1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
ext4_kvmalloc(size_t size,gfp_t flags)115 void *ext4_kvmalloc(size_t size, gfp_t flags)
116 {
117 void *ret;
118
119 ret = kmalloc(size, flags);
120 if (!ret)
121 ret = __vmalloc(size, flags, PAGE_KERNEL);
122 return ret;
123 }
124
ext4_kvzalloc(size_t size,gfp_t flags)125 void *ext4_kvzalloc(size_t size, gfp_t flags)
126 {
127 void *ret;
128
129 ret = kzalloc(size, flags);
130 if (!ret)
131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 return ret;
133 }
134
ext4_kvfree(void * ptr)135 void ext4_kvfree(void *ptr)
136 {
137 if (is_vmalloc_addr(ptr))
138 vfree(ptr);
139 else
140 kfree(ptr);
141
142 }
143
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150 }
151
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 struct ext4_group_desc *bg)
154 {
155 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158 }
159
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)160 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 struct ext4_group_desc *bg)
162 {
163 return le32_to_cpu(bg->bg_inode_table_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166 }
167
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)168 __u32 ext4_free_group_clusters(struct super_block *sb,
169 struct ext4_group_desc *bg)
170 {
171 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174 }
175
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)176 __u32 ext4_free_inodes_count(struct super_block *sb,
177 struct ext4_group_desc *bg)
178 {
179 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182 }
183
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)184 __u32 ext4_used_dirs_count(struct super_block *sb,
185 struct ext4_group_desc *bg)
186 {
187 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190 }
191
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)192 __u32 ext4_itable_unused_count(struct super_block *sb,
193 struct ext4_group_desc *bg)
194 {
195 return le16_to_cpu(bg->bg_itable_unused_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198 }
199
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)200 void ext4_block_bitmap_set(struct super_block *sb,
201 struct ext4_group_desc *bg, ext4_fsblk_t blk)
202 {
203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206 }
207
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)208 void ext4_inode_bitmap_set(struct super_block *sb,
209 struct ext4_group_desc *bg, ext4_fsblk_t blk)
210 {
211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214 }
215
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)216 void ext4_inode_table_set(struct super_block *sb,
217 struct ext4_group_desc *bg, ext4_fsblk_t blk)
218 {
219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222 }
223
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)224 void ext4_free_group_clusters_set(struct super_block *sb,
225 struct ext4_group_desc *bg, __u32 count)
226 {
227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230 }
231
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)232 void ext4_free_inodes_set(struct super_block *sb,
233 struct ext4_group_desc *bg, __u32 count)
234 {
235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238 }
239
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)240 void ext4_used_dirs_set(struct super_block *sb,
241 struct ext4_group_desc *bg, __u32 count)
242 {
243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246 }
247
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)248 void ext4_itable_unused_set(struct super_block *sb,
249 struct ext4_group_desc *bg, __u32 count)
250 {
251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254 }
255
256
257 /* Just increment the non-pointer handle value */
ext4_get_nojournal(void)258 static handle_t *ext4_get_nojournal(void)
259 {
260 handle_t *handle = current->journal_info;
261 unsigned long ref_cnt = (unsigned long)handle;
262
263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264
265 ref_cnt++;
266 handle = (handle_t *)ref_cnt;
267
268 current->journal_info = handle;
269 return handle;
270 }
271
272
273 /* Decrement the non-pointer handle value */
ext4_put_nojournal(handle_t * handle)274 static void ext4_put_nojournal(handle_t *handle)
275 {
276 unsigned long ref_cnt = (unsigned long)handle;
277
278 BUG_ON(ref_cnt == 0);
279
280 ref_cnt--;
281 handle = (handle_t *)ref_cnt;
282
283 current->journal_info = handle;
284 }
285
286 /*
287 * Wrappers for jbd2_journal_start/end.
288 *
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
292 * appropriate.
293 *
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
297 */
ext4_journal_start_sb(struct super_block * sb,int nblocks)298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299 {
300 journal_t *journal;
301 handle_t *handle;
302
303 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 if (sb->s_flags & MS_RDONLY)
305 return ERR_PTR(-EROFS);
306
307 journal = EXT4_SB(sb)->s_journal;
308 handle = ext4_journal_current_handle();
309
310 /*
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
316 */
317 if (!handle)
318 vfs_check_frozen(sb, SB_FREEZE_TRANS);
319
320 if (!journal)
321 return ext4_get_nojournal();
322 /*
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
326 */
327 if (is_journal_aborted(journal)) {
328 ext4_abort(sb, "Detected aborted journal");
329 return ERR_PTR(-EROFS);
330 }
331 return jbd2_journal_start(journal, nblocks);
332 }
333
334 /*
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
338 * appropriate.
339 */
__ext4_journal_stop(const char * where,unsigned int line,handle_t * handle)340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341 {
342 struct super_block *sb;
343 int err;
344 int rc;
345
346 if (!ext4_handle_valid(handle)) {
347 ext4_put_nojournal(handle);
348 return 0;
349 }
350 sb = handle->h_transaction->t_journal->j_private;
351 err = handle->h_err;
352 rc = jbd2_journal_stop(handle);
353
354 if (!err)
355 err = rc;
356 if (err)
357 __ext4_std_error(sb, where, line, err);
358 return err;
359 }
360
ext4_journal_abort_handle(const char * caller,unsigned int line,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)361 void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 const char *err_fn, struct buffer_head *bh,
363 handle_t *handle, int err)
364 {
365 char nbuf[16];
366 const char *errstr = ext4_decode_error(NULL, err, nbuf);
367
368 BUG_ON(!ext4_handle_valid(handle));
369
370 if (bh)
371 BUFFER_TRACE(bh, "abort");
372
373 if (!handle->h_err)
374 handle->h_err = err;
375
376 if (is_handle_aborted(handle))
377 return;
378
379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 caller, line, errstr, err_fn);
381
382 jbd2_journal_abort_handle(handle);
383 }
384
__save_error_info(struct super_block * sb,const char * func,unsigned int line)385 static void __save_error_info(struct super_block *sb, const char *func,
386 unsigned int line)
387 {
388 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389
390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 es->s_last_error_time = cpu_to_le32(get_seconds());
393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 es->s_last_error_line = cpu_to_le32(line);
395 if (!es->s_first_error_time) {
396 es->s_first_error_time = es->s_last_error_time;
397 strncpy(es->s_first_error_func, func,
398 sizeof(es->s_first_error_func));
399 es->s_first_error_line = cpu_to_le32(line);
400 es->s_first_error_ino = es->s_last_error_ino;
401 es->s_first_error_block = es->s_last_error_block;
402 }
403 /*
404 * Start the daily error reporting function if it hasn't been
405 * started already
406 */
407 if (!es->s_error_count)
408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410 }
411
save_error_info(struct super_block * sb,const char * func,unsigned int line)412 static void save_error_info(struct super_block *sb, const char *func,
413 unsigned int line)
414 {
415 __save_error_info(sb, func, line);
416 ext4_commit_super(sb, 1);
417 }
418
419 /*
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
426 */
block_device_ejected(struct super_block * sb)427 static int block_device_ejected(struct super_block *sb)
428 {
429 struct inode *bd_inode = sb->s_bdev->bd_inode;
430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431
432 return bdi->dev == NULL;
433 }
434
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436 {
437 struct super_block *sb = journal->j_private;
438 struct ext4_sb_info *sbi = EXT4_SB(sb);
439 int error = is_journal_aborted(journal);
440 struct ext4_journal_cb_entry *jce;
441
442 BUG_ON(txn->t_state == T_FINISHED);
443 spin_lock(&sbi->s_md_lock);
444 while (!list_empty(&txn->t_private_list)) {
445 jce = list_entry(txn->t_private_list.next,
446 struct ext4_journal_cb_entry, jce_list);
447 list_del_init(&jce->jce_list);
448 spin_unlock(&sbi->s_md_lock);
449 jce->jce_func(sb, jce, error);
450 spin_lock(&sbi->s_md_lock);
451 }
452 spin_unlock(&sbi->s_md_lock);
453 }
454
455 /* Deal with the reporting of failure conditions on a filesystem such as
456 * inconsistencies detected or read IO failures.
457 *
458 * On ext2, we can store the error state of the filesystem in the
459 * superblock. That is not possible on ext4, because we may have other
460 * write ordering constraints on the superblock which prevent us from
461 * writing it out straight away; and given that the journal is about to
462 * be aborted, we can't rely on the current, or future, transactions to
463 * write out the superblock safely.
464 *
465 * We'll just use the jbd2_journal_abort() error code to record an error in
466 * the journal instead. On recovery, the journal will complain about
467 * that error until we've noted it down and cleared it.
468 */
469
ext4_handle_error(struct super_block * sb)470 static void ext4_handle_error(struct super_block *sb)
471 {
472 if (sb->s_flags & MS_RDONLY)
473 return;
474
475 if (!test_opt(sb, ERRORS_CONT)) {
476 journal_t *journal = EXT4_SB(sb)->s_journal;
477
478 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
479 if (journal)
480 jbd2_journal_abort(journal, -EIO);
481 }
482 if (test_opt(sb, ERRORS_RO)) {
483 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
484 sb->s_flags |= MS_RDONLY;
485 }
486 if (test_opt(sb, ERRORS_PANIC))
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
489 }
490
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)491 void __ext4_error(struct super_block *sb, const char *function,
492 unsigned int line, const char *fmt, ...)
493 {
494 struct va_format vaf;
495 va_list args;
496
497 va_start(args, fmt);
498 vaf.fmt = fmt;
499 vaf.va = &args;
500 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
501 sb->s_id, function, line, current->comm, &vaf);
502 va_end(args);
503 save_error_info(sb, function, line);
504
505 ext4_handle_error(sb);
506 }
507
ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)508 void ext4_error_inode(struct inode *inode, const char *function,
509 unsigned int line, ext4_fsblk_t block,
510 const char *fmt, ...)
511 {
512 va_list args;
513 struct va_format vaf;
514 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
515
516 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
517 es->s_last_error_block = cpu_to_le64(block);
518 save_error_info(inode->i_sb, function, line);
519 va_start(args, fmt);
520 vaf.fmt = fmt;
521 vaf.va = &args;
522 if (block)
523 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
524 "inode #%lu: block %llu: comm %s: %pV\n",
525 inode->i_sb->s_id, function, line, inode->i_ino,
526 block, current->comm, &vaf);
527 else
528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
529 "inode #%lu: comm %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, &vaf);
532 va_end(args);
533
534 ext4_handle_error(inode->i_sb);
535 }
536
ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)537 void ext4_error_file(struct file *file, const char *function,
538 unsigned int line, ext4_fsblk_t block,
539 const char *fmt, ...)
540 {
541 va_list args;
542 struct va_format vaf;
543 struct ext4_super_block *es;
544 struct inode *inode = file->f_dentry->d_inode;
545 char pathname[80], *path;
546
547 es = EXT4_SB(inode->i_sb)->s_es;
548 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
549 save_error_info(inode->i_sb, function, line);
550 path = d_path(&(file->f_path), pathname, sizeof(pathname));
551 if (IS_ERR(path))
552 path = "(unknown)";
553 va_start(args, fmt);
554 vaf.fmt = fmt;
555 vaf.va = &args;
556 if (block)
557 printk(KERN_CRIT
558 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
559 "block %llu: comm %s: path %s: %pV\n",
560 inode->i_sb->s_id, function, line, inode->i_ino,
561 block, current->comm, path, &vaf);
562 else
563 printk(KERN_CRIT
564 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
565 "comm %s: path %s: %pV\n",
566 inode->i_sb->s_id, function, line, inode->i_ino,
567 current->comm, path, &vaf);
568 va_end(args);
569
570 ext4_handle_error(inode->i_sb);
571 }
572
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])573 static const char *ext4_decode_error(struct super_block *sb, int errno,
574 char nbuf[16])
575 {
576 char *errstr = NULL;
577
578 switch (errno) {
579 case -EIO:
580 errstr = "IO failure";
581 break;
582 case -ENOMEM:
583 errstr = "Out of memory";
584 break;
585 case -EROFS:
586 if (!sb || (EXT4_SB(sb)->s_journal &&
587 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
588 errstr = "Journal has aborted";
589 else
590 errstr = "Readonly filesystem";
591 break;
592 default:
593 /* If the caller passed in an extra buffer for unknown
594 * errors, textualise them now. Else we just return
595 * NULL. */
596 if (nbuf) {
597 /* Check for truncated error codes... */
598 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
599 errstr = nbuf;
600 }
601 break;
602 }
603
604 return errstr;
605 }
606
607 /* __ext4_std_error decodes expected errors from journaling functions
608 * automatically and invokes the appropriate error response. */
609
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)610 void __ext4_std_error(struct super_block *sb, const char *function,
611 unsigned int line, int errno)
612 {
613 char nbuf[16];
614 const char *errstr;
615
616 /* Special case: if the error is EROFS, and we're not already
617 * inside a transaction, then there's really no point in logging
618 * an error. */
619 if (errno == -EROFS && journal_current_handle() == NULL &&
620 (sb->s_flags & MS_RDONLY))
621 return;
622
623 errstr = ext4_decode_error(sb, errno, nbuf);
624 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
625 sb->s_id, function, line, errstr);
626 save_error_info(sb, function, line);
627
628 ext4_handle_error(sb);
629 }
630
631 /*
632 * ext4_abort is a much stronger failure handler than ext4_error. The
633 * abort function may be used to deal with unrecoverable failures such
634 * as journal IO errors or ENOMEM at a critical moment in log management.
635 *
636 * We unconditionally force the filesystem into an ABORT|READONLY state,
637 * unless the error response on the fs has been set to panic in which
638 * case we take the easy way out and panic immediately.
639 */
640
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)641 void __ext4_abort(struct super_block *sb, const char *function,
642 unsigned int line, const char *fmt, ...)
643 {
644 va_list args;
645
646 save_error_info(sb, function, line);
647 va_start(args, fmt);
648 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
649 function, line);
650 vprintk(fmt, args);
651 printk("\n");
652 va_end(args);
653
654 if ((sb->s_flags & MS_RDONLY) == 0) {
655 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
656 sb->s_flags |= MS_RDONLY;
657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
658 if (EXT4_SB(sb)->s_journal)
659 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
660 save_error_info(sb, function, line);
661 }
662 if (test_opt(sb, ERRORS_PANIC))
663 panic("EXT4-fs panic from previous error\n");
664 }
665
ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)666 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
667 {
668 struct va_format vaf;
669 va_list args;
670
671 va_start(args, fmt);
672 vaf.fmt = fmt;
673 vaf.va = &args;
674 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
675 va_end(args);
676 }
677
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)678 void __ext4_warning(struct super_block *sb, const char *function,
679 unsigned int line, const char *fmt, ...)
680 {
681 struct va_format vaf;
682 va_list args;
683
684 va_start(args, fmt);
685 vaf.fmt = fmt;
686 vaf.va = &args;
687 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
688 sb->s_id, function, line, &vaf);
689 va_end(args);
690 }
691
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)692 void __ext4_grp_locked_error(const char *function, unsigned int line,
693 struct super_block *sb, ext4_group_t grp,
694 unsigned long ino, ext4_fsblk_t block,
695 const char *fmt, ...)
696 __releases(bitlock)
697 __acquires(bitlock)
698 {
699 struct va_format vaf;
700 va_list args;
701 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
702
703 es->s_last_error_ino = cpu_to_le32(ino);
704 es->s_last_error_block = cpu_to_le64(block);
705 __save_error_info(sb, function, line);
706
707 va_start(args, fmt);
708
709 vaf.fmt = fmt;
710 vaf.va = &args;
711 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
712 sb->s_id, function, line, grp);
713 if (ino)
714 printk(KERN_CONT "inode %lu: ", ino);
715 if (block)
716 printk(KERN_CONT "block %llu:", (unsigned long long) block);
717 printk(KERN_CONT "%pV\n", &vaf);
718 va_end(args);
719
720 if (test_opt(sb, ERRORS_CONT)) {
721 ext4_commit_super(sb, 0);
722 return;
723 }
724
725 ext4_unlock_group(sb, grp);
726 ext4_handle_error(sb);
727 /*
728 * We only get here in the ERRORS_RO case; relocking the group
729 * may be dangerous, but nothing bad will happen since the
730 * filesystem will have already been marked read/only and the
731 * journal has been aborted. We return 1 as a hint to callers
732 * who might what to use the return value from
733 * ext4_grp_locked_error() to distinguish between the
734 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
735 * aggressively from the ext4 function in question, with a
736 * more appropriate error code.
737 */
738 ext4_lock_group(sb, grp);
739 return;
740 }
741
ext4_update_dynamic_rev(struct super_block * sb)742 void ext4_update_dynamic_rev(struct super_block *sb)
743 {
744 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
745
746 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
747 return;
748
749 ext4_warning(sb,
750 "updating to rev %d because of new feature flag, "
751 "running e2fsck is recommended",
752 EXT4_DYNAMIC_REV);
753
754 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
755 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
756 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
757 /* leave es->s_feature_*compat flags alone */
758 /* es->s_uuid will be set by e2fsck if empty */
759
760 /*
761 * The rest of the superblock fields should be zero, and if not it
762 * means they are likely already in use, so leave them alone. We
763 * can leave it up to e2fsck to clean up any inconsistencies there.
