1 /*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3 *
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
6 *
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
9 *
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
12 *
13 *
14 * Theory of Operation
15 *
16 * I. Board Compatibility
17 *
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
29 *
30 * II. Board-specific settings
31 *
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
36 *
37 * Sharing of the PCI interrupt line for this board is possible.
38 *
39 * III. Driver operation
40 *
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
46 *
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
51 *
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
55 *
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mystery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
66 *
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
72 *
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
75 *
76 * 2002/01 Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
81 */
82
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <asm/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122
123 #define DRV_NAME "dscc4"
124
125 #undef DSCC4_POLLING
126
127 /* Module parameters */
128
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136
137 /* Structures */
138
139 struct thingie {
140 int define;
141 u32 bits;
142 };
143
144 struct TxFD {
145 __le32 state;
146 __le32 next;
147 __le32 data;
148 __le32 complete;
149 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 /* FWIW, datasheet calls that "dummy" and says that card
151 * never looks at it; neither does the driver */
152 };
153
154 struct RxFD {
155 __le32 state1;
156 __le32 next;
157 __le32 data;
158 __le32 state2;
159 __le32 end;
160 };
161
162 #define DUMMY_SKB_SIZE 64
163 #define TX_LOW 8
164 #define TX_RING_SIZE 32
165 #define RX_RING_SIZE 32
166 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
169 #define TX_TIMEOUT (HZ/10)
170 #define DSCC4_HZ_MAX 33000000
171 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
172 #define dev_per_card 4
173 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
174
175 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
176 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
177
178 /*
179 * Given the operating range of Linux HDLC, the 2 defines below could be
180 * made simpler. However they are a fine reminder for the limitations of
181 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182 */
183 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
186 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187
188 struct dscc4_pci_priv {
189 __le32 *iqcfg;
190 int cfg_cur;
191 spinlock_t lock;
192 struct pci_dev *pdev;
193
194 struct dscc4_dev_priv *root;
195 dma_addr_t iqcfg_dma;
196 u32 xtal_hz;
197 };
198
199 struct dscc4_dev_priv {
200 struct sk_buff *rx_skbuff[RX_RING_SIZE];
201 struct sk_buff *tx_skbuff[TX_RING_SIZE];
202
203 struct RxFD *rx_fd;
204 struct TxFD *tx_fd;
205 __le32 *iqrx;
206 __le32 *iqtx;
207
208 /* FIXME: check all the volatile are required */
209 volatile u32 tx_current;
210 u32 rx_current;
211 u32 iqtx_current;
212 u32 iqrx_current;
213
214 volatile u32 tx_dirty;
215 volatile u32 ltda;
216 u32 rx_dirty;
217 u32 lrda;
218
219 dma_addr_t tx_fd_dma;
220 dma_addr_t rx_fd_dma;
221 dma_addr_t iqtx_dma;
222 dma_addr_t iqrx_dma;
223
224 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225
226 struct timer_list timer;
227
228 struct dscc4_pci_priv *pci_priv;
229 spinlock_t lock;
230
231 int dev_id;
232 volatile u32 flags;
233 u32 timer_help;
234
235 unsigned short encoding;
236 unsigned short parity;
237 struct net_device *dev;
238 sync_serial_settings settings;
239 void __iomem *base_addr;
240 u32 __pad __attribute__ ((aligned (4)));
241 };
242
243 /* GLOBAL registers definitions */
244 #define GCMDR 0x00
245 #define GSTAR 0x04
246 #define GMODE 0x08
247 #define IQLENR0 0x0C
248 #define IQLENR1 0x10
249 #define IQRX0 0x14
250 #define IQTX0 0x24
251 #define IQCFG 0x3c
252 #define FIFOCR1 0x44
253 #define FIFOCR2 0x48
254 #define FIFOCR3 0x4c
255 #define FIFOCR4 0x34
256 #define CH0CFG 0x50
257 #define CH0BRDA 0x54
258 #define CH0BTDA 0x58
259 #define CH0FRDA 0x98
260 #define CH0FTDA 0xb0
261 #define CH0LRDA 0xc8
262 #define CH0LTDA 0xe0
263
264 /* SCC registers definitions */
265 #define SCC_START 0x0100
266 #define SCC_OFFSET 0x80
267 #define CMDR 0x00
268 #define STAR 0x04
269 #define CCR0 0x08
270 #define CCR1 0x0c
271 #define CCR2 0x10
272 #define BRR 0x2C
273 #define RLCR 0x40
274 #define IMR 0x54
275 #define ISR 0x58
276
277 #define GPDIR 0x0400
278 #define GPDATA 0x0404
279 #define GPIM 0x0408
280
281 /* Bit masks */
282 #define EncodingMask 0x00700000
283 #define CrcMask 0x00000003
284
285 #define IntRxScc0 0x10000000
286 #define IntTxScc0 0x01000000
287
288 #define TxPollCmd 0x00000400
289 #define RxActivate 0x08000000
290 #define MTFi 0x04000000
291 #define Rdr 0x00400000
292 #define Rdt 0x00200000
293 #define Idr 0x00100000
294 #define Idt 0x00080000
295 #define TxSccRes 0x01000000
296 #define RxSccRes 0x00010000
297 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
298 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
299
300 #define Ccr0ClockMask 0x0000003f
301 #define Ccr1LoopMask 0x00000200
302 #define IsrMask 0x000fffff
303 #define BrrExpMask 0x00000f00
304 #define BrrMultMask 0x0000003f
305 #define EncodingMask 0x00700000
306 #define Hold cpu_to_le32(0x40000000)
307 #define SccBusy 0x10000000
308 #define PowerUp 0x80000000
309 #define Vis 0x00001000
310 #define FrameOk (FrameVfr | FrameCrc)
311 #define FrameVfr 0x80
312 #define FrameRdo 0x40
313 #define FrameCrc 0x20
314 #define FrameRab 0x10
315 #define FrameAborted cpu_to_le32(0x00000200)
316 #define FrameEnd cpu_to_le32(0x80000000)
317 #define DataComplete cpu_to_le32(0x40000000)
318 #define LengthCheck 0x00008000
319 #define SccEvt 0x02000000
320 #define NoAck 0x00000200
321 #define Action 0x00000001
322 #define HiDesc cpu_to_le32(0x20000000)
323
324 /* SCC events */
325 #define RxEvt 0xf0000000
326 #define TxEvt 0x0f000000
327 #define Alls 0x00040000
328 #define Xdu 0x00010000
329 #define Cts 0x00004000
330 #define Xmr 0x00002000
331 #define Xpr 0x00001000
332 #define Rdo 0x00000080
333 #define Rfs 0x00000040
334 #define Cd 0x00000004
335 #define Rfo 0x00000002
336 #define Flex 0x00000001
337
338 /* DMA core events */
339 #define Cfg 0x00200000
340 #define Hi 0x00040000
341 #define Fi 0x00020000
342 #define Err 0x00010000
343 #define Arf 0x00000002
344 #define ArAck 0x00000001
345
346 /* State flags */
347 #define Ready 0x00000000
348 #define NeedIDR 0x00000001
349 #define NeedIDT 0x00000002
350 #define RdoSet 0x00000004
351 #define FakeReset 0x00000008
352
353 /* Don't mask RDO. Ever. */
354 #ifdef DSCC4_POLLING
355 #define EventsMask 0xfffeef7f
356 #else
357 #define EventsMask 0xfffa8f7a
358 #endif
359
360 /* Functions prototypes */
361 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
362 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
363 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
364 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
365 static int dscc4_open(struct net_device *);
366 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
367 struct net_device *);
368 static int dscc4_close(struct net_device *);
369 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
370 static int dscc4_init_ring(struct net_device *);
371 static void dscc4_release_ring(struct dscc4_dev_priv *);
372 static void dscc4_timer(unsigned long);
373 static void dscc4_tx_timeout(struct net_device *);
374 static irqreturn_t dscc4_irq(int irq, void *dev_id);
375 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
376 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
377 #ifdef DSCC4_POLLING
378 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
379 #endif
380
dscc4_priv(struct net_device * dev)381 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
382 {
383 return dev_to_hdlc(dev)->priv;
384 }
385
dscc4_to_dev(struct dscc4_dev_priv * p)386 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 {
388 return p->dev;
389 }
390
scc_patchl(u32 mask,u32 value,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)391 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
392 struct net_device *dev, int offset)
393 {
394 u32 state;
395
396 /* Cf scc_writel for concern regarding thread-safety */
397 state = dpriv->scc_regs[offset >> 2];
398 state &= ~mask;
399 state |= value;
400 dpriv->scc_regs[offset >> 2] = state;
401 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
402 }
403
scc_writel(u32 bits,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)404 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
405 struct net_device *dev, int offset)
406 {
407 /*
408 * Thread-UNsafe.
