1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/atomic.h>
53 #include <asm/uaccess.h>
54
55 extern struct workqueue_struct *ib_wq;
56
57 union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63 };
64
65 enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71 };
72
73 enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76 };
77
78 enum rdma_transport_type
79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81 enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85 };
86
87 enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_XRC = (1<<20),
116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
118 };
119
120 enum ib_atomic_cap {
121 IB_ATOMIC_NONE,
122 IB_ATOMIC_HCA,
123 IB_ATOMIC_GLOB
124 };
125
126 struct ib_device_attr {
127 u64 fw_ver;
128 __be64 sys_image_guid;
129 u64 max_mr_size;
130 u64 page_size_cap;
131 u32 vendor_id;
132 u32 vendor_part_id;
133 u32 hw_ver;
134 int max_qp;
135 int max_qp_wr;
136 int device_cap_flags;
137 int max_sge;
138 int max_sge_rd;
139 int max_cq;
140 int max_cqe;
141 int max_mr;
142 int max_pd;
143 int max_qp_rd_atom;
144 int max_ee_rd_atom;
145 int max_res_rd_atom;
146 int max_qp_init_rd_atom;
147 int max_ee_init_rd_atom;
148 enum ib_atomic_cap atomic_cap;
149 enum ib_atomic_cap masked_atomic_cap;
150 int max_ee;
151 int max_rdd;
152 int max_mw;
153 int max_raw_ipv6_qp;
154 int max_raw_ethy_qp;
155 int max_mcast_grp;
156 int max_mcast_qp_attach;
157 int max_total_mcast_qp_attach;
158 int max_ah;
159 int max_fmr;
160 int max_map_per_fmr;
161 int max_srq;
162 int max_srq_wr;
163 int max_srq_sge;
164 unsigned int max_fast_reg_page_list_len;
165 u16 max_pkeys;
166 u8 local_ca_ack_delay;
167 };
168
169 enum ib_mtu {
170 IB_MTU_256 = 1,
171 IB_MTU_512 = 2,
172 IB_MTU_1024 = 3,
173 IB_MTU_2048 = 4,
174 IB_MTU_4096 = 5
175 };
176
ib_mtu_enum_to_int(enum ib_mtu mtu)177 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
178 {
179 switch (mtu) {
180 case IB_MTU_256: return 256;
181 case IB_MTU_512: return 512;
182 case IB_MTU_1024: return 1024;
183 case IB_MTU_2048: return 2048;
184 case IB_MTU_4096: return 4096;
185 default: return -1;
186 }
187 }
188
189 enum ib_port_state {
190 IB_PORT_NOP = 0,
191 IB_PORT_DOWN = 1,
192 IB_PORT_INIT = 2,
193 IB_PORT_ARMED = 3,
194 IB_PORT_ACTIVE = 4,
195 IB_PORT_ACTIVE_DEFER = 5
196 };
197
198 enum ib_port_cap_flags {
199 IB_PORT_SM = 1 << 1,
200 IB_PORT_NOTICE_SUP = 1 << 2,
201 IB_PORT_TRAP_SUP = 1 << 3,
202 IB_PORT_OPT_IPD_SUP = 1 << 4,
203 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
204 IB_PORT_SL_MAP_SUP = 1 << 6,
205 IB_PORT_MKEY_NVRAM = 1 << 7,
206 IB_PORT_PKEY_NVRAM = 1 << 8,
207 IB_PORT_LED_INFO_SUP = 1 << 9,
208 IB_PORT_SM_DISABLED = 1 << 10,
209 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
210 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
211 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
212 IB_PORT_CM_SUP = 1 << 16,
213 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
214 IB_PORT_REINIT_SUP = 1 << 18,
215 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
216 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
217 IB_PORT_DR_NOTICE_SUP = 1 << 21,
218 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
219 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
220 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
221 IB_PORT_CLIENT_REG_SUP = 1 << 25
222 };
223
224 enum ib_port_width {
225 IB_WIDTH_1X = 1,
226 IB_WIDTH_4X = 2,
227 IB_WIDTH_8X = 4,
228 IB_WIDTH_12X = 8
229 };
230
ib_width_enum_to_int(enum ib_port_width width)231 static inline int ib_width_enum_to_int(enum ib_port_width width)
232 {
233 switch (width) {
234 case IB_WIDTH_1X: return 1;
235 case IB_WIDTH_4X: return 4;
236 case IB_WIDTH_8X: return 8;
237 case IB_WIDTH_12X: return 12;
238 default: return -1;
239 }
240 }
241
242 enum ib_port_speed {
243 IB_SPEED_SDR = 1,
244 IB_SPEED_DDR = 2,
245 IB_SPEED_QDR = 4,
246 IB_SPEED_FDR10 = 8,
247 IB_SPEED_FDR = 16,
248 IB_SPEED_EDR = 32
249 };
250
251 struct ib_protocol_stats {
252 /* TBD... */
253 };
254
255 struct iw_protocol_stats {
256 u64 ipInReceives;
257 u64 ipInHdrErrors;
258 u64 ipInTooBigErrors;
259 u64 ipInNoRoutes;
260 u64 ipInAddrErrors;
261 u64 ipInUnknownProtos;
262 u64 ipInTruncatedPkts;
263 u64 ipInDiscards;
264 u64 ipInDelivers;
265 u64 ipOutForwDatagrams;
266 u64 ipOutRequests;
267 u64 ipOutDiscards;
268 u64 ipOutNoRoutes;
269 u64 ipReasmTimeout;
270 u64 ipReasmReqds;
271 u64 ipReasmOKs;
272 u64 ipReasmFails;
273 u64 ipFragOKs;
274 u64 ipFragFails;
275 u64 ipFragCreates;
276 u64 ipInMcastPkts;
277 u64 ipOutMcastPkts;
278 u64 ipInBcastPkts;
279 u64 ipOutBcastPkts;
280
281 u64 tcpRtoAlgorithm;
282 u64 tcpRtoMin;
283 u64 tcpRtoMax;
284 u64 tcpMaxConn;
285 u64 tcpActiveOpens;
286 u64 tcpPassiveOpens;
287 u64 tcpAttemptFails;
288 u64 tcpEstabResets;
289 u64 tcpCurrEstab;
290 u64 tcpInSegs;
291 u64 tcpOutSegs;
292 u64 tcpRetransSegs;
293 u64 tcpInErrs;
294 u64 tcpOutRsts;
295 };
296
297 union rdma_protocol_stats {
298 struct ib_protocol_stats ib;
299 struct iw_protocol_stats iw;
300 };
301
302 struct ib_port_attr {
303 enum ib_port_state state;
304 enum ib_mtu max_mtu;
305 enum ib_mtu active_mtu;
306 int gid_tbl_len;
307 u32 port_cap_flags;
308 u32 max_msg_sz;
309 u32 bad_pkey_cntr;
310 u32 qkey_viol_cntr;
311 u16 pkey_tbl_len;
312 u16 lid;
313 u16 sm_lid;
314 u8 lmc;
315 u8 max_vl_num;
316 u8 sm_sl;
317 u8 subnet_timeout;
318 u8 init_type_reply;
319 u8 active_width;
320 u8 active_speed;
321 u8 phys_state;
322 };
323
324 enum ib_device_modify_flags {
325 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
326 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
327 };
328
329 struct ib_device_modify {
330 u64 sys_image_guid;
331 char node_desc[64];
332 };
333
334 enum ib_port_modify_flags {
335 IB_PORT_SHUTDOWN = 1,
336 IB_PORT_INIT_TYPE = (1<<2),
337 IB_PORT_RESET_QKEY_CNTR = (1<<3)
338 };
339
340 struct ib_port_modify {
341 u32 set_port_cap_mask;
342 u32 clr_port_cap_mask;
343 u8 init_type;
344 };
345
346 enum ib_event_type {
347 IB_EVENT_CQ_ERR,
348 IB_EVENT_QP_FATAL,
349 IB_EVENT_QP_REQ_ERR,
350 IB_EVENT_QP_ACCESS_ERR,
351 IB_EVENT_COMM_EST,
352 IB_EVENT_SQ_DRAINED,
353 IB_EVENT_PATH_MIG,
354 IB_EVENT_PATH_MIG_ERR,
355 IB_EVENT_DEVICE_FATAL,
356 IB_EVENT_PORT_ACTIVE,
357 IB_EVENT_PORT_ERR,
358 IB_EVENT_LID_CHANGE,
359 IB_EVENT_PKEY_CHANGE,
360 IB_EVENT_SM_CHANGE,
361 IB_EVENT_SRQ_ERR,
362 IB_EVENT_SRQ_LIMIT_REACHED,
363 IB_EVENT_QP_LAST_WQE_REACHED,
364 IB_EVENT_CLIENT_REREGISTER,
365 IB_EVENT_GID_CHANGE,
366 };
367
368 struct ib_event {
369 struct ib_device *device;
370 union {
371 struct ib_cq *cq;
372 struct ib_qp *qp;
373 struct ib_srq *srq;
374 u8 port_num;
375 } element;
376 enum ib_event_type event;
377 };
378
379 struct ib_event_handler {
380 struct ib_device *device;
381 void (*handler)(struct ib_event_handler *, struct ib_event *);
382 struct list_head list;
383 };
384
385 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
386 do { \
387 (_ptr)->device = _device; \
388 (_ptr)->handler = _handler; \
389 INIT_LIST_HEAD(&(_ptr)->list); \
390 } while (0)
391
392 struct ib_global_route {
393 union ib_gid dgid;
394 u32 flow_label;
395 u8 sgid_index;
396 u8 hop_limit;
397 u8 traffic_class;
398 };
399
400 struct ib_grh {
401 __be32 version_tclass_flow;
402 __be16 paylen;
403 u8 next_hdr;
404 u8 hop_limit;
405 union ib_gid sgid;
406 union ib_gid dgid;
407 };
408
409 enum {
410 IB_MULTICAST_QPN = 0xffffff
411 };
412
413 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
414
415 enum ib_ah_flags {
416 IB_AH_GRH = 1
417 };
418
419 enum ib_rate {
420 IB_RATE_PORT_CURRENT = 0,
421 IB_RATE_2_5_GBPS = 2,
422 IB_RATE_5_GBPS = 5,
423 IB_RATE_10_GBPS = 3,
424 IB_RATE_20_GBPS = 6,
425 IB_RATE_30_GBPS = 4,
426 IB_RATE_40_GBPS = 7,
427 IB_RATE_60_GBPS = 8,
428 IB_RATE_80_GBPS = 9,
429 IB_RATE_120_GBPS = 10,
430 IB_RATE_14_GBPS = 11,
431 IB_RATE_56_GBPS = 12,
432 IB_RATE_112_GBPS = 13,
433 IB_RATE_168_GBPS = 14,
434 IB_RATE_25_GBPS = 15,
435 IB_RATE_100_GBPS = 16,
436 IB_RATE_200_GBPS = 17,
437 IB_RATE_300_GBPS = 18
438 };
439
440 /**
441 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
442 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
443 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
444 * @rate: rate to convert.
