1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 22 * USA 23 * 24 * The full GNU General Public License is included in this distribution 25 * in the file called LICENSE.GPL. 26 * 27 * Contact Information: 28 * Intel Linux Wireless <ilw@linux.intel.com> 29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 30 * 31 * BSD LICENSE 32 * 33 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 40 * * Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * * Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in 44 * the documentation and/or other materials provided with the 45 * distribution. 46 * * Neither the name Intel Corporation nor the names of its 47 * contributors may be used to endorse or promote products derived 48 * from this software without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 61 * 62 *****************************************************************************/ 63 /* 64 * Please use this file (iwl-commands.h) only for uCode API definitions. 65 * Please use iwl-xxxx-hw.h for hardware-related definitions. 66 * Please use iwl-dev.h for driver implementation definitions. 67 */ 68 69 #ifndef __iwl_commands_h__ 70 #define __iwl_commands_h__ 71 72 #include <linux/ieee80211.h> 73 #include <linux/types.h> 74 75 76 enum { 77 REPLY_ALIVE = 0x1, 78 REPLY_ERROR = 0x2, 79 REPLY_ECHO = 0x3, /* test command */ 80 81 /* RXON and QOS commands */ 82 REPLY_RXON = 0x10, 83 REPLY_RXON_ASSOC = 0x11, 84 REPLY_QOS_PARAM = 0x13, 85 REPLY_RXON_TIMING = 0x14, 86 87 /* Multi-Station support */ 88 REPLY_ADD_STA = 0x18, 89 REPLY_REMOVE_STA = 0x19, 90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */ 91 REPLY_TXFIFO_FLUSH = 0x1e, 92 93 /* Security */ 94 REPLY_WEPKEY = 0x20, 95 96 /* RX, TX, LEDs */ 97 REPLY_TX = 0x1c, 98 REPLY_LEDS_CMD = 0x48, 99 REPLY_TX_LINK_QUALITY_CMD = 0x4e, 100 101 /* WiMAX coexistence */ 102 COEX_PRIORITY_TABLE_CMD = 0x5a, 103 COEX_MEDIUM_NOTIFICATION = 0x5b, 104 COEX_EVENT_CMD = 0x5c, 105 106 /* Calibration */ 107 TEMPERATURE_NOTIFICATION = 0x62, 108 CALIBRATION_CFG_CMD = 0x65, 109 CALIBRATION_RES_NOTIFICATION = 0x66, 110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67, 111 112 /* 802.11h related */ 113 REPLY_QUIET_CMD = 0x71, /* not used */ 114 REPLY_CHANNEL_SWITCH = 0x72, 115 CHANNEL_SWITCH_NOTIFICATION = 0x73, 116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, 117 SPECTRUM_MEASURE_NOTIFICATION = 0x75, 118 119 /* Power Management */ 120 POWER_TABLE_CMD = 0x77, 121 PM_SLEEP_NOTIFICATION = 0x7A, 122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, 123 124 /* Scan commands and notifications */ 125 REPLY_SCAN_CMD = 0x80, 126 REPLY_SCAN_ABORT_CMD = 0x81, 127 SCAN_START_NOTIFICATION = 0x82, 128 SCAN_RESULTS_NOTIFICATION = 0x83, 129 SCAN_COMPLETE_NOTIFICATION = 0x84, 130 131 /* IBSS/AP commands */ 132 BEACON_NOTIFICATION = 0x90, 133 REPLY_TX_BEACON = 0x91, 134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */ 135 136 /* Miscellaneous commands */ 137 REPLY_TX_POWER_DBM_CMD = 0x95, 138 QUIET_NOTIFICATION = 0x96, /* not used */ 139 REPLY_TX_PWR_TABLE_CMD = 0x97, 140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */ 141 TX_ANT_CONFIGURATION_CMD = 0x98, 142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */ 143 144 /* Bluetooth device coexistence config command */ 145 REPLY_BT_CONFIG = 0x9b, 146 147 /* Statistics */ 148 REPLY_STATISTICS_CMD = 0x9c, 149 STATISTICS_NOTIFICATION = 0x9d, 150 151 /* RF-KILL commands and notifications */ 152 REPLY_CARD_STATE_CMD = 0xa0, 153 CARD_STATE_NOTIFICATION = 0xa1, 154 155 /* Missed beacons notification */ 156 MISSED_BEACONS_NOTIFICATION = 0xa2, 157 158 REPLY_CT_KILL_CONFIG_CMD = 0xa4, 159 SENSITIVITY_CMD = 0xa8, 160 REPLY_PHY_CALIBRATION_CMD = 0xb0, 161 REPLY_RX_PHY_CMD = 0xc0, 162 REPLY_RX_MPDU_CMD = 0xc1, 163 REPLY_RX = 0xc3, 164 REPLY_COMPRESSED_BA = 0xc5, 165 166 /* BT Coex */ 167 REPLY_BT_COEX_PRIO_TABLE = 0xcc, 168 REPLY_BT_COEX_PROT_ENV = 0xcd, 169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce, 170 171 /* PAN commands */ 172 REPLY_WIPAN_PARAMS = 0xb2, 173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */ 174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */ 175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */ 176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */ 177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */ 178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9, 179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc, 180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd, 181 182 REPLY_WOWLAN_PATTERNS = 0xe0, 183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1, 184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2, 185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3, 186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4, 187 REPLY_WOWLAN_GET_STATUS = 0xe5, 188 REPLY_D3_CONFIG = 0xd3, 189 190 REPLY_MAX = 0xff 191 }; 192 193 /****************************************************************************** 194 * (0) 195 * Commonly used structures and definitions: 196 * Command header, rate_n_flags, txpower 197 * 198 *****************************************************************************/ 199 200 /* iwl_cmd_header flags value */ 201 #define IWL_CMD_FAILED_MSK 0x40 202 203 /** 204 * iwlagn rate_n_flags bit fields 205 * 206 * rate_n_flags format is used in following iwlagn commands: 207 * REPLY_RX (response only) 208 * REPLY_RX_MPDU (response only) 209 * REPLY_TX (both command and response) 210 * REPLY_TX_LINK_QUALITY_CMD 211 * 212 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): 213 * 2-0: 0) 6 Mbps 214 * 1) 12 Mbps 215 * 2) 18 Mbps 216 * 3) 24 Mbps 217 * 4) 36 Mbps 218 * 5) 48 Mbps 219 * 6) 54 Mbps 220 * 7) 60 Mbps 221 * 222 * 4-3: 0) Single stream (SISO) 223 * 1) Dual stream (MIMO) 224 * 2) Triple stream (MIMO) 225 * 226 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data 227 * 228 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): 229 * 3-0: 0xD) 6 Mbps 230 * 0xF) 9 Mbps 231 * 0x5) 12 Mbps 232 * 0x7) 18 Mbps 233 * 0x9) 24 Mbps 234 * 0xB) 36 Mbps 235 * 0x1) 48 Mbps 236 * 0x3) 54 Mbps 237 * 238 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): 239 * 6-0: 10) 1 Mbps 240 * 20) 2 Mbps 241 * 55) 5.5 Mbps 242 * 110) 11 Mbps 243 */ 244 #define RATE_MCS_CODE_MSK 0x7 245 #define RATE_MCS_SPATIAL_POS 3 246 #define RATE_MCS_SPATIAL_MSK 0x18 247 #define RATE_MCS_HT_DUP_POS 5 248 #define RATE_MCS_HT_DUP_MSK 0x20 249 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ 250 #define RATE_MCS_RATE_MSK 0xff 251 252 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ 253 #define RATE_MCS_FLAGS_POS 8 254 #define RATE_MCS_HT_POS 8 255 #define RATE_MCS_HT_MSK 0x100 256 257 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ 258 #define RATE_MCS_CCK_POS 9 259 #define RATE_MCS_CCK_MSK 0x200 260 261 /* Bit 10: (1) Use Green Field preamble */ 262 #define RATE_MCS_GF_POS 10 263 #define RATE_MCS_GF_MSK 0x400 264 265 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ 266 #define RATE_MCS_HT40_POS 11 267 #define RATE_MCS_HT40_MSK 0x800 268 269 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ 270 #define RATE_MCS_DUP_POS 12 271 #define RATE_MCS_DUP_MSK 0x1000 272 273 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ 274 #define RATE_MCS_SGI_POS 13 275 #define RATE_MCS_SGI_MSK 0x2000 276 277 /** 278 * rate_n_flags Tx antenna masks 279 * 4965 has 2 transmitters 280 * 5100 has 1 transmitter B 281 * 5150 has 1 transmitter A 282 * 5300 has 3 transmitters 283 * 5350 has 3 transmitters 284 * bit14:16 285 */ 286 #define RATE_MCS_ANT_POS 14 287 #define RATE_MCS_ANT_A_MSK 0x04000 288 #define RATE_MCS_ANT_B_MSK 0x08000 289 #define RATE_MCS_ANT_C_MSK 0x10000 290 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK) 291 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK) 292 #define RATE_ANT_NUM 3 293 294 #define POWER_TABLE_NUM_ENTRIES 33 295 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32 296 #define POWER_TABLE_CCK_ENTRY 32 297 298 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24 299 #define IWL_PWR_CCK_ENTRIES 2 300 301 /** 302 * struct tx_power_dual_stream 303 * 304 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH 305 * 306 * Same format as iwl_tx_power_dual_stream, but __le32 307 */ 308 struct tx_power_dual_stream { 309 __le32 dw; 310 } __packed; 311 312 /** 313 * Command REPLY_TX_POWER_DBM_CMD = 0x98 314 * struct iwlagn_tx_power_dbm_cmd 315 */ 316 #define IWLAGN_TX_POWER_AUTO 0x7f 317 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6) 318 319 struct iwlagn_tx_power_dbm_cmd { 320 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 321 u8 flags; 322 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 323 u8 reserved; 324 } __packed; 325 326 /** 327 * Command TX_ANT_CONFIGURATION_CMD = 0x98 328 * This command is used to configure valid Tx antenna. 329 * By default uCode concludes the valid antenna according to the radio flavor. 330 * This command enables the driver to override/modify this conclusion. 331 */ 332 struct iwl_tx_ant_config_cmd { 333 __le32 valid; 334 } __packed; 335 336 /****************************************************************************** 337 * (0a) 338 * Alive and Error Commands & Responses: 339 * 340 *****************************************************************************/ 341 342 #define UCODE_VALID_OK cpu_to_le32(0x1) 343 344 /** 345 * REPLY_ALIVE = 0x1 (response only, not a command) 346 * 347 * uCode issues this "alive" notification once the runtime image is ready 348 * to receive commands from the driver. This is the *second* "alive" 349 * notification that the driver will receive after rebooting uCode; 350 * this "alive" is indicated by subtype field != 9. 351 * 352 * See comments documenting "BSM" (bootstrap state machine). 353 * 354 * This response includes two pointers to structures within the device's 355 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: 356 * 357 * 1) log_event_table_ptr indicates base of the event log. This traces 358 * a 256-entry history of uCode execution within a circular buffer. 359 * Its header format is: 360 * 361 * __le32 log_size; log capacity (in number of entries) 362 * __le32 type; (1) timestamp with each entry, (0) no timestamp 363 * __le32 wraps; # times uCode has wrapped to top of circular buffer 364 * __le32 write_index; next circular buffer entry that uCode would fill 365 * 366 * The header is followed by the circular buffer of log entries. Entries 367 * with timestamps have the following format: 368 * 369 * __le32 event_id; range 0 - 1500 370 * __le32 timestamp; low 32 bits of TSF (of network, if associated) 371 * __le32 data; event_id-specific data value 372 * 373 * Entries without timestamps contain only event_id and data. 374 * 375 * 376 * 2) error_event_table_ptr indicates base of the error log. This contains 377 * information about any uCode error that occurs. For agn, the format 378 * of the error log is defined by struct iwl_error_event_table. 379 * 380 * The Linux driver can print both logs to the system log when a uCode error 381 * occurs. 382 */ 383 384 /* 385 * Note: This structure is read from the device with IO accesses, 386 * and the reading already does the endian conversion. As it is 387 * read with u32-sized accesses, any members with a different size 388 * need to be ordered correctly though! 389 */ 390 struct iwl_error_event_table { 391 u32 valid; /* (nonzero) valid, (0) log is empty */ 392 u32 error_id; /* type of error */ 393 u32 pc; /* program counter */ 394 u32 blink1; /* branch link */ 395 u32 blink2; /* branch link */ 396 u32 ilink1; /* interrupt link */ 397 u32 ilink2; /* interrupt link */ 398 u32 data1; /* error-specific data */ 399 u32 data2; /* error-specific data */ 400 u32 line; /* source code line of error */ 401 u32 bcon_time; /* beacon timer */ 402 u32 tsf_low; /* network timestamp function timer */ 403 u32 tsf_hi; /* network timestamp function timer */ 404 u32 gp1; /* GP1 timer register */ 405 u32 gp2; /* GP2 timer register */ 406 u32 gp3; /* GP3 timer register */ 407 u32 ucode_ver; /* uCode version */ 408 u32 hw_ver; /* HW Silicon version */ 409 u32 brd_ver; /* HW board version */ 410 u32 log_pc; /* log program counter */ 411 u32 frame_ptr; /* frame pointer */ 412 u32 stack_ptr; /* stack pointer */ 413 u32 hcmd; /* last host command header */ 414 u32 isr0; /* isr status register LMPM_NIC_ISR0: 415 * rxtx_flag */ 416 u32 isr1; /* isr status register LMPM_NIC_ISR1: 417 * host_flag */ 418 u32 isr2; /* isr status register LMPM_NIC_ISR2: 419 * enc_flag */ 420 u32 isr3; /* isr status register LMPM_NIC_ISR3: 421 * time_flag */ 422 u32 isr4; /* isr status register LMPM_NIC_ISR4: 423 * wico interrupt */ 424 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 425 u32 wait_event; /* wait event() caller address */ 426 u32 l2p_control; /* L2pControlField */ 427 u32 l2p_duration; /* L2pDurationField */ 428 u32 l2p_mhvalid; /* L2pMhValidBits */ 429 u32 l2p_addr_match; /* L2pAddrMatchStat */ 430 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 431 * (LMPM_PMG_SEL) */ 432 u32 u_timestamp; /* indicate when the date and time of the 433 * compilation */ 434 u32 flow_handler; /* FH read/write pointers, RX credit */ 435 } __packed; 436 437 struct iwl_alive_resp { 438 u8 ucode_minor; 439 u8 ucode_major; 440 __le16 reserved1; 441 u8 sw_rev[8]; 442 u8 ver_type; 443 u8 ver_subtype; /* not "9" for runtime alive */ 444 __le16 reserved2; 445 __le32 log_event_table_ptr; /* SRAM address for event log */ 446 __le32 error_event_table_ptr; /* SRAM address for error log */ 447 __le32 timestamp; 448 __le32 is_valid; 449 } __packed; 450 451 /* 452 * REPLY_ERROR = 0x2 (response only, not a command) 453 */ 454 struct iwl_error_resp { 455 __le32 error_type; 456 u8 cmd_id; 457 u8 reserved1; 458 __le16 bad_cmd_seq_num; 459 __le32 error_info; 460 __le64 timestamp; 461 } __packed; 462 463 /****************************************************************************** 464 * (1) 465 * RXON Commands & Responses: 466 * 467 *****************************************************************************/ 468 469 /* 470 * Rx config defines & structure 471 */ 472 /* rx_config device types */ 473 enum { 474 RXON_DEV_TYPE_AP = 1, 475 RXON_DEV_TYPE_ESS = 3, 476 RXON_DEV_TYPE_IBSS = 4, 477 RXON_DEV_TYPE_SNIFFER = 6, 478 RXON_DEV_TYPE_CP = 7, 479 RXON_DEV_TYPE_2STA = 8, 480 RXON_DEV_TYPE_P2P = 9, 481 }; 482 483 484 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0) 485 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0) 486 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1) 487 #define RXON_RX_CHAIN_VALID_POS (1) 488 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4) 489 #define RXON_RX_CHAIN_FORCE_SEL_POS (4) 490 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7) 491 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) 492 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10) 493 #define RXON_RX_CHAIN_CNT_POS (10) 494 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12) 495 #define RXON_RX_CHAIN_MIMO_CNT_POS (12) 496 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14) 497 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14) 498 499 /* rx_config flags */ 500 /* band & modulation selection */ 501 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0) 502 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1) 503 /* auto detection enable */ 504 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2) 505 /* TGg protection when tx */ 506 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3) 507 /* cck short slot & preamble */ 508 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4) 509 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5) 510 /* antenna selection */ 511 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7) 512 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00) 513 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8) 514 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9) 515 /* radar detection enable */ 516 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12) 517 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13) 518 /* rx response to host with 8-byte TSF 519 * (according to ON_AIR deassertion) */ 520 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15) 521 522 523 /* HT flags */ 524 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22) 525 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22) 526 527 #define RXON_FLG_HT_OPERATING_MODE_POS (23) 528 529 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23) 530 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23) 531 532 #define RXON_FLG_CHANNEL_MODE_POS (25) 533 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25) 534 535 /* channel mode */ 536 enum { 537 CHANNEL_MODE_LEGACY = 0, 538 CHANNEL_MODE_PURE_40 = 1, 539 CHANNEL_MODE_MIXED = 2, 540 CHANNEL_MODE_RESERVED = 3, 541 }; 542 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS) 543 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS) 544 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS) 545 546 /* CTS to self (if spec allows) flag */ 547 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30) 548 549 /* rx_config filter flags */ 550 /* accept all data frames */ 551 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0) 552 /* pass control & management to host */ 553 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1) 554 /* accept multi-cast */ 555 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2) 556 /* don't decrypt uni-cast frames */ 557 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3) 558 /* don't decrypt multi-cast frames */ 559 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4) 560 /* STA is associated */ 561 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5) 562 /* transfer to host non bssid beacons in associated state */ 563 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6) 564 565 /** 566 * REPLY_RXON = 0x10 (command, has simple generic response) 567 * 568 * RXON tunes the radio tuner to a service channel, and sets up a number 569 * of parameters that are used primarily for Rx, but also for Tx operations. 