1 /*
2  * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3  *
4  * This software may be used and distributed according to the terms of the
5  * GNU General Public License.
6  *
7  * The author may be reached as romieu@cogenit.fr.
8  * Specific bug reports/asian food will be welcome.
9  *
10  * Special thanks to the nice people at CS-Telecom for the hardware and the
11  * access to the test/measure tools.
12  *
13  *
14  *                             Theory of Operation
15  *
16  * I. Board Compatibility
17  *
18  * This device driver is designed for the Siemens PEB20534 4 ports serial
19  * controller as found on Etinc PCISYNC cards. The documentation for the
20  * chipset is available at http://www.infineon.com:
21  * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22  * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23  * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24  * - Errata sheet DS5 (courtesy of Michael Skerritt).
25  * Jens David has built an adapter based on the same chipset. Take a look
26  * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27  * driver.
28  * Sample code (2 revisions) is available at Infineon.
29  *
30  * II. Board-specific settings
31  *
32  * Pcisync can transmit some clock signal to the outside world on the
33  * *first two* ports provided you put a quartz and a line driver on it and
34  * remove the jumpers. The operation is described on Etinc web site. If you
35  * go DCE on these ports, don't forget to use an adequate cable.
36  *
37  * Sharing of the PCI interrupt line for this board is possible.
38  *
39  * III. Driver operation
40  *
41  * The rx/tx operations are based on a linked list of descriptors. The driver
42  * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43  * I tried to fix it, the more it started to look like (convoluted) software
44  * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45  * this a rfc2119 MUST.
46  *
47  * Tx direction
48  * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49  * The device is supposed to be enabled again during an ALLS irq (we could
50  * use HI but as it's easy to lose events, it's fscked).
51  *
52  * Rx direction
53  * The received frames aren't supposed to span over multiple receiving areas.
54  * I may implement it some day but it isn't the highest ranked item.
55  *
56  * IV. Notes
57  * The current error (XDU, RFO) recovery code is untested.
58  * So far, RDO takes his RX channel down and the right sequence to enable it
59  * again is still a mystery. If RDO happens, plan a reboot. More details
60  * in the code (NB: as this happens, TX still works).
61  * Don't mess the cables during operation, especially on DTE ports. I don't
62  * suggest it for DCE either but at least one can get some messages instead
63  * of a complete instant freeze.
64  * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65  * the documentation/chipset releases.
66  *
67  * TODO:
68  * - test X25.
69  * - use polling at high irq/s,
70  * - performance analysis,
71  * - endianness.
72  *
73  * 2001/12/10	Daniela Squassoni  <daniela@cyclades.com>
74  * - Contribution to support the new generic HDLC layer.
75  *
76  * 2002/01	Ueimor
77  * - old style interface removal
78  * - dscc4_release_ring fix (related to DMA mapping)
79  * - hard_start_xmit fix (hint: TxSizeMax)
80  * - misc crapectomy.
81  */
82 
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84 
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95 
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <asm/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101 
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105 
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112 
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117 
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122 
123 #define	DRV_NAME	"dscc4"
124 
125 #undef DSCC4_POLLING
126 
127 /* Module parameters */
128 
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136 
137 /* Structures */
138 
139 struct thingie {
140 	int define;
141 	u32 bits;
142 };
143 
144 struct TxFD {
145 	__le32 state;
146 	__le32 next;
147 	__le32 data;
148 	__le32 complete;
149 	u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 		     /* FWIW, datasheet calls that "dummy" and says that card
151 		      * never looks at it; neither does the driver */
152 };
153 
154 struct RxFD {
155 	__le32 state1;
156 	__le32 next;
157 	__le32 data;
158 	__le32 state2;
159 	__le32 end;
160 };
161 
162 #define DUMMY_SKB_SIZE		64
163 #define TX_LOW			8
164 #define TX_RING_SIZE		32
165 #define RX_RING_SIZE		32
166 #define TX_TOTAL_SIZE		TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE		64		/* Keep it a multiple of 32 */
169 #define TX_TIMEOUT		(HZ/10)
170 #define DSCC4_HZ_MAX		33000000
171 #define BRR_DIVIDER_MAX		64*0x00004000	/* Cf errata DS5 p.10 */
172 #define dev_per_card		4
173 #define SCC_REGISTERS_MAX	23		/* Cf errata DS5 p.4 */
174 
175 #define SOURCE_ID(flags)	(((flags) >> 28) & 0x03)
176 #define TO_SIZE(state)		(((state) >> 16) & 0x1fff)
177 
178 /*
179  * Given the operating range of Linux HDLC, the 2 defines below could be
180  * made simpler. However they are a fine reminder for the limitations of
181  * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182  */
183 #define TO_STATE_TX(len)	cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len)	cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len)		((((len) >> 5) + 1) << 5)	/* Cf RLCR */
186 #define SCC_REG_START(dpriv)	(SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187 
188 struct dscc4_pci_priv {
189         __le32 *iqcfg;
190         int cfg_cur;
191         spinlock_t lock;
192         struct pci_dev *pdev;
193 
194         struct dscc4_dev_priv *root;
195         dma_addr_t iqcfg_dma;
196 	u32 xtal_hz;
197 };
198 
199 struct dscc4_dev_priv {
200         struct sk_buff *rx_skbuff[RX_RING_SIZE];
201         struct sk_buff *tx_skbuff[TX_RING_SIZE];
202 
203         struct RxFD *rx_fd;
204         struct TxFD *tx_fd;
205         __le32 *iqrx;
206         __le32 *iqtx;
207 
208 	/* FIXME: check all the volatile are required */
209         volatile u32 tx_current;
210         u32 rx_current;
211         u32 iqtx_current;
212         u32 iqrx_current;
213 
214         volatile u32 tx_dirty;
215         volatile u32 ltda;
216         u32 rx_dirty;
217         u32 lrda;
218 
219         dma_addr_t tx_fd_dma;
220         dma_addr_t rx_fd_dma;
221         dma_addr_t iqtx_dma;
222         dma_addr_t iqrx_dma;
223 
224 	u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225 
226 	struct timer_list timer;
227 
228         struct dscc4_pci_priv *pci_priv;
229         spinlock_t lock;
230 
231         int dev_id;
232 	volatile u32 flags;
233 	u32 timer_help;
234 
235 	unsigned short encoding;
236 	unsigned short parity;
237 	struct net_device *dev;
238 	sync_serial_settings settings;
239 	void __iomem *base_addr;
240 	u32 __pad __attribute__ ((aligned (4)));
241 };
242 
243 /* GLOBAL registers definitions */
244 #define GCMDR   0x00
245 #define GSTAR   0x04
246 #define GMODE   0x08
247 #define IQLENR0 0x0C
248 #define IQLENR1 0x10
249 #define IQRX0   0x14
250 #define IQTX0   0x24
251 #define IQCFG   0x3c
252 #define FIFOCR1 0x44
253 #define FIFOCR2 0x48
254 #define FIFOCR3 0x4c
255 #define FIFOCR4 0x34
256 #define CH0CFG  0x50
257 #define CH0BRDA 0x54
258 #define CH0BTDA 0x58
259 #define CH0FRDA 0x98
260 #define CH0FTDA 0xb0
261 #define CH0LRDA 0xc8
262 #define CH0LTDA 0xe0
263 
264 /* SCC registers definitions */
265 #define SCC_START	0x0100
266 #define SCC_OFFSET      0x80
267 #define CMDR    0x00
268 #define STAR    0x04
269 #define CCR0    0x08
270 #define CCR1    0x0c
271 #define CCR2    0x10
272 #define BRR     0x2C
273 #define RLCR    0x40
274 #define IMR     0x54
275 #define ISR     0x58
276 
277 #define GPDIR	0x0400
278 #define GPDATA	0x0404
279 #define GPIM	0x0408
280 
281 /* Bit masks */
282 #define EncodingMask	0x00700000
283 #define CrcMask		0x00000003
284 
285 #define IntRxScc0	0x10000000
286 #define IntTxScc0	0x01000000
287 
288 #define TxPollCmd	0x00000400
289 #define RxActivate	0x08000000
290 #define MTFi		0x04000000
291 #define Rdr		0x00400000
292 #define Rdt		0x00200000
293 #define Idr		0x00100000
294 #define Idt		0x00080000
295 #define TxSccRes	0x01000000
296 #define RxSccRes	0x00010000
297 #define TxSizeMax	0x1fff		/* Datasheet DS1 - 11.1.1.1 */
298 #define RxSizeMax	0x1ffc		/* Datasheet DS1 - 11.1.2.1 */
299 
300 #define Ccr0ClockMask	0x0000003f
301 #define Ccr1LoopMask	0x00000200
302 #define IsrMask		0x000fffff
303 #define BrrExpMask	0x00000f00
304 #define BrrMultMask	0x0000003f
305 #define EncodingMask	0x00700000
306 #define Hold		cpu_to_le32(0x40000000)
307 #define SccBusy		0x10000000
308 #define PowerUp		0x80000000
309 #define Vis		0x00001000
310 #define FrameOk		(FrameVfr | FrameCrc)
311 #define FrameVfr	0x80
312 #define FrameRdo	0x40
313 #define FrameCrc	0x20
314 #define FrameRab	0x10
315 #define FrameAborted	cpu_to_le32(0x00000200)
316 #define FrameEnd	cpu_to_le32(0x80000000)
317 #define DataComplete	cpu_to_le32(0x40000000)
318 #define LengthCheck	0x00008000
319 #define SccEvt		0x02000000
320 #define NoAck		0x00000200
321 #define Action		0x00000001
322 #define HiDesc		cpu_to_le32(0x20000000)
323 
324 /* SCC events */
325 #define RxEvt		0xf0000000
326 #define TxEvt		0x0f000000
327 #define Alls		0x00040000
328 #define Xdu		0x00010000
329 #define Cts		0x00004000
330 #define Xmr		0x00002000
331 #define Xpr		0x00001000
332 #define Rdo		0x00000080
333 #define Rfs		0x00000040
334 #define Cd		0x00000004
335 #define Rfo		0x00000002
336 #define Flex		0x00000001
337 
338 /* DMA core events */
