1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
set_recommended_min_free_kbytes(void)98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 		      &transparent_hugepage_flags) &&
107 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 		      &transparent_hugepage_flags))
109 		return 0;
110 
111 	for_each_populated_zone(zone)
112 		nr_zones++;
113 
114 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 	recommended_min = pageblock_nr_pages * nr_zones * 2;
116 
117 	/*
118 	 * Make sure that on average at least two pageblocks are almost free
119 	 * of another type, one for a migratetype to fall back to and a
120 	 * second to avoid subsequent fallbacks of other types There are 3
121 	 * MIGRATE_TYPES we care about.
122 	 */
123 	recommended_min += pageblock_nr_pages * nr_zones *
124 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125 
126 	/* don't ever allow to reserve more than 5% of the lowmem */
127 	recommended_min = min(recommended_min,
128 			      (unsigned long) nr_free_buffer_pages() / 20);
129 	recommended_min <<= (PAGE_SHIFT-10);
130 
131 	if (recommended_min > min_free_kbytes)
132 		min_free_kbytes = recommended_min;
133 	setup_per_zone_wmarks();
134 	return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137 
start_khugepaged(void)138 static int start_khugepaged(void)
139 {
140 	int err = 0;
141 	if (khugepaged_enabled()) {
142 		int wakeup;
143 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 			err = -ENOMEM;
145 			goto out;
146 		}
147 		mutex_lock(&khugepaged_mutex);
148 		if (!khugepaged_thread)
149 			khugepaged_thread = kthread_run(khugepaged, NULL,
150 							"khugepaged");
151 		if (unlikely(IS_ERR(khugepaged_thread))) {
152 			printk(KERN_ERR
153 			       "khugepaged: kthread_run(khugepaged) failed\n");
154 			err = PTR_ERR(khugepaged_thread);
155 			khugepaged_thread = NULL;
156 		}
157 		wakeup = !list_empty(&khugepaged_scan.mm_head);
158 		mutex_unlock(&khugepaged_mutex);
159 		if (wakeup)
160 			wake_up_interruptible(&khugepaged_wait);
161 
162 		set_recommended_min_free_kbytes();
163 	} else
164 		/* wakeup to exit */
165 		wake_up_interruptible(&khugepaged_wait);
166 out:
167 	return err;
168 }
169 
170 #ifdef CONFIG_SYSFS
171 
double_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)172 static ssize_t double_flag_show(struct kobject *kobj,
173 				struct kobj_attribute *attr, char *buf,
174 				enum transparent_hugepage_flag enabled,
175 				enum transparent_hugepage_flag req_madv)
176 {
177 	if (test_bit(enabled, &transparent_hugepage_flags)) {
178 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 		return sprintf(buf, "[always] madvise never\n");
180 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
double_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)185 static ssize_t double_flag_store(struct kobject *kobj,
186 				 struct kobj_attribute *attr,
187 				 const char *buf, size_t count,
188 				 enum transparent_hugepage_flag enabled,
189 				 enum transparent_hugepage_flag req_madv)
190 {
191 	if (!memcmp("always", buf,
192 		    min(sizeof("always")-1, count))) {
193 		set_bit(enabled, &transparent_hugepage_flags);
194 		clear_bit(req_madv, &transparent_hugepage_flags);
195 	} else if (!memcmp("madvise", buf,
196 			   min(sizeof("madvise")-1, count))) {
197 		clear_bit(enabled, &transparent_hugepage_flags);
198 		set_bit(req_madv, &transparent_hugepage_flags);
199 	} else if (!memcmp("never", buf,
200 			   min(sizeof("never")-1, count))) {
201 		clear_bit(enabled, &transparent_hugepage_flags);
202 		clear_bit(req_madv, &transparent_hugepage_flags);
203 	} else
204 		return -EINVAL;
205 
206 	return count;
207 }
208 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)209 static ssize_t enabled_show(struct kobject *kobj,
210 			    struct kobj_attribute *attr, char *buf)
211 {
212 	return double_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_FLAG,
214 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)216 static ssize_t enabled_store(struct kobject *kobj,
217 			     struct kobj_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	ssize_t ret;
221 
222 	ret = double_flag_store(kobj, attr, buf, count,
223 				TRANSPARENT_HUGEPAGE_FLAG,
224 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225 
226 	if (ret > 0) {
227 		int err = start_khugepaged();
228 		if (err)
229 			ret = err;
230 	}
231 
232 	if (ret > 0 &&
233 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 		      &transparent_hugepage_flags) ||
235 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 		      &transparent_hugepage_flags)))
237 		set_recommended_min_free_kbytes();
238 
239 	return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 	__ATTR(enabled, 0644, enabled_show, enabled_store);
243 
single_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)244 static ssize_t single_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag flag)
247 {
248 	return sprintf(buf, "%d\n",
249 		       !!test_bit(flag, &transparent_hugepage_flags));
250 }
251 
single_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	unsigned long value;
258 	int ret;
259 
260 	ret = kstrtoul(buf, 10, &value);
261 	if (ret < 0)
262 		return ret;
263 	if (value > 1)
264 		return -EINVAL;
265 
266 	if (value)
267 		set_bit(flag, &transparent_hugepage_flags);
268 	else
269 		clear_bit(flag, &transparent_hugepage_flags);
270 
271 	return count;
272 }
273 
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)279 static ssize_t defrag_show(struct kobject *kobj,
280 			   struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)286 static ssize_t defrag_store(struct kobject *kobj,
287 			    struct kobj_attribute *attr,
288 			    const char *buf, size_t count)
289 {
290 	return double_flag_store(kobj, attr, buf, count,
291 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 	&debug_cow_attr.attr,
320 #endif
321 	NULL,
322 };
323 
324 static struct attribute_group hugepage_attr_group = {
325 	.attrs = hugepage_attr,
326 };
327 
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 					 struct kobj_attribute *attr,
330 					 char *buf)
331 {
332 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 					  struct kobj_attribute *attr,
337 					  const char *buf, size_t count)
338 {
339 	unsigned long msecs;
340 	int err;
341 
342 	err = strict_strtoul(buf, 10, &msecs);
343 	if (err || msecs > UINT_MAX)
344 		return -EINVAL;
345 
346 	khugepaged_scan_sleep_millisecs = msecs;
347 	wake_up_interruptible(&khugepaged_wait);
348 
349 	return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 	       scan_sleep_millisecs_store);
354 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 					  struct kobj_attribute *attr,
357 					  char *buf)
358 {
359 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 					   struct kobj_attribute *attr,
364 					   const char *buf, size_t count)
365 {
366 	unsigned long msecs;
367 	int err;
368 
369 	err = strict_strtoul(buf, 10, &msecs);
370 	if (err || msecs > UINT_MAX)
371 		return -EINVAL;
372 
373 	khugepaged_alloc_sleep_millisecs = msecs;
374 	wake_up_interruptible(&khugepaged_wait);
375 
376 	return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 	       alloc_sleep_millisecs_store);
381 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 				  struct kobj_attribute *attr,
384 				  char *buf)
385 {
386 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 				   struct kobj_attribute *attr,
390 				   const char *buf, size_t count)
391 {
392 	int err;
393 	unsigned long pages;
394 
395 	err = strict_strtoul(buf, 10, &pages);
396 	if (err || !pages || pages > UINT_MAX)
397 		return -EINVAL;
398 
399 	khugepaged_pages_to_scan = pages;
400 
401 	return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 	       pages_to_scan_store);
406 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 				    struct kobj_attribute *attr,
409 				    char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 	__ATTR_RO(pages_collapsed);
415 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)416 static ssize_t full_scans_show(struct kobject *kobj,
417 			       struct kobj_attribute *attr,
418 			       char *buf)
419 {
420 	return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 	__ATTR_RO(full_scans);
424 
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 				      struct kobj_attribute *attr, char *buf)
427 {
428 	return single_flag_show(kobj, attr, buf,
429 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 				       struct kobj_attribute *attr,
433 				       const char *buf, size_t count)
434 {
435 	return single_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 	__ATTR(defrag, 0644, khugepaged_defrag_show,
440 	       khugepaged_defrag_store);
441 
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 					     struct kobj_attribute *attr,
452 					     char *buf)
453 {
454 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 					      struct kobj_attribute *attr,
458 					      const char *buf, size_t count)
459 {
460 	int err;
461 	unsigned long max_ptes_none;
462 
463 	err = strict_strtoul(buf, 10, &max_ptes_none);
464 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 		return -EINVAL;
466 
467 	khugepaged_max_ptes_none = max_ptes_none;
468 
469 	return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 	       khugepaged_max_ptes_none_store);
474 
475 static struct attribute *khugepaged_attr[] = {
476 	&khugepaged_defrag_attr.attr,
477 	&khugepaged_max_ptes_none_attr.attr,
478 	&pages_to_scan_attr.attr,
479 	&pages_collapsed_attr.attr,
480 	&full_scans_attr.attr,
481 	&scan_sleep_millisecs_attr.attr,
482 	&alloc_sleep_millisecs_attr.attr,
483 	NULL,
484 };
485 
486 static struct attribute_group khugepaged_attr_group = {
487 	.attrs = khugepaged_attr,
488 	.name = "khugepaged",
489 };
490 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493 	int err;
494 
495 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 	if (unlikely(!*hugepage_kobj)) {
497 		printk(KERN_ERR "hugepage: failed kobject create\n");
498 		return -ENOMEM;
499 	}
500 
501 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502 	if (err) {
503 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
504 		goto delete_obj;
505 	}
506 
507 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508 	if (err) {
509 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 		goto remove_hp_group;
511 	}
512 
513 	return 0;
514 
515 remove_hp_group:
516 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518 	kobject_put(*hugepage_kobj);
519 	return err;
520 }
521 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 	kobject_put(hugepage_kobj);
527 }
528 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531 	return 0;
532 }
533 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538 
hugepage_init(void)539 static int __init hugepage_init(void)
540 {
541 	int err;
542 	struct kobject *hugepage_kobj;
543 
544 	if (!has_transparent_hugepage()) {
545 		transparent_hugepage_flags = 0;
546 		return -EINVAL;
547 	}
548 
549 	err = hugepage_init_sysfs(&hugepage_kobj);
550 	if (err)
551 		return err;
552 
553 	err = khugepaged_slab_init();
554 	if (err)
555 		goto out;
556 
557 	err = mm_slots_hash_init();
558 	if (err) {
559 		khugepaged_slab_free();
560 		goto out;
561 	}
562 
563 	/*
564 	 * By default disable transparent hugepages on smaller systems,
565 	 * where the extra memory used could hurt more than TLB overhead
566 	 * is likely to save.  The admin can still enable it through /sys.