764 */
765 }
766
767 /*
768 * Open the external journal device
769 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)770 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
771 {
772 struct block_device *bdev;
773 char b[BDEVNAME_SIZE];
774
775 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
776 if (IS_ERR(bdev))
777 goto fail;
778 return bdev;
779
780 fail:
781 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
782 __bdevname(dev, b), PTR_ERR(bdev));
783 return NULL;
784 }
785
786 /*
787 * Release the journal device
788 */
ext4_blkdev_put(struct block_device * bdev)789 static int ext4_blkdev_put(struct block_device *bdev)
790 {
791 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
792 }
793
ext4_blkdev_remove(struct ext4_sb_info * sbi)794 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
795 {
796 struct block_device *bdev;
797 int ret = -ENODEV;
798
799 bdev = sbi->journal_bdev;
800 if (bdev) {
801 ret = ext4_blkdev_put(bdev);
802 sbi->journal_bdev = NULL;
803 }
804 return ret;
805 }
806
orphan_list_entry(struct list_head * l)807 static inline struct inode *orphan_list_entry(struct list_head *l)
808 {
809 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
810 }
811
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)812 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
813 {
814 struct list_head *l;
815
816 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
817 le32_to_cpu(sbi->s_es->s_last_orphan));
818
819 printk(KERN_ERR "sb_info orphan list:\n");
820 list_for_each(l, &sbi->s_orphan) {
821 struct inode *inode = orphan_list_entry(l);
822 printk(KERN_ERR " "
823 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
824 inode->i_sb->s_id, inode->i_ino, inode,
825 inode->i_mode, inode->i_nlink,
826 NEXT_ORPHAN(inode));
827 }
828 }
829
ext4_put_super(struct super_block * sb)830 static void ext4_put_super(struct super_block *sb)
831 {
832 struct ext4_sb_info *sbi = EXT4_SB(sb);
833 struct ext4_super_block *es = sbi->s_es;
834 int i, err;
835
836 ext4_unregister_li_request(sb);
837 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
838
839 flush_workqueue(sbi->dio_unwritten_wq);
840 destroy_workqueue(sbi->dio_unwritten_wq);
841
842 lock_super(sb);
843 if (sbi->s_journal) {
844 err = jbd2_journal_destroy(sbi->s_journal);
845 sbi->s_journal = NULL;
846 if (err < 0)
847 ext4_abort(sb, "Couldn't clean up the journal");
848 }
849
850 del_timer(&sbi->s_err_report);
851 ext4_release_system_zone(sb);
852 ext4_mb_release(sb);
853 ext4_ext_release(sb);
854 ext4_xattr_put_super(sb);
855
856 if (!(sb->s_flags & MS_RDONLY)) {
857 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
858 es->s_state = cpu_to_le16(sbi->s_mount_state);
859 }
860 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
861 ext4_commit_super(sb, 1);
862
863 if (sbi->s_proc) {
864 remove_proc_entry("options", sbi->s_proc);
865 remove_proc_entry(sb->s_id, ext4_proc_root);
866 }
867 kobject_del(&sbi->s_kobj);
868
869 for (i = 0; i < sbi->s_gdb_count; i++)
870 brelse(sbi->s_group_desc[i]);
871 ext4_kvfree(sbi->s_group_desc);
872 ext4_kvfree(sbi->s_flex_groups);
873 percpu_counter_destroy(&sbi->s_freeclusters_counter);
874 percpu_counter_destroy(&sbi->s_freeinodes_counter);
875 percpu_counter_destroy(&sbi->s_dirs_counter);
876 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
877 brelse(sbi->s_sbh);
878 #ifdef CONFIG_QUOTA
879 for (i = 0; i < MAXQUOTAS; i++)
880 kfree(sbi->s_qf_names[i]);
881 #endif
882
883 /* Debugging code just in case the in-memory inode orphan list
884 * isn't empty. The on-disk one can be non-empty if we've
885 * detected an error and taken the fs readonly, but the
886 * in-memory list had better be clean by this point. */
887 if (!list_empty(&sbi->s_orphan))
888 dump_orphan_list(sb, sbi);
889 J_ASSERT(list_empty(&sbi->s_orphan));
890
891 invalidate_bdev(sb->s_bdev);
892 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
893 /*
894 * Invalidate the journal device's buffers. We don't want them
895 * floating about in memory - the physical journal device may
896 * hotswapped, and it breaks the `ro-after' testing code.
897 */
898 sync_blockdev(sbi->journal_bdev);
899 invalidate_bdev(sbi->journal_bdev);
900 ext4_blkdev_remove(sbi);
901 }
902 if (sbi->s_mmp_tsk)
903 kthread_stop(sbi->s_mmp_tsk);
904 sb->s_fs_info = NULL;
905 /*
906 * Now that we are completely done shutting down the
907 * superblock, we need to actually destroy the kobject.
908 */
909 unlock_super(sb);
910 kobject_put(&sbi->s_kobj);
911 wait_for_completion(&sbi->s_kobj_unregister);
912 kfree(sbi->s_blockgroup_lock);
913 kfree(sbi);
914 }
915
916 static struct kmem_cache *ext4_inode_cachep;
917
918 /*
919 * Called inside transaction, so use GFP_NOFS
920 */
ext4_alloc_inode(struct super_block * sb)921 static struct inode *ext4_alloc_inode(struct super_block *sb)
922 {
923 struct ext4_inode_info *ei;
924
925 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
926 if (!ei)
927 return NULL;
928
929 ei->vfs_inode.i_version = 1;
930 ei->vfs_inode.i_data.writeback_index = 0;
931 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
932 INIT_LIST_HEAD(&ei->i_prealloc_list);
933 spin_lock_init(&ei->i_prealloc_lock);
934 ei->i_reserved_data_blocks = 0;
935 ei->i_reserved_meta_blocks = 0;
936 ei->i_allocated_meta_blocks = 0;
937 ei->i_da_metadata_calc_len = 0;
938 ei->i_da_metadata_calc_last_lblock = 0;
939 spin_lock_init(&(ei->i_block_reservation_lock));
940 #ifdef CONFIG_QUOTA
941 ei->i_reserved_quota = 0;
942 #endif
943 ei->jinode = NULL;
944 INIT_LIST_HEAD(&ei->i_completed_io_list);
945 spin_lock_init(&ei->i_completed_io_lock);
946 ei->cur_aio_dio = NULL;
947 ei->i_sync_tid = 0;
948 ei->i_datasync_tid = 0;
949 atomic_set(&ei->i_ioend_count, 0);
950 atomic_set(&ei->i_aiodio_unwritten, 0);
951
952 return &ei->vfs_inode;
953 }
954
ext4_drop_inode(struct inode * inode)955 static int ext4_drop_inode(struct inode *inode)
956 {
957 int drop = generic_drop_inode(inode);
958
959 trace_ext4_drop_inode(inode, drop);
960 return drop;
961 }
962
ext4_i_callback(struct rcu_head * head)963 static void ext4_i_callback(struct rcu_head *head)
964 {
965 struct inode *inode = container_of(head, struct inode, i_rcu);
966 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
967 }
968
ext4_destroy_inode(struct inode * inode)969 static void ext4_destroy_inode(struct inode *inode)
970 {
971 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
972 ext4_msg(inode->i_sb, KERN_ERR,
973 "Inode %lu (%p): orphan list check failed!",
974 inode->i_ino, EXT4_I(inode));
975 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
976 EXT4_I(inode), sizeof(struct ext4_inode_info),
977 true);
978 dump_stack();
979 }
980 call_rcu(&inode->i_rcu, ext4_i_callback);
981 }
982
init_once(void * foo)983 static void init_once(void *foo)
984 {
985 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
986
987 INIT_LIST_HEAD(&ei->i_orphan);
988 #ifdef CONFIG_EXT4_FS_XATTR
989 init_rwsem(&ei->xattr_sem);
990 #endif
991 init_rwsem(&ei->i_data_sem);
992 inode_init_once(&ei->vfs_inode);
993 }
994
init_inodecache(void)995 static int init_inodecache(void)
996 {
997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 sizeof(struct ext4_inode_info),
999 0, (SLAB_RECLAIM_ACCOUNT|
1000 SLAB_MEM_SPREAD),
1001 init_once);
1002 if (ext4_inode_cachep == NULL)
1003 return -ENOMEM;
1004 return 0;
1005 }
1006
destroy_inodecache(void)1007 static void destroy_inodecache(void)
1008 {
1009 kmem_cache_destroy(ext4_inode_cachep);
1010 }
1011
ext4_clear_inode(struct inode * inode)1012 void ext4_clear_inode(struct inode *inode)
1013 {
1014 invalidate_inode_buffers(inode);
1015 end_writeback(inode);
1016 dquot_drop(inode);
1017 ext4_discard_preallocations(inode);
1018 if (EXT4_I(inode)->jinode) {
1019 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1020 EXT4_I(inode)->jinode);
1021 jbd2_free_inode(EXT4_I(inode)->jinode);
1022 EXT4_I(inode)->jinode = NULL;
1023 }
1024 }
1025
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1026 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1027 u64 ino, u32 generation)
1028 {
1029 struct inode *inode;
1030
1031 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1032 return ERR_PTR(-ESTALE);
1033 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1034 return ERR_PTR(-ESTALE);
1035
1036 /* iget isn't really right if the inode is currently unallocated!!
1037 *
1038 * ext4_read_inode will return a bad_inode if the inode had been
1039 * deleted, so we should be safe.
1040 *
1041 * Currently we don't know the generation for parent directory, so
1042 * a generation of 0 means "accept any"
1043 */
1044 inode = ext4_iget(sb, ino);
1045 if (IS_ERR(inode))
1046 return ERR_CAST(inode);
1047 if (generation && inode->i_generation != generation) {
1048 iput(inode);
1049 return ERR_PTR(-ESTALE);
1050 }
1051
1052 return inode;
1053 }
1054
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1055 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1056 int fh_len, int fh_type)
1057 {
1058 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1059 ext4_nfs_get_inode);
1060 }
1061
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1062 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064 {
1065 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067 }
1068
1069 /*
1070 * Try to release metadata pages (indirect blocks, directories) which are
1071 * mapped via the block device. Since these pages could have journal heads
1072 * which would prevent try_to_free_buffers() from freeing them, we must use
1073 * jbd2 layer's try_to_free_buffers() function to release them.
1074 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1075 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1076 gfp_t wait)
1077 {
1078 journal_t *journal = EXT4_SB(sb)->s_journal;
1079
1080 WARN_ON(PageChecked(page));
1081 if (!page_has_buffers(page))
1082 return 0;
1083 if (journal)
1084 return jbd2_journal_try_to_free_buffers(journal, page,
1085 wait & ~__GFP_WAIT);
1086 return try_to_free_buffers(page);
1087 }
1088
1089 #ifdef CONFIG_QUOTA
1090 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1091 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1092
1093 static int ext4_write_dquot(struct dquot *dquot);
1094 static int ext4_acquire_dquot(struct dquot *dquot);
1095 static int ext4_release_dquot(struct dquot *dquot);
1096 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1097 static int ext4_write_info(struct super_block *sb, int type);
1098 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1099 struct path *path);
1100 static int ext4_quota_off(struct super_block *sb, int type);
1101 static int ext4_quota_on_mount(struct super_block *sb, int type);
1102 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1103 size_t len, loff_t off);
1104 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1105 const char *data, size_t len, loff_t off);
1106
1107 static const struct dquot_operations ext4_quota_operations = {
1108 .get_reserved_space = ext4_get_reserved_space,
1109 .write_dquot = ext4_write_dquot,
1110 .acquire_dquot = ext4_acquire_dquot,
1111 .release_dquot = ext4_release_dquot,
1112 .mark_dirty = ext4_mark_dquot_dirty,
1113 .write_info = ext4_write_info,
1114 .alloc_dquot = dquot_alloc,
1115 .destroy_dquot = dquot_destroy,
1116 };
1117
1118 static const struct quotactl_ops ext4_qctl_operations = {
1119 .quota_on = ext4_quota_on,
1120 .quota_off = ext4_quota_off,
1121 .quota_sync = dquot_quota_sync,
1122 .get_info = dquot_get_dqinfo,
1123 .set_info = dquot_set_dqinfo,
1124 .get_dqblk = dquot_get_dqblk,
1125 .set_dqblk = dquot_set_dqblk
1126 };
1127 #endif
1128
1129 static const struct super_operations ext4_sops = {
1130 .alloc_inode = ext4_alloc_inode,
1131 .destroy_inode = ext4_destroy_inode,
1132 .write_inode = ext4_write_inode,
1133 .dirty_inode = ext4_dirty_inode,
1134 .drop_inode = ext4_drop_inode,
1135 .evict_inode = ext4_evict_inode,
1136 .put_super = ext4_put_super,
1137 .sync_fs = ext4_sync_fs,
1138 .freeze_fs = ext4_freeze,
1139 .unfreeze_fs = ext4_unfreeze,
1140 .statfs = ext4_statfs,
1141 .remount_fs = ext4_remount,
1142 .show_options = ext4_show_options,
1143 #ifdef CONFIG_QUOTA
1144 .quota_read = ext4_quota_read,
1145 .quota_write = ext4_quota_write,
1146 #endif
1147 .bdev_try_to_free_page = bdev_try_to_free_page,
1148 };
1149
1150 static const struct super_operations ext4_nojournal_sops = {
1151 .alloc_inode = ext4_alloc_inode,
1152 .destroy_inode = ext4_destroy_inode,
1153 .write_inode = ext4_write_inode,
1154 .dirty_inode = ext4_dirty_inode,
1155 .drop_inode = ext4_drop_inode,
1156 .evict_inode = ext4_evict_inode,
1157 .write_super = ext4_write_super,
1158 .put_super = ext4_put_super,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162 #ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 #endif
1166 .bdev_try_to_free_page = bdev_try_to_free_page,
1167 };
1168
1169 static const struct export_operations ext4_export_ops = {
1170 .fh_to_dentry = ext4_fh_to_dentry,
1171 .fh_to_parent = ext4_fh_to_parent,
1172 .get_parent = ext4_get_parent,
1173 };
1174
1175 enum {
1176 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1177 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1178 Opt_nouid32, Opt_debug, Opt_removed,
1179 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1180 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1181 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1182 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1183 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1184 Opt_data_err_abort, Opt_data_err_ignore,
1185 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1186 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1187 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1188 Opt_usrquota, Opt_grpquota, Opt_i_version,
1189 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1190 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1191 Opt_inode_readahead_blks, Opt_journal_ioprio,
1192 Opt_dioread_nolock, Opt_dioread_lock,
1193 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1194 };
1195
1196 static const match_table_t tokens = {
1197 {Opt_bsd_df, "bsddf"},
1198 {Opt_minix_df, "minixdf"},
1199 {Opt_grpid, "grpid"},
1200 {Opt_grpid, "bsdgroups"},
1201 {Opt_nogrpid, "nogrpid"},
1202 {Opt_nogrpid, "sysvgroups"},
1203 {Opt_resgid, "resgid=%u"},
1204 {Opt_resuid, "resuid=%u"},
1205 {Opt_sb, "sb=%u"},
1206 {Opt_err_cont, "errors=continue"},
1207 {Opt_err_panic, "errors=panic"},
1208 {Opt_err_ro, "errors=remount-ro"},
1209 {Opt_nouid32, "nouid32"},
1210 {Opt_debug, "debug"},
1211 {Opt_removed, "oldalloc"},
1212 {Opt_removed, "orlov"},
1213 {Opt_user_xattr, "user_xattr"},
1214 {Opt_nouser_xattr, "nouser_xattr"},
1215 {Opt_acl, "acl"},
1216 {Opt_noacl, "noacl"},
1217 {Opt_noload, "norecovery"},
1218 {Opt_noload, "noload"},
1219 {Opt_removed, "nobh"},
1220 {Opt_removed, "bh"},
1221 {Opt_commit, "commit=%u"},
1222 {Opt_min_batch_time, "min_batch_time=%u"},
1223 {Opt_max_batch_time, "max_batch_time=%u"},
1224 {Opt_journal_dev, "journal_dev=%u"},
1225 {Opt_journal_checksum, "journal_checksum"},
1226 {Opt_journal_async_commit, "journal_async_commit"},
1227 {Opt_abort, "abort"},
1228 {Opt_data_journal, "data=journal"},
1229 {Opt_data_ordered, "data=ordered"},
1230 {Opt_data_writeback, "data=writeback"},
1231 {Opt_data_err_abort, "data_err=abort"},
1232 {Opt_data_err_ignore, "data_err=ignore"},
1233 {Opt_offusrjquota, "usrjquota="},
1234 {Opt_usrjquota, "usrjquota=%s"},
1235 {Opt_offgrpjquota, "grpjquota="},
1236 {Opt_grpjquota, "grpjquota=%s"},
1237 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1238 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1239 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1240 {Opt_grpquota, "grpquota"},
1241 {Opt_noquota, "noquota"},
1242 {Opt_quota, "quota"},
1243 {Opt_usrquota, "usrquota"},
1244 {Opt_barrier, "barrier=%u"},
1245 {Opt_barrier, "barrier"},
1246 {Opt_nobarrier, "nobarrier"},
1247 {Opt_i_version, "i_version"},
1248 {Opt_stripe, "stripe=%u"},
1249 {Opt_delalloc, "delalloc"},
1250 {Opt_nodelalloc, "nodelalloc"},
1251 {Opt_mblk_io_submit, "mblk_io_submit"},
1252 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1253 {Opt_block_validity, "block_validity"},
1254 {Opt_noblock_validity, "noblock_validity"},
1255 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1256 {Opt_journal_ioprio, "journal_ioprio=%u"},
1257 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1258 {Opt_auto_da_alloc, "auto_da_alloc"},
1259 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1260 {Opt_dioread_nolock, "dioread_nolock"},
1261 {Opt_dioread_lock, "dioread_lock"},
1262 {Opt_discard, "discard"},
1263 {Opt_nodiscard, "nodiscard"},
1264 {Opt_init_itable, "init_itable=%u"},
1265 {Opt_init_itable, "init_itable"},
1266 {Opt_noinit_itable, "noinit_itable"},
1267 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1268 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1269 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1270 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1271 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1272 {Opt_err, NULL},
1273 };
1274
get_sb_block(void ** data)1275 static ext4_fsblk_t get_sb_block(void **data)
1276 {
1277 ext4_fsblk_t sb_block;
1278 char *options = (char *) *data;
1279
1280 if (!options || strncmp(options, "sb=", 3) != 0)
1281 return 1; /* Default location */
1282
1283 options += 3;
1284 /* TODO: use simple_strtoll with >32bit ext4 */
1285 sb_block = simple_strtoul(options, &options, 0);
1286 if (*options && *options != ',') {
1287 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1288 (char *) *data);
1289 return 1;
1290 }
1291 if (*options == ',')
1292 options++;
1293 *data = (void *) options;
1294
1295 return sb_block;
1296 }
1297
1298 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1299 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1300 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1301
1302 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1303 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1304 {
1305 struct ext4_sb_info *sbi = EXT4_SB(sb);
1306 char *qname;
1307
1308 if (sb_any_quota_loaded(sb) &&
1309 !sbi->s_qf_names[qtype]) {
1310 ext4_msg(sb, KERN_ERR,
1311 "Cannot change journaled "
1312 "quota options when quota turned on");
1313 return -1;
1314 }
1315 qname = match_strdup(args);
1316 if (!qname) {
1317 ext4_msg(sb, KERN_ERR,
1318 "Not enough memory for storing quotafile name");
1319 return -1;
1320 }
1321 if (sbi->s_qf_names[qtype] &&
1322 strcmp(sbi->s_qf_names[qtype], qname)) {
1323 ext4_msg(sb, KERN_ERR,
1324 "%s quota file already specified", QTYPE2NAME(qtype));
1325 kfree(qname);
1326 return -1;
1327 }
1328 sbi->s_qf_names[qtype] = qname;
1329 if (strchr(sbi->s_qf_names[qtype], '/')) {
1330 ext4_msg(sb, KERN_ERR,
1331 "quotafile must be on filesystem root");
1332 kfree(sbi->s_qf_names[qtype]);
1333 sbi->s_qf_names[qtype] = NULL;
1334 return -1;
1335 }
1336 set_opt(sb, QUOTA);
1337 return 1;
1338 }
1339
clear_qf_name(struct super_block * sb,int qtype)1340 static int clear_qf_name(struct super_block *sb, int qtype)
1341 {
1342
1343 struct ext4_sb_info *sbi = EXT4_SB(sb);
1344
1345 if (sb_any_quota_loaded(sb) &&
1346 sbi->s_qf_names[qtype]) {
1347 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1348 " when quota turned on");
1349 return -1;
1350 }
1351 /*
1352 * The space will be released later when all options are confirmed
1353 * to be correct
1354 */
1355 sbi->s_qf_names[qtype] = NULL;
1356 return 1;
1357 }
1358 #endif
1359
1360 #define MOPT_SET 0x0001
1361 #define MOPT_CLEAR 0x0002
1362 #define MOPT_NOSUPPORT 0x0004
1363 #define MOPT_EXPLICIT 0x0008
1364 #define MOPT_CLEAR_ERR 0x0010
1365 #define MOPT_GTE0 0x0020
1366 #ifdef CONFIG_QUOTA
1367 #define MOPT_Q 0
1368 #define MOPT_QFMT 0x0040
1369 #else
1370 #define MOPT_Q MOPT_NOSUPPORT
1371 #define MOPT_QFMT MOPT_NOSUPPORT
1372 #endif
1373 #define MOPT_DATAJ 0x0080
1374
1375 static const struct mount_opts {
1376 int token;
1377 int mount_opt;
1378 int flags;
1379 } ext4_mount_opts[] = {
1380 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1381 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1382 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1383 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1384 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1385 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1386 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1387 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1388 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1389 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1390 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1391 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1392 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1393 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1394 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1395 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1396 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1397 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1398 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1399 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1400 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1401 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1402 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1403 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1404 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1405 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1406 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1407 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1408 {Opt_commit, 0, MOPT_GTE0},
