1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <linux/types.h>
29
30 /*
31 * An implementation of HyperV key value pair (KVP) functionality for Linux.
32 *
33 *
34 * Copyright (C) 2010, Novell, Inc.
35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
36 *
37 */
38
39 /*
40 * Maximum value size - used for both key names and value data, and includes
41 * any applicable NULL terminators.
42 *
43 * Note: This limit is somewhat arbitrary, but falls easily within what is
44 * supported for all native guests (back to Win 2000) and what is reasonable
45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
46 * limited to 255 character key names.
47 *
48 * MSDN recommends not storing data values larger than 2048 bytes in the
49 * registry.
50 *
51 * Note: This value is used in defining the KVP exchange message - this value
52 * cannot be modified without affecting the message size and compatibility.
53 */
54
55 /*
56 * bytes, including any null terminators
57 */
58 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
59
60
61 /*
62 * Maximum key size - the registry limit for the length of an entry name
63 * is 256 characters, including the null terminator
64 */
65
66 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
67
68 /*
69 * In Linux, we implement the KVP functionality in two components:
70 * 1) The kernel component which is packaged as part of the hv_utils driver
71 * is responsible for communicating with the host and responsible for
72 * implementing the host/guest protocol. 2) A user level daemon that is
73 * responsible for data gathering.
74 *
75 * Host/Guest Protocol: The host iterates over an index and expects the guest
76 * to assign a key name to the index and also return the value corresponding to
77 * the key. The host will have atmost one KVP transaction outstanding at any
78 * given point in time. The host side iteration stops when the guest returns
79 * an error. Microsoft has specified the following mapping of key names to
80 * host specified index:
81 *
82 * Index Key Name
83 * 0 FullyQualifiedDomainName
84 * 1 IntegrationServicesVersion
85 * 2 NetworkAddressIPv4
86 * 3 NetworkAddressIPv6
87 * 4 OSBuildNumber
88 * 5 OSName
89 * 6 OSMajorVersion
90 * 7 OSMinorVersion
91 * 8 OSVersion
92 * 9 ProcessorArchitecture
93 *
94 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
95 *
96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
97 * data gathering functionality in a user mode daemon. The user level daemon
98 * is also responsible for binding the key name to the index as well. The
99 * kernel and user-level daemon communicate using a connector channel.
100 *
101 * The user mode component first registers with the
102 * the kernel component. Subsequently, the kernel component requests, data
103 * for the specified keys. In response to this message the user mode component
104 * fills in the value corresponding to the specified key. We overload the
105 * sequence field in the cn_msg header to define our KVP message types.
106 *
107 *
108 * The kernel component simply acts as a conduit for communication between the
109 * Windows host and the user-level daemon. The kernel component passes up the
110 * index received from the Host to the user-level daemon. If the index is
111 * valid (supported), the corresponding key as well as its
112 * value (both are strings) is returned. If the index is invalid
113 * (not supported), a NULL key string is returned.
114 */
115
116
117 /*
118 * Registry value types.
