516 
517 	for_each_domain(cpu, sd) {
518 		if (!(sd->flags & flag))
519 			break;
520 		hsd = sd;
521 	}
522 
523 	return hsd;
524 }
525 
526 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
527 DECLARE_PER_CPU(int, sd_llc_id);
528 
529 #endif /* CONFIG_SMP */
530 
531 #include "stats.h"
532 #include "auto_group.h"
533 
534 #ifdef CONFIG_CGROUP_SCHED
535 
536 /*
537  * Return the group to which this tasks belongs.
538  *
539  * We cannot use task_subsys_state() and friends because the cgroup
540  * subsystem changes that value before the cgroup_subsys::attach() method
541  * is called, therefore we cannot pin it and might observe the wrong value.
542  *
543  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
544  * core changes this before calling sched_move_task().
545  *
546  * Instead we use a 'copy' which is updated from sched_move_task() while
547  * holding both task_struct::pi_lock and rq::lock.
548  */
task_group(struct task_struct * p)549 static inline struct task_group *task_group(struct task_struct *p)
550 {
551 	return p->sched_task_group;
552 }
553 
554 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)555 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
556 {
557 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
558 	struct task_group *tg = task_group(p);
559 #endif
560 
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 	p->se.cfs_rq = tg->cfs_rq[cpu];
563 	p->se.parent = tg->se[cpu];
564 #endif
565 
566 #ifdef CONFIG_RT_GROUP_SCHED
567 	p->rt.rt_rq  = tg->rt_rq[cpu];
568 	p->rt.parent = tg->rt_se[cpu];
569 #endif
570 }
571 
572 #else /* CONFIG_CGROUP_SCHED */
573 
set_task_rq(struct task_struct * p,unsigned int cpu)574 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)575 static inline struct task_group *task_group(struct task_struct *p)
576 {
577 	return NULL;
578 }
579 
580 #endif /* CONFIG_CGROUP_SCHED */
581 
__set_task_cpu(struct task_struct * p,unsigned int cpu)582 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
583 {
584 	set_task_rq(p, cpu);
585 #ifdef CONFIG_SMP
586 	/*
587 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
588 	 * successfuly executed on another CPU. We must ensure that updates of
589 	 * per-task data have been completed by this moment.
590 	 */
591 	smp_wmb();
592 	task_thread_info(p)->cpu = cpu;
593 #endif
594 }
595 
596 /*
597  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
598  */
599 #ifdef CONFIG_SCHED_DEBUG
600 # include <linux/static_key.h>
601 # define const_debug __read_mostly
602 #else
603 # define const_debug const
604 #endif
605 
606 extern const_debug unsigned int sysctl_sched_features;
607 
608 #define SCHED_FEAT(name, enabled)	\
609 	__SCHED_FEAT_##name ,
610 
611 enum {
612 #include "features.h"
613 	__SCHED_FEAT_NR,
614 };
615 
616 #undef SCHED_FEAT
617 
618 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
static_branch__true(struct static_key * key)619 static __always_inline bool static_branch__true(struct static_key *key)
620 {
621 	return static_key_true(key); /* Not out of line branch. */
622 }
623 
static_branch__false(struct static_key * key)624 static __always_inline bool static_branch__false(struct static_key *key)
625 {
626 	return static_key_false(key); /* Out of line branch. */
627 }
628 
629 #define SCHED_FEAT(name, enabled)					\
630 static __always_inline bool static_branch_##name(struct static_key *key) \
631 {									\
632 	return static_branch__##enabled(key);				\
633 }
634 
635 #include "features.h"
636 
637 #undef SCHED_FEAT
638 
639 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
640 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
641 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
642 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
643 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
644 
global_rt_period(void)645 static inline u64 global_rt_period(void)
646 {
647 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
648 }
649 
global_rt_runtime(void)650 static inline u64 global_rt_runtime(void)
651 {
652 	if (sysctl_sched_rt_runtime < 0)
653 		return RUNTIME_INF;
654 
655 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
656 }
657 
658 
659 
task_current(struct rq * rq,struct task_struct * p)660 static inline int task_current(struct rq *rq, struct task_struct *p)
661 {
662 	return rq->curr == p;
663 }
664 
task_running(struct rq * rq,struct task_struct * p)665 static inline int task_running(struct rq *rq, struct task_struct *p)
666 {
667 #ifdef CONFIG_SMP
668 	return p->on_cpu;
669 #else
670 	return task_current(rq, p);
671 #endif
672 }
673 
674 
675 #ifndef prepare_arch_switch
676 # define prepare_arch_switch(next)	do { } while (0)
677 #endif
678 #ifndef finish_arch_switch
679 # define finish_arch_switch(prev)	do { } while (0)
680 #endif
681 #ifndef finish_arch_post_lock_switch
682 # define finish_arch_post_lock_switch()	do { } while (0)
683 #endif
684 
685 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
prepare_lock_switch(struct rq * rq,struct task_struct * next)686 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
687 {
688 #ifdef CONFIG_SMP
689 	/*
690 	 * We can optimise this out completely for !SMP, because the
691 	 * SMP rebalancing from interrupt is the only thing that cares
692 	 * here.
