1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72 
73 #define DRV_NAME	"sata_mv"
74 #define DRV_VERSION	"1.28"
75 
76 /*
77  * module options
78  */
79 
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
85 
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 		 "IRQ coalescing I/O count threshold (0..255)");
90 
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 		 "IRQ coalescing time threshold in usecs");
95 
96 enum {
97 	/* BAR's are enumerated in terms of pci_resource_start() terms */
98 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
99 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
100 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
101 
102 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
103 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
104 
105 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
107 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
108 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
109 
110 	MV_PCI_REG_BASE		= 0,
111 
112 	/*
113 	 * Per-chip ("all ports") interrupt coalescing feature.
114 	 * This is only for GEN_II / GEN_IIE hardware.
115 	 *
116 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
118 	 */
119 	COAL_REG_BASE		= 0x18000,
120 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
121 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
122 
123 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
124 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
125 
126 	/*
127 	 * Registers for the (unused here) transaction coalescing feature:
128 	 */
129 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
130 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
131 
132 	SATAHC0_REG_BASE	= 0x20000,
133 	FLASH_CTL		= 0x1046c,
134 	GPIO_PORT_CTL		= 0x104f0,
135 	RESET_CFG		= 0x180d8,
136 
137 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
138 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
139 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
140 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
141 
142 	MV_MAX_Q_DEPTH		= 32,
143 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
144 
145 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 	 * CRPB needs alignment on a 256B boundary. Size == 256B
147 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
148 	 */
149 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
150 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
151 	MV_MAX_SG_CT		= 256,
152 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
153 
154 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 	MV_PORT_HC_SHIFT	= 2,
156 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
157 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
159 
160 	/* Host Flags */
161 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
162 
163 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
164 
165 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
166 
167 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
168 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
169 
170 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
171 
172 	CRQB_FLAG_READ		= (1 << 0),
173 	CRQB_TAG_SHIFT		= 1,
174 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
175 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
176 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
177 	CRQB_CMD_ADDR_SHIFT	= 8,
178 	CRQB_CMD_CS		= (0x2 << 11),
179 	CRQB_CMD_LAST		= (1 << 15),
180 
181 	CRPB_FLAG_STATUS_SHIFT	= 8,
182 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
183 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
184 
185 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
186 
187 	/* PCI interface registers */
188 
189 	MV_PCI_COMMAND		= 0xc00,
190 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
191 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
192 
193 	PCI_MAIN_CMD_STS	= 0xd30,
194 	STOP_PCI_MASTER		= (1 << 2),
195 	PCI_MASTER_EMPTY	= (1 << 3),
196 	GLOB_SFT_RST		= (1 << 4),
197 
198 	MV_PCI_MODE		= 0xd00,
199 	MV_PCI_MODE_MASK	= 0x30,
200 
201 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
202 	MV_PCI_DISC_TIMER	= 0xd04,
203 	MV_PCI_MSI_TRIGGER	= 0xc38,
204 	MV_PCI_SERR_MASK	= 0xc28,
205 	MV_PCI_XBAR_TMOUT	= 0x1d04,
206 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
207 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
208 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
209 	MV_PCI_ERR_COMMAND	= 0x1d50,
210 
211 	PCI_IRQ_CAUSE		= 0x1d58,
212 	PCI_IRQ_MASK		= 0x1d5c,
213 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
214 
215 	PCIE_IRQ_CAUSE		= 0x1900,
216 	PCIE_IRQ_MASK		= 0x1910,
217 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
218 
219 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
220 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
221 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
222 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
223 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
224 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
225 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
226 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
227 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
228 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
229 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
230 	PCI_ERR			= (1 << 18),
231 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
232 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
233 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
234 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
235 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
236 	GPIO_INT		= (1 << 22),
237 	SELF_INT		= (1 << 23),
238 	TWSI_INT		= (1 << 24),
239 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
240 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
241 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
242 
243 	/* SATAHC registers */
244 	HC_CFG			= 0x00,
245 
246 	HC_IRQ_CAUSE		= 0x14,
247 	DMA_IRQ			= (1 << 0),	/* shift by port # */
248 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
249 	DEV_IRQ			= (1 << 8),	/* shift by port # */
250 
251 	/*
252 	 * Per-HC (Host-Controller) interrupt coalescing feature.
253 	 * This is present on all chip generations.
254 	 *
255 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 	 */
258 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
259 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
260 
261 	SOC_LED_CTRL		= 0x2c,
262 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
263 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
264 						/*  with dev activity LED */
265 
266 	/* Shadow block registers */
267 	SHD_BLK			= 0x100,
268 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
269 
270 	/* SATA registers */
271 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
272 	SATA_ACTIVE		= 0x350,
273 	FIS_IRQ_CAUSE		= 0x364,
274 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
275 
276 	LTMODE			= 0x30c,	/* requires read-after-write */
277 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
278 
279 	PHY_MODE2		= 0x330,
280 	PHY_MODE3		= 0x310,
281 
282 	PHY_MODE4		= 0x314,	/* requires read-after-write */
283 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
284 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
285 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
286 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
287 
288 	SATA_IFCTL		= 0x344,
289 	SATA_TESTCTL		= 0x348,
290 	SATA_IFSTAT		= 0x34c,
291 	VENDOR_UNIQUE_FIS	= 0x35c,
292 
293 	FISCFG			= 0x360,
294 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
295 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
296 
297 	PHY_MODE9_GEN2		= 0x398,
298 	PHY_MODE9_GEN1		= 0x39c,
299 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
300 
301 	MV5_PHY_MODE		= 0x74,
302 	MV5_LTMODE		= 0x30,
303 	MV5_PHY_CTL		= 0x0C,
304 	SATA_IFCFG		= 0x050,
305 
306 	MV_M2_PREAMP_MASK	= 0x7e0,
307 
308 	/* Port registers */
309 	EDMA_CFG		= 0,
310 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
311 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
312 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
313 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
314 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
315 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
316 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
317 
318 	EDMA_ERR_IRQ_CAUSE	= 0x8,
319 	EDMA_ERR_IRQ_MASK	= 0xc,
320 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
321 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
322 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
323 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
324 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
325 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
326 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
327 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
328 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
329 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
330 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
331 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
332 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
333 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
334 
335 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
336 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
337 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
338 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
339 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
340 
341 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
342 
343 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
344 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
345 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
346 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
347 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
348 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
349 
350 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
351 
352 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
353 	EDMA_ERR_OVERRUN_5	= (1 << 5),
354 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
355 
356 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
357 				  EDMA_ERR_LNK_CTRL_RX_1 |
358 				  EDMA_ERR_LNK_CTRL_RX_3 |
359 				  EDMA_ERR_LNK_CTRL_TX,
360 
361 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
362 				  EDMA_ERR_PRD_PAR |
363 				  EDMA_ERR_DEV_DCON |
364 				  EDMA_ERR_DEV_CON |
365 				  EDMA_ERR_SERR |
366 				  EDMA_ERR_SELF_DIS |
367 				  EDMA_ERR_CRQB_PAR |
368 				  EDMA_ERR_CRPB_PAR |
369 				  EDMA_ERR_INTRL_PAR |
370 				  EDMA_ERR_IORDY |
371 				  EDMA_ERR_LNK_CTRL_RX_2 |
372 				  EDMA_ERR_LNK_DATA_RX |
373 				  EDMA_ERR_LNK_DATA_TX |
374 				  EDMA_ERR_TRANS_PROTO,
375 
376 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
377 				  EDMA_ERR_PRD_PAR |
378 				  EDMA_ERR_DEV_DCON |
379 				  EDMA_ERR_DEV_CON |
380 				  EDMA_ERR_OVERRUN_5 |
381 				  EDMA_ERR_UNDERRUN_5 |
382 				  EDMA_ERR_SELF_DIS_5 |
383 				  EDMA_ERR_CRQB_PAR |
384 				  EDMA_ERR_CRPB_PAR |
385 				  EDMA_ERR_INTRL_PAR |
386 				  EDMA_ERR_IORDY,
387 
388 	EDMA_REQ_Q_BASE_HI	= 0x10,
389 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
390 
391 	EDMA_REQ_Q_OUT_PTR	= 0x18,
392 	EDMA_REQ_Q_PTR_SHIFT	= 5,
393 
394 	EDMA_RSP_Q_BASE_HI	= 0x1c,
395 	EDMA_RSP_Q_IN_PTR	= 0x20,
396 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
397 	EDMA_RSP_Q_PTR_SHIFT	= 3,
398 
399 	EDMA_CMD		= 0x28,		/* EDMA command register */
400 	EDMA_EN			= (1 << 0),	/* enable EDMA */
401 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
402 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
403 
404 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
405 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
406 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
407 
408 	EDMA_IORDY_TMOUT	= 0x34,
409 	EDMA_ARB_CFG		= 0x38,
410 
411 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
412 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
413 
414 	BMDMA_CMD		= 0x224,	/* bmdma command register */
415 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
416 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
417 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
418 
419 	/* Host private flags (hp_flags) */
420 	MV_HP_FLAG_MSI		= (1 << 0),
421 	MV_HP_ERRATA_50XXB0	= (1 << 1),
422 	MV_HP_ERRATA_50XXB2	= (1 << 2),
423 	MV_HP_ERRATA_60X1B2	= (1 << 3),
424 	MV_HP_ERRATA_60X1C0	= (1 << 4),
425 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
426 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
427 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
428 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
429 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
430 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
431 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
432 
433 	/* Port private flags (pp_flags) */
434 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
435 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
436 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
437 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
438 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
439 };
440 
441 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
443 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
444 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
445 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
446 
447 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
448 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
449 
450 enum {
451 	/* DMA boundary 0xffff is required by the s/g splitting
452 	 * we need on /length/ in mv_fill-sg().