567 	 */
568 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 		transparent_hugepage_flags = 0;
570 
571 	start_khugepaged();
572 
573 	set_recommended_min_free_kbytes();
574 
575 	return 0;
576 out:
577 	hugepage_exit_sysfs(hugepage_kobj);
578 	return err;
579 }
module_init(hugepage_init)580 module_init(hugepage_init)
581 
582 static int __init setup_transparent_hugepage(char *str)
583 {
584 	int ret = 0;
585 	if (!str)
586 		goto out;
587 	if (!strcmp(str, "always")) {
588 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 			&transparent_hugepage_flags);
590 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 			  &transparent_hugepage_flags);
592 		ret = 1;
593 	} else if (!strcmp(str, "madvise")) {
594 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 			  &transparent_hugepage_flags);
596 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 			&transparent_hugepage_flags);
598 		ret = 1;
599 	} else if (!strcmp(str, "never")) {
600 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 			  &transparent_hugepage_flags);
602 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 			  &transparent_hugepage_flags);
604 		ret = 1;
605 	}
606 out:
607 	if (!ret)
608 		printk(KERN_WARNING
609 		       "transparent_hugepage= cannot parse, ignored\n");
610 	return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613 
prepare_pmd_huge_pte(pgtable_t pgtable,struct mm_struct * mm)614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 				 struct mm_struct *mm)
616 {
617 	assert_spin_locked(&mm->page_table_lock);
618 
619 	/* FIFO */
620 	if (!mm->pmd_huge_pte)
621 		INIT_LIST_HEAD(&pgtable->lru);
622 	else
623 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 	mm->pmd_huge_pte = pgtable;
625 }
626 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629 	if (likely(vma->vm_flags & VM_WRITE))
630 		pmd = pmd_mkwrite(pmd);
631 	return pmd;
632 }
633 
__do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * page)634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 					struct vm_area_struct *vma,
636 					unsigned long haddr, pmd_t *pmd,
637 					struct page *page)
638 {
639 	int ret = 0;
640 	pgtable_t pgtable;
641 
642 	VM_BUG_ON(!PageCompound(page));
643 	pgtable = pte_alloc_one(mm, haddr);
644 	if (unlikely(!pgtable)) {
645 		mem_cgroup_uncharge_page(page);
646 		put_page(page);
647 		return VM_FAULT_OOM;
648 	}
649 
650 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
651 	__SetPageUptodate(page);
652 
653 	spin_lock(&mm->page_table_lock);
654 	if (unlikely(!pmd_none(*pmd))) {
655 		spin_unlock(&mm->page_table_lock);
656 		mem_cgroup_uncharge_page(page);
657 		put_page(page);
658 		pte_free(mm, pgtable);
659 	} else {
660 		pmd_t entry;
661 		entry = mk_pmd(page, vma->vm_page_prot);
662 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
663 		entry = pmd_mkhuge(entry);
664 		/*
665 		 * The spinlocking to take the lru_lock inside
666 		 * page_add_new_anon_rmap() acts as a full memory
667 		 * barrier to be sure clear_huge_page writes become
668 		 * visible after the set_pmd_at() write.
669 		 */
670 		page_add_new_anon_rmap(page, vma, haddr);
671 		set_pmd_at(mm, haddr, pmd, entry);
672 		prepare_pmd_huge_pte(pgtable, mm);
673 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
674 		mm->nr_ptes++;
675 		spin_unlock(&mm->page_table_lock);
676 	}
677 
678 	return ret;
679 }
680 
alloc_hugepage_gfpmask(int defrag,gfp_t extra_gfp)681 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
682 {
683 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
684 }
685 
alloc_hugepage_vma(int defrag,struct vm_area_struct * vma,unsigned long haddr,int nd,gfp_t extra_gfp)686 static inline struct page *alloc_hugepage_vma(int defrag,
687 					      struct vm_area_struct *vma,
688 					      unsigned long haddr, int nd,
689 					      gfp_t extra_gfp)
690 {
691 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
692 			       HPAGE_PMD_ORDER, vma, haddr, nd);
693 }
694 
695 #ifndef CONFIG_NUMA
alloc_hugepage(int defrag)696 static inline struct page *alloc_hugepage(int defrag)
697 {
698 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
699 			   HPAGE_PMD_ORDER);
700 }
701 #endif
702 
do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)703 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
704 			       unsigned long address, pmd_t *pmd,
705 			       unsigned int flags)
706 {
707 	struct page *page;
708 	unsigned long haddr = address & HPAGE_PMD_MASK;
709 	pte_t *pte;
710 
711 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
712 		if (unlikely(anon_vma_prepare(vma)))
713 			return VM_FAULT_OOM;
714 		if (unlikely(khugepaged_enter(vma)))
715 			return VM_FAULT_OOM;
716 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
717 					  vma, haddr, numa_node_id(), 0);
718 		if (unlikely(!page)) {
719 			count_vm_event(THP_FAULT_FALLBACK);
720 			goto out;
721 		}
722 		count_vm_event(THP_FAULT_ALLOC);
723 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
724 			put_page(page);
725 			goto out;
726 		}
727 
728 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
729 	}
730 out:
731 	/*
732 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
733 	 * run pte_offset_map on the pmd, if an huge pmd could
734 	 * materialize from under us from a different thread.
735 	 */
736 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
737 		return VM_FAULT_OOM;
738 	/* if an huge pmd materialized from under us just retry later */
739 	if (unlikely(pmd_trans_huge(*pmd)))
740 		return 0;
741 	/*
742 	 * A regular pmd is established and it can't morph into a huge pmd
743 	 * from under us anymore at this point because we hold the mmap_sem
744 	 * read mode and khugepaged takes it in write mode. So now it's
745 	 * safe to run pte_offset_map().