570 * 571 * NOTE: When tuning to a new channel, driver must set the 572 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent 573 * info within the device, including the station tables, tx retry 574 * rate tables, and txpower tables. Driver must build a new station 575 * table and txpower table before transmitting anything on the RXON 576 * channel. 577 * 578 * NOTE: All RXONs wipe clean the internal txpower table. Driver must 579 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), 580 * regardless of whether RXON_FILTER_ASSOC_MSK is set. 581 */ 582 583 struct iwl_rxon_cmd { 584 u8 node_addr[6]; 585 __le16 reserved1; 586 u8 bssid_addr[6]; 587 __le16 reserved2; 588 u8 wlap_bssid_addr[6]; 589 __le16 reserved3; 590 u8 dev_type; 591 u8 air_propagation; 592 __le16 rx_chain; 593 u8 ofdm_basic_rates; 594 u8 cck_basic_rates; 595 __le16 assoc_id; 596 __le32 flags; 597 __le32 filter_flags; 598 __le16 channel; 599 u8 ofdm_ht_single_stream_basic_rates; 600 u8 ofdm_ht_dual_stream_basic_rates; 601 u8 ofdm_ht_triple_stream_basic_rates; 602 u8 reserved5; 603 __le16 acquisition_data; 604 __le16 reserved6; 605 } __packed; 606 607 /* 608 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) 609 */ 610 struct iwl_rxon_assoc_cmd { 611 __le32 flags; 612 __le32 filter_flags; 613 u8 ofdm_basic_rates; 614 u8 cck_basic_rates; 615 __le16 reserved1; 616 u8 ofdm_ht_single_stream_basic_rates; 617 u8 ofdm_ht_dual_stream_basic_rates; 618 u8 ofdm_ht_triple_stream_basic_rates; 619 u8 reserved2; 620 __le16 rx_chain_select_flags; 621 __le16 acquisition_data; 622 __le32 reserved3; 623 } __packed; 624 625 #define IWL_CONN_MAX_LISTEN_INTERVAL 10 626 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */ 627 628 /* 629 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) 630 */ 631 struct iwl_rxon_time_cmd { 632 __le64 timestamp; 633 __le16 beacon_interval; 634 __le16 atim_window; 635 __le32 beacon_init_val; 636 __le16 listen_interval; 637 u8 dtim_period; 638 u8 delta_cp_bss_tbtts; 639 } __packed; 640 641 /* 642 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) 643 */ 644 /** 645 * struct iwl5000_channel_switch_cmd 646 * @band: 0- 5.2GHz, 1- 2.4GHz 647 * @expect_beacon: 0- resume transmits after channel switch 648 * 1- wait for beacon to resume transmits 649 * @channel: new channel number 650 * @rxon_flags: Rx on flags 651 * @rxon_filter_flags: filtering parameters 652 * @switch_time: switch time in extended beacon format 653 * @reserved: reserved bytes 654 */ 655 struct iwl5000_channel_switch_cmd { 656 u8 band; 657 u8 expect_beacon; 658 __le16 channel; 659 __le32 rxon_flags; 660 __le32 rxon_filter_flags; 661 __le32 switch_time; 662 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 663 } __packed; 664 665 /** 666 * struct iwl6000_channel_switch_cmd 667 * @band: 0- 5.2GHz, 1- 2.4GHz 668 * @expect_beacon: 0- resume transmits after channel switch 669 * 1- wait for beacon to resume transmits 670 * @channel: new channel number 671 * @rxon_flags: Rx on flags 672 * @rxon_filter_flags: filtering parameters 673 * @switch_time: switch time in extended beacon format 674 * @reserved: reserved bytes 675 */ 676 struct iwl6000_channel_switch_cmd { 677 u8 band; 678 u8 expect_beacon; 679 __le16 channel; 680 __le32 rxon_flags; 681 __le32 rxon_filter_flags; 682 __le32 switch_time; 683 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 684 } __packed; 685 686 /* 687 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) 688 */ 689 struct iwl_csa_notification { 690 __le16 band; 691 __le16 channel; 692 __le32 status; /* 0 - OK, 1 - fail */ 693 } __packed; 694 695 /****************************************************************************** 696 * (2) 697 * Quality-of-Service (QOS) Commands & Responses: 698 * 699 *****************************************************************************/ 700 701 /** 702 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM 703 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd 704 * 705 * @cw_min: Contention window, start value in numbers of slots. 706 * Should be a power-of-2, minus 1. Device's default is 0x0f. 707 * @cw_max: Contention window, max value in numbers of slots. 708 * Should be a power-of-2, minus 1. Device's default is 0x3f. 709 * @aifsn: Number of slots in Arbitration Interframe Space (before 710 * performing random backoff timing prior to Tx). Device default 1. 711 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. 712 * 713 * Device will automatically increase contention window by (2*CW) + 1 for each 714 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW 715 * value, to cap the CW value. 716 */ 717 struct iwl_ac_qos { 718 __le16 cw_min; 719 __le16 cw_max; 720 u8 aifsn; 721 u8 reserved1; 722 __le16 edca_txop; 723 } __packed; 724 725 /* QoS flags defines */ 726 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01) 727 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02) 728 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10) 729 730 /* Number of Access Categories (AC) (EDCA), queues 0..3 */ 731 #define AC_NUM 4 732 733 /* 734 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) 735 * 736 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs 737 * 0: Background, 1: Best Effort, 2: Video, 3: Voice. 738 */ 739 struct iwl_qosparam_cmd { 740 __le32 qos_flags; 741 struct iwl_ac_qos ac[AC_NUM]; 742 } __packed; 743 744 /****************************************************************************** 745 * (3) 746 * Add/Modify Stations Commands & Responses: 747 * 748 *****************************************************************************/ 749 /* 750 * Multi station support 751 */ 752 753 /* Special, dedicated locations within device's station table */ 754 #define IWL_AP_ID 0 755 #define IWL_AP_ID_PAN 1 756 #define IWL_STA_ID 2 757 #define IWLAGN_PAN_BCAST_ID 14 758 #define IWLAGN_BROADCAST_ID 15 759 #define IWLAGN_STATION_COUNT 16 760 761 #define IWL_INVALID_STATION 255 762 #define IWL_MAX_TID_COUNT 8 763 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT 764 765 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2) 766 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8) 767 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13) 768 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17) 769 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18) 770 #define STA_FLG_MAX_AGG_SIZE_POS (19) 771 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19) 772 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21) 773 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22) 774 #define STA_FLG_AGG_MPDU_DENSITY_POS (23) 775 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23) 776 777 /* Use in mode field. 1: modify existing entry, 0: add new station entry */ 778 #define STA_CONTROL_MODIFY_MSK 0x01 779 780 /* key flags __le16*/ 781 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007) 782 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000) 783 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001) 784 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002) 785 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003) 786 787 #define STA_KEY_FLG_KEYID_POS 8 788 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800) 789 /* wep key is either from global key (0) or from station info array (1) */ 790 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008) 791 792 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */ 793 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000) 794 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000) 795 #define STA_KEY_MAX_NUM 8 796 #define STA_KEY_MAX_NUM_PAN 16 797 /* must not match WEP_INVALID_OFFSET */ 798 #define IWLAGN_HW_KEY_DEFAULT 0xfe 799 800 /* Flags indicate whether to modify vs. don't change various station params */ 801 #define STA_MODIFY_KEY_MASK 0x01 802 #define STA_MODIFY_TID_DISABLE_TX 0x02 803 #define STA_MODIFY_TX_RATE_MSK 0x04 804 #define STA_MODIFY_ADDBA_TID_MSK 0x08 805 #define STA_MODIFY_DELBA_TID_MSK 0x10 806 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20 807 808 /* Receiver address (actually, Rx station's index into station table), 809 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */ 810 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid)) 811 812 /* agn */ 813 struct iwl_keyinfo { 814 __le16 key_flags; 815 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */ 816 u8 reserved1; 817 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */ 818 u8 key_offset; 819 u8 reserved2; 820 u8 key[16]; /* 16-byte unicast decryption key */ 821 __le64 tx_secur_seq_cnt; 822 __le64 hw_tkip_mic_rx_key; 823 __le64 hw_tkip_mic_tx_key; 824 } __packed; 825 826 /** 827 * struct sta_id_modify 828 * @addr[ETH_ALEN]: station's MAC address 829 * @sta_id: index of station in uCode's station table 830 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change 831 * 832 * Driver selects unused table index when adding new station, 833 * or the index to a pre-existing station entry when modifying that station. 834 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). 835 * 836 * modify_mask flags select which parameters to modify vs. leave alone. 837 */ 838 struct sta_id_modify { 839 u8 addr[ETH_ALEN]; 840 __le16 reserved1; 841 u8 sta_id; 842 u8 modify_mask; 843 __le16 reserved2; 844 } __packed; 845 846 /* 847 * REPLY_ADD_STA = 0x18 (command) 848 * 849 * The device contains an internal table of per-station information, 850 * with info on security keys, aggregation parameters, and Tx rates for 851 * initial Tx attempt and any retries (agn devices uses 852 * REPLY_TX_LINK_QUALITY_CMD, 853 * 854 * REPLY_ADD_STA sets up the table entry for one station, either creating 855 * a new entry, or modifying a pre-existing one. 856 * 857 * NOTE: RXON command (without "associated" bit set) wipes the station table 858 * clean. Moving into RF_KILL state does this also. Driver must set up 859 * new station table before transmitting anything on the RXON channel 860 * (except active scans or active measurements; those commands carry 861 * their own txpower/rate setup data). 862 * 863 * When getting started on a new channel, driver must set up the 864 * IWL_BROADCAST_ID entry (last entry in the table). For a client 865 * station in a BSS, once an AP is selected, driver sets up the AP STA 866 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP 867 * are all that are needed for a BSS client station. If the device is 868 * used as AP, or in an IBSS network, driver must set up station table 869 * entries for all STAs in network, starting with index IWL_STA_ID. 870 */ 871 872 struct iwl_addsta_cmd { 873 u8 mode; /* 1: modify existing, 0: add new station */ 874 u8 reserved[3]; 875 struct sta_id_modify sta; 876 struct iwl_keyinfo key; 877 __le32 station_flags; /* STA_FLG_* */ 878 __le32 station_flags_msk; /* STA_FLG_* */ 879 880 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID) 881 * corresponding to bit (e.g. bit 5 controls TID 5). 882 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */ 883 __le16 tid_disable_tx; 884 __le16 legacy_reserved; 885 886 /* TID for which to add block-ack support. 887 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 888 u8 add_immediate_ba_tid; 889 890 /* TID for which to remove block-ack support. 891 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */ 892 u8 remove_immediate_ba_tid; 893 894 /* Starting Sequence Number for added block-ack support. 895 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 896 __le16 add_immediate_ba_ssn; 897 898 /* 899 * Number of packets OK to transmit to station even though 900 * it is asleep -- used to synchronise PS-poll and u-APSD 901 * responses while ucode keeps track of STA sleep state. 902 */ 903 __le16 sleep_tx_count; 904 905 __le16 reserved2; 906 } __packed; 907 908 909 #define ADD_STA_SUCCESS_MSK 0x1 910 #define ADD_STA_NO_ROOM_IN_TABLE 0x2 911 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4 912 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8 913 /* 914 * REPLY_ADD_STA = 0x18 (response) 915 */ 916 struct iwl_add_sta_resp { 917 u8 status; /* ADD_STA_* */ 918 } __packed; 919 920 #define REM_STA_SUCCESS_MSK 0x1 921 /* 922 * REPLY_REM_STA = 0x19 (response) 923 */ 924 struct iwl_rem_sta_resp { 925 u8 status; 926 } __packed; 927 928 /* 929 * REPLY_REM_STA = 0x19 (command) 930 */ 931 struct iwl_rem_sta_cmd { 932 u8 num_sta; /* number of removed stations */ 933 u8 reserved[3]; 934 u8 addr[ETH_ALEN]; /* MAC addr of the first station */ 935 u8 reserved2[2]; 936 } __packed; 937 938 939 /* WiFi queues mask */ 940 #define IWL_SCD_BK_MSK cpu_to_le32(BIT(0)) 941 #define IWL_SCD_BE_MSK cpu_to_le32(BIT(1)) 942 #define IWL_SCD_VI_MSK cpu_to_le32(BIT(2)) 943 #define IWL_SCD_VO_MSK cpu_to_le32(BIT(3)) 944 #define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3)) 945 946 /* PAN queues mask */ 947 #define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4)) 948 #define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5)) 949 #define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6)) 950 #define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7)) 951 #define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7)) 952 #define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8)) 953 954 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00) 955 956 #define IWL_DROP_SINGLE 0 957 #define IWL_DROP_ALL (BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN)) 958 959 /* 960 * REPLY_TXFIFO_FLUSH = 0x1e(command and response) 961 * 962 * When using full FIFO flush this command checks the scheduler HW block WR/RD 963 * pointers to check if all the frames were transferred by DMA into the 964 * relevant TX FIFO queue. Only when the DMA is finished and the queue is 965 * empty the command can finish. 966 * This command is used to flush the TXFIFO from transmit commands, it may 967 * operate on single or multiple queues, the command queue can't be flushed by 968 * this command. The command response is returned when all the queue flush 969 * operations are done. Each TX command flushed return response with the FLUSH 970 * status set in the TX response status. When FIFO flush operation is used, 971 * the flush operation ends when both the scheduler DMA done and TXFIFO empty 972 * are set. 973 * 974 * @fifo_control: bit mask for which queues to flush 975 * @flush_control: flush controls 976 * 0: Dump single MSDU 977 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. 978 * 2: Dump all FIFO 979 */ 980 struct iwl_txfifo_flush_cmd { 981 __le32 fifo_control; 982 __le16 flush_control; 983 __le16 reserved; 984 } __packed; 985 986 /* 987 * REPLY_WEP_KEY = 0x20 988 */ 989 struct iwl_wep_key { 990 u8 key_index; 991 u8 key_offset; 992 u8 reserved1[2]; 993 u8 key_size; 994 u8 reserved2[3]; 995 u8 key[16]; 996 } __packed; 997 998 struct iwl_wep_cmd { 999 u8 num_keys; 1000 u8 global_key_type; 1001 u8 flags; 1002 u8 reserved; 1003 struct iwl_wep_key key[0]; 1004 } __packed; 1005 1006 #define WEP_KEY_WEP_TYPE 1 1007 #define WEP_KEYS_MAX 4 1008 #define WEP_INVALID_OFFSET 0xff 1009 #define WEP_KEY_LEN_64 5 1010 #define WEP_KEY_LEN_128 13 1011 1012 /****************************************************************************** 1013 * (4) 1014 * Rx Responses: 1015 * 1016 *****************************************************************************/ 1017 1018 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0) 1019 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1) 1020 1021 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0) 1022 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1) 1023 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2) 1024 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3) 1025 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0 1026 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4 1027 1028 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8) 1029 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8) 1030 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8) 1031 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8) 1032 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8) 1033 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8) 1034 1035 #define RX_RES_STATUS_STATION_FOUND (1<<6) 1036 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7) 1037 1038 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11) 1039 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11) 1040 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11) 1041 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11) 1042 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11) 1043 1044 #define RX_MPDU_RES_STATUS_ICV_OK (0x20) 1045 #define RX_MPDU_RES_STATUS_MIC_OK (0x40) 1046 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) 1047 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800) 1048 1049 1050 #define IWLAGN_RX_RES_PHY_CNT 8 1051 #define IWLAGN_RX_RES_AGC_IDX 1 1052 #define IWLAGN_RX_RES_RSSI_AB_IDX 2 1053 #define IWLAGN_RX_RES_RSSI_C_IDX 3 1054 #define IWLAGN_OFDM_AGC_MSK 0xfe00 1055 #define IWLAGN_OFDM_AGC_BIT_POS 9 1056 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff 1057 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00 1058 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0 1059 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000 1060 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000 1061 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16 1062 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff 1063 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00 1064 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0 1065 1066 struct iwlagn_non_cfg_phy { 1067 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */ 1068 } __packed; 1069 1070 1071 /* 1072 * REPLY_RX = 0xc3 (response only, not a command) 1073 * Used only for legacy (non 11n) frames. 