1409 {Opt_max_batch_time, 0, MOPT_GTE0},
1410 {Opt_min_batch_time, 0, MOPT_GTE0},
1411 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1412 {Opt_init_itable, 0, MOPT_GTE0},
1413 {Opt_stripe, 0, MOPT_GTE0},
1414 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1415 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1416 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1417 #ifdef CONFIG_EXT4_FS_XATTR
1418 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1419 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1420 #else
1421 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1422 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1423 #endif
1424 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1425 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1426 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1427 #else
1428 {Opt_acl, 0, MOPT_NOSUPPORT},
1429 {Opt_noacl, 0, MOPT_NOSUPPORT},
1430 #endif
1431 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1432 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1433 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1434 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1435 MOPT_SET | MOPT_Q},
1436 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1437 MOPT_SET | MOPT_Q},
1438 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1439 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1440 {Opt_usrjquota, 0, MOPT_Q},
1441 {Opt_grpjquota, 0, MOPT_Q},
1442 {Opt_offusrjquota, 0, MOPT_Q},
1443 {Opt_offgrpjquota, 0, MOPT_Q},
1444 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1445 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1446 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1447 {Opt_err, 0, 0}
1448 };
1449
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1450 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1451 substring_t *args, unsigned long *journal_devnum,
1452 unsigned int *journal_ioprio, int is_remount)
1453 {
1454 struct ext4_sb_info *sbi = EXT4_SB(sb);
1455 const struct mount_opts *m;
1456 int arg = 0;
1457
1458 #ifdef CONFIG_QUOTA
1459 if (token == Opt_usrjquota)
1460 return set_qf_name(sb, USRQUOTA, &args[0]);
1461 else if (token == Opt_grpjquota)
1462 return set_qf_name(sb, GRPQUOTA, &args[0]);
1463 else if (token == Opt_offusrjquota)
1464 return clear_qf_name(sb, USRQUOTA);
1465 else if (token == Opt_offgrpjquota)
1466 return clear_qf_name(sb, GRPQUOTA);
1467 #endif
1468 if (args->from && match_int(args, &arg))
1469 return -1;
1470 switch (token) {
1471 case Opt_noacl:
1472 case Opt_nouser_xattr:
1473 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1474 break;
1475 case Opt_sb:
1476 return 1; /* handled by get_sb_block() */
1477 case Opt_removed:
1478 ext4_msg(sb, KERN_WARNING,
1479 "Ignoring removed %s option", opt);
1480 return 1;
1481 case Opt_resuid:
1482 sbi->s_resuid = arg;
1483 return 1;
1484 case Opt_resgid:
1485 sbi->s_resgid = arg;
1486 return 1;
1487 case Opt_abort:
1488 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1489 return 1;
1490 case Opt_i_version:
1491 sb->s_flags |= MS_I_VERSION;
1492 return 1;
1493 case Opt_journal_dev:
1494 if (is_remount) {
1495 ext4_msg(sb, KERN_ERR,
1496 "Cannot specify journal on remount");
1497 return -1;
1498 }
1499 *journal_devnum = arg;
1500 return 1;
1501 case Opt_journal_ioprio:
1502 if (arg < 0 || arg > 7)
1503 return -1;
1504 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1505 return 1;
1506 }
1507
1508 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1509 if (token != m->token)
1510 continue;
1511 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1512 return -1;
1513 if (m->flags & MOPT_EXPLICIT)
1514 set_opt2(sb, EXPLICIT_DELALLOC);
1515 if (m->flags & MOPT_CLEAR_ERR)
1516 clear_opt(sb, ERRORS_MASK);
1517 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1518 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1519 "options when quota turned on");
1520 return -1;
1521 }
1522
1523 if (m->flags & MOPT_NOSUPPORT) {
1524 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1525 } else if (token == Opt_commit) {
1526 if (arg == 0)
1527 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1528 sbi->s_commit_interval = HZ * arg;
1529 } else if (token == Opt_max_batch_time) {
1530 if (arg == 0)
1531 arg = EXT4_DEF_MAX_BATCH_TIME;
1532 sbi->s_max_batch_time = arg;
1533 } else if (token == Opt_min_batch_time) {
1534 sbi->s_min_batch_time = arg;
1535 } else if (token == Opt_inode_readahead_blks) {
1536 if (arg > (1 << 30))
1537 return -1;
1538 if (arg && !is_power_of_2(arg)) {
1539 ext4_msg(sb, KERN_ERR,
1540 "EXT4-fs: inode_readahead_blks"
1541 " must be a power of 2");
1542 return -1;
1543 }
1544 sbi->s_inode_readahead_blks = arg;
1545 } else if (token == Opt_init_itable) {
1546 set_opt(sb, INIT_INODE_TABLE);
1547 if (!args->from)
1548 arg = EXT4_DEF_LI_WAIT_MULT;
1549 sbi->s_li_wait_mult = arg;
1550 } else if (token == Opt_stripe) {
1551 sbi->s_stripe = arg;
1552 } else if (m->flags & MOPT_DATAJ) {
1553 if (is_remount) {
1554 if (!sbi->s_journal)
1555 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1556 else if (test_opt(sb, DATA_FLAGS) !=
1557 m->mount_opt) {
1558 ext4_msg(sb, KERN_ERR,
1559 "Cannot change data mode on remount");
1560 return -1;
1561 }
1562 } else {
1563 clear_opt(sb, DATA_FLAGS);
1564 sbi->s_mount_opt |= m->mount_opt;
1565 }
1566 #ifdef CONFIG_QUOTA
1567 } else if (m->flags & MOPT_QFMT) {
1568 if (sb_any_quota_loaded(sb) &&
1569 sbi->s_jquota_fmt != m->mount_opt) {
1570 ext4_msg(sb, KERN_ERR, "Cannot "
1571 "change journaled quota options "
1572 "when quota turned on");
1573 return -1;
1574 }
1575 sbi->s_jquota_fmt = m->mount_opt;
1576 #endif
1577 } else {
1578 if (!args->from)
1579 arg = 1;
1580 if (m->flags & MOPT_CLEAR)
1581 arg = !arg;
1582 else if (unlikely(!(m->flags & MOPT_SET))) {
1583 ext4_msg(sb, KERN_WARNING,
1584 "buggy handling of option %s", opt);
1585 WARN_ON(1);
1586 return -1;
1587 }
1588 if (arg != 0)
1589 sbi->s_mount_opt |= m->mount_opt;
1590 else
1591 sbi->s_mount_opt &= ~m->mount_opt;
1592 }
1593 return 1;
1594 }
1595 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1596 "or missing value", opt);
1597 return -1;
1598 }
1599
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1600 static int parse_options(char *options, struct super_block *sb,
1601 unsigned long *journal_devnum,
1602 unsigned int *journal_ioprio,
1603 int is_remount)
1604 {
1605 struct ext4_sb_info *sbi = EXT4_SB(sb);
1606 char *p;
1607 substring_t args[MAX_OPT_ARGS];
1608 int token;
1609
1610 if (!options)
1611 return 1;
1612
1613 while ((p = strsep(&options, ",")) != NULL) {
1614 if (!*p)
1615 continue;
1616 /*
1617 * Initialize args struct so we know whether arg was
1618 * found; some options take optional arguments.
1619 */
1620 args[0].to = args[0].from = 0;
1621 token = match_token(p, tokens, args);
1622 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1623 journal_ioprio, is_remount) < 0)
1624 return 0;
1625 }
1626 #ifdef CONFIG_QUOTA
1627 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1628 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1629 clear_opt(sb, USRQUOTA);
1630
1631 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1632 clear_opt(sb, GRPQUOTA);
1633
1634 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1635 ext4_msg(sb, KERN_ERR, "old and new quota "
1636 "format mixing");
1637 return 0;
1638 }
1639
1640 if (!sbi->s_jquota_fmt) {
1641 ext4_msg(sb, KERN_ERR, "journaled quota format "
1642 "not specified");
1643 return 0;
1644 }
1645 } else {
1646 if (sbi->s_jquota_fmt) {
1647 ext4_msg(sb, KERN_ERR, "journaled quota format "
1648 "specified with no journaling "
1649 "enabled");
1650 return 0;
1651 }
1652 }
1653 #endif
1654 if (test_opt(sb, DIOREAD_NOLOCK)) {
1655 int blocksize =
1656 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1657
1658 if (blocksize < PAGE_CACHE_SIZE) {
1659 ext4_msg(sb, KERN_ERR, "can't mount with "
1660 "dioread_nolock if block size != PAGE_SIZE");
1661 return 0;
1662 }
1663 }
1664 return 1;
1665 }
1666
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1667 static inline void ext4_show_quota_options(struct seq_file *seq,
1668 struct super_block *sb)
1669 {
1670 #if defined(CONFIG_QUOTA)
1671 struct ext4_sb_info *sbi = EXT4_SB(sb);
1672
1673 if (sbi->s_jquota_fmt) {
1674 char *fmtname = "";
1675
1676 switch (sbi->s_jquota_fmt) {
1677 case QFMT_VFS_OLD:
1678 fmtname = "vfsold";
1679 break;
1680 case QFMT_VFS_V0:
1681 fmtname = "vfsv0";
1682 break;
1683 case QFMT_VFS_V1:
1684 fmtname = "vfsv1";
1685 break;
1686 }
1687 seq_printf(seq, ",jqfmt=%s", fmtname);
1688 }
1689
1690 if (sbi->s_qf_names[USRQUOTA])
1691 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1692
1693 if (sbi->s_qf_names[GRPQUOTA])
1694 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1695
1696 if (test_opt(sb, USRQUOTA))
1697 seq_puts(seq, ",usrquota");
1698
1699 if (test_opt(sb, GRPQUOTA))
1700 seq_puts(seq, ",grpquota");
1701 #endif
1702 }
1703
token2str(int token)1704 static const char *token2str(int token)
1705 {
1706 const struct match_token *t;
1707
1708 for (t = tokens; t->token != Opt_err; t++)
1709 if (t->token == token && !strchr(t->pattern, '='))
1710 break;
1711 return t->pattern;
1712 }
1713
1714 /*
1715 * Show an option if
1716 * - it's set to a non-default value OR
1717 * - if the per-sb default is different from the global default
1718 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1719 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1720 int nodefs)
1721 {
1722 struct ext4_sb_info *sbi = EXT4_SB(sb);
1723 struct ext4_super_block *es = sbi->s_es;
1724 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1725 const struct mount_opts *m;
1726 char sep = nodefs ? '\n' : ',';
1727
1728 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1729 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1730
1731 if (sbi->s_sb_block != 1)
1732 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1733
1734 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1735 int want_set = m->flags & MOPT_SET;
1736 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1737 (m->flags & MOPT_CLEAR_ERR))
1738 continue;
1739 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1740 continue; /* skip if same as the default */
1741 if ((want_set &&
1742 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1743 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1744 continue; /* select Opt_noFoo vs Opt_Foo */
1745 SEQ_OPTS_PRINT("%s", token2str(m->token));
1746 }
1747
1748 if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID ||
1749 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1750 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1751 if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID ||
1752 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1753 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1754 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1755 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1756 SEQ_OPTS_PUTS("errors=remount-ro");
1757 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1758 SEQ_OPTS_PUTS("errors=continue");
1759 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1760 SEQ_OPTS_PUTS("errors=panic");
1761 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1762 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1763 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1764 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1765 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1766 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1767 if (sb->s_flags & MS_I_VERSION)
1768 SEQ_OPTS_PUTS("i_version");
1769 if (nodefs || sbi->s_stripe)
1770 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1771 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1772 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1773 SEQ_OPTS_PUTS("data=journal");
1774 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1775 SEQ_OPTS_PUTS("data=ordered");
1776 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1777 SEQ_OPTS_PUTS("data=writeback");
1778 }
1779 if (nodefs ||
1780 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1781 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1782 sbi->s_inode_readahead_blks);
1783
1784 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1785 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1786 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1787
1788 ext4_show_quota_options(seq, sb);
1789 return 0;
1790 }
1791
ext4_show_options(struct seq_file * seq,struct dentry * root)1792 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1793 {
1794 return _ext4_show_options(seq, root->d_sb, 0);
1795 }
1796
options_seq_show(struct seq_file * seq,void * offset)1797 static int options_seq_show(struct seq_file *seq, void *offset)
1798 {
1799 struct super_block *sb = seq->private;
1800 int rc;
1801
1802 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1803 rc = _ext4_show_options(seq, sb, 1);
1804 seq_puts(seq, "\n");
1805 return rc;
1806 }
1807
options_open_fs(struct inode * inode,struct file * file)1808 static int options_open_fs(struct inode *inode, struct file *file)
1809 {
1810 return single_open(file, options_seq_show, PDE(inode)->data);
1811 }
1812
1813 static const struct file_operations ext4_seq_options_fops = {
1814 .owner = THIS_MODULE,
1815 .open = options_open_fs,
1816 .read = seq_read,
1817 .llseek = seq_lseek,
1818 .release = single_release,
1819 };
1820
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1821 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1822 int read_only)
1823 {
1824 struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 int res = 0;
1826
1827 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1828 ext4_msg(sb, KERN_ERR, "revision level too high, "
1829 "forcing read-only mode");
1830 res = MS_RDONLY;
1831 }
1832 if (read_only)
1833 goto done;
1834 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1835 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1836 "running e2fsck is recommended");
1837 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1838 ext4_msg(sb, KERN_WARNING,
1839 "warning: mounting fs with errors, "
1840 "running e2fsck is recommended");
1841 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1842 le16_to_cpu(es->s_mnt_count) >=
1843 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1844 ext4_msg(sb, KERN_WARNING,
1845 "warning: maximal mount count reached, "
1846 "running e2fsck is recommended");
1847 else if (le32_to_cpu(es->s_checkinterval) &&
1848 (le32_to_cpu(es->s_lastcheck) +
1849 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1850 ext4_msg(sb, KERN_WARNING,
1851 "warning: checktime reached, "
1852 "running e2fsck is recommended");
1853 if (!sbi->s_journal)
1854 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1855 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1856 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1857 le16_add_cpu(&es->s_mnt_count, 1);
1858 es->s_mtime = cpu_to_le32(get_seconds());
1859 ext4_update_dynamic_rev(sb);
1860 if (sbi->s_journal)
1861 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1862
1863 ext4_commit_super(sb, 1);
1864 done:
1865 if (test_opt(sb, DEBUG))
1866 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1867 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1868 sb->s_blocksize,
1869 sbi->s_groups_count,
1870 EXT4_BLOCKS_PER_GROUP(sb),
1871 EXT4_INODES_PER_GROUP(sb),
1872 sbi->s_mount_opt, sbi->s_mount_opt2);
1873
1874 cleancache_init_fs(sb);
1875 return res;
1876 }
1877
ext4_fill_flex_info(struct super_block * sb)1878 static int ext4_fill_flex_info(struct super_block *sb)
1879 {
1880 struct ext4_sb_info *sbi = EXT4_SB(sb);
1881 struct ext4_group_desc *gdp = NULL;
1882 ext4_group_t flex_group_count;
1883 ext4_group_t flex_group;
1884 unsigned int groups_per_flex = 0;
1885 size_t size;
1886 int i;
1887
1888 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1889 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1890 sbi->s_log_groups_per_flex = 0;
1891 return 1;
1892 }
1893 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1894
1895 /* We allocate both existing and potentially added groups */
1896 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1897 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1898 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1899 size = flex_group_count * sizeof(struct flex_groups);
1900 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1901 if (sbi->s_flex_groups == NULL) {
1902 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1903 flex_group_count);
1904 goto failed;
1905 }
1906
1907 for (i = 0; i < sbi->s_groups_count; i++) {
1908 gdp = ext4_get_group_desc(sb, i, NULL);
1909
1910 flex_group = ext4_flex_group(sbi, i);
1911 atomic_add(ext4_free_inodes_count(sb, gdp),
1912 &sbi->s_flex_groups[flex_group].free_inodes);
1913 atomic64_add(ext4_free_group_clusters(sb, gdp),
1914 &sbi->s_flex_groups[flex_group].free_clusters);
1915 atomic_add(ext4_used_dirs_count(sb, gdp),
1916 &sbi->s_flex_groups[flex_group].used_dirs);
1917 }
1918
1919 return 1;
1920 failed:
1921 return 0;
1922 }
1923
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1924 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1925 struct ext4_group_desc *gdp)
1926 {
1927 __u16 crc = 0;
1928
1929 if (sbi->s_es->s_feature_ro_compat &
1930 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1931 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1932 __le32 le_group = cpu_to_le32(block_group);
1933
1934 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1935 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1936 crc = crc16(crc, (__u8 *)gdp, offset);
1937 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1938 /* for checksum of struct ext4_group_desc do the rest...*/
1939 if ((sbi->s_es->s_feature_incompat &
1940 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1941 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1942 crc = crc16(crc, (__u8 *)gdp + offset,
1943 le16_to_cpu(sbi->s_es->s_desc_size) -
1944 offset);
1945 }
1946
1947 return cpu_to_le16(crc);
1948 }
1949
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1950 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1951 struct ext4_group_desc *gdp)
1952 {
1953 if ((sbi->s_es->s_feature_ro_compat &
1954 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1955 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1956 return 0;
1957
1958 return 1;
1959 }
1960
1961 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)1962 static int ext4_check_descriptors(struct super_block *sb,
1963 ext4_group_t *first_not_zeroed)
1964 {
1965 struct ext4_sb_info *sbi = EXT4_SB(sb);
1966 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1967 ext4_fsblk_t last_block;
1968 ext4_fsblk_t block_bitmap;
1969 ext4_fsblk_t inode_bitmap;
1970 ext4_fsblk_t inode_table;
1971 int flexbg_flag = 0;
1972 ext4_group_t i, grp = sbi->s_groups_count;
1973
1974 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1975 flexbg_flag = 1;
1976
1977 ext4_debug("Checking group descriptors");
1978
1979 for (i = 0; i < sbi->s_groups_count; i++) {
1980 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1981
1982 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1983 last_block = ext4_blocks_count(sbi->s_es) - 1;
1984 else
1985 last_block = first_block +
1986 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1987
1988 if ((grp == sbi->s_groups_count) &&
1989 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1990 grp = i;
1991
1992 block_bitmap = ext4_block_bitmap(sb, gdp);
1993 if (block_bitmap < first_block || block_bitmap > last_block) {
1994 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1995 "Block bitmap for group %u not in group "
1996 "(block %llu)!", i, block_bitmap);
1997 return 0;
1998 }
1999 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2000 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2001 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2002 "Inode bitmap for group %u not in group "
2003 "(block %llu)!", i, inode_bitmap);
2004 return 0;
2005 }
2006 inode_table = ext4_inode_table(sb, gdp);
2007 if (inode_table < first_block ||
2008 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2009 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2010 "Inode table for group %u not in group "
2011 "(block %llu)!", i, inode_table);
2012 return 0;
2013 }
2014 ext4_lock_group(sb, i);
2015 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2016 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2017 "Checksum for group %u failed (%u!=%u)",
2018 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2019 gdp)), le16_to_cpu(gdp->bg_checksum));
2020 if (!(sb->s_flags & MS_RDONLY)) {
2021 ext4_unlock_group(sb, i);
2022 return 0;
2023 }
2024 }
2025 ext4_unlock_group(sb, i);
2026 if (!flexbg_flag)
2027 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2028 }
2029 if (NULL != first_not_zeroed)
2030 *first_not_zeroed = grp;
2031
2032 ext4_free_blocks_count_set(sbi->s_es,
2033 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2034 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2035 return 1;
2036 }
2037
2038 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2039 * the superblock) which were deleted from all directories, but held open by
2040 * a process at the time of a crash. We walk the list and try to delete these
2041 * inodes at recovery time (only with a read-write filesystem).