746 	 */
747 	pte = pte_offset_map(pmd, address);
748 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
749 }
750 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)751 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
752 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
753 		  struct vm_area_struct *vma)
754 {
755 	struct page *src_page;
756 	pmd_t pmd;
757 	pgtable_t pgtable;
758 	int ret;
759 
760 	ret = -ENOMEM;
761 	pgtable = pte_alloc_one(dst_mm, addr);
762 	if (unlikely(!pgtable))
763 		goto out;
764 
765 	spin_lock(&dst_mm->page_table_lock);
766 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
767 
768 	ret = -EAGAIN;
769 	pmd = *src_pmd;
770 	if (unlikely(!pmd_trans_huge(pmd))) {
771 		pte_free(dst_mm, pgtable);
772 		goto out_unlock;
773 	}
774 	if (unlikely(pmd_trans_splitting(pmd))) {
775 		/* split huge page running from under us */
776 		spin_unlock(&src_mm->page_table_lock);
777 		spin_unlock(&dst_mm->page_table_lock);
778 		pte_free(dst_mm, pgtable);
779 
780 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
781 		goto out;
782 	}
783 	src_page = pmd_page(pmd);
784 	VM_BUG_ON(!PageHead(src_page));
785 	get_page(src_page);
786 	page_dup_rmap(src_page);
787 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
788 
789 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
790 	pmd = pmd_mkold(pmd_wrprotect(pmd));
791 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
792 	prepare_pmd_huge_pte(pgtable, dst_mm);
793 	dst_mm->nr_ptes++;
794 
795 	ret = 0;
796 out_unlock:
797 	spin_unlock(&src_mm->page_table_lock);
798 	spin_unlock(&dst_mm->page_table_lock);
799 out:
800 	return ret;
801 }
802 
803 /* no "address" argument so destroys page coloring of some arch */
get_pmd_huge_pte(struct mm_struct * mm)804 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
805 {
806 	pgtable_t pgtable;
807 
808 	assert_spin_locked(&mm->page_table_lock);
809 
810 	/* FIFO */
811 	pgtable = mm->pmd_huge_pte;
812 	if (list_empty(&pgtable->lru))
813 		mm->pmd_huge_pte = NULL;
814 	else {
815 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
816 					      struct page, lru);
817 		list_del(&pgtable->lru);
818 	}
819 	return pgtable;
820 }
821 
do_huge_pmd_wp_page_fallback(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,struct page * page,unsigned long haddr)822 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
823 					struct vm_area_struct *vma,
824 					unsigned long address,
825 					pmd_t *pmd, pmd_t orig_pmd,
826 					struct page *page,
827 					unsigned long haddr)
828 {
829 	pgtable_t pgtable;
830 	pmd_t _pmd;
831 	int ret = 0, i;
832 	struct page **pages;
833 
834 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
835 			GFP_KERNEL);
836 	if (unlikely(!pages)) {
837 		ret |= VM_FAULT_OOM;
838 		goto out;
839 	}
840 
841 	for (i = 0; i < HPAGE_PMD_NR; i++) {
842 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
843 					       __GFP_OTHER_NODE,
844 					       vma, address, page_to_nid(page));
845 		if (unlikely(!pages[i] ||
846 			     mem_cgroup_newpage_charge(pages[i], mm,
847 						       GFP_KERNEL))) {
848 			if (pages[i])
849 				put_page(pages[i]);
850 			mem_cgroup_uncharge_start();
851 			while (--i >= 0) {
852 				mem_cgroup_uncharge_page(pages[i]);
853 				put_page(pages[i]);
854 			}
855 			mem_cgroup_uncharge_end();
856 			kfree(pages);
857 			ret |= VM_FAULT_OOM;
858 			goto out;
859 		}
860 	}
861 
862 	for (i = 0; i < HPAGE_PMD_NR; i++) {
863 		copy_user_highpage(pages[i], page + i,
864 				   haddr + PAGE_SIZE * i, vma);
865 		__SetPageUptodate(pages[i]);
866 		cond_resched();
867 	}
868 
869 	spin_lock(&mm->page_table_lock);
870 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
871 		goto out_free_pages;
872 	VM_BUG_ON(!PageHead(page));
873 
874 	pmdp_clear_flush_notify(vma, haddr, pmd);
875 	/* leave pmd empty until pte is filled */
876 
877 	pgtable = get_pmd_huge_pte(mm);
878 	pmd_populate(mm, &_pmd, pgtable);
879 
880 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
881 		pte_t *pte, entry;
882 		entry = mk_pte(pages[i], vma->vm_page_prot);
883 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
884 		page_add_new_anon_rmap(pages[i], vma, haddr);
885 		pte = pte_offset_map(&_pmd, haddr);
886 		VM_BUG_ON(!pte_none(*pte));
887 		set_pte_at(mm, haddr, pte, entry);
888 		pte_unmap(pte);
889 	}
890 	kfree(pages);
891 
892 	smp_wmb(); /* make pte visible before pmd */
893 	pmd_populate(mm, pmd, pgtable);
894 	page_remove_rmap(page);
895 	spin_unlock(&mm->page_table_lock);
896 
897 	ret |= VM_FAULT_WRITE;
898 	put_page(page);
899 
900 out:
901 	return ret;
902 
903 out_free_pages:
904 	spin_unlock(&mm->page_table_lock);
905 	mem_cgroup_uncharge_start();
906 	for (i = 0; i < HPAGE_PMD_NR; i++) {
907 		mem_cgroup_uncharge_page(pages[i]);
908 		put_page(pages[i]);
909 	}
910 	mem_cgroup_uncharge_end();
911 	kfree(pages);
912 	goto out;
913 }
914 
do_huge_pmd_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd)915 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
916 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
917 {
918 	int ret = 0;
919 	struct page *page, *new_page;
920 	unsigned long haddr;
921 
922 	VM_BUG_ON(!vma->anon_vma);
923 	spin_lock(&mm->page_table_lock);
924 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
925 		goto out_unlock;
926 
927 	page = pmd_page(orig_pmd);
928 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
929 	haddr = address & HPAGE_PMD_MASK;
930 	if (page_mapcount(page) == 1) {
931 		pmd_t entry;
932 		entry = pmd_mkyoung(orig_pmd);
933 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
934 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
935 			update_mmu_cache(vma, address, entry);
936 		ret |= VM_FAULT_WRITE;
937 		goto out_unlock;
938 	}
939 	get_page(page);
940 	spin_unlock(&mm->page_table_lock);
941 
942 	if (transparent_hugepage_enabled(vma) &&
943 	    !transparent_hugepage_debug_cow())
944 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
945 					      vma, haddr, numa_node_id(), 0);
946 	else
947 		new_page = NULL;
948 
949 	if (unlikely(!new_page)) {
950 		count_vm_event(THP_FAULT_FALLBACK);
951 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
952 						   pmd, orig_pmd, page, haddr);
953 		if (ret & VM_FAULT_OOM)
954 			split_huge_page(page);
955 		put_page(page);
956 		goto out;
957 	}
958 	count_vm_event(THP_FAULT_ALLOC);
959 
960 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
961 		put_page(new_page);
962 		split_huge_page(page);
963 		put_page(page);
964 		ret |= VM_FAULT_OOM;
965 		goto out;
966 	}
967 
968 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
969 	__SetPageUptodate(new_page);
970 
971 	spin_lock(&mm->page_table_lock);
972 	put_page(page);
973 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
974 		mem_cgroup_uncharge_page(new_page);
975 		put_page(new_page);
976 	} else {
977 		pmd_t entry;
978 		VM_BUG_ON(!PageHead(page));
979 		entry = mk_pmd(new_page, vma->vm_page_prot);
980 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
981 		entry = pmd_mkhuge(entry);
982 		pmdp_clear_flush_notify(vma, haddr, pmd);
983 		page_add_new_anon_rmap(new_page, vma, haddr);
984 		set_pmd_at(mm, haddr, pmd, entry);
985 		update_mmu_cache(vma, address, entry);
986 		page_remove_rmap(page);
987 		put_page(page);
988 		ret |= VM_FAULT_WRITE;
989 	}
990 out_unlock:
991 	spin_unlock(&mm->page_table_lock);
992 out:
993 	return ret;
994 }
995 
follow_trans_huge_pmd(struct mm_struct * mm,unsigned long addr,pmd_t * pmd,unsigned int flags)996 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
997 				   unsigned long addr,
998 				   pmd_t *pmd,
999 				   unsigned int flags)
1000 {
1001 	struct page *page = NULL;
1002 
1003 	assert_spin_locked(&mm->page_table_lock);
1004 
1005 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1006 		goto out;
1007 
1008 	page = pmd_page(*pmd);
1009 	VM_BUG_ON(!PageHead(page));
1010 	if (flags & FOLL_TOUCH) {
1011 		pmd_t _pmd;
1012 		/*
1013 		 * We should set the dirty bit only for FOLL_WRITE but
1014 		 * for now the dirty bit in the pmd is meaningless.
1015 		 * And if the dirty bit will become meaningful and
1016 		 * we'll only set it with FOLL_WRITE, an atomic
1017 		 * set_bit will be required on the pmd to set the
1018 		 * young bit, instead of the current set_pmd_at.
1019 		 */
1020 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1021 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1022 	}
1023 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1024 	VM_BUG_ON(!PageCompound(page));
1025 	if (flags & FOLL_GET)
1026 		get_page_foll(page);
1027 
1028 out:
1029 	return page;
1030 }
1031 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1032 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1033 		 pmd_t *pmd, unsigned long addr)
1034 {
1035 	int ret = 0;
1036 
1037 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1038 		struct page *page;
1039 		pgtable_t pgtable;
1040 		pgtable = get_pmd_huge_pte(tlb->mm);
1041 		page = pmd_page(*pmd);
1042 		pmd_clear(pmd);
1043 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1044 		page_remove_rmap(page);
1045 		VM_BUG_ON(page_mapcount(page) < 0);
1046 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1047 		VM_BUG_ON(!PageHead(page));
1048 		tlb->mm->nr_ptes--;
1049 		spin_unlock(&tlb->mm->page_table_lock);
1050 		tlb_remove_page(tlb, page);
1051 		pte_free(tlb->mm, pgtable);
1052 		ret = 1;
1053 	}
1054 	return ret;
1055 }
1056 
mincore_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned char * vec)1057 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1058 		unsigned long addr, unsigned long end,
1059 		unsigned char *vec)
1060 {
1061 	int ret = 0;
1062 
1063 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1064 		/*
1065 		 * All logical pages in the range are present
1066 		 * if backed by a huge page.
1067 		 */
1068 		spin_unlock(&vma->vm_mm->page_table_lock);
1069 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1070 		ret = 1;
1071 	}
1072 
1073 	return ret;
1074 }
1075 
move_huge_pmd(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1076 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1077 		  unsigned long old_addr,
1078 		  unsigned long new_addr, unsigned long old_end,
1079 		  pmd_t *old_pmd, pmd_t *new_pmd)
1080 {
1081 	int ret = 0;
1082 	pmd_t pmd;
1083 
1084 	struct mm_struct *mm = vma->vm_mm;
1085 
1086 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1087 	    (new_addr & ~HPAGE_PMD_MASK) ||
1088 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1089 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1090 		goto out;
1091 
1092 	/*
1093 	 * The destination pmd shouldn't be established, free_pgtables()
1094 	 * should have release it.
1095 	 */
1096 	if (WARN_ON(!pmd_none(*new_pmd))) {
1097 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1098 		goto out;
1099 	}
1100 
1101 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1102 	if (ret == 1) {
1103 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1104 		VM_BUG_ON(!pmd_none(*new_pmd));
1105 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1106 		spin_unlock(&mm->page_table_lock);
1107 	}
1108 out:
1109 	return ret;
1110 }
1111 
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot)1112 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1113 		unsigned long addr, pgprot_t newprot)
1114 {
1115 	struct mm_struct *mm = vma->vm_mm;
1116 	int ret = 0;
1117 
1118 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1119 		pmd_t entry;
1120 		entry = pmdp_get_and_clear(mm, addr, pmd);
1121 		entry = pmd_modify(entry, newprot);
1122 		set_pmd_at(mm, addr, pmd, entry);
1123 		spin_unlock(&vma->vm_mm->page_table_lock);
1124 		ret = 1;
1125 	}
1126 
1127 	return ret;
1128 }
1129 
1130 /*
1131  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1132  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1133  *
1134  * Note that if it returns 1, this routine returns without unlocking page
1135  * table locks. So callers must unlock them.
