1 /*
2 * Copyright (C) 1999 - 2010 Intel Corporation.
3 * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/netdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/can.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34
35 #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
36 #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
37 #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
38 #define PCH_CTRL_CCE BIT(6)
39 #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
40 #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
41 #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
42
43 #define PCH_CMASK_RX_TX_SET 0x00f3
44 #define PCH_CMASK_RX_TX_GET 0x0073
45 #define PCH_CMASK_ALL 0xff
46 #define PCH_CMASK_NEWDAT BIT(2)
47 #define PCH_CMASK_CLRINTPND BIT(3)
48 #define PCH_CMASK_CTRL BIT(4)
49 #define PCH_CMASK_ARB BIT(5)
50 #define PCH_CMASK_MASK BIT(6)
51 #define PCH_CMASK_RDWR BIT(7)
52 #define PCH_IF_MCONT_NEWDAT BIT(15)
53 #define PCH_IF_MCONT_MSGLOST BIT(14)
54 #define PCH_IF_MCONT_INTPND BIT(13)
55 #define PCH_IF_MCONT_UMASK BIT(12)
56 #define PCH_IF_MCONT_TXIE BIT(11)
57 #define PCH_IF_MCONT_RXIE BIT(10)
58 #define PCH_IF_MCONT_RMTEN BIT(9)
59 #define PCH_IF_MCONT_TXRQXT BIT(8)
60 #define PCH_IF_MCONT_EOB BIT(7)
61 #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
62 #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
63 #define PCH_ID2_DIR BIT(13)
64 #define PCH_ID2_XTD BIT(14)
65 #define PCH_ID_MSGVAL BIT(15)
66 #define PCH_IF_CREQ_BUSY BIT(15)
67
68 #define PCH_STATUS_INT 0x8000
69 #define PCH_RP 0x00008000
70 #define PCH_REC 0x00007f00
71 #define PCH_TEC 0x000000ff
72
73 #define PCH_TX_OK BIT(3)
74 #define PCH_RX_OK BIT(4)
75 #define PCH_EPASSIV BIT(5)
76 #define PCH_EWARN BIT(6)
77 #define PCH_BUS_OFF BIT(7)
78
79 /* bit position of certain controller bits. */
80 #define PCH_BIT_BRP_SHIFT 0
81 #define PCH_BIT_SJW_SHIFT 6
82 #define PCH_BIT_TSEG1_SHIFT 8
83 #define PCH_BIT_TSEG2_SHIFT 12
84 #define PCH_BIT_BRPE_BRPE_SHIFT 6
85
86 #define PCH_MSK_BITT_BRP 0x3f
87 #define PCH_MSK_BRPE_BRPE 0x3c0
88 #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
89 #define PCH_COUNTER_LIMIT 10
90
91 #define PCH_CAN_CLK 50000000 /* 50MHz */
92
93 /*
94 * Define the number of message object.
95 * PCH CAN communications are done via Message RAM.
96 * The Message RAM consists of 32 message objects.
97 */
98 #define PCH_RX_OBJ_NUM 26
99 #define PCH_TX_OBJ_NUM 6
100 #define PCH_RX_OBJ_START 1
101 #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
102 #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
103 #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
104
105 #define PCH_FIFO_THRESH 16
106
107 /* TxRqst2 show status of MsgObjNo.17~32 */
108 #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
109 (PCH_RX_OBJ_END - 16))
110
111 enum pch_ifreg {
112 PCH_RX_IFREG,
113 PCH_TX_IFREG,
114 };
115
116 enum pch_can_err {
117 PCH_STUF_ERR = 1,
118 PCH_FORM_ERR,
119 PCH_ACK_ERR,
120 PCH_BIT1_ERR,
121 PCH_BIT0_ERR,
122 PCH_CRC_ERR,
123 PCH_LEC_ALL,
124 };
125
126 enum pch_can_mode {
127 PCH_CAN_ENABLE,
128 PCH_CAN_DISABLE,
129 PCH_CAN_ALL,
130 PCH_CAN_NONE,
131 PCH_CAN_STOP,
132 PCH_CAN_RUN,
133 };
134
135 struct pch_can_if_regs {
136 u32 creq;
137 u32 cmask;
138 u32 mask1;
139 u32 mask2;
140 u32 id1;
141 u32 id2;
142 u32 mcont;
143 u32 data[4];
144 u32 rsv[13];
145 };
146
147 struct pch_can_regs {
148 u32 cont;
149 u32 stat;
150 u32 errc;
151 u32 bitt;
152 u32 intr;
153 u32 opt;
154 u32 brpe;
155 u32 reserve;
156 struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
157 u32 reserve1[8];
158 u32 treq1;
159 u32 treq2;
160 u32 reserve2[6];
161 u32 data1;
162 u32 data2;
163 u32 reserve3[6];
164 u32 canipend1;
165 u32 canipend2;
166 u32 reserve4[6];
167 u32 canmval1;
168 u32 canmval2;
169 u32 reserve5[37];
170 u32 srst;
171 };
172
173 struct pch_can_priv {
174 struct can_priv can;
175 struct pci_dev *dev;
176 u32 tx_enable[PCH_TX_OBJ_END];
177 u32 rx_enable[PCH_TX_OBJ_END];
178 u32 rx_link[PCH_TX_OBJ_END];
179 u32 int_enables;
180 struct net_device *ndev;
181 struct pch_can_regs __iomem *regs;
182 struct napi_struct napi;
183 int tx_obj; /* Point next Tx Obj index */
184 int use_msi;
185 };
186
187 static struct can_bittiming_const pch_can_bittiming_const = {
188 .name = KBUILD_MODNAME,
189 .tseg1_min = 2,
190 .tseg1_max = 16,
191 .tseg2_min = 1,
192 .tseg2_max = 8,
193 .sjw_max = 4,
194 .brp_min = 1,
195 .brp_max = 1024, /* 6bit + extended 4bit */
196 .brp_inc = 1,
197 };
198
199 static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
200 {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
201 {0,}
202 };
203 MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
204
pch_can_bit_set(void __iomem * addr,u32 mask)205 static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