445 */
446 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
447
448 /**
449 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
450 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
451 * @rate: rate to convert.
452 */
453 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
454
455 /**
456 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
457 * enum.
458 * @mult: multiple to convert.
459 */
460 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
461
462 struct ib_ah_attr {
463 struct ib_global_route grh;
464 u16 dlid;
465 u8 sl;
466 u8 src_path_bits;
467 u8 static_rate;
468 u8 ah_flags;
469 u8 port_num;
470 };
471
472 enum ib_wc_status {
473 IB_WC_SUCCESS,
474 IB_WC_LOC_LEN_ERR,
475 IB_WC_LOC_QP_OP_ERR,
476 IB_WC_LOC_EEC_OP_ERR,
477 IB_WC_LOC_PROT_ERR,
478 IB_WC_WR_FLUSH_ERR,
479 IB_WC_MW_BIND_ERR,
480 IB_WC_BAD_RESP_ERR,
481 IB_WC_LOC_ACCESS_ERR,
482 IB_WC_REM_INV_REQ_ERR,
483 IB_WC_REM_ACCESS_ERR,
484 IB_WC_REM_OP_ERR,
485 IB_WC_RETRY_EXC_ERR,
486 IB_WC_RNR_RETRY_EXC_ERR,
487 IB_WC_LOC_RDD_VIOL_ERR,
488 IB_WC_REM_INV_RD_REQ_ERR,
489 IB_WC_REM_ABORT_ERR,
490 IB_WC_INV_EECN_ERR,
491 IB_WC_INV_EEC_STATE_ERR,
492 IB_WC_FATAL_ERR,
493 IB_WC_RESP_TIMEOUT_ERR,
494 IB_WC_GENERAL_ERR
495 };
496
497 enum ib_wc_opcode {
498 IB_WC_SEND,
499 IB_WC_RDMA_WRITE,
500 IB_WC_RDMA_READ,
501 IB_WC_COMP_SWAP,
502 IB_WC_FETCH_ADD,
503 IB_WC_BIND_MW,
504 IB_WC_LSO,
505 IB_WC_LOCAL_INV,
506 IB_WC_FAST_REG_MR,
507 IB_WC_MASKED_COMP_SWAP,
508 IB_WC_MASKED_FETCH_ADD,
509 /*
510 * Set value of IB_WC_RECV so consumers can test if a completion is a
511 * receive by testing (opcode & IB_WC_RECV).
512 */
513 IB_WC_RECV = 1 << 7,
514 IB_WC_RECV_RDMA_WITH_IMM
515 };
516
517 enum ib_wc_flags {
518 IB_WC_GRH = 1,
519 IB_WC_WITH_IMM = (1<<1),
520 IB_WC_WITH_INVALIDATE = (1<<2),
521 IB_WC_IP_CSUM_OK = (1<<3),
522 };
523
524 struct ib_wc {
525 u64 wr_id;
526 enum ib_wc_status status;
527 enum ib_wc_opcode opcode;
528 u32 vendor_err;
529 u32 byte_len;
530 struct ib_qp *qp;
531 union {
532 __be32 imm_data;
533 u32 invalidate_rkey;
534 } ex;
535 u32 src_qp;
536 int wc_flags;
537 u16 pkey_index;
538 u16 slid;
539 u8 sl;
540 u8 dlid_path_bits;
541 u8 port_num; /* valid only for DR SMPs on switches */
542 };
543
544 enum ib_cq_notify_flags {
545 IB_CQ_SOLICITED = 1 << 0,
546 IB_CQ_NEXT_COMP = 1 << 1,
547 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
548 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
549 };
550
551 enum ib_srq_type {
552 IB_SRQT_BASIC,
553 IB_SRQT_XRC
554 };
555
556 enum ib_srq_attr_mask {
557 IB_SRQ_MAX_WR = 1 << 0,
558 IB_SRQ_LIMIT = 1 << 1,
559 };
560
561 struct ib_srq_attr {
562 u32 max_wr;
563 u32 max_sge;
564 u32 srq_limit;
565 };
566
567 struct ib_srq_init_attr {
568 void (*event_handler)(struct ib_event *, void *);
569 void *srq_context;
570 struct ib_srq_attr attr;
571 enum ib_srq_type srq_type;
572
573 union {
574 struct {
575 struct ib_xrcd *xrcd;
576 struct ib_cq *cq;
577 } xrc;
578 } ext;
579 };
580
581 struct ib_qp_cap {
582 u32 max_send_wr;
583 u32 max_recv_wr;
584 u32 max_send_sge;
585 u32 max_recv_sge;
586 u32 max_inline_data;
587 };
588
589 enum ib_sig_type {
590 IB_SIGNAL_ALL_WR,
591 IB_SIGNAL_REQ_WR
592 };
593
594 enum ib_qp_type {
595 /*
596 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
597 * here (and in that order) since the MAD layer uses them as
598 * indices into a 2-entry table.