1136  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1137 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1138 {
1139 	spin_lock(&vma->vm_mm->page_table_lock);
1140 	if (likely(pmd_trans_huge(*pmd))) {
1141 		if (unlikely(pmd_trans_splitting(*pmd))) {
1142 			spin_unlock(&vma->vm_mm->page_table_lock);
1143 			wait_split_huge_page(vma->anon_vma, pmd);
1144 			return -1;
1145 		} else {
1146 			/* Thp mapped by 'pmd' is stable, so we can
1147 			 * handle it as it is. */
1148 			return 1;
1149 		}
1150 	}
1151 	spin_unlock(&vma->vm_mm->page_table_lock);
1152 	return 0;
1153 }
1154 
page_check_address_pmd(struct page * page,struct mm_struct * mm,unsigned long address,enum page_check_address_pmd_flag flag)1155 pmd_t *page_check_address_pmd(struct page *page,
1156 			      struct mm_struct *mm,
1157 			      unsigned long address,
1158 			      enum page_check_address_pmd_flag flag)
1159 {
1160 	pgd_t *pgd;
1161 	pud_t *pud;
1162 	pmd_t *pmd, *ret = NULL;
1163 
1164 	if (address & ~HPAGE_PMD_MASK)
1165 		goto out;
1166 
1167 	pgd = pgd_offset(mm, address);
1168 	if (!pgd_present(*pgd))
1169 		goto out;
1170 
1171 	pud = pud_offset(pgd, address);
1172 	if (!pud_present(*pud))
1173 		goto out;
1174 
1175 	pmd = pmd_offset(pud, address);
1176 	if (pmd_none(*pmd))
1177 		goto out;
1178 	if (pmd_page(*pmd) != page)
1179 		goto out;
1180 	/*
1181 	 * split_vma() may create temporary aliased mappings. There is
1182 	 * no risk as long as all huge pmd are found and have their
1183 	 * splitting bit set before __split_huge_page_refcount
1184 	 * runs. Finding the same huge pmd more than once during the
1185 	 * same rmap walk is not a problem.
1186 	 */
1187 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1188 	    pmd_trans_splitting(*pmd))
1189 		goto out;
1190 	if (pmd_trans_huge(*pmd)) {
1191 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1192 			  !pmd_trans_splitting(*pmd));
1193 		ret = pmd;
1194 	}
1195 out:
1196 	return ret;
1197 }
1198 
__split_huge_page_splitting(struct page * page,struct vm_area_struct * vma,unsigned long address)1199 static int __split_huge_page_splitting(struct page *page,
1200 				       struct vm_area_struct *vma,
1201 				       unsigned long address)
1202 {
1203 	struct mm_struct *mm = vma->vm_mm;
1204 	pmd_t *pmd;
1205 	int ret = 0;
1206 
1207 	spin_lock(&mm->page_table_lock);
1208 	pmd = page_check_address_pmd(page, mm, address,
1209 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1210 	if (pmd) {
1211 		/*
1212 		 * We can't temporarily set the pmd to null in order
1213 		 * to split it, the pmd must remain marked huge at all
1214 		 * times or the VM won't take the pmd_trans_huge paths
1215 		 * and it won't wait on the anon_vma->root->mutex to
1216 		 * serialize against split_huge_page*.
1217 		 */
1218 		pmdp_splitting_flush_notify(vma, address, pmd);
1219 		ret = 1;
1220 	}
1221 	spin_unlock(&mm->page_table_lock);
1222 
1223 	return ret;
1224 }
1225 
__split_huge_page_refcount(struct page * page)1226 static void __split_huge_page_refcount(struct page *page)
1227 {
1228 	int i;
1229 	struct zone *zone = page_zone(page);
1230 	int tail_count = 0;
1231 
1232 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1233 	spin_lock_irq(&zone->lru_lock);
1234 	compound_lock(page);
1235 	/* complete memcg works before add pages to LRU */
1236 	mem_cgroup_split_huge_fixup(page);
1237 
1238 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1239 		struct page *page_tail = page + i;
1240 
1241 		/* tail_page->_mapcount cannot change */
1242 		BUG_ON(page_mapcount(page_tail) < 0);
1243 		tail_count += page_mapcount(page_tail);
1244 		/* check for overflow */
1245 		BUG_ON(tail_count < 0);
1246 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1247 		/*
1248 		 * tail_page->_count is zero and not changing from
1249 		 * under us. But get_page_unless_zero() may be running
1250 		 * from under us on the tail_page. If we used
1251 		 * atomic_set() below instead of atomic_add(), we
1252 		 * would then run atomic_set() concurrently with
1253 		 * get_page_unless_zero(), and atomic_set() is
1254 		 * implemented in C not using locked ops. spin_unlock
1255 		 * on x86 sometime uses locked ops because of PPro
1256 		 * errata 66, 92, so unless somebody can guarantee
1257 		 * atomic_set() here would be safe on all archs (and
1258 		 * not only on x86), it's safer to use atomic_add().
1259 		 */
1260 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1261 			   &page_tail->_count);
1262 
1263 		/* after clearing PageTail the gup refcount can be released */
1264 		smp_mb();
1265 
1266 		/*
1267 		 * retain hwpoison flag of the poisoned tail page:
1268 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1269 		 *   by the memory-failure.
1270 		 */
1271 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1272 		page_tail->flags |= (page->flags &
1273 				     ((1L << PG_referenced) |
1274 				      (1L << PG_swapbacked) |
1275 				      (1L << PG_mlocked) |
1276 				      (1L << PG_uptodate)));
1277 		page_tail->flags |= (1L << PG_dirty);
1278 
1279 		/* clear PageTail before overwriting first_page */
1280 		smp_wmb();
1281 
1282 		/*
1283 		 * __split_huge_page_splitting() already set the
1284 		 * splitting bit in all pmd that could map this
1285 		 * hugepage, that will ensure no CPU can alter the
1286 		 * mapcount on the head page. The mapcount is only
1287 		 * accounted in the head page and it has to be
1288 		 * transferred to all tail pages in the below code. So
1289 		 * for this code to be safe, the split the mapcount
1290 		 * can't change. But that doesn't mean userland can't
1291 		 * keep changing and reading the page contents while
1292 		 * we transfer the mapcount, so the pmd splitting
1293 		 * status is achieved setting a reserved bit in the
1294 		 * pmd, not by clearing the present bit.
1295 		*/
1296 		page_tail->_mapcount = page->_mapcount;
1297 
1298 		BUG_ON(page_tail->mapping);
1299 		page_tail->mapping = page->mapping;
1300 
1301 		page_tail->index = page->index + i;
1302 
1303 		BUG_ON(!PageAnon(page_tail));
1304 		BUG_ON(!PageUptodate(page_tail));
1305 		BUG_ON(!PageDirty(page_tail));
1306 		BUG_ON(!PageSwapBacked(page_tail));
1307 
1308 
1309 		lru_add_page_tail(zone, page, page_tail);
1310 	}
1311 	atomic_sub(tail_count, &page->_count);
1312 	BUG_ON(atomic_read(&page->_count) <= 0);
1313 
1314 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1315 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1316 
1317 	ClearPageCompound(page);
1318 	compound_unlock(page);
1319 	spin_unlock_irq(&zone->lru_lock);
1320 
1321 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1322 		struct page *page_tail = page + i;
1323 		BUG_ON(page_count(page_tail) <= 0);
1324 		/*
1325 		 * Tail pages may be freed if there wasn't any mapping
1326 		 * like if add_to_swap() is running on a lru page that
1327 		 * had its mapping zapped. And freeing these pages
1328 		 * requires taking the lru_lock so we do the put_page
1329 		 * of the tail pages after the split is complete.
1330 		 */
1331 		put_page(page_tail);
1332 	}
1333 
1334 	/*
1335 	 * Only the head page (now become a regular page) is required
1336 	 * to be pinned by the caller.