409 * As of 2002/02/16, there are no thread racing for access.
410 */
411 dpriv->scc_regs[offset >> 2] = bits;
412 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
413 }
414
scc_readl(struct dscc4_dev_priv * dpriv,int offset)415 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
416 {
417 return dpriv->scc_regs[offset >> 2];
418 }
419
scc_readl_star(struct dscc4_dev_priv * dpriv,struct net_device * dev)420 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
421 {
422 /* Cf errata DS5 p.4 */
423 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
425 }
426
dscc4_do_tx(struct dscc4_dev_priv * dpriv,struct net_device * dev)427 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
428 struct net_device *dev)
429 {
430 dpriv->ltda = dpriv->tx_fd_dma +
431 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
432 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433 /* Flush posted writes *NOW* */
434 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
435 }
436
dscc4_rx_update(struct dscc4_dev_priv * dpriv,struct net_device * dev)437 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
438 struct net_device *dev)
439 {
440 dpriv->lrda = dpriv->rx_fd_dma +
441 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
442 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
443 }
444
dscc4_tx_done(struct dscc4_dev_priv * dpriv)445 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
446 {
447 return dpriv->tx_current == dpriv->tx_dirty;
448 }
449
dscc4_tx_quiescent(struct dscc4_dev_priv * dpriv,struct net_device * dev)450 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
451 struct net_device *dev)
452 {
453 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
454 }
455
state_check(u32 state,struct dscc4_dev_priv * dpriv,struct net_device * dev,const char * msg)456 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
457 struct net_device *dev, const char *msg)
458 {
459 int ret = 0;
460
461 if (debug > 1) {
462 if (SOURCE_ID(state) != dpriv->dev_id) {
463 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
464 dev->name, msg, SOURCE_ID(state), state );
465 ret = -1;
466 }
467 if (state & 0x0df80c00) {
468 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
469 dev->name, msg, state);
470 ret = -1;
471 }
472 }
473 return ret;
474 }
475
dscc4_tx_print(struct net_device * dev,struct dscc4_dev_priv * dpriv,char * msg)476 static void dscc4_tx_print(struct net_device *dev,
477 struct dscc4_dev_priv *dpriv,
478 char *msg)
479 {
480 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
481 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
482 }
483
dscc4_release_ring(struct dscc4_dev_priv * dpriv)484 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
485 {
486 struct pci_dev *pdev = dpriv->pci_priv->pdev;
487 struct TxFD *tx_fd = dpriv->tx_fd;
488 struct RxFD *rx_fd = dpriv->rx_fd;
489 struct sk_buff **skbuff;
490 int i;
491
492 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
493 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
494
495 skbuff = dpriv->tx_skbuff;
496 for (i = 0; i < TX_RING_SIZE; i++) {
497 if (*skbuff) {
498 pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
499 (*skbuff)->len, PCI_DMA_TODEVICE);
500 dev_kfree_skb(*skbuff);
501 }
502 skbuff++;
503 tx_fd++;
504 }
505
506 skbuff = dpriv->rx_skbuff;
507 for (i = 0; i < RX_RING_SIZE; i++) {
508 if (*skbuff) {
509 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
510 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
511 dev_kfree_skb(*skbuff);
512 }
513 skbuff++;
514 rx_fd++;
515 }
516 }
517
try_get_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)518 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
519 struct net_device *dev)
520 {
521 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
522 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
523 const int len = RX_MAX(HDLC_MAX_MRU);
524 struct sk_buff *skb;
525 int ret = 0;
526
527 skb = dev_alloc_skb(len);
528 dpriv->rx_skbuff[dirty] = skb;
529 if (skb) {
530 skb->protocol = hdlc_type_trans(skb, dev);
531 rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
532 skb->data, len, PCI_DMA_FROMDEVICE));
533 } else {
534 rx_fd->data = 0;
535 ret = -1;
536 }
537 return ret;
538 }
539
540 /*
541 * IRQ/thread/whatever safe
542 */
dscc4_wait_ack_cec(struct dscc4_dev_priv * dpriv,struct net_device * dev,char * msg)543 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
544 struct net_device *dev, char *msg)
545 {
546 s8 i = 0;
547
548 do {
549 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
550 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
551 msg, i);
552 goto done;
553 }
554 schedule_timeout_uninterruptible(10);
555 rmb();
556 } while (++i > 0);
557 netdev_err(dev, "%s timeout\n", msg);
558 done:
559 return (i >= 0) ? i : -EAGAIN;
560 }
561
dscc4_do_action(struct net_device * dev,char * msg)562 static int dscc4_do_action(struct net_device *dev, char *msg)
563 {
564 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
565 s16 i = 0;
566
567 writel(Action, ioaddr + GCMDR);
568 ioaddr += GSTAR;
569 do {
570 u32 state = readl(ioaddr);
571
572 if (state & ArAck) {
573 netdev_dbg(dev, "%s ack\n", msg);
574 writel(ArAck, ioaddr);
575 goto done;
576 } else if (state & Arf) {
577 netdev_err(dev, "%s failed\n", msg);
578 writel(Arf, ioaddr);
579 i = -1;
580 goto done;
581 }
582 rmb();
583 } while (++i > 0);
584 netdev_err(dev, "%s timeout\n", msg);
585 done:
586 return i;
587 }
588
dscc4_xpr_ack(struct dscc4_dev_priv * dpriv)589 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
590 {
591 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
592 s8 i = 0;
593
594 do {
595 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
596 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
597 break;
598 smp_rmb();
599 schedule_timeout_uninterruptible(10);
600 } while (++i > 0);
601
602 return (i >= 0 ) ? i : -EAGAIN;
603 }
604
605 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
606 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
607 {
608 unsigned long flags;
609
610 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
611 /* Cf errata DS5 p.6 */
612 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
613 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
614 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
615 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
616 writel(Action, dpriv->base_addr + GCMDR);
617 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 }
619
620 #endif
621
622 #if 0
623 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
624 {
625 u16 i = 0;
626
627 /* Cf errata DS5 p.7 */
628 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
629 scc_writel(0x00050000, dpriv, dev, CCR2);
630 /*
631 * Must be longer than the time required to fill the fifo.