339 #define Cfg		0x00200000
340 #define Hi		0x00040000
341 #define Fi		0x00020000
342 #define Err		0x00010000
343 #define Arf		0x00000002
344 #define ArAck		0x00000001
345 
346 /* State flags */
347 #define Ready		0x00000000
348 #define NeedIDR		0x00000001
349 #define NeedIDT		0x00000002
350 #define RdoSet		0x00000004
351 #define FakeReset	0x00000008
352 
353 /* Don't mask RDO. Ever. */
354 #ifdef DSCC4_POLLING
355 #define EventsMask	0xfffeef7f
356 #else
357 #define EventsMask	0xfffa8f7a
358 #endif
359 
360 /* Functions prototypes */
361 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
362 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
363 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
364 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
365 static int dscc4_open(struct net_device *);
366 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
367 					  struct net_device *);
368 static int dscc4_close(struct net_device *);
369 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
370 static int dscc4_init_ring(struct net_device *);
371 static void dscc4_release_ring(struct dscc4_dev_priv *);
372 static void dscc4_timer(unsigned long);
373 static void dscc4_tx_timeout(struct net_device *);
374 static irqreturn_t dscc4_irq(int irq, void *dev_id);
375 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
376 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
377 #ifdef DSCC4_POLLING
378 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
379 #endif
380 
dscc4_priv(struct net_device * dev)381 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
382 {
383 	return dev_to_hdlc(dev)->priv;
384 }
385 
dscc4_to_dev(struct dscc4_dev_priv * p)386 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 {
388 	return p->dev;
389 }
390 
scc_patchl(u32 mask,u32 value,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)391 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
392 			struct net_device *dev, int offset)
393 {
394 	u32 state;
395 
396 	/* Cf scc_writel for concern regarding thread-safety */
397 	state = dpriv->scc_regs[offset >> 2];
398 	state &= ~mask;
399 	state |= value;
400 	dpriv->scc_regs[offset >> 2] = state;
401 	writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
402 }
403 
scc_writel(u32 bits,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)404 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
405 		       struct net_device *dev, int offset)
406 {
407 	/*
408 	 * Thread-UNsafe.
409 	 * As of 2002/02/16, there are no thread racing for access.
410 	 */
411 	dpriv->scc_regs[offset >> 2] = bits;
412 	writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
413 }
414 
scc_readl(struct dscc4_dev_priv * dpriv,int offset)415 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
416 {
417 	return dpriv->scc_regs[offset >> 2];
418 }
419 
scc_readl_star(struct dscc4_dev_priv * dpriv,struct net_device * dev)420 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
421 {
422 	/* Cf errata DS5 p.4 */
423 	readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424 	return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
425 }
426 
dscc4_do_tx(struct dscc4_dev_priv * dpriv,struct net_device * dev)427 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
428 			       struct net_device *dev)
429 {
430 	dpriv->ltda = dpriv->tx_fd_dma +
431                       ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
432 	writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433 	/* Flush posted writes *NOW* */
434 	readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
435 }
436 
dscc4_rx_update(struct dscc4_dev_priv * dpriv,struct net_device * dev)437 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
438 				   struct net_device *dev)
439 {
440 	dpriv->lrda = dpriv->rx_fd_dma +
441 		      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
442 	writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
443 }
444 
dscc4_tx_done(struct dscc4_dev_priv * dpriv)445 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
446 {
447 	return dpriv->tx_current == dpriv->tx_dirty;
448 }
449 
dscc4_tx_quiescent(struct dscc4_dev_priv * dpriv,struct net_device * dev)450 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
451 					      struct net_device *dev)
452 {
453 	return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
454 }
455 
state_check(u32 state,struct dscc4_dev_priv * dpriv,struct net_device * dev,const char * msg)456 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
457 		       struct net_device *dev, const char *msg)
458 {
459 	int ret = 0;
460 
461 	if (debug > 1) {
462 	if (SOURCE_ID(state) != dpriv->dev_id) {
463 		printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
464 		       dev->name, msg, SOURCE_ID(state), state );
465 			ret = -1;
466 	}
467 	if (state & 0x0df80c00) {
468 		printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
469 		       dev->name, msg, state);
470 			ret = -1;
471 	}
472 	}
473 	return ret;
474 }
475 
dscc4_tx_print(struct net_device * dev,struct dscc4_dev_priv * dpriv,char * msg)476 static void dscc4_tx_print(struct net_device *dev,
477 			   struct dscc4_dev_priv *dpriv,
478 			   char *msg)
479 {
480 	printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
481 	       dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
482 }
483 
dscc4_release_ring(struct dscc4_dev_priv * dpriv)484 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
485 {
486 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
487 	struct TxFD *tx_fd = dpriv->tx_fd;
488 	struct RxFD *rx_fd = dpriv->rx_fd;
489 	struct sk_buff **skbuff;
490 	int i;
491 
492 	pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
493 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
494 
495 	skbuff = dpriv->tx_skbuff;
496 	for (i = 0; i < TX_RING_SIZE; i++) {
497 		if (*skbuff) {
498 			pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
499 				(*skbuff)->len, PCI_DMA_TODEVICE);
500 			dev_kfree_skb(*skbuff);
501 		}
502 		skbuff++;
503 		tx_fd++;
504 	}
505 
506 	skbuff = dpriv->rx_skbuff;
507 	for (i = 0; i < RX_RING_SIZE; i++) {
508 		if (*skbuff) {
509 			pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
510 				RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
511 			dev_kfree_skb(*skbuff);
512 		}
513 		skbuff++;
514 		rx_fd++;
515 	}
516 }
517 
try_get_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)518 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
519 				 struct net_device *dev)
520 {
521 	unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
522 	struct RxFD *rx_fd = dpriv->rx_fd + dirty;
523 	const int len = RX_MAX(HDLC_MAX_MRU);
524 	struct sk_buff *skb;
525 	int ret = 0;
526 
527 	skb = dev_alloc_skb(len);
528 	dpriv->rx_skbuff[dirty] = skb;
529 	if (skb) {
530 		skb->protocol = hdlc_type_trans(skb, dev);
531 		rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
532 					  skb->data, len, PCI_DMA_FROMDEVICE));
533 	} else {
534 		rx_fd->data = 0;
535 		ret = -1;
536 	}
537 	return ret;
538 }
539 
540 /*
541  * IRQ/thread/whatever safe
542  */
dscc4_wait_ack_cec(struct dscc4_dev_priv * dpriv,struct net_device * dev,char * msg)543 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
544 			      struct net_device *dev, char *msg)
545 {
546 	s8 i = 0;
547 
548 	do {
549 		if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
550 			printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
551 			       msg, i);
552 			goto done;
553 		}
554 		schedule_timeout_uninterruptible(10);
555 		rmb();
556 	} while (++i > 0);
557 	netdev_err(dev, "%s timeout\n", msg);
558 done:
559 	return (i >= 0) ? i : -EAGAIN;
560 }
561 
dscc4_do_action(struct net_device * dev,char * msg)562 static int dscc4_do_action(struct net_device *dev, char *msg)
563 {
564 	void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
565 	s16 i = 0;
566 
567 	writel(Action, ioaddr + GCMDR);
568 	ioaddr += GSTAR;
569 	do {
570 		u32 state = readl(ioaddr);
571 
572 		if (state & ArAck) {
573 			netdev_dbg(dev, "%s ack\n", msg);
574 			writel(ArAck, ioaddr);
575 			goto done;
576 		} else if (state & Arf) {
577 			netdev_err(dev, "%s failed\n", msg);
578 			writel(Arf, ioaddr);
579 			i = -1;
580 			goto done;
581 	}
582 		rmb();
583 	} while (++i > 0);
584 	netdev_err(dev, "%s timeout\n", msg);
585 done:
586 	return i;
587 }
588 
dscc4_xpr_ack(struct dscc4_dev_priv * dpriv)589 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
590 {
591 	int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
592 	s8 i = 0;
593 
594 	do {
595 		if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
596 		    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
597 			break;
598 		smp_rmb();
599 		schedule_timeout_uninterruptible(10);
600 	} while (++i > 0);
601 
602 	return (i >= 0 ) ? i : -EAGAIN;
603 }
604 
605 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
606 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
611 	/* Cf errata DS5 p.6 */
612 	writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
613 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
614 	readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
615 	writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
616 	writel(Action, dpriv->base_addr + GCMDR);
617 	spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 }
619 
620 #endif
621 
622 #if 0
623 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
624 {
625 	u16 i = 0;
626 
627 	/* Cf errata DS5 p.7 */
628 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
629 	scc_writel(0x00050000, dpriv, dev, CCR2);
630 	/*
631 	 * Must be longer than the time required to fill the fifo.