2042 *
2043 * In order to keep the orphan inode chain consistent during traversal (in
2044 * case of crash during recovery), we link each inode into the superblock
2045 * orphan list_head and handle it the same way as an inode deletion during
2046 * normal operation (which journals the operations for us).
2047 *
2048 * We only do an iget() and an iput() on each inode, which is very safe if we
2049 * accidentally point at an in-use or already deleted inode. The worst that
2050 * can happen in this case is that we get a "bit already cleared" message from
2051 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2052 * e2fsck was run on this filesystem, and it must have already done the orphan
2053 * inode cleanup for us, so we can safely abort without any further action.
2054 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2055 static void ext4_orphan_cleanup(struct super_block *sb,
2056 struct ext4_super_block *es)
2057 {
2058 unsigned int s_flags = sb->s_flags;
2059 int nr_orphans = 0, nr_truncates = 0;
2060 #ifdef CONFIG_QUOTA
2061 int i;
2062 #endif
2063 if (!es->s_last_orphan) {
2064 jbd_debug(4, "no orphan inodes to clean up\n");
2065 return;
2066 }
2067
2068 if (bdev_read_only(sb->s_bdev)) {
2069 ext4_msg(sb, KERN_ERR, "write access "
2070 "unavailable, skipping orphan cleanup");
2071 return;
2072 }
2073
2074 /* Check if feature set would not allow a r/w mount */
2075 if (!ext4_feature_set_ok(sb, 0)) {
2076 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2077 "unknown ROCOMPAT features");
2078 return;
2079 }
2080
2081 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2082 if (es->s_last_orphan)
2083 jbd_debug(1, "Errors on filesystem, "
2084 "clearing orphan list.\n");
2085 es->s_last_orphan = 0;
2086 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2087 return;
2088 }
2089
2090 if (s_flags & MS_RDONLY) {
2091 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2092 sb->s_flags &= ~MS_RDONLY;
2093 }
2094 #ifdef CONFIG_QUOTA
2095 /* Needed for iput() to work correctly and not trash data */
2096 sb->s_flags |= MS_ACTIVE;
2097 /* Turn on quotas so that they are updated correctly */
2098 for (i = 0; i < MAXQUOTAS; i++) {
2099 if (EXT4_SB(sb)->s_qf_names[i]) {
2100 int ret = ext4_quota_on_mount(sb, i);
2101 if (ret < 0)
2102 ext4_msg(sb, KERN_ERR,
2103 "Cannot turn on journaled "
2104 "quota: error %d", ret);
2105 }
2106 }
2107 #endif
2108
2109 while (es->s_last_orphan) {
2110 struct inode *inode;
2111
2112 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2113 if (IS_ERR(inode)) {
2114 es->s_last_orphan = 0;
2115 break;
2116 }
2117
2118 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2119 dquot_initialize(inode);
2120 if (inode->i_nlink) {
2121 ext4_msg(sb, KERN_DEBUG,
2122 "%s: truncating inode %lu to %lld bytes",
2123 __func__, inode->i_ino, inode->i_size);
2124 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2125 inode->i_ino, inode->i_size);
2126 mutex_lock(&inode->i_mutex);
2127 ext4_truncate(inode);
2128 mutex_unlock(&inode->i_mutex);
2129 nr_truncates++;
2130 } else {
2131 ext4_msg(sb, KERN_DEBUG,
2132 "%s: deleting unreferenced inode %lu",
2133 __func__, inode->i_ino);
2134 jbd_debug(2, "deleting unreferenced inode %lu\n",
2135 inode->i_ino);
2136 nr_orphans++;
2137 }
2138 iput(inode); /* The delete magic happens here! */
2139 }
2140
2141 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2142
2143 if (nr_orphans)
2144 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2145 PLURAL(nr_orphans));
2146 if (nr_truncates)
2147 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2148 PLURAL(nr_truncates));
2149 #ifdef CONFIG_QUOTA
2150 /* Turn quotas off */
2151 for (i = 0; i < MAXQUOTAS; i++) {
2152 if (sb_dqopt(sb)->files[i])
2153 dquot_quota_off(sb, i);
2154 }
2155 #endif
2156 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2157 }
2158
2159 /*
2160 * Maximal extent format file size.
2161 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2162 * extent format containers, within a sector_t, and within i_blocks
2163 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2164 * so that won't be a limiting factor.
2165 *
2166 * However there is other limiting factor. We do store extents in the form
2167 * of starting block and length, hence the resulting length of the extent
2168 * covering maximum file size must fit into on-disk format containers as
2169 * well. Given that length is always by 1 unit bigger than max unit (because
2170 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2171 *
2172 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2173 */
ext4_max_size(int blkbits,int has_huge_files)2174 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2175 {
2176 loff_t res;
2177 loff_t upper_limit = MAX_LFS_FILESIZE;
2178
2179 /* small i_blocks in vfs inode? */
2180 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2181 /*
2182 * CONFIG_LBDAF is not enabled implies the inode
2183 * i_block represent total blocks in 512 bytes
2184 * 32 == size of vfs inode i_blocks * 8
2185 */
2186 upper_limit = (1LL << 32) - 1;
2187
2188 /* total blocks in file system block size */
2189 upper_limit >>= (blkbits - 9);
2190 upper_limit <<= blkbits;
2191 }
2192
2193 /*
2194 * 32-bit extent-start container, ee_block. We lower the maxbytes
2195 * by one fs block, so ee_len can cover the extent of maximum file
2196 * size
2197 */
2198 res = (1LL << 32) - 1;
2199 res <<= blkbits;
2200
2201 /* Sanity check against vm- & vfs- imposed limits */
2202 if (res > upper_limit)
2203 res = upper_limit;
2204
2205 return res;
2206 }
2207
2208 /*
2209 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2210 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2211 * We need to be 1 filesystem block less than the 2^48 sector limit.
2212 */
ext4_max_bitmap_size(int bits,int has_huge_files)2213 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2214 {
2215 loff_t res = EXT4_NDIR_BLOCKS;
2216 int meta_blocks;
2217 loff_t upper_limit;
2218 /* This is calculated to be the largest file size for a dense, block
2219 * mapped file such that the file's total number of 512-byte sectors,
2220 * including data and all indirect blocks, does not exceed (2^48 - 1).
2221 *
2222 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2223 * number of 512-byte sectors of the file.
2224 */
2225
2226 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2227 /*
2228 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2229 * the inode i_block field represents total file blocks in
2230 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2231 */
2232 upper_limit = (1LL << 32) - 1;
2233
2234 /* total blocks in file system block size */
2235 upper_limit >>= (bits - 9);
2236
2237 } else {
2238 /*
2239 * We use 48 bit ext4_inode i_blocks
2240 * With EXT4_HUGE_FILE_FL set the i_blocks
2241 * represent total number of blocks in
2242 * file system block size
2243 */
2244 upper_limit = (1LL << 48) - 1;
2245
2246 }
2247
2248 /* indirect blocks */
2249 meta_blocks = 1;
2250 /* double indirect blocks */
2251 meta_blocks += 1 + (1LL << (bits-2));
2252 /* tripple indirect blocks */
2253 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2254
2255 upper_limit -= meta_blocks;
2256 upper_limit <<= bits;
2257
2258 res += 1LL << (bits-2);
2259 res += 1LL << (2*(bits-2));
2260 res += 1LL << (3*(bits-2));
2261 res <<= bits;
2262 if (res > upper_limit)
2263 res = upper_limit;
2264
2265 if (res > MAX_LFS_FILESIZE)
2266 res = MAX_LFS_FILESIZE;
2267
2268 return res;
2269 }
2270
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2271 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2272 ext4_fsblk_t logical_sb_block, int nr)
2273 {
2274 struct ext4_sb_info *sbi = EXT4_SB(sb);
2275 ext4_group_t bg, first_meta_bg;
2276 int has_super = 0;
2277
2278 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2279
2280 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2281 nr < first_meta_bg)
2282 return logical_sb_block + nr + 1;
2283 bg = sbi->s_desc_per_block * nr;
2284 if (ext4_bg_has_super(sb, bg))
2285 has_super = 1;
2286
2287 return (has_super + ext4_group_first_block_no(sb, bg));
2288 }
2289
2290 /**
2291 * ext4_get_stripe_size: Get the stripe size.
2292 * @sbi: In memory super block info
2293 *
2294 * If we have specified it via mount option, then
2295 * use the mount option value. If the value specified at mount time is
2296 * greater than the blocks per group use the super block value.
2297 * If the super block value is greater than blocks per group return 0.
2298 * Allocator needs it be less than blocks per group.
2299 *
2300 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2301 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2302 {
2303 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2304 unsigned long stripe_width =
2305 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2306 int ret;
2307
2308 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2309 ret = sbi->s_stripe;
2310 else if (stripe_width <= sbi->s_blocks_per_group)
2311 ret = stripe_width;
2312 else if (stride <= sbi->s_blocks_per_group)
2313 ret = stride;
2314 else
2315 ret = 0;
2316
2317 /*
2318 * If the stripe width is 1, this makes no sense and
2319 * we set it to 0 to turn off stripe handling code.
2320 */
2321 if (ret <= 1)
2322 ret = 0;
2323
2324 return ret;
2325 }
2326
2327 /* sysfs supprt */
2328
2329 struct ext4_attr {
2330 struct attribute attr;
2331 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2332 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2333 const char *, size_t);
2334 int offset;
2335 };
2336
parse_strtoul(const char * buf,unsigned long max,unsigned long * value)2337 static int parse_strtoul(const char *buf,
2338 unsigned long max, unsigned long *value)
2339 {
2340 char *endp;
2341
2342 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2343 endp = skip_spaces(endp);
2344 if (*endp || *value > max)
2345 return -EINVAL;
2346
2347 return 0;
2348 }
2349
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2350 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2351 struct ext4_sb_info *sbi,
2352 char *buf)
2353 {
2354 return snprintf(buf, PAGE_SIZE, "%llu\n",
2355 (s64) EXT4_C2B(sbi,
2356 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2357 }
2358
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2359 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2360 struct ext4_sb_info *sbi, char *buf)
2361 {
2362 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2363
2364 if (!sb->s_bdev->bd_part)
2365 return snprintf(buf, PAGE_SIZE, "0\n");
2366 return snprintf(buf, PAGE_SIZE, "%lu\n",
2367 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2368 sbi->s_sectors_written_start) >> 1);
2369 }
2370
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2371 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2372 struct ext4_sb_info *sbi, char *buf)
2373 {
2374 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2375
2376 if (!sb->s_bdev->bd_part)
2377 return snprintf(buf, PAGE_SIZE, "0\n");
2378 return snprintf(buf, PAGE_SIZE, "%llu\n",
2379 (unsigned long long)(sbi->s_kbytes_written +
2380 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2381 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2382 }
2383
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2384 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2385 struct ext4_sb_info *sbi,
2386 const char *buf, size_t count)
2387 {
2388 unsigned long t;
2389
2390 if (parse_strtoul(buf, 0x40000000, &t))
2391 return -EINVAL;
2392
2393 if (t && !is_power_of_2(t))
2394 return -EINVAL;
2395
2396 sbi->s_inode_readahead_blks = t;
2397 return count;
2398 }
2399
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2400 static ssize_t sbi_ui_show(struct ext4_attr *a,
2401 struct ext4_sb_info *sbi, char *buf)
2402 {
2403 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2404
2405 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2406 }
2407
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2408 static ssize_t sbi_ui_store(struct ext4_attr *a,
2409 struct ext4_sb_info *sbi,
2410 const char *buf, size_t count)
2411 {
2412 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2413 unsigned long t;
2414
2415 if (parse_strtoul(buf, 0xffffffff, &t))
2416 return -EINVAL;
2417 *ui = t;
2418 return count;
2419 }
2420
2421 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2422 static struct ext4_attr ext4_attr_##_name = { \
2423 .attr = {.name = __stringify(_name), .mode = _mode }, \
2424 .show = _show, \
2425 .store = _store, \
2426 .offset = offsetof(struct ext4_sb_info, _elname), \
2427 }
2428 #define EXT4_ATTR(name, mode, show, store) \
2429 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2430
2431 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2432 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2433 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2434 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2435 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2436 #define ATTR_LIST(name) &ext4_attr_##name.attr
2437
2438 EXT4_RO_ATTR(delayed_allocation_blocks);
2439 EXT4_RO_ATTR(session_write_kbytes);
2440 EXT4_RO_ATTR(lifetime_write_kbytes);
2441 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2442 inode_readahead_blks_store, s_inode_readahead_blks);
2443 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2444 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2445 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2446 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2447 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2448 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2449 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2450 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2451
2452 static struct attribute *ext4_attrs[] = {
2453 ATTR_LIST(delayed_allocation_blocks),
2454 ATTR_LIST(session_write_kbytes),
2455 ATTR_LIST(lifetime_write_kbytes),
2456 ATTR_LIST(inode_readahead_blks),
2457 ATTR_LIST(inode_goal),
2458 ATTR_LIST(mb_stats),
2459 ATTR_LIST(mb_max_to_scan),
2460 ATTR_LIST(mb_min_to_scan),
2461 ATTR_LIST(mb_order2_req),
2462 ATTR_LIST(mb_stream_req),
2463 ATTR_LIST(mb_group_prealloc),
2464 ATTR_LIST(max_writeback_mb_bump),
2465 NULL,
2466 };
2467
2468 /* Features this copy of ext4 supports */
2469 EXT4_INFO_ATTR(lazy_itable_init);
2470 EXT4_INFO_ATTR(batched_discard);
2471
2472 static struct attribute *ext4_feat_attrs[] = {
2473 ATTR_LIST(lazy_itable_init),
2474 ATTR_LIST(batched_discard),
2475 NULL,
2476 };
2477
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2478 static ssize_t ext4_attr_show(struct kobject *kobj,
2479 struct attribute *attr, char *buf)
2480 {
2481 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2482 s_kobj);
2483 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2484
2485 return a->show ? a->show(a, sbi, buf) : 0;
2486 }
2487
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2488 static ssize_t ext4_attr_store(struct kobject *kobj,
2489 struct attribute *attr,
2490 const char *buf, size_t len)
2491 {
2492 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2493 s_kobj);
2494 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2495
2496 return a->store ? a->store(a, sbi, buf, len) : 0;
2497 }
2498
ext4_sb_release(struct kobject * kobj)2499 static void ext4_sb_release(struct kobject *kobj)
2500 {
2501 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2502 s_kobj);
2503 complete(&sbi->s_kobj_unregister);
2504 }
2505
2506 static const struct sysfs_ops ext4_attr_ops = {
2507 .show = ext4_attr_show,
2508 .store = ext4_attr_store,
2509 };
2510
2511 static struct kobj_type ext4_ktype = {
2512 .default_attrs = ext4_attrs,
2513 .sysfs_ops = &ext4_attr_ops,
2514 .release = ext4_sb_release,
2515 };
2516
ext4_feat_release(struct kobject * kobj)2517 static void ext4_feat_release(struct kobject *kobj)
2518 {
2519 complete(&ext4_feat->f_kobj_unregister);
2520 }
2521
2522 static struct kobj_type ext4_feat_ktype = {
2523 .default_attrs = ext4_feat_attrs,
2524 .sysfs_ops = &ext4_attr_ops,
2525 .release = ext4_feat_release,
2526 };
2527
2528 /*
2529 * Check whether this filesystem can be mounted based on
2530 * the features present and the RDONLY/RDWR mount requested.
2531 * Returns 1 if this filesystem can be mounted as requested,
2532 * 0 if it cannot be.
