1 /*
2  * Copyright (C) 2003, Axis Communications AB.
3  */
4 
5 #include <asm/irq.h>
6 #include <linux/irq.h>
7 #include <linux/interrupt.h>
8 #include <linux/smp.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/profile.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/threads.h>
16 #include <linux/spinlock.h>
17 #include <linux/kernel_stat.h>
18 #include <hwregs/reg_map.h>
19 #include <hwregs/reg_rdwr.h>
20 #include <hwregs/intr_vect.h>
21 #include <hwregs/intr_vect_defs.h>
22 
23 #define CPU_FIXED -1
24 
25 /* IRQ masks (refer to comment for crisv32_do_multiple) */
26 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
27 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
28 #undef TIMER_VECT1
29 #else
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
31 #define TIMER_VECT1
32 #endif
33 #ifdef CONFIG_ETRAX_KGDB
34 #if defined(CONFIG_ETRAX_KGDB_PORT0)
35 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
36 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
37 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
38 #elif defined(CONFIG_ETRAX_KGB_PORT2)
39 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
40 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
41 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
42 #endif
43 #endif
44 
45 DEFINE_SPINLOCK(irq_lock);
46 
47 struct cris_irq_allocation
48 {
49   int cpu; /* The CPU to which the IRQ is currently allocated. */
50   cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
51 };
52 
53 struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
54   { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
55 
56 static unsigned long irq_regs[NR_CPUS] =
57 {
58   regi_irq,
59 #ifdef CONFIG_SMP
60   regi_irq2,
61 #endif
62 };
63 
64 #if NR_REAL_IRQS > 32
65 #define NBR_REGS 2
66 #else
67 #define NBR_REGS 1
68 #endif
69 
70 unsigned long cpu_irq_counters[NR_CPUS];
71 unsigned long irq_counters[NR_REAL_IRQS];
72 
73 /* From irq.c. */
74 extern void weird_irq(void);
75 
76 /* From entry.S. */
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
89 
90 /* From kgdb.c. */
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
93 
94 /* From traps.c.  */
95 extern void breakh_BUG(void);
96 
97 /*
98  * Build the IRQ handler stubs using macros from irq.h.
99  */
100 #ifdef CONFIG_CRIS_MACH_ARTPEC3
101 BUILD_TIMER_IRQ(0x31, 0)
102 #else
103 BUILD_IRQ(0x31)
104 #endif
105 BUILD_IRQ(0x32)
106 BUILD_IRQ(0x33)
107 BUILD_IRQ(0x34)
108 BUILD_IRQ(0x35)
109 BUILD_IRQ(0x36)
110 BUILD_IRQ(0x37)
111 BUILD_IRQ(0x38)
112 BUILD_IRQ(0x39)
113 BUILD_IRQ(0x3a)
114 BUILD_IRQ(0x3b)
115 BUILD_IRQ(0x3c)
116 BUILD_IRQ(0x3d)
117 BUILD_IRQ(0x3e)
118 BUILD_IRQ(0x3f)
119 BUILD_IRQ(0x40)
120 BUILD_IRQ(0x41)
121 BUILD_IRQ(0x42)
122 BUILD_IRQ(0x43)
123 BUILD_IRQ(0x44)
124 BUILD_IRQ(0x45)
125 BUILD_IRQ(0x46)
126 BUILD_IRQ(0x47)
127 BUILD_IRQ(0x48)
128 BUILD_IRQ(0x49)
129 BUILD_IRQ(0x4a)
130 #ifdef CONFIG_ETRAXFS
131 BUILD_TIMER_IRQ(0x4b, 0)
132 #else
133 BUILD_IRQ(0x4b)
134 #endif
135 BUILD_IRQ(0x4c)
136 BUILD_IRQ(0x4d)
137 BUILD_IRQ(0x4e)
138 BUILD_IRQ(0x4f)
139 BUILD_IRQ(0x50)
140 #if MACH_IRQS > 32
141 BUILD_IRQ(0x51)
142 BUILD_IRQ(0x52)
143 BUILD_IRQ(0x53)
144 BUILD_IRQ(0x54)
145 BUILD_IRQ(0x55)
146 BUILD_IRQ(0x56)
147 BUILD_IRQ(0x57)
148 BUILD_IRQ(0x58)
149 BUILD_IRQ(0x59)
150 BUILD_IRQ(0x5a)
151 BUILD_IRQ(0x5b)
152 BUILD_IRQ(0x5c)
153 BUILD_IRQ(0x5d)
154 BUILD_IRQ(0x5e)
155 BUILD_IRQ(0x5f)
156 BUILD_IRQ(0x60)
157 BUILD_IRQ(0x61)
158 BUILD_IRQ(0x62)
159 BUILD_IRQ(0x63)
160 BUILD_IRQ(0x64)
161 BUILD_IRQ(0x65)