632 	 */
633 	while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634 		udelay(1);
635 		wmb();
636 	}
637 
638 	writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
639 	if (dscc4_do_action(dev, "Rdt") < 0)
640 		netdev_err(dev, "Tx reset failed\n");
641 }
642 #endif
643 
644 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
dscc4_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)645 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
646 				struct net_device *dev)
647 {
648 	struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
649 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
650 	struct sk_buff *skb;
651 	int pkt_len;
652 
653 	skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
654 	if (!skb) {
655 		printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
656 		goto refill;
657 	}
658 	pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
659 	pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
660 			 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
661 	if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
662 		dev->stats.rx_packets++;
663 		dev->stats.rx_bytes += pkt_len;
664 		skb_put(skb, pkt_len);
665 		if (netif_running(dev))
666 			skb->protocol = hdlc_type_trans(skb, dev);
667 		netif_rx(skb);
668 	} else {
669 		if (skb->data[pkt_len] & FrameRdo)
670 			dev->stats.rx_fifo_errors++;
671 		else if (!(skb->data[pkt_len] & FrameCrc))
672 			dev->stats.rx_crc_errors++;
673 		else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
674 			 (FrameVfr | FrameRab))
675 			dev->stats.rx_length_errors++;
676 		dev->stats.rx_errors++;
677 		dev_kfree_skb_irq(skb);
678 	}
679 refill:
680 	while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
681 		if (try_get_rx_skb(dpriv, dev) < 0)
682 			break;
683 		dpriv->rx_dirty++;
684 	}
685 	dscc4_rx_update(dpriv, dev);
686 	rx_fd->state2 = 0x00000000;
687 	rx_fd->end = cpu_to_le32(0xbabeface);
688 }
689 
dscc4_free1(struct pci_dev * pdev)690 static void dscc4_free1(struct pci_dev *pdev)
691 {
692 	struct dscc4_pci_priv *ppriv;
693 	struct dscc4_dev_priv *root;
694 	int i;
695 
696 	ppriv = pci_get_drvdata(pdev);
697 	root = ppriv->root;
698 
699 	for (i = 0; i < dev_per_card; i++)
700 		unregister_hdlc_device(dscc4_to_dev(root + i));
701 
702 	pci_set_drvdata(pdev, NULL);
703 
704 	for (i = 0; i < dev_per_card; i++)
705 		free_netdev(root[i].dev);
706 	kfree(root);
707 	kfree(ppriv);
708 }
709 
dscc4_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)710 static int __devinit dscc4_init_one(struct pci_dev *pdev,
711 				  const struct pci_device_id *ent)
712 {
713 	struct dscc4_pci_priv *priv;
714 	struct dscc4_dev_priv *dpriv;
715 	void __iomem *ioaddr;
716 	int i, rc;
717 
718 	printk(KERN_DEBUG "%s", version);
719 
720 	rc = pci_enable_device(pdev);
721 	if (rc < 0)
722 		goto out;
723 
724 	rc = pci_request_region(pdev, 0, "registers");
725 	if (rc < 0) {
726 		pr_err("can't reserve MMIO region (regs)\n");
727 	        goto err_disable_0;
728 	}
729 	rc = pci_request_region(pdev, 1, "LBI interface");
730 	if (rc < 0) {
731 		pr_err("can't reserve MMIO region (lbi)\n");
732 	        goto err_free_mmio_region_1;
733 	}
734 
735 	ioaddr = pci_ioremap_bar(pdev, 0);
736 	if (!ioaddr) {
737 		pr_err("cannot remap MMIO region %llx @ %llx\n",
738 		       (unsigned long long)pci_resource_len(pdev, 0),
739 		       (unsigned long long)pci_resource_start(pdev, 0));
740 		rc = -EIO;
741 		goto err_free_mmio_regions_2;
742 	}
743 	printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
744 	        (unsigned long long)pci_resource_start(pdev, 0),
745 	        (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
746 
747 	/* Cf errata DS5 p.2 */
748 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
749 	pci_set_master(pdev);
750 
751 	rc = dscc4_found1(pdev, ioaddr);
752 	if (rc < 0)
753 	        goto err_iounmap_3;
754 
755 	priv = pci_get_drvdata(pdev);
756 
757 	rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
758 	if (rc < 0) {
759 		pr_warn("IRQ %d busy\n", pdev->irq);
760 		goto err_release_4;
761 	}
762 
763 	/* power up/little endian/dma core controlled via lrda/ltda */
764 	writel(0x00000001, ioaddr + GMODE);
765 	/* Shared interrupt queue */
766 	{
767 		u32 bits;
768 
769 		bits = (IRQ_RING_SIZE >> 5) - 1;
770 		bits |= bits << 4;
771 		bits |= bits << 8;
772 		bits |= bits << 16;
773 		writel(bits, ioaddr + IQLENR0);
774 	}
775 	/* Global interrupt queue */
776 	writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
777 	priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
778 		IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
779 	if (!priv->iqcfg)
780 		goto err_free_irq_5;
781 	writel(priv->iqcfg_dma, ioaddr + IQCFG);
782 
783 	rc = -ENOMEM;
784 
785 	/*
786 	 * SCC 0-3 private rx/tx irq structures
787 	 * IQRX/TXi needs to be set soon. Learned it the hard way...
788 	 */
789 	for (i = 0; i < dev_per_card; i++) {
790 		dpriv = priv->root + i;
791 		dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
792 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
793 		if (!dpriv->iqtx)
794 			goto err_free_iqtx_6;
795 		writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
796 	}
797 	for (i = 0; i < dev_per_card; i++) {
798 		dpriv = priv->root + i;
799 		dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
800 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
801 		if (!dpriv->iqrx)
802 			goto err_free_iqrx_7;
803 		writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
804 	}
805 
806 	/* Cf application hint. Beware of hard-lock condition on threshold. */
807 	writel(0x42104000, ioaddr + FIFOCR1);
808 	//writel(0x9ce69800, ioaddr + FIFOCR2);
809 	writel(0xdef6d800, ioaddr + FIFOCR2);
810 	//writel(0x11111111, ioaddr + FIFOCR4);
811 	writel(0x18181818, ioaddr + FIFOCR4);
812 	// FIXME: should depend on the chipset revision
813 	writel(0x0000000e, ioaddr + FIFOCR3);
814 
815 	writel(0xff200001, ioaddr + GCMDR);
816 
817 	rc = 0;
818 out:
819 	return rc;
820 
821 err_free_iqrx_7:
822 	while (--i >= 0) {
823 		dpriv = priv->root + i;
824 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
825 				    dpriv->iqrx, dpriv->iqrx_dma);
826 	}
827 	i = dev_per_card;
828 err_free_iqtx_6:
829 	while (--i >= 0) {
830 		dpriv = priv->root + i;
831 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
832 				    dpriv->iqtx, dpriv->iqtx_dma);
833 	}
834 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
835 			    priv->iqcfg_dma);
836 err_free_irq_5:
837 	free_irq(pdev->irq, priv->root);
838 err_release_4:
839 	dscc4_free1(pdev);
840 err_iounmap_3:
841 	iounmap (ioaddr);
842 err_free_mmio_regions_2:
843 	pci_release_region(pdev, 1);
844 err_free_mmio_region_1:
845 	pci_release_region(pdev, 0);
846 err_disable_0:
847 	pci_disable_device(pdev);
848 	goto out;
849 };
850 
851 /*
852  * Let's hope the default values are decent enough to protect my
853  * feet from the user's gun - Ueimor
854  */
dscc4_init_registers(struct dscc4_dev_priv * dpriv,struct net_device * dev)855 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
856 				 struct net_device *dev)
857 {
858 	/* No interrupts, SCC core disabled. Let's relax */
859 	scc_writel(0x00000000, dpriv, dev, CCR0);
860 
861 	scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
862 
863 	/*
864 	 * No address recognition/crc-CCITT/cts enabled
865 	 * Shared flags transmission disabled - cf errata DS5 p.11
866 	 * Carrier detect disabled - cf errata p.14
867 	 * FIXME: carrier detection/polarity may be handled more gracefully.