453 	 */
454 	MV_DMA_BOUNDARY		= 0xffffU,
455 
456 	/* mask of register bits containing lower 32 bits
457 	 * of EDMA request queue DMA address
458 	 */
459 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
460 
461 	/* ditto, for response queue */
462 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
463 };
464 
465 enum chip_type {
466 	chip_504x,
467 	chip_508x,
468 	chip_5080,
469 	chip_604x,
470 	chip_608x,
471 	chip_6042,
472 	chip_7042,
473 	chip_soc,
474 };
475 
476 /* Command ReQuest Block: 32B */
477 struct mv_crqb {
478 	__le32			sg_addr;
479 	__le32			sg_addr_hi;
480 	__le16			ctrl_flags;
481 	__le16			ata_cmd[11];
482 };
483 
484 struct mv_crqb_iie {
485 	__le32			addr;
486 	__le32			addr_hi;
487 	__le32			flags;
488 	__le32			len;
489 	__le32			ata_cmd[4];
490 };
491 
492 /* Command ResPonse Block: 8B */
493 struct mv_crpb {
494 	__le16			id;
495 	__le16			flags;
496 	__le32			tmstmp;
497 };
498 
499 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
500 struct mv_sg {
501 	__le32			addr;
502 	__le32			flags_size;
503 	__le32			addr_hi;
504 	__le32			reserved;
505 };
506 
507 /*
508  * We keep a local cache of a few frequently accessed port
509  * registers here, to avoid having to read them (very slow)
510  * when switching between EDMA and non-EDMA modes.
511  */
512 struct mv_cached_regs {
513 	u32			fiscfg;
514 	u32			ltmode;
515 	u32			haltcond;
516 	u32			unknown_rsvd;
517 };
518 
519 struct mv_port_priv {
520 	struct mv_crqb		*crqb;
521 	dma_addr_t		crqb_dma;
522 	struct mv_crpb		*crpb;
523 	dma_addr_t		crpb_dma;
524 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
525 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
526 
527 	unsigned int		req_idx;
528 	unsigned int		resp_idx;
529 
530 	u32			pp_flags;
531 	struct mv_cached_regs	cached;
532 	unsigned int		delayed_eh_pmp_map;
533 };
534 
535 struct mv_port_signal {
536 	u32			amps;
537 	u32			pre;
538 };
539 
540 struct mv_host_priv {
541 	u32			hp_flags;
542 	unsigned int 		board_idx;
543 	u32			main_irq_mask;
544 	struct mv_port_signal	signal[8];
545 	const struct mv_hw_ops	*ops;
546 	int			n_ports;
547 	void __iomem		*base;
548 	void __iomem		*main_irq_cause_addr;
549 	void __iomem		*main_irq_mask_addr;
550 	u32			irq_cause_offset;
551 	u32			irq_mask_offset;
552 	u32			unmask_all_irqs;
553 
554 #if defined(CONFIG_HAVE_CLK)
555 	struct clk		*clk;
556 #endif
557 	/*
558 	 * These consistent DMA memory pools give us guaranteed
559 	 * alignment for hardware-accessed data structures,
560 	 * and less memory waste in accomplishing the alignment.
561 	 */
562 	struct dma_pool		*crqb_pool;
563 	struct dma_pool		*crpb_pool;
564 	struct dma_pool		*sg_tbl_pool;
565 };
566 
567 struct mv_hw_ops {
568 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
569 			   unsigned int port);
570 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
571 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
572 			   void __iomem *mmio);
573 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
574 			unsigned int n_hc);
575 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
576 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
577 };
578 
579 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
580 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
581 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
582 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
583 static int mv_port_start(struct ata_port *ap);
584 static void mv_port_stop(struct ata_port *ap);
585 static int mv_qc_defer(struct ata_queued_cmd *qc);
586 static void mv_qc_prep(struct ata_queued_cmd *qc);
587 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
588 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
589 static int mv_hardreset(struct ata_link *link, unsigned int *class,
590 			unsigned long deadline);
591 static void mv_eh_freeze(struct ata_port *ap);
592 static void mv_eh_thaw(struct ata_port *ap);
593 static void mv6_dev_config(struct ata_device *dev);
594 
595 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
596 			   unsigned int port);
597 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
598 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
599 			   void __iomem *mmio);
600 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
601 			unsigned int n_hc);
602 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
603 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
604 
605 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 			   unsigned int port);
607 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
608 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
609 			   void __iomem *mmio);
610 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
611 			unsigned int n_hc);
612 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
613 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
614 				      void __iomem *mmio);
615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
616 				      void __iomem *mmio);
617 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
618 				  void __iomem *mmio, unsigned int n_hc);
619 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
620 				      void __iomem *mmio);
621 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
622 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
623 				  void __iomem *mmio, unsigned int port);
624 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
626 			     unsigned int port_no);
627 static int mv_stop_edma(struct ata_port *ap);
628 static int mv_stop_edma_engine(void __iomem *port_mmio);
629 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
630 
631 static void mv_pmp_select(struct ata_port *ap, int pmp);
632 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
633 				unsigned long deadline);
634 static int  mv_softreset(struct ata_link *link, unsigned int *class,
635 				unsigned long deadline);
636 static void mv_pmp_error_handler(struct ata_port *ap);
637 static void mv_process_crpb_entries(struct ata_port *ap,
638 					struct mv_port_priv *pp);
639 
640 static void mv_sff_irq_clear(struct ata_port *ap);
641 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
642 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
643 static void mv_bmdma_start(struct ata_queued_cmd *qc);
644 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
645 static u8   mv_bmdma_status(struct ata_port *ap);
646 static u8 mv_sff_check_status(struct ata_port *ap);
647 
648 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
649  * because we have to allow room for worst case splitting of
650  * PRDs for 64K boundaries in mv_fill_sg().