632 */
633 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634 udelay(1);
635 wmb();
636 }
637
638 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
639 if (dscc4_do_action(dev, "Rdt") < 0)
640 netdev_err(dev, "Tx reset failed\n");
641 }
642 #endif
643
644 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
dscc4_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)645 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
646 struct net_device *dev)
647 {
648 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
649 struct pci_dev *pdev = dpriv->pci_priv->pdev;
650 struct sk_buff *skb;
651 int pkt_len;
652
653 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
654 if (!skb) {
655 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
656 goto refill;
657 }
658 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
659 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
660 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
661 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
662 dev->stats.rx_packets++;
663 dev->stats.rx_bytes += pkt_len;
664 skb_put(skb, pkt_len);
665 if (netif_running(dev))
666 skb->protocol = hdlc_type_trans(skb, dev);
667 netif_rx(skb);
668 } else {
669 if (skb->data[pkt_len] & FrameRdo)
670 dev->stats.rx_fifo_errors++;
671 else if (!(skb->data[pkt_len] & FrameCrc))
672 dev->stats.rx_crc_errors++;
673 else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
674 (FrameVfr | FrameRab))
675 dev->stats.rx_length_errors++;
676 dev->stats.rx_errors++;
677 dev_kfree_skb_irq(skb);
678 }
679 refill:
680 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
681 if (try_get_rx_skb(dpriv, dev) < 0)
682 break;
683 dpriv->rx_dirty++;
684 }
685 dscc4_rx_update(dpriv, dev);
686 rx_fd->state2 = 0x00000000;
687 rx_fd->end = cpu_to_le32(0xbabeface);
688 }
689
dscc4_free1(struct pci_dev * pdev)690 static void dscc4_free1(struct pci_dev *pdev)
691 {
692 struct dscc4_pci_priv *ppriv;
693 struct dscc4_dev_priv *root;
694 int i;
695
696 ppriv = pci_get_drvdata(pdev);
697 root = ppriv->root;
698
699 for (i = 0; i < dev_per_card; i++)
700 unregister_hdlc_device(dscc4_to_dev(root + i));
701
702 pci_set_drvdata(pdev, NULL);
703
704 for (i = 0; i < dev_per_card; i++)
705 free_netdev(root[i].dev);
706 kfree(root);
707 kfree(ppriv);
708 }
709
dscc4_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)710 static int __devinit dscc4_init_one(struct pci_dev *pdev,
711 const struct pci_device_id *ent)
712 {
713 struct dscc4_pci_priv *priv;
714 struct dscc4_dev_priv *dpriv;
715 void __iomem *ioaddr;
716 int i, rc;
717
718 printk(KERN_DEBUG "%s", version);
719
720 rc = pci_enable_device(pdev);
721 if (rc < 0)
722 goto out;
723
724 rc = pci_request_region(pdev, 0, "registers");
725 if (rc < 0) {
726 pr_err("can't reserve MMIO region (regs)\n");
727 goto err_disable_0;
728 }
729 rc = pci_request_region(pdev, 1, "LBI interface");
730 if (rc < 0) {
731 pr_err("can't reserve MMIO region (lbi)\n");
732 goto err_free_mmio_region_1;
733 }
734
735 ioaddr = pci_ioremap_bar(pdev, 0);
736 if (!ioaddr) {
737 pr_err("cannot remap MMIO region %llx @ %llx\n",
738 (unsigned long long)pci_resource_len(pdev, 0),
739 (unsigned long long)pci_resource_start(pdev, 0));
740 rc = -EIO;
741 goto err_free_mmio_regions_2;
742 }
743 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
744 (unsigned long long)pci_resource_start(pdev, 0),
745 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
746
747 /* Cf errata DS5 p.2 */
748 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
749 pci_set_master(pdev);
750
751 rc = dscc4_found1(pdev, ioaddr);
752 if (rc < 0)
753 goto err_iounmap_3;
754
755 priv = pci_get_drvdata(pdev);
756
757 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
758 if (rc < 0) {
759 pr_warn("IRQ %d busy\n", pdev->irq);
760 goto err_release_4;
761 }
762
763 /* power up/little endian/dma core controlled via lrda/ltda */
764 writel(0x00000001, ioaddr + GMODE);
765 /* Shared interrupt queue */
766 {
767 u32 bits;
768
769 bits = (IRQ_RING_SIZE >> 5) - 1;
770 bits |= bits << 4;
771 bits |= bits << 8;
772 bits |= bits << 16;
773 writel(bits, ioaddr + IQLENR0);
774 }
775 /* Global interrupt queue */
776 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
777 priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
778 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
779 if (!priv->iqcfg)
780 goto err_free_irq_5;
781 writel(priv->iqcfg_dma, ioaddr + IQCFG);
782
783 rc = -ENOMEM;
784
785 /*
786 * SCC 0-3 private rx/tx irq structures
787 * IQRX/TXi needs to be set soon. Learned it the hard way...
788 */
789 for (i = 0; i < dev_per_card; i++) {
790 dpriv = priv->root + i;
791 dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
792 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
793 if (!dpriv->iqtx)
794 goto err_free_iqtx_6;
795 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
796 }
797 for (i = 0; i < dev_per_card; i++) {
798 dpriv = priv->root + i;
799 dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
800 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
801 if (!dpriv->iqrx)
802 goto err_free_iqrx_7;
803 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
804 }
805
806 /* Cf application hint. Beware of hard-lock condition on threshold. */
807 writel(0x42104000, ioaddr + FIFOCR1);
808 //writel(0x9ce69800, ioaddr + FIFOCR2);
809 writel(0xdef6d800, ioaddr + FIFOCR2);
810 //writel(0x11111111, ioaddr + FIFOCR4);
811 writel(0x18181818, ioaddr + FIFOCR4);
812 // FIXME: should depend on the chipset revision
813 writel(0x0000000e, ioaddr + FIFOCR3);
814
815 writel(0xff200001, ioaddr + GCMDR);
816
817 rc = 0;
818 out:
819 return rc;
820
821 err_free_iqrx_7:
822 while (--i >= 0) {
823 dpriv = priv->root + i;
824 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
825 dpriv->iqrx, dpriv->iqrx_dma);
826 }
827 i = dev_per_card;
828 err_free_iqtx_6:
829 while (--i >= 0) {
830 dpriv = priv->root + i;
831 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
832 dpriv->iqtx, dpriv->iqtx_dma);
833 }
834 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
835 priv->iqcfg_dma);
836 err_free_irq_5:
837 free_irq(pdev->irq, priv->root);
838 err_release_4:
839 dscc4_free1(pdev);
840 err_iounmap_3:
841 iounmap (ioaddr);
842 err_free_mmio_regions_2:
843 pci_release_region(pdev, 1);
844 err_free_mmio_region_1:
845 pci_release_region(pdev, 0);
846 err_disable_0:
847 pci_disable_device(pdev);
848 goto out;
849 };
850
851 /*
852 * Let's hope the default values are decent enough to protect my
853 * feet from the user's gun - Ueimor
854 */
dscc4_init_registers(struct dscc4_dev_priv * dpriv,struct net_device * dev)855 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
856 struct net_device *dev)
857 {
858 /* No interrupts, SCC core disabled. Let's relax */
859 scc_writel(0x00000000, dpriv, dev, CCR0);
860
861 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
862
863 /*
864 * No address recognition/crc-CCITT/cts enabled
865 * Shared flags transmission disabled - cf errata DS5 p.11
866 * Carrier detect disabled - cf errata p.14
867 * FIXME: carrier detection/polarity may be handled more gracefully.