1074 */ 1075 struct iwl_rx_phy_res { 1076 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ 1077 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */ 1078 u8 stat_id; /* configurable DSP phy data set ID */ 1079 u8 reserved1; 1080 __le64 timestamp; /* TSF at on air rise */ 1081 __le32 beacon_time_stamp; /* beacon at on-air rise */ 1082 __le16 phy_flags; /* general phy flags: band, modulation, ... */ 1083 __le16 channel; /* channel number */ 1084 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */ 1085 __le32 rate_n_flags; /* RATE_MCS_* */ 1086 __le16 byte_count; /* frame's byte-count */ 1087 __le16 frame_time; /* frame's time on the air */ 1088 } __packed; 1089 1090 struct iwl_rx_mpdu_res_start { 1091 __le16 byte_count; 1092 __le16 reserved; 1093 } __packed; 1094 1095 1096 /****************************************************************************** 1097 * (5) 1098 * Tx Commands & Responses: 1099 * 1100 * Driver must place each REPLY_TX command into one of the prioritized Tx 1101 * queues in host DRAM, shared between driver and device (see comments for 1102 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode 1103 * are preparing to transmit, the device pulls the Tx command over the PCI 1104 * bus via one of the device's Tx DMA channels, to fill an internal FIFO 1105 * from which data will be transmitted. 1106 * 1107 * uCode handles all timing and protocol related to control frames 1108 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler 1109 * handle reception of block-acks; uCode updates the host driver via 1110 * REPLY_COMPRESSED_BA. 1111 * 1112 * uCode handles retrying Tx when an ACK is expected but not received. 1113 * This includes trying lower data rates than the one requested in the Tx 1114 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). 1115 * 1116 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. 1117 * This command must be executed after every RXON command, before Tx can occur. 1118 *****************************************************************************/ 1119 1120 /* REPLY_TX Tx flags field */ 1121 1122 /* 1123 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it 1124 * before this frame. if CTS-to-self required check 1125 * RXON_FLG_SELF_CTS_EN status. 1126 */ 1127 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0) 1128 1129 /* 1: Expect ACK from receiving station 1130 * 0: Don't expect ACK (MAC header's duration field s/b 0) 1131 * Set this for unicast frames, but not broadcast/multicast. */ 1132 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3) 1133 1134 /* For agn devices: 1135 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). 1136 * Tx command's initial_rate_index indicates first rate to try; 1137 * uCode walks through table for additional Tx attempts. 1138 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. 1139 * This rate will be used for all Tx attempts; it will not be scaled. */ 1140 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4) 1141 1142 /* 1: Expect immediate block-ack. 1143 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ 1144 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6) 1145 1146 /* Tx antenna selection field; reserved (0) for agn devices. */ 1147 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00) 1148 1149 /* 1: Ignore Bluetooth priority for this frame. 1150 * 0: Delay Tx until Bluetooth device is done (normal usage). */ 1151 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12) 1152 1153 /* 1: uCode overrides sequence control field in MAC header. 1154 * 0: Driver provides sequence control field in MAC header. 1155 * Set this for management frames, non-QOS data frames, non-unicast frames, 1156 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ 1157 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13) 1158 1159 /* 1: This frame is non-last MPDU; more fragments are coming. 1160 * 0: Last fragment, or not using fragmentation. */ 1161 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14) 1162 1163 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. 1164 * 0: No TSF required in outgoing frame. 1165 * Set this for transmitting beacons and probe responses. */ 1166 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16) 1167 1168 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword 1169 * alignment of frame's payload data field. 1170 * 0: No pad 1171 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 1172 * field (but not both). Driver must align frame data (i.e. data following 1173 * MAC header) to DWORD boundary. */ 1174 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20) 1175 1176 /* accelerate aggregation support 1177 * 0 - no CCMP encryption; 1 - CCMP encryption */ 1178 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22) 1179 1180 /* HCCA-AP - disable duration overwriting. */ 1181 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25) 1182 1183 1184 /* 1185 * TX command security control 1186 */ 1187 #define TX_CMD_SEC_WEP 0x01 1188 #define TX_CMD_SEC_CCM 0x02 1189 #define TX_CMD_SEC_TKIP 0x03 1190 #define TX_CMD_SEC_MSK 0x03 1191 #define TX_CMD_SEC_SHIFT 6 1192 #define TX_CMD_SEC_KEY128 0x08 1193 1194 /* 1195 * security overhead sizes 1196 */ 1197 #define WEP_IV_LEN 4 1198 #define WEP_ICV_LEN 4 1199 #define CCMP_MIC_LEN 8 1200 #define TKIP_ICV_LEN 4 1201 1202 /* 1203 * REPLY_TX = 0x1c (command) 1204 */ 1205 1206 /* 1207 * 4965 uCode updates these Tx attempt count values in host DRAM. 1208 * Used for managing Tx retries when expecting block-acks. 1209 * Driver should set these fields to 0. 1210 */ 1211 struct iwl_dram_scratch { 1212 u8 try_cnt; /* Tx attempts */ 1213 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */ 1214 __le16 reserved; 1215 } __packed; 1216 1217 struct iwl_tx_cmd { 1218 /* 1219 * MPDU byte count: 1220 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size, 1221 * + 8 byte IV for CCM or TKIP (not used for WEP) 1222 * + Data payload 1223 * + 8-byte MIC (not used for CCM/WEP) 1224 * NOTE: Does not include Tx command bytes, post-MAC pad bytes, 1225 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i 1226 * Range: 14-2342 bytes. 1227 */ 1228 __le16 len; 1229 1230 /* 1231 * MPDU or MSDU byte count for next frame. 1232 * Used for fragmentation and bursting, but not 11n aggregation. 1233 * Same as "len", but for next frame. Set to 0 if not applicable. 1234 */ 1235 __le16 next_frame_len; 1236 1237 __le32 tx_flags; /* TX_CMD_FLG_* */ 1238 1239 /* uCode may modify this field of the Tx command (in host DRAM!). 1240 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */ 1241 struct iwl_dram_scratch scratch; 1242 1243 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */ 1244 __le32 rate_n_flags; /* RATE_MCS_* */ 1245 1246 /* Index of destination station in uCode's station table */ 1247 u8 sta_id; 1248 1249 /* Type of security encryption: CCM or TKIP */ 1250 u8 sec_ctl; /* TX_CMD_SEC_* */ 1251 1252 /* 1253 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial 1254 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for 1255 * data frames, this field may be used to selectively reduce initial 1256 * rate (via non-0 value) for special frames (e.g. management), while 1257 * still supporting rate scaling for all frames. 1258 */ 1259 u8 initial_rate_index; 1260 u8 reserved; 1261 u8 key[16]; 1262 __le16 next_frame_flags; 1263 __le16 reserved2; 1264 union { 1265 __le32 life_time; 1266 __le32 attempt; 1267 } stop_time; 1268 1269 /* Host DRAM physical address pointer to "scratch" in this command. 1270 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */ 1271 __le32 dram_lsb_ptr; 1272 u8 dram_msb_ptr; 1273 1274 u8 rts_retry_limit; /*byte 50 */ 1275 u8 data_retry_limit; /*byte 51 */ 1276 u8 tid_tspec; 1277 union { 1278 __le16 pm_frame_timeout; 1279 __le16 attempt_duration; 1280 } timeout; 1281 1282 /* 1283 * Duration of EDCA burst Tx Opportunity, in 32-usec units. 1284 * Set this if txop time is not specified by HCCA protocol (e.g. by AP). 1285 */ 1286 __le16 driver_txop; 1287 1288 /* 1289 * MAC header goes here, followed by 2 bytes padding if MAC header 1290 * length is 26 or 30 bytes, followed by payload data 1291 */ 1292 u8 payload[0]; 1293 struct ieee80211_hdr hdr[0]; 1294 } __packed; 1295 1296 /* 1297 * TX command response is sent after *agn* transmission attempts. 1298 * 1299 * both postpone and abort status are expected behavior from uCode. there is 1300 * no special operation required from driver; except for RFKILL_FLUSH, 1301 * which required tx flush host command to flush all the tx frames in queues 1302 */ 1303 enum { 1304 TX_STATUS_SUCCESS = 0x01, 1305 TX_STATUS_DIRECT_DONE = 0x02, 1306 /* postpone TX */ 1307 TX_STATUS_POSTPONE_DELAY = 0x40, 1308 TX_STATUS_POSTPONE_FEW_BYTES = 0x41, 1309 TX_STATUS_POSTPONE_BT_PRIO = 0x42, 1310 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, 1311 TX_STATUS_POSTPONE_CALC_TTAK = 0x44, 1312 /* abort TX */ 1313 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, 1314 TX_STATUS_FAIL_SHORT_LIMIT = 0x82, 1315 TX_STATUS_FAIL_LONG_LIMIT = 0x83, 1316 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84, 1317 TX_STATUS_FAIL_DRAIN_FLOW = 0x85, 1318 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, 1319 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, 1320 TX_STATUS_FAIL_DEST_PS = 0x88, 1321 TX_STATUS_FAIL_HOST_ABORTED = 0x89, 1322 TX_STATUS_FAIL_BT_RETRY = 0x8a, 1323 TX_STATUS_FAIL_STA_INVALID = 0x8b, 1324 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, 1325 TX_STATUS_FAIL_TID_DISABLE = 0x8d, 1326 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, 1327 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f, 1328 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90, 1329 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91, 1330 }; 1331 1332 #define TX_PACKET_MODE_REGULAR 0x0000 1333 #define TX_PACKET_MODE_BURST_SEQ 0x0100 1334 #define TX_PACKET_MODE_BURST_FIRST 0x0200 1335 1336 enum { 1337 TX_POWER_PA_NOT_ACTIVE = 0x0, 1338 }; 1339 1340 enum { 1341 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */ 1342 TX_STATUS_DELAY_MSK = 0x00000040, 1343 TX_STATUS_ABORT_MSK = 0x00000080, 1344 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */ 1345 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */ 1346 TX_RESERVED = 0x00780000, /* bits 19:22 */ 1347 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */ 1348 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */ 1349 }; 1350 1351 /* ******************************* 1352 * TX aggregation status 1353 ******************************* */ 1354 1355 enum { 1356 AGG_TX_STATE_TRANSMITTED = 0x00, 1357 AGG_TX_STATE_UNDERRUN_MSK = 0x01, 1358 AGG_TX_STATE_BT_PRIO_MSK = 0x02, 1359 AGG_TX_STATE_FEW_BYTES_MSK = 0x04, 1360 AGG_TX_STATE_ABORT_MSK = 0x08, 1361 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10, 1362 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20, 1363 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40, 1364 AGG_TX_STATE_SCD_QUERY_MSK = 0x80, 1365 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100, 1366 AGG_TX_STATE_RESPONSE_MSK = 0x1ff, 1367 AGG_TX_STATE_DUMP_TX_MSK = 0x200, 1368 AGG_TX_STATE_DELAY_TX_MSK = 0x400 1369 }; 1370 1371 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */ 1372 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */ 1373 1374 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \ 1375 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \ 1376 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK) 1377 1378 /* # tx attempts for first frame in aggregation */ 1379 #define AGG_TX_STATE_TRY_CNT_POS 12 1380 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000 1381 1382 /* Command ID and sequence number of Tx command for this frame */ 1383 #define AGG_TX_STATE_SEQ_NUM_POS 16 1384 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000 1385 1386 /* 1387 * REPLY_TX = 0x1c (response) 1388 * 1389 * This response may be in one of two slightly different formats, indicated 1390 * by the frame_count field: 1391 * 1392 * 1) No aggregation (frame_count == 1). This reports Tx results for 1393 * a single frame. Multiple attempts, at various bit rates, may have 1394 * been made for this frame. 1395 * 1396 * 2) Aggregation (frame_count > 1). This reports Tx results for 1397 * 2 or more frames that used block-acknowledge. All frames were 1398 * transmitted at same rate. Rate scaling may have been used if first 1399 * frame in this new agg block failed in previous agg block(s). 1400 * 1401 * Note that, for aggregation, ACK (block-ack) status is not delivered here; 1402 * block-ack has not been received by the time the agn device records 1403 * this status. 1404 * This status relates to reasons the tx might have been blocked or aborted 1405 * within the sending station (this agn device), rather than whether it was 1406 * received successfully by the destination station. 1407 */ 1408 struct agg_tx_status { 1409 __le16 status; 1410 __le16 sequence; 1411 } __packed; 1412 1413 /* 1414 * definitions for initial rate index field 1415 * bits [3:0] initial rate index 1416 * bits [6:4] rate table color, used for the initial rate 1417 * bit-7 invalid rate indication 1418 * i.e. rate was not chosen from rate table 1419 * or rate table color was changed during frame retries 1420 * refer tlc rate info 1421 */ 1422 1423 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0 1424 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f 1425 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4 1426 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70 1427 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80 1428 1429 /* refer to ra_tid */ 1430 #define IWLAGN_TX_RES_TID_POS 0 1431 #define IWLAGN_TX_RES_TID_MSK 0x0f 1432 #define IWLAGN_TX_RES_RA_POS 4 1433 #define IWLAGN_TX_RES_RA_MSK 0xf0 1434 1435 struct iwlagn_tx_resp { 1436 u8 frame_count; /* 1 no aggregation, >1 aggregation */ 1437 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */ 1438 u8 failure_rts; /* # failures due to unsuccessful RTS */ 1439 u8 failure_frame; /* # failures due to no ACK (unused for agg) */ 1440 1441 /* For non-agg: Rate at which frame was successful. 1442 * For agg: Rate at which all frames were transmitted. */ 1443 __le32 rate_n_flags; /* RATE_MCS_* */ 1444 1445 /* For non-agg: RTS + CTS + frame tx attempts time + ACK. 1446 * For agg: RTS + CTS + aggregation tx time + block-ack time. */ 1447 __le16 wireless_media_time; /* uSecs */ 1448 1449 u8 pa_status; /* RF power amplifier measurement (not used) */ 1450 u8 pa_integ_res_a[3]; 1451 u8 pa_integ_res_b[3]; 1452 u8 pa_integ_res_C[3]; 1453 1454 __le32 tfd_info; 1455 __le16 seq_ctl; 1456 __le16 byte_cnt; 1457 u8 tlc_info; 1458 u8 ra_tid; /* tid (0:3), sta_id (4:7) */ 1459 __le16 frame_ctrl; 1460 /* 1461 * For non-agg: frame status TX_STATUS_* 1462 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status 1463 * fields follow this one, up to frame_count. 1464 * Bit fields: 1465 * 11- 0: AGG_TX_STATE_* status code 1466 * 15-12: Retry count for 1st frame in aggregation (retries 1467 * occur if tx failed for this frame when it was a 1468 * member of a previous aggregation block). If rate 1469 * scaling is used, retry count indicates the rate 1470 * table entry used for all frames in the new agg. 1471 * 31-16: Sequence # for this frame's Tx cmd (not SSN!) 1472 */ 1473 struct agg_tx_status status; /* TX status (in aggregation - 1474 * status of 1st frame) */ 1475 } __packed; 1476 /* 1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) 1478 * 1479 * Reports Block-Acknowledge from recipient station 1480 */ 1481 struct iwl_compressed_ba_resp { 1482 __le32 sta_addr_lo32; 1483 __le16 sta_addr_hi16; 1484 __le16 reserved; 1485 1486 /* Index of recipient (BA-sending) station in uCode's station table */ 1487 u8 sta_id; 1488 u8 tid; 1489 __le16 seq_ctl; 1490 __le64 bitmap; 1491 __le16 scd_flow; 1492 __le16 scd_ssn; 1493 u8 txed; /* number of frames sent */ 1494 u8 txed_2_done; /* number of frames acked */ 1495 } __packed; 1496 1497 /* 1498 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) 1499 * 1500 */ 1501 1502 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ 1503 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0) 1504 1505 /* # of EDCA prioritized tx fifos */ 1506 #define LINK_QUAL_AC_NUM AC_NUM 1507 1508 /* # entries in rate scale table to support Tx retries */ 1509 #define LINK_QUAL_MAX_RETRY_NUM 16 1510 1511 /* Tx antenna selection values */ 1512 #define LINK_QUAL_ANT_A_MSK (1 << 0) 1513 #define LINK_QUAL_ANT_B_MSK (1 << 1) 1514 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) 1515 1516 1517 /** 1518 * struct iwl_link_qual_general_params 1519 * 1520 * Used in REPLY_TX_LINK_QUALITY_CMD 1521 */ 1522 struct iwl_link_qual_general_params { 1523 u8 flags; 1524 1525 /* No entries at or above this (driver chosen) index contain MIMO */ 1526 u8 mimo_delimiter; 1527 1528 /* Best single antenna to use for single stream (legacy, SISO). */ 1529 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1530 1531 /* Best antennas to use for MIMO (unused for 4965, assumes both). */ 1532 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1533 1534 /* 1535 * If driver needs to use different initial rates for different 1536 * EDCA QOS access categories (as implemented by tx fifos 0-3), 1537 * this table will set that up, by indicating the indexes in the 1538 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start. 1539 * Otherwise, driver should set all entries to 0. 1540 * 1541 * Entry usage: 1542 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice 1543 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3. 1544 */ 1545 u8 start_rate_index[LINK_QUAL_AC_NUM]; 1546 } __packed; 1547 1548 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */ 1549 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000) 1550 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100) 1551 1552 #define LINK_QUAL_AGG_DISABLE_START_DEF (3) 1553 #define LINK_QUAL_AGG_DISABLE_START_MAX (255) 1554 #define LINK_QUAL_AGG_DISABLE_START_MIN (0) 1555 1556 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63) 1557 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63) 1558 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0) 1559 1560 /** 1561 * struct iwl_link_qual_agg_params 1562 * 1563 * Used in REPLY_TX_LINK_QUALITY_CMD 1564 */ 1565 struct iwl_link_qual_agg_params { 1566 1567 /* 1568 *Maximum number of uSec in aggregation. 