868 	 */
869 	scc_writel(0x02408000, dpriv, dev, CCR1);
870 
871 	/* crc not forwarded - Cf errata DS5 p.11 */
872 	scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
873 	// crc forwarded
874 	//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
875 }
876 
dscc4_set_quartz(struct dscc4_dev_priv * dpriv,int hz)877 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
878 {
879 	int ret = 0;
880 
881 	if ((hz < 0) || (hz > DSCC4_HZ_MAX))
882 		ret = -EOPNOTSUPP;
883 	else
884 		dpriv->pci_priv->xtal_hz = hz;
885 
886 	return ret;
887 }
888 
889 static const struct net_device_ops dscc4_ops = {
890 	.ndo_open       = dscc4_open,
891 	.ndo_stop       = dscc4_close,
892 	.ndo_change_mtu = hdlc_change_mtu,
893 	.ndo_start_xmit = hdlc_start_xmit,
894 	.ndo_do_ioctl   = dscc4_ioctl,
895 	.ndo_tx_timeout = dscc4_tx_timeout,
896 };
897 
dscc4_found1(struct pci_dev * pdev,void __iomem * ioaddr)898 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
899 {
900 	struct dscc4_pci_priv *ppriv;
901 	struct dscc4_dev_priv *root;
902 	int i, ret = -ENOMEM;
903 
904 	root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
905 	if (!root)
906 		goto err_out;
907 
908 	for (i = 0; i < dev_per_card; i++) {
909 		root[i].dev = alloc_hdlcdev(root + i);
910 		if (!root[i].dev)
911 			goto err_free_dev;
912 	}
913 
914 	ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
915 	if (!ppriv)
916 		goto err_free_dev;
917 
918 	ppriv->root = root;
919 	spin_lock_init(&ppriv->lock);
920 
921 	for (i = 0; i < dev_per_card; i++) {
922 		struct dscc4_dev_priv *dpriv = root + i;
923 		struct net_device *d = dscc4_to_dev(dpriv);
924 		hdlc_device *hdlc = dev_to_hdlc(d);
925 
926 	        d->base_addr = (unsigned long)ioaddr;
927 	        d->irq = pdev->irq;
928 		d->netdev_ops = &dscc4_ops;
929 		d->watchdog_timeo = TX_TIMEOUT;
930 		SET_NETDEV_DEV(d, &pdev->dev);
931 
932 		dpriv->dev_id = i;
933 		dpriv->pci_priv = ppriv;
934 		dpriv->base_addr = ioaddr;
935 		spin_lock_init(&dpriv->lock);
936 
937 		hdlc->xmit = dscc4_start_xmit;
938 		hdlc->attach = dscc4_hdlc_attach;
939 
940 		dscc4_init_registers(dpriv, d);
941 		dpriv->parity = PARITY_CRC16_PR0_CCITT;
942 		dpriv->encoding = ENCODING_NRZ;
943 
944 		ret = dscc4_init_ring(d);
945 		if (ret < 0)
946 			goto err_unregister;
947 
948 		ret = register_hdlc_device(d);
949 		if (ret < 0) {
950 			pr_err("unable to register\n");
951 			dscc4_release_ring(dpriv);
952 			goto err_unregister;
953 	        }
954 	}
955 
956 	ret = dscc4_set_quartz(root, quartz);
957 	if (ret < 0)
958 		goto err_unregister;
959 
960 	pci_set_drvdata(pdev, ppriv);
961 	return ret;
962 
963 err_unregister:
964 	while (i-- > 0) {
965 		dscc4_release_ring(root + i);
966 		unregister_hdlc_device(dscc4_to_dev(root + i));
967 	}
968 	kfree(ppriv);
969 	i = dev_per_card;
970 err_free_dev:
971 	while (i-- > 0)
972 		free_netdev(root[i].dev);
973 	kfree(root);
974 err_out:
975 	return ret;
976 };
977 
978 /* FIXME: get rid of the unneeded code */
dscc4_timer(unsigned long data)979 static void dscc4_timer(unsigned long data)
980 {
981 	struct net_device *dev = (struct net_device *)data;
982 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
983 //	struct dscc4_pci_priv *ppriv;
984 
985 	goto done;
986 done:
987         dpriv->timer.expires = jiffies + TX_TIMEOUT;
988         add_timer(&dpriv->timer);
989 }
990 
dscc4_tx_timeout(struct net_device * dev)991 static void dscc4_tx_timeout(struct net_device *dev)
992 {
993 	/* FIXME: something is missing there */
994 }
995 
dscc4_loopback_check(struct dscc4_dev_priv * dpriv)996 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
997 {
998 	sync_serial_settings *settings = &dpriv->settings;
999 
1000 	if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1001 		struct net_device *dev = dscc4_to_dev(dpriv);
1002 
1003 		netdev_info(dev, "loopback requires clock\n");
1004 		return -1;
1005 	}
1006 	return 0;
1007 }
1008 
1009 #ifdef CONFIG_DSCC4_PCI_RST
1010 /*
1011  * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1012  * so as to provide a safe way to reset the asic while not the whole machine
1013  * rebooting.
1014  *
1015  * This code doesn't need to be efficient. Keep It Simple
1016  */
dscc4_pci_reset(struct pci_dev * pdev,void __iomem * ioaddr)1017 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1018 {
1019 	int i;
1020 
1021 	mutex_lock(&dscc4_mutex);
1022 	for (i = 0; i < 16; i++)
1023 		pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1024 
1025 	/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1026 	writel(0x001c0000, ioaddr + GMODE);
1027 	/* Configure GPIO port as output */
1028 	writel(0x0000ffff, ioaddr + GPDIR);
1029 	/* Disable interruption */
1030 	writel(0x0000ffff, ioaddr + GPIM);
1031 
1032 	writel(0x0000ffff, ioaddr + GPDATA);
1033 	writel(0x00000000, ioaddr + GPDATA);
1034 
1035 	/* Flush posted writes */
1036 	readl(ioaddr + GSTAR);
1037 
1038 	schedule_timeout_uninterruptible(10);
1039 
1040 	for (i = 0; i < 16; i++)
1041 		pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1042 	mutex_unlock(&dscc4_mutex);
1043 }
1044 #else
1045 #define dscc4_pci_reset(pdev,ioaddr)	do {} while (0)
1046 #endif /* CONFIG_DSCC4_PCI_RST */
1047 
dscc4_open(struct net_device * dev)1048 static int dscc4_open(struct net_device *dev)
1049 {
1050 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1051 	struct dscc4_pci_priv *ppriv;
1052 	int ret = -EAGAIN;
1053 
1054 	if ((dscc4_loopback_check(dpriv) < 0))
1055 		goto err;
1056 
1057 	if ((ret = hdlc_open(dev)))
1058 		goto err;
1059 
1060 	ppriv = dpriv->pci_priv;
1061 
1062 	/*
1063 	 * Due to various bugs, there is no way to reliably reset a
1064 	 * specific port (manufacturer's dependent special PCI #RST wiring
1065 	 * apart: it affects all ports). Thus the device goes in the best
1066 	 * silent mode possible at dscc4_close() time and simply claims to
1067 	 * be up if it's opened again. It still isn't possible to change
1068 	 * the HDLC configuration without rebooting but at least the ports
1069 	 * can be up/down ifconfig'ed without killing the host.
1070 	 */
1071 	if (dpriv->flags & FakeReset) {
1072 		dpriv->flags &= ~FakeReset;
1073 		scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1074 		scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1075 		scc_writel(EventsMask, dpriv, dev, IMR);
1076 		netdev_info(dev, "up again\n");
1077 		goto done;
1078 	}
1079 
1080 	/* IDT+IDR during XPR */
1081 	dpriv->flags = NeedIDR | NeedIDT;
1082 
1083 	scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1084 
1085 	/*
1086 	 * The following is a bit paranoid...
1087 	 *
1088 	 * NB: the datasheet "...CEC will stay active if the SCC is in
1089 	 * power-down mode or..." and CCR2.RAC = 1 are two different
1090 	 * situations.