651  */
652 static struct scsi_host_template mv5_sht = {
653 	ATA_BASE_SHT(DRV_NAME),
654 	.sg_tablesize		= MV_MAX_SG_CT / 2,
655 	.dma_boundary		= MV_DMA_BOUNDARY,
656 };
657 
658 static struct scsi_host_template mv6_sht = {
659 	ATA_NCQ_SHT(DRV_NAME),
660 	.can_queue		= MV_MAX_Q_DEPTH - 1,
661 	.sg_tablesize		= MV_MAX_SG_CT / 2,
662 	.dma_boundary		= MV_DMA_BOUNDARY,
663 };
664 
665 static struct ata_port_operations mv5_ops = {
666 	.inherits		= &ata_sff_port_ops,
667 
668 	.lost_interrupt		= ATA_OP_NULL,
669 
670 	.qc_defer		= mv_qc_defer,
671 	.qc_prep		= mv_qc_prep,
672 	.qc_issue		= mv_qc_issue,
673 
674 	.freeze			= mv_eh_freeze,
675 	.thaw			= mv_eh_thaw,
676 	.hardreset		= mv_hardreset,
677 
678 	.scr_read		= mv5_scr_read,
679 	.scr_write		= mv5_scr_write,
680 
681 	.port_start		= mv_port_start,
682 	.port_stop		= mv_port_stop,
683 };
684 
685 static struct ata_port_operations mv6_ops = {
686 	.inherits		= &ata_bmdma_port_ops,
687 
688 	.lost_interrupt		= ATA_OP_NULL,
689 
690 	.qc_defer		= mv_qc_defer,
691 	.qc_prep		= mv_qc_prep,
692 	.qc_issue		= mv_qc_issue,
693 
694 	.dev_config             = mv6_dev_config,
695 
696 	.freeze			= mv_eh_freeze,
697 	.thaw			= mv_eh_thaw,
698 	.hardreset		= mv_hardreset,
699 	.softreset		= mv_softreset,
700 	.pmp_hardreset		= mv_pmp_hardreset,
701 	.pmp_softreset		= mv_softreset,
702 	.error_handler		= mv_pmp_error_handler,
703 
704 	.scr_read		= mv_scr_read,
705 	.scr_write		= mv_scr_write,
706 
707 	.sff_check_status	= mv_sff_check_status,
708 	.sff_irq_clear		= mv_sff_irq_clear,
709 	.check_atapi_dma	= mv_check_atapi_dma,
710 	.bmdma_setup		= mv_bmdma_setup,
711 	.bmdma_start		= mv_bmdma_start,
712 	.bmdma_stop		= mv_bmdma_stop,
713 	.bmdma_status		= mv_bmdma_status,
714 
715 	.port_start		= mv_port_start,
716 	.port_stop		= mv_port_stop,
717 };
718 
719 static struct ata_port_operations mv_iie_ops = {
720 	.inherits		= &mv6_ops,
721 	.dev_config		= ATA_OP_NULL,
722 	.qc_prep		= mv_qc_prep_iie,
723 };
724 
725 static const struct ata_port_info mv_port_info[] = {
726 	{  /* chip_504x */
727 		.flags		= MV_GEN_I_FLAGS,
728 		.pio_mask	= ATA_PIO4,
729 		.udma_mask	= ATA_UDMA6,
730 		.port_ops	= &mv5_ops,
731 	},
732 	{  /* chip_508x */
733 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
734 		.pio_mask	= ATA_PIO4,
735 		.udma_mask	= ATA_UDMA6,
736 		.port_ops	= &mv5_ops,
737 	},
738 	{  /* chip_5080 */
739 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
740 		.pio_mask	= ATA_PIO4,
741 		.udma_mask	= ATA_UDMA6,
742 		.port_ops	= &mv5_ops,
743 	},
744 	{  /* chip_604x */
745 		.flags		= MV_GEN_II_FLAGS,
746 		.pio_mask	= ATA_PIO4,
747 		.udma_mask	= ATA_UDMA6,
748 		.port_ops	= &mv6_ops,
749 	},
750 	{  /* chip_608x */
751 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
752 		.pio_mask	= ATA_PIO4,
753 		.udma_mask	= ATA_UDMA6,
754 		.port_ops	= &mv6_ops,
755 	},
756 	{  /* chip_6042 */
757 		.flags		= MV_GEN_IIE_FLAGS,
758 		.pio_mask	= ATA_PIO4,
759 		.udma_mask	= ATA_UDMA6,
760 		.port_ops	= &mv_iie_ops,
761 	},
762 	{  /* chip_7042 */
763 		.flags		= MV_GEN_IIE_FLAGS,
764 		.pio_mask	= ATA_PIO4,
765 		.udma_mask	= ATA_UDMA6,
766 		.port_ops	= &mv_iie_ops,
767 	},
768 	{  /* chip_soc */
769 		.flags		= MV_GEN_IIE_FLAGS,
770 		.pio_mask	= ATA_PIO4,
771 		.udma_mask	= ATA_UDMA6,
772 		.port_ops	= &mv_iie_ops,
773 	},
774 };
775 
776 static const struct pci_device_id mv_pci_tbl[] = {
777 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
778 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
779 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
780 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
781 	/* RocketRAID 1720/174x have different identifiers */
782 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
783 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
784 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
785 
786 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
787 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
788 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
789 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
790 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
791 
792 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
793 
794 	/* Adaptec 1430SA */
795 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
796 
797 	/* Marvell 7042 support */
798 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
799 
800 	/* Highpoint RocketRAID PCIe series */
801 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
802 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
803 
804 	{ }			/* terminate list */
805 };
806 
807 static const struct mv_hw_ops mv5xxx_ops = {
808 	.phy_errata		= mv5_phy_errata,
809 	.enable_leds		= mv5_enable_leds,
810 	.read_preamp		= mv5_read_preamp,
811 	.reset_hc		= mv5_reset_hc,
812 	.reset_flash		= mv5_reset_flash,
813 	.reset_bus		= mv5_reset_bus,
814 };
815 
816 static const struct mv_hw_ops mv6xxx_ops = {
817 	.phy_errata		= mv6_phy_errata,
818 	.enable_leds		= mv6_enable_leds,
819 	.read_preamp		= mv6_read_preamp,
820 	.reset_hc		= mv6_reset_hc,
821 	.reset_flash		= mv6_reset_flash,
822 	.reset_bus		= mv_reset_pci_bus,
823 };
824 
825 static const struct mv_hw_ops mv_soc_ops = {
826 	.phy_errata		= mv6_phy_errata,
827 	.enable_leds		= mv_soc_enable_leds,
828 	.read_preamp		= mv_soc_read_preamp,
829 	.reset_hc		= mv_soc_reset_hc,
830 	.reset_flash		= mv_soc_reset_flash,
831 	.reset_bus		= mv_soc_reset_bus,
832 };
833 
834 static const struct mv_hw_ops mv_soc_65n_ops = {
835 	.phy_errata		= mv_soc_65n_phy_errata,
836 	.enable_leds		= mv_soc_enable_leds,
837 	.reset_hc		= mv_soc_reset_hc,
838 	.reset_flash		= mv_soc_reset_flash,
839 	.reset_bus		= mv_soc_reset_bus,
840 };
841 
842 /*
843  * Functions
844  */
845 
writelfl(unsigned long data,void __iomem * addr)846 static inline void writelfl(unsigned long data, void __iomem *addr)
847 {
848 	writel(data, addr);
849 	(void) readl(addr);	/* flush to avoid PCI posted write */
850 }
851 
mv_hc_from_port(unsigned int port)852 static inline unsigned int mv_hc_from_port(unsigned int port)
853 {
854 	return port >> MV_PORT_HC_SHIFT;
855 }
856 
mv_hardport_from_port(unsigned int port)857 static inline unsigned int mv_hardport_from_port(unsigned int port)
858 {
859 	return port & MV_PORT_MASK;
860 }
861 
862 /*
863  * Consolidate some rather tricky bit shift calculations.
864  * This is hot-path stuff, so not a function.
865  * Simple code, with two return values, so macro rather than inline.
866  *
867  * port is the sole input, in range 0..7.
868  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
869  * hardport is the other output, in range 0..3.
870  *
871  * Note that port and hardport may be the same variable in some cases.