162 BUILD_IRQ(0x66)
163 BUILD_IRQ(0x67)
164 BUILD_IRQ(0x68)
165 BUILD_IRQ(0x69)
166 BUILD_IRQ(0x6a)
167 BUILD_IRQ(0x6b)
168 BUILD_IRQ(0x6c)
169 BUILD_IRQ(0x6d)
170 BUILD_IRQ(0x6e)
171 BUILD_IRQ(0x6f)
172 BUILD_IRQ(0x70)
173 #endif
174 
175 /* Pointers to the low-level handlers. */
176 static void (*interrupt[MACH_IRQS])(void) = {
177 	IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
178 	IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
179 	IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
180 	IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
181 	IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
182 	IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
183 	IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
184 	IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
185 	IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
186 	IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
187 	IRQ0x4f_interrupt, IRQ0x50_interrupt,
188 #if MACH_IRQS > 32
189 	IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
190 	IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
191 	IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
192 	IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
193 	IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
194 	IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
195 	IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
196 	IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
197 	IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
198 	IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
199 	IRQ0x6f_interrupt, IRQ0x70_interrupt,
200 #endif
201 };
202 
203 void
block_irq(int irq,int cpu)204 block_irq(int irq, int cpu)
205 {
206 	int intr_mask;
207         unsigned long flags;
208 
209 	spin_lock_irqsave(&irq_lock, flags);
210 	/* Remember, 1 let thru, 0 block. */
211 	if (irq - FIRST_IRQ < 32) {
212 		intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
213 			rw_mask, 0);
214 		intr_mask &= ~(1 << (irq - FIRST_IRQ));
215 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
216 			0, intr_mask);
217 	} else {
218 		intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
219 			rw_mask, 1);
220 		intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
221 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
222 			1, intr_mask);
223 	}
224         spin_unlock_irqrestore(&irq_lock, flags);
225 }
226 
227 void
unblock_irq(int irq,int cpu)228 unblock_irq(int irq, int cpu)
229 {
230 	int intr_mask;
231         unsigned long flags;
232 
233         spin_lock_irqsave(&irq_lock, flags);
234 	/* Remember, 1 let thru, 0 block. */
235 	if (irq - FIRST_IRQ < 32) {
236 		intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
237 			rw_mask, 0);
238 		intr_mask |= (1 << (irq - FIRST_IRQ));
239 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
240 			0, intr_mask);
241 	} else {
242 		intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
243 			rw_mask, 1);
244 		intr_mask |= (1 << (irq - FIRST_IRQ - 32));
245 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
246 			1, intr_mask);
247 	}
248         spin_unlock_irqrestore(&irq_lock, flags);
249 }
250 
251 /* Find out which CPU the irq should be allocated to. */
irq_cpu(int irq)252 static int irq_cpu(int irq)
253 {
254 	int cpu;
255         unsigned long flags;
256 
257         spin_lock_irqsave(&irq_lock, flags);
258         cpu = irq_allocations[irq - FIRST_IRQ].cpu;
259 
260 	/* Fixed interrupts stay on the local CPU. */