119 */
120
121 #define REG_SZ 1
122 #define REG_U32 4
123 #define REG_U64 8
124
125 enum hv_kvp_exchg_op {
126 KVP_OP_GET = 0,
127 KVP_OP_SET,
128 KVP_OP_DELETE,
129 KVP_OP_ENUMERATE,
130 KVP_OP_REGISTER,
131 KVP_OP_COUNT /* Number of operations, must be last. */
132 };
133
134 enum hv_kvp_exchg_pool {
135 KVP_POOL_EXTERNAL = 0,
136 KVP_POOL_GUEST,
137 KVP_POOL_AUTO,
138 KVP_POOL_AUTO_EXTERNAL,
139 KVP_POOL_AUTO_INTERNAL,
140 KVP_POOL_COUNT /* Number of pools, must be last. */
141 };
142
143 struct hv_kvp_hdr {
144 __u8 operation;
145 __u8 pool;
146 __u16 pad;
147 } __attribute__((packed));
148
149 struct hv_kvp_exchg_msg_value {
150 __u32 value_type;
151 __u32 key_size;
152 __u32 value_size;
153 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
154 union {
155 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
156 __u32 value_u32;
157 __u64 value_u64;
158 };
159 } __attribute__((packed));
160
161 struct hv_kvp_msg_enumerate {
162 __u32 index;
163 struct hv_kvp_exchg_msg_value data;
164 } __attribute__((packed));
165
166 struct hv_kvp_msg_get {
167 struct hv_kvp_exchg_msg_value data;
168 };
169
170 struct hv_kvp_msg_set {
171 struct hv_kvp_exchg_msg_value data;
172 };
173
174 struct hv_kvp_msg_delete {
175 __u32 key_size;
176 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
177 };
178
179 struct hv_kvp_register {
180 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
181 };
182
183 struct hv_kvp_msg {
184 struct hv_kvp_hdr kvp_hdr;
185 union {
186 struct hv_kvp_msg_get kvp_get;
187 struct hv_kvp_msg_set kvp_set;
188 struct hv_kvp_msg_delete kvp_delete;
189 struct hv_kvp_msg_enumerate kvp_enum_data;
190 struct hv_kvp_register kvp_register;
191 } body;
192 } __attribute__((packed));
193
194 #ifdef __KERNEL__
195 #include <linux/scatterlist.h>
196 #include <linux/list.h>
197 #include <linux/uuid.h>
198 #include <linux/timer.h>
199 #include <linux/workqueue.h>
200 #include <linux/completion.h>
201 #include <linux/device.h>
202 #include <linux/mod_devicetable.h>
203
204
205 #define MAX_PAGE_BUFFER_COUNT 19
206 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
207
208 #pragma pack(push, 1)
209
210 /* Single-page buffer */
211 struct hv_page_buffer {
212 u32 len;
213 u32 offset;
214 u64 pfn;
215 };
216
217 /* Multiple-page buffer */
218 struct hv_multipage_buffer {
219 /* Length and Offset determines the # of pfns in the array */
220 u32 len;
221 u32 offset;
222 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
223 };
224
225 /* 0x18 includes the proprietary packet header */
226 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
227 (sizeof(struct hv_page_buffer) * \
228 MAX_PAGE_BUFFER_COUNT))
229 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
230 sizeof(struct hv_multipage_buffer))
231
232
233 #pragma pack(pop)
234
235 struct hv_ring_buffer {
236 /* Offset in bytes from the start of ring data below */
237 u32 write_index;
238
239 /* Offset in bytes from the start of ring data below */
240 u32 read_index;
241
242 u32 interrupt_mask;
243
244 /* Pad it to PAGE_SIZE so that data starts on page boundary */
245 u8 reserved[4084];
246
247 /* NOTE:
248 * The interrupt_mask field is used only for channels but since our
249 * vmbus connection also uses this data structure and its data starts
250 * here, we commented out this field.
251 */
252
253 /*
254 * Ring data starts here + RingDataStartOffset
255 * !!! DO NOT place any fields below this !!!
256 */
257 u8 buffer[0];
258 } __packed;
259
260 struct hv_ring_buffer_info {
261 struct hv_ring_buffer *ring_buffer;
262 u32 ring_size; /* Include the shared header */
263 spinlock_t ring_lock;
264
265 u32 ring_datasize; /* < ring_size */
266 u32 ring_data_startoffset;
267 };
268
269 struct hv_ring_buffer_debug_info {
270 u32 current_interrupt_mask;
271 u32 current_read_index;
272 u32 current_write_index;
273 u32 bytes_avail_toread;
274 u32 bytes_avail_towrite;
275 };
276
277 /*
278 * We use the same version numbering for all Hyper-V modules.
279 *
280 * Definition of versioning is as follows;
281 *
282 * Major Number Changes for these scenarios;
283 * 1. When a new version of Windows Hyper-V
284 * is released.
285 * 2. A Major change has occurred in the
286 * Linux IC's.