206 {
207 iowrite32(ioread32(addr) | mask, addr);
208 }
209
pch_can_bit_clear(void __iomem * addr,u32 mask)210 static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
211 {
212 iowrite32(ioread32(addr) & ~mask, addr);
213 }
214
pch_can_set_run_mode(struct pch_can_priv * priv,enum pch_can_mode mode)215 static void pch_can_set_run_mode(struct pch_can_priv *priv,
216 enum pch_can_mode mode)
217 {
218 switch (mode) {
219 case PCH_CAN_RUN:
220 pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
221 break;
222
223 case PCH_CAN_STOP:
224 pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
225 break;
226
227 default:
228 netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
229 break;
230 }
231 }
232
pch_can_set_optmode(struct pch_can_priv * priv)233 static void pch_can_set_optmode(struct pch_can_priv *priv)
234 {
235 u32 reg_val = ioread32(&priv->regs->opt);
236
237 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
238 reg_val |= PCH_OPT_SILENT;
239
240 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
241 reg_val |= PCH_OPT_LBACK;
242
243 pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
244 iowrite32(reg_val, &priv->regs->opt);
245 }
246
pch_can_rw_msg_obj(void __iomem * creq_addr,u32 num)247 static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
248 {
249 int counter = PCH_COUNTER_LIMIT;
250 u32 ifx_creq;
251
252 iowrite32(num, creq_addr);
253 while (counter) {
254 ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
255 if (!ifx_creq)
256 break;
257 counter--;
258 udelay(1);
259 }
260 if (!counter)
261 pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
262 }
263
pch_can_set_int_enables(struct pch_can_priv * priv,enum pch_can_mode interrupt_no)264 static void pch_can_set_int_enables(struct pch_can_priv *priv,
265 enum pch_can_mode interrupt_no)
266 {
267 switch (interrupt_no) {
268 case PCH_CAN_DISABLE:
269 pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
270 break;
271
272 case PCH_CAN_ALL:
273 pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
274 break;
275
276 case PCH_CAN_NONE:
277 pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
278 break;
279
280 default:
281 netdev_err(priv->ndev, "Invalid interrupt number.\n");
282 break;
283 }
284 }
285
pch_can_set_rxtx(struct pch_can_priv * priv,u32 buff_num,int set,enum pch_ifreg dir)286 static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
287 int set, enum pch_ifreg dir)
288 {
289 u32 ie;
290
291 if (dir)
292 ie = PCH_IF_MCONT_TXIE;
293 else
294 ie = PCH_IF_MCONT_RXIE;
295
296 /* Reading the Msg buffer from Message RAM to IF1/2 registers. */
297 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
298 pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
299
300 /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
301 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
302 &priv->regs->ifregs[dir].cmask);
303
304 if (set) {
305 /* Setting the MsgVal and RxIE/TxIE bits */
306 pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
307 pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
308 } else {
309 /* Clearing the MsgVal and RxIE/TxIE bits */
310 pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
311 pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
312 }
313
314 pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
315 }
316
pch_can_set_rx_all(struct pch_can_priv * priv,int set)317 static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
318 {
319 int i;
320
321 /* Traversing to obtain the object configured as receivers. */
322 for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
323 pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
324 }
325
pch_can_set_tx_all(struct pch_can_priv * priv,int set)326 static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
327 {
328 int i;
329
330 /* Traversing to obtain the object configured as transmit object. */
331 for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
332 pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
333 }
334
pch_can_int_pending(struct pch_can_priv * priv)335 static u32 pch_can_int_pending(struct pch_can_priv *priv)
336 {
337 return ioread32(&priv->regs->intr) & 0xffff;
338 }
339
pch_can_clear_if_buffers(struct pch_can_priv * priv)340 static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
341 {
342 int i; /* Msg Obj ID (1~32) */
343
344 for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
345 iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
346 iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
347 iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
348 iowrite32(0x0, &priv->regs->ifregs[0].id1);
349 iowrite32(0x0, &priv->regs->ifregs[0].id2);
350 iowrite32(0x0, &priv->regs->ifregs[0].mcont);
351 iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