1337 	 */
1338 	BUG_ON(page_count(page) <= 0);
1339 }
1340 
__split_huge_page_map(struct page * page,struct vm_area_struct * vma,unsigned long address)1341 static int __split_huge_page_map(struct page *page,
1342 				 struct vm_area_struct *vma,
1343 				 unsigned long address)
1344 {
1345 	struct mm_struct *mm = vma->vm_mm;
1346 	pmd_t *pmd, _pmd;
1347 	int ret = 0, i;
1348 	pgtable_t pgtable;
1349 	unsigned long haddr;
1350 
1351 	spin_lock(&mm->page_table_lock);
1352 	pmd = page_check_address_pmd(page, mm, address,
1353 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1354 	if (pmd) {
1355 		pgtable = get_pmd_huge_pte(mm);
1356 		pmd_populate(mm, &_pmd, pgtable);
1357 
1358 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1359 		     i++, haddr += PAGE_SIZE) {
1360 			pte_t *pte, entry;
1361 			BUG_ON(PageCompound(page+i));
1362 			entry = mk_pte(page + i, vma->vm_page_prot);
1363 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1364 			if (!pmd_write(*pmd))
1365 				entry = pte_wrprotect(entry);
1366 			else
1367 				BUG_ON(page_mapcount(page) != 1);
1368 			if (!pmd_young(*pmd))
1369 				entry = pte_mkold(entry);
1370 			pte = pte_offset_map(&_pmd, haddr);
1371 			BUG_ON(!pte_none(*pte));
1372 			set_pte_at(mm, haddr, pte, entry);
1373 			pte_unmap(pte);
1374 		}
1375 
1376 		smp_wmb(); /* make pte visible before pmd */
1377 		/*
1378 		 * Up to this point the pmd is present and huge and
1379 		 * userland has the whole access to the hugepage
1380 		 * during the split (which happens in place). If we
1381 		 * overwrite the pmd with the not-huge version
1382 		 * pointing to the pte here (which of course we could
1383 		 * if all CPUs were bug free), userland could trigger
1384 		 * a small page size TLB miss on the small sized TLB
1385 		 * while the hugepage TLB entry is still established
1386 		 * in the huge TLB. Some CPU doesn't like that. See
1387 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1388 		 * Erratum 383 on page 93. Intel should be safe but is
1389 		 * also warns that it's only safe if the permission
1390 		 * and cache attributes of the two entries loaded in
1391 		 * the two TLB is identical (which should be the case
1392 		 * here). But it is generally safer to never allow
1393 		 * small and huge TLB entries for the same virtual
1394 		 * address to be loaded simultaneously. So instead of
1395 		 * doing "pmd_populate(); flush_tlb_range();" we first
1396 		 * mark the current pmd notpresent (atomically because
1397 		 * here the pmd_trans_huge and pmd_trans_splitting
1398 		 * must remain set at all times on the pmd until the
1399 		 * split is complete for this pmd), then we flush the
1400 		 * SMP TLB and finally we write the non-huge version
1401 		 * of the pmd entry with pmd_populate.
1402 		 */
1403 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1404 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1405 		pmd_populate(mm, pmd, pgtable);
1406 		ret = 1;
1407 	}
1408 	spin_unlock(&mm->page_table_lock);
1409 
1410 	return ret;
1411 }
1412 
1413 /* must be called with anon_vma->root->mutex hold */
__split_huge_page(struct page * page,struct anon_vma * anon_vma)1414 static void __split_huge_page(struct page *page,
1415 			      struct anon_vma *anon_vma)
1416 {
1417 	int mapcount, mapcount2;
1418 	struct anon_vma_chain *avc;
1419 
1420 	BUG_ON(!PageHead(page));
1421 	BUG_ON(PageTail(page));
1422 
1423 	mapcount = 0;
1424 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1425 		struct vm_area_struct *vma = avc->vma;
1426 		unsigned long addr = vma_address(page, vma);
1427 		BUG_ON(is_vma_temporary_stack(vma));
1428 		if (addr == -EFAULT)
1429 			continue;
1430 		mapcount += __split_huge_page_splitting(page, vma, addr);
1431 	}
1432 	/*
1433 	 * It is critical that new vmas are added to the tail of the
1434 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1435 	 * and establishes a child pmd before
1436 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1437 	 * we fail to prevent copy_huge_pmd() from running until the
1438 	 * whole __split_huge_page() is complete), we will still see
1439 	 * the newly established pmd of the child later during the
1440 	 * walk, to be able to set it as pmd_trans_splitting too.
1441 	 */
1442 	if (mapcount != page_mapcount(page))
1443 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1444 		       mapcount, page_mapcount(page));
1445 	BUG_ON(mapcount != page_mapcount(page));
1446 
1447 	__split_huge_page_refcount(page);
1448 
1449 	mapcount2 = 0;
1450 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1451 		struct vm_area_struct *vma = avc->vma;
1452 		unsigned long addr = vma_address(page, vma);
1453 		BUG_ON(is_vma_temporary_stack(vma));
1454 		if (addr == -EFAULT)
1455 			continue;
1456 		mapcount2 += __split_huge_page_map(page, vma, addr);
1457 	}
1458 	if (mapcount != mapcount2)
1459 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1460 		       mapcount, mapcount2, page_mapcount(page));
1461 	BUG_ON(mapcount != mapcount2);
1462 }
1463 
split_huge_page(struct page * page)1464 int split_huge_page(struct page *page)
1465 {
1466 	struct anon_vma *anon_vma;
1467 	int ret = 1;
1468 
1469 	BUG_ON(!PageAnon(page));
1470 	anon_vma = page_lock_anon_vma(page);
1471 	if (!anon_vma)
1472 		goto out;
1473 	ret = 0;
1474 	if (!PageCompound(page))
1475 		goto out_unlock;
1476 
1477 	BUG_ON(!PageSwapBacked(page));
1478 	__split_huge_page(page, anon_vma);
1479 	count_vm_event(THP_SPLIT);
1480 
1481 	BUG_ON(PageCompound(page));
1482 out_unlock:
1483 	page_unlock_anon_vma(anon_vma);
1484 out:
1485 	return ret;
1486 }
1487 
1488 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1489 		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1490 
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)1491 int hugepage_madvise(struct vm_area_struct *vma,
1492 		     unsigned long *vm_flags, int advice)
1493 {
1494 	switch (advice) {
1495 	case MADV_HUGEPAGE:
1496 		/*
1497 		 * Be somewhat over-protective like KSM for now!
1498 		 */
1499 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1500 			return -EINVAL;
1501 		*vm_flags &= ~VM_NOHUGEPAGE;
1502 		*vm_flags |= VM_HUGEPAGE;
1503 		/*
1504 		 * If the vma become good for khugepaged to scan,
1505 		 * register it here without waiting a page fault that
1506 		 * may not happen any time soon.
1507 		 */
1508 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1509 			return -ENOMEM;
1510 		break;
1511 	case MADV_NOHUGEPAGE:
1512 		/*
1513 		 * Be somewhat over-protective like KSM for now!
1514 		 */
1515 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1516 			return -EINVAL;
1517 		*vm_flags &= ~VM_HUGEPAGE;
1518 		*vm_flags |= VM_NOHUGEPAGE;
1519 		/*
1520 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1521 		 * this vma even if we leave the mm registered in khugepaged if
1522 		 * it got registered before VM_NOHUGEPAGE was set.
1523 		 */
1524 		break;
1525 	}
1526 
1527 	return 0;
1528 }
1529 
khugepaged_slab_init(void)1530 static int __init khugepaged_slab_init(void)
1531 {
1532 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1533 					  sizeof(struct mm_slot),
1534 					  __alignof__(struct mm_slot), 0, NULL);
1535 	if (!mm_slot_cache)
1536 		return -ENOMEM;
1537 
1538 	return 0;
1539 }
1540 
khugepaged_slab_free(void)1541 static void __init khugepaged_slab_free(void)
1542 {
1543 	kmem_cache_destroy(mm_slot_cache);
1544 	mm_slot_cache = NULL;
1545 }
1546 
alloc_mm_slot(void)1547 static inline struct mm_slot *alloc_mm_slot(void)
1548 {
1549 	if (!mm_slot_cache)	/* initialization failed */
1550 		return NULL;
1551 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1552 }
1553 
free_mm_slot(struct mm_slot * mm_slot)1554 static inline void free_mm_slot(struct mm_slot *mm_slot)
1555 {
1556 	kmem_cache_free(mm_slot_cache, mm_slot);
1557 }
1558 
mm_slots_hash_init(void)1559 static int __init mm_slots_hash_init(void)
1560 {
1561 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1562 				GFP_KERNEL);
1563 	if (!mm_slots_hash)
1564 		return -ENOMEM;
1565 	return 0;
1566 }
1567 
1568 #if 0
1569 static void __init mm_slots_hash_free(void)
1570 {
1571 	kfree(mm_slots_hash);
1572 	mm_slots_hash = NULL;
1573 }
1574 #endif
1575 
get_mm_slot(struct mm_struct * mm)1576 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1577 {
1578 	struct mm_slot *mm_slot;
1579 	struct hlist_head *bucket;
1580 	struct hlist_node *node;
1581 
1582 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1583 				% MM_SLOTS_HASH_HEADS];
1584 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1585 		if (mm == mm_slot->mm)
1586 			return mm_slot;
1587 	}
1588 	return NULL;
1589 }
1590 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)1591 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1592 				    struct mm_slot *mm_slot)
1593 {
1594 	struct hlist_head *bucket;
1595 
1596 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1597 				% MM_SLOTS_HASH_HEADS];
1598 	mm_slot->mm = mm;
1599 	hlist_add_head(&mm_slot->hash, bucket);
1600 }
1601 
khugepaged_test_exit(struct mm_struct * mm)1602 static inline int khugepaged_test_exit(struct mm_struct *mm)
1603 {
1604 	return atomic_read(&mm->mm_users) == 0;
1605 }
1606 
__khugepaged_enter(struct mm_struct * mm)1607 int __khugepaged_enter(struct mm_struct *mm)
1608 {
1609 	struct mm_slot *mm_slot;
1610 	int wakeup;
1611 
1612 	mm_slot = alloc_mm_slot();
1613 	if (!mm_slot)
1614 		return -ENOMEM;
1615 
1616 	/* __khugepaged_exit() must not run from under us */
1617 	VM_BUG_ON(khugepaged_test_exit(mm));
1618 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1619 		free_mm_slot(mm_slot);
1620 		return 0;
1621 	}
1622 
1623 	spin_lock(&khugepaged_mm_lock);
1624 	insert_to_mm_slots_hash(mm, mm_slot);
1625 	/*
1626 	 * Insert just behind the scanning cursor, to let the area settle
1627 	 * down a little.