1569 * default set to 4000 (4 milliseconds) if not configured in .cfg 1570 */ 1571 __le16 agg_time_limit; 1572 1573 /* 1574 * Number of Tx retries allowed for a frame, before that frame will 1575 * no longer be considered for the start of an aggregation sequence 1576 * (scheduler will then try to tx it as single frame). 1577 * Driver should set this to 3. 1578 */ 1579 u8 agg_dis_start_th; 1580 1581 /* 1582 * Maximum number of frames in aggregation. 1583 * 0 = no limit (default). 1 = no aggregation. 1584 * Other values = max # frames in aggregation. 1585 */ 1586 u8 agg_frame_cnt_limit; 1587 1588 __le32 reserved; 1589 } __packed; 1590 1591 /* 1592 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) 1593 * 1594 * For agn devices 1595 * 1596 * Each station in the agn device's internal station table has its own table 1597 * of 16 1598 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when 1599 * an ACK is not received. This command replaces the entire table for 1600 * one station. 1601 * 1602 * NOTE: Station must already be in agn device's station table. 1603 * Use REPLY_ADD_STA. 1604 * 1605 * The rate scaling procedures described below work well. Of course, other 1606 * procedures are possible, and may work better for particular environments. 1607 * 1608 * 1609 * FILLING THE RATE TABLE 1610 * 1611 * Given a particular initial rate and mode, as determined by the rate 1612 * scaling algorithm described below, the Linux driver uses the following 1613 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the 1614 * Link Quality command: 1615 * 1616 * 1617 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: 1618 * a) Use this same initial rate for first 3 entries. 1619 * b) Find next lower available rate using same mode (SISO or MIMO), 1620 * use for next 3 entries. If no lower rate available, switch to 1621 * legacy mode (no HT40 channel, no MIMO, no short guard interval). 1622 * c) If using MIMO, set command's mimo_delimiter to number of entries 1623 * using MIMO (3 or 6). 1624 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, 1625 * no MIMO, no short guard interval), at the next lower bit rate 1626 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow 1627 * legacy procedure for remaining table entries. 1628 * 1629 * 2) If using legacy initial rate: 1630 * a) Use the initial rate for only one entry. 1631 * b) For each following entry, reduce the rate to next lower available 1632 * rate, until reaching the lowest available rate. 1633 * c) When reducing rate, also switch antenna selection. 1634 * d) Once lowest available rate is reached, repeat this rate until 1635 * rate table is filled (16 entries), switching antenna each entry. 1636 * 1637 * 1638 * ACCUMULATING HISTORY 1639 * 1640 * The rate scaling algorithm for agn devices, as implemented in Linux driver, 1641 * uses two sets of frame Tx success history: One for the current/active 1642 * modulation mode, and one for a speculative/search mode that is being 1643 * attempted. If the speculative mode turns out to be more effective (i.e. 1644 * actual transfer rate is better), then the driver continues to use the 1645 * speculative mode as the new current active mode. 1646 * 1647 * Each history set contains, separately for each possible rate, data for a 1648 * sliding window of the 62 most recent tx attempts at that rate. The data 1649 * includes a shifting bitmap of success(1)/failure(0), and sums of successful 1650 * and attempted frames, from which the driver can additionally calculate a 1651 * success ratio (success / attempted) and number of failures 1652 * (attempted - success), and control the size of the window (attempted). 1653 * The driver uses the bit map to remove successes from the success sum, as 1654 * the oldest tx attempts fall out of the window. 1655 * 1656 * When the agn device makes multiple tx attempts for a given frame, each 1657 * attempt might be at a different rate, and have different modulation 1658 * characteristics (e.g. antenna, fat channel, short guard interval), as set 1659 * up in the rate scaling table in the Link Quality command. The driver must 1660 * determine which rate table entry was used for each tx attempt, to determine 1661 * which rate-specific history to update, and record only those attempts that 1662 * match the modulation characteristics of the history set. 1663 * 1664 * When using block-ack (aggregation), all frames are transmitted at the same 1665 * rate, since there is no per-attempt acknowledgment from the destination 1666 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in 1667 * rate_n_flags field. After receiving a block-ack, the driver can update 1668 * history for the entire block all at once. 1669 * 1670 * 1671 * FINDING BEST STARTING RATE: 1672 * 1673 * When working with a selected initial modulation mode (see below), the 1674 * driver attempts to find a best initial rate. The initial rate is the 1675 * first entry in the Link Quality command's rate table. 1676 * 1677 * 1) Calculate actual throughput (success ratio * expected throughput, see 1678 * table below) for current initial rate. Do this only if enough frames 1679 * have been attempted to make the value meaningful: at least 6 failed 1680 * tx attempts, or at least 8 successes. If not enough, don't try rate 1681 * scaling yet. 1682 * 1683 * 2) Find available rates adjacent to current initial rate. Available means: 1684 * a) supported by hardware && 1685 * b) supported by association && 1686 * c) within any constraints selected by user 1687 * 1688 * 3) Gather measured throughputs for adjacent rates. These might not have 1689 * enough history to calculate a throughput. That's okay, we might try 1690 * using one of them anyway! 1691 * 1692 * 4) Try decreasing rate if, for current rate: 1693 * a) success ratio is < 15% || 1694 * b) lower adjacent rate has better measured throughput || 1695 * c) higher adjacent rate has worse throughput, and lower is unmeasured 1696 * 1697 * As a sanity check, if decrease was determined above, leave rate 1698 * unchanged if: 1699 * a) lower rate unavailable 1700 * b) success ratio at current rate > 85% (very good) 1701 * c) current measured throughput is better than expected throughput 1702 * of lower rate (under perfect 100% tx conditions, see table below) 1703 * 1704 * 5) Try increasing rate if, for current rate: 1705 * a) success ratio is < 15% || 1706 * b) both adjacent rates' throughputs are unmeasured (try it!) || 1707 * b) higher adjacent rate has better measured throughput || 1708 * c) lower adjacent rate has worse throughput, and higher is unmeasured 1709 * 1710 * As a sanity check, if increase was determined above, leave rate 1711 * unchanged if: 1712 * a) success ratio at current rate < 70%. This is not particularly 1713 * good performance; higher rate is sure to have poorer success. 1714 * 1715 * 6) Re-evaluate the rate after each tx frame. If working with block- 1716 * acknowledge, history and statistics may be calculated for the entire 1717 * block (including prior history that fits within the history windows), 1718 * before re-evaluation. 1719 * 1720 * FINDING BEST STARTING MODULATION MODE: 1721 * 1722 * After working with a modulation mode for a "while" (and doing rate scaling), 1723 * the driver searches for a new initial mode in an attempt to improve 1724 * throughput. The "while" is measured by numbers of attempted frames: 1725 * 1726 * For legacy mode, search for new mode after: 1727 * 480 successful frames, or 160 failed frames 1728 * For high-throughput modes (SISO or MIMO), search for new mode after: 1729 * 4500 successful frames, or 400 failed frames 1730 * 1731 * Mode switch possibilities are (3 for each mode): 1732 * 1733 * For legacy: 1734 * Change antenna, try SISO (if HT association), try MIMO (if HT association) 1735 * For SISO: 1736 * Change antenna, try MIMO, try shortened guard interval (SGI) 1737 * For MIMO: 1738 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) 1739 * 1740 * When trying a new mode, use the same bit rate as the old/current mode when 1741 * trying antenna switches and shortened guard interval. When switching to 1742 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate 1743 * for which the expected throughput (under perfect conditions) is about the 1744 * same or slightly better than the actual measured throughput delivered by 1745 * the old/current mode. 1746 * 1747 * Actual throughput can be estimated by multiplying the expected throughput 1748 * by the success ratio (successful / attempted tx frames). Frame size is 1749 * not considered in this calculation; it assumes that frame size will average 1750 * out to be fairly consistent over several samples. The following are 1751 * metric values for expected throughput assuming 100% success ratio. 1752 * Only G band has support for CCK rates: 1753 * 1754 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 1755 * 1756 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 1757 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 1758 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 1759 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 1760 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 1761 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 1762 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 1763 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 1764 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 1765 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 1766 * 1767 * After the new mode has been tried for a short while (minimum of 6 failed 1768 * frames or 8 successful frames), compare success ratio and actual throughput 1769 * estimate of the new mode with the old. If either is better with the new 1770 * mode, continue to use the new mode. 1771 * 1772 * Continue comparing modes until all 3 possibilities have been tried. 1773 * If moving from legacy to HT, try all 3 possibilities from the new HT 1774 * mode. After trying all 3, a best mode is found. Continue to use this mode 1775 * for the longer "while" described above (e.g. 480 successful frames for 1776 * legacy), and then repeat the search process. 1777 * 1778 */ 1779 struct iwl_link_quality_cmd { 1780 1781 /* Index of destination/recipient station in uCode's station table */ 1782 u8 sta_id; 1783 u8 reserved1; 1784 __le16 control; /* not used */ 1785 struct iwl_link_qual_general_params general_params; 1786 struct iwl_link_qual_agg_params agg_params; 1787 1788 /* 1789 * Rate info; when using rate-scaling, Tx command's initial_rate_index 1790 * specifies 1st Tx rate attempted, via index into this table. 1791 * agn devices works its way through table when retrying Tx. 1792 */ 1793 struct { 1794 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */ 1795 } rs_table[LINK_QUAL_MAX_RETRY_NUM]; 1796 __le32 reserved2; 1797 } __packed; 1798 1799 /* 1800 * BT configuration enable flags: 1801 * bit 0 - 1: BT channel announcement enabled 1802 * 0: disable 1803 * bit 1 - 1: priority of BT device enabled 1804 * 0: disable 1805 * bit 2 - 1: BT 2 wire support enabled 1806 * 0: disable 1807 */ 1808 #define BT_COEX_DISABLE (0x0) 1809 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0) 1810 #define BT_ENABLE_PRIORITY BIT(1) 1811 #define BT_ENABLE_2_WIRE BIT(2) 1812 1813 #define BT_COEX_DISABLE (0x0) 1814 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY) 1815 1816 #define BT_LEAD_TIME_MIN (0x0) 1817 #define BT_LEAD_TIME_DEF (0x1E) 1818 #define BT_LEAD_TIME_MAX (0xFF) 1819 1820 #define BT_MAX_KILL_MIN (0x1) 1821 #define BT_MAX_KILL_DEF (0x5) 1822 #define BT_MAX_KILL_MAX (0xFF) 1823 1824 #define BT_DURATION_LIMIT_DEF 625 1825 #define BT_DURATION_LIMIT_MAX 1250 1826 #define BT_DURATION_LIMIT_MIN 625 1827 1828 #define BT_ON_THRESHOLD_DEF 4 1829 #define BT_ON_THRESHOLD_MAX 1000 1830 #define BT_ON_THRESHOLD_MIN 1 1831 1832 #define BT_FRAG_THRESHOLD_DEF 0 1833 #define BT_FRAG_THRESHOLD_MAX 0 1834 #define BT_FRAG_THRESHOLD_MIN 0 1835 1836 #define BT_AGG_THRESHOLD_DEF 1200 1837 #define BT_AGG_THRESHOLD_MAX 8000 1838 #define BT_AGG_THRESHOLD_MIN 400 1839 1840 /* 1841 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) 1842 * 1843 * agn devices support hardware handshake with Bluetooth device on 1844 * same platform. Bluetooth device alerts wireless device when it will Tx; 1845 * wireless device can delay or kill its own Tx to accommodate. 1846 */ 1847 struct iwl_bt_cmd { 1848 u8 flags; 1849 u8 lead_time; 1850 u8 max_kill; 1851 u8 reserved; 1852 __le32 kill_ack_mask; 1853 __le32 kill_cts_mask; 1854 } __packed; 1855 1856 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0) 1857 1858 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5)) 1859 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3 1860 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0 1861 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1 1862 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2 1863 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3 1864 1865 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6) 1866 /* Disable Sync PSPoll on SCO/eSCO */ 1867 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7) 1868 1869 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */ 1870 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */ 1871 1872 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF 1873 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00 1874 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0 1875 1876 #define IWLAGN_BT_MAX_KILL_DEFAULT 5 1877 1878 #define IWLAGN_BT3_T7_DEFAULT 1 1879 1880 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000) 1881 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000) 1882 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff) 1883 1884 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2 1885 1886 #define IWLAGN_BT3_T2_DEFAULT 0xc 1887 1888 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0)) 1889 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1)) 1890 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2)) 1891 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3)) 1892 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4)) 1893 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5)) 1894 #define IWLAGN_BT_VALID_BT4_TIMES cpu_to_le16(BIT(6)) 1895 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7)) 1896 1897 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \ 1898 IWLAGN_BT_VALID_BOOST | \ 1899 IWLAGN_BT_VALID_MAX_KILL | \ 1900 IWLAGN_BT_VALID_3W_TIMERS | \ 1901 IWLAGN_BT_VALID_KILL_ACK_MASK | \ 1902 IWLAGN_BT_VALID_KILL_CTS_MASK | \ 1903 IWLAGN_BT_VALID_BT4_TIMES | \ 1904 IWLAGN_BT_VALID_3W_LUT) 1905 1906 struct iwl_basic_bt_cmd { 1907 u8 flags; 1908 u8 ledtime; /* unused */ 1909 u8 max_kill; 1910 u8 bt3_timer_t7_value; 1911 __le32 kill_ack_mask; 1912 __le32 kill_cts_mask; 1913 u8 bt3_prio_sample_time; 1914 u8 bt3_timer_t2_value; 1915 __le16 bt4_reaction_time; /* unused */ 1916 __le32 bt3_lookup_table[12]; 1917 __le16 bt4_decision_time; /* unused */ 1918 __le16 valid; 1919 }; 1920 1921 struct iwl6000_bt_cmd { 1922 struct iwl_basic_bt_cmd basic; 1923 u8 prio_boost; 1924 /* 1925 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1926 * if configure the following patterns 1927 */ 1928 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1929 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1930 }; 1931 1932 struct iwl2000_bt_cmd { 1933 struct iwl_basic_bt_cmd basic; 1934 __le32 prio_boost; 1935 /* 1936 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1937 * if configure the following patterns 1938 */ 1939 u8 reserved; 1940 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1941 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1942 }; 1943 1944 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0)) 1945 1946 struct iwlagn_bt_sco_cmd { 1947 __le32 flags; 1948 }; 1949 1950 /****************************************************************************** 1951 * (6) 1952 * Spectrum Management (802.11h) Commands, Responses, Notifications: 1953 * 1954 *****************************************************************************/ 1955 1956 /* 1957 * Spectrum Management 1958 */ 1959 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \ 1960 RXON_FILTER_CTL2HOST_MSK | \ 1961 RXON_FILTER_ACCEPT_GRP_MSK | \ 1962 RXON_FILTER_DIS_DECRYPT_MSK | \ 1963 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \ 1964 RXON_FILTER_ASSOC_MSK | \ 1965 RXON_FILTER_BCON_AWARE_MSK) 1966 1967 struct iwl_measure_channel { 1968 __le32 duration; /* measurement duration in extended beacon 1969 * format */ 1970 u8 channel; /* channel to measure */ 1971 u8 type; /* see enum iwl_measure_type */ 1972 __le16 reserved; 1973 } __packed; 1974 1975 /* 1976 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) 1977 */ 1978 struct iwl_spectrum_cmd { 1979 __le16 len; /* number of bytes starting from token */ 1980 u8 token; /* token id */ 1981 u8 id; /* measurement id -- 0 or 1 */ 1982 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */ 1983 u8 periodic; /* 1 = periodic */ 1984 __le16 path_loss_timeout; 1985 __le32 start_time; /* start time in extended beacon format */ 1986 __le32 reserved2; 1987 __le32 flags; /* rxon flags */ 1988 __le32 filter_flags; /* rxon filter flags */ 1989 __le16 channel_count; /* minimum 1, maximum 10 */ 1990 __le16 reserved3; 1991 struct iwl_measure_channel channels[10]; 1992 } __packed; 1993 1994 /* 1995 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) 1996 */ 1997 struct iwl_spectrum_resp { 1998 u8 token; 1999 u8 id; /* id of the prior command replaced, or 0xff */ 2000 __le16 status; /* 0 - command will be handled 2001 * 1 - cannot handle (conflicts with another 2002 * measurement) */ 2003 } __packed; 2004 2005 enum iwl_measurement_state { 2006 IWL_MEASUREMENT_START = 0, 2007 IWL_MEASUREMENT_STOP = 1, 2008 }; 2009 2010 enum iwl_measurement_status { 2011 IWL_MEASUREMENT_OK = 0, 2012 IWL_MEASUREMENT_CONCURRENT = 1, 2013 IWL_MEASUREMENT_CSA_CONFLICT = 2, 2014 IWL_MEASUREMENT_TGH_CONFLICT = 3, 2015 /* 4-5 reserved */ 2016 IWL_MEASUREMENT_STOPPED = 6, 2017 IWL_MEASUREMENT_TIMEOUT = 7, 2018 IWL_MEASUREMENT_PERIODIC_FAILED = 8, 2019 }; 2020 2021 #define NUM_ELEMENTS_IN_HISTOGRAM 8 2022 2023 struct iwl_measurement_histogram { 2024 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */ 2025 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */ 2026 } __packed; 2027 2028 /* clear channel availability counters */ 2029 struct iwl_measurement_cca_counters { 2030 __le32 ofdm; 2031 __le32 cck; 2032 } __packed; 2033 2034 enum iwl_measure_type { 2035 IWL_MEASURE_BASIC = (1 << 0), 2036 IWL_MEASURE_CHANNEL_LOAD = (1 << 1), 2037 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2), 2038 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3), 2039 IWL_MEASURE_FRAME = (1 << 4), 2040 /* bits 5:6 are reserved */ 2041 IWL_MEASURE_IDLE = (1 << 7), 2042 }; 2043 2044 /* 2045 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) 2046 */ 2047 struct iwl_spectrum_notification { 2048 u8 id; /* measurement id -- 0 or 1 */ 2049 u8 token; 2050 u8 channel_index; /* index in measurement channel list */ 2051 u8 state; /* 0 - start, 1 - stop */ 2052 __le32 start_time; /* lower 32-bits of TSF */ 2053 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */ 2054 u8 channel; 2055 u8 type; /* see enum iwl_measurement_type */ 2056 u8 reserved1; 2057 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only 2058 * valid if applicable for measurement type requested. */ 2059 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */ 2060 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */ 2061 __le32 cca_time; /* channel load time in usecs */ 2062 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 - 2063 * unidentified */ 2064 u8 reserved2[3]; 2065 struct iwl_measurement_histogram histogram; 2066 __le32 stop_time; /* lower 32-bits of TSF */ 2067 __le32 status; /* see iwl_measurement_status */ 2068 } __packed; 2069 2070 /****************************************************************************** 2071 * (7) 2072 * Power Management Commands, Responses, Notifications: 2073 * 2074 *****************************************************************************/ 2075 2076 /** 2077 * struct iwl_powertable_cmd - Power Table Command 2078 * @flags: See below: 2079 * 2080 * POWER_TABLE_CMD = 0x77 (command, has simple generic response) 2081 * 2082 * PM allow: 2083 * bit 0 - '0' Driver not allow power management 2084 * '1' Driver allow PM (use rest of parameters) 2085 * 2086 * uCode send sleep notifications: 2087 * bit 1 - '0' Don't send sleep notification 2088 * '1' send sleep notification (SEND_PM_NOTIFICATION) 2089 * 2090 * Sleep over DTIM 2091 * bit 2 - '0' PM have to walk up every DTIM 2092 * '1' PM could sleep over DTIM till listen Interval. 2093 * 2094 * PCI power managed 2095 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) 2096 * '1' !(PCI_CFG_LINK_CTRL & 0x1) 2097 * 2098 * Fast PD 2099 * bit 4 - '1' Put radio to sleep when receiving frame for others 2100 * 2101 * Force sleep Modes 2102 * bit 31/30- '00' use both mac/xtal sleeps 2103 * '01' force Mac sleep 2104 * '10' force xtal sleep 2105 * '11' Illegal set 2106 * 2107 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then 2108 * ucode assume sleep over DTIM is allowed and we don't need to wake up 2109 * for every DTIM. 2110 */ 2111 #define IWL_POWER_VEC_SIZE 5 2112 2113 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0)) 2114 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0)) 2115 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1)) 2116 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2)) 2117 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3)) 2118 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4)) 2119 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5)) 2120 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6)) 2121 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7)) 2122 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8)) 2123 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9)) 2124 2125 struct iwl_powertable_cmd { 2126 __le16 flags; 2127 u8 keep_alive_seconds; 2128 u8 debug_flags; 2129 __le32 rx_data_timeout; 2130 __le32 tx_data_timeout; 2131 __le32 sleep_interval[IWL_POWER_VEC_SIZE]; 2132 __le32 keep_alive_beacons; 2133 } __packed; 2134 2135 /* 2136 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) 2137 * all devices identical. 2138 */ 2139 struct iwl_sleep_notification { 2140 u8 pm_sleep_mode; 2141 u8 pm_wakeup_src; 2142 __le16 reserved; 2143 __le32 sleep_time; 2144 __le32 tsf_low; 2145 __le32 bcon_timer; 2146 } __packed; 2147 2148 /* Sleep states. all devices identical. */ 2149 enum { 2150 IWL_PM_NO_SLEEP = 0, 2151 IWL_PM_SLP_MAC = 1, 2152 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2, 2153 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3, 2154 IWL_PM_SLP_PHY = 4, 2155 IWL_PM_SLP_REPENT = 5, 2156 IWL_PM_WAKEUP_BY_TIMER = 6, 2157 IWL_PM_WAKEUP_BY_DRIVER = 7, 2158 IWL_PM_WAKEUP_BY_RFKILL = 8, 2159 /* 3 reserved */ 2160 IWL_PM_NUM_OF_MODES = 12, 2161 }; 2162 2163 /* 2164 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) 2165 */ 2166 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */ 2167 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */ 2168 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */ 2169 struct iwl_card_state_cmd { 2170 __le32 status; /* CARD_STATE_CMD_* request new power state */ 2171 } __packed; 2172 2173 /* 2174 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) 2175 */ 2176 struct iwl_card_state_notif { 2177 __le32 flags; 2178 } __packed; 2179 2180 #define HW_CARD_DISABLED 0x01 2181 #define SW_CARD_DISABLED 0x02 2182 #define CT_CARD_DISABLED 0x04 2183 #define RXON_CARD_DISABLED 0x10 2184 2185 struct iwl_ct_kill_config { 2186 __le32 reserved; 2187 __le32 critical_temperature_M; 2188 __le32 critical_temperature_R; 2189 } __packed; 2190 2191 /* 1000, and 6x00 */ 2192 struct iwl_ct_kill_throttling_config { 2193 __le32 critical_temperature_exit; 2194 __le32 reserved; 2195 __le32 critical_temperature_enter; 2196 } __packed; 2197 2198 /****************************************************************************** 2199 * (8) 2200 * Scan Commands, Responses, Notifications: 2201 * 2202 *****************************************************************************/ 2203 2204 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0) 2205 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1) 2206 2207 /** 2208 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table 2209 * 2210 * One for each channel in the scan list. 2211 * Each channel can independently select: 2212 * 1) SSID for directed active scans 2213 * 2) Txpower setting (for rate specified within Tx command) 2214 * 3) How long to stay on-channel (behavior may be modified by quiet_time, 2215 * quiet_plcp_th, good_CRC_th) 2216 * 2217 * To avoid uCode errors, make sure the following are true (see comments 2218 * under struct iwl_scan_cmd about max_out_time and quiet_time): 2219 * 1) If using passive_dwell (i.e. passive_dwell != 0): 2220 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) 2221 * 2) quiet_time <= active_dwell 2222 * 3) If restricting off-channel time (i.e. max_out_time !=0): 2223 * passive_dwell < max_out_time 2224 * active_dwell < max_out_time 2225 */ 2226 2227 struct iwl_scan_channel { 2228 /* 2229 * type is defined as: 2230 * 0:0 1 = active, 0 = passive 2231 * 1:20 SSID direct bit map; if a bit is set, then corresponding 2232 * SSID IE is transmitted in probe request. 2233 * 21:31 reserved 2234 */ 2235 __le32 type; 2236 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */ 2237 u8 tx_gain; /* gain for analog radio */ 2238 u8 dsp_atten; /* gain for DSP */ 2239 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */ 2240 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */ 2241 } __packed; 2242 2243 /* set number of direct probes __le32 type */ 2244 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1)))) 2245 2246 /** 2247 * struct iwl_ssid_ie - directed scan network information element 2248 * 2249 * Up to 20 of these may appear in REPLY_SCAN_CMD, 2250 * selected by "type" bit field in struct iwl_scan_channel; 2251 * each channel may select different ssids from among the 20 entries. 2252 * SSID IEs get transmitted in reverse order of entry. 2253 */ 2254 struct iwl_ssid_ie { 2255 u8 id; 2256 u8 len; 2257 u8 ssid[32]; 2258 } __packed; 2259 2260 #define PROBE_OPTION_MAX 20 2261 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF) 2262 #define IWL_GOOD_CRC_TH_DISABLED 0 2263 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) 2264 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff) 2265 #define IWL_MAX_SCAN_SIZE 1024 2266 #define IWL_MAX_CMD_SIZE 4096 2267 2268 /* 2269 * REPLY_SCAN_CMD = 0x80 (command) 2270 * 2271 * The hardware scan command is very powerful; the driver can set it up to 2272 * maintain (relatively) normal network traffic while doing a scan in the 2273 * background. The max_out_time and suspend_time control the ratio of how 2274 * long the device stays on an associated network channel ("service channel") 2275 * vs. how long it's away from the service channel, i.e. tuned to other channels 2276 * for scanning. 2277 * 2278 * max_out_time is the max time off-channel (in usec), and suspend_time 2279 * is how long (in "extended beacon" format) that the scan is "suspended" 2280 * after returning to the service channel. That is, suspend_time is the 2281 * time that we stay on the service channel, doing normal work, between 2282 * scan segments. The driver may set these parameters differently to support 2283 * scanning when associated vs. not associated, and light vs. heavy traffic 2284 * loads when associated. 2285 * 2286 * After receiving this command, the device's scan engine does the following; 2287 * 2288 * 1) Sends SCAN_START notification to driver 2289 * 2) Checks to see if it has time to do scan for one channel 2290 * 3) Sends NULL packet, with power-save (PS) bit set to 1, 2291 * to tell AP that we're going off-channel 2292 * 4) Tunes to first channel in scan list, does active or passive scan 2293 * 5) Sends SCAN_RESULT notification to driver 2294 * 6) Checks to see if it has time to do scan on *next* channel in list 2295 * 7) Repeats 4-6 until it no longer has time to scan the next channel 2296 * before max_out_time expires 2297 * 8) Returns to service channel 2298 * 9) Sends NULL packet with PS=0 to tell AP that we're back 2299 * 10) Stays on service channel until suspend_time expires 2300 * 11) Repeats entire process 2-10 until list is complete 2301 * 12) Sends SCAN_COMPLETE notification 2302 * 2303 * For fast, efficient scans, the scan command also has support for staying on 2304 * a channel for just a short time, if doing active scanning and getting no 2305 * responses to the transmitted probe request. This time is controlled by 2306 * quiet_time, and the number of received packets below which a channel is 2307 * considered "quiet" is controlled by quiet_plcp_threshold. 2308 * 2309 * For active scanning on channels that have regulatory restrictions against 2310 * blindly transmitting, the scan can listen before transmitting, to make sure 2311 * that there is already legitimate activity on the channel. If enough 2312 * packets are cleanly received on the channel (controlled by good_CRC_th, 2313 * typical value 1), the scan engine starts transmitting probe requests. 2314 * 2315 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. 2316 * 2317 * To avoid uCode errors, see timing restrictions described under 2318 * struct iwl_scan_channel. 2319 */ 2320 2321 enum iwl_scan_flags { 2322 /* BIT(0) currently unused */ 2323 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1), 2324 /* bits 2-7 reserved */ 2325 }; 2326 2327 struct iwl_scan_cmd { 2328 __le16 len; 2329 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */ 2330 u8 channel_count; /* # channels in channel list */ 2331 __le16 quiet_time; /* dwell only this # millisecs on quiet channel 2332 * (only for active scan) */ 2333 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ 2334 __le16 good_CRC_th; /* passive -> active promotion threshold */ 2335 __le16 rx_chain; /* RXON_RX_CHAIN_* */ 2336 __le32 max_out_time; /* max usec to be away from associated (service) 2337 * channel */ 2338 __le32 suspend_time; /* pause scan this long (in "extended beacon 2339 * format") when returning to service chnl: 2340 */ 2341 __le32 flags; /* RXON_FLG_* */ 2342 __le32 filter_flags; /* RXON_FILTER_* */ 2343 2344 /* For active scans (set to all-0s for passive scans). 2345 * Does not include payload. Must specify Tx rate; no rate scaling. */ 2346 struct iwl_tx_cmd tx_cmd; 2347 2348 /* For directed active scans (set to all-0s otherwise) */ 2349 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX]; 2350 2351 /* 2352 * Probe request frame, followed by channel list. 2353 * 2354 * Size of probe request frame is specified by byte count in tx_cmd. 2355 * Channel list follows immediately after probe request frame. 2356 * Number of channels in list is specified by channel_count. 2357 * Each channel in list is of type: 2358 * 2359 * struct iwl_scan_channel channels[0]; 2360 * 2361 * NOTE: Only one band of channels can be scanned per pass. You 2362 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait 2363 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION) 2364 * before requesting another scan. 2365 */ 2366 u8 data[0]; 2367 } __packed; 2368 2369 /* Can abort will notify by complete notification with abort status. */ 2370 #define CAN_ABORT_STATUS cpu_to_le32(0x1) 2371 /* complete notification statuses */ 2372 #define ABORT_STATUS 0x2 2373 2374 /* 2375 * REPLY_SCAN_CMD = 0x80 (response) 2376 */ 2377 struct iwl_scanreq_notification { 2378 __le32 status; /* 1: okay, 2: cannot fulfill request */ 2379 } __packed; 2380 2381 /* 2382 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) 2383 */ 2384 struct iwl_scanstart_notification { 2385 __le32 tsf_low; 2386 __le32 tsf_high; 2387 __le32 beacon_timer; 2388 u8 channel; 2389 u8 band; 2390 u8 reserved[2]; 2391 __le32 status; 2392 } __packed; 2393 2394 #define SCAN_OWNER_STATUS 0x1 2395 #define MEASURE_OWNER_STATUS 0x2 2396 2397 #define IWL_PROBE_STATUS_OK 0 2398 #define IWL_PROBE_STATUS_TX_FAILED BIT(0) 2399 /* error statuses combined with TX_FAILED */ 2400 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1) 2401 #define IWL_PROBE_STATUS_FAIL_BT BIT(2) 2402 2403 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */ 2404 /* 2405 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) 2406 */ 2407 struct iwl_scanresults_notification { 2408 u8 channel; 2409 u8 band; 2410 u8 probe_status; 2411 u8 num_probe_not_sent; /* not enough time to send */ 2412 __le32 tsf_low; 2413 __le32 tsf_high; 2414 __le32 statistics[NUMBER_OF_STATISTICS]; 2415 } __packed; 2416 2417 /* 2418 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) 2419 */ 2420 struct iwl_scancomplete_notification { 2421 u8 scanned_channels; 2422 u8 status; 2423 u8 bt_status; /* BT On/Off status */ 2424 u8 last_channel; 2425 __le32 tsf_low; 2426 __le32 tsf_high; 2427 } __packed; 2428 2429 2430 /****************************************************************************** 2431 * (9) 2432 * IBSS/AP Commands and Notifications: 2433 * 2434 *****************************************************************************/ 2435 2436 enum iwl_ibss_manager { 2437 IWL_NOT_IBSS_MANAGER = 0, 2438 IWL_IBSS_MANAGER = 1, 2439 }; 2440 2441 /* 2442 * BEACON_NOTIFICATION = 0x90 (notification only, not a command) 2443 */ 2444 2445 struct iwlagn_beacon_notif { 2446 struct iwlagn_tx_resp beacon_notify_hdr; 2447 __le32 low_tsf; 2448 __le32 high_tsf; 2449 __le32 ibss_mgr_status; 2450 } __packed; 2451 2452 /* 2453 * REPLY_TX_BEACON = 0x91 (command, has simple generic response) 2454 */ 2455 2456 struct iwl_tx_beacon_cmd { 2457 struct iwl_tx_cmd tx; 2458 __le16 tim_idx; 2459 u8 tim_size; 2460 u8 reserved1; 2461 struct ieee80211_hdr frame[0]; /* beacon frame */ 2462 } __packed; 2463 2464 /****************************************************************************** 2465 * (10) 2466 * Statistics Commands and Notifications: 2467 * 2468 *****************************************************************************/ 2469 2470 #define IWL_TEMP_CONVERT 260 2471 2472 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8 2473 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4 2474 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12 2475 2476 /* Used for passing to driver number of successes and failures per rate */ 2477 struct rate_histogram { 2478 union { 2479 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2480 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2481 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2482 } success; 2483 union { 2484 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2485 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2486 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2487 } failed; 2488 } __packed; 2489 2490 /* statistics command response */ 2491 2492 struct statistics_dbg { 2493 __le32 burst_check; 2494 __le32 burst_count; 2495 __le32 wait_for_silence_timeout_cnt; 2496 __le32 reserved[3]; 2497 } __packed; 2498 2499 struct statistics_rx_phy { 2500 __le32 ina_cnt; 2501 __le32 fina_cnt; 2502 __le32 plcp_err; 2503 __le32 crc32_err; 2504 __le32 overrun_err; 2505 __le32 early_overrun_err; 2506 __le32 crc32_good; 2507 __le32 false_alarm_cnt; 2508 __le32 fina_sync_err_cnt; 2509 __le32 sfd_timeout; 2510 __le32 fina_timeout; 2511 __le32 unresponded_rts; 2512 __le32 rxe_frame_limit_overrun; 2513 __le32 sent_ack_cnt; 2514 __le32 sent_cts_cnt; 2515 __le32 sent_ba_rsp_cnt; 2516 __le32 dsp_self_kill; 2517 __le32 mh_format_err; 2518 __le32 re_acq_main_rssi_sum; 2519 __le32 reserved3; 2520 } __packed; 2521 2522 struct statistics_rx_ht_phy { 2523 __le32 plcp_err; 2524 __le32 overrun_err; 2525 __le32 early_overrun_err; 2526 __le32 crc32_good; 2527 __le32 crc32_err; 2528 __le32 mh_format_err; 2529 __le32 agg_crc32_good; 2530 __le32 agg_mpdu_cnt; 2531 __le32 agg_cnt; 2532 __le32 unsupport_mcs; 2533 } __packed; 2534 2535 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1) 2536 2537 struct statistics_rx_non_phy { 2538 __le32 bogus_cts; /* CTS received when not expecting CTS */ 2539 __le32 bogus_ack; /* ACK received when not expecting ACK */ 2540 __le32 non_bssid_frames; /* number of frames with BSSID that 2541 * doesn't belong to the STA BSSID */ 2542 __le32 filtered_frames; /* count frames that were dumped in the 2543 * filtering process */ 2544 __le32 non_channel_beacons; /* beacons with our bss id but not on 2545 * our serving channel */ 2546 __le32 channel_beacons; /* beacons with our bss id and in our 2547 * serving channel */ 2548 __le32 num_missed_bcon; /* number of missed beacons */ 2549 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the 2550 * ADC was in saturation */ 2551 __le32 ina_detection_search_time;/* total time (in 0.8us) searched 2552 * for INA */ 2553 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ 2554 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ 2555 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ 2556 __le32 interference_data_flag; /* flag for interference data 2557 * availability. 