287 * (For example the merge for the first time
288 * into the kernel) Every time the Major Number
289 * changes, the Revision number is reset to 0.
290 * Minor Number Changes when new functionality is added
291 * to the Linux IC's that is not a bug fix.
292 *
293 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
294 */
295 #define HV_DRV_VERSION "3.1"
296
297
298 /*
299 * A revision number of vmbus that is used for ensuring both ends on a
300 * partition are using compatible versions.
301 */
302 #define VMBUS_REVISION_NUMBER 13
303
304 /* Make maximum size of pipe payload of 16K */
305 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
306
307 /* Define PipeMode values. */
308 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
309 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
310
311 /* The size of the user defined data buffer for non-pipe offers. */
312 #define MAX_USER_DEFINED_BYTES 120
313
314 /* The size of the user defined data buffer for pipe offers. */
315 #define MAX_PIPE_USER_DEFINED_BYTES 116
316
317 /*
318 * At the center of the Channel Management library is the Channel Offer. This
319 * struct contains the fundamental information about an offer.
320 */
321 struct vmbus_channel_offer {
322 uuid_le if_type;
323 uuid_le if_instance;
324 u64 int_latency; /* in 100ns units */
325 u32 if_revision;
326 u32 server_ctx_size; /* in bytes */
327 u16 chn_flags;
328 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
329
330 union {
331 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
332 struct {
333 unsigned char user_def[MAX_USER_DEFINED_BYTES];
334 } std;
335
336 /*
337 * Pipes:
338 * The following sructure is an integrated pipe protocol, which
339 * is implemented on top of standard user-defined data. Pipe
340 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
341 * use.
342 */
343 struct {
344 u32 pipe_mode;
345 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
346 } pipe;
347 } u;
348 u32 padding;
349 } __packed;
350
351 /* Server Flags */
352 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
353 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
354 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
355 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
356 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
357 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
358 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
359
360 struct vmpacket_descriptor {
361 u16 type;
362 u16 offset8;
363 u16 len8;
364 u16 flags;
365 u64 trans_id;
366 } __packed;
367
368 struct vmpacket_header {
369 u32 prev_pkt_start_offset;
370 struct vmpacket_descriptor descriptor;
371 } __packed;
372
373 struct vmtransfer_page_range {
374 u32 byte_count;
375 u32 byte_offset;
376 } __packed;
377
378 struct vmtransfer_page_packet_header {
379 struct vmpacket_descriptor d;
380 u16 xfer_pageset_id;
381 bool sender_owns_set;
382 u8 reserved;
383 u32 range_cnt;
384 struct vmtransfer_page_range ranges[1];
385 } __packed;
386
387 struct vmgpadl_packet_header {
388 struct vmpacket_descriptor d;
389 u32 gpadl;
390 u32 reserved;
391 } __packed;
392
393 struct vmadd_remove_transfer_page_set {
394 struct vmpacket_descriptor d;
395 u32 gpadl;
396 u16 xfer_pageset_id;
397 u16 reserved;
398 } __packed;
399
400 /*
401 * This structure defines a range in guest physical space that can be made to
402 * look virtually contiguous.
403 */
404 struct gpa_range {
405 u32 byte_count;
406 u32 byte_offset;
407 u64 pfn_array[0];
408 };
409
410 /*
411 * This is the format for an Establish Gpadl packet, which contains a handle by
412 * which this GPADL will be known and a set of GPA ranges associated with it.
413 * This can be converted to a MDL by the guest OS. If there are multiple GPA
414 * ranges, then the resulting MDL will be "chained," representing multiple VA
415 * ranges.
416 */
417 struct vmestablish_gpadl {
418 struct vmpacket_descriptor d;
419 u32 gpadl;
420 u32 range_cnt;
421 struct gpa_range range[1];
422 } __packed;
423
424 /*
425 * This is the format for a Teardown Gpadl packet, which indicates that the
426 * GPADL handle in the Establish Gpadl packet will never be referenced again.