599 */
600 IB_QPT_SMI,
601 IB_QPT_GSI,
602
603 IB_QPT_RC,
604 IB_QPT_UC,
605 IB_QPT_UD,
606 IB_QPT_RAW_IPV6,
607 IB_QPT_RAW_ETHERTYPE,
608 /* Save 8 for RAW_PACKET */
609 IB_QPT_XRC_INI = 9,
610 IB_QPT_XRC_TGT,
611 IB_QPT_MAX
612 };
613
614 enum ib_qp_create_flags {
615 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
616 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
617 };
618
619 struct ib_qp_init_attr {
620 void (*event_handler)(struct ib_event *, void *);
621 void *qp_context;
622 struct ib_cq *send_cq;
623 struct ib_cq *recv_cq;
624 struct ib_srq *srq;
625 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
626 struct ib_qp_cap cap;
627 enum ib_sig_type sq_sig_type;
628 enum ib_qp_type qp_type;
629 enum ib_qp_create_flags create_flags;
630 u8 port_num; /* special QP types only */
631 };
632
633 struct ib_qp_open_attr {
634 void (*event_handler)(struct ib_event *, void *);
635 void *qp_context;
636 u32 qp_num;
637 enum ib_qp_type qp_type;
638 };
639
640 enum ib_rnr_timeout {
641 IB_RNR_TIMER_655_36 = 0,
642 IB_RNR_TIMER_000_01 = 1,
643 IB_RNR_TIMER_000_02 = 2,
644 IB_RNR_TIMER_000_03 = 3,
645 IB_RNR_TIMER_000_04 = 4,
646 IB_RNR_TIMER_000_06 = 5,
647 IB_RNR_TIMER_000_08 = 6,
648 IB_RNR_TIMER_000_12 = 7,
649 IB_RNR_TIMER_000_16 = 8,
650 IB_RNR_TIMER_000_24 = 9,
651 IB_RNR_TIMER_000_32 = 10,
652 IB_RNR_TIMER_000_48 = 11,
653 IB_RNR_TIMER_000_64 = 12,
654 IB_RNR_TIMER_000_96 = 13,
655 IB_RNR_TIMER_001_28 = 14,
656 IB_RNR_TIMER_001_92 = 15,
657 IB_RNR_TIMER_002_56 = 16,
658 IB_RNR_TIMER_003_84 = 17,
659 IB_RNR_TIMER_005_12 = 18,
660 IB_RNR_TIMER_007_68 = 19,
661 IB_RNR_TIMER_010_24 = 20,
662 IB_RNR_TIMER_015_36 = 21,
663 IB_RNR_TIMER_020_48 = 22,
664 IB_RNR_TIMER_030_72 = 23,
665 IB_RNR_TIMER_040_96 = 24,
666 IB_RNR_TIMER_061_44 = 25,
667 IB_RNR_TIMER_081_92 = 26,
668 IB_RNR_TIMER_122_88 = 27,
669 IB_RNR_TIMER_163_84 = 28,
670 IB_RNR_TIMER_245_76 = 29,
671 IB_RNR_TIMER_327_68 = 30,
672 IB_RNR_TIMER_491_52 = 31
673 };
674
675 enum ib_qp_attr_mask {
676 IB_QP_STATE = 1,
677 IB_QP_CUR_STATE = (1<<1),
678 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
679 IB_QP_ACCESS_FLAGS = (1<<3),
680 IB_QP_PKEY_INDEX = (1<<4),
681 IB_QP_PORT = (1<<5),
682 IB_QP_QKEY = (1<<6),
683 IB_QP_AV = (1<<7),
684 IB_QP_PATH_MTU = (1<<8),
685 IB_QP_TIMEOUT = (1<<9),
686 IB_QP_RETRY_CNT = (1<<10),
687 IB_QP_RNR_RETRY = (1<<11),
688 IB_QP_RQ_PSN = (1<<12),
689 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
690 IB_QP_ALT_PATH = (1<<14),
691 IB_QP_MIN_RNR_TIMER = (1<<15),
692 IB_QP_SQ_PSN = (1<<16),
693 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
694 IB_QP_PATH_MIG_STATE = (1<<18),
695 IB_QP_CAP = (1<<19),
696 IB_QP_DEST_QPN = (1<<20)
697 };
698
699 enum ib_qp_state {
700 IB_QPS_RESET,
701 IB_QPS_INIT,
702 IB_QPS_RTR,
703 IB_QPS_RTS,
704 IB_QPS_SQD,
705 IB_QPS_SQE,
706 IB_QPS_ERR
707 };
708
709 enum ib_mig_state {
710 IB_MIG_MIGRATED,
711 IB_MIG_REARM,
712 IB_MIG_ARMED
713 };
714
715 struct ib_qp_attr {
716 enum ib_qp_state qp_state;
717 enum ib_qp_state cur_qp_state;
718 enum ib_mtu path_mtu;
719 enum ib_mig_state path_mig_state;
720 u32 qkey;
721 u32 rq_psn;
722 u32 sq_psn;
723 u32 dest_qp_num;
724 int qp_access_flags;
725 struct ib_qp_cap cap;
726 struct ib_ah_attr ah_attr;
727 struct ib_ah_attr alt_ah_attr;
728 u16 pkey_index;
729 u16 alt_pkey_index;
730 u8 en_sqd_async_notify;
731 u8 sq_draining;
732 u8 max_rd_atomic;
733 u8 max_dest_rd_atomic;
734 u8 min_rnr_timer;
735 u8 port_num;
736 u8 timeout;
737 u8 retry_cnt;
738 u8 rnr_retry;
739 u8 alt_port_num;
740 u8 alt_timeout;
741 };
742
743 enum ib_wr_opcode {
744 IB_WR_RDMA_WRITE,
745 IB_WR_RDMA_WRITE_WITH_IMM,
746 IB_WR_SEND,
747 IB_WR_SEND_WITH_IMM,
748 IB_WR_RDMA_READ,
749 IB_WR_ATOMIC_CMP_AND_SWP,
750 IB_WR_ATOMIC_FETCH_AND_ADD,
751 IB_WR_LSO,
752 IB_WR_SEND_WITH_INV,
753 IB_WR_RDMA_READ_WITH_INV,
754 IB_WR_LOCAL_INV,
755 IB_WR_FAST_REG_MR,
756 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
757 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
758 };
759
760 enum ib_send_flags {
761 IB_SEND_FENCE = 1,
762 IB_SEND_SIGNALED = (1<<1),
763 IB_SEND_SOLICITED = (1<<2),
764 IB_SEND_INLINE = (1<<3),
765 IB_SEND_IP_CSUM = (1<<4)
766 };
767
768 struct ib_sge {
769 u64 addr;
770 u32 length;
771 u32 lkey;
772 };
773
774 struct ib_fast_reg_page_list {
775 struct ib_device *device;
776 u64 *page_list;
777 unsigned int max_page_list_len;
778 };
779
780 struct ib_send_wr {
781 struct ib_send_wr *next;
782 u64 wr_id;
783 struct ib_sge *sg_list;
784 int num_sge;
785 enum ib_wr_opcode opcode;
786 int send_flags;
787 union {
788 __be32 imm_data;
789 u32 invalidate_rkey;
790 } ex;
791 union {
792 struct {
793 u64 remote_addr;
794 u32 rkey;
795 } rdma;
796 struct {
797 u64 remote_addr;
798 u64 compare_add;
799 u64 swap;
800 u64 compare_add_mask;
801 u64 swap_mask;
802 u32 rkey;
803 } atomic;
804 struct {
805 struct ib_ah *ah;
806 void *header;
807 int hlen;
808 int mss;
809 u32 remote_qpn;
810 u32 remote_qkey;
811 u16 pkey_index; /* valid for GSI only */
812 u8 port_num; /* valid for DR SMPs on switch only */
813 } ud;
814 struct {
815 u64 iova_start;
816 struct ib_fast_reg_page_list *page_list;
817 unsigned int page_shift;
818 unsigned int page_list_len;
819 u32 length;
820 int access_flags;
821 u32 rkey;
822 } fast_reg;
823 } wr;
824 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
825 };
826
827 struct ib_recv_wr {
828 struct ib_recv_wr *next;
829 u64 wr_id;
830 struct ib_sge *sg_list;
831 int num_sge;
832 };
833
834 enum ib_access_flags {
835 IB_ACCESS_LOCAL_WRITE = 1,
836 IB_ACCESS_REMOTE_WRITE = (1<<1),
837 IB_ACCESS_REMOTE_READ = (1<<2),
838 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
839 IB_ACCESS_MW_BIND = (1<<4)
840 };
841
842 struct ib_phys_buf {
843 u64 addr;
844 u64 size;
845 };
846
847 struct ib_mr_attr {
848 struct ib_pd *pd;
849 u64 device_virt_addr;
850 u64 size;
851 int mr_access_flags;
852 u32 lkey;
853 u32 rkey;
854 };
855
856 enum ib_mr_rereg_flags {
857 IB_MR_REREG_TRANS = 1,
858 IB_MR_REREG_PD = (1<<1),
859 IB_MR_REREG_ACCESS = (1<<2)
860 };
861
862 struct ib_mw_bind {
863 struct ib_mr *mr;
864 u64 wr_id;
865 u64 addr;
866 u32 length;
867 int send_flags;
868 int mw_access_flags;
869 };
870
871 struct ib_fmr_attr {
872 int max_pages;
873 int max_maps;
874 u8 page_shift;
875 };
876
877 struct ib_ucontext {
878 struct ib_device *device;
879 struct list_head pd_list;
880 struct list_head mr_list;
881 struct list_head mw_list;
882 struct list_head cq_list;
883 struct list_head qp_list;
884 struct list_head srq_list;
885 struct list_head ah_list;
886 struct list_head xrcd_list;
887 int closing;
888 };
889
890 struct ib_uobject {
891 u64 user_handle; /* handle given to us by userspace */
892 struct ib_ucontext *context; /* associated user context */
893 void *object; /* containing object */
894 struct list_head list; /* link to context's list */
895 int id; /* index into kernel idr */
896 struct kref ref;
897 struct rw_semaphore mutex; /* protects .live */
898 int live;
899 };
900
901 struct ib_udata {
902 void __user *inbuf;
903 void __user *outbuf;
904 size_t inlen;
905 size_t outlen;
906 };
907
908 struct ib_pd {
909 struct ib_device *device;
910 struct ib_uobject *uobject;
911 atomic_t usecnt; /* count all resources */
912 };
913
914 struct ib_xrcd {
915 struct ib_device *device;
916 atomic_t usecnt; /* count all exposed resources */
917 struct inode *inode;
918
919 struct mutex tgt_qp_mutex;
920 struct list_head tgt_qp_list;
921 };
922
923 struct ib_ah {
924 struct ib_device *device;
925 struct ib_pd *pd;
926 struct ib_uobject *uobject;
927 };
928
929 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
930
931 struct ib_cq {
932 struct ib_device *device;
933 struct ib_uobject *uobject;
934 ib_comp_handler comp_handler;