868 */
869 scc_writel(0x02408000, dpriv, dev, CCR1);
870
871 /* crc not forwarded - Cf errata DS5 p.11 */
872 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
873 // crc forwarded
874 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
875 }
876
dscc4_set_quartz(struct dscc4_dev_priv * dpriv,int hz)877 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
878 {
879 int ret = 0;
880
881 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
882 ret = -EOPNOTSUPP;
883 else
884 dpriv->pci_priv->xtal_hz = hz;
885
886 return ret;
887 }
888
889 static const struct net_device_ops dscc4_ops = {
890 .ndo_open = dscc4_open,
891 .ndo_stop = dscc4_close,
892 .ndo_change_mtu = hdlc_change_mtu,
893 .ndo_start_xmit = hdlc_start_xmit,
894 .ndo_do_ioctl = dscc4_ioctl,
895 .ndo_tx_timeout = dscc4_tx_timeout,
896 };
897
dscc4_found1(struct pci_dev * pdev,void __iomem * ioaddr)898 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
899 {
900 struct dscc4_pci_priv *ppriv;
901 struct dscc4_dev_priv *root;
902 int i, ret = -ENOMEM;
903
904 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
905 if (!root)
906 goto err_out;
907
908 for (i = 0; i < dev_per_card; i++) {
909 root[i].dev = alloc_hdlcdev(root + i);
910 if (!root[i].dev)
911 goto err_free_dev;
912 }
913
914 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
915 if (!ppriv)
916 goto err_free_dev;
917
918 ppriv->root = root;
919 spin_lock_init(&ppriv->lock);
920
921 for (i = 0; i < dev_per_card; i++) {
922 struct dscc4_dev_priv *dpriv = root + i;
923 struct net_device *d = dscc4_to_dev(dpriv);
924 hdlc_device *hdlc = dev_to_hdlc(d);
925
926 d->base_addr = (unsigned long)ioaddr;
927 d->irq = pdev->irq;
928 d->netdev_ops = &dscc4_ops;
929 d->watchdog_timeo = TX_TIMEOUT;
930 SET_NETDEV_DEV(d, &pdev->dev);
931
932 dpriv->dev_id = i;
933 dpriv->pci_priv = ppriv;
934 dpriv->base_addr = ioaddr;
935 spin_lock_init(&dpriv->lock);
936
937 hdlc->xmit = dscc4_start_xmit;
938 hdlc->attach = dscc4_hdlc_attach;
939
940 dscc4_init_registers(dpriv, d);
941 dpriv->parity = PARITY_CRC16_PR0_CCITT;
942 dpriv->encoding = ENCODING_NRZ;
943
944 ret = dscc4_init_ring(d);
945 if (ret < 0)
946 goto err_unregister;
947
948 ret = register_hdlc_device(d);
949 if (ret < 0) {
950 pr_err("unable to register\n");
951 dscc4_release_ring(dpriv);
952 goto err_unregister;
953 }
954 }
955
956 ret = dscc4_set_quartz(root, quartz);
957 if (ret < 0)
958 goto err_unregister;
959
960 pci_set_drvdata(pdev, ppriv);
961 return ret;
962
963 err_unregister:
964 while (i-- > 0) {
965 dscc4_release_ring(root + i);
966 unregister_hdlc_device(dscc4_to_dev(root + i));
967 }
968 kfree(ppriv);
969 i = dev_per_card;
970 err_free_dev:
971 while (i-- > 0)
972 free_netdev(root[i].dev);
973 kfree(root);
974 err_out:
975 return ret;
976 };
977
978 /* FIXME: get rid of the unneeded code */
dscc4_timer(unsigned long data)979 static void dscc4_timer(unsigned long data)
980 {
981 struct net_device *dev = (struct net_device *)data;
982 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
983 // struct dscc4_pci_priv *ppriv;
984
985 goto done;
986 done:
987 dpriv->timer.expires = jiffies + TX_TIMEOUT;
988 add_timer(&dpriv->timer);
989 }
990
dscc4_tx_timeout(struct net_device * dev)991 static void dscc4_tx_timeout(struct net_device *dev)
992 {
993 /* FIXME: something is missing there */
994 }
995
dscc4_loopback_check(struct dscc4_dev_priv * dpriv)996 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
997 {
998 sync_serial_settings *settings = &dpriv->settings;
999
1000 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1001 struct net_device *dev = dscc4_to_dev(dpriv);
1002
1003 netdev_info(dev, "loopback requires clock\n");
1004 return -1;
1005 }
1006 return 0;
1007 }
1008
1009 #ifdef CONFIG_DSCC4_PCI_RST
1010 /*
1011 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1012 * so as to provide a safe way to reset the asic while not the whole machine
1013 * rebooting.
1014 *
1015 * This code doesn't need to be efficient. Keep It Simple
1016 */
dscc4_pci_reset(struct pci_dev * pdev,void __iomem * ioaddr)1017 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1018 {
1019 int i;
1020
1021 mutex_lock(&dscc4_mutex);
1022 for (i = 0; i < 16; i++)
1023 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1024
1025 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1026 writel(0x001c0000, ioaddr + GMODE);
1027 /* Configure GPIO port as output */
1028 writel(0x0000ffff, ioaddr + GPDIR);
1029 /* Disable interruption */
1030 writel(0x0000ffff, ioaddr + GPIM);
1031
1032 writel(0x0000ffff, ioaddr + GPDATA);
1033 writel(0x00000000, ioaddr + GPDATA);
1034
1035 /* Flush posted writes */
1036 readl(ioaddr + GSTAR);
1037
1038 schedule_timeout_uninterruptible(10);
1039
1040 for (i = 0; i < 16; i++)
1041 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1042 mutex_unlock(&dscc4_mutex);
1043 }
1044 #else
1045 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1046 #endif /* CONFIG_DSCC4_PCI_RST */
1047
dscc4_open(struct net_device * dev)1048 static int dscc4_open(struct net_device *dev)
1049 {
1050 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1051 struct dscc4_pci_priv *ppriv;
1052 int ret = -EAGAIN;
1053
1054 if ((dscc4_loopback_check(dpriv) < 0))
1055 goto err;
1056
1057 if ((ret = hdlc_open(dev)))
1058 goto err;
1059
1060 ppriv = dpriv->pci_priv;
1061
1062 /*
1063 * Due to various bugs, there is no way to reliably reset a
1064 * specific port (manufacturer's dependent special PCI #RST wiring
1065 * apart: it affects all ports). Thus the device goes in the best
1066 * silent mode possible at dscc4_close() time and simply claims to
1067 * be up if it's opened again. It still isn't possible to change
1068 * the HDLC configuration without rebooting but at least the ports
1069 * can be up/down ifconfig'ed without killing the host.
1070 */
1071 if (dpriv->flags & FakeReset) {
1072 dpriv->flags &= ~FakeReset;
1073 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1074 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1075 scc_writel(EventsMask, dpriv, dev, IMR);
1076 netdev_info(dev, "up again\n");
1077 goto done;
1078 }
1079
1080 /* IDT+IDR during XPR */
1081 dpriv->flags = NeedIDR | NeedIDT;
1082
1083 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1084
1085 /*
1086 * The following is a bit paranoid...
1087 *
1088 * NB: the datasheet "...CEC will stay active if the SCC is in
1089 * power-down mode or..." and CCR2.RAC = 1 are two different
1090 * situations.
1091 */
1092 if (scc_readl_star(dpriv, dev) & SccBusy) {
1093 netdev_err(dev, "busy - try later\n");
1094 ret = -EAGAIN;
1095 goto err_out;
1096 } else
1097 netdev_info(dev, "available - good\n");
1098
1099 scc_writel(EventsMask, dpriv, dev, IMR);
1100
1101 /* Posted write is flushed in the wait_ack loop */
1102 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1103
1104 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1105 goto err_disable_scc_events;
1106
1107 /*
1108 * I would expect XPR near CE completion (before ? after ?).
1109 * At worst, this code won't see a late XPR and people
1110 * will have to re-issue an ifconfig (this is harmless).
1111 * WARNING, a really missing XPR usually means a hardware
1112 * reset is needed. Suggestions anyone ?