352 iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
353 iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
354 iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
355 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
356 PCH_CMASK_ARB | PCH_CMASK_CTRL,
357 &priv->regs->ifregs[0].cmask);
358 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
359 }
360 }
361
pch_can_config_rx_tx_buffers(struct pch_can_priv * priv)362 static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
363 {
364 int i;
365
366 for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
367 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
368 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
369
370 iowrite32(0x0, &priv->regs->ifregs[0].id1);
371 iowrite32(0x0, &priv->regs->ifregs[0].id2);
372
373 pch_can_bit_set(&priv->regs->ifregs[0].mcont,
374 PCH_IF_MCONT_UMASK);
375
376 /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
377 if (i == PCH_RX_OBJ_END)
378 pch_can_bit_set(&priv->regs->ifregs[0].mcont,
379 PCH_IF_MCONT_EOB);
380 else
381 pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
382 PCH_IF_MCONT_EOB);
383
384 iowrite32(0, &priv->regs->ifregs[0].mask1);
385 pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
386 0x1fff | PCH_MASK2_MDIR_MXTD);
387
388 /* Setting CMASK for writing */
389 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
390 PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
391
392 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
393 }
394
395 for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
396 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
397 pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
398
399 /* Resetting DIR bit for reception */
400 iowrite32(0x0, &priv->regs->ifregs[1].id1);
401 iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
402
403 /* Setting EOB bit for transmitter */
404 iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
405 &priv->regs->ifregs[1].mcont);
406
407 iowrite32(0, &priv->regs->ifregs[1].mask1);
408 pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
409
410 /* Setting CMASK for writing */
411 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
412 PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
413
414 pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
415 }
416 }
417
pch_can_init(struct pch_can_priv * priv)418 static void pch_can_init(struct pch_can_priv *priv)
419 {
420 /* Stopping the Can device. */
421 pch_can_set_run_mode(priv, PCH_CAN_STOP);
422
423 /* Clearing all the message object buffers. */
424 pch_can_clear_if_buffers(priv);
425
426 /* Configuring the respective message object as either rx/tx object. */
427 pch_can_config_rx_tx_buffers(priv);
428
429 /* Enabling the interrupts. */
430 pch_can_set_int_enables(priv, PCH_CAN_ALL);
431 }
432
pch_can_release(struct pch_can_priv * priv)433 static void pch_can_release(struct pch_can_priv *priv)
434 {
435 /* Stooping the CAN device. */
436 pch_can_set_run_mode(priv, PCH_CAN_STOP);
437
438 /* Disabling the interrupts. */
439 pch_can_set_int_enables(priv, PCH_CAN_NONE);
440
441 /* Disabling all the receive object. */
442 pch_can_set_rx_all(priv, 0);
443
444 /* Disabling all the transmit object. */
445 pch_can_set_tx_all(priv, 0);
446 }
447
448 /* This function clears interrupt(s) from the CAN device. */
pch_can_int_clr(struct pch_can_priv * priv,u32 mask)449 static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
450 {
451 /* Clear interrupt for transmit object */
452 if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
453 /* Setting CMASK for clearing the reception interrupts. */
454 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
455 &priv->regs->ifregs[0].cmask);
456
457 /* Clearing the Dir bit. */
458 pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
459
460 /* Clearing NewDat & IntPnd */
461 pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
462 PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
463
464 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
465 } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
466 /*
467 * Setting CMASK for clearing interrupts for frame transmission.
468 */
469 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
470 &priv->regs->ifregs[1].cmask);
471
472 /* Resetting the ID registers. */
473 pch_can_bit_set(&priv->regs->ifregs[1].id2,
474 PCH_ID2_DIR | (0x7ff << 2));
475 iowrite32(0x0, &priv->regs->ifregs[1].id1);
476
477 /* Claring NewDat, TxRqst & IntPnd */
478 pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
479 PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
480 PCH_IF_MCONT_TXRQXT);
481 pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
482 }
483 }
484
pch_can_reset(struct pch_can_priv * priv)485 static void pch_can_reset(struct pch_can_priv *priv)