693 	 */
694 	next->on_cpu = 1;
695 #endif
696 }
697 
finish_lock_switch(struct rq * rq,struct task_struct * prev)698 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
699 {
700 #ifdef CONFIG_SMP
701 	/*
702 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
703 	 * We must ensure this doesn't happen until the switch is completely
704 	 * finished.
705 	 */
706 	smp_wmb();
707 	prev->on_cpu = 0;
708 #endif
709 #ifdef CONFIG_DEBUG_SPINLOCK
710 	/* this is a valid case when another task releases the spinlock */
711 	rq->lock.owner = current;
712 #endif
713 	/*
714 	 * If we are tracking spinlock dependencies then we have to
715 	 * fix up the runqueue lock - which gets 'carried over' from
716 	 * prev into current:
717 	 */
718 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
719 
720 	raw_spin_unlock_irq(&rq->lock);
721 }
722 
723 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
prepare_lock_switch(struct rq * rq,struct task_struct * next)724 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
725 {
726 #ifdef CONFIG_SMP
727 	/*
728 	 * We can optimise this out completely for !SMP, because the
729 	 * SMP rebalancing from interrupt is the only thing that cares
730 	 * here.
731 	 */
732 	next->on_cpu = 1;
733 #endif
734 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
735 	raw_spin_unlock_irq(&rq->lock);
736 #else
737 	raw_spin_unlock(&rq->lock);
738 #endif
739 }
740 
finish_lock_switch(struct rq * rq,struct task_struct * prev)741 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
742 {
743 #ifdef CONFIG_SMP
744 	/*
745 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
746 	 * We must ensure this doesn't happen until the switch is completely
747 	 * finished.
748 	 */
749 	smp_wmb();
750 	prev->on_cpu = 0;
751 #endif
752 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 	local_irq_enable();
754 #endif
755 }
756 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
757 
758 
update_load_add(struct load_weight * lw,unsigned long inc)759 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
760 {
761 	lw->weight += inc;
762 	lw->inv_weight = 0;
763 }
764 
update_load_sub(struct load_weight * lw,unsigned long dec)765 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
766 {
767 	lw->weight -= dec;
768 	lw->inv_weight = 0;
769 }
770 
update_load_set(struct load_weight * lw,unsigned long w)771 static inline void update_load_set(struct load_weight *lw, unsigned long w)
772 {
773 	lw->weight = w;
774 	lw->inv_weight = 0;
775 }
776 
777 /*
778  * To aid in avoiding the subversion of "niceness" due to uneven distribution
779  * of tasks with abnormal "nice" values across CPUs the contribution that
780  * each task makes to its run queue's load is weighted according to its
781  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782  * scaled version of the new time slice allocation that they receive on time
783  * slice expiry etc.