2533 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2534 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2535 {
2536 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2537 ext4_msg(sb, KERN_ERR,
2538 "Couldn't mount because of "
2539 "unsupported optional features (%x)",
2540 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2541 ~EXT4_FEATURE_INCOMPAT_SUPP));
2542 return 0;
2543 }
2544
2545 if (readonly)
2546 return 1;
2547
2548 /* Check that feature set is OK for a read-write mount */
2549 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2550 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2551 "unsupported optional features (%x)",
2552 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2553 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2554 return 0;
2555 }
2556 /*
2557 * Large file size enabled file system can only be mounted
2558 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2559 */
2560 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2561 if (sizeof(blkcnt_t) < sizeof(u64)) {
2562 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2563 "cannot be mounted RDWR without "
2564 "CONFIG_LBDAF");
2565 return 0;
2566 }
2567 }
2568 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2569 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2570 ext4_msg(sb, KERN_ERR,
2571 "Can't support bigalloc feature without "
2572 "extents feature\n");
2573 return 0;
2574 }
2575 return 1;
2576 }
2577
2578 /*
2579 * This function is called once a day if we have errors logged
2580 * on the file system
2581 */
print_daily_error_info(unsigned long arg)2582 static void print_daily_error_info(unsigned long arg)
2583 {
2584 struct super_block *sb = (struct super_block *) arg;
2585 struct ext4_sb_info *sbi;
2586 struct ext4_super_block *es;
2587
2588 sbi = EXT4_SB(sb);
2589 es = sbi->s_es;
2590
2591 if (es->s_error_count)
2592 /* fsck newer than v1.41.13 is needed to clean this condition. */
2593 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2594 le32_to_cpu(es->s_error_count));
2595 if (es->s_first_error_time) {
2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2597 sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 (int) sizeof(es->s_first_error_func),
2599 es->s_first_error_func,
2600 le32_to_cpu(es->s_first_error_line));
2601 if (es->s_first_error_ino)
2602 printk(": inode %u",
2603 le32_to_cpu(es->s_first_error_ino));
2604 if (es->s_first_error_block)
2605 printk(": block %llu", (unsigned long long)
2606 le64_to_cpu(es->s_first_error_block));
2607 printk("\n");
2608 }
2609 if (es->s_last_error_time) {
2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2611 sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 (int) sizeof(es->s_last_error_func),
2613 es->s_last_error_func,
2614 le32_to_cpu(es->s_last_error_line));
2615 if (es->s_last_error_ino)
2616 printk(": inode %u",
2617 le32_to_cpu(es->s_last_error_ino));
2618 if (es->s_last_error_block)
2619 printk(": block %llu", (unsigned long long)
2620 le64_to_cpu(es->s_last_error_block));
2621 printk("\n");
2622 }
2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2624 }
2625
2626 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2627 static int ext4_run_li_request(struct ext4_li_request *elr)
2628 {
2629 struct ext4_group_desc *gdp = NULL;
2630 ext4_group_t group, ngroups;
2631 struct super_block *sb;
2632 unsigned long timeout = 0;
2633 int ret = 0;
2634
2635 sb = elr->lr_super;
2636 ngroups = EXT4_SB(sb)->s_groups_count;
2637
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group == ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664
2665 return ret;
2666 }
2667
2668 /*
2669 * Remove lr_request from the list_request and free the
2670 * request structure. Should be called with li_list_mtx held
2671 */
ext4_remove_li_request(struct ext4_li_request * elr)2672 static void ext4_remove_li_request(struct ext4_li_request *elr)
2673 {
2674 struct ext4_sb_info *sbi;
2675
2676 if (!elr)
2677 return;
2678
2679 sbi = elr->lr_sbi;
2680
2681 list_del(&elr->lr_request);
2682 sbi->s_li_request = NULL;
2683 kfree(elr);
2684 }
2685
ext4_unregister_li_request(struct super_block * sb)2686 static void ext4_unregister_li_request(struct super_block *sb)
2687 {
2688 mutex_lock(&ext4_li_mtx);
2689 if (!ext4_li_info) {
2690 mutex_unlock(&ext4_li_mtx);
2691 return;
2692 }
2693
2694 mutex_lock(&ext4_li_info->li_list_mtx);
2695 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2696 mutex_unlock(&ext4_li_info->li_list_mtx);
2697 mutex_unlock(&ext4_li_mtx);
2698 }
2699
2700 static struct task_struct *ext4_lazyinit_task;
2701
2702 /*
2703 * This is the function where ext4lazyinit thread lives. It walks
2704 * through the request list searching for next scheduled filesystem.
2705 * When such a fs is found, run the lazy initialization request
2706 * (ext4_rn_li_request) and keep track of the time spend in this
2707 * function. Based on that time we compute next schedule time of
2708 * the request. When walking through the list is complete, compute
2709 * next waking time and put itself into sleep.
2710 */
ext4_lazyinit_thread(void * arg)2711 static int ext4_lazyinit_thread(void *arg)
2712 {
2713 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2714 struct list_head *pos, *n;
2715 struct ext4_li_request *elr;
2716 unsigned long next_wakeup, cur;
2717
2718 BUG_ON(NULL == eli);
2719
2720 cont_thread:
2721 while (true) {
2722 next_wakeup = MAX_JIFFY_OFFSET;
2723
2724 mutex_lock(&eli->li_list_mtx);
2725 if (list_empty(&eli->li_request_list)) {
2726 mutex_unlock(&eli->li_list_mtx);
2727 goto exit_thread;
2728 }
2729
2730 list_for_each_safe(pos, n, &eli->li_request_list) {
2731 elr = list_entry(pos, struct ext4_li_request,
2732 lr_request);
2733
2734 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2735 if (ext4_run_li_request(elr) != 0) {
2736 /* error, remove the lazy_init job */
2737 ext4_remove_li_request(elr);
2738 continue;
2739 }
2740 }
2741
2742 if (time_before(elr->lr_next_sched, next_wakeup))
2743 next_wakeup = elr->lr_next_sched;
2744 }
2745 mutex_unlock(&eli->li_list_mtx);
2746
2747 try_to_freeze();
2748
2749 cur = jiffies;
2750 if ((time_after_eq(cur, next_wakeup)) ||
2751 (MAX_JIFFY_OFFSET == next_wakeup)) {
2752 cond_resched();
2753 continue;
2754 }
2755
2756 schedule_timeout_interruptible(next_wakeup - cur);
2757
2758 if (kthread_should_stop()) {
2759 ext4_clear_request_list();
2760 goto exit_thread;
2761 }
2762 }
2763
2764 exit_thread:
2765 /*
2766 * It looks like the request list is empty, but we need
2767 * to check it under the li_list_mtx lock, to prevent any
2768 * additions into it, and of course we should lock ext4_li_mtx
2769 * to atomically free the list and ext4_li_info, because at
2770 * this point another ext4 filesystem could be registering
2771 * new one.
2772 */
2773 mutex_lock(&ext4_li_mtx);
2774 mutex_lock(&eli->li_list_mtx);
2775 if (!list_empty(&eli->li_request_list)) {
2776 mutex_unlock(&eli->li_list_mtx);
2777 mutex_unlock(&ext4_li_mtx);
2778 goto cont_thread;
2779 }
2780 mutex_unlock(&eli->li_list_mtx);
2781 kfree(ext4_li_info);
2782 ext4_li_info = NULL;
2783 mutex_unlock(&ext4_li_mtx);
2784
2785 return 0;
2786 }
2787
ext4_clear_request_list(void)2788 static void ext4_clear_request_list(void)
2789 {
2790 struct list_head *pos, *n;
2791 struct ext4_li_request *elr;
2792
2793 mutex_lock(&ext4_li_info->li_list_mtx);
2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2795 elr = list_entry(pos, struct ext4_li_request,
2796 lr_request);
2797 ext4_remove_li_request(elr);
2798 }
2799 mutex_unlock(&ext4_li_info->li_list_mtx);
2800 }
2801
ext4_run_lazyinit_thread(void)2802 static int ext4_run_lazyinit_thread(void)
2803 {
2804 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2805 ext4_li_info, "ext4lazyinit");
2806 if (IS_ERR(ext4_lazyinit_task)) {
2807 int err = PTR_ERR(ext4_lazyinit_task);
2808 ext4_clear_request_list();
2809 kfree(ext4_li_info);
2810 ext4_li_info = NULL;
2811 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2812 "initialization thread\n",
2813 err);
2814 return err;
2815 }
2816 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2817 return 0;
2818 }
2819
2820 /*
2821 * Check whether it make sense to run itable init. thread or not.
2822 * If there is at least one uninitialized inode table, return
2823 * corresponding group number, else the loop goes through all
2824 * groups and return total number of groups.
2825 */
ext4_has_uninit_itable(struct super_block * sb)2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2827 {
2828 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2829 struct ext4_group_desc *gdp = NULL;
2830
2831 for (group = 0; group < ngroups; group++) {
2832 gdp = ext4_get_group_desc(sb, group, NULL);
2833 if (!gdp)
2834 continue;
2835
2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837 break;
2838 }
2839
2840 return group;
2841 }
2842
ext4_li_info_new(void)2843 static int ext4_li_info_new(void)
2844 {
2845 struct ext4_lazy_init *eli = NULL;
2846
2847 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2848 if (!eli)
2849 return -ENOMEM;
2850
2851 INIT_LIST_HEAD(&eli->li_request_list);
2852 mutex_init(&eli->li_list_mtx);
2853
2854 eli->li_state |= EXT4_LAZYINIT_QUIT;
2855
2856 ext4_li_info = eli;
2857
2858 return 0;
2859 }
2860
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2862 ext4_group_t start)
2863 {
2864 struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 struct ext4_li_request *elr;
2866 unsigned long rnd;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 get_random_bytes(&rnd, sizeof(rnd));
2882 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2883 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2884
2885 return elr;
2886 }
2887
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2888 static int ext4_register_li_request(struct super_block *sb,
2889 ext4_group_t first_not_zeroed)
2890 {
2891 struct ext4_sb_info *sbi = EXT4_SB(sb);
2892 struct ext4_li_request *elr;
2893 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2894 int ret = 0;
2895
2896 if (sbi->s_li_request != NULL) {
2897 /*
2898 * Reset timeout so it can be computed again, because
2899 * s_li_wait_mult might have changed.
2900 */
2901 sbi->s_li_request->lr_timeout = 0;
2902 return 0;
2903 }
2904
2905 if (first_not_zeroed == ngroups ||
2906 (sb->s_flags & MS_RDONLY) ||
2907 !test_opt(sb, INIT_INODE_TABLE))
2908 return 0;
2909
2910 elr = ext4_li_request_new(sb, first_not_zeroed);
2911 if (!elr)
2912 return -ENOMEM;
2913
2914 mutex_lock(&ext4_li_mtx);
2915
2916 if (NULL == ext4_li_info) {
2917 ret = ext4_li_info_new();
2918 if (ret)
2919 goto out;
2920 }
2921
2922 mutex_lock(&ext4_li_info->li_list_mtx);
2923 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2924 mutex_unlock(&ext4_li_info->li_list_mtx);
2925
2926 sbi->s_li_request = elr;
2927 /*
2928 * set elr to NULL here since it has been inserted to
2929 * the request_list and the removal and free of it is
2930 * handled by ext4_clear_request_list from now on.
2931 */
2932 elr = NULL;
2933
2934 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2935 ret = ext4_run_lazyinit_thread();
2936 if (ret)
2937 goto out;
2938 }
2939 out:
2940 mutex_unlock(&ext4_li_mtx);
2941 if (ret)
2942 kfree(elr);
2943 return ret;
2944 }
2945
2946 /*
2947 * We do not need to lock anything since this is called on
2948 * module unload.
2949 */
ext4_destroy_lazyinit_thread(void)2950 static void ext4_destroy_lazyinit_thread(void)
2951 {
2952 /*
2953 * If thread exited earlier
2954 * there's nothing to be done.
2955 */
2956 if (!ext4_li_info || !ext4_lazyinit_task)
2957 return;
2958
2959 kthread_stop(ext4_lazyinit_task);
2960 }
2961
2962 /*
2963 * Note: calculating the overhead so we can be compatible with
2964 * historical BSD practice is quite difficult in the face of
2965 * clusters/bigalloc. This is because multiple metadata blocks from
2966 * different block group can end up in the same allocation cluster.
2967 * Calculating the exact overhead in the face of clustered allocation
2968 * requires either O(all block bitmaps) in memory or O(number of block
2969 * groups**2) in time. We will still calculate the superblock for
2970 * older file systems --- and if we come across with a bigalloc file
2971 * system with zero in s_overhead_clusters the estimate will be close to
2972 * correct especially for very large cluster sizes --- but for newer
2973 * file systems, it's better to calculate this figure once at mkfs
2974 * time, and store it in the superblock. If the superblock value is
2975 * present (even for non-bigalloc file systems), we will use it.
2976 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)2977 static int count_overhead(struct super_block *sb, ext4_group_t grp,
2978 char *buf)
2979 {
2980 struct ext4_sb_info *sbi = EXT4_SB(sb);
2981 struct ext4_group_desc *gdp;
2982 ext4_fsblk_t first_block, last_block, b;
2983 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
2984 int s, j, count = 0;
2985
2986 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
2987 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
2988 sbi->s_itb_per_group + 2);
2989
2990 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
2991 (grp * EXT4_BLOCKS_PER_GROUP(sb));
2992 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
2993 for (i = 0; i < ngroups; i++) {
2994 gdp = ext4_get_group_desc(sb, i, NULL);
2995 b = ext4_block_bitmap(sb, gdp);
2996 if (b >= first_block && b <= last_block) {
2997 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2998 count++;
2999 }
3000 b = ext4_inode_bitmap(sb, gdp);
3001 if (b >= first_block && b <= last_block) {
3002 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3003 count++;
3004 }
3005 b = ext4_inode_table(sb, gdp);
3006 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3007 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3008 int c = EXT4_B2C(sbi, b - first_block);
3009 ext4_set_bit(c, buf);
3010 count++;
3011 }
3012 if (i != grp)
3013 continue;
3014 s = 0;
3015 if (ext4_bg_has_super(sb, grp)) {
3016 ext4_set_bit(s++, buf);
3017 count++;
3018 }
3019 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3020 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3021 count++;
3022 }
3023 }
3024 if (!count)
3025 return 0;
3026 return EXT4_CLUSTERS_PER_GROUP(sb) -
3027 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3028 }
3029
3030 /*
3031 * Compute the overhead and stash it in sbi->s_overhead
3032 */
ext4_calculate_overhead(struct super_block * sb)3033 int ext4_calculate_overhead(struct super_block *sb)
3034 {
3035 struct ext4_sb_info *sbi = EXT4_SB(sb);
3036 struct ext4_super_block *es = sbi->s_es;
3037 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3038 ext4_fsblk_t overhead = 0;
3039 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3040
3041 memset(buf, 0, PAGE_SIZE);
3042 if (!buf)
3043 return -ENOMEM;
3044
3045 /*
3046 * Compute the overhead (FS structures). This is constant
3047 * for a given filesystem unless the number of block groups
3048 * changes so we cache the previous value until it does.
3049 */
3050
3051 /*
3052 * All of the blocks before first_data_block are overhead
3053 */
3054 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3055
3056 /*
3057 * Add the overhead found in each block group
3058 */
3059 for (i = 0; i < ngroups; i++) {
3060 int blks;
3061
3062 blks = count_overhead(sb, i, buf);
3063 overhead += blks;
3064 if (blks)
3065 memset(buf, 0, PAGE_SIZE);
3066 cond_resched();
3067 }
3068 sbi->s_overhead = overhead;
3069 smp_wmb();
3070 free_page((unsigned long) buf);
3071 return 0;
3072 }
3073
ext4_fill_super(struct super_block * sb,void * data,int silent)3074 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3075 {
3076 char *orig_data = kstrdup(data, GFP_KERNEL);
3077 struct buffer_head *bh;
3078 struct ext4_super_block *es = NULL;
3079 struct ext4_sb_info *sbi;
3080 ext4_fsblk_t block;
3081 ext4_fsblk_t sb_block = get_sb_block(&data);
3082 ext4_fsblk_t logical_sb_block;
3083 unsigned long offset = 0;
3084 unsigned long journal_devnum = 0;
3085 unsigned long def_mount_opts;
3086 struct inode *root;
3087 char *cp;
3088 const char *descr;
3089 int ret = -ENOMEM;
3090 int blocksize, clustersize;
3091 unsigned int db_count;
3092 unsigned int i;
3093 int needs_recovery, has_huge_files, has_bigalloc;
3094 __u64 blocks_count;
3095 int err;
3096 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3097 ext4_group_t first_not_zeroed;
3098
3099 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3100 if (!sbi)
3101 goto out_free_orig;
3102
3103 sbi->s_blockgroup_lock =
3104 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3105 if (!sbi->s_blockgroup_lock) {
3106 kfree(sbi);
3107 goto out_free_orig;
3108 }
3109 sb->s_fs_info = sbi;
3110 sbi->s_mount_opt = 0;
3111 sbi->s_resuid = EXT4_DEF_RESUID;
3112 sbi->s_resgid = EXT4_DEF_RESGID;
3113 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3114 sbi->s_sb_block = sb_block;
3115 if (sb->s_bdev->bd_part)
3116 sbi->s_sectors_written_start =
3117 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3118
3119 /* Cleanup superblock name */
3120 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3121 *cp = '!';
3122
3123 ret = -EINVAL;
3124 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3125 if (!blocksize) {
3126 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3127 goto out_fail;
3128 }
3129
3130 /*
3131 * The ext4 superblock will not be buffer aligned for other than 1kB
3132 * block sizes. We need to calculate the offset from buffer start.
3133 */
3134 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3135 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3136 offset = do_div(logical_sb_block, blocksize);
3137 } else {
3138 logical_sb_block = sb_block;
3139 }
3140
3141 if (!(bh = sb_bread(sb, logical_sb_block))) {
3142 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3143 goto out_fail;
3144 }
3145 /*
3146 * Note: s_es must be initialized as soon as possible because
3147 * some ext4 macro-instructions depend on its value
3148 */
3149 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3150 sbi->s_es = es;
3151 sb->s_magic = le16_to_cpu(es->s_magic);
3152 if (sb->s_magic != EXT4_SUPER_MAGIC)
3153 goto cantfind_ext4;
3154 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3155
3156 /* Set defaults before we parse the mount options */
3157 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3158 set_opt(sb, INIT_INODE_TABLE);
3159 if (def_mount_opts & EXT4_DEFM_DEBUG)
3160 set_opt(sb, DEBUG);
3161 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3162 set_opt(sb, GRPID);
3163 if (def_mount_opts & EXT4_DEFM_UID16)
3164 set_opt(sb, NO_UID32);
3165 /* xattr user namespace & acls are now defaulted on */
3166 #ifdef CONFIG_EXT4_FS_XATTR
3167 set_opt(sb, XATTR_USER);
3168 #endif
3169 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3170 set_opt(sb, POSIX_ACL);
3171 #endif
3172 set_opt(sb, MBLK_IO_SUBMIT);
3173 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3174 set_opt(sb, JOURNAL_DATA);
3175 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3176 set_opt(sb, ORDERED_DATA);
3177 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3178 set_opt(sb, WRITEBACK_DATA);
3179
3180 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3181 set_opt(sb, ERRORS_PANIC);
3182 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3183 set_opt(sb, ERRORS_CONT);
3184 else
3185 set_opt(sb, ERRORS_RO);
3186 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3187 set_opt(sb, BLOCK_VALIDITY);
3188 if (def_mount_opts & EXT4_DEFM_DISCARD)
3189 set_opt(sb, DISCARD);
3190
3191 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3192 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3193 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3194 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3195 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3196
3197 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3198 set_opt(sb, BARRIER);
3199
3200 /*
3201 * enable delayed allocation by default
3202 * Use -o nodelalloc to turn it off
3203 */
3204 if (!IS_EXT3_SB(sb) &&
3205 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3206 set_opt(sb, DELALLOC);
3207
3208 /*
3209 * set default s_li_wait_mult for lazyinit, for the case there is
3210 * no mount option specified.