486 {
487 /* write to sw reset register */
488 iowrite32(1, &priv->regs->srst);
489 iowrite32(0, &priv->regs->srst);
490 }
491
pch_can_error(struct net_device * ndev,u32 status)492 static void pch_can_error(struct net_device *ndev, u32 status)
493 {
494 struct sk_buff *skb;
495 struct pch_can_priv *priv = netdev_priv(ndev);
496 struct can_frame *cf;
497 u32 errc, lec;
498 struct net_device_stats *stats = &(priv->ndev->stats);
499 enum can_state state = priv->can.state;
500
501 skb = alloc_can_err_skb(ndev, &cf);
502 if (!skb)
503 return;
504
505 if (status & PCH_BUS_OFF) {
506 pch_can_set_tx_all(priv, 0);
507 pch_can_set_rx_all(priv, 0);
508 state = CAN_STATE_BUS_OFF;
509 cf->can_id |= CAN_ERR_BUSOFF;
510 can_bus_off(ndev);
511 }
512
513 errc = ioread32(&priv->regs->errc);
514 /* Warning interrupt. */
515 if (status & PCH_EWARN) {
516 state = CAN_STATE_ERROR_WARNING;
517 priv->can.can_stats.error_warning++;
518 cf->can_id |= CAN_ERR_CRTL;
519 if (((errc & PCH_REC) >> 8) > 96)
520 cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
521 if ((errc & PCH_TEC) > 96)
522 cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
523 netdev_dbg(ndev,
524 "%s -> Error Counter is more than 96.\n", __func__);
525 }
526 /* Error passive interrupt. */
527 if (status & PCH_EPASSIV) {
528 priv->can.can_stats.error_passive++;
529 state = CAN_STATE_ERROR_PASSIVE;
530 cf->can_id |= CAN_ERR_CRTL;
531 if (errc & PCH_RP)
532 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
533 if ((errc & PCH_TEC) > 127)
534 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
535 netdev_dbg(ndev,
536 "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
537 }
538
539 lec = status & PCH_LEC_ALL;
540 switch (lec) {
541 case PCH_STUF_ERR:
542 cf->data[2] |= CAN_ERR_PROT_STUFF;
543 priv->can.can_stats.bus_error++;
544 stats->rx_errors++;
545 break;
546 case PCH_FORM_ERR:
547 cf->data[2] |= CAN_ERR_PROT_FORM;
548 priv->can.can_stats.bus_error++;
549 stats->rx_errors++;
550 break;
551 case PCH_ACK_ERR:
552 cf->can_id |= CAN_ERR_ACK;
553 priv->can.can_stats.bus_error++;
554 stats->rx_errors++;
555 break;
556 case PCH_BIT1_ERR:
557 case PCH_BIT0_ERR:
558 cf->data[2] |= CAN_ERR_PROT_BIT;
559 priv->can.can_stats.bus_error++;
560 stats->rx_errors++;
561 break;
562 case PCH_CRC_ERR:
563 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ |
564 CAN_ERR_PROT_LOC_CRC_DEL;
565 priv->can.can_stats.bus_error++;
566 stats->rx_errors++;
567 break;
568 case PCH_LEC_ALL: /* Written by CPU. No error status */
569 break;
570 }
571
572 cf->data[6] = errc & PCH_TEC;
573 cf->data[7] = (errc & PCH_REC) >> 8;
574
575 priv->can.state = state;
576 netif_receive_skb(skb);
577
578 stats->rx_packets++;
579 stats->rx_bytes += cf->can_dlc;
580 }
581
pch_can_interrupt(int irq,void * dev_id)582 static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
583 {
584 struct net_device *ndev = (struct net_device *)dev_id;
585 struct pch_can_priv *priv = netdev_priv(ndev);
586
587 if (!pch_can_int_pending(priv))
588 return IRQ_NONE;
589
590 pch_can_set_int_enables(priv, PCH_CAN_NONE);
591 napi_schedule(&priv->napi);
592 return IRQ_HANDLED;
593 }
594
pch_fifo_thresh(struct pch_can_priv * priv,int obj_id)595 static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
596 {
597 if (obj_id < PCH_FIFO_THRESH) {
598 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
599 PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
600
601 /* Clearing the Dir bit. */
602 pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
603
604 /* Clearing NewDat & IntPnd */
605 pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
606 PCH_IF_MCONT_INTPND);
607 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
608 } else if (obj_id > PCH_FIFO_THRESH) {
609 pch_can_int_clr(priv, obj_id);
610 } else if (obj_id == PCH_FIFO_THRESH) {
611 int cnt;
612 for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
613 pch_can_int_clr(priv, cnt + 1);
614 }
615 }
616
pch_can_rx_msg_lost(struct net_device * ndev,int obj_id)617 static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
618 {
619 struct pch_can_priv *priv = netdev_priv(ndev);
620 struct net_device_stats *stats = &(priv->ndev->stats);
621 struct sk_buff *skb;
622 struct can_frame *cf;
623
624 netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
625 pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
626 PCH_IF_MCONT_MSGLOST);
627 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
628 &priv->regs->ifregs[0].cmask);
629 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
630
631 skb = alloc_can_err_skb(ndev, &cf);
632 if (!skb)
633 return;
634
635 cf->can_id |= CAN_ERR_CRTL;
636 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
637 stats->rx_over_errors++;
638 stats->rx_errors++;
639
640 netif_receive_skb(skb);
641 }
642