427 */
428 struct vmteardown_gpadl {
429 struct vmpacket_descriptor d;
430 u32 gpadl;
431 u32 reserved; /* for alignment to a 8-byte boundary */
432 } __packed;
433
434 /*
435 * This is the format for a GPA-Direct packet, which contains a set of GPA
436 * ranges, in addition to commands and/or data.
437 */
438 struct vmdata_gpa_direct {
439 struct vmpacket_descriptor d;
440 u32 reserved;
441 u32 range_cnt;
442 struct gpa_range range[1];
443 } __packed;
444
445 /* This is the format for a Additional Data Packet. */
446 struct vmadditional_data {
447 struct vmpacket_descriptor d;
448 u64 total_bytes;
449 u32 offset;
450 u32 byte_cnt;
451 unsigned char data[1];
452 } __packed;
453
454 union vmpacket_largest_possible_header {
455 struct vmpacket_descriptor simple_hdr;
456 struct vmtransfer_page_packet_header xfer_page_hdr;
457 struct vmgpadl_packet_header gpadl_hdr;
458 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
459 struct vmestablish_gpadl establish_gpadl_hdr;
460 struct vmteardown_gpadl teardown_gpadl_hdr;
461 struct vmdata_gpa_direct data_gpa_direct_hdr;
462 };
463
464 #define VMPACKET_DATA_START_ADDRESS(__packet) \
465 (void *)(((unsigned char *)__packet) + \
466 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
467
468 #define VMPACKET_DATA_LENGTH(__packet) \
469 ((((struct vmpacket_descriptor)__packet)->len8 - \
470 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
471
472 #define VMPACKET_TRANSFER_MODE(__packet) \
473 (((struct IMPACT)__packet)->type)
474
475 enum vmbus_packet_type {
476 VM_PKT_INVALID = 0x0,
477 VM_PKT_SYNCH = 0x1,
478 VM_PKT_ADD_XFER_PAGESET = 0x2,
479 VM_PKT_RM_XFER_PAGESET = 0x3,
480 VM_PKT_ESTABLISH_GPADL = 0x4,
481 VM_PKT_TEARDOWN_GPADL = 0x5,
482 VM_PKT_DATA_INBAND = 0x6,
483 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
484 VM_PKT_DATA_USING_GPADL = 0x8,
485 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
486 VM_PKT_CANCEL_REQUEST = 0xa,
487 VM_PKT_COMP = 0xb,
488 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
489 VM_PKT_ADDITIONAL_DATA = 0xd
490 };
491
492 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
493
494
495 /* Version 1 messages */
496 enum vmbus_channel_message_type {
497 CHANNELMSG_INVALID = 0,
498 CHANNELMSG_OFFERCHANNEL = 1,
499 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
500 CHANNELMSG_REQUESTOFFERS = 3,
501 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
502 CHANNELMSG_OPENCHANNEL = 5,
503 CHANNELMSG_OPENCHANNEL_RESULT = 6,
504 CHANNELMSG_CLOSECHANNEL = 7,
505 CHANNELMSG_GPADL_HEADER = 8,
506 CHANNELMSG_GPADL_BODY = 9,
507 CHANNELMSG_GPADL_CREATED = 10,
508 CHANNELMSG_GPADL_TEARDOWN = 11,
509 CHANNELMSG_GPADL_TORNDOWN = 12,
510 CHANNELMSG_RELID_RELEASED = 13,
511 CHANNELMSG_INITIATE_CONTACT = 14,
512 CHANNELMSG_VERSION_RESPONSE = 15,
513 CHANNELMSG_UNLOAD = 16,
514 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
515 CHANNELMSG_VIEWRANGE_ADD = 17,
516 CHANNELMSG_VIEWRANGE_REMOVE = 18,
517 #endif
518 CHANNELMSG_COUNT
519 };