1628 	 */
1629 	wakeup = list_empty(&khugepaged_scan.mm_head);
1630 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1631 	spin_unlock(&khugepaged_mm_lock);
1632 
1633 	atomic_inc(&mm->mm_count);
1634 	if (wakeup)
1635 		wake_up_interruptible(&khugepaged_wait);
1636 
1637 	return 0;
1638 }
1639 
khugepaged_enter_vma_merge(struct vm_area_struct * vma)1640 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1641 {
1642 	unsigned long hstart, hend;
1643 	if (!vma->anon_vma)
1644 		/*
1645 		 * Not yet faulted in so we will register later in the
1646 		 * page fault if needed.
1647 		 */
1648 		return 0;
1649 	if (vma->vm_ops)
1650 		/* khugepaged not yet working on file or special mappings */
1651 		return 0;
1652 	/*
1653 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1654 	 * true too, verify it here.
1655 	 */
1656 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1657 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1658 	hend = vma->vm_end & HPAGE_PMD_MASK;
1659 	if (hstart < hend)
1660 		return khugepaged_enter(vma);
1661 	return 0;
1662 }
1663 
__khugepaged_exit(struct mm_struct * mm)1664 void __khugepaged_exit(struct mm_struct *mm)
1665 {
1666 	struct mm_slot *mm_slot;
1667 	int free = 0;
1668 
1669 	spin_lock(&khugepaged_mm_lock);
1670 	mm_slot = get_mm_slot(mm);
1671 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1672 		hlist_del(&mm_slot->hash);
1673 		list_del(&mm_slot->mm_node);
1674 		free = 1;
1675 	}
1676 	spin_unlock(&khugepaged_mm_lock);
1677 
1678 	if (free) {
1679 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1680 		free_mm_slot(mm_slot);
1681 		mmdrop(mm);
1682 	} else if (mm_slot) {
1683 		/*
1684 		 * This is required to serialize against
1685 		 * khugepaged_test_exit() (which is guaranteed to run
1686 		 * under mmap sem read mode). Stop here (after we
1687 		 * return all pagetables will be destroyed) until
1688 		 * khugepaged has finished working on the pagetables
1689 		 * under the mmap_sem.
1690 		 */
1691 		down_write(&mm->mmap_sem);
1692 		up_write(&mm->mmap_sem);
1693 	}
1694 }
1695 
release_pte_page(struct page * page)1696 static void release_pte_page(struct page *page)
1697 {
1698 	/* 0 stands for page_is_file_cache(page) == false */
1699 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1700 	unlock_page(page);
1701 	putback_lru_page(page);
1702 }
1703 
release_pte_pages(pte_t * pte,pte_t * _pte)1704 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1705 {
1706 	while (--_pte >= pte) {
1707 		pte_t pteval = *_pte;
1708 		if (!pte_none(pteval))
1709 			release_pte_page(pte_page(pteval));
1710 	}
1711 }
1712 
release_all_pte_pages(pte_t * pte)1713 static void release_all_pte_pages(pte_t *pte)
1714 {
1715 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1716 }
1717 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte)1718 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1719 					unsigned long address,
1720 					pte_t *pte)
1721 {
1722 	struct page *page;
1723 	pte_t *_pte;
1724 	int referenced = 0, isolated = 0, none = 0;
1725 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1726 	     _pte++, address += PAGE_SIZE) {
1727 		pte_t pteval = *_pte;
1728 		if (pte_none(pteval)) {
1729 			if (++none <= khugepaged_max_ptes_none)
1730 				continue;
1731 			else {
1732 				release_pte_pages(pte, _pte);
1733 				goto out;
1734 			}
1735 		}
1736 		if (!pte_present(pteval) || !pte_write(pteval)) {
1737 			release_pte_pages(pte, _pte);
1738 			goto out;
1739 		}
1740 		page = vm_normal_page(vma, address, pteval);
1741 		if (unlikely(!page)) {
1742 			release_pte_pages(pte, _pte);
1743 			goto out;
1744 		}
1745 		VM_BUG_ON(PageCompound(page));
1746 		BUG_ON(!PageAnon(page));
1747 		VM_BUG_ON(!PageSwapBacked(page));
1748 
1749 		/* cannot use mapcount: can't collapse if there's a gup pin */
1750 		if (page_count(page) != 1) {
1751 			release_pte_pages(pte, _pte);
1752 			goto out;
1753 		}
1754 		/*
1755 		 * We can do it before isolate_lru_page because the
1756 		 * page can't be freed from under us. NOTE: PG_lock
1757 		 * is needed to serialize against split_huge_page
1758 		 * when invoked from the VM.
1759 		 */
1760 		if (!trylock_page(page)) {
1761 			release_pte_pages(pte, _pte);
1762 			goto out;
1763 		}
1764 		/*
1765 		 * Isolate the page to avoid collapsing an hugepage
1766 		 * currently in use by the VM.
1767 		 */
1768 		if (isolate_lru_page(page)) {
1769 			unlock_page(page);
1770 			release_pte_pages(pte, _pte);
1771 			goto out;
1772 		}
1773 		/* 0 stands for page_is_file_cache(page) == false */
1774 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1775 		VM_BUG_ON(!PageLocked(page));
1776 		VM_BUG_ON(PageLRU(page));
1777 
1778 		/* If there is no mapped pte young don't collapse the page */
1779 		if (pte_young(pteval) || PageReferenced(page) ||
1780 		    mmu_notifier_test_young(vma->vm_mm, address))
1781 			referenced = 1;
1782 	}
1783 	if (unlikely(!referenced))
1784 		release_all_pte_pages(pte);
1785 	else
1786 		isolated = 1;
1787 out:
1788 	return isolated;
1789 }
1790 
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl)1791 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1792 				      struct vm_area_struct *vma,
1793 				      unsigned long address,
1794 				      spinlock_t *ptl)
1795 {
1796 	pte_t *_pte;
1797 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1798 		pte_t pteval = *_pte;
1799 		struct page *src_page;
1800 
1801 		if (pte_none(pteval)) {
1802 			clear_user_highpage(page, address);
1803 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1804 		} else {
1805 			src_page = pte_page(pteval);
1806 			copy_user_highpage(page, src_page, address, vma);
1807 			VM_BUG_ON(page_mapcount(src_page) != 1);
1808 			VM_BUG_ON(page_count(src_page) != 2);
1809 			release_pte_page(src_page);
1810 			/*
1811 			 * ptl mostly unnecessary, but preempt has to
1812 			 * be disabled to update the per-cpu stats
1813 			 * inside page_remove_rmap().
1814 			 */
1815 			spin_lock(ptl);
1816 			/*
1817 			 * paravirt calls inside pte_clear here are
1818 			 * superfluous.
1819 			 */
1820 			pte_clear(vma->vm_mm, address, _pte);
1821 			page_remove_rmap(src_page);
1822 			spin_unlock(ptl);
1823 			free_page_and_swap_cache(src_page);
1824 		}
1825 
1826 		address += PAGE_SIZE;
1827 		page++;
1828 	}
1829 }
1830 
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,struct vm_area_struct * vma,int node)1831 static void collapse_huge_page(struct mm_struct *mm,
1832 			       unsigned long address,
1833 			       struct page **hpage,
1834 			       struct vm_area_struct *vma,
1835 			       int node)
1836 {
1837 	pgd_t *pgd;
1838 	pud_t *pud;
1839 	pmd_t *pmd, _pmd;
1840 	pte_t *pte;
1841 	pgtable_t pgtable;
1842 	struct page *new_page;
1843 	spinlock_t *ptl;
1844 	int isolated;
1845 	unsigned long hstart, hend;
1846 
1847 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1848 #ifndef CONFIG_NUMA
1849 	up_read(&mm->mmap_sem);
1850 	VM_BUG_ON(!*hpage);
1851 	new_page = *hpage;
1852 #else
1853 	VM_BUG_ON(*hpage);
1854 	/*
1855 	 * Allocate the page while the vma is still valid and under
1856 	 * the mmap_sem read mode so there is no memory allocation
1857 	 * later when we take the mmap_sem in write mode. This is more
1858 	 * friendly behavior (OTOH it may actually hide bugs) to
1859 	 * filesystems in userland with daemons allocating memory in
1860 	 * the userland I/O paths.  Allocating memory with the
1861 	 * mmap_sem in read mode is good idea also to allow greater
1862 	 * scalability.
1863 	 */
1864 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1865 				      node, __GFP_OTHER_NODE);
1866 
1867 	/*
1868 	 * After allocating the hugepage, release the mmap_sem read lock in
1869 	 * preparation for taking it in write mode.
1870 	 */
1871 	up_read(&mm->mmap_sem);
1872 	if (unlikely(!new_page)) {
1873 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1874 		*hpage = ERR_PTR(-ENOMEM);
1875 		return;
1876 	}
1877 #endif
1878 
1879 	count_vm_event(THP_COLLAPSE_ALLOC);
1880 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1881 #ifdef CONFIG_NUMA
1882 		put_page(new_page);
1883 #endif
1884 		return;
1885 	}
1886 
1887 	/*
1888 	 * Prevent all access to pagetables with the exception of
1889 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1890 	 * handled by the anon_vma lock + PG_lock.
1891 	 */
1892 	down_write(&mm->mmap_sem);
1893 	if (unlikely(khugepaged_test_exit(mm)))
1894 		goto out;
1895 
1896 	vma = find_vma(mm, address);
1897 	if (!vma)
1898 		goto out;
1899 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1900 	hend = vma->vm_end & HPAGE_PMD_MASK;
1901 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1902 		goto out;
1903 
1904 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1905 	    (vma->vm_flags & VM_NOHUGEPAGE))
1906 		goto out;
1907 
1908 	if (!vma->anon_vma || vma->vm_ops)
1909 		goto out;
1910 	if (is_vma_temporary_stack(vma))
1911 		goto out;
1912 	/*
1913 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1914 	 * true too, verify it here.