pch_can_rx_normal(struct net_device * ndev,u32 obj_num,int quota)643 static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
644 {
645 u32 reg;
646 canid_t id;
647 int rcv_pkts = 0;
648 struct sk_buff *skb;
649 struct can_frame *cf;
650 struct pch_can_priv *priv = netdev_priv(ndev);
651 struct net_device_stats *stats = &(priv->ndev->stats);
652 int i;
653 u32 id2;
654 u16 data_reg;
655
656 do {
657 /* Reading the message object from the Message RAM */
658 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
659 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
660
661 /* Reading the MCONT register. */
662 reg = ioread32(&priv->regs->ifregs[0].mcont);
663
664 if (reg & PCH_IF_MCONT_EOB)
665 break;
666
667 /* If MsgLost bit set. */
668 if (reg & PCH_IF_MCONT_MSGLOST) {
669 pch_can_rx_msg_lost(ndev, obj_num);
670 rcv_pkts++;
671 quota--;
672 obj_num++;
673 continue;
674 } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
675 obj_num++;
676 continue;
677 }
678
679 skb = alloc_can_skb(priv->ndev, &cf);
680 if (!skb) {
681 netdev_err(ndev, "alloc_can_skb Failed\n");
682 return rcv_pkts;
683 }
684
685 /* Get Received data */
686 id2 = ioread32(&priv->regs->ifregs[0].id2);
687 if (id2 & PCH_ID2_XTD) {
688 id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
689 id |= (((id2) & 0x1fff) << 16);
690 cf->can_id = id | CAN_EFF_FLAG;
691 } else {
692 id = (id2 >> 2) & CAN_SFF_MASK;
693 cf->can_id = id;
694 }
695
696 if (id2 & PCH_ID2_DIR)
697 cf->can_id |= CAN_RTR_FLAG;
698
699 cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
700 ifregs[0].mcont)) & 0xF);
701
702 for (i = 0; i < cf->can_dlc; i += 2) {
703 data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
704 cf->data[i] = data_reg;
705 cf->data[i + 1] = data_reg >> 8;
706 }
707
708 netif_receive_skb(skb);
709 rcv_pkts++;
710 stats->rx_packets++;
711 quota--;
712 stats->rx_bytes += cf->can_dlc;
713
714 pch_fifo_thresh(priv, obj_num);
715 obj_num++;
716 } while (quota > 0);
717
718 return rcv_pkts;
719 }
720
pch_can_tx_complete(struct net_device * ndev,u32 int_stat)721 static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
722 {
723 struct pch_can_priv *priv = netdev_priv(ndev);
724 struct net_device_stats *stats = &(priv->ndev->stats);
725 u32 dlc;
726
727 can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
728 iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
729 &priv->regs->ifregs[1].cmask);
730 pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
731 dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
732 PCH_IF_MCONT_DLC);
733 stats->tx_bytes += dlc;
734 stats->tx_packets++;
735 if (int_stat == PCH_TX_OBJ_END)
736 netif_wake_queue(ndev);
737 }
738
pch_can_poll(struct napi_struct * napi,int quota)739 static int pch_can_poll(struct napi_struct *napi, int quota)
740 {
741 struct net_device *ndev = napi->dev;
742 struct pch_can_priv *priv = netdev_priv(ndev);
743 u32 int_stat;
744 u32 reg_stat;
745 int quota_save = quota;
746
747 int_stat = pch_can_int_pending(priv);
748 if (!int_stat)
749 goto end;
750
751 if (int_stat == PCH_STATUS_INT) {
752 reg_stat = ioread32(&priv->regs->stat);
753
754 if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
755 ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
756 pch_can_error(ndev, reg_stat);
757 quota--;
758 }
759
760 if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
761 pch_can_bit_clear(&priv->regs->stat,
762 reg_stat & (PCH_TX_OK | PCH_RX_OK));
763
764 int_stat = pch_can_int_pending(priv);
765 }
766
767 if (quota == 0)
768 goto end;
769
770 if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
771 quota -= pch_can_rx_normal(ndev, int_stat, quota);
772 } else if ((int_stat >= PCH_TX_OBJ_START) &&
773 (int_stat <= PCH_TX_OBJ_END)) {
774 /* Handle transmission interrupt */
775 pch_can_tx_complete(ndev, int_stat);
776 }
777
778 end:
779 napi_complete(napi);
780 pch_can_set_int_enables(priv, PCH_CAN_ALL);
781
782 return quota_save - quota;
783 }
784
pch_set_bittiming(struct net_device * ndev)785 static int pch_set_bittiming(struct net_device *ndev)
786 {
787 struct pch_can_priv *priv = netdev_priv(ndev);
788 const struct can_bittiming *bt = &priv->can.bittiming;
789 u32 canbit;
790 u32 bepe;
791
792 /* Setting the CCE bit for accessing the Can Timing register. */
793 pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
794
795 canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
796 canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
797 canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
798 canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
799 bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
800 iowrite32(canbit, &priv->regs->bitt);
801 iowrite32(bepe, &priv->regs->brpe);
802 pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