935 void (*event_handler)(struct ib_event *, void *);
936 void *cq_context;
937 int cqe;
938 atomic_t usecnt; /* count number of work queues */
939 };
940
941 struct ib_srq {
942 struct ib_device *device;
943 struct ib_pd *pd;
944 struct ib_uobject *uobject;
945 void (*event_handler)(struct ib_event *, void *);
946 void *srq_context;
947 enum ib_srq_type srq_type;
948 atomic_t usecnt;
949
950 union {
951 struct {
952 struct ib_xrcd *xrcd;
953 struct ib_cq *cq;
954 u32 srq_num;
955 } xrc;
956 } ext;
957 };
958
959 struct ib_qp {
960 struct ib_device *device;
961 struct ib_pd *pd;
962 struct ib_cq *send_cq;
963 struct ib_cq *recv_cq;
964 struct ib_srq *srq;
965 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
966 struct list_head xrcd_list;
967 atomic_t usecnt; /* count times opened */
968 struct list_head open_list;
969 struct ib_qp *real_qp;
970 struct ib_uobject *uobject;
971 void (*event_handler)(struct ib_event *, void *);
972 void *qp_context;
973 u32 qp_num;
974 enum ib_qp_type qp_type;
975 };
976
977 struct ib_mr {
978 struct ib_device *device;
979 struct ib_pd *pd;
980 struct ib_uobject *uobject;
981 u32 lkey;
982 u32 rkey;
983 atomic_t usecnt; /* count number of MWs */
984 };
985
986 struct ib_mw {
987 struct ib_device *device;
988 struct ib_pd *pd;
989 struct ib_uobject *uobject;
990 u32 rkey;
991 };
992
993 struct ib_fmr {
994 struct ib_device *device;
995 struct ib_pd *pd;
996 struct list_head list;
997 u32 lkey;
998 u32 rkey;
999 };
1000
1001 struct ib_mad;
1002 struct ib_grh;
1003
1004 enum ib_process_mad_flags {
1005 IB_MAD_IGNORE_MKEY = 1,
1006 IB_MAD_IGNORE_BKEY = 2,
1007 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1008 };
1009
1010 enum ib_mad_result {
1011 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1012 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1013 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1014 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1015 };
1016
1017 #define IB_DEVICE_NAME_MAX 64
1018
1019 struct ib_cache {
1020 rwlock_t lock;
1021 struct ib_event_handler event_handler;
1022 struct ib_pkey_cache **pkey_cache;
1023 struct ib_gid_cache **gid_cache;
1024 u8 *lmc_cache;
1025 };
1026
1027 struct ib_dma_mapping_ops {
1028 int (*mapping_error)(struct ib_device *dev,
1029 u64 dma_addr);
1030 u64 (*map_single)(struct ib_device *dev,
1031 void *ptr, size_t size,
1032 enum dma_data_direction direction);
1033 void (*unmap_single)(struct ib_device *dev,
1034 u64 addr, size_t size,
1035 enum dma_data_direction direction);
1036 u64 (*map_page)(struct ib_device *dev,
1037 struct page *page, unsigned long offset,
1038 size_t size,
1039 enum dma_data_direction direction);
1040 void (*unmap_page)(struct ib_device *dev,
1041 u64 addr, size_t size,
1042 enum dma_data_direction direction);
1043 int (*map_sg)(struct ib_device *dev,
1044 struct scatterlist *sg, int nents,
1045 enum dma_data_direction direction);
1046 void (*unmap_sg)(struct ib_device *dev,
1047 struct scatterlist *sg, int nents,
1048 enum dma_data_direction direction);
1049 u64 (*dma_address)(struct ib_device *dev,
1050 struct scatterlist *sg);
1051 unsigned int (*dma_len)(struct ib_device *dev,
1052 struct scatterlist *sg);
1053 void (*sync_single_for_cpu)(struct ib_device *dev,
1054 u64 dma_handle,
1055 size_t size,
1056 enum dma_data_direction dir);
1057 void (*sync_single_for_device)(struct ib_device *dev,
1058 u64 dma_handle,
1059 size_t size,
1060 enum dma_data_direction dir);
1061 void *(*alloc_coherent)(struct ib_device *dev,
1062 size_t size,
1063 u64 *dma_handle,
1064 gfp_t flag);
1065 void (*free_coherent)(struct ib_device *dev,
1066 size_t size, void *cpu_addr,
1067 u64 dma_handle);
1068 };
1069
1070 struct iw_cm_verbs;
1071
1072 struct ib_device {
1073 struct device *dma_device;
1074
1075 char name[IB_DEVICE_NAME_MAX];
1076
1077 struct list_head event_handler_list;
1078 spinlock_t event_handler_lock;
1079
1080 spinlock_t client_data_lock;
1081 struct list_head core_list;
1082 struct list_head client_data_list;
1083
1084 struct ib_cache cache;
1085 int *pkey_tbl_len;
1086 int *gid_tbl_len;
1087
1088 int num_comp_vectors;
1089
1090 struct iw_cm_verbs *iwcm;
1091
1092 int (*get_protocol_stats)(struct ib_device *device,
1093 union rdma_protocol_stats *stats);
1094 int (*query_device)(struct ib_device *device,
1095 struct ib_device_attr *device_attr);
1096 int (*query_port)(struct ib_device *device,
1097 u8 port_num,
1098 struct ib_port_attr *port_attr);
1099 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1100 u8 port_num);
1101 int (*query_gid)(struct ib_device *device,
1102 u8 port_num, int index,
1103 union ib_gid *gid);
1104 int (*query_pkey)(struct ib_device *device,
1105 u8 port_num, u16 index, u16 *pkey);
1106 int (*modify_device)(struct ib_device *device,
1107 int device_modify_mask,
1108 struct ib_device_modify *device_modify);
1109 int (*modify_port)(struct ib_device *device,
1110 u8 port_num, int port_modify_mask,
1111 struct ib_port_modify *port_modify);
1112 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1113 struct ib_udata *udata);
1114 int (*dealloc_ucontext)(struct ib_ucontext *context);
1115 int (*mmap)(struct ib_ucontext *context,
1116 struct vm_area_struct *vma);
1117 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1118 struct ib_ucontext *context,
1119 struct ib_udata *udata);
1120 int (*dealloc_pd)(struct ib_pd *pd);
1121 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1122 struct ib_ah_attr *ah_attr);
1123 int (*modify_ah)(struct ib_ah *ah,
1124 struct ib_ah_attr *ah_attr);
1125 int (*query_ah)(struct ib_ah *ah,
1126 struct ib_ah_attr *ah_attr);
1127 int (*destroy_ah)(struct ib_ah *ah);
1128 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1129 struct ib_srq_init_attr *srq_init_attr,
1130 struct ib_udata *udata);
1131 int (*modify_srq)(struct ib_srq *srq,
1132 struct ib_srq_attr *srq_attr,
1133 enum ib_srq_attr_mask srq_attr_mask,
1134 struct ib_udata *udata);
1135 int (*query_srq)(struct ib_srq *srq,
1136 struct ib_srq_attr *srq_attr);
1137 int (*destroy_srq)(struct ib_srq *srq);
1138 int (*post_srq_recv)(struct ib_srq *srq,
1139 struct ib_recv_wr *recv_wr,
1140 struct ib_recv_wr **bad_recv_wr);
1141 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1142 struct ib_qp_init_attr *qp_init_attr,
1143 struct ib_udata *udata);
1144 int (*modify_qp)(struct ib_qp *qp,
1145 struct ib_qp_attr *qp_attr,
1146 int qp_attr_mask,
1147 struct ib_udata *udata);
1148 int (*query_qp)(struct ib_qp *qp,
1149 struct ib_qp_attr *qp_attr,
1150 int qp_attr_mask,
1151 struct ib_qp_init_attr *qp_init_attr);
1152 int (*destroy_qp)(struct ib_qp *qp);
1153 int (*post_send)(struct ib_qp *qp,
1154 struct ib_send_wr *send_wr,
1155 struct ib_send_wr **bad_send_wr);
1156 int (*post_recv)(struct ib_qp *qp,
1157 struct ib_recv_wr *recv_wr,
1158 struct ib_recv_wr **bad_recv_wr);
1159 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1160 int comp_vector,
1161 struct ib_ucontext *context,
1162 struct ib_udata *udata);
1163 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1164 u16 cq_period);
1165 int (*destroy_cq)(struct ib_cq *cq);
1166 int (*resize_cq)(struct ib_cq *cq, int cqe,
1167 struct ib_udata *udata);
1168 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1169 struct ib_wc *wc);
1170 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1171 int (*req_notify_cq)(struct ib_cq *cq,
1172 enum ib_cq_notify_flags flags);
1173 int (*req_ncomp_notif)(struct ib_cq *cq,
1174 int wc_cnt);
1175 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1176 int mr_access_flags);
1177 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1178 struct ib_phys_buf *phys_buf_array,
1179 int num_phys_buf,
1180 int mr_access_flags,
1181 u64 *iova_start);