1113 */
1114 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1115 pr_err("XPR timeout\n");
1116 goto err_disable_scc_events;
1117 }
1118
1119 if (debug > 2)
1120 dscc4_tx_print(dev, dpriv, "Open");
1121
1122 done:
1123 netif_start_queue(dev);
1124
1125 init_timer(&dpriv->timer);
1126 dpriv->timer.expires = jiffies + 10*HZ;
1127 dpriv->timer.data = (unsigned long)dev;
1128 dpriv->timer.function = dscc4_timer;
1129 add_timer(&dpriv->timer);
1130 netif_carrier_on(dev);
1131
1132 return 0;
1133
1134 err_disable_scc_events:
1135 scc_writel(0xffffffff, dpriv, dev, IMR);
1136 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1137 err_out:
1138 hdlc_close(dev);
1139 err:
1140 return ret;
1141 }
1142
1143 #ifdef DSCC4_POLLING
dscc4_tx_poll(struct dscc4_dev_priv * dpriv,struct net_device * dev)1144 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1145 {
1146 /* FIXME: it's gonna be easy (TM), for sure */
1147 }
1148 #endif /* DSCC4_POLLING */
1149
dscc4_start_xmit(struct sk_buff * skb,struct net_device * dev)1150 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1151 struct net_device *dev)
1152 {
1153 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1154 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1155 struct TxFD *tx_fd;
1156 int next;
1157
1158 next = dpriv->tx_current%TX_RING_SIZE;
1159 dpriv->tx_skbuff[next] = skb;
1160 tx_fd = dpriv->tx_fd + next;
1161 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1162 tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1163 PCI_DMA_TODEVICE));
1164 tx_fd->complete = 0x00000000;
1165 tx_fd->jiffies = jiffies;
1166 mb();
1167
1168 #ifdef DSCC4_POLLING
1169 spin_lock(&dpriv->lock);
1170 while (dscc4_tx_poll(dpriv, dev));
1171 spin_unlock(&dpriv->lock);
1172 #endif
1173
1174 if (debug > 2)
1175 dscc4_tx_print(dev, dpriv, "Xmit");
1176 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1177 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1178 netif_stop_queue(dev);
1179
1180 if (dscc4_tx_quiescent(dpriv, dev))
1181 dscc4_do_tx(dpriv, dev);
1182
1183 return NETDEV_TX_OK;
1184 }
1185
dscc4_close(struct net_device * dev)1186 static int dscc4_close(struct net_device *dev)
1187 {
1188 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1189
1190 del_timer_sync(&dpriv->timer);
1191 netif_stop_queue(dev);
1192
1193 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1194 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1195 scc_writel(0xffffffff, dpriv, dev, IMR);
1196
1197 dpriv->flags |= FakeReset;
1198
1199 hdlc_close(dev);
1200
1201 return 0;
1202 }
1203
dscc4_check_clock_ability(int port)1204 static inline int dscc4_check_clock_ability(int port)
1205 {
1206 int ret = 0;
1207
1208 #ifdef CONFIG_DSCC4_PCISYNC
1209 if (port >= 2)
1210 ret = -1;
1211 #endif
1212 return ret;
1213 }
1214
1215 /*
1216 * DS1 p.137: "There are a total of 13 different clocking modes..."
1217 * ^^
1218 * Design choices:
1219 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1220 * Clock mode 3b _should_ work but the testing seems to make this point
1221 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1222 * This is supposed to provide least surprise "DTE like" behavior.
1223 * - if line rate is specified, clocks are assumed to be locally generated.
1224 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1225 * between these it automagically done according on the required frequency
1226 * scaling. Of course some rounding may take place.
1227 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1228 * appropriate external clocking device for testing.
1229 * - no time-slot/clock mode 5: shameless laziness.
1230 *
1231 * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1232 *
1233 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1234 * won't pass the init sequence. For example, straight back-to-back DTE without
1235 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1236 * called.
1237 *
1238 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1239 * DS0 for example)
1240 *
1241 * Clock mode related bits of CCR0:
1242 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1243 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1244 * | | +-------- High Speed: say 0
1245 * | | | +-+-+-- Clock Mode: 0..7
1246 * | | | | | |
1247 * -+-+-+-+-+-+-+-+
1248 * x|x|5|4|3|2|1|0| lower bits
1249 *
1250 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1251 * +-+-+-+------------------ M (0..15)
1252 * | | | | +-+-+-+-+-+-- N (0..63)
1253 * 0 0 0 0 | | | | 0 0 | | | | | |
1254 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1255 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1256 *
1257 */
dscc4_set_clock(struct net_device * dev,u32 * bps,u32 * state)1258 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1259 {
1260 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1261 int ret = -1;
1262 u32 brr;
1263
1264 *state &= ~Ccr0ClockMask;
1265 if (*bps) { /* Clock generated - required for DCE */
1266 u32 n = 0, m = 0, divider;
1267 int xtal;
1268
1269 xtal = dpriv->pci_priv->xtal_hz;
1270 if (!xtal)
1271 goto done;
1272 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1273 goto done;
1274 divider = xtal / *bps;
1275 if (divider > BRR_DIVIDER_MAX) {
1276 divider >>= 4;
1277 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1278 } else
1279 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1280 if (divider >> 22) {
1281 n = 63;
1282 m = 15;
1283 } else if (divider) {
1284 /* Extraction of the 6 highest weighted bits */
1285 m = 0;
1286 while (0xffffffc0 & divider) {
1287 m++;
1288 divider >>= 1;
1289 }
1290 n = divider;
1291 }
1292 brr = (m << 8) | n;
1293 divider = n << m;
1294 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1295 divider <<= 4;
1296 *bps = xtal / divider;
1297 } else {
1298 /*
1299 * External clock - DTE
1300 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1301 * Nothing more to be done
1302 */
1303 brr = 0;
1304 }
1305 scc_writel(brr, dpriv, dev, BRR);
1306 ret = 0;
1307 done:
1308 return ret;
1309 }
1310
dscc4_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1311 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1312 {
1313 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1314 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1315 const size_t size = sizeof(dpriv->settings);
1316 int ret = 0;
1317
1318 if (dev->flags & IFF_UP)
1319 return -EBUSY;
1320
1321 if (cmd != SIOCWANDEV)
1322 return -EOPNOTSUPP;
1323
1324 switch(ifr->ifr_settings.type) {
1325 case IF_GET_IFACE:
1326 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1327 if (ifr->ifr_settings.size < size) {
1328 ifr->ifr_settings.size = size; /* data size wanted */
1329 return -ENOBUFS;
1330 }
1331 if (copy_to_user(line, &dpriv->settings, size))
1332 return -EFAULT;
1333 break;
1334
1335 case IF_IFACE_SYNC_SERIAL:
1336 if (!capable(CAP_NET_ADMIN))
1337 return -EPERM;
1338
1339 if (dpriv->flags & FakeReset) {
1340 netdev_info(dev, "please reset the device before this command\n");
1341 return -EPERM;
1342 }
1343 if (copy_from_user(&dpriv->settings, line, size))
1344 return -EFAULT;
1345 ret = dscc4_set_iface(dpriv, dev);
1346 break;
1347
1348 default:
1349 ret = hdlc_ioctl(dev, ifr, cmd);
1350 break;
1351 }
1352
1353 return ret;
1354 }
1355
dscc4_match(const struct thingie * p,int value)1356 static int dscc4_match(const struct thingie *p, int value)
1357 {
1358 int i;
1359
1360 for (i = 0; p[i].define != -1; i++) {
1361 if (value == p[i].define)
1362 break;
1363 }
1364 if (p[i].define == -1)
1365 return -1;
1366 else
1367 return i;
1368 }
1369
dscc4_clock_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1370 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1371 struct net_device *dev)