520
521 struct vmbus_channel_message_header {
522 enum vmbus_channel_message_type msgtype;
523 u32 padding;
524 } __packed;
525
526 /* Query VMBus Version parameters */
527 struct vmbus_channel_query_vmbus_version {
528 struct vmbus_channel_message_header header;
529 u32 version;
530 } __packed;
531
532 /* VMBus Version Supported parameters */
533 struct vmbus_channel_version_supported {
534 struct vmbus_channel_message_header header;
535 bool version_supported;
536 } __packed;
537
538 /* Offer Channel parameters */
539 struct vmbus_channel_offer_channel {
540 struct vmbus_channel_message_header header;
541 struct vmbus_channel_offer offer;
542 u32 child_relid;
543 u8 monitorid;
544 bool monitor_allocated;
545 } __packed;
546
547 /* Rescind Offer parameters */
548 struct vmbus_channel_rescind_offer {
549 struct vmbus_channel_message_header header;
550 u32 child_relid;
551 } __packed;
552
553 /*
554 * Request Offer -- no parameters, SynIC message contains the partition ID
555 * Set Snoop -- no parameters, SynIC message contains the partition ID
556 * Clear Snoop -- no parameters, SynIC message contains the partition ID
557 * All Offers Delivered -- no parameters, SynIC message contains the partition
558 * ID
559 * Flush Client -- no parameters, SynIC message contains the partition ID
560 */
561
562 /* Open Channel parameters */
563 struct vmbus_channel_open_channel {
564 struct vmbus_channel_message_header header;
565
566 /* Identifies the specific VMBus channel that is being opened. */
567 u32 child_relid;
568
569 /* ID making a particular open request at a channel offer unique. */
570 u32 openid;
571
572 /* GPADL for the channel's ring buffer. */
573 u32 ringbuffer_gpadlhandle;
574
575 /* GPADL for the channel's server context save area. */
576 u32 server_contextarea_gpadlhandle;
577
578 /*
579 * The upstream ring buffer begins at offset zero in the memory
580 * described by RingBufferGpadlHandle. The downstream ring buffer
581 * follows it at this offset (in pages).
582 */
583 u32 downstream_ringbuffer_pageoffset;
584
585 /* User-specific data to be passed along to the server endpoint. */
586 unsigned char userdata[MAX_USER_DEFINED_BYTES];
587 } __packed;
588
589 /* Open Channel Result parameters */
590 struct vmbus_channel_open_result {
591 struct vmbus_channel_message_header header;
592 u32 child_relid;
593 u32 openid;
594 u32 status;
595 } __packed;
596
597 /* Close channel parameters; */
598 struct vmbus_channel_close_channel {
599 struct vmbus_channel_message_header header;
600 u32 child_relid;
601 } __packed;
602
603 /* Channel Message GPADL */
604 #define GPADL_TYPE_RING_BUFFER 1
605 #define GPADL_TYPE_SERVER_SAVE_AREA 2
606 #define GPADL_TYPE_TRANSACTION 8
607
608 /*
609 * The number of PFNs in a GPADL message is defined by the number of
610 * pages that would be spanned by ByteCount and ByteOffset. If the
611 * implied number of PFNs won't fit in this packet, there will be a
612 * follow-up packet that contains more.