1182 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1183 u64 start, u64 length,
1184 u64 virt_addr,
1185 int mr_access_flags,
1186 struct ib_udata *udata);
1187 int (*query_mr)(struct ib_mr *mr,
1188 struct ib_mr_attr *mr_attr);
1189 int (*dereg_mr)(struct ib_mr *mr);
1190 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1191 int max_page_list_len);
1192 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1193 int page_list_len);
1194 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1195 int (*rereg_phys_mr)(struct ib_mr *mr,
1196 int mr_rereg_mask,
1197 struct ib_pd *pd,
1198 struct ib_phys_buf *phys_buf_array,
1199 int num_phys_buf,
1200 int mr_access_flags,
1201 u64 *iova_start);
1202 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1203 int (*bind_mw)(struct ib_qp *qp,
1204 struct ib_mw *mw,
1205 struct ib_mw_bind *mw_bind);
1206 int (*dealloc_mw)(struct ib_mw *mw);
1207 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1208 int mr_access_flags,
1209 struct ib_fmr_attr *fmr_attr);
1210 int (*map_phys_fmr)(struct ib_fmr *fmr,
1211 u64 *page_list, int list_len,
1212 u64 iova);
1213 int (*unmap_fmr)(struct list_head *fmr_list);
1214 int (*dealloc_fmr)(struct ib_fmr *fmr);
1215 int (*attach_mcast)(struct ib_qp *qp,
1216 union ib_gid *gid,
1217 u16 lid);
1218 int (*detach_mcast)(struct ib_qp *qp,
1219 union ib_gid *gid,
1220 u16 lid);
1221 int (*process_mad)(struct ib_device *device,
1222 int process_mad_flags,
1223 u8 port_num,
1224 struct ib_wc *in_wc,
1225 struct ib_grh *in_grh,
1226 struct ib_mad *in_mad,
1227 struct ib_mad *out_mad);
1228 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1229 struct ib_ucontext *ucontext,
1230 struct ib_udata *udata);
1231 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1232
1233 struct ib_dma_mapping_ops *dma_ops;
1234
1235 struct module *owner;
1236 struct device dev;
1237 struct kobject *ports_parent;
1238 struct list_head port_list;
1239
1240 enum {
1241 IB_DEV_UNINITIALIZED,
1242 IB_DEV_REGISTERED,
1243 IB_DEV_UNREGISTERED
1244 } reg_state;
1245
1246 int uverbs_abi_ver;
1247 u64 uverbs_cmd_mask;
1248
1249 char node_desc[64];
1250 __be64 node_guid;
1251 u32 local_dma_lkey;
1252 u8 node_type;
1253 u8 phys_port_cnt;
1254 };
1255
1256 struct ib_client {
1257 char *name;
1258 void (*add) (struct ib_device *);
1259 void (*remove)(struct ib_device *);
1260
1261 struct list_head list;
1262 };
1263
1264 struct ib_device *ib_alloc_device(size_t size);
1265 void ib_dealloc_device(struct ib_device *device);
1266
1267 int ib_register_device(struct ib_device *device,
1268 int (*port_callback)(struct ib_device *,
1269 u8, struct kobject *));
1270 void ib_unregister_device(struct ib_device *device);
1271
1272 int ib_register_client (struct ib_client *client);
1273 void ib_unregister_client(struct ib_client *client);
1274
1275 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1276 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1277 void *data);
1278
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)1279 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1280 {
1281 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1282 }
1283
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)1284 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1285 {
1286 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1287 }
1288
1289 /**
1290 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1291 * contains all required attributes and no attributes not allowed for
1292 * the given QP state transition.
1293 * @cur_state: Current QP state
1294 * @next_state: Next QP state
1295 * @type: QP type
1296 * @mask: Mask of supplied QP attributes
1297 *
1298 * This function is a helper function that a low-level driver's
1299 * modify_qp method can use to validate the consumer's input. It
1300 * checks that cur_state and next_state are valid QP states, that a
1301 * transition from cur_state to next_state is allowed by the IB spec,
1302 * and that the attribute mask supplied is allowed for the transition.
1303 */
1304 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1305 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1306
1307 int ib_register_event_handler (struct ib_event_handler *event_handler);
1308 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1309 void ib_dispatch_event(struct ib_event *event);
1310
1311 int ib_query_device(struct ib_device *device,
1312 struct ib_device_attr *device_attr);
1313
1314 int ib_query_port(struct ib_device *device,
1315 u8 port_num, struct ib_port_attr *port_attr);
1316
1317 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1318 u8 port_num);
1319
1320 int ib_query_gid(struct ib_device *device,
1321 u8 port_num, int index, union ib_gid *gid);
1322
1323 int ib_query_pkey(struct ib_device *device,
1324 u8 port_num, u16 index, u16 *pkey);
1325
1326 int ib_modify_device(struct ib_device *device,
1327 int device_modify_mask,
1328 struct ib_device_modify *device_modify);
1329
1330 int ib_modify_port(struct ib_device *device,
1331 u8 port_num, int port_modify_mask,
1332 struct ib_port_modify *port_modify);
1333
1334 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1335 u8 *port_num, u16 *index);
1336
1337 int ib_find_pkey(struct ib_device *device,
1338 u8 port_num, u16 pkey, u16 *index);
1339
1340 /**
1341 * ib_alloc_pd - Allocates an unused protection domain.
1342 * @device: The device on which to allocate the protection domain.
1343 *
1344 * A protection domain object provides an association between QPs, shared
1345 * receive queues, address handles, memory regions, and memory windows.
1346 */
1347 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1348
1349 /**
1350 * ib_dealloc_pd - Deallocates a protection domain.
1351 * @pd: The protection domain to deallocate.
1352 */
1353 int ib_dealloc_pd(struct ib_pd *pd);
1354
1355 /**
1356 * ib_create_ah - Creates an address handle for the given address vector.
1357 * @pd: The protection domain associated with the address handle.
1358 * @ah_attr: The attributes of the address vector.
1359 *
1360 * The address handle is used to reference a local or global destination
1361 * in all UD QP post sends.
1362 */
1363 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1364
1365 /**
1366 * ib_init_ah_from_wc - Initializes address handle attributes from a
1367 * work completion.
1368 * @device: Device on which the received message arrived.
1369 * @port_num: Port on which the received message arrived.
1370 * @wc: Work completion associated with the received message.
1371 * @grh: References the received global route header. This parameter is
1372 * ignored unless the work completion indicates that the GRH is valid.
1373 * @ah_attr: Returned attributes that can be used when creating an address
1374 * handle for replying to the message.
1375 */
1376 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1377 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1378
1379 /**
1380 * ib_create_ah_from_wc - Creates an address handle associated with the
1381 * sender of the specified work completion.
1382 * @pd: The protection domain associated with the address handle.
1383 * @wc: Work completion information associated with a received message.
1384 * @grh: References the received global route header. This parameter is
1385 * ignored unless the work completion indicates that the GRH is valid.
1386 * @port_num: The outbound port number to associate with the address.
1387 *
1388 * The address handle is used to reference a local or global destination
1389 * in all UD QP post sends.
1390 */
1391 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1392 struct ib_grh *grh, u8 port_num);
1393
1394 /**
1395 * ib_modify_ah - Modifies the address vector associated with an address
1396 * handle.
1397 * @ah: The address handle to modify.