1372 {
1373 sync_serial_settings *settings = &dpriv->settings;
1374 int ret = -EOPNOTSUPP;
1375 u32 bps, state;
1376
1377 bps = settings->clock_rate;
1378 state = scc_readl(dpriv, CCR0);
1379 if (dscc4_set_clock(dev, &bps, &state) < 0)
1380 goto done;
1381 if (bps) { /* DCE */
1382 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1383 if (settings->clock_rate != bps) {
1384 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1385 dev->name, settings->clock_rate, bps);
1386 settings->clock_rate = bps;
1387 }
1388 } else { /* DTE */
1389 state |= PowerUp | Vis;
1390 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1391 }
1392 scc_writel(state, dpriv, dev, CCR0);
1393 ret = 0;
1394 done:
1395 return ret;
1396 }
1397
dscc4_encoding_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1398 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1399 struct net_device *dev)
1400 {
1401 static const struct thingie encoding[] = {
1402 { ENCODING_NRZ, 0x00000000 },
1403 { ENCODING_NRZI, 0x00200000 },
1404 { ENCODING_FM_MARK, 0x00400000 },
1405 { ENCODING_FM_SPACE, 0x00500000 },
1406 { ENCODING_MANCHESTER, 0x00600000 },
1407 { -1, 0}
1408 };
1409 int i, ret = 0;
1410
1411 i = dscc4_match(encoding, dpriv->encoding);
1412 if (i >= 0)
1413 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1414 else
1415 ret = -EOPNOTSUPP;
1416 return ret;
1417 }
1418
dscc4_loopback_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1419 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1420 struct net_device *dev)
1421 {
1422 sync_serial_settings *settings = &dpriv->settings;
1423 u32 state;
1424
1425 state = scc_readl(dpriv, CCR1);
1426 if (settings->loopback) {
1427 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1428 state |= 0x00000100;
1429 } else {
1430 printk(KERN_DEBUG "%s: normal\n", dev->name);
1431 state &= ~0x00000100;
1432 }
1433 scc_writel(state, dpriv, dev, CCR1);
1434 return 0;
1435 }
1436
dscc4_crc_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1437 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1438 struct net_device *dev)
1439 {
1440 static const struct thingie crc[] = {
1441 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1442 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1443 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1444 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1445 };
1446 int i, ret = 0;
1447
1448 i = dscc4_match(crc, dpriv->parity);
1449 if (i >= 0)
1450 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1451 else
1452 ret = -EOPNOTSUPP;
1453 return ret;
1454 }
1455
dscc4_set_iface(struct dscc4_dev_priv * dpriv,struct net_device * dev)1456 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1457 {
1458 struct {
1459 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1460 } *p, do_setting[] = {
1461 { dscc4_encoding_setting },
1462 { dscc4_clock_setting },
1463 { dscc4_loopback_setting },
1464 { dscc4_crc_setting },
1465 { NULL }
1466 };
1467 int ret = 0;
1468
1469 for (p = do_setting; p->action; p++) {
1470 if ((ret = p->action(dpriv, dev)) < 0)
1471 break;
1472 }
1473 return ret;
1474 }
1475
dscc4_irq(int irq,void * token)1476 static irqreturn_t dscc4_irq(int irq, void *token)
1477 {
1478 struct dscc4_dev_priv *root = token;
1479 struct dscc4_pci_priv *priv;
1480 struct net_device *dev;
1481 void __iomem *ioaddr;
1482 u32 state;
1483 unsigned long flags;
1484 int i, handled = 1;
1485
1486 priv = root->pci_priv;
1487 dev = dscc4_to_dev(root);
1488
1489 spin_lock_irqsave(&priv->lock, flags);
1490
1491 ioaddr = root->base_addr;
1492
1493 state = readl(ioaddr + GSTAR);
1494 if (!state) {
1495 handled = 0;
1496 goto out;
1497 }
1498 if (debug > 3)
1499 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1500 writel(state, ioaddr + GSTAR);
1501
1502 if (state & Arf) {
1503 netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1504 goto out;
1505 }
1506 state &= ~ArAck;
1507 if (state & Cfg) {
1508 if (debug > 0)
1509 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1510 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1511 netdev_err(dev, "CFG failed\n");
1512 if (!(state &= ~Cfg))
1513 goto out;
1514 }
1515 if (state & RxEvt) {
1516 i = dev_per_card - 1;
1517 do {
1518 dscc4_rx_irq(priv, root + i);
1519 } while (--i >= 0);
1520 state &= ~RxEvt;
1521 }
1522 if (state & TxEvt) {
1523 i = dev_per_card - 1;
1524 do {
1525 dscc4_tx_irq(priv, root + i);
1526 } while (--i >= 0);
1527 state &= ~TxEvt;
1528 }
1529 out:
1530 spin_unlock_irqrestore(&priv->lock, flags);
1531 return IRQ_RETVAL(handled);
1532 }
1533
dscc4_tx_irq(struct dscc4_pci_priv * ppriv,struct dscc4_dev_priv * dpriv)1534 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1535 struct dscc4_dev_priv *dpriv)
1536 {
1537 struct net_device *dev = dscc4_to_dev(dpriv);
1538 u32 state;
1539 int cur, loop = 0;
1540
1541 try:
1542 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1543 state = le32_to_cpu(dpriv->iqtx[cur]);
1544 if (!state) {
1545 if (debug > 4)
1546 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1547 state);
1548 if ((debug > 1) && (loop > 1))
1549 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1550 if (loop && netif_queue_stopped(dev))
1551 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1552 netif_wake_queue(dev);
1553
1554 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1555 !dscc4_tx_done(dpriv))
1556 dscc4_do_tx(dpriv, dev);
1557 return;
1558 }
1559 loop++;
1560 dpriv->iqtx[cur] = 0;
1561 dpriv->iqtx_current++;
1562
1563 if (state_check(state, dpriv, dev, "Tx") < 0)
1564 return;
1565
1566 if (state & SccEvt) {
1567 if (state & Alls) {
1568 struct sk_buff *skb;
1569 struct TxFD *tx_fd;
1570
1571 if (debug > 2)
1572 dscc4_tx_print(dev, dpriv, "Alls");
1573 /*
1574 * DataComplete can't be trusted for Tx completion.
1575 * Cf errata DS5 p.8
1576 */
1577 cur = dpriv->tx_dirty%TX_RING_SIZE;
1578 tx_fd = dpriv->tx_fd + cur;
1579 skb = dpriv->tx_skbuff[cur];
1580 if (skb) {
1581 pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1582 skb->len, PCI_DMA_TODEVICE);
1583 if (tx_fd->state & FrameEnd) {
1584 dev->stats.tx_packets++;
1585 dev->stats.tx_bytes += skb->len;
1586 }
1587 dev_kfree_skb_irq(skb);
1588 dpriv->tx_skbuff[cur] = NULL;
1589 ++dpriv->tx_dirty;
1590 } else {
1591 if (debug > 1)
1592 netdev_err(dev, "Tx: NULL skb %d\n",
1593 cur);
1594 }
1595 /*
1596 * If the driver ends sending crap on the wire, it
1597 * will be way easier to diagnose than the (not so)
1598 * random freeze induced by null sized tx frames.
1599 */
1600 tx_fd->data = tx_fd->next;
1601 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1602 tx_fd->complete = 0x00000000;
1603 tx_fd->jiffies = 0;
1604
1605 if (!(state &= ~Alls))
1606 goto try;
1607 }
1608 /*
1609 * Transmit Data Underrun
1610 */
1611 if (state & Xdu) {
1612 netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1613 dpriv->flags = NeedIDT;
1614 /* Tx reset */
1615 writel(MTFi | Rdt,
1616 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1617 writel(Action, dpriv->base_addr + GCMDR);
1618 return;
1619 }
1620 if (state & Cts) {
1621 netdev_info(dev, "CTS transition\n");
1622 if (!(state &= ~Cts)) /* DEBUG */
1623 goto try;
1624 }
1625 if (state & Xmr) {
1626 /* Frame needs to be sent again - FIXME */
1627 netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1628 if (!(state &= ~Xmr)) /* DEBUG */
1629 goto try;
1630 }
1631 if (state & Xpr) {
1632 void __iomem *scc_addr;
1633 unsigned long ring;
1634 int i;
1635
1636 /*
1637 * - the busy condition happens (sometimes);
1638 * - it doesn't seem to make the handler unreliable.