1091 	 */
1092 	if (scc_readl_star(dpriv, dev) & SccBusy) {
1093 		netdev_err(dev, "busy - try later\n");
1094 		ret = -EAGAIN;
1095 		goto err_out;
1096 	} else
1097 		netdev_info(dev, "available - good\n");
1098 
1099 	scc_writel(EventsMask, dpriv, dev, IMR);
1100 
1101 	/* Posted write is flushed in the wait_ack loop */
1102 	scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1103 
1104 	if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1105 		goto err_disable_scc_events;
1106 
1107 	/*
1108 	 * I would expect XPR near CE completion (before ? after ?).
1109 	 * At worst, this code won't see a late XPR and people
1110 	 * will have to re-issue an ifconfig (this is harmless).
1111 	 * WARNING, a really missing XPR usually means a hardware
1112 	 * reset is needed. Suggestions anyone ?
1113 	 */
1114 	if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1115 		pr_err("XPR timeout\n");
1116 		goto err_disable_scc_events;
1117 	}
1118 
1119 	if (debug > 2)
1120 		dscc4_tx_print(dev, dpriv, "Open");
1121 
1122 done:
1123 	netif_start_queue(dev);
1124 
1125         init_timer(&dpriv->timer);
1126         dpriv->timer.expires = jiffies + 10*HZ;
1127         dpriv->timer.data = (unsigned long)dev;
1128 	dpriv->timer.function = dscc4_timer;
1129         add_timer(&dpriv->timer);
1130 	netif_carrier_on(dev);
1131 
1132 	return 0;
1133 
1134 err_disable_scc_events:
1135 	scc_writel(0xffffffff, dpriv, dev, IMR);
1136 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1137 err_out:
1138 	hdlc_close(dev);
1139 err:
1140 	return ret;
1141 }
1142 
1143 #ifdef DSCC4_POLLING
dscc4_tx_poll(struct dscc4_dev_priv * dpriv,struct net_device * dev)1144 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1145 {
1146 	/* FIXME: it's gonna be easy (TM), for sure */
1147 }
1148 #endif /* DSCC4_POLLING */
1149 
dscc4_start_xmit(struct sk_buff * skb,struct net_device * dev)1150 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1151 					  struct net_device *dev)
1152 {
1153 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1154 	struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1155 	struct TxFD *tx_fd;
1156 	int next;
1157 
1158 	next = dpriv->tx_current%TX_RING_SIZE;
1159 	dpriv->tx_skbuff[next] = skb;
1160 	tx_fd = dpriv->tx_fd + next;
1161 	tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1162 	tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1163 				     PCI_DMA_TODEVICE));
1164 	tx_fd->complete = 0x00000000;
1165 	tx_fd->jiffies = jiffies;
1166 	mb();
1167 
1168 #ifdef DSCC4_POLLING
1169 	spin_lock(&dpriv->lock);
1170 	while (dscc4_tx_poll(dpriv, dev));
1171 	spin_unlock(&dpriv->lock);
1172 #endif
1173 
1174 	if (debug > 2)
1175 		dscc4_tx_print(dev, dpriv, "Xmit");
1176 	/* To be cleaned(unsigned int)/optimized. Later, ok ? */
1177 	if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1178 		netif_stop_queue(dev);
1179 
1180 	if (dscc4_tx_quiescent(dpriv, dev))
1181 		dscc4_do_tx(dpriv, dev);
1182 
1183 	return NETDEV_TX_OK;
1184 }
1185 
dscc4_close(struct net_device * dev)1186 static int dscc4_close(struct net_device *dev)
1187 {
1188 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1189 
1190 	del_timer_sync(&dpriv->timer);
1191 	netif_stop_queue(dev);
1192 
1193 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1194 	scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1195 	scc_writel(0xffffffff, dpriv, dev, IMR);
1196 
1197 	dpriv->flags |= FakeReset;
1198 
1199 	hdlc_close(dev);
1200 
1201 	return 0;
1202 }
1203 
dscc4_check_clock_ability(int port)1204 static inline int dscc4_check_clock_ability(int port)
1205 {
1206 	int ret = 0;
1207 
1208 #ifdef CONFIG_DSCC4_PCISYNC
1209 	if (port >= 2)
1210 		ret = -1;
1211 #endif
1212 	return ret;
1213 }
1214 
1215 /*
1216  * DS1 p.137: "There are a total of 13 different clocking modes..."
1217  *                                  ^^
1218  * Design choices:
1219  * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1220  *   Clock mode 3b _should_ work but the testing seems to make this point
1221  *   dubious (DIY testing requires setting CCR0 at 0x00000033).
1222  *   This is supposed to provide least surprise "DTE like" behavior.
1223  * - if line rate is specified, clocks are assumed to be locally generated.
1224  *   A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1225  *   between these it automagically done according on the required frequency
1226  *   scaling. Of course some rounding may take place.
1227  * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1228  *   appropriate external clocking device for testing.
1229  * - no time-slot/clock mode 5: shameless laziness.
1230  *
1231  * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1232  *
1233  * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1234  * won't pass the init sequence. For example, straight back-to-back DTE without
1235  * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1236  * called.
1237  *
1238  * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1239  * DS0 for example)
1240  *
1241  * Clock mode related bits of CCR0:
1242  *     +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1243  *     | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1244  *     | | +-------- High Speed: say 0
1245  *     | | | +-+-+-- Clock Mode: 0..7
1246  *     | | | | | |
1247  * -+-+-+-+-+-+-+-+
1248  * x|x|5|4|3|2|1|0| lower bits
1249  *
1250  * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1251  *            +-+-+-+------------------ M (0..15)
1252  *            | | | |     +-+-+-+-+-+-- N (0..63)
1253  *    0 0 0 0 | | | | 0 0 | | | | | |
1254  * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1255  *    f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1256  *
1257  */
dscc4_set_clock(struct net_device * dev,u32 * bps,u32 * state)1258 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1259 {
1260 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1261 	int ret = -1;
1262 	u32 brr;
1263 
1264 	*state &= ~Ccr0ClockMask;
1265 	if (*bps) { /* Clock generated - required for DCE */
1266 		u32 n = 0, m = 0, divider;
1267 		int xtal;
1268 
1269 		xtal = dpriv->pci_priv->xtal_hz;
1270 		if (!xtal)
1271 			goto done;
1272 		if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1273 			goto done;
1274 		divider = xtal / *bps;
1275 		if (divider > BRR_DIVIDER_MAX) {
1276 			divider >>= 4;
1277 			*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1278 		} else
1279 			*state |= 0x00000037; /* Clock mode 7b (BRG) */
1280 		if (divider >> 22) {
1281 			n = 63;
1282 			m = 15;
1283 		} else if (divider) {
1284 			/* Extraction of the 6 highest weighted bits */
1285 			m = 0;
1286 			while (0xffffffc0 & divider) {
1287 				m++;
1288 				divider >>= 1;
1289 			}
1290 			n = divider;
1291 		}
1292 		brr = (m << 8) | n;
1293 		divider = n << m;
1294 		if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1295 			divider <<= 4;
1296 		*bps = xtal / divider;
1297 	} else {
1298 		/*
1299 		 * External clock - DTE
1300 		 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1301 		 * Nothing more to be done
1302 		 */
1303 		brr = 0;
1304 	}
1305 	scc_writel(brr, dpriv, dev, BRR);
1306 	ret = 0;
1307 done:
1308 	return ret;
1309 }
1310 
dscc4_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1311 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1312 {
1313 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1314 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1315 	const size_t size = sizeof(dpriv->settings);
1316 	int ret = 0;
1317 
1318         if (dev->flags & IFF_UP)
1319                 return -EBUSY;
1320 
1321 	if (cmd != SIOCWANDEV)
1322 		return -EOPNOTSUPP;
1323 
1324 	switch(ifr->ifr_settings.type) {
1325 	case IF_GET_IFACE:
1326 		ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1327 		if (ifr->ifr_settings.size < size) {
1328 			ifr->ifr_settings.size = size; /* data size wanted */
1329 			return -ENOBUFS;
1330 		}
1331 		if (copy_to_user(line, &dpriv->settings, size))