1 when data is 2558 * available. */ 2559 __le32 channel_load; /* counts RX Enable time in uSec */ 2560 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM 2561 * and CCK) counter */ 2562 __le32 beacon_rssi_a; 2563 __le32 beacon_rssi_b; 2564 __le32 beacon_rssi_c; 2565 __le32 beacon_energy_a; 2566 __le32 beacon_energy_b; 2567 __le32 beacon_energy_c; 2568 } __packed; 2569 2570 struct statistics_rx_non_phy_bt { 2571 struct statistics_rx_non_phy common; 2572 /* additional stats for bt */ 2573 __le32 num_bt_kills; 2574 __le32 reserved[2]; 2575 } __packed; 2576 2577 struct statistics_rx { 2578 struct statistics_rx_phy ofdm; 2579 struct statistics_rx_phy cck; 2580 struct statistics_rx_non_phy general; 2581 struct statistics_rx_ht_phy ofdm_ht; 2582 } __packed; 2583 2584 struct statistics_rx_bt { 2585 struct statistics_rx_phy ofdm; 2586 struct statistics_rx_phy cck; 2587 struct statistics_rx_non_phy_bt general; 2588 struct statistics_rx_ht_phy ofdm_ht; 2589 } __packed; 2590 2591 /** 2592 * struct statistics_tx_power - current tx power 2593 * 2594 * @ant_a: current tx power on chain a in 1/2 dB step 2595 * @ant_b: current tx power on chain b in 1/2 dB step 2596 * @ant_c: current tx power on chain c in 1/2 dB step 2597 */ 2598 struct statistics_tx_power { 2599 u8 ant_a; 2600 u8 ant_b; 2601 u8 ant_c; 2602 u8 reserved; 2603 } __packed; 2604 2605 struct statistics_tx_non_phy_agg { 2606 __le32 ba_timeout; 2607 __le32 ba_reschedule_frames; 2608 __le32 scd_query_agg_frame_cnt; 2609 __le32 scd_query_no_agg; 2610 __le32 scd_query_agg; 2611 __le32 scd_query_mismatch; 2612 __le32 frame_not_ready; 2613 __le32 underrun; 2614 __le32 bt_prio_kill; 2615 __le32 rx_ba_rsp_cnt; 2616 } __packed; 2617 2618 struct statistics_tx { 2619 __le32 preamble_cnt; 2620 __le32 rx_detected_cnt; 2621 __le32 bt_prio_defer_cnt; 2622 __le32 bt_prio_kill_cnt; 2623 __le32 few_bytes_cnt; 2624 __le32 cts_timeout; 2625 __le32 ack_timeout; 2626 __le32 expected_ack_cnt; 2627 __le32 actual_ack_cnt; 2628 __le32 dump_msdu_cnt; 2629 __le32 burst_abort_next_frame_mismatch_cnt; 2630 __le32 burst_abort_missing_next_frame_cnt; 2631 __le32 cts_timeout_collision; 2632 __le32 ack_or_ba_timeout_collision; 2633 struct statistics_tx_non_phy_agg agg; 2634 /* 2635 * "tx_power" are optional parameters provided by uCode, 2636 * 6000 series is the only device provide the information, 2637 * Those are reserved fields for all the other devices 2638 */ 2639 struct statistics_tx_power tx_power; 2640 __le32 reserved1; 2641 } __packed; 2642 2643 2644 struct statistics_div { 2645 __le32 tx_on_a; 2646 __le32 tx_on_b; 2647 __le32 exec_time; 2648 __le32 probe_time; 2649 __le32 reserved1; 2650 __le32 reserved2; 2651 } __packed; 2652 2653 struct statistics_general_common { 2654 __le32 temperature; /* radio temperature */ 2655 __le32 temperature_m; /* radio voltage */ 2656 struct statistics_dbg dbg; 2657 __le32 sleep_time; 2658 __le32 slots_out; 2659 __le32 slots_idle; 2660 __le32 ttl_timestamp; 2661 struct statistics_div div; 2662 __le32 rx_enable_counter; 2663 /* 2664 * num_of_sos_states: 2665 * count the number of times we have to re-tune 2666 * in order to get out of bad PHY status 2667 */ 2668 __le32 num_of_sos_states; 2669 } __packed; 2670 2671 struct statistics_bt_activity { 2672 /* Tx statistics */ 2673 __le32 hi_priority_tx_req_cnt; 2674 __le32 hi_priority_tx_denied_cnt; 2675 __le32 lo_priority_tx_req_cnt; 2676 __le32 lo_priority_tx_denied_cnt; 2677 /* Rx statistics */ 2678 __le32 hi_priority_rx_req_cnt; 2679 __le32 hi_priority_rx_denied_cnt; 2680 __le32 lo_priority_rx_req_cnt; 2681 __le32 lo_priority_rx_denied_cnt; 2682 } __packed; 2683 2684 struct statistics_general { 2685 struct statistics_general_common common; 2686 __le32 reserved2; 2687 __le32 reserved3; 2688 } __packed; 2689 2690 struct statistics_general_bt { 2691 struct statistics_general_common common; 2692 struct statistics_bt_activity activity; 2693 __le32 reserved2; 2694 __le32 reserved3; 2695 } __packed; 2696 2697 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0) 2698 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1) 2699 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2) 2700 2701 /* 2702 * REPLY_STATISTICS_CMD = 0x9c, 2703 * all devices identical. 2704 * 2705 * This command triggers an immediate response containing uCode statistics. 2706 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. 2707 * 2708 * If the CLEAR_STATS configuration flag is set, uCode will clear its 2709 * internal copy of the statistics (counters) after issuing the response. 2710 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). 2711 * 2712 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue 2713 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag 2714 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. 2715 */ 2716 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */ 2717 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */ 2718 struct iwl_statistics_cmd { 2719 __le32 configuration_flags; /* IWL_STATS_CONF_* */ 2720 } __packed; 2721 2722 /* 2723 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) 2724 * 2725 * By default, uCode issues this notification after receiving a beacon 2726 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the 2727 * REPLY_STATISTICS_CMD 0x9c, above. 2728 * 2729 * Statistics counters continue to increment beacon after beacon, but are 2730 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD 2731 * 0x9c with CLEAR_STATS bit set (see above). 2732 * 2733 * uCode also issues this notification during scans. uCode clears statistics 2734 * appropriately so that each notification contains statistics for only the 2735 * one channel that has just been scanned. 2736 */ 2737 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2) 2738 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8) 2739 2740 struct iwl_notif_statistics { 2741 __le32 flag; 2742 struct statistics_rx rx; 2743 struct statistics_tx tx; 2744 struct statistics_general general; 2745 } __packed; 2746 2747 struct iwl_bt_notif_statistics { 2748 __le32 flag; 2749 struct statistics_rx_bt rx; 2750 struct statistics_tx tx; 2751 struct statistics_general_bt general; 2752 } __packed; 2753 2754 /* 2755 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) 2756 * 2757 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed 2758 * in regardless of how many missed beacons, which mean when driver receive the 2759 * notification, inside the command, it can find all the beacons information 2760 * which include number of total missed beacons, number of consecutive missed 2761 * beacons, number of beacons received and number of beacons expected to 2762 * receive. 2763 * 2764 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio 2765 * in order to bring the radio/PHY back to working state; which has no relation 2766 * to when driver will perform sensitivity calibration. 2767 * 2768 * Driver should set it own missed_beacon_threshold to decide when to perform 2769 * sensitivity calibration based on number of consecutive missed beacons in 2770 * order to improve overall performance, especially in noisy environment. 2771 * 2772 */ 2773 2774 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1) 2775 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5) 2776 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF 2777 2778 struct iwl_missed_beacon_notif { 2779 __le32 consecutive_missed_beacons; 2780 __le32 total_missed_becons; 2781 __le32 num_expected_beacons; 2782 __le32 num_recvd_beacons; 2783 } __packed; 2784 2785 2786 /****************************************************************************** 2787 * (11) 2788 * Rx Calibration Commands: 2789 * 2790 * With the uCode used for open source drivers, most Tx calibration (except 2791 * for Tx Power) and most Rx calibration is done by uCode during the 2792 * "initialize" phase of uCode boot. Driver must calibrate only: 2793 * 2794 * 1) Tx power (depends on temperature), described elsewhere 2795 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) 2796 * 3) Receiver sensitivity (to optimize signal detection) 2797 * 2798 *****************************************************************************/ 2799 2800 /** 2801 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) 2802 * 2803 * This command sets up the Rx signal detector for a sensitivity level that 2804 * is high enough to lock onto all signals within the associated network, 2805 * but low enough to ignore signals that are below a certain threshold, so as 2806 * not to have too many "false alarms". False alarms are signals that the 2807 * Rx DSP tries to lock onto, but then discards after determining that they 2808 * are noise. 2809 * 2810 * The optimum number of false alarms is between 5 and 50 per 200 TUs 2811 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. 2812 * time listening, not transmitting). Driver must adjust sensitivity so that 2813 * the ratio of actual false alarms to actual Rx time falls within this range. 2814 * 2815 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each 2816 * received beacon. These provide information to the driver to analyze the 2817 * sensitivity. Don't analyze statistics that come in from scanning, or any 2818 * other non-associated-network source. Pertinent statistics include: 2819 * 2820 * From "general" statistics (struct statistics_rx_non_phy): 2821 * 2822 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) 2823 * Measure of energy of desired signal. Used for establishing a level 2824 * below which the device does not detect signals. 2825 * 2826 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) 2827 * Measure of background noise in silent period after beacon. 2828 * 2829 * channel_load 2830 * uSecs of actual Rx time during beacon period (varies according to 2831 * how much time was spent transmitting). 2832 * 2833 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: 2834 * 2835 * false_alarm_cnt 2836 * Signal locks abandoned early (before phy-level header). 2837 * 2838 * plcp_err 2839 * Signal locks abandoned late (during phy-level header). 2840 * 2841 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from 2842 * beacon to beacon, i.e. each value is an accumulation of all errors 2843 * before and including the latest beacon. Values will wrap around to 0 2844 * after counting up to 2^32 - 1. Driver must differentiate vs. 2845 * previous beacon's values to determine # false alarms in the current 2846 * beacon period. 2847 * 2848 * Total number of false alarms = false_alarms + plcp_errs 2849 * 2850 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd 2851 * (notice that the start points for OFDM are at or close to settings for 2852 * maximum sensitivity): 2853 * 2854 * START / MIN / MAX 2855 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 2856 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 2857 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 2858 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 2859 * 2860 * If actual rate of OFDM false alarms (+ plcp_errors) is too high 2861 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity 2862 * by *adding* 1 to all 4 of the table entries above, up to the max for 2863 * each entry. Conversely, if false alarm rate is too low (less than 5 2864 * for each 204.8 msecs listening), *subtract* 1 from each entry to 2865 * increase sensitivity. 2866 * 2867 * For CCK sensitivity, keep track of the following: 2868 * 2869 * 1). 20-beacon history of maximum background noise, indicated by 2870 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the 2871 * 3 receivers. For any given beacon, the "silence reference" is 2872 * the maximum of last 60 samples (20 beacons * 3 receivers). 2873 * 2874 * 2). 10-beacon history of strongest signal level, as indicated 2875 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, 2876 * i.e. the strength of the signal through the best receiver at the 2877 * moment. These measurements are "upside down", with lower values 2878 * for stronger signals, so max energy will be *minimum* value. 2879 * 2880 * Then for any given beacon, the driver must determine the *weakest* 2881 * of the strongest signals; this is the minimum level that needs to be 2882 * successfully detected, when using the best receiver at the moment. 2883 * "Max cck energy" is the maximum (higher value means lower energy!) 2884 * of the last 10 minima. Once this is determined, driver must add 2885 * a little margin by adding "6" to it. 2886 * 2887 * 3). Number of consecutive beacon periods with too few false alarms. 2888 * Reset this to 0 at the first beacon period that falls within the 2889 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). 2890 * 2891 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd 2892 * (notice that the start points for CCK are at maximum sensitivity): 2893 * 2894 * START / MIN / MAX 2895 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 2896 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 2897 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 2898 * 2899 * If actual rate of CCK false alarms (+ plcp_errors) is too high 2900 * (greater than 50 for each 204.8 msecs listening), method for reducing 2901 * sensitivity is: 2902 * 2903 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2904 * up to max 400. 2905 * 2906 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, 2907 * sensitivity has been reduced a significant amount; bring it up to 2908 * a moderate 161. Otherwise, *add* 3, up to max 200. 2909 * 2910 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, 2911 * sensitivity has been reduced only a moderate or small amount; 2912 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, 2913 * down to min 0. Otherwise (if gain has been significantly reduced), 2914 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. 2915 * 2916 * b) Save a snapshot of the "silence reference". 2917 * 2918 * If actual rate of CCK false alarms (+ plcp_errors) is too low 2919 * (less than 5 for each 204.8 msecs listening), method for increasing 2920 * sensitivity is used only if: 2921 * 2922 * 1a) Previous beacon did not have too many false alarms 2923 * 1b) AND difference between previous "silence reference" and current 2924 * "silence reference" (prev - current) is 2 or more, 2925 * OR 2) 100 or more consecutive beacon periods have had rate of 2926 * less than 5 false alarms per 204.8 milliseconds rx time. 2927 * 2928 * Method for increasing sensitivity: 2929 * 2930 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, 2931 * down to min 125. 2932 * 2933 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2934 * down to min 200. 2935 * 2936 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. 2937 * 2938 * If actual rate of CCK false alarms (+ plcp_errors) is within good range 2939 * (between 5 and 50 for each 204.8 msecs listening): 2940 * 2941 * 1) Save a snapshot of the silence reference. 2942 * 2943 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), 2944 * give some extra margin to energy threshold by *subtracting* 8 2945 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. 2946 * 2947 * For all cases (too few, too many, good range), make sure that the CCK 2948 * detection threshold (energy) is below the energy level for robust 2949 * detection over the past 10 beacon periods, the "Max cck energy". 2950 * Lower values mean higher energy; this means making sure that the value 2951 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". 