261 	if (cpu == CPU_FIXED)
262         {
263 		spin_unlock_irqrestore(&irq_lock, flags);
264 		return smp_processor_id();
265         }
266 
267 
268 	/* Let the interrupt stay if possible */
269 	if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask))
270 		goto out;
271 
272 	/* IRQ must be moved to another CPU. */
273 	cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask);
274 	irq_allocations[irq - FIRST_IRQ].cpu = cpu;
275 out:
276 	spin_unlock_irqrestore(&irq_lock, flags);
277 	return cpu;
278 }
279 
crisv32_mask_irq(int irq)280 void crisv32_mask_irq(int irq)
281 {
282 	int cpu;
283 
284 	for (cpu = 0; cpu < NR_CPUS; cpu++)
285 		block_irq(irq, cpu);
286 }
287 
crisv32_unmask_irq(int irq)288 void crisv32_unmask_irq(int irq)
289 {
290 	unblock_irq(irq, irq_cpu(irq));
291 }
292 
293 
enable_crisv32_irq(struct irq_data * data)294 static void enable_crisv32_irq(struct irq_data *data)
295 {
296 	crisv32_unmask_irq(data->irq);
297 }
298 
disable_crisv32_irq(struct irq_data * data)299 static void disable_crisv32_irq(struct irq_data *data)
300 {
301 	crisv32_mask_irq(data->irq);
302 }
303 
set_affinity_crisv32_irq(struct irq_data * data,const struct cpumask * dest,bool force)304 static int set_affinity_crisv32_irq(struct irq_data *data,
305 				    const struct cpumask *dest, bool force)
306 {
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&irq_lock, flags);
310 	irq_allocations[data->irq - FIRST_IRQ].mask = *dest;
311 	spin_unlock_irqrestore(&irq_lock, flags);
312 	return 0;
313 }
314 
315 static struct irq_chip crisv32_irq_type = {
316 	.name			= "CRISv32",
317 	.irq_shutdown		= disable_crisv32_irq,
318 	.irq_enable		= enable_crisv32_irq,
319 	.irq_disable		= disable_crisv32_irq,
320 	.irq_set_affinity	= set_affinity_crisv32_irq,
321 };
322 
323 void
set_exception_vector(int n,irqvectptr addr)324 set_exception_vector(int n, irqvectptr addr)
325 {
326 	etrax_irv->v[n] = (irqvectptr) addr;
327 }
328 
329 extern void do_IRQ(int irq, struct pt_regs * regs);
330 
331 void
crisv32_do_IRQ(int irq,int block,struct pt_regs * regs)332 crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
333 {
334 	/* Interrupts that may not be moved to another CPU and
335          * are IRQF_DISABLED may skip blocking. This is currently
336          * only valid for the timer IRQ and the IPI and is used
337          * for the timer interrupt to avoid watchdog starvation.
338          */
339 	if (!block) {
340 		do_IRQ(irq, regs);
341 		return;
342 	}
343 
344 	block_irq(irq, smp_processor_id());
345 	do_IRQ(irq, regs);
346 
347 	unblock_irq(irq, irq_cpu(irq));
348 }
349 
350 /* If multiple interrupts occur simultaneously we get a multiple
351  * interrupt from the CPU and software has to sort out which
352  * interrupts that happened. There are two special cases here:
353  *
354  * 1. Timer interrupts may never be blocked because of the
355  *    watchdog (refer to comment in include/asr/arch/irq.h)
356  * 2. GDB serial port IRQs are unhandled here and will be handled
357  *    as a single IRQ when it strikes again because the GDB
358  *    stubb wants to save the registers in its own fashion.
359  */
360 void
crisv32_do_multiple(struct pt_regs * regs)361 crisv32_do_multiple(struct pt_regs* regs)
362 {
363 	int cpu;
364 	int mask;
365 	int masked[NBR_REGS];
366 	int bit;
367 	int i;
368 
369 	cpu = smp_processor_id();
370 
371 	/* An extra irq_enter here to prevent softIRQs to run after
372          * each do_IRQ. This will decrease the interrupt latency.