1639 */
1640 for (i = 1; i; i <<= 1) {
1641 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1642 break;
1643 }
1644 if (!i)
1645 netdev_info(dev, "busy in irq\n");
1646
1647 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1648 /* Keep this order: IDT before IDR */
1649 if (dpriv->flags & NeedIDT) {
1650 if (debug > 2)
1651 dscc4_tx_print(dev, dpriv, "Xpr");
1652 ring = dpriv->tx_fd_dma +
1653 (dpriv->tx_dirty%TX_RING_SIZE)*
1654 sizeof(struct TxFD);
1655 writel(ring, scc_addr + CH0BTDA);
1656 dscc4_do_tx(dpriv, dev);
1657 writel(MTFi | Idt, scc_addr + CH0CFG);
1658 if (dscc4_do_action(dev, "IDT") < 0)
1659 goto err_xpr;
1660 dpriv->flags &= ~NeedIDT;
1661 }
1662 if (dpriv->flags & NeedIDR) {
1663 ring = dpriv->rx_fd_dma +
1664 (dpriv->rx_current%RX_RING_SIZE)*
1665 sizeof(struct RxFD);
1666 writel(ring, scc_addr + CH0BRDA);
1667 dscc4_rx_update(dpriv, dev);
1668 writel(MTFi | Idr, scc_addr + CH0CFG);
1669 if (dscc4_do_action(dev, "IDR") < 0)
1670 goto err_xpr;
1671 dpriv->flags &= ~NeedIDR;
1672 smp_wmb();
1673 /* Activate receiver and misc */
1674 scc_writel(0x08050008, dpriv, dev, CCR2);
1675 }
1676 err_xpr:
1677 if (!(state &= ~Xpr))
1678 goto try;
1679 }
1680 if (state & Cd) {
1681 if (debug > 0)
1682 netdev_info(dev, "CD transition\n");
1683 if (!(state &= ~Cd)) /* DEBUG */
1684 goto try;
1685 }
1686 } else { /* ! SccEvt */
1687 if (state & Hi) {
1688 #ifdef DSCC4_POLLING
1689 while (!dscc4_tx_poll(dpriv, dev));
1690 #endif
1691 netdev_info(dev, "Tx Hi\n");
1692 state &= ~Hi;
1693 }
1694 if (state & Err) {
1695 netdev_info(dev, "Tx ERR\n");
1696 dev->stats.tx_errors++;
1697 state &= ~Err;
1698 }
1699 }
1700 goto try;
1701 }
1702
dscc4_rx_irq(struct dscc4_pci_priv * priv,struct dscc4_dev_priv * dpriv)1703 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1704 struct dscc4_dev_priv *dpriv)
1705 {
1706 struct net_device *dev = dscc4_to_dev(dpriv);
1707 u32 state;
1708 int cur;
1709
1710 try:
1711 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1712 state = le32_to_cpu(dpriv->iqrx[cur]);
1713 if (!state)
1714 return;
1715 dpriv->iqrx[cur] = 0;
1716 dpriv->iqrx_current++;
1717
1718 if (state_check(state, dpriv, dev, "Rx") < 0)
1719 return;
1720
1721 if (!(state & SccEvt)){
1722 struct RxFD *rx_fd;
1723
1724 if (debug > 4)
1725 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1726 state);
1727 state &= 0x00ffffff;
1728 if (state & Err) { /* Hold or reset */
1729 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1730 cur = dpriv->rx_current%RX_RING_SIZE;
1731 rx_fd = dpriv->rx_fd + cur;
1732 /*
1733 * Presume we're not facing a DMAC receiver reset.
1734 * As We use the rx size-filtering feature of the
1735 * DSCC4, the beginning of a new frame is waiting in
1736 * the rx fifo. I bet a Receive Data Overflow will
1737 * happen most of time but let's try and avoid it.
1738 * Btw (as for RDO) if one experiences ERR whereas
1739 * the system looks rather idle, there may be a
1740 * problem with latency. In this case, increasing
1741 * RX_RING_SIZE may help.
1742 */
1743 //while (dpriv->rx_needs_refill) {
1744 while (!(rx_fd->state1 & Hold)) {
1745 rx_fd++;
1746 cur++;
1747 if (!(cur = cur%RX_RING_SIZE))
1748 rx_fd = dpriv->rx_fd;
1749 }
1750 //dpriv->rx_needs_refill--;
1751 try_get_rx_skb(dpriv, dev);
1752 if (!rx_fd->data)
1753 goto try;
1754 rx_fd->state1 &= ~Hold;
1755 rx_fd->state2 = 0x00000000;
1756 rx_fd->end = cpu_to_le32(0xbabeface);
1757 //}
1758 goto try;
1759 }
1760 if (state & Fi) {
1761 dscc4_rx_skb(dpriv, dev);
1762 goto try;
1763 }
1764 if (state & Hi ) { /* HI bit */
1765 netdev_info(dev, "Rx Hi\n");
1766 state &= ~Hi;
1767 goto try;
1768 }
1769 } else { /* SccEvt */
1770 if (debug > 1) {
1771 //FIXME: verifier la presence de tous les evenements
1772 static struct {
1773 u32 mask;
1774 const char *irq_name;
1775 } evts[] = {
1776 { 0x00008000, "TIN"},
1777 { 0x00000020, "RSC"},
1778 { 0x00000010, "PCE"},
1779 { 0x00000008, "PLLA"},
1780 { 0, NULL}
1781 }, *evt;
1782
1783 for (evt = evts; evt->irq_name; evt++) {
1784 if (state & evt->mask) {
1785 printk(KERN_DEBUG "%s: %s\n",
1786 dev->name, evt->irq_name);
1787 if (!(state &= ~evt->mask))
1788 goto try;
1789 }
1790 }
1791 } else {
1792 if (!(state &= ~0x0000c03c))
1793 goto try;
1794 }
1795 if (state & Cts) {
1796 netdev_info(dev, "CTS transition\n");
1797 if (!(state &= ~Cts)) /* DEBUG */
1798 goto try;
1799 }
1800 /*
1801 * Receive Data Overflow (FIXME: fscked)
1802 */
1803 if (state & Rdo) {
1804 struct RxFD *rx_fd;
1805 void __iomem *scc_addr;
1806 int cur;
1807
1808 //if (debug)
1809 // dscc4_rx_dump(dpriv);
1810 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1811
1812 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1813 /*
1814 * This has no effect. Why ?
1815 * ORed with TxSccRes, one sees the CFG ack (for
1816 * the TX part only).
1817 */
1818 scc_writel(RxSccRes, dpriv, dev, CMDR);
1819 dpriv->flags |= RdoSet;
1820
1821 /*
1822 * Let's try and save something in the received data.
1823 * rx_current must be incremented at least once to
1824 * avoid HOLD in the BRDA-to-be-pointed desc.