1915 	 */
1916 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1917 
1918 	pgd = pgd_offset(mm, address);
1919 	if (!pgd_present(*pgd))
1920 		goto out;
1921 
1922 	pud = pud_offset(pgd, address);
1923 	if (!pud_present(*pud))
1924 		goto out;
1925 
1926 	pmd = pmd_offset(pud, address);
1927 	/* pmd can't go away or become huge under us */
1928 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1929 		goto out;
1930 
1931 	anon_vma_lock(vma->anon_vma);
1932 
1933 	pte = pte_offset_map(pmd, address);
1934 	ptl = pte_lockptr(mm, pmd);
1935 
1936 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1937 	/*
1938 	 * After this gup_fast can't run anymore. This also removes
1939 	 * any huge TLB entry from the CPU so we won't allow
1940 	 * huge and small TLB entries for the same virtual address
1941 	 * to avoid the risk of CPU bugs in that area.
1942 	 */
1943 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1944 	spin_unlock(&mm->page_table_lock);
1945 
1946 	spin_lock(ptl);
1947 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1948 	spin_unlock(ptl);
1949 
1950 	if (unlikely(!isolated)) {
1951 		pte_unmap(pte);
1952 		spin_lock(&mm->page_table_lock);
1953 		BUG_ON(!pmd_none(*pmd));
1954 		/*
1955 		 * We can only use set_pmd_at when establishing
1956 		 * hugepmds and never for establishing regular pmds that
1957 		 * points to regular pagetables. Use pmd_populate for that
1958 		 */
1959 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1960 		spin_unlock(&mm->page_table_lock);
1961 		anon_vma_unlock(vma->anon_vma);
1962 		goto out;
1963 	}
1964 
1965 	/*
1966 	 * All pages are isolated and locked so anon_vma rmap
1967 	 * can't run anymore.
1968 	 */
1969 	anon_vma_unlock(vma->anon_vma);
1970 
1971 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1972 	pte_unmap(pte);
1973 	__SetPageUptodate(new_page);
1974 	pgtable = pmd_pgtable(_pmd);
1975 	VM_BUG_ON(page_count(pgtable) != 1);
1976 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1977 
1978 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1979 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1980 	_pmd = pmd_mkhuge(_pmd);
1981 
1982 	/*
1983 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1984 	 * this is needed to avoid the copy_huge_page writes to become
1985 	 * visible after the set_pmd_at() write.
1986 	 */
1987 	smp_wmb();
1988 
1989 	spin_lock(&mm->page_table_lock);
1990 	BUG_ON(!pmd_none(*pmd));
1991 	page_add_new_anon_rmap(new_page, vma, address);
1992 	set_pmd_at(mm, address, pmd, _pmd);
1993 	update_mmu_cache(vma, address, _pmd);
1994 	prepare_pmd_huge_pte(pgtable, mm);
1995 	spin_unlock(&mm->page_table_lock);
1996 
1997 #ifndef CONFIG_NUMA
1998 	*hpage = NULL;
1999 #endif
2000 	khugepaged_pages_collapsed++;
2001 out_up_write:
2002 	up_write(&mm->mmap_sem);
2003 	return;
2004 
2005 out:
2006 	mem_cgroup_uncharge_page(new_page);
2007 #ifdef CONFIG_NUMA
2008 	put_page(new_page);
2009 #endif
2010 	goto out_up_write;
2011 }
2012 
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)2013 static int khugepaged_scan_pmd(struct mm_struct *mm,
2014 			       struct vm_area_struct *vma,
2015 			       unsigned long address,
2016 			       struct page **hpage)
2017 {
2018 	pgd_t *pgd;
2019 	pud_t *pud;
2020 	pmd_t *pmd;
2021 	pte_t *pte, *_pte;
2022 	int ret = 0, referenced = 0, none = 0;
2023 	struct page *page;
2024 	unsigned long _address;
2025 	spinlock_t *ptl;
2026 	int node = -1;
2027 
2028 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2029 
2030 	pgd = pgd_offset(mm, address);
2031 	if (!pgd_present(*pgd))
2032 		goto out;
2033 
2034 	pud = pud_offset(pgd, address);
2035 	if (!pud_present(*pud))
2036 		goto out;
2037 
2038 	pmd = pmd_offset(pud, address);
2039 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2040 		goto out;
2041 
2042 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2043 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2044 	     _pte++, _address += PAGE_SIZE) {
2045 		pte_t pteval = *_pte;
2046 		if (pte_none(pteval)) {
2047 			if (++none <= khugepaged_max_ptes_none)
2048 				continue;
2049 			else
2050 				goto out_unmap;
2051 		}
2052 		if (!pte_present(pteval) || !pte_write(pteval))
2053 			goto out_unmap;
2054 		page = vm_normal_page(vma, _address, pteval);
2055 		if (unlikely(!page))
2056 			goto out_unmap;
2057 		/*
2058 		 * Chose the node of the first page. This could
2059 		 * be more sophisticated and look at more pages,
2060 		 * but isn't for now.
2061 		 */
2062 		if (node == -1)
2063 			node = page_to_nid(page);
2064 		VM_BUG_ON(PageCompound(page));
2065 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2066 			goto out_unmap;
2067 		/* cannot use mapcount: can't collapse if there's a gup pin */
2068 		if (page_count(page) != 1)
2069 			goto out_unmap;
2070 		if (pte_young(pteval) || PageReferenced(page) ||
2071 		    mmu_notifier_test_young(vma->vm_mm, address))
2072 			referenced = 1;
2073 	}
2074 	if (referenced)
2075 		ret = 1;
2076 out_unmap:
2077 	pte_unmap_unlock(pte, ptl);
2078 	if (ret)
2079 		/* collapse_huge_page will return with the mmap_sem released */
2080 		collapse_huge_page(mm, address, hpage, vma, node);
2081 out:
2082 	return ret;
2083 }
2084 
collect_mm_slot(struct mm_slot * mm_slot)2085 static void collect_mm_slot(struct mm_slot *mm_slot)
2086 {
2087 	struct mm_struct *mm = mm_slot->mm;
2088 
2089 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2090 
2091 	if (khugepaged_test_exit(mm)) {
2092 		/* free mm_slot */
2093 		hlist_del(&mm_slot->hash);
2094 		list_del(&mm_slot->mm_node);
2095 
2096 		/*
2097 		 * Not strictly needed because the mm exited already.
2098 		 *
2099 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2100 		 */
2101 
2102 		/* khugepaged_mm_lock actually not necessary for the below */
2103 		free_mm_slot(mm_slot);
2104 		mmdrop(mm);
2105 	}
2106 }
2107 
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2108 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2109 					    struct page **hpage)
2110 	__releases(&khugepaged_mm_lock)
2111 	__acquires(&khugepaged_mm_lock)
2112 {
2113 	struct mm_slot *mm_slot;
2114 	struct mm_struct *mm;
2115 	struct vm_area_struct *vma;
2116 	int progress = 0;
2117 
2118 	VM_BUG_ON(!pages);
2119 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2120 
2121 	if (khugepaged_scan.mm_slot)
2122 		mm_slot = khugepaged_scan.mm_slot;
2123 	else {
2124 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2125 				     struct mm_slot, mm_node);
2126 		khugepaged_scan.address = 0;
2127 		khugepaged_scan.mm_slot = mm_slot;
2128 	}
2129 	spin_unlock(&khugepaged_mm_lock);
2130 
2131 	mm = mm_slot->mm;
2132 	down_read(&mm->mmap_sem);
2133 	if (unlikely(khugepaged_test_exit(mm)))
2134 		vma = NULL;
2135 	else
2136 		vma = find_vma(mm, khugepaged_scan.address);
2137 
2138 	progress++;
2139 	for (; vma; vma = vma->vm_next) {
2140 		unsigned long hstart, hend;
2141 
2142 		cond_resched();
2143 		if (unlikely(khugepaged_test_exit(mm))) {
2144 			progress++;
2145 			break;
2146 		}
2147 
2148 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2149 		     !khugepaged_always()) ||
2150 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2151 		skip:
2152 			progress++;
2153 			continue;
2154 		}
2155 		if (!vma->anon_vma || vma->vm_ops)
2156 			goto skip;
2157 		if (is_vma_temporary_stack(vma))
2158 			goto skip;
2159 		/*
2160 		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2161 		 * must be true too, verify it here.
2162 		 */
2163 		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2164 			  vma->vm_flags & VM_NO_THP);
2165 
2166 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2167 		hend = vma->vm_end & HPAGE_PMD_MASK;
2168 		if (hstart >= hend)
2169 			goto skip;
2170 		if (khugepaged_scan.address > hend)
2171 			goto skip;
2172 		if (khugepaged_scan.address < hstart)
2173 			khugepaged_scan.address = hstart;
2174 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2175 
2176 		while (khugepaged_scan.address < hend) {
2177 			int ret;
2178 			cond_resched();
2179 			if (unlikely(khugepaged_test_exit(mm)))
2180 				goto breakouterloop;
2181 
2182 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2183 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2184 				  hend);
2185 			ret = khugepaged_scan_pmd(mm, vma,
2186 						  khugepaged_scan.address,
2187 						  hpage);
2188 			/* move to next address */
2189 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2190 			progress += HPAGE_PMD_NR;
2191 			if (ret)
2192 				/* we released mmap_sem so break loop */
2193 				goto breakouterloop_mmap_sem;
2194 			if (progress >= pages)
2195 				goto breakouterloop;
2196 		}
2197 	}
2198 breakouterloop:
2199 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2200 breakouterloop_mmap_sem:
2201 
2202 	spin_lock(&khugepaged_mm_lock);
2203 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2204 	/*
2205 	 * Release the current mm_slot if this mm is about to die, or
2206 	 * if we scanned all vmas of this mm.