784  */
785 
786 #define WEIGHT_IDLEPRIO                3
787 #define WMULT_IDLEPRIO         1431655765
788 
789 /*
790  * Nice levels are multiplicative, with a gentle 10% change for every
791  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792  * nice 1, it will get ~10% less CPU time than another CPU-bound task
793  * that remained on nice 0.
794  *
795  * The "10% effect" is relative and cumulative: from _any_ nice level,
796  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798  * If a task goes up by ~10% and another task goes down by ~10% then
799  * the relative distance between them is ~25%.)
800  */
801 static const int prio_to_weight[40] = {
802  /* -20 */     88761,     71755,     56483,     46273,     36291,
803  /* -15 */     29154,     23254,     18705,     14949,     11916,
804  /* -10 */      9548,      7620,      6100,      4904,      3906,
805  /*  -5 */      3121,      2501,      1991,      1586,      1277,
806  /*   0 */      1024,       820,       655,       526,       423,
807  /*   5 */       335,       272,       215,       172,       137,
808  /*  10 */       110,        87,        70,        56,        45,
809  /*  15 */        36,        29,        23,        18,        15,
810 };
811 
812 /*
813  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814  *
815  * In cases where the weight does not change often, we can use the
816  * precalculated inverse to speed up arithmetics by turning divisions
817  * into multiplications:
818  */
819 static const u32 prio_to_wmult[40] = {
820  /* -20 */     48388,     59856,     76040,     92818,    118348,
821  /* -15 */    147320,    184698,    229616,    287308,    360437,
822  /* -10 */    449829,    563644,    704093,    875809,   1099582,
823  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
824  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
825  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
826  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
827  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829 
830 /* Time spent by the tasks of the cpu accounting group executing in ... */
831 enum cpuacct_stat_index {
832 	CPUACCT_STAT_USER,	/* ... user mode */
833 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
834 
835 	CPUACCT_STAT_NSTATS,
836 };
837 
838 
839 #define sched_class_highest (&stop_sched_class)
840 #define for_each_class(class) \
841    for (class = sched_class_highest; class; class = class->next)
842 
843 extern const struct sched_class stop_sched_class;
844 extern const struct sched_class rt_sched_class;
845 extern const struct sched_class fair_sched_class;
846 extern const struct sched_class idle_sched_class;
847 
848 
849 #ifdef CONFIG_SMP
850 
851 extern void trigger_load_balance(struct rq *rq, int cpu);
852 extern void idle_balance(int this_cpu, struct rq *this_rq);
853 
854 #else	/* CONFIG_SMP */
855 
idle_balance(int cpu,struct rq * rq)856 static inline void idle_balance(int cpu, struct rq *rq)
857 {
858 }
859 
860 #endif
861 
862 extern void sysrq_sched_debug_show(void);
863 extern void sched_init_granularity(void);
864 extern void update_max_interval(void);
865 extern void update_group_power(struct sched_domain *sd, int cpu);
866 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
867 extern void init_sched_rt_class(void);
868 extern void init_sched_fair_class(void);
869 
870 extern void resched_task(struct task_struct *p);
871 extern void resched_cpu(int cpu);
872 
873 extern struct rt_bandwidth def_rt_bandwidth;
874 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
875 
876 extern void update_idle_cpu_load(struct rq *this_rq);
877 
878 #ifdef CONFIG_CGROUP_CPUACCT
879 #include <linux/cgroup.h>
880 /* track cpu usage of a group of tasks and its child groups */
881 struct cpuacct {
882 	struct cgroup_subsys_state css;
883 	/* cpuusage holds pointer to a u64-type object on every cpu */
884 	u64 __percpu *cpuusage;
885 	struct kernel_cpustat __percpu *cpustat;
886 };
887 
888 /* return cpu accounting group corresponding to this container */