373 	 */
374 	irq_enter();
375 
376 	for (i = 0; i < NBR_REGS; i++) {
377 		/* Get which IRQs that happened. */
378 		masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
379 			r_masked_vect, i);
380 
381 		/* Calculate new IRQ mask with these IRQs disabled. */
382 		mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
383 		mask &= ~masked[i];
384 
385 	/* Timer IRQ is never masked */
386 #ifdef TIMER_VECT1
387 		if ((i == 1) && (masked[0] & TIMER_MASK))
388 			mask |= TIMER_MASK;
389 #else
390 		if ((i == 0) && (masked[0] & TIMER_MASK))
391 			mask |= TIMER_MASK;
392 #endif
393 		/* Block all the IRQs */
394 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
395 
396 	/* Check for timer IRQ and handle it special. */
397 #ifdef TIMER_VECT1
398 		if ((i == 1) && (masked[i] & TIMER_MASK)) {
399 			masked[i] &= ~TIMER_MASK;
400 			do_IRQ(TIMER0_INTR_VECT, regs);
401 		}
402 #else
403 		if ((i == 0) && (masked[i] & TIMER_MASK)) {
404 			 masked[i] &= ~TIMER_MASK;
405 			 do_IRQ(TIMER0_INTR_VECT, regs);
406 		}
407 #endif
408 	}
409 
410 #ifdef IGNORE_MASK
411 	/* Remove IRQs that can't be handled as multiple. */
412 	masked[0] &= ~IGNORE_MASK;
413 #endif
414 
415 	/* Handle the rest of the IRQs. */
416 	for (i = 0; i < NBR_REGS; i++) {
417 		for (bit = 0; bit < 32; bit++) {
418 			if (masked[i] & (1 << bit))
419 				do_IRQ(bit + FIRST_IRQ + i*32, regs);
420 		}
421 	}
422 
423 	/* Unblock all the IRQs. */
424 	for (i = 0; i < NBR_REGS; i++) {
425 		mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
426 		mask |= masked[i];
427 		REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
428 	}
429 
430 	/* This irq_exit() will trigger the soft IRQs. */
431 	irq_exit();
432 }
433 
434 /*
435  * This is called by start_kernel. It fixes the IRQ masks and setup the
436  * interrupt vector table to point to bad_interrupt pointers.
437  */
438 void __init
init_IRQ(void)439 init_IRQ(void)
440 {
441 	int i;
442 	int j;
443 	reg_intr_vect_rw_mask vect_mask = {0};
444 
445 	/* Clear all interrupts masks. */
446 	for (i = 0; i < NBR_REGS; i++)
447 		REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
448 
449 	for (i = 0; i < 256; i++)
450 		etrax_irv->v[i] = weird_irq;
451 
452 	/* Point all IRQ's to bad handlers. */
453 	for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) {
454 		irq_set_chip_and_handler(j, &crisv32_irq_type,
455 					 handle_simple_irq);
456 		set_exception_vector(i, interrupt[j]);
457 	}
458 
459 	/* Mark Timer and IPI IRQs as CPU local */
460 	irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
461 	irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU);
462 	irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
463 	irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU);
464 
465 	set_exception_vector(0x00, nmi_interrupt);
466 	set_exception_vector(0x30, multiple_interrupt);
467 
468 	/* Set up handler for various MMU bus faults. */
469 	set_exception_vector(0x04, i_mmu_refill);
470 	set_exception_vector(0x05, i_mmu_invalid);
471 	set_exception_vector(0x06, i_mmu_access);
472 	set_exception_vector(0x07, i_mmu_execute);
473 	set_exception_vector(0x08, d_mmu_refill);
474 	set_exception_vector(0x09, d_mmu_invalid);
475 	set_exception_vector(0x0a, d_mmu_access);
476 	set_exception_vector(0x0b, d_mmu_write);
477 
478 #ifdef CONFIG_BUG
479 	/* Break 14 handler, used to implement cheap BUG().  */
480 	set_exception_vector(0x1e, breakh_BUG);
481 #endif
482 
483 	/* The system-call trap is reached by "break 13". */
484 	set_exception_vector(0x1d, system_call);
485 
486 	/* Exception handlers for debugging, both user-mode and kernel-mode. */
487 
488 	/* Break 8. */
489 	set_exception_vector(0x18, gdb_handle_exception);
490 	/* Hardware single step. */
491 	set_exception_vector(0x3, gdb_handle_exception);
492 	/* Hardware breakpoint. */
493 	set_exception_vector(0xc, gdb_handle_exception);
494 
495 #ifdef CONFIG_ETRAX_KGDB
496 	kgdb_init();
497 	/* Everything is set up; now trap the kernel. */
498 	breakpoint();
499 #endif
500 }
501 
502