1398 * @ah_attr: The new address vector attributes to associate with the
1399 * address handle.
1400 */
1401 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1402
1403 /**
1404 * ib_query_ah - Queries the address vector associated with an address
1405 * handle.
1406 * @ah: The address handle to query.
1407 * @ah_attr: The address vector attributes associated with the address
1408 * handle.
1409 */
1410 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1411
1412 /**
1413 * ib_destroy_ah - Destroys an address handle.
1414 * @ah: The address handle to destroy.
1415 */
1416 int ib_destroy_ah(struct ib_ah *ah);
1417
1418 /**
1419 * ib_create_srq - Creates a SRQ associated with the specified protection
1420 * domain.
1421 * @pd: The protection domain associated with the SRQ.
1422 * @srq_init_attr: A list of initial attributes required to create the
1423 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1424 * the actual capabilities of the created SRQ.
1425 *
1426 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1427 * requested size of the SRQ, and set to the actual values allocated
1428 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1429 * will always be at least as large as the requested values.
1430 */
1431 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1432 struct ib_srq_init_attr *srq_init_attr);
1433
1434 /**
1435 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1436 * @srq: The SRQ to modify.
1437 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1438 * the current values of selected SRQ attributes are returned.
1439 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1440 * are being modified.
1441 *
1442 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1443 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1444 * the number of receives queued drops below the limit.
1445 */
1446 int ib_modify_srq(struct ib_srq *srq,
1447 struct ib_srq_attr *srq_attr,
1448 enum ib_srq_attr_mask srq_attr_mask);
1449
1450 /**
1451 * ib_query_srq - Returns the attribute list and current values for the
1452 * specified SRQ.
1453 * @srq: The SRQ to query.
1454 * @srq_attr: The attributes of the specified SRQ.
1455 */
1456 int ib_query_srq(struct ib_srq *srq,
1457 struct ib_srq_attr *srq_attr);
1458
1459 /**
1460 * ib_destroy_srq - Destroys the specified SRQ.
1461 * @srq: The SRQ to destroy.
1462 */
1463 int ib_destroy_srq(struct ib_srq *srq);
1464
1465 /**
1466 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1467 * @srq: The SRQ to post the work request on.
1468 * @recv_wr: A list of work requests to post on the receive queue.
1469 * @bad_recv_wr: On an immediate failure, this parameter will reference
1470 * the work request that failed to be posted on the QP.
1471 */
ib_post_srq_recv(struct ib_srq * srq,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1472 static inline int ib_post_srq_recv(struct ib_srq *srq,
1473 struct ib_recv_wr *recv_wr,
1474 struct ib_recv_wr **bad_recv_wr)
1475 {
1476 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1477 }
1478
1479 /**
1480 * ib_create_qp - Creates a QP associated with the specified protection
1481 * domain.
1482 * @pd: The protection domain associated with the QP.
1483 * @qp_init_attr: A list of initial attributes required to create the
1484 * QP. If QP creation succeeds, then the attributes are updated to
1485 * the actual capabilities of the created QP.
1486 */
1487 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1488 struct ib_qp_init_attr *qp_init_attr);
1489
1490 /**
1491 * ib_modify_qp - Modifies the attributes for the specified QP and then
1492 * transitions the QP to the given state.
1493 * @qp: The QP to modify.
1494 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1495 * the current values of selected QP attributes are returned.
1496 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1497 * are being modified.
1498 */
1499 int ib_modify_qp(struct ib_qp *qp,
1500 struct ib_qp_attr *qp_attr,
1501 int qp_attr_mask);
1502
1503 /**
1504 * ib_query_qp - Returns the attribute list and current values for the
1505 * specified QP.
1506 * @qp: The QP to query.
1507 * @qp_attr: The attributes of the specified QP.
1508 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1509 * @qp_init_attr: Additional attributes of the selected QP.
1510 *
1511 * The qp_attr_mask may be used to limit the query to gathering only the
1512 * selected attributes.
1513 */
1514 int ib_query_qp(struct ib_qp *qp,
1515 struct ib_qp_attr *qp_attr,
1516 int qp_attr_mask,
1517 struct ib_qp_init_attr *qp_init_attr);
1518
1519 /**
1520 * ib_destroy_qp - Destroys the specified QP.
1521 * @qp: The QP to destroy.
1522 */
1523 int ib_destroy_qp(struct ib_qp *qp);
1524
1525 /**
1526 * ib_open_qp - Obtain a reference to an existing sharable QP.
1527 * @xrcd - XRC domain
1528 * @qp_open_attr: Attributes identifying the QP to open.
1529 *
1530 * Returns a reference to a sharable QP.
1531 */
1532 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1533 struct ib_qp_open_attr *qp_open_attr);
1534
1535 /**
1536 * ib_close_qp - Release an external reference to a QP.
1537 * @qp: The QP handle to release
1538 *
1539 * The opened QP handle is released by the caller. The underlying
1540 * shared QP is not destroyed until all internal references are released.
1541 */
1542 int ib_close_qp(struct ib_qp *qp);
1543
1544 /**
1545 * ib_post_send - Posts a list of work requests to the send queue of
1546 * the specified QP.
1547 * @qp: The QP to post the work request on.
1548 * @send_wr: A list of work requests to post on the send queue.
1549 * @bad_send_wr: On an immediate failure, this parameter will reference
1550 * the work request that failed to be posted on the QP.
1551 *
1552 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1553 * error is returned, the QP state shall not be affected,
1554 * ib_post_send() will return an immediate error after queueing any
1555 * earlier work requests in the list.
1556 */
ib_post_send(struct ib_qp * qp,struct ib_send_wr * send_wr,struct ib_send_wr ** bad_send_wr)1557 static inline int ib_post_send(struct ib_qp *qp,
1558 struct ib_send_wr *send_wr,
1559 struct ib_send_wr **bad_send_wr)
1560 {
1561 return qp->device->post_send(qp, send_wr, bad_send_wr);
1562 }
1563
1564 /**
1565 * ib_post_recv - Posts a list of work requests to the receive queue of
1566 * the specified QP.
1567 * @qp: The QP to post the work request on.
1568 * @recv_wr: A list of work requests to post on the receive queue.
1569 * @bad_recv_wr: On an immediate failure, this parameter will reference
1570 * the work request that failed to be posted on the QP.
1571 */
ib_post_recv(struct ib_qp * qp,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1572 static inline int ib_post_recv(struct ib_qp *qp,
1573 struct ib_recv_wr *recv_wr,
1574 struct ib_recv_wr **bad_recv_wr)
1575 {
1576 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1577 }
1578
1579 /**
1580 * ib_create_cq - Creates a CQ on the specified device.
1581 * @device: The device on which to create the CQ.
1582 * @comp_handler: A user-specified callback that is invoked when a
1583 * completion event occurs on the CQ.
1584 * @event_handler: A user-specified callback that is invoked when an
1585 * asynchronous event not associated with a completion occurs on the CQ.
1586 * @cq_context: Context associated with the CQ returned to the user via
1587 * the associated completion and event handlers.
1588 * @cqe: The minimum size of the CQ.
1589 * @comp_vector - Completion vector used to signal completion events.
1590 * Must be >= 0 and < context->num_comp_vectors.
1591 *
1592 * Users can examine the cq structure to determine the actual CQ size.
1593 */
1594 struct ib_cq *ib_create_cq(struct ib_device *device,
1595 ib_comp_handler comp_handler,
1596 void (*event_handler)(struct ib_event *, void *),
1597 void *cq_context, int cqe, int comp_vector);
1598
1599 /**
1600 * ib_resize_cq - Modifies the capacity of the CQ.
1601 * @cq: The CQ to resize.
1602 * @cqe: The minimum size of the CQ.
1603 *
1604 * Users can examine the cq structure to determine the actual CQ size.
1605 */
1606 int ib_resize_cq(struct ib_cq *cq, int cqe);
1607
1608 /**
1609 * ib_modify_cq - Modifies moderation params of the CQ
1610 * @cq: The CQ to modify.
1611 * @cq_count: number of CQEs that will trigger an event
1612 * @cq_period: max period of time in usec before triggering an event
1613 *
1614 */
1615 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1616
1617 /**
1618 * ib_destroy_cq - Destroys the specified CQ.
1619 * @cq: The CQ to destroy.
1620 */
1621 int ib_destroy_cq(struct ib_cq *cq);
1622
1623 /**
1624 * ib_poll_cq - poll a CQ for completion(s)
1625 * @cq:the CQ being polled
1626 * @num_entries:maximum number of completions to return
1627 * @wc:array of at least @num_entries &struct ib_wc where completions
1628 * will be returned
1629 *
1630 * Poll a CQ for (possibly multiple) completions. If the return value
1631 * is < 0, an error occurred. If the return value is >= 0, it is the
1632 * number of completions returned. If the return value is
1633 * non-negative and < num_entries, then the CQ was emptied.