1332 			return -EFAULT;
1333 		break;
1334 
1335 	case IF_IFACE_SYNC_SERIAL:
1336 		if (!capable(CAP_NET_ADMIN))
1337 			return -EPERM;
1338 
1339 		if (dpriv->flags & FakeReset) {
1340 			netdev_info(dev, "please reset the device before this command\n");
1341 			return -EPERM;
1342 		}
1343 		if (copy_from_user(&dpriv->settings, line, size))
1344 			return -EFAULT;
1345 		ret = dscc4_set_iface(dpriv, dev);
1346 		break;
1347 
1348 	default:
1349 		ret = hdlc_ioctl(dev, ifr, cmd);
1350 		break;
1351 	}
1352 
1353 	return ret;
1354 }
1355 
dscc4_match(const struct thingie * p,int value)1356 static int dscc4_match(const struct thingie *p, int value)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; p[i].define != -1; i++) {
1361 		if (value == p[i].define)
1362 			break;
1363 	}
1364 	if (p[i].define == -1)
1365 		return -1;
1366 	else
1367 		return i;
1368 }
1369 
dscc4_clock_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1370 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1371 			       struct net_device *dev)
1372 {
1373 	sync_serial_settings *settings = &dpriv->settings;
1374 	int ret = -EOPNOTSUPP;
1375 	u32 bps, state;
1376 
1377 	bps = settings->clock_rate;
1378 	state = scc_readl(dpriv, CCR0);
1379 	if (dscc4_set_clock(dev, &bps, &state) < 0)
1380 		goto done;
1381 	if (bps) { /* DCE */
1382 		printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1383 		if (settings->clock_rate != bps) {
1384 			printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1385 				dev->name, settings->clock_rate, bps);
1386 			settings->clock_rate = bps;
1387 		}
1388 	} else { /* DTE */
1389 		state |= PowerUp | Vis;
1390 		printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1391 	}
1392 	scc_writel(state, dpriv, dev, CCR0);
1393 	ret = 0;
1394 done:
1395 	return ret;
1396 }
1397 
dscc4_encoding_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1398 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1399 				  struct net_device *dev)
1400 {
1401 	static const struct thingie encoding[] = {
1402 		{ ENCODING_NRZ,		0x00000000 },
1403 		{ ENCODING_NRZI,	0x00200000 },
1404 		{ ENCODING_FM_MARK,	0x00400000 },
1405 		{ ENCODING_FM_SPACE,	0x00500000 },
1406 		{ ENCODING_MANCHESTER,	0x00600000 },
1407 		{ -1,			0}
1408 	};
1409 	int i, ret = 0;
1410 
1411 	i = dscc4_match(encoding, dpriv->encoding);
1412 	if (i >= 0)
1413 		scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1414 	else
1415 		ret = -EOPNOTSUPP;
1416 	return ret;
1417 }
1418 
dscc4_loopback_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1419 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1420 				  struct net_device *dev)
1421 {
1422 	sync_serial_settings *settings = &dpriv->settings;
1423 	u32 state;
1424 
1425 	state = scc_readl(dpriv, CCR1);
1426 	if (settings->loopback) {
1427 		printk(KERN_DEBUG "%s: loopback\n", dev->name);
1428 		state |= 0x00000100;
1429 	} else {
1430 		printk(KERN_DEBUG "%s: normal\n", dev->name);
1431 		state &= ~0x00000100;
1432 	}
1433 	scc_writel(state, dpriv, dev, CCR1);
1434 	return 0;
1435 }
1436 
dscc4_crc_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1437 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1438 			     struct net_device *dev)
1439 {
1440 	static const struct thingie crc[] = {
1441 		{ PARITY_CRC16_PR0_CCITT,	0x00000010 },
1442 		{ PARITY_CRC16_PR1_CCITT,	0x00000000 },
1443 		{ PARITY_CRC32_PR0_CCITT,	0x00000011 },
1444 		{ PARITY_CRC32_PR1_CCITT,	0x00000001 }
1445 	};
1446 	int i, ret = 0;
1447 
1448 	i = dscc4_match(crc, dpriv->parity);
1449 	if (i >= 0)
1450 		scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1451 	else
1452 		ret = -EOPNOTSUPP;
1453 	return ret;
1454 }
1455 
dscc4_set_iface(struct dscc4_dev_priv * dpriv,struct net_device * dev)1456 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1457 {
1458 	struct {
1459 		int (*action)(struct dscc4_dev_priv *, struct net_device *);
1460 	} *p, do_setting[] = {
1461 		{ dscc4_encoding_setting },
1462 		{ dscc4_clock_setting },
1463 		{ dscc4_loopback_setting },
1464 		{ dscc4_crc_setting },
1465 		{ NULL }
1466 	};
1467 	int ret = 0;
1468 
1469 	for (p = do_setting; p->action; p++) {
1470 		if ((ret = p->action(dpriv, dev)) < 0)
1471 			break;
1472 	}
1473 	return ret;
1474 }
1475 
dscc4_irq(int irq,void * token)1476 static irqreturn_t dscc4_irq(int irq, void *token)
1477 {
1478 	struct dscc4_dev_priv *root = token;
1479 	struct dscc4_pci_priv *priv;
1480 	struct net_device *dev;
1481 	void __iomem *ioaddr;
1482 	u32 state;
1483 	unsigned long flags;
1484 	int i, handled = 1;
1485 
1486 	priv = root->pci_priv;
1487 	dev = dscc4_to_dev(root);
1488 
1489 	spin_lock_irqsave(&priv->lock, flags);
1490 
1491 	ioaddr = root->base_addr;
1492 
1493 	state = readl(ioaddr + GSTAR);
1494 	if (!state) {
1495 		handled = 0;
1496 		goto out;
1497 	}
1498 	if (debug > 3)
1499 		printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1500 	writel(state, ioaddr + GSTAR);
1501 
1502 	if (state & Arf) {
1503 		netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1504 		goto out;
1505 	}
1506 	state &= ~ArAck;
1507 	if (state & Cfg) {
1508 		if (debug > 0)
1509 			printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1510 		if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1511 			netdev_err(dev, "CFG failed\n");
1512 		if (!(state &= ~Cfg))
1513 			goto out;
1514 	}
1515 	if (state & RxEvt) {
1516 		i = dev_per_card - 1;
1517 		do {
1518 			dscc4_rx_irq(priv, root + i);
1519 		} while (--i >= 0);
1520 		state &= ~RxEvt;
1521 	}
1522 	if (state & TxEvt) {
1523 		i = dev_per_card - 1;
1524 		do {
1525 			dscc4_tx_irq(priv, root + i);
1526 		} while (--i >= 0);
1527 		state &= ~TxEvt;
1528 	}
1529 out:
1530 	spin_unlock_irqrestore(&priv->lock, flags);
1531 	return IRQ_RETVAL(handled);
1532 }
1533 
dscc4_tx_irq(struct dscc4_pci_priv * ppriv,struct dscc4_dev_priv * dpriv)1534 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1535 				struct dscc4_dev_priv *dpriv)
1536 {
1537 	struct net_device *dev = dscc4_to_dev(dpriv);
1538 	u32 state;
1539 	int cur, loop = 0;
1540 
1541 try:
1542 	cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1543 	state = le32_to_cpu(dpriv->iqtx[cur]);
1544 	if (!state) {
1545 		if (debug > 4)
1546 			printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1547 			       state);
1548 		if ((debug > 1) && (loop > 1))
1549 			printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1550 		if (loop && netif_queue_stopped(dev))
1551 			if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1552 				netif_wake_queue(dev);
1553 
1554 		if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1555 		    !dscc4_tx_done(dpriv))
1556 				dscc4_do_tx(dpriv, dev);
1557 		return;
1558 	}
1559 	loop++;
1560 	dpriv->iqtx[cur] = 0;
1561 	dpriv->iqtx_current++;
1562 
1563 	if (state_check(state, dpriv, dev, "Tx") < 0)
1564 		return;
1565 
1566 	if (state & SccEvt) {
1567 		if (state & Alls) {
1568 			struct sk_buff *skb;
1569 			struct TxFD *tx_fd;
1570 
1571 			if (debug > 2)
1572 				dscc4_tx_print(dev, dpriv, "Alls");
1573 			/*
1574 			 * DataComplete can't be trusted for Tx completion.
1575 			 * Cf errata DS5 p.8
1576 			 */
1577 			cur = dpriv->tx_dirty%TX_RING_SIZE;
1578 			tx_fd = dpriv->tx_fd + cur;
1579 			skb = dpriv->tx_skbuff[cur];
1580 			if (skb) {
1581 				pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1582 						 skb->len, PCI_DMA_TODEVICE);
1583 				if (tx_fd->state & FrameEnd) {
1584 					dev->stats.tx_packets++;
1585 					dev->stats.tx_bytes += skb->len;
1586 				}
1587 				dev_kfree_skb_irq(skb);
1588 				dpriv->tx_skbuff[cur] = NULL;
1589 				++dpriv->tx_dirty;
1590 			} else {
1591 				if (debug > 1)
1592 					netdev_err(dev, "Tx: NULL skb %d\n",
1593 						   cur);
1594 			}
1595 			/*
1596 			 * If the driver ends sending crap on the wire, it
1597 			 * will be way easier to diagnose than the (not so)
1598 			 * random freeze induced by null sized tx frames.