613 */
614 struct vmbus_channel_gpadl_header {
615 struct vmbus_channel_message_header header;
616 u32 child_relid;
617 u32 gpadl;
618 u16 range_buflen;
619 u16 rangecount;
620 struct gpa_range range[0];
621 } __packed;
622
623 /* This is the followup packet that contains more PFNs. */
624 struct vmbus_channel_gpadl_body {
625 struct vmbus_channel_message_header header;
626 u32 msgnumber;
627 u32 gpadl;
628 u64 pfn[0];
629 } __packed;
630
631 struct vmbus_channel_gpadl_created {
632 struct vmbus_channel_message_header header;
633 u32 child_relid;
634 u32 gpadl;
635 u32 creation_status;
636 } __packed;
637
638 struct vmbus_channel_gpadl_teardown {
639 struct vmbus_channel_message_header header;
640 u32 child_relid;
641 u32 gpadl;
642 } __packed;
643
644 struct vmbus_channel_gpadl_torndown {
645 struct vmbus_channel_message_header header;
646 u32 gpadl;
647 } __packed;
648
649 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
650 struct vmbus_channel_view_range_add {
651 struct vmbus_channel_message_header header;
652 PHYSICAL_ADDRESS viewrange_base;
653 u64 viewrange_length;
654 u32 child_relid;
655 } __packed;
656
657 struct vmbus_channel_view_range_remove {
658 struct vmbus_channel_message_header header;
659 PHYSICAL_ADDRESS viewrange_base;
660 u32 child_relid;
661 } __packed;
662 #endif
663
664 struct vmbus_channel_relid_released {
665 struct vmbus_channel_message_header header;
666 u32 child_relid;
667 } __packed;
668
669 struct vmbus_channel_initiate_contact {
670 struct vmbus_channel_message_header header;
671 u32 vmbus_version_requested;
672 u32 padding2;
673 u64 interrupt_page;
674 u64 monitor_page1;
675 u64 monitor_page2;
676 } __packed;
677
678 struct vmbus_channel_version_response {
679 struct vmbus_channel_message_header header;
680 bool version_supported;
681 } __packed;
682
683 enum vmbus_channel_state {
684 CHANNEL_OFFER_STATE,
685 CHANNEL_OPENING_STATE,
686 CHANNEL_OPEN_STATE,
687 };
688
689 struct vmbus_channel_debug_info {
690 u32 relid;
691 enum vmbus_channel_state state;
692 uuid_le interfacetype;
693 uuid_le interface_instance;
694 u32 monitorid;
695 u32 servermonitor_pending;
696 u32 servermonitor_latency;
697 u32 servermonitor_connectionid;
698 u32 clientmonitor_pending;
699 u32 clientmonitor_latency;
700 u32 clientmonitor_connectionid;
701
702 struct hv_ring_buffer_debug_info inbound;
703 struct hv_ring_buffer_debug_info outbound;
704 };
705
706 /*
707 * Represents each channel msg on the vmbus connection This is a
708 * variable-size data structure depending on the msg type itself
709 */
710 struct vmbus_channel_msginfo {
711 /* Bookkeeping stuff */
712 struct list_head msglistentry;
713
714 /* So far, this is only used to handle gpadl body message */
715 struct list_head submsglist;
716
717 /* Synchronize the request/response if needed */
718 struct completion waitevent;
719 union {
720 struct vmbus_channel_version_supported version_supported;
721 struct vmbus_channel_open_result open_result;
722 struct vmbus_channel_gpadl_torndown gpadl_torndown;
723 struct vmbus_channel_gpadl_created gpadl_created;
724 struct vmbus_channel_version_response version_response;
725 } response;
726
727 u32 msgsize;
728 /*
729 * The channel message that goes out on the "wire".
730 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
731 */
732 unsigned char msg[0];
733 };
734
735 struct vmbus_close_msg {
736 struct vmbus_channel_msginfo info;
737 struct vmbus_channel_close_channel msg;
738 };
739
740 struct vmbus_channel {
741 struct list_head listentry;
742
743 struct hv_device *device_obj;
744
745 struct work_struct work;
746
747 enum vmbus_channel_state state;
748
749 struct vmbus_channel_offer_channel offermsg;
750 /*
751 * These are based on the OfferMsg.MonitorId.
752 * Save it here for easy access.