872  */
873 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
874 {								\
875 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
876 	hardport = mv_hardport_from_port(port);			\
877 	shift   += hardport * 2;				\
878 }
879 
mv_hc_base(void __iomem * base,unsigned int hc)880 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
881 {
882 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
883 }
884 
mv_hc_base_from_port(void __iomem * base,unsigned int port)885 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
886 						 unsigned int port)
887 {
888 	return mv_hc_base(base, mv_hc_from_port(port));
889 }
890 
mv_port_base(void __iomem * base,unsigned int port)891 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
892 {
893 	return  mv_hc_base_from_port(base, port) +
894 		MV_SATAHC_ARBTR_REG_SZ +
895 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
896 }
897 
mv5_phy_base(void __iomem * mmio,unsigned int port)898 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
899 {
900 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
901 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
902 
903 	return hc_mmio + ofs;
904 }
905 
mv_host_base(struct ata_host * host)906 static inline void __iomem *mv_host_base(struct ata_host *host)
907 {
908 	struct mv_host_priv *hpriv = host->private_data;
909 	return hpriv->base;
910 }
911 
mv_ap_base(struct ata_port * ap)912 static inline void __iomem *mv_ap_base(struct ata_port *ap)
913 {
914 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
915 }
916 
mv_get_hc_count(unsigned long port_flags)917 static inline int mv_get_hc_count(unsigned long port_flags)
918 {
919 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
920 }
921 
922 /**
923  *      mv_save_cached_regs - (re-)initialize cached port registers
924  *      @ap: the port whose registers we are caching
925  *
926  *	Initialize the local cache of port registers,
927  *	so that reading them over and over again can
928  *	be avoided on the hotter paths of this driver.
929  *	This saves a few microseconds each time we switch
930  *	to/from EDMA mode to perform (eg.) a drive cache flush.
931  */
mv_save_cached_regs(struct ata_port * ap)932 static void mv_save_cached_regs(struct ata_port *ap)
933 {
934 	void __iomem *port_mmio = mv_ap_base(ap);
935 	struct mv_port_priv *pp = ap->private_data;
936 
937 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
938 	pp->cached.ltmode = readl(port_mmio + LTMODE);
939 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
940 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
941 }
942 
943 /**
944  *      mv_write_cached_reg - write to a cached port register
945  *      @addr: hardware address of the register
946  *      @old: pointer to cached value of the register
947  *      @new: new value for the register
948  *
949  *	Write a new value to a cached register,
950  *	but only if the value is different from before.
951  */
mv_write_cached_reg(void __iomem * addr,u32 * old,u32 new)952 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
953 {
954 	if (new != *old) {
955 		unsigned long laddr;
956 		*old = new;
957 		/*
958 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
959 		 * Read-after-write is needed to prevent generating 64-bit
960 		 * write cycles on the PCI bus for SATA interface registers
961 		 * at offsets ending in 0x4 or 0xc.
962 		 *
963 		 * Looks like a lot of fuss, but it avoids an unnecessary
964 		 * +1 usec read-after-write delay for unaffected registers.
965 		 */
966 		laddr = (long)addr & 0xffff;
967 		if (laddr >= 0x300 && laddr <= 0x33c) {
968 			laddr &= 0x000f;
969 			if (laddr == 0x4 || laddr == 0xc) {
970 				writelfl(new, addr); /* read after write */
971 				return;
972 			}
973 		}
974 		writel(new, addr); /* unaffected by the errata */
975 	}
976 }
977 
mv_set_edma_ptrs(void __iomem * port_mmio,struct mv_host_priv * hpriv,struct mv_port_priv * pp)978 static void mv_set_edma_ptrs(void __iomem *port_mmio,
979 			     struct mv_host_priv *hpriv,
980 			     struct mv_port_priv *pp)
981 {
982 	u32 index;
983 
984 	/*
985 	 * initialize request queue
986 	 */
987 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
988 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
989 
990 	WARN_ON(pp->crqb_dma & 0x3ff);
991 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
992 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
993 		 port_mmio + EDMA_REQ_Q_IN_PTR);
994 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
995 
996 	/*
997 	 * initialize response queue
998 	 */
999 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1000 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1001 
1002 	WARN_ON(pp->crpb_dma & 0xff);
1003 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1004 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1005 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1006 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1007 }
1008 
mv_write_main_irq_mask(u32 mask,struct mv_host_priv * hpriv)1009 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1010 {
1011 	/*
1012 	 * When writing to the main_irq_mask in hardware,
1013 	 * we must ensure exclusivity between the interrupt coalescing bits
1014 	 * and the corresponding individual port DONE_IRQ bits.
1015 	 *
1016 	 * Note that this register is really an "IRQ enable" register,
1017 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1018 	 */
1019 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1020 		mask &= ~DONE_IRQ_0_3;
1021 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1022 		mask &= ~DONE_IRQ_4_7;
1023 	writelfl(mask, hpriv->main_irq_mask_addr);
1024 }
1025 
mv_set_main_irq_mask(struct ata_host * host,u32 disable_bits,u32 enable_bits)1026 static void mv_set_main_irq_mask(struct ata_host *host,
1027 				 u32 disable_bits, u32 enable_bits)
1028 {
1029 	struct mv_host_priv *hpriv = host->private_data;
1030 	u32 old_mask, new_mask;
1031 
1032 	old_mask = hpriv->main_irq_mask;
1033 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1034 	if (new_mask != old_mask) {
1035 		hpriv->main_irq_mask = new_mask;
1036 		mv_write_main_irq_mask(new_mask, hpriv);
1037 	}
1038 }
1039 
mv_enable_port_irqs(struct ata_port * ap,unsigned int port_bits)1040 static void mv_enable_port_irqs(struct ata_port *ap,
1041 				     unsigned int port_bits)
1042 {
1043 	unsigned int shift, hardport, port = ap->port_no;
1044 	u32 disable_bits, enable_bits;
1045 
1046 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1047 
1048 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1049 	enable_bits  = port_bits << shift;
1050 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1051 }
1052 
mv_clear_and_enable_port_irqs(struct ata_port * ap,void __iomem * port_mmio,unsigned int port_irqs)1053 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1054 					  void __iomem *port_mmio,
1055 					  unsigned int port_irqs)
1056 {
1057 	struct mv_host_priv *hpriv = ap->host->private_data;
1058 	int hardport = mv_hardport_from_port(ap->port_no);
1059 	void __iomem *hc_mmio = mv_hc_base_from_port(
1060 				mv_host_base(ap->host), ap->port_no);
1061 	u32 hc_irq_cause;
1062 
1063 	/* clear EDMA event indicators, if any */
1064 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1065 
1066 	/* clear pending irq events */
1067 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1068 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1069 
1070 	/* clear FIS IRQ Cause */
1071 	if (IS_GEN_IIE(hpriv))
1072 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1073 
1074 	mv_enable_port_irqs(ap, port_irqs);
1075 }
1076 
mv_set_irq_coalescing(struct ata_host * host,unsigned int count,unsigned int usecs)1077 static void mv_set_irq_coalescing(struct ata_host *host,
1078 				  unsigned int count, unsigned int usecs)
1079 {
1080 	struct mv_host_priv *hpriv = host->private_data;
1081 	void __iomem *mmio = hpriv->base, *hc_mmio;
1082 	u32 coal_enable = 0;
1083 	unsigned long flags;
1084 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1085 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1086 							ALL_PORTS_COAL_DONE;
1087 
1088 	/* Disable IRQ coalescing if either threshold is zero */
1089 	if (!usecs || !count) {
1090 		clks = count = 0;
1091 	} else {
1092 		/* Respect maximum limits of the hardware */
1093 		clks = usecs * COAL_CLOCKS_PER_USEC;
1094 		if (clks > MAX_COAL_TIME_THRESHOLD)
1095 			clks = MAX_COAL_TIME_THRESHOLD;
1096 		if (count > MAX_COAL_IO_COUNT)
1097 			count = MAX_COAL_IO_COUNT;
1098 	}
1099 
1100 	spin_lock_irqsave(&host->lock, flags);
1101 	mv_set_main_irq_mask(host, coal_disable, 0);
1102 
1103 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1104 		/*
1105 		 * GEN_II/GEN_IIE with dual host controllers:
1106 		 * one set of global thresholds for the entire chip.