2952 * 2953 */ 2954 2955 /* 2956 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) 2957 */ 2958 #define HD_TABLE_SIZE (11) /* number of entries */ 2959 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */ 2960 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1) 2961 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) 2962 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) 2963 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) 2964 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) 2965 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) 2966 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) 2967 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) 2968 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) 2969 #define HD_OFDM_ENERGY_TH_IN_INDEX (10) 2970 2971 /* 2972 * Additional table entries in enhance SENSITIVITY_CMD 2973 */ 2974 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11) 2975 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12) 2976 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13) 2977 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14) 2978 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15) 2979 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16) 2980 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17) 2981 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18) 2982 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19) 2983 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20) 2984 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21) 2985 #define HD_RESERVED (22) 2986 2987 /* number of entries for enhanced tbl */ 2988 #define ENHANCE_HD_TABLE_SIZE (23) 2989 2990 /* number of additional entries for enhanced tbl */ 2991 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE) 2992 2993 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0) 2994 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0) 2995 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0) 2996 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668) 2997 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 2998 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486) 2999 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37) 3000 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853) 3001 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 3002 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476) 3003 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99) 3004 3005 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1) 3006 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1) 3007 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1) 3008 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600) 3009 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40) 3010 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486) 3011 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45) 3012 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853) 3013 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60) 3014 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476) 3015 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99) 3016 3017 3018 /* Control field in struct iwl_sensitivity_cmd */ 3019 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0) 3020 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1) 3021 3022 /** 3023 * struct iwl_sensitivity_cmd 3024 * @control: (1) updates working table, (0) updates default table 3025 * @table: energy threshold values, use HD_* as index into table 3026 * 3027 * Always use "1" in "control" to update uCode's working table and DSP. 3028 */ 3029 struct iwl_sensitivity_cmd { 3030 __le16 control; /* always use "1" */ 3031 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */ 3032 } __packed; 3033 3034 /* 3035 * 3036 */ 3037 struct iwl_enhance_sensitivity_cmd { 3038 __le16 control; /* always use "1" */ 3039 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */ 3040 } __packed; 3041 3042 3043 /** 3044 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) 3045 * 3046 * This command sets the relative gains of agn device's 3 radio receiver chains. 3047 * 3048 * After the first association, driver should accumulate signal and noise 3049 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 3050 * beacons from the associated network (don't collect statistics that come 3051 * in from scanning, or any other non-network source). 3052 * 3053 * DISCONNECTED ANTENNA: 3054 * 3055 * Driver should determine which antennas are actually connected, by comparing 3056 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the 3057 * following values over 20 beacons, one accumulator for each of the chains 3058 * a/b/c, from struct statistics_rx_non_phy: 3059 * 3060 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) 3061 * 3062 * Find the strongest signal from among a/b/c. Compare the other two to the 3063 * strongest. If any signal is more than 15 dB (times 20, unless you 3064 * divide the accumulated values by 20) below the strongest, the driver 3065 * considers that antenna to be disconnected, and should not try to use that 3066 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, 3067 * driver should declare the stronger one as connected, and attempt to use it 3068 * (A and B are the only 2 Tx chains!). 3069 * 3070 * 3071 * RX BALANCE: 3072 * 3073 * Driver should balance the 3 receivers (but just the ones that are connected 3074 * to antennas, see above) for gain, by comparing the average signal levels 3075 * detected during the silence after each beacon (background noise). 3076 * Accumulate (add) the following values over 20 beacons, one accumulator for 3077 * each of the chains a/b/c, from struct statistics_rx_non_phy: 3078 * 3079 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) 3080 * 3081 * Find the weakest background noise level from among a/b/c. This Rx chain 3082 * will be the reference, with 0 gain adjustment. Attenuate other channels by 3083 * finding noise difference: 3084 * 3085 * (accum_noise[i] - accum_noise[reference]) / 30 3086 * 3087 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. 3088 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the 3089 * driver should limit the difference results to a range of 0-3 (0-4.5 dB), 3090 * and set bit 2 to indicate "reduce gain". The value for the reference 3091 * (weakest) chain should be "0". 3092 * 3093 * diff_gain_[abc] bit fields: 3094 * 2: (1) reduce gain, (0) increase gain 3095 * 1-0: amount of gain, units of 1.5 dB 3096 */ 3097 3098 /* Phy calibration command for series */ 3099 enum { 3100 IWL_PHY_CALIBRATE_DC_CMD = 8, 3101 IWL_PHY_CALIBRATE_LO_CMD = 9, 3102 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11, 3103 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15, 3104 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16, 3105 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17, 3106 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18, 3107 }; 3108 3109 /* This enum defines the bitmap of various calibrations to enable in both 3110 * init ucode and runtime ucode through CALIBRATION_CFG_CMD. 3111 */ 3112 enum iwl_ucode_calib_cfg { 3113 IWL_CALIB_CFG_RX_BB_IDX = BIT(0), 3114 IWL_CALIB_CFG_DC_IDX = BIT(1), 3115 IWL_CALIB_CFG_LO_IDX = BIT(2), 3116 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3), 3117 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4), 3118 IWL_CALIB_CFG_NOISE_IDX = BIT(5), 3119 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6), 3120 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7), 3121 IWL_CALIB_CFG_PAPD_IDX = BIT(8), 3122 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9), 3123 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10), 3124 }; 3125 3126 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3127 IWL_CALIB_CFG_DC_IDX | \ 3128 IWL_CALIB_CFG_LO_IDX | \ 3129 IWL_CALIB_CFG_TX_IQ_IDX | \ 3130 IWL_CALIB_CFG_RX_IQ_IDX | \ 3131 IWL_CALIB_CFG_CRYSTAL_IDX) 3132 3133 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3134 IWL_CALIB_CFG_DC_IDX | \ 3135 IWL_CALIB_CFG_LO_IDX | \ 3136 IWL_CALIB_CFG_TX_IQ_IDX | \ 3137 IWL_CALIB_CFG_RX_IQ_IDX | \ 3138 IWL_CALIB_CFG_TEMPERATURE_IDX | \ 3139 IWL_CALIB_CFG_PAPD_IDX | \ 3140 IWL_CALIB_CFG_TX_PWR_IDX | \ 3141 IWL_CALIB_CFG_CRYSTAL_IDX) 3142 3143 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0)) 3144 3145 struct iwl_calib_cfg_elmnt_s { 3146 __le32 is_enable; 3147 __le32 start; 3148 __le32 send_res; 3149 __le32 apply_res; 3150 __le32 reserved; 3151 } __packed; 3152 3153 struct iwl_calib_cfg_status_s { 3154 struct iwl_calib_cfg_elmnt_s once; 3155 struct iwl_calib_cfg_elmnt_s perd; 3156 __le32 flags; 3157 } __packed; 3158 3159 struct iwl_calib_cfg_cmd { 3160 struct iwl_calib_cfg_status_s ucd_calib_cfg; 3161 struct iwl_calib_cfg_status_s drv_calib_cfg; 3162 __le32 reserved1; 3163 } __packed; 3164 3165 struct iwl_calib_hdr { 3166 u8 op_code; 3167 u8 first_group; 3168 u8 groups_num; 3169 u8 data_valid; 3170 } __packed; 3171 3172 struct iwl_calib_cmd { 3173 struct iwl_calib_hdr hdr; 3174 u8 data[0]; 3175 } __packed; 3176 3177 struct iwl_calib_xtal_freq_cmd { 3178 struct iwl_calib_hdr hdr; 3179 u8 cap_pin1; 3180 u8 cap_pin2; 3181 u8 pad[2]; 3182 } __packed; 3183 3184 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700) 3185 struct iwl_calib_temperature_offset_cmd { 3186 struct iwl_calib_hdr hdr; 3187 __le16 radio_sensor_offset; 3188 __le16 reserved; 3189 } __packed; 3190 3191 struct iwl_calib_temperature_offset_v2_cmd { 3192 struct iwl_calib_hdr hdr; 3193 __le16 radio_sensor_offset_high; 3194 __le16 radio_sensor_offset_low; 3195 __le16 burntVoltageRef; 3196 __le16 reserved; 3197 } __packed; 3198 3199 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ 3200 struct iwl_calib_chain_noise_reset_cmd { 3201 struct iwl_calib_hdr hdr; 3202 u8 data[0]; 3203 }; 3204 3205 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ 3206 struct iwl_calib_chain_noise_gain_cmd { 3207 struct iwl_calib_hdr hdr; 3208 u8 delta_gain_1; 3209 u8 delta_gain_2; 3210 u8 pad[2]; 3211 } __packed; 3212 3213 /****************************************************************************** 3214 * (12) 3215 * Miscellaneous Commands: 3216 * 3217 *****************************************************************************/ 3218 3219 /* 3220 * LEDs Command & Response 3221 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) 3222 * 3223 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), 3224 * this command turns it on or off, or sets up a periodic blinking cycle. 3225 */ 3226 struct iwl_led_cmd { 3227 __le32 interval; /* "interval" in uSec */ 3228 u8 id; /* 1: Activity, 2: Link, 3: Tech */ 3229 u8 off; /* # intervals off while blinking; 3230 * "0", with >0 "on" value, turns LED on */ 3231 u8 on; /* # intervals on while blinking; 3232 * "0", regardless of "off", turns LED off */ 3233 u8 reserved; 3234 } __packed; 3235 3236 /* 3237 * station priority table entries 3238 * also used as potential "events" value for both 3239 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD 3240 */ 3241 3242 /* 3243 * COEX events entry flag masks 3244 * RP - Requested Priority 3245 * WP - Win Medium Priority: priority assigned when the contention has been won 3246 */ 3247 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1) 3248 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2) 3249 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4) 3250 3251 #define COEX_CU_UNASSOC_IDLE_RP 4 3252 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4 3253 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4 3254 #define COEX_CU_CALIBRATION_RP 4 3255 #define COEX_CU_PERIODIC_CALIBRATION_RP 4 3256 #define COEX_CU_CONNECTION_ESTAB_RP 4 3257 #define COEX_CU_ASSOCIATED_IDLE_RP 4 3258 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4 3259 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4 3260 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4 3261 #define COEX_CU_RF_ON_RP 6 3262 #define COEX_CU_RF_OFF_RP 4 3263 #define COEX_CU_STAND_ALONE_DEBUG_RP 6 3264 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4 3265 #define COEX_CU_RSRVD1_RP 4 3266 #define COEX_CU_RSRVD2_RP 4 3267 3268 #define COEX_CU_UNASSOC_IDLE_WP 3 3269 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3 3270 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3 3271 #define COEX_CU_CALIBRATION_WP 3 3272 #define COEX_CU_PERIODIC_CALIBRATION_WP 3 3273 #define COEX_CU_CONNECTION_ESTAB_WP 3 3274 #define COEX_CU_ASSOCIATED_IDLE_WP 3 3275 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3 3276 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3 3277 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3 3278 #define COEX_CU_RF_ON_WP 3 3279 #define COEX_CU_RF_OFF_WP 3 3280 #define COEX_CU_STAND_ALONE_DEBUG_WP 6 3281 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3 3282 #define COEX_CU_RSRVD1_WP 3 3283 #define COEX_CU_RSRVD2_WP 3 3284 3285 #define COEX_UNASSOC_IDLE_FLAGS 0 3286 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \ 3287 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3288 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3289 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \ 3290 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3291 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3292 #define COEX_CALIBRATION_FLAGS \ 3293 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3294 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3295 #define COEX_PERIODIC_CALIBRATION_FLAGS 0 3296 /* 3297 * COEX_CONNECTION_ESTAB: 3298 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3299 */ 3300 #define COEX_CONNECTION_ESTAB_FLAGS \ 3301 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3302 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3303 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3304 #define COEX_ASSOCIATED_IDLE_FLAGS 0 3305 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \ 3306 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3307 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3308 #define COEX_ASSOC_AUTO_SCAN_FLAGS \ 3309 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3310 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3311 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0 3312 #define COEX_RF_ON_FLAGS 0 3313 #define COEX_RF_OFF_FLAGS 0 3314 #define COEX_STAND_ALONE_DEBUG_FLAGS \ 3315 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3316 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3317 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \ 3318 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3319 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3320 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3321 #define COEX_RSRVD1_FLAGS 0 3322 #define COEX_RSRVD2_FLAGS 0 3323 /* 3324 * COEX_CU_RF_ON is the event wrapping all radio ownership. 3325 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3326 */ 3327 #define COEX_CU_RF_ON_FLAGS \ 3328 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3329 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3330 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3331 3332 3333 enum { 3334 /* un-association part */ 3335 COEX_UNASSOC_IDLE = 0, 3336 COEX_UNASSOC_MANUAL_SCAN = 1, 3337 COEX_UNASSOC_AUTO_SCAN = 2, 3338 /* calibration */ 3339 COEX_CALIBRATION = 3, 3340 COEX_PERIODIC_CALIBRATION = 4, 3341 /* connection */ 3342 COEX_CONNECTION_ESTAB = 5, 3343 /* association part */ 3344 COEX_ASSOCIATED_IDLE = 6, 3345 COEX_ASSOC_MANUAL_SCAN = 7, 3346 COEX_ASSOC_AUTO_SCAN = 8, 3347 COEX_ASSOC_ACTIVE_LEVEL = 9, 3348 /* RF ON/OFF */ 3349 COEX_RF_ON = 10, 3350 COEX_RF_OFF = 11, 3351 COEX_STAND_ALONE_DEBUG = 12, 3352 /* IPAN */ 3353 COEX_IPAN_ASSOC_LEVEL = 13, 3354 /* reserved */ 3355 COEX_RSRVD1 = 14, 3356 COEX_RSRVD2 = 15, 3357 COEX_NUM_OF_EVENTS = 16 3358 }; 3359 3360 /* 3361 * Coexistence WIFI/WIMAX Command 3362 * COEX_PRIORITY_TABLE_CMD = 0x5a 3363 * 3364 */ 3365 struct iwl_wimax_coex_event_entry { 3366 u8 request_prio; 3367 u8 win_medium_prio; 3368 u8 reserved; 3369 u8 flags; 3370 } __packed; 3371 3372 /* COEX flag masks */ 3373 3374 /* Station table is valid */ 3375 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1) 3376 /* UnMask wake up src at unassociated sleep */ 3377 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4) 3378 /* UnMask wake up src at associated sleep */ 3379 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8) 3380 /* Enable CoEx feature. */ 3381 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80) 3382 3383 struct iwl_wimax_coex_cmd { 3384 u8 flags; 3385 u8 reserved[3]; 3386 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS]; 3387 } __packed; 3388 3389 /* 3390 * Coexistence MEDIUM NOTIFICATION 3391 * COEX_MEDIUM_NOTIFICATION = 0x5b 3392 * 3393 * notification from uCode to host to indicate medium changes 3394 * 3395 */ 3396 /* 3397 * status field 3398 * bit 0 - 2: medium status 3399 * bit 3: medium change indication 3400 * bit 4 - 31: reserved 3401 */ 3402 /* status option values, (0 - 2 bits) */ 3403 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */ 3404 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */ 3405 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */ 3406 #define COEX_MEDIUM_MSK (0x7) 3407 3408 /* send notification status (1 bit) */ 3409 #define COEX_MEDIUM_CHANGED (0x8) 3410 #define COEX_MEDIUM_CHANGED_MSK (0x8) 3411 #define COEX_MEDIUM_SHIFT (3) 3412 3413 struct iwl_coex_medium_notification { 3414 __le32 status; 3415 __le32 events; 3416 } __packed; 3417 3418 /* 3419 * Coexistence EVENT Command 3420 * COEX_EVENT_CMD = 0x5c 3421 * 3422 * send from host to uCode for coex event request. 