cgroup_ca(struct cgroup * cgrp)889 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
890 {
891 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
892 			    struct cpuacct, css);
893 }
894 
895 /* return cpu accounting group to which this task belongs */
task_ca(struct task_struct * tsk)896 static inline struct cpuacct *task_ca(struct task_struct *tsk)
897 {
898 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
899 			    struct cpuacct, css);
900 }
901 
parent_ca(struct cpuacct * ca)902 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
903 {
904 	if (!ca || !ca->css.cgroup->parent)
905 		return NULL;
906 	return cgroup_ca(ca->css.cgroup->parent);
907 }
908 
909 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
910 #else
cpuacct_charge(struct task_struct * tsk,u64 cputime)911 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
912 #endif
913 
inc_nr_running(struct rq * rq)914 static inline void inc_nr_running(struct rq *rq)
915 {
916 	rq->nr_running++;
917 }
918 
dec_nr_running(struct rq * rq)919 static inline void dec_nr_running(struct rq *rq)
920 {
921 	rq->nr_running--;
922 }
923 
924 extern void update_rq_clock(struct rq *rq);
925 
926 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
927 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
928 
929 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
930 
931 extern const_debug unsigned int sysctl_sched_time_avg;
932 extern const_debug unsigned int sysctl_sched_nr_migrate;
933 extern const_debug unsigned int sysctl_sched_migration_cost;
934 
sched_avg_period(void)935 static inline u64 sched_avg_period(void)
936 {
937 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
938 }
939 
940 #ifdef CONFIG_SCHED_HRTICK
941 
942 /*
943  * Use hrtick when:
944  *  - enabled by features
945  *  - hrtimer is actually high res
946  */
hrtick_enabled(struct rq * rq)947 static inline int hrtick_enabled(struct rq *rq)
948 {
949 	if (!sched_feat(HRTICK))
950 		return 0;
951 	if (!cpu_active(cpu_of(rq)))
952 		return 0;
953 	return hrtimer_is_hres_active(&rq->hrtick_timer);
954 }
955 
956 void hrtick_start(struct rq *rq, u64 delay);
957 
958 #else
959 
hrtick_enabled(struct rq * rq)960 static inline int hrtick_enabled(struct rq *rq)
961 {
962 	return 0;
963 }
964 
965 #endif /* CONFIG_SCHED_HRTICK */
966 
967 #ifdef CONFIG_SMP
968 extern void sched_avg_update(struct rq *rq);
sched_rt_avg_update(struct rq * rq,u64 rt_delta)969 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
970 {
971 	rq->rt_avg += rt_delta;
972 	sched_avg_update(rq);
973 }
974 #else
sched_rt_avg_update(struct rq * rq,u64 rt_delta)975 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
sched_avg_update(struct rq * rq)976 static inline void sched_avg_update(struct rq *rq) { }
977 #endif
978 
979 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
980 
981 #ifdef CONFIG_SMP
982 #ifdef CONFIG_PREEMPT
983 
984 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
985 
986 /*
987  * fair double_lock_balance: Safely acquires both rq->locks in a fair
988  * way at the expense of forcing extra atomic operations in all
989  * invocations.  This assures that the double_lock is acquired using the
990  * same underlying policy as the spinlock_t on this architecture, which
991  * reduces latency compared to the unfair variant below.  However, it
992  * also adds more overhead and therefore may reduce throughput.
993  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)994 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
995 	__releases(this_rq->lock)
996 	__acquires(busiest->lock)
997 	__acquires(this_rq->lock)
998 {
999 	raw_spin_unlock(&this_rq->lock);
1000 	double_rq_lock(this_rq, busiest);
1001 
1002 	return 1;
1003 }
1004 
1005 #else
1006 /*
1007  * Unfair double_lock_balance: Optimizes throughput at the expense of
1008  * latency by eliminating extra atomic operations when the locks are
1009  * already in proper order on entry.  This favors lower cpu-ids and will
1010  * grant the double lock to lower cpus over higher ids under contention,
1011  * regardless of entry order into the function.