1599 			 */
1600 			tx_fd->data = tx_fd->next;
1601 			tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1602 			tx_fd->complete = 0x00000000;
1603 			tx_fd->jiffies = 0;
1604 
1605 			if (!(state &= ~Alls))
1606 				goto try;
1607 		}
1608 		/*
1609 		 * Transmit Data Underrun
1610 		 */
1611 		if (state & Xdu) {
1612 			netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1613 			dpriv->flags = NeedIDT;
1614 			/* Tx reset */
1615 			writel(MTFi | Rdt,
1616 			       dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1617 			writel(Action, dpriv->base_addr + GCMDR);
1618 			return;
1619 		}
1620 		if (state & Cts) {
1621 			netdev_info(dev, "CTS transition\n");
1622 			if (!(state &= ~Cts)) /* DEBUG */
1623 				goto try;
1624 		}
1625 		if (state & Xmr) {
1626 			/* Frame needs to be sent again - FIXME */
1627 			netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1628 			if (!(state &= ~Xmr)) /* DEBUG */
1629 				goto try;
1630 		}
1631 		if (state & Xpr) {
1632 			void __iomem *scc_addr;
1633 			unsigned long ring;
1634 			int i;
1635 
1636 			/*
1637 			 * - the busy condition happens (sometimes);
1638 			 * - it doesn't seem to make the handler unreliable.
1639 			 */
1640 			for (i = 1; i; i <<= 1) {
1641 				if (!(scc_readl_star(dpriv, dev) & SccBusy))
1642 					break;
1643 			}
1644 			if (!i)
1645 				netdev_info(dev, "busy in irq\n");
1646 
1647 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1648 			/* Keep this order: IDT before IDR */
1649 			if (dpriv->flags & NeedIDT) {
1650 				if (debug > 2)
1651 					dscc4_tx_print(dev, dpriv, "Xpr");
1652 				ring = dpriv->tx_fd_dma +
1653 				       (dpriv->tx_dirty%TX_RING_SIZE)*
1654 				       sizeof(struct TxFD);
1655 				writel(ring, scc_addr + CH0BTDA);
1656 				dscc4_do_tx(dpriv, dev);
1657 				writel(MTFi | Idt, scc_addr + CH0CFG);
1658 				if (dscc4_do_action(dev, "IDT") < 0)
1659 					goto err_xpr;
1660 				dpriv->flags &= ~NeedIDT;
1661 			}
1662 			if (dpriv->flags & NeedIDR) {
1663 				ring = dpriv->rx_fd_dma +
1664 				       (dpriv->rx_current%RX_RING_SIZE)*
1665 				       sizeof(struct RxFD);
1666 				writel(ring, scc_addr + CH0BRDA);
1667 				dscc4_rx_update(dpriv, dev);
1668 				writel(MTFi | Idr, scc_addr + CH0CFG);
1669 				if (dscc4_do_action(dev, "IDR") < 0)
1670 					goto err_xpr;
1671 				dpriv->flags &= ~NeedIDR;
1672 				smp_wmb();
1673 				/* Activate receiver and misc */
1674 				scc_writel(0x08050008, dpriv, dev, CCR2);
1675 			}
1676 		err_xpr:
1677 			if (!(state &= ~Xpr))
1678 				goto try;
1679 		}
1680 		if (state & Cd) {
1681 			if (debug > 0)
1682 				netdev_info(dev, "CD transition\n");
1683 			if (!(state &= ~Cd)) /* DEBUG */
1684 				goto try;
1685 		}
1686 	} else { /* ! SccEvt */
1687 		if (state & Hi) {
1688 #ifdef DSCC4_POLLING
1689 			while (!dscc4_tx_poll(dpriv, dev));
1690 #endif
1691 			netdev_info(dev, "Tx Hi\n");
1692 			state &= ~Hi;
1693 		}
1694 		if (state & Err) {
1695 			netdev_info(dev, "Tx ERR\n");
1696 			dev->stats.tx_errors++;
1697 			state &= ~Err;
1698 		}
1699 	}
1700 	goto try;
1701 }
1702 
dscc4_rx_irq(struct dscc4_pci_priv * priv,struct dscc4_dev_priv * dpriv)1703 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1704 				    struct dscc4_dev_priv *dpriv)
1705 {
1706 	struct net_device *dev = dscc4_to_dev(dpriv);
1707 	u32 state;
1708 	int cur;
1709 
1710 try:
1711 	cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1712 	state = le32_to_cpu(dpriv->iqrx[cur]);
1713 	if (!state)
1714 		return;
1715 	dpriv->iqrx[cur] = 0;
1716 	dpriv->iqrx_current++;
1717 
1718 	if (state_check(state, dpriv, dev, "Rx") < 0)
1719 		return;
1720 
1721 	if (!(state & SccEvt)){
1722 		struct RxFD *rx_fd;
1723 
1724 		if (debug > 4)
1725 			printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1726 			       state);
1727 		state &= 0x00ffffff;
1728 		if (state & Err) { /* Hold or reset */
1729 			printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1730 			cur = dpriv->rx_current%RX_RING_SIZE;
1731 			rx_fd = dpriv->rx_fd + cur;
1732 			/*
1733 			 * Presume we're not facing a DMAC receiver reset.
1734 			 * As We use the rx size-filtering feature of the
1735 			 * DSCC4, the beginning of a new frame is waiting in
1736 			 * the rx fifo. I bet a Receive Data Overflow will
1737 			 * happen most of time but let's try and avoid it.
1738 			 * Btw (as for RDO) if one experiences ERR whereas
1739 			 * the system looks rather idle, there may be a
1740 			 * problem with latency. In this case, increasing
1741 			 * RX_RING_SIZE may help.
1742 			 */
1743 			//while (dpriv->rx_needs_refill) {
1744 				while (!(rx_fd->state1 & Hold)) {
1745 					rx_fd++;
1746 					cur++;
1747 					if (!(cur = cur%RX_RING_SIZE))
1748 						rx_fd = dpriv->rx_fd;
1749 				}
1750 				//dpriv->rx_needs_refill--;
1751 				try_get_rx_skb(dpriv, dev);
1752 				if (!rx_fd->data)
1753 					goto try;
1754 				rx_fd->state1 &= ~Hold;
1755 				rx_fd->state2 = 0x00000000;
1756 				rx_fd->end = cpu_to_le32(0xbabeface);
1757 			//}
1758 			goto try;
1759 		}
1760 		if (state & Fi) {
1761 			dscc4_rx_skb(dpriv, dev);
1762 			goto try;
1763 		}
1764 		if (state & Hi ) { /* HI bit */
1765 			netdev_info(dev, "Rx Hi\n");
1766 			state &= ~Hi;
1767 			goto try;
1768 		}
1769 	} else { /* SccEvt */
1770 		if (debug > 1) {
1771 			//FIXME: verifier la presence de tous les evenements
1772 		static struct {
1773 			u32 mask;
1774 			const char *irq_name;
1775 		} evts[] = {
1776 			{ 0x00008000, "TIN"},
1777 			{ 0x00000020, "RSC"},
1778 			{ 0x00000010, "PCE"},
1779 			{ 0x00000008, "PLLA"},
1780 			{ 0, NULL}
1781 		}, *evt;
1782 
1783 		for (evt = evts; evt->irq_name; evt++) {
1784 			if (state & evt->mask) {
1785 					printk(KERN_DEBUG "%s: %s\n",
1786 						dev->name, evt->irq_name);
1787 				if (!(state &= ~evt->mask))
1788 					goto try;
1789 			}
1790 		}
1791 		} else {
1792 			if (!(state &= ~0x0000c03c))
1793 				goto try;
1794 		}
1795 		if (state & Cts) {
1796 			netdev_info(dev, "CTS transition\n");
1797 			if (!(state &= ~Cts)) /* DEBUG */
1798 				goto try;
1799 		}
1800 		/*
1801 		 * Receive Data Overflow (FIXME: fscked)
1802 		 */
1803 		if (state & Rdo) {
1804 			struct RxFD *rx_fd;
1805 			void __iomem *scc_addr;
1806 			int cur;
1807 
1808 			//if (debug)
1809 			//	dscc4_rx_dump(dpriv);
1810 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1811 
1812 			scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1813 			/*
1814 			 * This has no effect. Why ?
1815 			 * ORed with TxSccRes, one sees the CFG ack (for
1816 			 * the TX part only).
1817 			 */
1818 			scc_writel(RxSccRes, dpriv, dev, CMDR);
1819 			dpriv->flags |= RdoSet;
1820 
1821 			/*
1822 			 * Let's try and save something in the received data.
1823 			 * rx_current must be incremented at least once to
1824 			 * avoid HOLD in the BRDA-to-be-pointed desc.