3211 */
3212 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3213
3214 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3215 &journal_devnum, &journal_ioprio, 0)) {
3216 ext4_msg(sb, KERN_WARNING,
3217 "failed to parse options in superblock: %s",
3218 sbi->s_es->s_mount_opts);
3219 }
3220 sbi->s_def_mount_opt = sbi->s_mount_opt;
3221 if (!parse_options((char *) data, sb, &journal_devnum,
3222 &journal_ioprio, 0))
3223 goto failed_mount;
3224
3225 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3226 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3227 "with data=journal disables delayed "
3228 "allocation and O_DIRECT support!\n");
3229 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3230 ext4_msg(sb, KERN_ERR, "can't mount with "
3231 "both data=journal and delalloc");
3232 goto failed_mount;
3233 }
3234 if (test_opt(sb, DIOREAD_NOLOCK)) {
3235 ext4_msg(sb, KERN_ERR, "can't mount with "
3236 "both data=journal and dioread_nolock");
3237 goto failed_mount;
3238 }
3239 if (test_opt(sb, DELALLOC))
3240 clear_opt(sb, DELALLOC);
3241 }
3242
3243 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3244 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3245
3246 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3247 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3248 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3249 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3250 ext4_msg(sb, KERN_WARNING,
3251 "feature flags set on rev 0 fs, "
3252 "running e2fsck is recommended");
3253
3254 if (IS_EXT2_SB(sb)) {
3255 if (ext2_feature_set_ok(sb))
3256 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3257 "using the ext4 subsystem");
3258 else {
3259 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3260 "to feature incompatibilities");
3261 goto failed_mount;
3262 }
3263 }
3264
3265 if (IS_EXT3_SB(sb)) {
3266 if (ext3_feature_set_ok(sb))
3267 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3268 "using the ext4 subsystem");
3269 else {
3270 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3271 "to feature incompatibilities");
3272 goto failed_mount;
3273 }
3274 }
3275
3276 /*
3277 * Check feature flags regardless of the revision level, since we
3278 * previously didn't change the revision level when setting the flags,
3279 * so there is a chance incompat flags are set on a rev 0 filesystem.
3280 */
3281 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3282 goto failed_mount;
3283
3284 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3285 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3286 blocksize > EXT4_MAX_BLOCK_SIZE) {
3287 ext4_msg(sb, KERN_ERR,
3288 "Unsupported filesystem blocksize %d", blocksize);
3289 goto failed_mount;
3290 }
3291
3292 if (sb->s_blocksize != blocksize) {
3293 /* Validate the filesystem blocksize */
3294 if (!sb_set_blocksize(sb, blocksize)) {
3295 ext4_msg(sb, KERN_ERR, "bad block size %d",
3296 blocksize);
3297 goto failed_mount;
3298 }
3299
3300 brelse(bh);
3301 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3302 offset = do_div(logical_sb_block, blocksize);
3303 bh = sb_bread(sb, logical_sb_block);
3304 if (!bh) {
3305 ext4_msg(sb, KERN_ERR,
3306 "Can't read superblock on 2nd try");
3307 goto failed_mount;
3308 }
3309 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3310 sbi->s_es = es;
3311 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3312 ext4_msg(sb, KERN_ERR,
3313 "Magic mismatch, very weird!");
3314 goto failed_mount;
3315 }
3316 }
3317
3318 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3319 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3320 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3321 has_huge_files);
3322 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3323
3324 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3325 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3326 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3327 } else {
3328 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3329 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3330 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3331 (!is_power_of_2(sbi->s_inode_size)) ||
3332 (sbi->s_inode_size > blocksize)) {
3333 ext4_msg(sb, KERN_ERR,
3334 "unsupported inode size: %d",
3335 sbi->s_inode_size);
3336 goto failed_mount;
3337 }
3338 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3339 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3340 }
3341
3342 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3343 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3344 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3345 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3346 !is_power_of_2(sbi->s_desc_size)) {
3347 ext4_msg(sb, KERN_ERR,
3348 "unsupported descriptor size %lu",
3349 sbi->s_desc_size);
3350 goto failed_mount;
3351 }
3352 } else
3353 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3354
3355 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3356 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3357 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3358 goto cantfind_ext4;
3359
3360 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3361 if (sbi->s_inodes_per_block == 0)
3362 goto cantfind_ext4;
3363 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3364 sbi->s_inodes_per_block;
3365 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3366 sbi->s_sbh = bh;
3367 sbi->s_mount_state = le16_to_cpu(es->s_state);
3368 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3369 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3370
3371 for (i = 0; i < 4; i++)
3372 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3373 sbi->s_def_hash_version = es->s_def_hash_version;
3374 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3375 i = le32_to_cpu(es->s_flags);
3376 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3377 sbi->s_hash_unsigned = 3;
3378 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3379 #ifdef __CHAR_UNSIGNED__
3380 if (!(sb->s_flags & MS_RDONLY))
3381 es->s_flags |=
3382 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3383 sbi->s_hash_unsigned = 3;
3384 #else
3385 if (!(sb->s_flags & MS_RDONLY))
3386 es->s_flags |=
3387 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3388 #endif
3389 }
3390 }
3391
3392 /* Handle clustersize */
3393 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3394 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3395 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3396 if (has_bigalloc) {
3397 if (clustersize < blocksize) {
3398 ext4_msg(sb, KERN_ERR,
3399 "cluster size (%d) smaller than "
3400 "block size (%d)", clustersize, blocksize);
3401 goto failed_mount;
3402 }
3403 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3404 le32_to_cpu(es->s_log_block_size);
3405 sbi->s_clusters_per_group =
3406 le32_to_cpu(es->s_clusters_per_group);
3407 if (sbi->s_clusters_per_group > blocksize * 8) {
3408 ext4_msg(sb, KERN_ERR,
3409 "#clusters per group too big: %lu",
3410 sbi->s_clusters_per_group);
3411 goto failed_mount;
3412 }
3413 if (sbi->s_blocks_per_group !=
3414 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3415 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3416 "clusters per group (%lu) inconsistent",
3417 sbi->s_blocks_per_group,
3418 sbi->s_clusters_per_group);
3419 goto failed_mount;
3420 }
3421 } else {
3422 if (clustersize != blocksize) {
3423 ext4_warning(sb, "fragment/cluster size (%d) != "
3424 "block size (%d)", clustersize,
3425 blocksize);
3426 clustersize = blocksize;
3427 }
3428 if (sbi->s_blocks_per_group > blocksize * 8) {
3429 ext4_msg(sb, KERN_ERR,
3430 "#blocks per group too big: %lu",
3431 sbi->s_blocks_per_group);
3432 goto failed_mount;
3433 }
3434 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3435 sbi->s_cluster_bits = 0;
3436 }
3437 sbi->s_cluster_ratio = clustersize / blocksize;
3438
3439 if (sbi->s_inodes_per_group > blocksize * 8) {
3440 ext4_msg(sb, KERN_ERR,
3441 "#inodes per group too big: %lu",
3442 sbi->s_inodes_per_group);
3443 goto failed_mount;
3444 }
3445
3446 /*
3447 * Test whether we have more sectors than will fit in sector_t,
3448 * and whether the max offset is addressable by the page cache.
3449 */
3450 err = generic_check_addressable(sb->s_blocksize_bits,
3451 ext4_blocks_count(es));
3452 if (err) {
3453 ext4_msg(sb, KERN_ERR, "filesystem"
3454 " too large to mount safely on this system");
3455 if (sizeof(sector_t) < 8)
3456 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3457 ret = err;
3458 goto failed_mount;
3459 }
3460
3461 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3462 goto cantfind_ext4;
3463
3464 /* check blocks count against device size */
3465 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3466 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3467 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3468 "exceeds size of device (%llu blocks)",
3469 ext4_blocks_count(es), blocks_count);
3470 goto failed_mount;
3471 }
3472
3473 /*
3474 * It makes no sense for the first data block to be beyond the end
3475 * of the filesystem.
3476 */
3477 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3478 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3479 "block %u is beyond end of filesystem (%llu)",
3480 le32_to_cpu(es->s_first_data_block),
3481 ext4_blocks_count(es));
3482 goto failed_mount;
3483 }
3484 blocks_count = (ext4_blocks_count(es) -
3485 le32_to_cpu(es->s_first_data_block) +
3486 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3487 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3488 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3489 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3490 "(block count %llu, first data block %u, "
3491 "blocks per group %lu)", sbi->s_groups_count,
3492 ext4_blocks_count(es),
3493 le32_to_cpu(es->s_first_data_block),
3494 EXT4_BLOCKS_PER_GROUP(sb));
3495 goto failed_mount;
3496 }
3497 sbi->s_groups_count = blocks_count;
3498 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3499 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3500 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3501 EXT4_DESC_PER_BLOCK(sb);
3502 sbi->s_group_desc = ext4_kvmalloc(db_count *
3503 sizeof(struct buffer_head *),
3504 GFP_KERNEL);
3505 if (sbi->s_group_desc == NULL) {
3506 ext4_msg(sb, KERN_ERR, "not enough memory");
3507 goto failed_mount;
3508 }
3509
3510 if (ext4_proc_root)
3511 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3512
3513 if (sbi->s_proc)
3514 proc_create_data("options", S_IRUGO, sbi->s_proc,
3515 &ext4_seq_options_fops, sb);
3516
3517 bgl_lock_init(sbi->s_blockgroup_lock);
3518
3519 for (i = 0; i < db_count; i++) {
3520 block = descriptor_loc(sb, logical_sb_block, i);
3521 sbi->s_group_desc[i] = sb_bread(sb, block);
3522 if (!sbi->s_group_desc[i]) {
3523 ext4_msg(sb, KERN_ERR,
3524 "can't read group descriptor %d", i);
3525 db_count = i;
3526 goto failed_mount2;
3527 }
3528 }
3529 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3530 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3531 goto failed_mount2;
3532 }
3533 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3534 if (!ext4_fill_flex_info(sb)) {
3535 ext4_msg(sb, KERN_ERR,
3536 "unable to initialize "
3537 "flex_bg meta info!");
3538 goto failed_mount2;
3539 }
3540
3541 sbi->s_gdb_count = db_count;
3542 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3543 spin_lock_init(&sbi->s_next_gen_lock);
3544
3545 init_timer(&sbi->s_err_report);
3546 sbi->s_err_report.function = print_daily_error_info;
3547 sbi->s_err_report.data = (unsigned long) sb;
3548
3549 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3550 ext4_count_free_clusters(sb));
3551 if (!err) {
3552 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3553 ext4_count_free_inodes(sb));
3554 }
3555 if (!err) {
3556 err = percpu_counter_init(&sbi->s_dirs_counter,
3557 ext4_count_dirs(sb));
3558 }
3559 if (!err) {
3560 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3561 }
3562 if (err) {
3563 ext4_msg(sb, KERN_ERR, "insufficient memory");
3564 goto failed_mount3;
3565 }
3566
3567 sbi->s_stripe = ext4_get_stripe_size(sbi);
3568 sbi->s_max_writeback_mb_bump = 128;
3569
3570 /*
3571 * set up enough so that it can read an inode
3572 */
3573 if (!test_opt(sb, NOLOAD) &&
3574 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3575 sb->s_op = &ext4_sops;
3576 else
3577 sb->s_op = &ext4_nojournal_sops;
3578 sb->s_export_op = &ext4_export_ops;
3579 sb->s_xattr = ext4_xattr_handlers;
3580 #ifdef CONFIG_QUOTA
3581 sb->s_qcop = &ext4_qctl_operations;
3582 sb->dq_op = &ext4_quota_operations;
3583 #endif
3584 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3585
3586 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3587 mutex_init(&sbi->s_orphan_lock);
3588 sbi->s_resize_flags = 0;
3589
3590 sb->s_root = NULL;
3591
3592 needs_recovery = (es->s_last_orphan != 0 ||
3593 EXT4_HAS_INCOMPAT_FEATURE(sb,
3594 EXT4_FEATURE_INCOMPAT_RECOVER));
3595
3596 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3597 !(sb->s_flags & MS_RDONLY))
3598 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3599 goto failed_mount3;
3600
3601 /*
3602 * The first inode we look at is the journal inode. Don't try
3603 * root first: it may be modified in the journal!
3604 */
3605 if (!test_opt(sb, NOLOAD) &&
3606 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3607 if (ext4_load_journal(sb, es, journal_devnum))
3608 goto failed_mount3;
3609 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3610 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3611 ext4_msg(sb, KERN_ERR, "required journal recovery "
3612 "suppressed and not mounted read-only");
3613 goto failed_mount_wq;
3614 } else {
3615 clear_opt(sb, DATA_FLAGS);
3616 sbi->s_journal = NULL;
3617 needs_recovery = 0;
3618 goto no_journal;
3619 }
3620
3621 if (ext4_blocks_count(es) > 0xffffffffULL &&
3622 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3623 JBD2_FEATURE_INCOMPAT_64BIT)) {
3624 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3625 goto failed_mount_wq;
3626 }
3627
3628 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3629 jbd2_journal_set_features(sbi->s_journal,
3630 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3631 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3632 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3633 jbd2_journal_set_features(sbi->s_journal,
3634 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3635 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3636 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3637 } else {
3638 jbd2_journal_clear_features(sbi->s_journal,
3639 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3640 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3641 }
3642
3643 /* We have now updated the journal if required, so we can
3644 * validate the data journaling mode. */
3645 switch (test_opt(sb, DATA_FLAGS)) {
3646 case 0:
3647 /* No mode set, assume a default based on the journal
3648 * capabilities: ORDERED_DATA if the journal can
3649 * cope, else JOURNAL_DATA
3650 */
3651 if (jbd2_journal_check_available_features
3652 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3653 set_opt(sb, ORDERED_DATA);
3654 else
3655 set_opt(sb, JOURNAL_DATA);
3656 break;
3657
3658 case EXT4_MOUNT_ORDERED_DATA:
3659 case EXT4_MOUNT_WRITEBACK_DATA:
3660 if (!jbd2_journal_check_available_features
3661 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3662 ext4_msg(sb, KERN_ERR, "Journal does not support "
3663 "requested data journaling mode");
3664 goto failed_mount_wq;
3665 }
3666 default:
3667 break;
3668 }
3669 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3670
3671 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3672
3673 /*
3674 * The journal may have updated the bg summary counts, so we
3675 * need to update the global counters.
3676 */
3677 percpu_counter_set(&sbi->s_freeclusters_counter,
3678 ext4_count_free_clusters(sb));
3679 percpu_counter_set(&sbi->s_freeinodes_counter,
3680 ext4_count_free_inodes(sb));
3681 percpu_counter_set(&sbi->s_dirs_counter,
3682 ext4_count_dirs(sb));
3683 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3684
3685 no_journal:
3686 /*
3687 * Get the # of file system overhead blocks from the
3688 * superblock if present.
3689 */
3690 if (es->s_overhead_clusters)
3691 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3692 else {
3693 ret = ext4_calculate_overhead(sb);
3694 if (ret)
3695 goto failed_mount_wq;
3696 }
3697
3698 /*
3699 * The maximum number of concurrent works can be high and
3700 * concurrency isn't really necessary. Limit it to 1.
3701 */
3702 EXT4_SB(sb)->dio_unwritten_wq =
3703 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3704 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3705 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3706 goto failed_mount_wq;
3707 }
3708
3709 /*
3710 * The jbd2_journal_load will have done any necessary log recovery,
3711 * so we can safely mount the rest of the filesystem now.
3712 */
3713
3714 root = ext4_iget(sb, EXT4_ROOT_INO);
3715 if (IS_ERR(root)) {
3716 ext4_msg(sb, KERN_ERR, "get root inode failed");
3717 ret = PTR_ERR(root);
3718 root = NULL;
3719 goto failed_mount4;
3720 }
3721 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3722 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3723 iput(root);
3724 goto failed_mount4;
3725 }
3726 sb->s_root = d_make_root(root);
3727 if (!sb->s_root) {
3728 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3729 ret = -ENOMEM;
3730 goto failed_mount4;
3731 }
3732
3733 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3734 sb->s_flags |= MS_RDONLY;
3735
3736 /* determine the minimum size of new large inodes, if present */
3737 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3738 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3739 EXT4_GOOD_OLD_INODE_SIZE;
3740 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3741 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3742 if (sbi->s_want_extra_isize <
3743 le16_to_cpu(es->s_want_extra_isize))
3744 sbi->s_want_extra_isize =
3745 le16_to_cpu(es->s_want_extra_isize);
3746 if (sbi->s_want_extra_isize <
3747 le16_to_cpu(es->s_min_extra_isize))
3748 sbi->s_want_extra_isize =
3749 le16_to_cpu(es->s_min_extra_isize);
3750 }
3751 }
3752 /* Check if enough inode space is available */
3753 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3754 sbi->s_inode_size) {
3755 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3756 EXT4_GOOD_OLD_INODE_SIZE;
3757 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3758 "available");
3759 }
3760
3761 err = ext4_setup_system_zone(sb);
3762 if (err) {
3763 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3764 "zone (%d)", err);
3765 goto failed_mount4a;
3766 }
3767
3768 ext4_ext_init(sb);
3769 err = ext4_mb_init(sb, needs_recovery);
3770 if (err) {
3771 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3772 err);
3773 goto failed_mount5;
3774 }
3775
3776 err = ext4_register_li_request(sb, first_not_zeroed);
3777 if (err)
3778 goto failed_mount6;
3779
3780 sbi->s_kobj.kset = ext4_kset;
3781 init_completion(&sbi->s_kobj_unregister);
3782 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3783 "%s", sb->s_id);
3784 if (err)
3785 goto failed_mount7;
3786
3787 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3788 ext4_orphan_cleanup(sb, es);
3789 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3790 if (needs_recovery) {
3791 ext4_msg(sb, KERN_INFO, "recovery complete");
3792 ext4_mark_recovery_complete(sb, es);
3793 }
3794 if (EXT4_SB(sb)->s_journal) {
3795 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3796 descr = " journalled data mode";
3797 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3798 descr = " ordered data mode";
3799 else
3800 descr = " writeback data mode";
3801 } else
3802 descr = "out journal";
3803
3804 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3805 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3806 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3807
3808 if (es->s_error_count)
3809 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3810
3811 kfree(orig_data);
3812 return 0;
3813
3814 cantfind_ext4:
3815 if (!silent)
3816 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3817 goto failed_mount;
3818
3819 failed_mount7:
3820 ext4_unregister_li_request(sb);
3821 failed_mount6:
3822 ext4_mb_release(sb);
3823 failed_mount5:
3824 ext4_ext_release(sb);
3825 ext4_release_system_zone(sb);
3826 failed_mount4a:
3827 dput(sb->s_root);
3828 sb->s_root = NULL;
3829 failed_mount4:
3830 ext4_msg(sb, KERN_ERR, "mount failed");
3831 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3832 failed_mount_wq:
3833 if (sbi->s_journal) {
3834 jbd2_journal_destroy(sbi->s_journal);
3835 sbi->s_journal = NULL;
3836 }
3837 failed_mount3:
3838 del_timer(&sbi->s_err_report);
3839 if (sbi->s_flex_groups)
3840 ext4_kvfree(sbi->s_flex_groups);
3841 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3842 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3843 percpu_counter_destroy(&sbi->s_dirs_counter);
3844 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3845 if (sbi->s_mmp_tsk)
3846 kthread_stop(sbi->s_mmp_tsk);
3847 failed_mount2:
3848 for (i = 0; i < db_count; i++)
3849 brelse(sbi->s_group_desc[i]);
3850 ext4_kvfree(sbi->s_group_desc);
3851 failed_mount:
3852 if (sbi->s_proc) {
3853 remove_proc_entry("options", sbi->s_proc);
3854 remove_proc_entry(sb->s_id, ext4_proc_root);
3855 }
3856 #ifdef CONFIG_QUOTA
3857 for (i = 0; i < MAXQUOTAS; i++)
3858 kfree(sbi->s_qf_names[i]);
3859 #endif
3860 ext4_blkdev_remove(sbi);
3861 brelse(bh);
3862 out_fail:
3863 sb->s_fs_info = NULL;
3864 kfree(sbi->s_blockgroup_lock);
3865 kfree(sbi);
3866 out_free_orig:
3867 kfree(orig_data);
3868 return ret;
3869 }
3870
3871 /*
3872 * Setup any per-fs journal parameters now. We'll do this both on
3873 * initial mount, once the journal has been initialised but before we've
3874 * done any recovery; and again on any subsequent remount.