803
804 return 0;
805 }
806
pch_can_start(struct net_device * ndev)807 static void pch_can_start(struct net_device *ndev)
808 {
809 struct pch_can_priv *priv = netdev_priv(ndev);
810
811 if (priv->can.state != CAN_STATE_STOPPED)
812 pch_can_reset(priv);
813
814 pch_set_bittiming(ndev);
815 pch_can_set_optmode(priv);
816
817 pch_can_set_tx_all(priv, 1);
818 pch_can_set_rx_all(priv, 1);
819
820 /* Setting the CAN to run mode. */
821 pch_can_set_run_mode(priv, PCH_CAN_RUN);
822
823 priv->can.state = CAN_STATE_ERROR_ACTIVE;
824
825 return;
826 }
827
pch_can_do_set_mode(struct net_device * ndev,enum can_mode mode)828 static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
829 {
830 int ret = 0;
831
832 switch (mode) {
833 case CAN_MODE_START:
834 pch_can_start(ndev);
835 netif_wake_queue(ndev);
836 break;
837 default:
838 ret = -EOPNOTSUPP;
839 break;
840 }
841
842 return ret;
843 }
844
pch_can_open(struct net_device * ndev)845 static int pch_can_open(struct net_device *ndev)
846 {
847 struct pch_can_priv *priv = netdev_priv(ndev);
848 int retval;
849
850 /* Regstering the interrupt. */
851 retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
852 ndev->name, ndev);
853 if (retval) {
854 netdev_err(ndev, "request_irq failed.\n");
855 goto req_irq_err;
856 }
857
858 /* Open common can device */
859 retval = open_candev(ndev);
860 if (retval) {
861 netdev_err(ndev, "open_candev() failed %d\n", retval);
862 goto err_open_candev;
863 }
864
865 pch_can_init(priv);
866 pch_can_start(ndev);
867 napi_enable(&priv->napi);
868 netif_start_queue(ndev);
869
870 return 0;
871
872 err_open_candev:
873 free_irq(priv->dev->irq, ndev);
874 req_irq_err:
875 pch_can_release(priv);
876
877 return retval;
878 }
879
pch_close(struct net_device * ndev)880 static int pch_close(struct net_device *ndev)
881 {
882 struct pch_can_priv *priv = netdev_priv(ndev);
883
884 netif_stop_queue(ndev);
885 napi_disable(&priv->napi);
886 pch_can_release(priv);
887 free_irq(priv->dev->irq, ndev);
888 close_candev(ndev);
889 priv->can.state = CAN_STATE_STOPPED;
890 return 0;
891 }
892
pch_xmit(struct sk_buff * skb,struct net_device * ndev)893 static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
894 {
895 struct pch_can_priv *priv = netdev_priv(ndev);
896 struct can_frame *cf = (struct can_frame *)skb->data;
897 int tx_obj_no;
898 int i;
899 u32 id2;
900
901 if (can_dropped_invalid_skb(ndev, skb))
902 return NETDEV_TX_OK;
903
904 tx_obj_no = priv->tx_obj;
905 if (priv->tx_obj == PCH_TX_OBJ_END) {
906 if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
907 netif_stop_queue(ndev);
908
909 priv->tx_obj = PCH_TX_OBJ_START;
910 } else {
911 priv->tx_obj++;
912 }
913
914 /* Setting the CMASK register. */
915 pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
916
917 /* If ID extended is set. */
918 if (cf->can_id & CAN_EFF_FLAG) {
919 iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
920 id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
921 } else {
922 iowrite32(0, &priv->regs->ifregs[1].id1);
923 id2 = (cf->can_id & CAN_SFF_MASK) << 2;
924 }
925
926 id2 |= PCH_ID_MSGVAL;
927
928 /* If remote frame has to be transmitted.. */
929 if (!(cf->can_id & CAN_RTR_FLAG))
930 id2 |= PCH_ID2_DIR;
931
932 iowrite32(id2, &priv->regs->ifregs[1].id2);
933
934 /* Copy data to register */
935 for (i = 0; i < cf->can_dlc; i += 2) {
936 iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
937 &priv->regs->ifregs[1].data[i / 2]);
938 }
939
940 can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
941
942 /* Set the size of the data. Update if2_mcont */
943 iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
944 PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
945
946 pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
947
948 return NETDEV_TX_OK;
949 }
950
951 static const struct net_device_ops pch_can_netdev_ops = {
952 .ndo_open = pch_can_open,
953 .ndo_stop = pch_close,
954 .ndo_start_xmit = pch_xmit,
955 };
956
pch_can_remove(struct pci_dev * pdev)957 static void __devexit pch_can_remove(struct pci_dev *pdev)
958 {
959 struct net_device *ndev = pci_get_drvdata(pdev);
960 struct pch_can_priv *priv = netdev_priv(ndev);
961
962 unregister_candev(priv->ndev);
963 if (priv->use_msi)
964 pci_disable_msi(priv->dev);
965 pci_release_regions(pdev);
966 pci_disable_device(pdev);
967 pci_set_drvdata(pdev, NULL);
968 pch_can_reset(priv);
969 pci_iounmap(pdev, priv->regs);
970 free_candev(priv->ndev);
971 }
972
973 #ifdef CONFIG_PM
pch_can_set_int_custom(struct pch_can_priv * priv)974 static void pch_can_set_int_custom(struct pch_can_priv *priv)
975 {
976 /* Clearing the IE, SIE and EIE bits of Can control register. */
977 pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
978
979 /* Appropriately setting them. */