1634 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)1635 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1636 struct ib_wc *wc)
1637 {
1638 return cq->device->poll_cq(cq, num_entries, wc);
1639 }
1640
1641 /**
1642 * ib_peek_cq - Returns the number of unreaped completions currently
1643 * on the specified CQ.
1644 * @cq: The CQ to peek.
1645 * @wc_cnt: A minimum number of unreaped completions to check for.
1646 *
1647 * If the number of unreaped completions is greater than or equal to wc_cnt,
1648 * this function returns wc_cnt, otherwise, it returns the actual number of
1649 * unreaped completions.
1650 */
1651 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1652
1653 /**
1654 * ib_req_notify_cq - Request completion notification on a CQ.
1655 * @cq: The CQ to generate an event for.
1656 * @flags:
1657 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1658 * to request an event on the next solicited event or next work
1659 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1660 * may also be |ed in to request a hint about missed events, as
1661 * described below.
1662 *
1663 * Return Value:
1664 * < 0 means an error occurred while requesting notification
1665 * == 0 means notification was requested successfully, and if
1666 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1667 * were missed and it is safe to wait for another event. In
1668 * this case is it guaranteed that any work completions added
1669 * to the CQ since the last CQ poll will trigger a completion
1670 * notification event.
1671 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1672 * in. It means that the consumer must poll the CQ again to
1673 * make sure it is empty to avoid missing an event because of a
1674 * race between requesting notification and an entry being
1675 * added to the CQ. This return value means it is possible
1676 * (but not guaranteed) that a work completion has been added
1677 * to the CQ since the last poll without triggering a
1678 * completion notification event.
1679 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)1680 static inline int ib_req_notify_cq(struct ib_cq *cq,
1681 enum ib_cq_notify_flags flags)
1682 {
1683 return cq->device->req_notify_cq(cq, flags);
1684 }
1685
1686 /**
1687 * ib_req_ncomp_notif - Request completion notification when there are
1688 * at least the specified number of unreaped completions on the CQ.
1689 * @cq: The CQ to generate an event for.
1690 * @wc_cnt: The number of unreaped completions that should be on the
1691 * CQ before an event is generated.
1692 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)1693 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1694 {
1695 return cq->device->req_ncomp_notif ?
1696 cq->device->req_ncomp_notif(cq, wc_cnt) :
1697 -ENOSYS;
1698 }
1699
1700 /**
1701 * ib_get_dma_mr - Returns a memory region for system memory that is
1702 * usable for DMA.
1703 * @pd: The protection domain associated with the memory region.
1704 * @mr_access_flags: Specifies the memory access rights.
1705 *
1706 * Note that the ib_dma_*() functions defined below must be used
1707 * to create/destroy addresses used with the Lkey or Rkey returned
1708 * by ib_get_dma_mr().
1709 */
1710 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1711
1712 /**
1713 * ib_dma_mapping_error - check a DMA addr for error
1714 * @dev: The device for which the dma_addr was created
1715 * @dma_addr: The DMA address to check
1716 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)1717 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1718 {
1719 if (dev->dma_ops)
1720 return dev->dma_ops->mapping_error(dev, dma_addr);
1721 return dma_mapping_error(dev->dma_device, dma_addr);
1722 }
1723
1724 /**
1725 * ib_dma_map_single - Map a kernel virtual address to DMA address
1726 * @dev: The device for which the dma_addr is to be created
1727 * @cpu_addr: The kernel virtual address
1728 * @size: The size of the region in bytes
1729 * @direction: The direction of the DMA
1730 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)1731 static inline u64 ib_dma_map_single(struct ib_device *dev,
1732 void *cpu_addr, size_t size,
1733 enum dma_data_direction direction)
1734 {
1735 if (dev->dma_ops)
1736 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1737 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1738 }
1739
1740 /**
1741 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1742 * @dev: The device for which the DMA address was created
1743 * @addr: The DMA address
1744 * @size: The size of the region in bytes
1745 * @direction: The direction of the DMA
1746 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1747 static inline void ib_dma_unmap_single(struct ib_device *dev,
1748 u64 addr, size_t size,
1749 enum dma_data_direction direction)
1750 {
1751 if (dev->dma_ops)
1752 dev->dma_ops->unmap_single(dev, addr, size, direction);
1753 else
1754 dma_unmap_single(dev->dma_device, addr, size, direction);
1755 }
1756
ib_dma_map_single_attrs(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1757 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1758 void *cpu_addr, size_t size,
1759 enum dma_data_direction direction,
1760 struct dma_attrs *attrs)
1761 {
1762 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1763 direction, attrs);
1764 }
1765
ib_dma_unmap_single_attrs(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1766 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1767 u64 addr, size_t size,
1768 enum dma_data_direction direction,
1769 struct dma_attrs *attrs)
1770 {
1771 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1772 direction, attrs);
1773 }
1774
1775 /**
1776 * ib_dma_map_page - Map a physical page to DMA address
1777 * @dev: The device for which the dma_addr is to be created
1778 * @page: The page to be mapped
1779 * @offset: The offset within the page
1780 * @size: The size of the region in bytes
1781 * @direction: The direction of the DMA
1782 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)1783 static inline u64 ib_dma_map_page(struct ib_device *dev,
1784 struct page *page,
1785 unsigned long offset,
1786 size_t size,
1787 enum dma_data_direction direction)
1788 {
1789 if (dev->dma_ops)
1790 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1791 return dma_map_page(dev->dma_device, page, offset, size, direction);
1792 }
1793
1794 /**
1795 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1796 * @dev: The device for which the DMA address was created
1797 * @addr: The DMA address
1798 * @size: The size of the region in bytes
1799 * @direction: The direction of the DMA
1800 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1801 static inline void ib_dma_unmap_page(struct ib_device *dev,
1802 u64 addr, size_t size,
1803 enum dma_data_direction direction)
1804 {
1805 if (dev->dma_ops)
1806 dev->dma_ops->unmap_page(dev, addr, size, direction);
1807 else
1808 dma_unmap_page(dev->dma_device, addr, size, direction);
1809 }
1810
1811 /**
1812 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1813 * @dev: The device for which the DMA addresses are to be created
1814 * @sg: The array of scatter/gather entries
1815 * @nents: The number of scatter/gather entries
1816 * @direction: The direction of the DMA
1817 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1818 static inline int ib_dma_map_sg(struct ib_device *dev,
1819 struct scatterlist *sg, int nents,
1820 enum dma_data_direction direction)
1821 {
1822 if (dev->dma_ops)
1823 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1824 return dma_map_sg(dev->dma_device, sg, nents, direction);
1825 }
1826
1827 /**
1828 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1829 * @dev: The device for which the DMA addresses were created
1830 * @sg: The array of scatter/gather entries
1831 * @nents: The number of scatter/gather entries
1832 * @direction: The direction of the DMA
1833 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1834 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1835 struct scatterlist *sg, int nents,
1836 enum dma_data_direction direction)
1837 {
1838 if (dev->dma_ops)
1839 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1840 else
1841 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1842 }
1843
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1844 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1845 struct scatterlist *sg, int nents,
1846 enum dma_data_direction direction,
1847 struct dma_attrs *attrs)
1848 {
1849 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1850 }
1851
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1852 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1853 struct scatterlist *sg, int nents,
1854 enum dma_data_direction direction,
1855 struct dma_attrs *attrs)
1856 {
1857 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1858 }
1859 /**
1860 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1861 * @dev: The device for which the DMA addresses were created
1862 * @sg: The scatter/gather entry
1863 */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)1864 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1865 struct scatterlist *sg)
1866 {
1867 if (dev->dma_ops)
1868 return dev->dma_ops->dma_address(dev, sg);
1869 return sg_dma_address(sg);
1870 }
1871
1872 /**
1873 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1874 * @dev: The device for which the DMA addresses were created
1875 * @sg: The scatter/gather entry
1876 */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)1877 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1878 struct scatterlist *sg)
1879 {
1880 if (dev->dma_ops)
1881 return dev->dma_ops->dma_len(dev, sg);
1882 return sg_dma_len(sg);
1883 }
1884
1885 /**
1886 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1887 * @dev: The device for which the DMA address was created
1888 * @addr: The DMA address
1889 * @size: The size of the region in bytes
1890 * @dir: The direction of the DMA
1891 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1892 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1893 u64 addr,
1894 size_t size,
1895 enum dma_data_direction dir)
1896 {
1897 if (dev->dma_ops)
1898 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1899 else
1900 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1901 }
1902
1903 /**
1904 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1905 * @dev: The device for which the DMA address was created
1906 * @addr: The DMA address
1907 * @size: The size of the region in bytes
1908 * @dir: The direction of the DMA
1909 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1910 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1911 u64 addr,
1912 size_t size,
1913 enum dma_data_direction dir)
1914 {
1915 if (dev->dma_ops)
1916 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1917 else
1918 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1919 }
1920
1921 /**
1922 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1923 * @dev: The device for which the DMA address is requested
1924 * @size: The size of the region to allocate in bytes
1925 * @dma_handle: A pointer for returning the DMA address of the region
1926 * @flag: memory allocator flags
1927 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,u64 * dma_handle,gfp_t flag)1928 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1929 size_t size,
1930 u64 *dma_handle,
1931 gfp_t flag)
1932 {
1933 if (dev->dma_ops)
1934 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1935 else {
1936 dma_addr_t handle;
1937 void *ret;
1938
1939 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1940 *dma_handle = handle;
1941 return ret;
1942 }
1943 }
1944
1945 /**
1946 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1947 * @dev: The device for which the DMA addresses were allocated
1948 * @size: The size of the region
1949 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1950 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1951 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,u64 dma_handle)1952 static inline void ib_dma_free_coherent(struct ib_device *dev,
1953 size_t size, void *cpu_addr,
1954 u64 dma_handle)
1955 {
1956 if (dev->dma_ops)
1957 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1958 else
1959 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1960 }
1961
1962 /**
1963 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1964 * by an HCA.