3423 */ 3424 /* flags options */ 3425 #define COEX_EVENT_REQUEST_MSK (0x1) 3426 3427 struct iwl_coex_event_cmd { 3428 u8 flags; 3429 u8 event; 3430 __le16 reserved; 3431 } __packed; 3432 3433 struct iwl_coex_event_resp { 3434 __le32 status; 3435 } __packed; 3436 3437 3438 /****************************************************************************** 3439 * Bluetooth Coexistence commands 3440 * 3441 *****************************************************************************/ 3442 3443 /* 3444 * BT Status notification 3445 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce 3446 */ 3447 enum iwl_bt_coex_profile_traffic_load { 3448 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0, 3449 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1, 3450 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2, 3451 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3, 3452 /* 3453 * There are no more even though below is a u8, the 3454 * indication from the BT device only has two bits. 3455 */ 3456 }; 3457 3458 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1 3459 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2 3460 3461 /* BT UART message - Share Part (BT -> WiFi) */ 3462 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0) 3463 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \ 3464 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS) 3465 #define BT_UART_MSG_FRAME1SSN_POS (3) 3466 #define BT_UART_MSG_FRAME1SSN_MSK \ 3467 (0x3 << BT_UART_MSG_FRAME1SSN_POS) 3468 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5) 3469 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \ 3470 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS) 3471 #define BT_UART_MSG_FRAME1RESERVED_POS (6) 3472 #define BT_UART_MSG_FRAME1RESERVED_MSK \ 3473 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS) 3474 3475 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0) 3476 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \ 3477 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS) 3478 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2) 3479 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \ 3480 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS) 3481 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4) 3482 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \ 3483 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS) 3484 #define BT_UART_MSG_FRAME2INBAND_POS (5) 3485 #define BT_UART_MSG_FRAME2INBAND_MSK \ 3486 (0x1 << BT_UART_MSG_FRAME2INBAND_POS) 3487 #define BT_UART_MSG_FRAME2RESERVED_POS (6) 3488 #define BT_UART_MSG_FRAME2RESERVED_MSK \ 3489 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS) 3490 3491 #define BT_UART_MSG_FRAME3SCOESCO_POS (0) 3492 #define BT_UART_MSG_FRAME3SCOESCO_MSK \ 3493 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS) 3494 #define BT_UART_MSG_FRAME3SNIFF_POS (1) 3495 #define BT_UART_MSG_FRAME3SNIFF_MSK \ 3496 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS) 3497 #define BT_UART_MSG_FRAME3A2DP_POS (2) 3498 #define BT_UART_MSG_FRAME3A2DP_MSK \ 3499 (0x1 << BT_UART_MSG_FRAME3A2DP_POS) 3500 #define BT_UART_MSG_FRAME3ACL_POS (3) 3501 #define BT_UART_MSG_FRAME3ACL_MSK \ 3502 (0x1 << BT_UART_MSG_FRAME3ACL_POS) 3503 #define BT_UART_MSG_FRAME3MASTER_POS (4) 3504 #define BT_UART_MSG_FRAME3MASTER_MSK \ 3505 (0x1 << BT_UART_MSG_FRAME3MASTER_POS) 3506 #define BT_UART_MSG_FRAME3OBEX_POS (5) 3507 #define BT_UART_MSG_FRAME3OBEX_MSK \ 3508 (0x1 << BT_UART_MSG_FRAME3OBEX_POS) 3509 #define BT_UART_MSG_FRAME3RESERVED_POS (6) 3510 #define BT_UART_MSG_FRAME3RESERVED_MSK \ 3511 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS) 3512 3513 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0) 3514 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \ 3515 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS) 3516 #define BT_UART_MSG_FRAME4RESERVED_POS (6) 3517 #define BT_UART_MSG_FRAME4RESERVED_MSK \ 3518 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS) 3519 3520 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0) 3521 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \ 3522 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS) 3523 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2) 3524 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \ 3525 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS) 3526 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4) 3527 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \ 3528 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS) 3529 #define BT_UART_MSG_FRAME5RESERVED_POS (6) 3530 #define BT_UART_MSG_FRAME5RESERVED_MSK \ 3531 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS) 3532 3533 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0) 3534 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \ 3535 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS) 3536 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5) 3537 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \ 3538 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS) 3539 #define BT_UART_MSG_FRAME6RESERVED_POS (6) 3540 #define BT_UART_MSG_FRAME6RESERVED_MSK \ 3541 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS) 3542 3543 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0) 3544 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \ 3545 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS) 3546 #define BT_UART_MSG_FRAME7PAGE_POS (3) 3547 #define BT_UART_MSG_FRAME7PAGE_MSK \ 3548 (0x1 << BT_UART_MSG_FRAME7PAGE_POS) 3549 #define BT_UART_MSG_FRAME7INQUIRY_POS (4) 3550 #define BT_UART_MSG_FRAME7INQUIRY_MSK \ 3551 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS) 3552 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5) 3553 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \ 3554 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS) 3555 #define BT_UART_MSG_FRAME7RESERVED_POS (6) 3556 #define BT_UART_MSG_FRAME7RESERVED_MSK \ 3557 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS) 3558 3559 /* BT Session Activity 2 UART message (BT -> WiFi) */ 3560 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5) 3561 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \ 3562 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS) 3563 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6) 3564 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \ 3565 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS) 3566 3567 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0) 3568 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \ 3569 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS) 3570 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6) 3571 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \ 3572 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS) 3573 3574 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0) 3575 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \ 3576 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS) 3577 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4) 3578 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \ 3579 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS) 3580 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5) 3581 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \ 3582 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS) 3583 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6) 3584 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \ 3585 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS) 3586 3587 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0) 3588 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \ 3589 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS) 3590 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4) 3591 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \ 3592 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS) 3593 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6) 3594 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \ 3595 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS) 3596 3597 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0) 3598 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \ 3599 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS) 3600 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4) 3601 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \ 3602 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS) 3603 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5) 3604 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \ 3605 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS) 3606 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6) 3607 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \ 3608 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS) 3609 3610 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0) 3611 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \ 3612 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS) 3613 #define BT_UART_MSG_2_FRAME6RFU_POS (5) 3614 #define BT_UART_MSG_2_FRAME6RFU_MSK \ 3615 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS) 3616 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6) 3617 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \ 3618 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS) 3619 3620 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0) 3621 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \ 3622 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS) 3623 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3) 3624 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \ 3625 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS) 3626 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4) 3627 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \ 3628 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS) 3629 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5) 3630 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \ 3631 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS) 3632 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6) 3633 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \ 3634 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS) 3635 3636 3637 struct iwl_bt_uart_msg { 3638 u8 header; 3639 u8 frame1; 3640 u8 frame2; 3641 u8 frame3; 3642 u8 frame4; 3643 u8 frame5; 3644 u8 frame6; 3645 u8 frame7; 3646 } __attribute__((packed)); 3647 3648 struct iwl_bt_coex_profile_notif { 3649 struct iwl_bt_uart_msg last_bt_uart_msg; 3650 u8 bt_status; /* 0 - off, 1 - on */ 3651 u8 bt_traffic_load; /* 0 .. 3? */ 3652 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */ 3653 u8 reserved; 3654 } __attribute__((packed)); 3655 3656 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0 3657 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1 3658 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1 3659 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e 3660 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4 3661 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0 3662 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1 3663 3664 /* 3665 * BT Coexistence Priority table 3666 * REPLY_BT_COEX_PRIO_TABLE = 0xcc 3667 */ 3668 enum bt_coex_prio_table_events { 3669 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0, 3670 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1, 3671 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2, 3672 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */ 3673 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4, 3674 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5, 3675 BT_COEX_PRIO_TBL_EVT_DTIM = 6, 3676 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7, 3677 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8, 3678 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9, 3679 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10, 3680 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11, 3681 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12, 3682 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13, 3683 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14, 3684 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15, 3685 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */ 3686 BT_COEX_PRIO_TBL_EVT_MAX, 3687 }; 3688 3689 enum bt_coex_prio_table_priorities { 3690 BT_COEX_PRIO_TBL_DISABLED = 0, 3691 BT_COEX_PRIO_TBL_PRIO_LOW = 1, 3692 BT_COEX_PRIO_TBL_PRIO_HIGH = 2, 3693 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3, 3694 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4, 3695 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5, 3696 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6, 3697 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7, 3698 BT_COEX_PRIO_TBL_MAX, 3699 }; 3700 3701 struct iwl_bt_coex_prio_table_cmd { 3702 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX]; 3703 } __attribute__((packed)); 3704 3705 #define IWL_BT_COEX_ENV_CLOSE 0 3706 #define IWL_BT_COEX_ENV_OPEN 1 3707 /* 3708 * BT Protection Envelope 3709 * REPLY_BT_COEX_PROT_ENV = 0xcd 3710 */ 3711 struct iwl_bt_coex_prot_env_cmd { 3712 u8 action; /* 0 = closed, 1 = open */ 3713 u8 type; /* 0 .. 15 */ 3714 u8 reserved[2]; 3715 } __attribute__((packed)); 3716 3717 /* 3718 * REPLY_D3_CONFIG 3719 */ 3720 enum iwlagn_d3_wakeup_filters { 3721 IWLAGN_D3_WAKEUP_RFKILL = BIT(0), 3722 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1), 3723 }; 3724 3725 struct iwlagn_d3_config_cmd { 3726 __le32 min_sleep_time; 3727 __le32 wakeup_flags; 3728 } __packed; 3729 3730 /* 3731 * REPLY_WOWLAN_PATTERNS 3732 */ 3733 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16 3734 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128 3735 3736 struct iwlagn_wowlan_pattern { 3737 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8]; 3738 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN]; 3739 u8 mask_size; 3740 u8 pattern_size; 3741 __le16 reserved; 3742 } __packed; 3743 3744 #define IWLAGN_WOWLAN_MAX_PATTERNS 20 3745 3746 struct iwlagn_wowlan_patterns_cmd { 3747 __le32 n_patterns; 3748 struct iwlagn_wowlan_pattern patterns[]; 3749 } __packed; 3750 3751 /* 3752 * REPLY_WOWLAN_WAKEUP_FILTER 3753 */ 3754 enum iwlagn_wowlan_wakeup_filters { 3755 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0), 3756 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1), 3757 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2), 3758 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3), 3759 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4), 3760 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5), 3761 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6), 3762 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7), 3763 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8), 3764 }; 3765 3766 struct iwlagn_wowlan_wakeup_filter_cmd { 3767 __le32 enabled; 3768 __le16 non_qos_seq; 3769 __le16 reserved; 3770 __le16 qos_seq[8]; 3771 }; 3772 3773 /* 3774 * REPLY_WOWLAN_TSC_RSC_PARAMS 3775 */ 3776 #define IWLAGN_NUM_RSC 16 3777 3778 struct tkip_sc { 3779 __le16 iv16; 3780 __le16 pad; 3781 __le32 iv32; 3782 } __packed; 3783 3784 struct iwlagn_tkip_rsc_tsc { 3785 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC]; 3786 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC]; 3787 struct tkip_sc tsc; 3788 } __packed; 3789 3790 struct aes_sc { 3791 __le64 pn; 3792 } __packed; 3793 3794 struct iwlagn_aes_rsc_tsc { 3795 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC]; 3796 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC]; 3797 struct aes_sc tsc; 3798 } __packed; 3799 3800 union iwlagn_all_tsc_rsc { 3801 struct iwlagn_tkip_rsc_tsc tkip; 3802 struct iwlagn_aes_rsc_tsc aes; 3803 }; 3804 3805 struct iwlagn_wowlan_rsc_tsc_params_cmd { 3806 union iwlagn_all_tsc_rsc all_tsc_rsc; 3807 } __packed; 3808 3809 /* 3810 * REPLY_WOWLAN_TKIP_PARAMS 3811 */ 3812 #define IWLAGN_MIC_KEY_SIZE 8 3813 #define IWLAGN_P1K_SIZE 5 3814 struct iwlagn_mic_keys { 3815 u8 tx[IWLAGN_MIC_KEY_SIZE]; 3816 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE]; 3817 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE]; 3818 } __packed; 3819 3820 struct iwlagn_p1k_cache { 3821 __le16 p1k[IWLAGN_P1K_SIZE]; 3822 } __packed; 3823 3824 #define IWLAGN_NUM_RX_P1K_CACHE 2 3825 3826 struct iwlagn_wowlan_tkip_params_cmd { 3827 struct iwlagn_mic_keys mic_keys; 3828 struct iwlagn_p1k_cache tx; 3829 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE]; 3830 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE]; 3831 } __packed; 3832 3833 /* 3834 * REPLY_WOWLAN_KEK_KCK_MATERIAL 3835 */ 3836 3837 #define IWLAGN_KCK_MAX_SIZE 32 3838 #define IWLAGN_KEK_MAX_SIZE 32 3839 3840 struct iwlagn_wowlan_kek_kck_material_cmd { 3841 u8 kck[IWLAGN_KCK_MAX_SIZE]; 3842 u8 kek[IWLAGN_KEK_MAX_SIZE]; 3843 __le16 kck_len; 3844 __le16 kek_len; 3845 __le64 replay_ctr; 3846 } __packed; 3847 3848 /* 3849 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) 3850 */ 3851 3852 /* 3853 * Minimum slot time in TU 3854 */ 3855 #define IWL_MIN_SLOT_TIME 20 3856 3857 /** 3858 * struct iwl_wipan_slot 3859 * @width: Time in TU 3860 * @type: 3861 * 0 - BSS 3862 * 1 - PAN 3863 */ 3864 struct iwl_wipan_slot { 3865 __le16 width; 3866 u8 type; 3867 u8 reserved; 3868 } __packed; 3869 3870 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */ 3871 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */ 3872 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */ 3873 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4) 3874 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5) 3875 3876 /** 3877 * struct iwl_wipan_params_cmd 3878 * @flags: 3879 * bit0: reserved 3880 * bit1: CP leave channel with CTS 3881 * bit2: CP leave channel qith Quiet 3882 * bit3: slotted mode 3883 * 1 - work in slotted mode 3884 * 0 - work in non slotted mode 3885 * bit4: filter beacon notification 3886 * bit5: full tx slotted mode. if this flag is set, 3887 * uCode will perform leaving channel methods in context switch 3888 * also when working in same channel mode 3889 * @num_slots: 1 - 10 3890 */ 3891 struct iwl_wipan_params_cmd { 3892 __le16 flags; 3893 u8 reserved; 3894 u8 num_slots; 3895 struct iwl_wipan_slot slots[10]; 3896 } __packed; 3897 3898 /* 3899 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 3900 * 3901 * TODO: Figure out what this is used for, 3902 * it can only switch between 2.4 GHz 3903 * channels!! 3904 */ 3905 3906 struct iwl_wipan_p2p_channel_switch_cmd { 3907 __le16 channel; 3908 __le16 reserved; 3909 }; 3910 3911 /* 3912 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc 3913 * 3914 * This is used by the device to notify us of the 3915 * NoA schedule it determined so we can forward it 3916 * to userspace for inclusion in probe responses. 3917 * 3918 * In beacons, the NoA schedule is simply appended 3919 * to the frame we give the device. 3920 */ 3921 3922 struct iwl_wipan_noa_descriptor { 3923 u8 count; 3924 __le32 duration; 3925 __le32 interval; 3926 __le32 starttime; 3927 } __packed; 3928 3929 struct iwl_wipan_noa_attribute { 3930 u8 id; 3931 __le16 length; 3932 u8 index; 3933 u8 ct_window; 3934 struct iwl_wipan_noa_descriptor descr0, descr1; 3935 u8 reserved; 3936 } __packed; 3937 3938 struct iwl_wipan_noa_notification { 3939 u32 noa_active; 3940 struct iwl_wipan_noa_attribute noa_attribute; 3941 } __packed; 3942 3943 #endif /* __iwl_commands_h__ */ 3944