1107 		 */
1108 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1109 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1110 		/* clear leftover coal IRQ bit */
1111 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1112 		if (count)
1113 			coal_enable = ALL_PORTS_COAL_DONE;
1114 		clks = count = 0; /* force clearing of regular regs below */
1115 	}
1116 
1117 	/*
1118 	 * All chips: independent thresholds for each HC on the chip.
1119 	 */
1120 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1121 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1122 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1123 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1124 	if (count)
1125 		coal_enable |= PORTS_0_3_COAL_DONE;
1126 	if (is_dual_hc) {
1127 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1128 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1129 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1130 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1131 		if (count)
1132 			coal_enable |= PORTS_4_7_COAL_DONE;
1133 	}
1134 
1135 	mv_set_main_irq_mask(host, 0, coal_enable);
1136 	spin_unlock_irqrestore(&host->lock, flags);
1137 }
1138 
1139 /**
1140  *      mv_start_edma - Enable eDMA engine
1141  *      @base: port base address
1142  *      @pp: port private data
1143  *
1144  *      Verify the local cache of the eDMA state is accurate with a
1145  *      WARN_ON.
1146  *
1147  *      LOCKING:
1148  *      Inherited from caller.
1149  */
mv_start_edma(struct ata_port * ap,void __iomem * port_mmio,struct mv_port_priv * pp,u8 protocol)1150 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1151 			 struct mv_port_priv *pp, u8 protocol)
1152 {
1153 	int want_ncq = (protocol == ATA_PROT_NCQ);
1154 
1155 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1156 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1157 		if (want_ncq != using_ncq)
1158 			mv_stop_edma(ap);
1159 	}
1160 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1161 		struct mv_host_priv *hpriv = ap->host->private_data;
1162 
1163 		mv_edma_cfg(ap, want_ncq, 1);
1164 
1165 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1166 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1167 
1168 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1169 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1170 	}
1171 }
1172 
mv_wait_for_edma_empty_idle(struct ata_port * ap)1173 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1174 {
1175 	void __iomem *port_mmio = mv_ap_base(ap);
1176 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1177 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1178 	int i;
1179 
1180 	/*
1181 	 * Wait for the EDMA engine to finish transactions in progress.
1182 	 * No idea what a good "timeout" value might be, but measurements
1183 	 * indicate that it often requires hundreds of microseconds
1184 	 * with two drives in-use.  So we use the 15msec value above
1185 	 * as a rough guess at what even more drives might require.
1186 	 */
1187 	for (i = 0; i < timeout; ++i) {
1188 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1189 		if ((edma_stat & empty_idle) == empty_idle)
1190 			break;
1191 		udelay(per_loop);
1192 	}
1193 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1194 }
1195 
1196 /**
1197  *      mv_stop_edma_engine - Disable eDMA engine
1198  *      @port_mmio: io base address
1199  *
1200  *      LOCKING:
1201  *      Inherited from caller.
1202  */
mv_stop_edma_engine(void __iomem * port_mmio)1203 static int mv_stop_edma_engine(void __iomem *port_mmio)
1204 {
1205 	int i;
1206 
1207 	/* Disable eDMA.  The disable bit auto clears. */
1208 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1209 
1210 	/* Wait for the chip to confirm eDMA is off. */
1211 	for (i = 10000; i > 0; i--) {
1212 		u32 reg = readl(port_mmio + EDMA_CMD);
1213 		if (!(reg & EDMA_EN))
1214 			return 0;
1215 		udelay(10);
1216 	}
1217 	return -EIO;
1218 }
1219 
mv_stop_edma(struct ata_port * ap)1220 static int mv_stop_edma(struct ata_port *ap)
1221 {
1222 	void __iomem *port_mmio = mv_ap_base(ap);
1223 	struct mv_port_priv *pp = ap->private_data;
1224 	int err = 0;
1225 
1226 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1227 		return 0;
1228 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1229 	mv_wait_for_edma_empty_idle(ap);
1230 	if (mv_stop_edma_engine(port_mmio)) {
1231 		ata_port_err(ap, "Unable to stop eDMA\n");
1232 		err = -EIO;
1233 	}
1234 	mv_edma_cfg(ap, 0, 0);
1235 	return err;
1236 }
1237 
1238 #ifdef ATA_DEBUG
mv_dump_mem(void __iomem * start,unsigned bytes)1239 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1240 {
1241 	int b, w;
1242 	for (b = 0; b < bytes; ) {
1243 		DPRINTK("%p: ", start + b);
1244 		for (w = 0; b < bytes && w < 4; w++) {
1245 			printk("%08x ", readl(start + b));
1246 			b += sizeof(u32);
1247 		}
1248 		printk("\n");
1249 	}
1250 }
1251 #endif
1252 
mv_dump_pci_cfg(struct pci_dev * pdev,unsigned bytes)1253 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1254 {
1255 #ifdef ATA_DEBUG
1256 	int b, w;
1257 	u32 dw;
1258 	for (b = 0; b < bytes; ) {
1259 		DPRINTK("%02x: ", b);
1260 		for (w = 0; b < bytes && w < 4; w++) {
1261 			(void) pci_read_config_dword(pdev, b, &dw);
1262 			printk("%08x ", dw);
1263 			b += sizeof(u32);
1264 		}
1265 		printk("\n");
1266 	}
1267 #endif
1268 }
mv_dump_all_regs(void __iomem * mmio_base,int port,struct pci_dev * pdev)1269 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1270 			     struct pci_dev *pdev)
1271 {
1272 #ifdef ATA_DEBUG
1273 	void __iomem *hc_base = mv_hc_base(mmio_base,
1274 					   port >> MV_PORT_HC_SHIFT);
1275 	void __iomem *port_base;
1276 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1277 
1278 	if (0 > port) {
1279 		start_hc = start_port = 0;
1280 		num_ports = 8;		/* shld be benign for 4 port devs */
1281 		num_hcs = 2;
1282 	} else {
1283 		start_hc = port >> MV_PORT_HC_SHIFT;
1284 		start_port = port;
1285 		num_ports = num_hcs = 1;
1286 	}
1287 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1288 		num_ports > 1 ? num_ports - 1 : start_port);
1289 
1290 	if (NULL != pdev) {
1291 		DPRINTK("PCI config space regs:\n");
1292 		mv_dump_pci_cfg(pdev, 0x68);
1293 	}
1294 	DPRINTK("PCI regs:\n");
1295 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1296 	mv_dump_mem(mmio_base+0xd00, 0x34);
1297 	mv_dump_mem(mmio_base+0xf00, 0x4);
1298 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1299 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1300 		hc_base = mv_hc_base(mmio_base, hc);
1301 		DPRINTK("HC regs (HC %i):\n", hc);
1302 		mv_dump_mem(hc_base, 0x1c);
1303 	}
1304 	for (p = start_port; p < start_port + num_ports; p++) {
1305 		port_base = mv_port_base(mmio_base, p);
1306 		DPRINTK("EDMA regs (port %i):\n", p);
1307 		mv_dump_mem(port_base, 0x54);
1308 		DPRINTK("SATA regs (port %i):\n", p);
1309 		mv_dump_mem(port_base+0x300, 0x60);
1310 	}
1311 #endif
1312 }
1313 
mv_scr_offset(unsigned int sc_reg_in)1314 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1315 {
1316 	unsigned int ofs;
1317 
1318 	switch (sc_reg_in) {
1319 	case SCR_STATUS:
1320 	case SCR_CONTROL:
1321 	case SCR_ERROR:
1322 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1323 		break;
1324 	case SCR_ACTIVE:
1325 		ofs = SATA_ACTIVE;   /* active is not with the others */
1326 		break;
1327 	default:
1328 		ofs = 0xffffffffU;
1329 		break;
1330 	}
1331 	return ofs;
1332 }
1333 
mv_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)1334 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1335 {
1336 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1337 
1338 	if (ofs != 0xffffffffU) {
1339 		*val = readl(mv_ap_base(link->ap) + ofs);
1340 		return 0;
1341 	} else
1342 		return -EINVAL;
1343 }
1344 
mv_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)1345 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1346 {
1347 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1348 
1349 	if (ofs != 0xffffffffU) {
1350 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1351 		if (sc_reg_in == SCR_CONTROL) {
1352 			/*
1353 			 * Workaround for 88SX60x1 FEr SATA#26:
1354 			 *
1355 			 * COMRESETs have to take care not to accidentally
1356 			 * put the drive to sleep when writing SCR_CONTROL.