753 */
754 u8 monitor_grp;
755 u8 monitor_bit;
756
757 u32 ringbuffer_gpadlhandle;
758
759 /* Allocated memory for ring buffer */
760 void *ringbuffer_pages;
761 u32 ringbuffer_pagecount;
762 struct hv_ring_buffer_info outbound; /* send to parent */
763 struct hv_ring_buffer_info inbound; /* receive from parent */
764 spinlock_t inbound_lock;
765 struct workqueue_struct *controlwq;
766
767 struct vmbus_close_msg close_msg;
768
769 /* Channel callback are invoked in this workqueue context */
770 /* HANDLE dataWorkQueue; */
771
772 void (*onchannel_callback)(void *context);
773 void *channel_callback_context;
774 };
775
776 void vmbus_onmessage(void *context);
777
778 int vmbus_request_offers(void);
779
780 /* The format must be the same as struct vmdata_gpa_direct */
781 struct vmbus_channel_packet_page_buffer {
782 u16 type;
783 u16 dataoffset8;
784 u16 length8;
785 u16 flags;
786 u64 transactionid;
787 u32 reserved;
788 u32 rangecount;
789 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
790 } __packed;
791
792 /* The format must be the same as struct vmdata_gpa_direct */
793 struct vmbus_channel_packet_multipage_buffer {
794 u16 type;
795 u16 dataoffset8;
796 u16 length8;
797 u16 flags;
798 u64 transactionid;
799 u32 reserved;
800 u32 rangecount; /* Always 1 in this case */
801 struct hv_multipage_buffer range;
802 } __packed;
803
804
805 extern int vmbus_open(struct vmbus_channel *channel,
806 u32 send_ringbuffersize,
807 u32 recv_ringbuffersize,
808 void *userdata,
809 u32 userdatalen,
810 void(*onchannel_callback)(void *context),
811 void *context);
812
813 extern void vmbus_close(struct vmbus_channel *channel);
814
815 extern int vmbus_sendpacket(struct vmbus_channel *channel,
816 const void *buffer,
817 u32 bufferLen,
818 u64 requestid,
819 enum vmbus_packet_type type,
820 u32 flags);
821
822 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
823 struct hv_page_buffer pagebuffers[],
824 u32 pagecount,
825 void *buffer,
826 u32 bufferlen,
827 u64 requestid);
828
829 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
830 struct hv_multipage_buffer *mpb,
831 void *buffer,
832 u32 bufferlen,
833 u64 requestid);
834
835 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
836 void *kbuffer,
837 u32 size,
838 u32 *gpadl_handle);
839
840 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
841 u32 gpadl_handle);
842
843 extern int vmbus_recvpacket(struct vmbus_channel *channel,
844 void *buffer,
845 u32 bufferlen,
846 u32 *buffer_actual_len,
847 u64 *requestid);
848
849 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
850 void *buffer,
851 u32 bufferlen,
852 u32 *buffer_actual_len,
853 u64 *requestid);
854
855
856 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
857 struct vmbus_channel_debug_info *debug);
858
859 extern void vmbus_ontimer(unsigned long data);
860
861 struct hv_dev_port_info {
862 u32 int_mask;
863 u32 read_idx;
864 u32 write_idx;
865 u32 bytes_avail_toread;
866 u32 bytes_avail_towrite;
867 };
868
869 /* Base driver object */
870 struct hv_driver {
871 const char *name;
872
873 /* the device type supported by this driver */
874 uuid_le dev_type;
875 const struct hv_vmbus_device_id *id_table;
876
877 struct device_driver driver;
878
879 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
880 int (*remove)(struct hv_device *);
881 void (*shutdown)(struct hv_device *);
882
883 };
884
885 /* Base device object */
886 struct hv_device {
887 /* the device type id of this device */
888 uuid_le dev_type;
889
890 /* the device instance id of this device */
891 uuid_le dev_instance;
892
893 struct device device;
894
895 struct vmbus_channel *channel;
896 };
897
898
device_to_hv_device(struct device * d)899 static inline struct hv_device *device_to_hv_device(struct device *d)
900 {
901 return container_of(d, struct hv_device, device);
902 }
903
drv_to_hv_drv(struct device_driver * d)904 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
905 {
906 return container_of(d, struct hv_driver, driver);
907 }
908
hv_set_drvdata(struct hv_device * dev,void * data)909 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
910 {
911 dev_set_drvdata(&dev->device, data);
912 }
913
hv_get_drvdata(struct hv_device * dev)914 static inline void *hv_get_drvdata(struct hv_device *dev)
915 {
916 return dev_get_drvdata(&dev->device);
917 }
918
919 /* Vmbus interface */
920 #define vmbus_driver_register(driver) \
921 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
922 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
923 struct module *owner,
924 const char *mod_name);
925 void vmbus_driver_unregister(struct hv_driver *hv_driver);
926
927 /**
928 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
929 *
930 * This macro is used to create a struct hv_vmbus_device_id that matches a
931 * specific device.