1825 			 */
1826 			do {
1827 				cur = dpriv->rx_current++%RX_RING_SIZE;
1828 				rx_fd = dpriv->rx_fd + cur;
1829 				if (!(rx_fd->state2 & DataComplete))
1830 					break;
1831 				if (rx_fd->state2 & FrameAborted) {
1832 					dev->stats.rx_over_errors++;
1833 					rx_fd->state1 |= Hold;
1834 					rx_fd->state2 = 0x00000000;
1835 					rx_fd->end = cpu_to_le32(0xbabeface);
1836 				} else
1837 					dscc4_rx_skb(dpriv, dev);
1838 			} while (1);
1839 
1840 			if (debug > 0) {
1841 				if (dpriv->flags & RdoSet)
1842 					printk(KERN_DEBUG
1843 					       "%s: no RDO in Rx data\n", DRV_NAME);
1844 			}
1845 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1846 			/*
1847 			 * FIXME: must the reset be this violent ?
1848 			 */
1849 #warning "FIXME: CH0BRDA"
1850 			writel(dpriv->rx_fd_dma +
1851 			       (dpriv->rx_current%RX_RING_SIZE)*
1852 			       sizeof(struct RxFD), scc_addr + CH0BRDA);
1853 			writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1854 			if (dscc4_do_action(dev, "RDR") < 0) {
1855 				netdev_err(dev, "RDO recovery failed(RDR)\n");
1856 				goto rdo_end;
1857 			}
1858 			writel(MTFi|Idr, scc_addr + CH0CFG);
1859 			if (dscc4_do_action(dev, "IDR") < 0) {
1860 				netdev_err(dev, "RDO recovery failed(IDR)\n");
1861 				goto rdo_end;
1862 			}
1863 		rdo_end:
1864 #endif
1865 			scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1866 			goto try;
1867 		}
1868 		if (state & Cd) {
1869 			netdev_info(dev, "CD transition\n");
1870 			if (!(state &= ~Cd)) /* DEBUG */
1871 				goto try;
1872 		}
1873 		if (state & Flex) {
1874 			printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1875 			if (!(state &= ~Flex))
1876 				goto try;
1877 		}
1878 	}
1879 }
1880 
1881 /*
1882  * I had expected the following to work for the first descriptor
1883  * (tx_fd->state = 0xc0000000)
1884  * - Hold=1 (don't try and branch to the next descripto);
1885  * - No=0 (I want an empty data section, i.e. size=0);
1886  * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1887  * It failed and locked solid. Thus the introduction of a dummy skb.
1888  * Problem is acknowledged in errata sheet DS5. Joy :o/
1889  */
dscc4_init_dummy_skb(struct dscc4_dev_priv * dpriv)1890 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1891 {
1892 	struct sk_buff *skb;
1893 
1894 	skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1895 	if (skb) {
1896 		int last = dpriv->tx_dirty%TX_RING_SIZE;
1897 		struct TxFD *tx_fd = dpriv->tx_fd + last;
1898 
1899 		skb->len = DUMMY_SKB_SIZE;
1900 		skb_copy_to_linear_data(skb, version,
1901 					strlen(version) % DUMMY_SKB_SIZE);
1902 		tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1903 		tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1904 					     skb->data, DUMMY_SKB_SIZE,
1905 					     PCI_DMA_TODEVICE));
1906 		dpriv->tx_skbuff[last] = skb;
1907 	}
1908 	return skb;
1909 }
1910 
dscc4_init_ring(struct net_device * dev)1911 static int dscc4_init_ring(struct net_device *dev)
1912 {
1913 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1914 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
1915 	struct TxFD *tx_fd;
1916 	struct RxFD *rx_fd;
1917 	void *ring;
1918 	int i;
1919 
1920 	ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1921 	if (!ring)
1922 		goto err_out;
1923 	dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1924 
1925 	ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1926 	if (!ring)
1927 		goto err_free_dma_rx;
1928 	dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1929 
1930 	memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1931 	dpriv->tx_dirty = 0xffffffff;
1932 	i = dpriv->tx_current = 0;
1933 	do {
1934 		tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1935 		tx_fd->complete = 0x00000000;
1936 	        /* FIXME: NULL should be ok - to be tried */
1937 	        tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1938 		(tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1939 					(++i%TX_RING_SIZE)*sizeof(*tx_fd));
1940 	} while (i < TX_RING_SIZE);
1941 
1942 	if (!dscc4_init_dummy_skb(dpriv))
1943 		goto err_free_dma_tx;
1944 
1945 	memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1946 	i = dpriv->rx_dirty = dpriv->rx_current = 0;
1947 	do {
1948 		/* size set by the host. Multiple of 4 bytes please */
1949 	        rx_fd->state1 = HiDesc;
1950 	        rx_fd->state2 = 0x00000000;
1951 	        rx_fd->end = cpu_to_le32(0xbabeface);
1952 	        rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1953 		// FIXME: return value verifiee mais traitement suspect
1954 		if (try_get_rx_skb(dpriv, dev) >= 0)
1955 			dpriv->rx_dirty++;
1956 		(rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1957 					(++i%RX_RING_SIZE)*sizeof(*rx_fd));
1958 	} while (i < RX_RING_SIZE);
1959 
1960 	return 0;
1961 
1962 err_free_dma_tx:
1963 	pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1964 err_free_dma_rx:
1965 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1966 err_out:
1967 	return -ENOMEM;
1968 }
1969 
dscc4_remove_one(struct pci_dev * pdev)1970 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1971 {
1972 	struct dscc4_pci_priv *ppriv;
1973 	struct dscc4_dev_priv *root;
1974 	void __iomem *ioaddr;
1975 	int i;
1976 
1977 	ppriv = pci_get_drvdata(pdev);
1978 	root = ppriv->root;
1979 
1980 	ioaddr = root->base_addr;
1981 
1982 	dscc4_pci_reset(pdev, ioaddr);
1983 
1984 	free_irq(pdev->irq, root);
1985 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1986 			    ppriv->iqcfg_dma);
1987 	for (i = 0; i < dev_per_card; i++) {
1988 		struct dscc4_dev_priv *dpriv = root + i;
1989 
1990 		dscc4_release_ring(dpriv);
1991 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1992 				    dpriv->iqrx, dpriv->iqrx_dma);
1993 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1994 				    dpriv->iqtx, dpriv->iqtx_dma);
1995 	}
1996 
1997 	dscc4_free1(pdev);
1998 
1999 	iounmap(ioaddr);
2000 
2001 	pci_release_region(pdev, 1);
2002 	pci_release_region(pdev, 0);
2003 
2004 	pci_disable_device(pdev);
2005 }
2006 
dscc4_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2007 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2008 	unsigned short parity)
2009 {
2010 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2011 
2012 	if (encoding != ENCODING_NRZ &&
2013 	    encoding != ENCODING_NRZI &&
2014 	    encoding != ENCODING_FM_MARK &&
2015 	    encoding != ENCODING_FM_SPACE &&
2016 	    encoding != ENCODING_MANCHESTER)
2017 		return -EINVAL;
2018 
2019 	if (parity != PARITY_NONE &&
2020 	    parity != PARITY_CRC16_PR0_CCITT &&
2021 	    parity != PARITY_CRC16_PR1_CCITT &&
2022 	    parity != PARITY_CRC32_PR0_CCITT &&
2023 	    parity != PARITY_CRC32_PR1_CCITT)
2024 		return -EINVAL;
2025 
2026         dpriv->encoding = encoding;
2027         dpriv->parity = parity;
2028 	return 0;
2029 }
2030 
2031 #ifndef MODULE
dscc4_setup(char * str)2032 static int __init dscc4_setup(char *str)
2033 {
2034 	int *args[] = { &debug, &quartz, NULL }, **p = args;
2035 
2036 	while (*p && (get_option(&str, *p) == 2))
2037 		p++;
2038 	return 1;
2039 }
2040 
2041 __setup("dscc4.setup=", dscc4_setup);
2042 #endif
2043 
2044 static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl) = {
2045 	{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2046 	        PCI_ANY_ID, PCI_ANY_ID, },
2047 	{ 0,}
2048 };
2049 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2050 
2051 static struct pci_driver dscc4_driver = {
2052 	.name		= DRV_NAME,
2053 	.id_table	= dscc4_pci_tbl,
2054 	.probe		= dscc4_init_one,
2055 	.remove		= __devexit_p(dscc4_remove_one),
2056 };
2057 
dscc4_init_module(void)2058 static int __init dscc4_init_module(void)
2059 {
2060 	return pci_register_driver(&dscc4_driver);
2061 }
2062 
dscc4_cleanup_module(void)2063 static void __exit dscc4_cleanup_module(void)
2064 {
2065 	pci_unregister_driver(&dscc4_driver);
2066 }
2067 
2068 module_init(dscc4_init_module);
2069 module_exit(dscc4_cleanup_module);
2070