1357 			 * Setting bits 12..15 prevents this problem.
1358 			 *
1359 			 * So if we see an outbound COMMRESET, set those bits.
1360 			 * Ditto for the followup write that clears the reset.
1361 			 *
1362 			 * The proprietary driver does this for
1363 			 * all chip versions, and so do we.
1364 			 */
1365 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1366 				val |= 0xf000;
1367 		}
1368 		writelfl(val, addr);
1369 		return 0;
1370 	} else
1371 		return -EINVAL;
1372 }
1373 
mv6_dev_config(struct ata_device * adev)1374 static void mv6_dev_config(struct ata_device *adev)
1375 {
1376 	/*
1377 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1378 	 *
1379 	 * Gen-II does not support NCQ over a port multiplier
1380 	 *  (no FIS-based switching).
1381 	 */
1382 	if (adev->flags & ATA_DFLAG_NCQ) {
1383 		if (sata_pmp_attached(adev->link->ap)) {
1384 			adev->flags &= ~ATA_DFLAG_NCQ;
1385 			ata_dev_info(adev,
1386 				"NCQ disabled for command-based switching\n");
1387 		}
1388 	}
1389 }
1390 
mv_qc_defer(struct ata_queued_cmd * qc)1391 static int mv_qc_defer(struct ata_queued_cmd *qc)
1392 {
1393 	struct ata_link *link = qc->dev->link;
1394 	struct ata_port *ap = link->ap;
1395 	struct mv_port_priv *pp = ap->private_data;
1396 
1397 	/*
1398 	 * Don't allow new commands if we're in a delayed EH state
1399 	 * for NCQ and/or FIS-based switching.
1400 	 */
1401 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1402 		return ATA_DEFER_PORT;
1403 
1404 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1405 	 * can run concurrently.
1406 	 * set excl_link when we want to send a PIO command in DMA mode
1407 	 * or a non-NCQ command in NCQ mode.
1408 	 * When we receive a command from that link, and there are no
1409 	 * outstanding commands, mark a flag to clear excl_link and let
1410 	 * the command go through.
1411 	 */
1412 	if (unlikely(ap->excl_link)) {
1413 		if (link == ap->excl_link) {
1414 			if (ap->nr_active_links)
1415 				return ATA_DEFER_PORT;
1416 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1417 			return 0;
1418 		} else
1419 			return ATA_DEFER_PORT;
1420 	}
1421 
1422 	/*
1423 	 * If the port is completely idle, then allow the new qc.
1424 	 */
1425 	if (ap->nr_active_links == 0)
1426 		return 0;
1427 
1428 	/*
1429 	 * The port is operating in host queuing mode (EDMA) with NCQ
1430 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1431 	 * queueing multiple DMA commands but libata core currently
1432 	 * doesn't allow it.
1433 	 */
1434 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1435 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1436 		if (ata_is_ncq(qc->tf.protocol))
1437 			return 0;
1438 		else {
1439 			ap->excl_link = link;
1440 			return ATA_DEFER_PORT;
1441 		}
1442 	}
1443 
1444 	return ATA_DEFER_PORT;
1445 }
1446 
mv_config_fbs(struct ata_port * ap,int want_ncq,int want_fbs)1447 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1448 {
1449 	struct mv_port_priv *pp = ap->private_data;
1450 	void __iomem *port_mmio;
1451 
1452 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1453 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1454 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1455 
1456 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1457 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1458 
1459 	if (want_fbs) {
1460 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1461 		ltmode = *old_ltmode | LTMODE_BIT8;
1462 		if (want_ncq)
1463 			haltcond &= ~EDMA_ERR_DEV;
1464 		else
1465 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1466 	} else {
1467 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1468 	}
1469 
1470 	port_mmio = mv_ap_base(ap);
1471 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1472 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1473 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1474 }
1475 
mv_60x1_errata_sata25(struct ata_port * ap,int want_ncq)1476 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1477 {
1478 	struct mv_host_priv *hpriv = ap->host->private_data;
1479 	u32 old, new;
1480 
1481 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1482 	old = readl(hpriv->base + GPIO_PORT_CTL);
1483 	if (want_ncq)
1484 		new = old | (1 << 22);
1485 	else
1486 		new = old & ~(1 << 22);
1487 	if (new != old)
1488 		writel(new, hpriv->base + GPIO_PORT_CTL);
1489 }
1490 
1491 /**
1492  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1493  *	@ap: Port being initialized
1494  *
1495  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1496  *
1497  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1498  *	of basic DMA on the GEN_IIE versions of the chips.
1499  *
1500  *	This bit survives EDMA resets, and must be set for basic DMA
1501  *	to function, and should be cleared when EDMA is active.
1502  */
mv_bmdma_enable_iie(struct ata_port * ap,int enable_bmdma)1503 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1504 {
1505 	struct mv_port_priv *pp = ap->private_data;
1506 	u32 new, *old = &pp->cached.unknown_rsvd;
1507 
1508 	if (enable_bmdma)
1509 		new = *old | 1;
1510 	else
1511 		new = *old & ~1;
1512 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1513 }
1514 
1515 /*
1516  * SOC chips have an issue whereby the HDD LEDs don't always blink
1517  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1518  * of the SOC takes care of it, generating a steady blink rate when
1519  * any drive on the chip is active.
1520  *
1521  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1522  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1523  *
1524  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1525  * LED operation works then, and provides better (more accurate) feedback.
1526  *
1527  * Note that this code assumes that an SOC never has more than one HC onboard.
1528  */
mv_soc_led_blink_enable(struct ata_port * ap)1529 static void mv_soc_led_blink_enable(struct ata_port *ap)
1530 {
1531 	struct ata_host *host = ap->host;
1532 	struct mv_host_priv *hpriv = host->private_data;
1533 	void __iomem *hc_mmio;
1534 	u32 led_ctrl;
1535 
1536 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1537 		return;
1538 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1539 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1540 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1541 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1542 }
1543 
mv_soc_led_blink_disable(struct ata_port * ap)1544 static void mv_soc_led_blink_disable(struct ata_port *ap)
1545 {
1546 	struct ata_host *host = ap->host;
1547 	struct mv_host_priv *hpriv = host->private_data;
1548 	void __iomem *hc_mmio;
1549 	u32 led_ctrl;
1550 	unsigned int port;
1551 
1552 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1553 		return;
1554 
1555 	/* disable led-blink only if no ports are using NCQ */
1556 	for (port = 0; port < hpriv->n_ports; port++) {
1557 		struct ata_port *this_ap = host->ports[port];
1558 		struct mv_port_priv *pp = this_ap->private_data;
1559 
1560 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1561 			return;
1562 	}
1563 
1564 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1565 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1566 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1567 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1568 }
1569 
mv_edma_cfg(struct ata_port * ap,int want_ncq,int want_edma)1570 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1571 {
1572 	u32 cfg;
1573 	struct mv_port_priv *pp    = ap->private_data;
1574 	struct mv_host_priv *hpriv = ap->host->private_data;
1575 	void __iomem *port_mmio    = mv_ap_base(ap);
1576 
1577 	/* set up non-NCQ EDMA configuration */
1578 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1579 	pp->pp_flags &=
1580 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1581 
1582 	if (IS_GEN_I(hpriv))
1583 		cfg |= (1 << 8);	/* enab config burst size mask */
1584 
1585 	else if (IS_GEN_II(hpriv)) {
1586 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1587 		mv_60x1_errata_sata25(ap, want_ncq);
1588 
1589 	} else if (IS_GEN_IIE(hpriv)) {
1590 		int want_fbs = sata_pmp_attached(ap);
1591 		/*
1592 		 * Possible future enhancement:
1593 		 *
1594 		 * The chip can use FBS with non-NCQ, if we allow it,
1595 		 * But first we need to have the error handling in place
1596 		 * for this mode (datasheet section 7.3.15.4.2.3).