2207 	 */
2208 	if (khugepaged_test_exit(mm) || !vma) {
2209 		/*
2210 		 * Make sure that if mm_users is reaching zero while
2211 		 * khugepaged runs here, khugepaged_exit will find
2212 		 * mm_slot not pointing to the exiting mm.
2213 		 */
2214 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2215 			khugepaged_scan.mm_slot = list_entry(
2216 				mm_slot->mm_node.next,
2217 				struct mm_slot, mm_node);
2218 			khugepaged_scan.address = 0;
2219 		} else {
2220 			khugepaged_scan.mm_slot = NULL;
2221 			khugepaged_full_scans++;
2222 		}
2223 
2224 		collect_mm_slot(mm_slot);
2225 	}
2226 
2227 	return progress;
2228 }
2229 
khugepaged_has_work(void)2230 static int khugepaged_has_work(void)
2231 {
2232 	return !list_empty(&khugepaged_scan.mm_head) &&
2233 		khugepaged_enabled();
2234 }
2235 
khugepaged_wait_event(void)2236 static int khugepaged_wait_event(void)
2237 {
2238 	return !list_empty(&khugepaged_scan.mm_head) ||
2239 		!khugepaged_enabled();
2240 }
2241 
khugepaged_do_scan(struct page ** hpage)2242 static void khugepaged_do_scan(struct page **hpage)
2243 {
2244 	unsigned int progress = 0, pass_through_head = 0;
2245 	unsigned int pages = khugepaged_pages_to_scan;
2246 
2247 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2248 
2249 	while (progress < pages) {
2250 		cond_resched();
2251 
2252 #ifndef CONFIG_NUMA
2253 		if (!*hpage) {
2254 			*hpage = alloc_hugepage(khugepaged_defrag());
2255 			if (unlikely(!*hpage)) {
2256 				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2257 				break;
2258 			}
2259 			count_vm_event(THP_COLLAPSE_ALLOC);
2260 		}
2261 #else
2262 		if (IS_ERR(*hpage))
2263 			break;
2264 #endif
2265 
2266 		if (unlikely(kthread_should_stop() || freezing(current)))
2267 			break;
2268 
2269 		spin_lock(&khugepaged_mm_lock);
2270 		if (!khugepaged_scan.mm_slot)
2271 			pass_through_head++;
2272 		if (khugepaged_has_work() &&
2273 		    pass_through_head < 2)
2274 			progress += khugepaged_scan_mm_slot(pages - progress,
2275 							    hpage);
2276 		else
2277 			progress = pages;
2278 		spin_unlock(&khugepaged_mm_lock);
2279 	}
2280 }
2281 
khugepaged_alloc_sleep(void)2282 static void khugepaged_alloc_sleep(void)
2283 {
2284 	wait_event_freezable_timeout(khugepaged_wait, false,
2285 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2286 }
2287 
2288 #ifndef CONFIG_NUMA
khugepaged_alloc_hugepage(void)2289 static struct page *khugepaged_alloc_hugepage(void)
2290 {
2291 	struct page *hpage;
2292 
2293 	do {
2294 		hpage = alloc_hugepage(khugepaged_defrag());
2295 		if (!hpage) {
2296 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2297 			khugepaged_alloc_sleep();
2298 		} else
2299 			count_vm_event(THP_COLLAPSE_ALLOC);
2300 	} while (unlikely(!hpage) &&
2301 		 likely(khugepaged_enabled()));
2302 	return hpage;
2303 }
2304 #endif
2305 
khugepaged_loop(void)2306 static void khugepaged_loop(void)
2307 {
2308 	struct page *hpage;
2309 
2310 #ifdef CONFIG_NUMA
2311 	hpage = NULL;
2312 #endif
2313 	while (likely(khugepaged_enabled())) {
2314 #ifndef CONFIG_NUMA
2315 		hpage = khugepaged_alloc_hugepage();
2316 		if (unlikely(!hpage))
2317 			break;
2318 #else
2319 		if (IS_ERR(hpage)) {
2320 			khugepaged_alloc_sleep();
2321 			hpage = NULL;
2322 		}
2323 #endif
2324 
2325 		khugepaged_do_scan(&hpage);
2326 #ifndef CONFIG_NUMA
2327 		if (hpage)
2328 			put_page(hpage);
2329 #endif
2330 		try_to_freeze();
2331 		if (unlikely(kthread_should_stop()))
2332 			break;
2333 		if (khugepaged_has_work()) {
2334 			if (!khugepaged_scan_sleep_millisecs)
2335 				continue;
2336 			wait_event_freezable_timeout(khugepaged_wait, false,
2337 			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2338 		} else if (khugepaged_enabled())
2339 			wait_event_freezable(khugepaged_wait,
2340 					     khugepaged_wait_event());
2341 	}
2342 }
2343 
khugepaged(void * none)2344 static int khugepaged(void *none)
2345 {
2346 	struct mm_slot *mm_slot;
2347 
2348 	set_freezable();
2349 	set_user_nice(current, 19);
2350 
2351 	/* serialize with start_khugepaged() */
2352 	mutex_lock(&khugepaged_mutex);
2353 
2354 	for (;;) {
2355 		mutex_unlock(&khugepaged_mutex);
2356 		VM_BUG_ON(khugepaged_thread != current);
2357 		khugepaged_loop();
2358 		VM_BUG_ON(khugepaged_thread != current);
2359 
2360 		mutex_lock(&khugepaged_mutex);
2361 		if (!khugepaged_enabled())
2362 			break;
2363 		if (unlikely(kthread_should_stop()))
2364 			break;
2365 	}
2366 
2367 	spin_lock(&khugepaged_mm_lock);
2368 	mm_slot = khugepaged_scan.mm_slot;
2369 	khugepaged_scan.mm_slot = NULL;
2370 	if (mm_slot)
2371 		collect_mm_slot(mm_slot);
2372 	spin_unlock(&khugepaged_mm_lock);
2373 
2374 	khugepaged_thread = NULL;
2375 	mutex_unlock(&khugepaged_mutex);
2376 
2377 	return 0;
2378 }
2379 
__split_huge_page_pmd(struct mm_struct * mm,pmd_t * pmd)2380 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2381 {
2382 	struct page *page;
2383 
2384 	spin_lock(&mm->page_table_lock);
2385 	if (unlikely(!pmd_trans_huge(*pmd))) {
2386 		spin_unlock(&mm->page_table_lock);
2387 		return;
2388 	}
2389 	page = pmd_page(*pmd);
2390 	VM_BUG_ON(!page_count(page));
2391 	get_page(page);
2392 	spin_unlock(&mm->page_table_lock);
2393 
2394 	split_huge_page(page);
2395 
2396 	put_page(page);
2397 	BUG_ON(pmd_trans_huge(*pmd));
2398 }
2399 
split_huge_page_address(struct mm_struct * mm,unsigned long address)2400 static void split_huge_page_address(struct mm_struct *mm,
2401 				    unsigned long address)
2402 {
2403 	pgd_t *pgd;
2404 	pud_t *pud;
2405 	pmd_t *pmd;
2406 
2407 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2408 
2409 	pgd = pgd_offset(mm, address);
2410 	if (!pgd_present(*pgd))
2411 		return;
2412 
2413 	pud = pud_offset(pgd, address);
2414 	if (!pud_present(*pud))
2415 		return;
2416 
2417 	pmd = pmd_offset(pud, address);
2418 	if (!pmd_present(*pmd))
2419 		return;
2420 	/*
2421 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2422 	 * materialize from under us.
2423 	 */
2424 	split_huge_page_pmd(mm, pmd);
2425 }
2426 
__vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2427 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2428 			     unsigned long start,
2429 			     unsigned long end,
2430 			     long adjust_next)
2431 {
2432 	/*
2433 	 * If the new start address isn't hpage aligned and it could
2434 	 * previously contain an hugepage: check if we need to split
2435 	 * an huge pmd.
2436 	 */
2437 	if (start & ~HPAGE_PMD_MASK &&
2438 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2439 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2440 		split_huge_page_address(vma->vm_mm, start);
2441 
2442 	/*
2443 	 * If the new end address isn't hpage aligned and it could
2444 	 * previously contain an hugepage: check if we need to split
2445 	 * an huge pmd.
2446 	 */
2447 	if (end & ~HPAGE_PMD_MASK &&
2448 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2449 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2450 		split_huge_page_address(vma->vm_mm, end);
2451 
2452 	/*
2453 	 * If we're also updating the vma->vm_next->vm_start, if the new
2454 	 * vm_next->vm_start isn't page aligned and it could previously
2455 	 * contain an hugepage: check if we need to split an huge pmd.
2456 	 */
2457 	if (adjust_next > 0) {
2458 		struct vm_area_struct *next = vma->vm_next;
2459 		unsigned long nstart = next->vm_start;
2460 		nstart += adjust_next << PAGE_SHIFT;
2461 		if (nstart & ~HPAGE_PMD_MASK &&
2462 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2463 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2464 			split_huge_page_address(next->vm_mm, nstart);
2465 	}
2466 }
2467