3875 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)3876 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3877 {
3878 struct ext4_sb_info *sbi = EXT4_SB(sb);
3879
3880 journal->j_commit_interval = sbi->s_commit_interval;
3881 journal->j_min_batch_time = sbi->s_min_batch_time;
3882 journal->j_max_batch_time = sbi->s_max_batch_time;
3883
3884 write_lock(&journal->j_state_lock);
3885 if (test_opt(sb, BARRIER))
3886 journal->j_flags |= JBD2_BARRIER;
3887 else
3888 journal->j_flags &= ~JBD2_BARRIER;
3889 if (test_opt(sb, DATA_ERR_ABORT))
3890 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3891 else
3892 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3893 write_unlock(&journal->j_state_lock);
3894 }
3895
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)3896 static journal_t *ext4_get_journal(struct super_block *sb,
3897 unsigned int journal_inum)
3898 {
3899 struct inode *journal_inode;
3900 journal_t *journal;
3901
3902 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3903
3904 /* First, test for the existence of a valid inode on disk. Bad
3905 * things happen if we iget() an unused inode, as the subsequent
3906 * iput() will try to delete it. */
3907
3908 journal_inode = ext4_iget(sb, journal_inum);
3909 if (IS_ERR(journal_inode)) {
3910 ext4_msg(sb, KERN_ERR, "no journal found");
3911 return NULL;
3912 }
3913 if (!journal_inode->i_nlink) {
3914 make_bad_inode(journal_inode);
3915 iput(journal_inode);
3916 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3917 return NULL;
3918 }
3919
3920 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3921 journal_inode, journal_inode->i_size);
3922 if (!S_ISREG(journal_inode->i_mode)) {
3923 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3924 iput(journal_inode);
3925 return NULL;
3926 }
3927
3928 journal = jbd2_journal_init_inode(journal_inode);
3929 if (!journal) {
3930 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3931 iput(journal_inode);
3932 return NULL;
3933 }
3934 journal->j_private = sb;
3935 ext4_init_journal_params(sb, journal);
3936 return journal;
3937 }
3938
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)3939 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3940 dev_t j_dev)
3941 {
3942 struct buffer_head *bh;
3943 journal_t *journal;
3944 ext4_fsblk_t start;
3945 ext4_fsblk_t len;
3946 int hblock, blocksize;
3947 ext4_fsblk_t sb_block;
3948 unsigned long offset;
3949 struct ext4_super_block *es;
3950 struct block_device *bdev;
3951
3952 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3953
3954 bdev = ext4_blkdev_get(j_dev, sb);
3955 if (bdev == NULL)
3956 return NULL;
3957
3958 blocksize = sb->s_blocksize;
3959 hblock = bdev_logical_block_size(bdev);
3960 if (blocksize < hblock) {
3961 ext4_msg(sb, KERN_ERR,
3962 "blocksize too small for journal device");
3963 goto out_bdev;
3964 }
3965
3966 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3967 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3968 set_blocksize(bdev, blocksize);
3969 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3970 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3971 "external journal");
3972 goto out_bdev;
3973 }
3974
3975 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3976 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3977 !(le32_to_cpu(es->s_feature_incompat) &
3978 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3979 ext4_msg(sb, KERN_ERR, "external journal has "
3980 "bad superblock");
3981 brelse(bh);
3982 goto out_bdev;
3983 }
3984
3985 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3986 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3987 brelse(bh);
3988 goto out_bdev;
3989 }
3990
3991 len = ext4_blocks_count(es);
3992 start = sb_block + 1;
3993 brelse(bh); /* we're done with the superblock */
3994
3995 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3996 start, len, blocksize);
3997 if (!journal) {
3998 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3999 goto out_bdev;
4000 }
4001 journal->j_private = sb;
4002 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4003 wait_on_buffer(journal->j_sb_buffer);
4004 if (!buffer_uptodate(journal->j_sb_buffer)) {
4005 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4006 goto out_journal;
4007 }
4008 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4009 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4010 "user (unsupported) - %d",
4011 be32_to_cpu(journal->j_superblock->s_nr_users));
4012 goto out_journal;
4013 }
4014 EXT4_SB(sb)->journal_bdev = bdev;
4015 ext4_init_journal_params(sb, journal);
4016 return journal;
4017
4018 out_journal:
4019 jbd2_journal_destroy(journal);
4020 out_bdev:
4021 ext4_blkdev_put(bdev);
4022 return NULL;
4023 }
4024
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4025 static int ext4_load_journal(struct super_block *sb,
4026 struct ext4_super_block *es,
4027 unsigned long journal_devnum)
4028 {
4029 journal_t *journal;
4030 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4031 dev_t journal_dev;
4032 int err = 0;
4033 int really_read_only;
4034
4035 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4036
4037 if (journal_devnum &&
4038 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4039 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4040 "numbers have changed");
4041 journal_dev = new_decode_dev(journal_devnum);
4042 } else
4043 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4044
4045 really_read_only = bdev_read_only(sb->s_bdev);
4046
4047 /*
4048 * Are we loading a blank journal or performing recovery after a
4049 * crash? For recovery, we need to check in advance whether we
4050 * can get read-write access to the device.
4051 */
4052 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4053 if (sb->s_flags & MS_RDONLY) {
4054 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4055 "required on readonly filesystem");
4056 if (really_read_only) {
4057 ext4_msg(sb, KERN_ERR, "write access "
4058 "unavailable, cannot proceed");
4059 return -EROFS;
4060 }
4061 ext4_msg(sb, KERN_INFO, "write access will "
4062 "be enabled during recovery");
4063 }
4064 }
4065
4066 if (journal_inum && journal_dev) {
4067 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4068 "and inode journals!");
4069 return -EINVAL;
4070 }
4071
4072 if (journal_inum) {
4073 if (!(journal = ext4_get_journal(sb, journal_inum)))
4074 return -EINVAL;
4075 } else {
4076 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4077 return -EINVAL;
4078 }
4079
4080 if (!(journal->j_flags & JBD2_BARRIER))
4081 ext4_msg(sb, KERN_INFO, "barriers disabled");
4082
4083 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4084 err = jbd2_journal_wipe(journal, !really_read_only);
4085 if (!err) {
4086 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4087 if (save)
4088 memcpy(save, ((char *) es) +
4089 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4090 err = jbd2_journal_load(journal);
4091 if (save)
4092 memcpy(((char *) es) + EXT4_S_ERR_START,
4093 save, EXT4_S_ERR_LEN);
4094 kfree(save);
4095 }
4096
4097 if (err) {
4098 ext4_msg(sb, KERN_ERR, "error loading journal");
4099 jbd2_journal_destroy(journal);
4100 return err;
4101 }
4102
4103 EXT4_SB(sb)->s_journal = journal;
4104 ext4_clear_journal_err(sb, es);
4105
4106 if (!really_read_only && journal_devnum &&
4107 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4108 es->s_journal_dev = cpu_to_le32(journal_devnum);
4109
4110 /* Make sure we flush the recovery flag to disk. */
4111 ext4_commit_super(sb, 1);
4112 }
4113
4114 return 0;
4115 }
4116
ext4_commit_super(struct super_block * sb,int sync)4117 static int ext4_commit_super(struct super_block *sb, int sync)
4118 {
4119 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4120 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4121 int error = 0;
4122
4123 if (!sbh || block_device_ejected(sb))
4124 return error;
4125 if (buffer_write_io_error(sbh)) {
4126 /*
4127 * Oh, dear. A previous attempt to write the
4128 * superblock failed. This could happen because the
4129 * USB device was yanked out. Or it could happen to
4130 * be a transient write error and maybe the block will
4131 * be remapped. Nothing we can do but to retry the
4132 * write and hope for the best.
4133 */
4134 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4135 "superblock detected");
4136 clear_buffer_write_io_error(sbh);
4137 set_buffer_uptodate(sbh);
4138 }
4139 /*
4140 * If the file system is mounted read-only, don't update the
4141 * superblock write time. This avoids updating the superblock
4142 * write time when we are mounting the root file system
4143 * read/only but we need to replay the journal; at that point,
4144 * for people who are east of GMT and who make their clock
4145 * tick in localtime for Windows bug-for-bug compatibility,
4146 * the clock is set in the future, and this will cause e2fsck
4147 * to complain and force a full file system check.
4148 */
4149 if (!(sb->s_flags & MS_RDONLY))
4150 es->s_wtime = cpu_to_le32(get_seconds());
4151 if (sb->s_bdev->bd_part)
4152 es->s_kbytes_written =
4153 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4154 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4155 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4156 else
4157 es->s_kbytes_written =
4158 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4159 ext4_free_blocks_count_set(es,
4160 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4161 &EXT4_SB(sb)->s_freeclusters_counter)));
4162 es->s_free_inodes_count =
4163 cpu_to_le32(percpu_counter_sum_positive(
4164 &EXT4_SB(sb)->s_freeinodes_counter));
4165 sb->s_dirt = 0;
4166 BUFFER_TRACE(sbh, "marking dirty");
4167 mark_buffer_dirty(sbh);
4168 if (sync) {
4169 error = sync_dirty_buffer(sbh);
4170 if (error)
4171 return error;
4172
4173 error = buffer_write_io_error(sbh);
4174 if (error) {
4175 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4176 "superblock");
4177 clear_buffer_write_io_error(sbh);
4178 set_buffer_uptodate(sbh);
4179 }
4180 }
4181 return error;
4182 }
4183
4184 /*
4185 * Have we just finished recovery? If so, and if we are mounting (or
4186 * remounting) the filesystem readonly, then we will end up with a
4187 * consistent fs on disk. Record that fact.
4188 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4189 static void ext4_mark_recovery_complete(struct super_block *sb,
4190 struct ext4_super_block *es)
4191 {
4192 journal_t *journal = EXT4_SB(sb)->s_journal;
4193
4194 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4195 BUG_ON(journal != NULL);
4196 return;
4197 }
4198 jbd2_journal_lock_updates(journal);
4199 if (jbd2_journal_flush(journal) < 0)
4200 goto out;
4201
4202 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4203 sb->s_flags & MS_RDONLY) {
4204 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4205 ext4_commit_super(sb, 1);
4206 }
4207
4208 out:
4209 jbd2_journal_unlock_updates(journal);
4210 }
4211
4212 /*
4213 * If we are mounting (or read-write remounting) a filesystem whose journal
4214 * has recorded an error from a previous lifetime, move that error to the
4215 * main filesystem now.
4216 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4217 static void ext4_clear_journal_err(struct super_block *sb,
4218 struct ext4_super_block *es)
4219 {
4220 journal_t *journal;
4221 int j_errno;
4222 const char *errstr;
4223
4224 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4225
4226 journal = EXT4_SB(sb)->s_journal;
4227
4228 /*
4229 * Now check for any error status which may have been recorded in the
4230 * journal by a prior ext4_error() or ext4_abort()
4231 */
4232
4233 j_errno = jbd2_journal_errno(journal);
4234 if (j_errno) {
4235 char nbuf[16];
4236
4237 errstr = ext4_decode_error(sb, j_errno, nbuf);
4238 ext4_warning(sb, "Filesystem error recorded "
4239 "from previous mount: %s", errstr);
4240 ext4_warning(sb, "Marking fs in need of filesystem check.");
4241
4242 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4243 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4244 ext4_commit_super(sb, 1);
4245
4246 jbd2_journal_clear_err(journal);
4247 jbd2_journal_update_sb_errno(journal);
4248 }
4249 }
4250
4251 /*
4252 * Force the running and committing transactions to commit,
4253 * and wait on the commit.
4254 */
ext4_force_commit(struct super_block * sb)4255 int ext4_force_commit(struct super_block *sb)
4256 {
4257 journal_t *journal;
4258 int ret = 0;
4259
4260 if (sb->s_flags & MS_RDONLY)
4261 return 0;
4262
4263 journal = EXT4_SB(sb)->s_journal;
4264 if (journal) {
4265 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4266 ret = ext4_journal_force_commit(journal);
4267 }
4268
4269 return ret;
4270 }
4271
ext4_write_super(struct super_block * sb)4272 static void ext4_write_super(struct super_block *sb)
4273 {
4274 lock_super(sb);
4275 ext4_commit_super(sb, 1);
4276 unlock_super(sb);
4277 }
4278
ext4_sync_fs(struct super_block * sb,int wait)4279 static int ext4_sync_fs(struct super_block *sb, int wait)
4280 {
4281 int ret = 0;
4282 tid_t target;
4283 struct ext4_sb_info *sbi = EXT4_SB(sb);
4284
4285 trace_ext4_sync_fs(sb, wait);
4286 flush_workqueue(sbi->dio_unwritten_wq);
4287 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4288 if (wait)
4289 jbd2_log_wait_commit(sbi->s_journal, target);
4290 }
4291 return ret;
4292 }
4293
4294 /*
4295 * LVM calls this function before a (read-only) snapshot is created. This
4296 * gives us a chance to flush the journal completely and mark the fs clean.
4297 *
4298 * Note that only this function cannot bring a filesystem to be in a clean
4299 * state independently, because ext4 prevents a new handle from being started
4300 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4301 * the upper layer.
4302 */
ext4_freeze(struct super_block * sb)4303 static int ext4_freeze(struct super_block *sb)
4304 {
4305 int error = 0;
4306 journal_t *journal;
4307
4308 if (sb->s_flags & MS_RDONLY)
4309 return 0;
4310
4311 journal = EXT4_SB(sb)->s_journal;
4312
4313 /* Now we set up the journal barrier. */
4314 jbd2_journal_lock_updates(journal);
4315
4316 /*
4317 * Don't clear the needs_recovery flag if we failed to flush
4318 * the journal.
4319 */
4320 error = jbd2_journal_flush(journal);
4321 if (error < 0)
4322 goto out;
4323
4324 /* Journal blocked and flushed, clear needs_recovery flag. */
4325 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4326 error = ext4_commit_super(sb, 1);
4327 out:
4328 /* we rely on s_frozen to stop further updates */
4329 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4330 return error;
4331 }
4332
4333 /*
4334 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4335 * flag here, even though the filesystem is not technically dirty yet.
4336 */
ext4_unfreeze(struct super_block * sb)4337 static int ext4_unfreeze(struct super_block *sb)
4338 {
4339 if (sb->s_flags & MS_RDONLY)
4340 return 0;
4341
4342 lock_super(sb);
4343 /* Reset the needs_recovery flag before the fs is unlocked. */
4344 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4345 ext4_commit_super(sb, 1);
4346 unlock_super(sb);
4347 return 0;
4348 }
4349
4350 /*
4351 * Structure to save mount options for ext4_remount's benefit
4352 */
4353 struct ext4_mount_options {
4354 unsigned long s_mount_opt;
4355 unsigned long s_mount_opt2;
4356 uid_t s_resuid;
4357 gid_t s_resgid;
4358 unsigned long s_commit_interval;
4359 u32 s_min_batch_time, s_max_batch_time;
4360 #ifdef CONFIG_QUOTA
4361 int s_jquota_fmt;
4362 char *s_qf_names[MAXQUOTAS];
4363 #endif
4364 };
4365
ext4_remount(struct super_block * sb,int * flags,char * data)4366 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4367 {
4368 struct ext4_super_block *es;
4369 struct ext4_sb_info *sbi = EXT4_SB(sb);
4370 unsigned long old_sb_flags;
4371 struct ext4_mount_options old_opts;
4372 int enable_quota = 0;
4373 ext4_group_t g;
4374 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4375 int err = 0;
4376 #ifdef CONFIG_QUOTA
4377 int i;
4378 #endif
4379 char *orig_data = kstrdup(data, GFP_KERNEL);
4380
4381 /* Store the original options */
4382 lock_super(sb);
4383 old_sb_flags = sb->s_flags;
4384 old_opts.s_mount_opt = sbi->s_mount_opt;
4385 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4386 old_opts.s_resuid = sbi->s_resuid;
4387 old_opts.s_resgid = sbi->s_resgid;
4388 old_opts.s_commit_interval = sbi->s_commit_interval;
4389 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4390 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4391 #ifdef CONFIG_QUOTA
4392 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4393 for (i = 0; i < MAXQUOTAS; i++)
4394 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4395 #endif
4396 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4397 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4398
4399 /*
4400 * Allow the "check" option to be passed as a remount option.
4401 */
4402 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4403 err = -EINVAL;
4404 goto restore_opts;
4405 }
4406
4407 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4408 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4409 ext4_msg(sb, KERN_ERR, "can't mount with "
4410 "both data=journal and delalloc");
4411 err = -EINVAL;
4412 goto restore_opts;
4413 }
4414 if (test_opt(sb, DIOREAD_NOLOCK)) {
4415 ext4_msg(sb, KERN_ERR, "can't mount with "
4416 "both data=journal and dioread_nolock");
4417 err = -EINVAL;
4418 goto restore_opts;
4419 }
4420 }
4421
4422 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4423 ext4_abort(sb, "Abort forced by user");
4424
4425 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4426 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4427
4428 es = sbi->s_es;
4429
4430 if (sbi->s_journal) {
4431 ext4_init_journal_params(sb, sbi->s_journal);
4432 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4433 }
4434
4435 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4436 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4437 err = -EROFS;
4438 goto restore_opts;
4439 }
4440
4441 if (*flags & MS_RDONLY) {
4442 err = dquot_suspend(sb, -1);
4443 if (err < 0)
4444 goto restore_opts;
4445
4446 /*
4447 * First of all, the unconditional stuff we have to do
4448 * to disable replay of the journal when we next remount
4449 */
4450 sb->s_flags |= MS_RDONLY;
4451
4452 /*
4453 * OK, test if we are remounting a valid rw partition
4454 * readonly, and if so set the rdonly flag and then
4455 * mark the partition as valid again.
4456 */
4457 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4458 (sbi->s_mount_state & EXT4_VALID_FS))
4459 es->s_state = cpu_to_le16(sbi->s_mount_state);
4460
4461 if (sbi->s_journal)
4462 ext4_mark_recovery_complete(sb, es);
4463 } else {
4464 /* Make sure we can mount this feature set readwrite */
4465 if (!ext4_feature_set_ok(sb, 0)) {
4466 err = -EROFS;
4467 goto restore_opts;
4468 }
4469 /*
4470 * Make sure the group descriptor checksums
4471 * are sane. If they aren't, refuse to remount r/w.