1012  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1013 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1014 	__releases(this_rq->lock)
1015 	__acquires(busiest->lock)
1016 	__acquires(this_rq->lock)
1017 {
1018 	int ret = 0;
1019 
1020 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1021 		if (busiest < this_rq) {
1022 			raw_spin_unlock(&this_rq->lock);
1023 			raw_spin_lock(&busiest->lock);
1024 			raw_spin_lock_nested(&this_rq->lock,
1025 					      SINGLE_DEPTH_NESTING);
1026 			ret = 1;
1027 		} else
1028 			raw_spin_lock_nested(&busiest->lock,
1029 					      SINGLE_DEPTH_NESTING);
1030 	}
1031 	return ret;
1032 }
1033 
1034 #endif /* CONFIG_PREEMPT */
1035 
1036 /*
1037  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1038  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1039 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1040 {
1041 	if (unlikely(!irqs_disabled())) {
1042 		/* printk() doesn't work good under rq->lock */
1043 		raw_spin_unlock(&this_rq->lock);
1044 		BUG_ON(1);
1045 	}
1046 
1047 	return _double_lock_balance(this_rq, busiest);
1048 }
1049 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1050 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1051 	__releases(busiest->lock)
1052 {
1053 	raw_spin_unlock(&busiest->lock);
1054 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1055 }
1056 
1057 /*
1058  * double_rq_lock - safely lock two runqueues
1059  *
1060  * Note this does not disable interrupts like task_rq_lock,
1061  * you need to do so manually before calling.
1062  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1063 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1064 	__acquires(rq1->lock)
1065 	__acquires(rq2->lock)
1066 {
1067 	BUG_ON(!irqs_disabled());
1068 	if (rq1 == rq2) {
1069 		raw_spin_lock(&rq1->lock);
1070 		__acquire(rq2->lock);	/* Fake it out ;) */
1071 	} else {
1072 		if (rq1 < rq2) {
1073 			raw_spin_lock(&rq1->lock);
1074 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1075 		} else {
1076 			raw_spin_lock(&rq2->lock);
1077 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1078 		}
1079 	}
1080 }
1081 
1082 /*
1083  * double_rq_unlock - safely unlock two runqueues
1084  *
1085  * Note this does not restore interrupts like task_rq_unlock,
1086  * you need to do so manually after calling.
1087  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1088 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1089 	__releases(rq1->lock)
1090 	__releases(rq2->lock)
1091 {
1092 	raw_spin_unlock(&rq1->lock);
1093 	if (rq1 != rq2)
1094 		raw_spin_unlock(&rq2->lock);
1095 	else
1096 		__release(rq2->lock);
1097 }
1098 
1099 #else /* CONFIG_SMP */
1100 
1101 /*
1102  * double_rq_lock - safely lock two runqueues
1103  *
1104  * Note this does not disable interrupts like task_rq_lock,
1105  * you need to do so manually before calling.
1106  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1107 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1108 	__acquires(rq1->lock)
1109 	__acquires(rq2->lock)
1110 {
1111 	BUG_ON(!irqs_disabled());
1112 	BUG_ON(rq1 != rq2);
1113 	raw_spin_lock(&rq1->lock);
1114 	__acquire(rq2->lock);	/* Fake it out ;) */
1115 }
1116 
1117 /*
1118  * double_rq_unlock - safely unlock two runqueues
1119  *
1120  * Note this does not restore interrupts like task_rq_unlock,
1121  * you need to do so manually after calling.
1122  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1123 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1124 	__releases(rq1->lock)
1125 	__releases(rq2->lock)
1126 {
1127 	BUG_ON(rq1 != rq2);
1128 	raw_spin_unlock(&rq1->lock);
1129 	__release(rq2->lock);
1130 }
1131 
1132 #endif
1133 
1134 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1135 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1136 extern void print_cfs_stats(struct seq_file *m, int cpu);
1137 extern void print_rt_stats(struct seq_file *m, int cpu);
1138 
1139 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1140 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1141 
1142 extern void cfs_bandwidth_usage_inc(void);
1143 extern void cfs_bandwidth_usage_dec(void);
1144 
1145 #ifdef CONFIG_NO_HZ
1146 enum rq_nohz_flag_bits {
1147 	NOHZ_TICK_STOPPED,
1148 	NOHZ_BALANCE_KICK,
1149 	NOHZ_IDLE,
1150 };
1151 
1152 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1153 #endif
1154