1597 		 * So disallow non-NCQ FBS for now.
1598 		 */
1599 		want_fbs &= want_ncq;
1600 
1601 		mv_config_fbs(ap, want_ncq, want_fbs);
1602 
1603 		if (want_fbs) {
1604 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1605 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1606 		}
1607 
1608 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1609 		if (want_edma) {
1610 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1611 			if (!IS_SOC(hpriv))
1612 				cfg |= (1 << 18); /* enab early completion */
1613 		}
1614 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1615 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1616 		mv_bmdma_enable_iie(ap, !want_edma);
1617 
1618 		if (IS_SOC(hpriv)) {
1619 			if (want_ncq)
1620 				mv_soc_led_blink_enable(ap);
1621 			else
1622 				mv_soc_led_blink_disable(ap);
1623 		}
1624 	}
1625 
1626 	if (want_ncq) {
1627 		cfg |= EDMA_CFG_NCQ;
1628 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1629 	}
1630 
1631 	writelfl(cfg, port_mmio + EDMA_CFG);
1632 }
1633 
mv_port_free_dma_mem(struct ata_port * ap)1634 static void mv_port_free_dma_mem(struct ata_port *ap)
1635 {
1636 	struct mv_host_priv *hpriv = ap->host->private_data;
1637 	struct mv_port_priv *pp = ap->private_data;
1638 	int tag;
1639 
1640 	if (pp->crqb) {
1641 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1642 		pp->crqb = NULL;
1643 	}
1644 	if (pp->crpb) {
1645 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1646 		pp->crpb = NULL;
1647 	}
1648 	/*
1649 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1650 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1651 	 */
1652 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1653 		if (pp->sg_tbl[tag]) {
1654 			if (tag == 0 || !IS_GEN_I(hpriv))
1655 				dma_pool_free(hpriv->sg_tbl_pool,
1656 					      pp->sg_tbl[tag],
1657 					      pp->sg_tbl_dma[tag]);
1658 			pp->sg_tbl[tag] = NULL;
1659 		}
1660 	}
1661 }
1662 
1663 /**
1664  *      mv_port_start - Port specific init/start routine.
1665  *      @ap: ATA channel to manipulate
1666  *
1667  *      Allocate and point to DMA memory, init port private memory,
1668  *      zero indices.
1669  *
1670  *      LOCKING:
1671  *      Inherited from caller.
1672  */
mv_port_start(struct ata_port * ap)1673 static int mv_port_start(struct ata_port *ap)
1674 {
1675 	struct device *dev = ap->host->dev;
1676 	struct mv_host_priv *hpriv = ap->host->private_data;
1677 	struct mv_port_priv *pp;
1678 	unsigned long flags;
1679 	int tag;
1680 
1681 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1682 	if (!pp)
1683 		return -ENOMEM;
1684 	ap->private_data = pp;
1685 
1686 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1687 	if (!pp->crqb)
1688 		return -ENOMEM;
1689 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1690 
1691 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1692 	if (!pp->crpb)
1693 		goto out_port_free_dma_mem;
1694 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1695 
1696 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1697 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1698 		ap->flags |= ATA_FLAG_AN;
1699 	/*
1700 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1701 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1702 	 */
1703 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1704 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1705 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1706 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1707 			if (!pp->sg_tbl[tag])
1708 				goto out_port_free_dma_mem;
1709 		} else {
1710 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1711 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1712 		}
1713 	}
1714 
1715 	spin_lock_irqsave(ap->lock, flags);
1716 	mv_save_cached_regs(ap);
1717 	mv_edma_cfg(ap, 0, 0);
1718 	spin_unlock_irqrestore(ap->lock, flags);
1719 
1720 	return 0;
1721 
1722 out_port_free_dma_mem:
1723 	mv_port_free_dma_mem(ap);
1724 	return -ENOMEM;
1725 }
1726 
1727 /**
1728  *      mv_port_stop - Port specific cleanup/stop routine.
1729  *      @ap: ATA channel to manipulate
1730  *
1731  *      Stop DMA, cleanup port memory.
1732  *
1733  *      LOCKING:
1734  *      This routine uses the host lock to protect the DMA stop.
1735  */
mv_port_stop(struct ata_port * ap)1736 static void mv_port_stop(struct ata_port *ap)
1737 {
1738 	unsigned long flags;
1739 
1740 	spin_lock_irqsave(ap->lock, flags);
1741 	mv_stop_edma(ap);
1742 	mv_enable_port_irqs(ap, 0);
1743 	spin_unlock_irqrestore(ap->lock, flags);
1744 	mv_port_free_dma_mem(ap);
1745 }
1746 
1747 /**
1748  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1749  *      @qc: queued command whose SG list to source from
1750  *
1751  *      Populate the SG list and mark the last entry.
1752  *
1753  *      LOCKING:
1754  *      Inherited from caller.
1755  */
mv_fill_sg(struct ata_queued_cmd * qc)1756 static void mv_fill_sg(struct ata_queued_cmd *qc)
1757 {
1758 	struct mv_port_priv *pp = qc->ap->private_data;
1759 	struct scatterlist *sg;
1760 	struct mv_sg *mv_sg, *last_sg = NULL;
1761 	unsigned int si;
1762 
1763 	mv_sg = pp->sg_tbl[qc->tag];
1764 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1765 		dma_addr_t addr = sg_dma_address(sg);
1766 		u32 sg_len = sg_dma_len(sg);
1767 
1768 		while (sg_len) {
1769 			u32 offset = addr & 0xffff;
1770 			u32 len = sg_len;
1771 
1772 			if (offset + len > 0x10000)
1773 				len = 0x10000 - offset;
1774 
1775 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1776 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1777 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1778 			mv_sg->reserved = 0;
1779 
1780 			sg_len -= len;
1781 			addr += len;
1782 
1783 			last_sg = mv_sg;
1784 			mv_sg++;
1785 		}
1786 	}
1787 
1788 	if (likely(last_sg))
1789 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1790 	mb(); /* ensure data structure is visible to the chipset */
1791 }
1792 
mv_crqb_pack_cmd(__le16 * cmdw,u8 data,u8 addr,unsigned last)1793 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1794 {
1795 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1796 		(last ? CRQB_CMD_LAST : 0);
1797 	*cmdw = cpu_to_le16(tmp);
1798 }
1799 
1800 /**
1801  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1802  *	@ap: Port associated with this ATA transaction.
1803  *
1804  *	We need this only for ATAPI bmdma transactions,
1805  *	as otherwise we experience spurious interrupts
1806  *	after libata-sff handles the bmdma interrupts.
1807  */
mv_sff_irq_clear(struct ata_port * ap)1808 static void mv_sff_irq_clear(struct ata_port *ap)
1809 {
1810 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1811 }
1812 
1813 /**
1814  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1815  *	@qc: queued command to check for chipset/DMA compatibility.
1816  *
1817  *	The bmdma engines cannot handle speculative data sizes
1818  *	(bytecount under/over flow).  So only allow DMA for
1819  *	data transfer commands with known data sizes.
1820  *
1821  *	LOCKING:
1822  *	Inherited from caller.