1965 * @pd: The protection domain associated assigned to the registered region.
1966 * @phys_buf_array: Specifies a list of physical buffers to use in the
1967 * memory region.
1968 * @num_phys_buf: Specifies the size of the phys_buf_array.
1969 * @mr_access_flags: Specifies the memory access rights.
1970 * @iova_start: The offset of the region's starting I/O virtual address.
1971 */
1972 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1973 struct ib_phys_buf *phys_buf_array,
1974 int num_phys_buf,
1975 int mr_access_flags,
1976 u64 *iova_start);
1977
1978 /**
1979 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1980 * Conceptually, this call performs the functions deregister memory region
1981 * followed by register physical memory region. Where possible,
1982 * resources are reused instead of deallocated and reallocated.
1983 * @mr: The memory region to modify.
1984 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1985 * properties of the memory region are being modified.
1986 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1987 * the new protection domain to associated with the memory region,
1988 * otherwise, this parameter is ignored.
1989 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1990 * field specifies a list of physical buffers to use in the new
1991 * translation, otherwise, this parameter is ignored.
1992 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1993 * field specifies the size of the phys_buf_array, otherwise, this
1994 * parameter is ignored.
1995 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1996 * field specifies the new memory access rights, otherwise, this
1997 * parameter is ignored.
1998 * @iova_start: The offset of the region's starting I/O virtual address.
1999 */
2000 int ib_rereg_phys_mr(struct ib_mr *mr,
2001 int mr_rereg_mask,
2002 struct ib_pd *pd,
2003 struct ib_phys_buf *phys_buf_array,
2004 int num_phys_buf,
2005 int mr_access_flags,
2006 u64 *iova_start);
2007
2008 /**
2009 * ib_query_mr - Retrieves information about a specific memory region.
2010 * @mr: The memory region to retrieve information about.
2011 * @mr_attr: The attributes of the specified memory region.
2012 */
2013 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2014
2015 /**
2016 * ib_dereg_mr - Deregisters a memory region and removes it from the
2017 * HCA translation table.
2018 * @mr: The memory region to deregister.
2019 */
2020 int ib_dereg_mr(struct ib_mr *mr);
2021
2022 /**
2023 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2024 * IB_WR_FAST_REG_MR send work request.
2025 * @pd: The protection domain associated with the region.
2026 * @max_page_list_len: requested max physical buffer list length to be
2027 * used with fast register work requests for this MR.
2028 */
2029 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2030
2031 /**
2032 * ib_alloc_fast_reg_page_list - Allocates a page list array
2033 * @device - ib device pointer.
2034 * @page_list_len - size of the page list array to be allocated.
2035 *
2036 * This allocates and returns a struct ib_fast_reg_page_list * and a
2037 * page_list array that is at least page_list_len in size. The actual
2038 * size is returned in max_page_list_len. The caller is responsible
2039 * for initializing the contents of the page_list array before posting
2040 * a send work request with the IB_WC_FAST_REG_MR opcode.
2041 *
2042 * The page_list array entries must be translated using one of the
2043 * ib_dma_*() functions just like the addresses passed to
2044 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2045 * ib_fast_reg_page_list must not be modified by the caller until the
2046 * IB_WC_FAST_REG_MR work request completes.
2047 */
2048 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2049 struct ib_device *device, int page_list_len);
2050
2051 /**
2052 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2053 * page list array.
2054 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2055 */
2056 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2057
2058 /**
2059 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2060 * R_Key and L_Key.
2061 * @mr - struct ib_mr pointer to be updated.
2062 * @newkey - new key to be used.
2063 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)2064 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2065 {
2066 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2067 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2068 }
2069
2070 /**
2071 * ib_alloc_mw - Allocates a memory window.
2072 * @pd: The protection domain associated with the memory window.
2073 */
2074 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
2075
2076 /**
2077 * ib_bind_mw - Posts a work request to the send queue of the specified
2078 * QP, which binds the memory window to the given address range and
2079 * remote access attributes.
2080 * @qp: QP to post the bind work request on.
2081 * @mw: The memory window to bind.
2082 * @mw_bind: Specifies information about the memory window, including
2083 * its address range, remote access rights, and associated memory region.
2084 */
ib_bind_mw(struct ib_qp * qp,struct ib_mw * mw,struct ib_mw_bind * mw_bind)2085 static inline int ib_bind_mw(struct ib_qp *qp,
2086 struct ib_mw *mw,
2087 struct ib_mw_bind *mw_bind)
2088 {
2089 /* XXX reference counting in corresponding MR? */
2090 return mw->device->bind_mw ?
2091 mw->device->bind_mw(qp, mw, mw_bind) :
2092 -ENOSYS;
2093 }
2094
2095 /**
2096 * ib_dealloc_mw - Deallocates a memory window.
2097 * @mw: The memory window to deallocate.
2098 */
2099 int ib_dealloc_mw(struct ib_mw *mw);
2100
2101 /**
2102 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2103 * @pd: The protection domain associated with the unmapped region.
2104 * @mr_access_flags: Specifies the memory access rights.
2105 * @fmr_attr: Attributes of the unmapped region.
2106 *
2107 * A fast memory region must be mapped before it can be used as part of
2108 * a work request.
2109 */
2110 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2111 int mr_access_flags,
2112 struct ib_fmr_attr *fmr_attr);
2113
2114 /**
2115 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2116 * @fmr: The fast memory region to associate with the pages.
2117 * @page_list: An array of physical pages to map to the fast memory region.
2118 * @list_len: The number of pages in page_list.
2119 * @iova: The I/O virtual address to use with the mapped region.
2120 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)2121 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2122 u64 *page_list, int list_len,
2123 u64 iova)
2124 {
2125 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2126 }
2127
2128 /**
2129 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2130 * @fmr_list: A linked list of fast memory regions to unmap.
2131 */
2132 int ib_unmap_fmr(struct list_head *fmr_list);
2133
2134 /**
2135 * ib_dealloc_fmr - Deallocates a fast memory region.
2136 * @fmr: The fast memory region to deallocate.
2137 */
2138 int ib_dealloc_fmr(struct ib_fmr *fmr);
2139
2140 /**
2141 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2142 * @qp: QP to attach to the multicast group. The QP must be type
2143 * IB_QPT_UD.
2144 * @gid: Multicast group GID.
2145 * @lid: Multicast group LID in host byte order.
2146 *
2147 * In order to send and receive multicast packets, subnet
2148 * administration must have created the multicast group and configured
2149 * the fabric appropriately. The port associated with the specified
2150 * QP must also be a member of the multicast group.
2151 */
2152 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2153
2154 /**
2155 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2156 * @qp: QP to detach from the multicast group.
2157 * @gid: Multicast group GID.
2158 * @lid: Multicast group LID in host byte order.
2159 */
2160 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2161
2162 /**
2163 * ib_alloc_xrcd - Allocates an XRC domain.
2164 * @device: The device on which to allocate the XRC domain.
2165 */
2166 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2167
2168 /**
2169 * ib_dealloc_xrcd - Deallocates an XRC domain.
2170 * @xrcd: The XRC domain to deallocate.
2171 */
2172 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2173
2174 #endif /* IB_VERBS_H */
2175