4472 */
4473 for (g = 0; g < sbi->s_groups_count; g++) {
4474 struct ext4_group_desc *gdp =
4475 ext4_get_group_desc(sb, g, NULL);
4476
4477 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4478 ext4_msg(sb, KERN_ERR,
4479 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4480 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4481 le16_to_cpu(gdp->bg_checksum));
4482 err = -EINVAL;
4483 goto restore_opts;
4484 }
4485 }
4486
4487 /*
4488 * If we have an unprocessed orphan list hanging
4489 * around from a previously readonly bdev mount,
4490 * require a full umount/remount for now.
4491 */
4492 if (es->s_last_orphan) {
4493 ext4_msg(sb, KERN_WARNING, "Couldn't "
4494 "remount RDWR because of unprocessed "
4495 "orphan inode list. Please "
4496 "umount/remount instead");
4497 err = -EINVAL;
4498 goto restore_opts;
4499 }
4500
4501 /*
4502 * Mounting a RDONLY partition read-write, so reread
4503 * and store the current valid flag. (It may have
4504 * been changed by e2fsck since we originally mounted
4505 * the partition.)
4506 */
4507 if (sbi->s_journal)
4508 ext4_clear_journal_err(sb, es);
4509 sbi->s_mount_state = le16_to_cpu(es->s_state);
4510 if (!ext4_setup_super(sb, es, 0))
4511 sb->s_flags &= ~MS_RDONLY;
4512 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4513 EXT4_FEATURE_INCOMPAT_MMP))
4514 if (ext4_multi_mount_protect(sb,
4515 le64_to_cpu(es->s_mmp_block))) {
4516 err = -EROFS;
4517 goto restore_opts;
4518 }
4519 enable_quota = 1;
4520 }
4521 }
4522
4523 /*
4524 * Reinitialize lazy itable initialization thread based on
4525 * current settings
4526 */
4527 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4528 ext4_unregister_li_request(sb);
4529 else {
4530 ext4_group_t first_not_zeroed;
4531 first_not_zeroed = ext4_has_uninit_itable(sb);
4532 ext4_register_li_request(sb, first_not_zeroed);
4533 }
4534
4535 ext4_setup_system_zone(sb);
4536 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4537 ext4_commit_super(sb, 1);
4538
4539 #ifdef CONFIG_QUOTA
4540 /* Release old quota file names */
4541 for (i = 0; i < MAXQUOTAS; i++)
4542 if (old_opts.s_qf_names[i] &&
4543 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4544 kfree(old_opts.s_qf_names[i]);
4545 #endif
4546 unlock_super(sb);
4547 if (enable_quota)
4548 dquot_resume(sb, -1);
4549
4550 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4551 kfree(orig_data);
4552 return 0;
4553
4554 restore_opts:
4555 sb->s_flags = old_sb_flags;
4556 sbi->s_mount_opt = old_opts.s_mount_opt;
4557 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4558 sbi->s_resuid = old_opts.s_resuid;
4559 sbi->s_resgid = old_opts.s_resgid;
4560 sbi->s_commit_interval = old_opts.s_commit_interval;
4561 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4562 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4563 #ifdef CONFIG_QUOTA
4564 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4565 for (i = 0; i < MAXQUOTAS; i++) {
4566 if (sbi->s_qf_names[i] &&
4567 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4568 kfree(sbi->s_qf_names[i]);
4569 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4570 }
4571 #endif
4572 unlock_super(sb);
4573 kfree(orig_data);
4574 return err;
4575 }
4576
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4577 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4578 {
4579 struct super_block *sb = dentry->d_sb;
4580 struct ext4_sb_info *sbi = EXT4_SB(sb);
4581 struct ext4_super_block *es = sbi->s_es;
4582 ext4_fsblk_t overhead = 0;
4583 u64 fsid;
4584 s64 bfree;
4585
4586 if (!test_opt(sb, MINIX_DF))
4587 overhead = sbi->s_overhead;
4588
4589 buf->f_type = EXT4_SUPER_MAGIC;
4590 buf->f_bsize = sb->s_blocksize;
4591 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4592 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4593 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4594 /* prevent underflow in case that few free space is available */
4595 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4596 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4597 if (buf->f_bfree < ext4_r_blocks_count(es))
4598 buf->f_bavail = 0;
4599 buf->f_files = le32_to_cpu(es->s_inodes_count);
4600 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4601 buf->f_namelen = EXT4_NAME_LEN;
4602 fsid = le64_to_cpup((void *)es->s_uuid) ^
4603 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4604 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4605 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4606
4607 return 0;
4608 }
4609
4610 /* Helper function for writing quotas on sync - we need to start transaction
4611 * before quota file is locked for write. Otherwise the are possible deadlocks:
4612 * Process 1 Process 2
4613 * ext4_create() quota_sync()
4614 * jbd2_journal_start() write_dquot()
4615 * dquot_initialize() down(dqio_mutex)
4616 * down(dqio_mutex) jbd2_journal_start()
4617 *
4618 */
4619
4620 #ifdef CONFIG_QUOTA
4621
dquot_to_inode(struct dquot * dquot)4622 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4623 {
4624 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4625 }
4626
ext4_write_dquot(struct dquot * dquot)4627 static int ext4_write_dquot(struct dquot *dquot)
4628 {
4629 int ret, err;
4630 handle_t *handle;
4631 struct inode *inode;
4632
4633 inode = dquot_to_inode(dquot);
4634 handle = ext4_journal_start(inode,
4635 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4636 if (IS_ERR(handle))
4637 return PTR_ERR(handle);
4638 ret = dquot_commit(dquot);
4639 err = ext4_journal_stop(handle);
4640 if (!ret)
4641 ret = err;
4642 return ret;
4643 }
4644
ext4_acquire_dquot(struct dquot * dquot)4645 static int ext4_acquire_dquot(struct dquot *dquot)
4646 {
4647 int ret, err;
4648 handle_t *handle;
4649
4650 handle = ext4_journal_start(dquot_to_inode(dquot),
4651 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4652 if (IS_ERR(handle))
4653 return PTR_ERR(handle);
4654 ret = dquot_acquire(dquot);
4655 err = ext4_journal_stop(handle);
4656 if (!ret)
4657 ret = err;
4658 return ret;
4659 }
4660
ext4_release_dquot(struct dquot * dquot)4661 static int ext4_release_dquot(struct dquot *dquot)
4662 {
4663 int ret, err;
4664 handle_t *handle;
4665
4666 handle = ext4_journal_start(dquot_to_inode(dquot),
4667 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4668 if (IS_ERR(handle)) {
4669 /* Release dquot anyway to avoid endless cycle in dqput() */
4670 dquot_release(dquot);
4671 return PTR_ERR(handle);
4672 }
4673 ret = dquot_release(dquot);
4674 err = ext4_journal_stop(handle);
4675 if (!ret)
4676 ret = err;
4677 return ret;
4678 }
4679
ext4_mark_dquot_dirty(struct dquot * dquot)4680 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4681 {
4682 /* Are we journaling quotas? */
4683 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4684 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4685 dquot_mark_dquot_dirty(dquot);
4686 return ext4_write_dquot(dquot);
4687 } else {
4688 return dquot_mark_dquot_dirty(dquot);
4689 }
4690 }
4691
ext4_write_info(struct super_block * sb,int type)4692 static int ext4_write_info(struct super_block *sb, int type)
4693 {
4694 int ret, err;
4695 handle_t *handle;
4696
4697 /* Data block + inode block */
4698 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4699 if (IS_ERR(handle))
4700 return PTR_ERR(handle);
4701 ret = dquot_commit_info(sb, type);
4702 err = ext4_journal_stop(handle);
4703 if (!ret)
4704 ret = err;
4705 return ret;
4706 }
4707
4708 /*
4709 * Turn on quotas during mount time - we need to find
4710 * the quota file and such...
4711 */
ext4_quota_on_mount(struct super_block * sb,int type)4712 static int ext4_quota_on_mount(struct super_block *sb, int type)
4713 {
4714 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4715 EXT4_SB(sb)->s_jquota_fmt, type);
4716 }
4717
4718 /*
4719 * Standard function to be called on quota_on
4720 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4721 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4722 struct path *path)
4723 {
4724 int err;
4725
4726 if (!test_opt(sb, QUOTA))
4727 return -EINVAL;
4728
4729 /* Quotafile not on the same filesystem? */
4730 if (path->dentry->d_sb != sb)
4731 return -EXDEV;
4732 /* Journaling quota? */
4733 if (EXT4_SB(sb)->s_qf_names[type]) {
4734 /* Quotafile not in fs root? */
4735 if (path->dentry->d_parent != sb->s_root)
4736 ext4_msg(sb, KERN_WARNING,
4737 "Quota file not on filesystem root. "
4738 "Journaled quota will not work");
4739 }
4740
4741 /*
4742 * When we journal data on quota file, we have to flush journal to see
4743 * all updates to the file when we bypass pagecache...
4744 */
4745 if (EXT4_SB(sb)->s_journal &&
4746 ext4_should_journal_data(path->dentry->d_inode)) {
4747 /*
4748 * We don't need to lock updates but journal_flush() could
4749 * otherwise be livelocked...
4750 */
4751 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4752 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4753 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4754 if (err)
4755 return err;
4756 }
4757
4758 return dquot_quota_on(sb, type, format_id, path);
4759 }
4760
ext4_quota_off(struct super_block * sb,int type)4761 static int ext4_quota_off(struct super_block *sb, int type)
4762 {
4763 struct inode *inode = sb_dqopt(sb)->files[type];
4764 handle_t *handle;
4765
4766 /* Force all delayed allocation blocks to be allocated.
4767 * Caller already holds s_umount sem */
4768 if (test_opt(sb, DELALLOC))
4769 sync_filesystem(sb);
4770
4771 if (!inode)
4772 goto out;
4773
4774 /* Update modification times of quota files when userspace can
4775 * start looking at them */
4776 handle = ext4_journal_start(inode, 1);
4777 if (IS_ERR(handle))
4778 goto out;
4779 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4780 ext4_mark_inode_dirty(handle, inode);
4781 ext4_journal_stop(handle);
4782
4783 out:
4784 return dquot_quota_off(sb, type);
4785 }
4786
4787 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4788 * acquiring the locks... As quota files are never truncated and quota code
4789 * itself serializes the operations (and no one else should touch the files)
4790 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)4791 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4792 size_t len, loff_t off)
4793 {
4794 struct inode *inode = sb_dqopt(sb)->files[type];
4795 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4796 int err = 0;
4797 int offset = off & (sb->s_blocksize - 1);
4798 int tocopy;
4799 size_t toread;
4800 struct buffer_head *bh;
4801 loff_t i_size = i_size_read(inode);
4802
4803 if (off > i_size)
4804 return 0;
4805 if (off+len > i_size)
4806 len = i_size-off;
4807 toread = len;
4808 while (toread > 0) {
4809 tocopy = sb->s_blocksize - offset < toread ?
4810 sb->s_blocksize - offset : toread;
4811 bh = ext4_bread(NULL, inode, blk, 0, &err);
4812 if (err)
4813 return err;
4814 if (!bh) /* A hole? */
4815 memset(data, 0, tocopy);
4816 else
4817 memcpy(data, bh->b_data+offset, tocopy);
4818 brelse(bh);
4819 offset = 0;
4820 toread -= tocopy;
4821 data += tocopy;
4822 blk++;
4823 }
4824 return len;
4825 }
4826
4827 /* Write to quotafile (we know the transaction is already started and has
4828 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)4829 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4830 const char *data, size_t len, loff_t off)
4831 {
4832 struct inode *inode = sb_dqopt(sb)->files[type];
4833 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4834 int err = 0;
4835 int offset = off & (sb->s_blocksize - 1);
4836 struct buffer_head *bh;
4837 handle_t *handle = journal_current_handle();
4838
4839 if (EXT4_SB(sb)->s_journal && !handle) {
4840 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4841 " cancelled because transaction is not started",
4842 (unsigned long long)off, (unsigned long long)len);
4843 return -EIO;
4844 }
4845 /*
4846 * Since we account only one data block in transaction credits,
4847 * then it is impossible to cross a block boundary.
4848 */
4849 if (sb->s_blocksize - offset < len) {
4850 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4851 " cancelled because not block aligned",
4852 (unsigned long long)off, (unsigned long long)len);
4853 return -EIO;
4854 }
4855
4856 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4857 bh = ext4_bread(handle, inode, blk, 1, &err);
4858 if (!bh)
4859 goto out;
4860 err = ext4_journal_get_write_access(handle, bh);
4861 if (err) {
4862 brelse(bh);
4863 goto out;
4864 }
4865 lock_buffer(bh);
4866 memcpy(bh->b_data+offset, data, len);
4867 flush_dcache_page(bh->b_page);
4868 unlock_buffer(bh);
4869 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4870 brelse(bh);
4871 out:
4872 if (err) {
4873 mutex_unlock(&inode->i_mutex);
4874 return err;
4875 }
4876 if (inode->i_size < off + len) {
4877 i_size_write(inode, off + len);
4878 EXT4_I(inode)->i_disksize = inode->i_size;
4879 ext4_mark_inode_dirty(handle, inode);
4880 }
4881 mutex_unlock(&inode->i_mutex);
4882 return len;
4883 }
4884
4885 #endif
4886
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4887 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4888 const char *dev_name, void *data)
4889 {
4890 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4891 }
4892
4893 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)4894 static inline void register_as_ext2(void)
4895 {
4896 int err = register_filesystem(&ext2_fs_type);
4897 if (err)
4898 printk(KERN_WARNING
4899 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4900 }
4901
unregister_as_ext2(void)4902 static inline void unregister_as_ext2(void)
4903 {
4904 unregister_filesystem(&ext2_fs_type);
4905 }
4906
ext2_feature_set_ok(struct super_block * sb)4907 static inline int ext2_feature_set_ok(struct super_block *sb)
4908 {
4909 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4910 return 0;
4911 if (sb->s_flags & MS_RDONLY)
4912 return 1;
4913 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4914 return 0;
4915 return 1;
4916 }
4917 MODULE_ALIAS("ext2");
4918 #else
register_as_ext2(void)4919 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)4920 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)4921 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4922 #endif
4923
4924 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)4925 static inline void register_as_ext3(void)
4926 {
4927 int err = register_filesystem(&ext3_fs_type);
4928 if (err)
4929 printk(KERN_WARNING
4930 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4931 }
4932
unregister_as_ext3(void)4933 static inline void unregister_as_ext3(void)
4934 {
4935 unregister_filesystem(&ext3_fs_type);
4936 }
4937
ext3_feature_set_ok(struct super_block * sb)4938 static inline int ext3_feature_set_ok(struct super_block *sb)
4939 {
4940 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4941 return 0;
4942 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4943 return 0;
4944 if (sb->s_flags & MS_RDONLY)
4945 return 1;
4946 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4947 return 0;
4948 return 1;
4949 }
4950 MODULE_ALIAS("ext3");
4951 #else
register_as_ext3(void)4952 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)4953 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)4954 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4955 #endif
4956
4957 static struct file_system_type ext4_fs_type = {
4958 .owner = THIS_MODULE,
4959 .name = "ext4",
4960 .mount = ext4_mount,
4961 .kill_sb = kill_block_super,
4962 .fs_flags = FS_REQUIRES_DEV,
4963 };
4964
ext4_init_feat_adverts(void)4965 static int __init ext4_init_feat_adverts(void)
4966 {
4967 struct ext4_features *ef;
4968 int ret = -ENOMEM;
4969
4970 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4971 if (!ef)
4972 goto out;
4973
4974 ef->f_kobj.kset = ext4_kset;
4975 init_completion(&ef->f_kobj_unregister);
4976 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4977 "features");
4978 if (ret) {
4979 kfree(ef);
4980 goto out;
4981 }
4982
4983 ext4_feat = ef;
4984 ret = 0;
4985 out:
4986 return ret;
4987 }
4988
ext4_exit_feat_adverts(void)4989 static void ext4_exit_feat_adverts(void)
4990 {
4991 kobject_put(&ext4_feat->f_kobj);
4992 wait_for_completion(&ext4_feat->f_kobj_unregister);
4993 kfree(ext4_feat);
4994 }
4995
4996 /* Shared across all ext4 file systems */
4997 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4998 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4999
ext4_init_fs(void)5000 static int __init ext4_init_fs(void)
5001 {
5002 int i, err;
5003
5004 ext4_li_info = NULL;
5005 mutex_init(&ext4_li_mtx);
5006
5007 ext4_check_flag_values();
5008
5009 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5010 mutex_init(&ext4__aio_mutex[i]);
5011 init_waitqueue_head(&ext4__ioend_wq[i]);
5012 }
5013
5014 err = ext4_init_pageio();
5015 if (err)
5016 return err;
5017 err = ext4_init_system_zone();
5018 if (err)
5019 goto out6;
5020 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5021 if (!ext4_kset)
5022 goto out5;
5023 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5024
5025 err = ext4_init_feat_adverts();
5026 if (err)
5027 goto out4;
5028
5029 err = ext4_init_mballoc();
5030 if (err)
5031 goto out3;
5032
5033 err = ext4_init_xattr();
5034 if (err)
5035 goto out2;
5036 err = init_inodecache();
5037 if (err)
5038 goto out1;
5039 register_as_ext3();
5040 register_as_ext2();
5041 err = register_filesystem(&ext4_fs_type);
5042 if (err)
5043 goto out;
5044
5045 return 0;
5046 out:
5047 unregister_as_ext2();
5048 unregister_as_ext3();
5049 destroy_inodecache();
5050 out1:
5051 ext4_exit_xattr();
5052 out2:
5053 ext4_exit_mballoc();
5054 out3:
5055 ext4_exit_feat_adverts();
5056 out4:
5057 if (ext4_proc_root)
5058 remove_proc_entry("fs/ext4", NULL);
5059 kset_unregister(ext4_kset);
5060 out5:
5061 ext4_exit_system_zone();
5062 out6:
5063 ext4_exit_pageio();
5064 return err;
5065 }
5066
ext4_exit_fs(void)5067 static void __exit ext4_exit_fs(void)
5068 {
5069 ext4_destroy_lazyinit_thread();
5070 unregister_as_ext2();
5071 unregister_as_ext3();
5072 unregister_filesystem(&ext4_fs_type);
5073 destroy_inodecache();
5074 ext4_exit_xattr();
5075 ext4_exit_mballoc();
5076 ext4_exit_feat_adverts();
5077 remove_proc_entry("fs/ext4", NULL);
5078 kset_unregister(ext4_kset);
5079 ext4_exit_system_zone();
5080 ext4_exit_pageio();
5081 }
5082
5083 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5084 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5085 MODULE_LICENSE("GPL");
5086 module_init(ext4_init_fs)
5087 module_exit(ext4_exit_fs)
5088