1825 */
1826 do {
1827 cur = dpriv->rx_current++%RX_RING_SIZE;
1828 rx_fd = dpriv->rx_fd + cur;
1829 if (!(rx_fd->state2 & DataComplete))
1830 break;
1831 if (rx_fd->state2 & FrameAborted) {
1832 dev->stats.rx_over_errors++;
1833 rx_fd->state1 |= Hold;
1834 rx_fd->state2 = 0x00000000;
1835 rx_fd->end = cpu_to_le32(0xbabeface);
1836 } else
1837 dscc4_rx_skb(dpriv, dev);
1838 } while (1);
1839
1840 if (debug > 0) {
1841 if (dpriv->flags & RdoSet)
1842 printk(KERN_DEBUG
1843 "%s: no RDO in Rx data\n", DRV_NAME);
1844 }
1845 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1846 /*
1847 * FIXME: must the reset be this violent ?
1848 */
1849 #warning "FIXME: CH0BRDA"
1850 writel(dpriv->rx_fd_dma +
1851 (dpriv->rx_current%RX_RING_SIZE)*
1852 sizeof(struct RxFD), scc_addr + CH0BRDA);
1853 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1854 if (dscc4_do_action(dev, "RDR") < 0) {
1855 netdev_err(dev, "RDO recovery failed(RDR)\n");
1856 goto rdo_end;
1857 }
1858 writel(MTFi|Idr, scc_addr + CH0CFG);
1859 if (dscc4_do_action(dev, "IDR") < 0) {
1860 netdev_err(dev, "RDO recovery failed(IDR)\n");
1861 goto rdo_end;
1862 }
1863 rdo_end:
1864 #endif
1865 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1866 goto try;
1867 }
1868 if (state & Cd) {
1869 netdev_info(dev, "CD transition\n");
1870 if (!(state &= ~Cd)) /* DEBUG */
1871 goto try;
1872 }
1873 if (state & Flex) {
1874 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1875 if (!(state &= ~Flex))
1876 goto try;
1877 }
1878 }
1879 }
1880
1881 /*
1882 * I had expected the following to work for the first descriptor
1883 * (tx_fd->state = 0xc0000000)
1884 * - Hold=1 (don't try and branch to the next descripto);
1885 * - No=0 (I want an empty data section, i.e. size=0);
1886 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1887 * It failed and locked solid. Thus the introduction of a dummy skb.
1888 * Problem is acknowledged in errata sheet DS5. Joy :o/
1889 */
dscc4_init_dummy_skb(struct dscc4_dev_priv * dpriv)1890 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1891 {
1892 struct sk_buff *skb;
1893
1894 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1895 if (skb) {
1896 int last = dpriv->tx_dirty%TX_RING_SIZE;
1897 struct TxFD *tx_fd = dpriv->tx_fd + last;
1898
1899 skb->len = DUMMY_SKB_SIZE;
1900 skb_copy_to_linear_data(skb, version,
1901 strlen(version) % DUMMY_SKB_SIZE);
1902 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1903 tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1904 skb->data, DUMMY_SKB_SIZE,
1905 PCI_DMA_TODEVICE));
1906 dpriv->tx_skbuff[last] = skb;
1907 }
1908 return skb;
1909 }
1910
dscc4_init_ring(struct net_device * dev)1911 static int dscc4_init_ring(struct net_device *dev)
1912 {
1913 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1914 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1915 struct TxFD *tx_fd;
1916 struct RxFD *rx_fd;
1917 void *ring;
1918 int i;
1919
1920 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1921 if (!ring)
1922 goto err_out;
1923 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1924
1925 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1926 if (!ring)
1927 goto err_free_dma_rx;
1928 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1929
1930 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1931 dpriv->tx_dirty = 0xffffffff;
1932 i = dpriv->tx_current = 0;
1933 do {
1934 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1935 tx_fd->complete = 0x00000000;
1936 /* FIXME: NULL should be ok - to be tried */
1937 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1938 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1939 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1940 } while (i < TX_RING_SIZE);
1941
1942 if (!dscc4_init_dummy_skb(dpriv))
1943 goto err_free_dma_tx;
1944
1945 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1946 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1947 do {
1948 /* size set by the host. Multiple of 4 bytes please */
1949 rx_fd->state1 = HiDesc;
1950 rx_fd->state2 = 0x00000000;
1951 rx_fd->end = cpu_to_le32(0xbabeface);
1952 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1953 // FIXME: return value verifiee mais traitement suspect
1954 if (try_get_rx_skb(dpriv, dev) >= 0)
1955 dpriv->rx_dirty++;
1956 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1957 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1958 } while (i < RX_RING_SIZE);
1959
1960 return 0;
1961
1962 err_free_dma_tx:
1963 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1964 err_free_dma_rx:
1965 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1966 err_out:
1967 return -ENOMEM;
1968 }
1969
dscc4_remove_one(struct pci_dev * pdev)1970 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1971 {
1972 struct dscc4_pci_priv *ppriv;
1973 struct dscc4_dev_priv *root;
1974 void __iomem *ioaddr;
1975 int i;
1976
1977 ppriv = pci_get_drvdata(pdev);
1978 root = ppriv->root;
1979
1980 ioaddr = root->base_addr;
1981
1982 dscc4_pci_reset(pdev, ioaddr);
1983
1984 free_irq(pdev->irq, root);
1985 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1986 ppriv->iqcfg_dma);
1987 for (i = 0; i < dev_per_card; i++) {
1988 struct dscc4_dev_priv *dpriv = root + i;
1989
1990 dscc4_release_ring(dpriv);
1991 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1992 dpriv->iqrx, dpriv->iqrx_dma);
1993 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1994 dpriv->iqtx, dpriv->iqtx_dma);
1995 }
1996
1997 dscc4_free1(pdev);
1998
1999 iounmap(ioaddr);
2000
2001 pci_release_region(pdev, 1);
2002 pci_release_region(pdev, 0);
2003
2004 pci_disable_device(pdev);
2005 }
2006
dscc4_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2007 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2008 unsigned short parity)
2009 {
2010 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2011
2012 if (encoding != ENCODING_NRZ &&
2013 encoding != ENCODING_NRZI &&
2014 encoding != ENCODING_FM_MARK &&
2015 encoding != ENCODING_FM_SPACE &&
2016 encoding != ENCODING_MANCHESTER)
2017 return -EINVAL;
2018
2019 if (parity != PARITY_NONE &&
2020 parity != PARITY_CRC16_PR0_CCITT &&
2021 parity != PARITY_CRC16_PR1_CCITT &&
2022 parity != PARITY_CRC32_PR0_CCITT &&
2023 parity != PARITY_CRC32_PR1_CCITT)
2024 return -EINVAL;
2025
2026 dpriv->encoding = encoding;
2027 dpriv->parity = parity;
2028 return 0;
2029 }
2030
2031 #ifndef MODULE
dscc4_setup(char * str)2032 static int __init dscc4_setup(char *str)
2033 {
2034 int *args[] = { &debug, &quartz, NULL }, **p = args;
2035
2036 while (*p && (get_option(&str, *p) == 2))
2037 p++;
2038 return 1;
2039 }
2040
2041 __setup("dscc4.setup=", dscc4_setup);
2042 #endif
2043
2044 static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl) = {
2045 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2046 PCI_ANY_ID, PCI_ANY_ID, },
2047 { 0,}
2048 };
2049 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2050
2051 static struct pci_driver dscc4_driver = {
2052 .name = DRV_NAME,
2053 .id_table = dscc4_pci_tbl,
2054 .probe = dscc4_init_one,
2055 .remove = __devexit_p(dscc4_remove_one),
2056 };
2057
dscc4_init_module(void)2058 static int __init dscc4_init_module(void)
2059 {
2060 return pci_register_driver(&dscc4_driver);
2061 }
2062
dscc4_cleanup_module(void)2063 static void __exit dscc4_cleanup_module(void)
2064 {
2065 pci_unregister_driver(&dscc4_driver);
2066 }
2067
2068 module_init(dscc4_init_module);
2069 module_exit(dscc4_cleanup_module);
2070