980 pch_can_bit_set(&priv->regs->cont,
981 ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
982 }
983
984 /* This function retrieves interrupt enabled for the CAN device. */
pch_can_get_int_enables(struct pch_can_priv * priv)985 static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
986 {
987 /* Obtaining the status of IE, SIE and EIE interrupt bits. */
988 return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
989 }
990
pch_can_get_rxtx_ir(struct pch_can_priv * priv,u32 buff_num,enum pch_ifreg dir)991 static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
992 enum pch_ifreg dir)
993 {
994 u32 ie, enable;
995
996 if (dir)
997 ie = PCH_IF_MCONT_RXIE;
998 else
999 ie = PCH_IF_MCONT_TXIE;
1000
1001 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
1002 pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
1003
1004 if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
1005 ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
1006 enable = 1;
1007 else
1008 enable = 0;
1009
1010 return enable;
1011 }
1012
pch_can_set_rx_buffer_link(struct pch_can_priv * priv,u32 buffer_num,int set)1013 static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
1014 u32 buffer_num, int set)
1015 {
1016 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1017 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1018 iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
1019 &priv->regs->ifregs[0].cmask);
1020 if (set)
1021 pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
1022 PCH_IF_MCONT_EOB);
1023 else
1024 pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
1025
1026 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1027 }
1028
pch_can_get_rx_buffer_link(struct pch_can_priv * priv,u32 buffer_num)1029 static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
1030 {
1031 u32 link;
1032
1033 iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1034 pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1035
1036 if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
1037 link = 0;
1038 else
1039 link = 1;
1040 return link;
1041 }
1042
pch_can_get_buffer_status(struct pch_can_priv * priv)1043 static int pch_can_get_buffer_status(struct pch_can_priv *priv)
1044 {
1045 return (ioread32(&priv->regs->treq1) & 0xffff) |
1046 (ioread32(&priv->regs->treq2) << 16);
1047 }
1048
pch_can_suspend(struct pci_dev * pdev,pm_message_t state)1049 static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
1050 {
1051 int i;
1052 int retval;
1053 u32 buf_stat; /* Variable for reading the transmit buffer status. */
1054 int counter = PCH_COUNTER_LIMIT;
1055
1056 struct net_device *dev = pci_get_drvdata(pdev);
1057 struct pch_can_priv *priv = netdev_priv(dev);
1058
1059 /* Stop the CAN controller */
1060 pch_can_set_run_mode(priv, PCH_CAN_STOP);
1061
1062 /* Indicate that we are aboutto/in suspend */
1063 priv->can.state = CAN_STATE_STOPPED;
1064
1065 /* Waiting for all transmission to complete. */
1066 while (counter) {
1067 buf_stat = pch_can_get_buffer_status(priv);
1068 if (!buf_stat)
1069 break;
1070 counter--;
1071 udelay(1);
1072 }
1073 if (!counter)
1074 dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
1075
1076 /* Save interrupt configuration and then disable them */
1077 priv->int_enables = pch_can_get_int_enables(priv);
1078 pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1079
1080 /* Save Tx buffer enable state */
1081 for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1082 priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1083 PCH_TX_IFREG);
1084
1085 /* Disable all Transmit buffers */
1086 pch_can_set_tx_all(priv, 0);
1087
1088 /* Save Rx buffer enable state */
1089 for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1090 priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1091 PCH_RX_IFREG);
1092 priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
1093 }
1094
1095 /* Disable all Receive buffers */
1096 pch_can_set_rx_all(priv, 0);
1097 retval = pci_save_state(pdev);
1098 if (retval) {
1099 dev_err(&pdev->dev, "pci_save_state failed.\n");
1100 } else {
1101 pci_enable_wake(pdev, PCI_D3hot, 0);
1102 pci_disable_device(pdev);
1103 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1104 }
1105
1106 return retval;
1107 }
1108
pch_can_resume(struct pci_dev * pdev)1109 static int pch_can_resume(struct pci_dev *pdev)
1110 {
1111 int i;
1112 int retval;
1113 struct net_device *dev = pci_get_drvdata(pdev);
1114 struct pch_can_priv *priv = netdev_priv(dev);
1115
1116 pci_set_power_state(pdev, PCI_D0);
1117 pci_restore_state(pdev);
1118 retval = pci_enable_device(pdev);
1119 if (retval) {
1120 dev_err(&pdev->dev, "pci_enable_device failed.\n");
1121 return retval;
1122 }
1123
1124 pci_enable_wake(pdev, PCI_D3hot, 0);
1125
1126 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1127