932 */
933 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
934 g8, g9, ga, gb, gc, gd, ge, gf) \
935 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
936 g8, g9, ga, gb, gc, gd, ge, gf },
937
938 /*
939 * Common header for Hyper-V ICs
940 */
941
942 #define ICMSGTYPE_NEGOTIATE 0
943 #define ICMSGTYPE_HEARTBEAT 1
944 #define ICMSGTYPE_KVPEXCHANGE 2
945 #define ICMSGTYPE_SHUTDOWN 3
946 #define ICMSGTYPE_TIMESYNC 4
947 #define ICMSGTYPE_VSS 5
948
949 #define ICMSGHDRFLAG_TRANSACTION 1
950 #define ICMSGHDRFLAG_REQUEST 2
951 #define ICMSGHDRFLAG_RESPONSE 4
952
953 #define HV_S_OK 0x00000000
954 #define HV_E_FAIL 0x80004005
955 #define HV_S_CONT 0x80070103
956 #define HV_ERROR_NOT_SUPPORTED 0x80070032
957 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
958
959 /*
960 * While we want to handle util services as regular devices,
961 * there is only one instance of each of these services; so
962 * we statically allocate the service specific state.
963 */
964
965 struct hv_util_service {
966 u8 *recv_buffer;
967 void (*util_cb)(void *);
968 int (*util_init)(struct hv_util_service *);
969 void (*util_deinit)(void);
970 };
971
972 struct vmbuspipe_hdr {
973 u32 flags;
974 u32 msgsize;
975 } __packed;
976
977 struct ic_version {
978 u16 major;
979 u16 minor;
980 } __packed;
981
982 struct icmsg_hdr {
983 struct ic_version icverframe;
984 u16 icmsgtype;
985 struct ic_version icvermsg;
986 u16 icmsgsize;
987 u32 status;
988 u8 ictransaction_id;
989 u8 icflags;
990 u8 reserved[2];
991 } __packed;
992
993 struct icmsg_negotiate {
994 u16 icframe_vercnt;
995 u16 icmsg_vercnt;
996 u32 reserved;
997 struct ic_version icversion_data[1]; /* any size array */
998 } __packed;
999
1000 struct shutdown_msg_data {
1001 u32 reason_code;
1002 u32 timeout_seconds;
1003 u32 flags;
1004 u8 display_message[2048];
1005 } __packed;
1006
1007 struct heartbeat_msg_data {
1008 u64 seq_num;
1009 u32 reserved[8];
1010 } __packed;
1011
1012 /* Time Sync IC defs */
1013 #define ICTIMESYNCFLAG_PROBE 0
1014 #define ICTIMESYNCFLAG_SYNC 1
1015 #define ICTIMESYNCFLAG_SAMPLE 2
1016
1017 #ifdef __x86_64__
1018 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1019 #else
1020 #define WLTIMEDELTA 116444736000000000LL
1021 #endif
1022
1023 struct ictimesync_data {
1024 u64 parenttime;
1025 u64 childtime;
1026 u64 roundtriptime;
1027 u8 flags;
1028 } __packed;
1029
1030 struct hyperv_service_callback {
1031 u8 msg_type;
1032 char *log_msg;
1033 uuid_le data;
1034 struct vmbus_channel *channel;
1035 void (*callback) (void *context);
1036 };
1037
1038 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1039 struct icmsg_negotiate *, u8 *);
1040
1041 int hv_kvp_init(struct hv_util_service *);
1042 void hv_kvp_deinit(void);
1043 void hv_kvp_onchannelcallback(void *);
1044
1045 #endif /* __KERNEL__ */
1046 #endif /* _HYPERV_H */
1047