1128 /* Disabling all interrupts. */
1129 pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1130
1131 /* Setting the CAN device in Stop Mode. */
1132 pch_can_set_run_mode(priv, PCH_CAN_STOP);
1133
1134 /* Configuring the transmit and receive buffers. */
1135 pch_can_config_rx_tx_buffers(priv);
1136
1137 /* Restore the CAN state */
1138 pch_set_bittiming(dev);
1139
1140 /* Listen/Active */
1141 pch_can_set_optmode(priv);
1142
1143 /* Enabling the transmit buffer. */
1144 for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1145 pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
1146
1147 /* Configuring the receive buffer and enabling them. */
1148 for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1149 /* Restore buffer link */
1150 pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
1151
1152 /* Restore buffer enables */
1153 pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
1154 }
1155
1156 /* Enable CAN Interrupts */
1157 pch_can_set_int_custom(priv);
1158
1159 /* Restore Run Mode */
1160 pch_can_set_run_mode(priv, PCH_CAN_RUN);
1161
1162 return retval;
1163 }
1164 #else
1165 #define pch_can_suspend NULL
1166 #define pch_can_resume NULL
1167 #endif
1168
pch_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1169 static int pch_can_get_berr_counter(const struct net_device *dev,
1170 struct can_berr_counter *bec)
1171 {
1172 struct pch_can_priv *priv = netdev_priv(dev);
1173 u32 errc = ioread32(&priv->regs->errc);
1174
1175 bec->txerr = errc & PCH_TEC;
1176 bec->rxerr = (errc & PCH_REC) >> 8;
1177
1178 return 0;
1179 }
1180
pch_can_probe(struct pci_dev * pdev,const struct pci_device_id * id)1181 static int __devinit pch_can_probe(struct pci_dev *pdev,
1182 const struct pci_device_id *id)
1183 {
1184 struct net_device *ndev;
1185 struct pch_can_priv *priv;
1186 int rc;
1187 void __iomem *addr;
1188
1189 rc = pci_enable_device(pdev);
1190 if (rc) {
1191 dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
1192 goto probe_exit_endev;
1193 }
1194
1195 rc = pci_request_regions(pdev, KBUILD_MODNAME);
1196 if (rc) {
1197 dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
1198 goto probe_exit_pcireq;
1199 }
1200
1201 addr = pci_iomap(pdev, 1, 0);
1202 if (!addr) {
1203 rc = -EIO;
1204 dev_err(&pdev->dev, "Failed pci_iomap\n");
1205 goto probe_exit_ipmap;
1206 }
1207
1208 ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
1209 if (!ndev) {
1210 rc = -ENOMEM;
1211 dev_err(&pdev->dev, "Failed alloc_candev\n");
1212 goto probe_exit_alloc_candev;
1213 }
1214
1215 priv = netdev_priv(ndev);
1216 priv->ndev = ndev;
1217 priv->regs = addr;
1218 priv->dev = pdev;
1219 priv->can.bittiming_const = &pch_can_bittiming_const;
1220 priv->can.do_set_mode = pch_can_do_set_mode;
1221 priv->can.do_get_berr_counter = pch_can_get_berr_counter;
1222 priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
1223 CAN_CTRLMODE_LOOPBACK;
1224 priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
1225
1226 ndev->irq = pdev->irq;
1227 ndev->flags |= IFF_ECHO;
1228
1229 pci_set_drvdata(pdev, ndev);
1230 SET_NETDEV_DEV(ndev, &pdev->dev);
1231 ndev->netdev_ops = &pch_can_netdev_ops;
1232 priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
1233
1234 netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
1235
1236 rc = pci_enable_msi(priv->dev);
1237 if (rc) {
1238 netdev_err(ndev, "PCH CAN opened without MSI\n");
1239 priv->use_msi = 0;
1240 } else {
1241 netdev_err(ndev, "PCH CAN opened with MSI\n");
1242 pci_set_master(pdev);
1243 priv->use_msi = 1;
1244 }
1245
1246 rc = register_candev(ndev);
1247 if (rc) {
1248 dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
1249 goto probe_exit_reg_candev;
1250 }
1251
1252 return 0;
1253
1254 probe_exit_reg_candev:
1255 if (priv->use_msi)
1256 pci_disable_msi(priv->dev);
1257 free_candev(ndev);
1258 probe_exit_alloc_candev:
1259 pci_iounmap(pdev, addr);
1260 probe_exit_ipmap:
1261 pci_release_regions(pdev);
1262 probe_exit_pcireq:
1263 pci_disable_device(pdev);
1264 probe_exit_endev:
1265 return rc;
1266 }
1267
1268 static struct pci_driver pch_can_pci_driver = {
1269 .name = "pch_can",
1270 .id_table = pch_pci_tbl,
1271 .probe = pch_can_probe,
1272 .remove = __devexit_p(pch_can_remove),
1273 .suspend = pch_can_suspend,
1274 .resume = pch_can_resume,
1275 };
1276
pch_can_pci_init(void)1277 static int __init pch_can_pci_init(void)
1278 {
1279 return pci_register_driver(&pch_can_pci_driver);
1280 }
1281 module_init(pch_can_pci_init);
1282
pch_can_pci_exit(void)1283 static void __exit pch_can_pci_exit(void)
1284 {
1285 pci_unregister_driver(&pch_can_pci_driver);
1286 }
1287 module_exit(pch_can_pci_exit);
1288
1289 MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
1290 MODULE_LICENSE("GPL v2");
1291 MODULE_VERSION("0.94");
1292