1823  */
mv_check_atapi_dma(struct ata_queued_cmd * qc)1824 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1825 {
1826 	struct scsi_cmnd *scmd = qc->scsicmd;
1827 
1828 	if (scmd) {
1829 		switch (scmd->cmnd[0]) {
1830 		case READ_6:
1831 		case READ_10:
1832 		case READ_12:
1833 		case WRITE_6:
1834 		case WRITE_10:
1835 		case WRITE_12:
1836 		case GPCMD_READ_CD:
1837 		case GPCMD_SEND_DVD_STRUCTURE:
1838 		case GPCMD_SEND_CUE_SHEET:
1839 			return 0; /* DMA is safe */
1840 		}
1841 	}
1842 	return -EOPNOTSUPP; /* use PIO instead */
1843 }
1844 
1845 /**
1846  *	mv_bmdma_setup - Set up BMDMA transaction
1847  *	@qc: queued command to prepare DMA for.
1848  *
1849  *	LOCKING:
1850  *	Inherited from caller.
1851  */
mv_bmdma_setup(struct ata_queued_cmd * qc)1852 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1853 {
1854 	struct ata_port *ap = qc->ap;
1855 	void __iomem *port_mmio = mv_ap_base(ap);
1856 	struct mv_port_priv *pp = ap->private_data;
1857 
1858 	mv_fill_sg(qc);
1859 
1860 	/* clear all DMA cmd bits */
1861 	writel(0, port_mmio + BMDMA_CMD);
1862 
1863 	/* load PRD table addr. */
1864 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1865 		port_mmio + BMDMA_PRD_HIGH);
1866 	writelfl(pp->sg_tbl_dma[qc->tag],
1867 		port_mmio + BMDMA_PRD_LOW);
1868 
1869 	/* issue r/w command */
1870 	ap->ops->sff_exec_command(ap, &qc->tf);
1871 }
1872 
1873 /**
1874  *	mv_bmdma_start - Start a BMDMA transaction
1875  *	@qc: queued command to start DMA on.
1876  *
1877  *	LOCKING:
1878  *	Inherited from caller.
1879  */
mv_bmdma_start(struct ata_queued_cmd * qc)1880 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1881 {
1882 	struct ata_port *ap = qc->ap;
1883 	void __iomem *port_mmio = mv_ap_base(ap);
1884 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1885 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1886 
1887 	/* start host DMA transaction */
1888 	writelfl(cmd, port_mmio + BMDMA_CMD);
1889 }
1890 
1891 /**
1892  *	mv_bmdma_stop - Stop BMDMA transfer
1893  *	@qc: queued command to stop DMA on.
1894  *
1895  *	Clears the ATA_DMA_START flag in the bmdma control register
1896  *
1897  *	LOCKING:
1898  *	Inherited from caller.
1899  */
mv_bmdma_stop_ap(struct ata_port * ap)1900 static void mv_bmdma_stop_ap(struct ata_port *ap)
1901 {
1902 	void __iomem *port_mmio = mv_ap_base(ap);
1903 	u32 cmd;
1904 
1905 	/* clear start/stop bit */
1906 	cmd = readl(port_mmio + BMDMA_CMD);
1907 	if (cmd & ATA_DMA_START) {
1908 		cmd &= ~ATA_DMA_START;
1909 		writelfl(cmd, port_mmio + BMDMA_CMD);
1910 
1911 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1912 		ata_sff_dma_pause(ap);
1913 	}
1914 }
1915 
mv_bmdma_stop(struct ata_queued_cmd * qc)1916 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1917 {
1918 	mv_bmdma_stop_ap(qc->ap);
1919 }
1920 
1921 /**
1922  *	mv_bmdma_status - Read BMDMA status
1923  *	@ap: port for which to retrieve DMA status.
1924  *
1925  *	Read and return equivalent of the sff BMDMA status register.
1926  *
1927  *	LOCKING:
1928  *	Inherited from caller.
1929  */
mv_bmdma_status(struct ata_port * ap)1930 static u8 mv_bmdma_status(struct ata_port *ap)
1931 {
1932 	void __iomem *port_mmio = mv_ap_base(ap);
1933 	u32 reg, status;
1934 
1935 	/*
1936 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1937 	 * and the ATA_DMA_INTR bit doesn't exist.
1938 	 */
1939 	reg = readl(port_mmio + BMDMA_STATUS);
1940 	if (reg & ATA_DMA_ACTIVE)
1941 		status = ATA_DMA_ACTIVE;
1942 	else if (reg & ATA_DMA_ERR)
1943 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1944 	else {
1945 		/*
1946 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1947 		 * this does _not_ mean the device is "done".
1948 		 * So we should not yet be signalling ATA_DMA_INTR
1949 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1950 		 */
1951 		mv_bmdma_stop_ap(ap);
1952 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1953 			status = 0;
1954 		else
1955 			status = ATA_DMA_INTR;
1956 	}
1957 	return status;
1958 }
1959 
mv_rw_multi_errata_sata24(struct ata_queued_cmd * qc)1960 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1961 {
1962 	struct ata_taskfile *tf = &qc->tf;
1963 	/*
1964 	 * Workaround for 88SX60x1 FEr SATA#24.
1965 	 *
1966 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1967 	 * Note that READs are unaffected.
1968 	 *
1969 	 * It's not clear if this errata really means "4K bytes",
1970 	 * or if it always happens for multi_count > 7
1971 	 * regardless of device sector_size.
1972 	 *
1973 	 * So, for safety, any write with multi_count > 7
1974 	 * gets converted here into a regular PIO write instead:
1975 	 */
1976 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1977 		if (qc->dev->multi_count > 7) {
1978 			switch (tf->command) {
1979 			case ATA_CMD_WRITE_MULTI:
1980 				tf->command = ATA_CMD_PIO_WRITE;
1981 				break;
1982 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1983 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1984 				/* fall through */
1985 			case ATA_CMD_WRITE_MULTI_EXT:
1986 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1987 				break;
1988 			}
1989 		}
1990 	}
1991 }
1992 
1993 /**
1994  *      mv_qc_prep - Host specific command preparation.
1995  *      @qc: queued command to prepare
1996  *
1997  *      This routine simply redirects to the general purpose routine
1998  *      if command is not DMA.  Else, it handles prep of the CRQB
1999  *      (command request block), does some sanity checking, and calls
2000  *      the SG load routine.
2001  *
2002  *      LOCKING:
2003  *      Inherited from caller.
2004  */
mv_qc_prep(struct ata_queued_cmd * qc)2005 static void mv_qc_prep(struct ata_queued_cmd *qc)
2006 {
2007 	struct ata_port *ap = qc->ap;
2008 	struct mv_port_priv *pp = ap->private_data;
2009 	__le16 *cw;
2010 	struct ata_taskfile *tf = &qc->tf;
2011 	u16 flags = 0;
2012 	unsigned in_index;
2013 
2014 	switch (tf->protocol) {
2015 	case ATA_PROT_DMA:
2016 		if (tf->command == ATA_CMD_DSM)
2017 			return;
2018 		/* fall-thru */
2019 	case ATA_PROT_NCQ:
2020 		break;	/* continue below */
2021 	case ATA_PROT_PIO:
2022 		mv_rw_multi_errata_sata24(qc);
2023 		return;
2024 	default:
2025 		return;
2026 	}
2027 
2028 	/* Fill in command request block
2029 	 */
2030 	if (!(tf->flags & ATA_TFLAG_WRITE))
2031 		flags |= CRQB_FLAG_READ;
2032 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2033 	flags |= qc->tag << CRQB_TAG_SHIFT;
2034 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2035 
2036 	/* get current queue index from software */
2037 	in_index = pp->req_idx;
2038 
2039 	pp->crqb[in_index].sg_addr =
2040 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2041 	pp->crqb[in_index].sg_addr_hi =
2042 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2043 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2044 
2045 	cw = &pp->crqb[in_index].ata_cmd[0];
2046 
2047 	/* Sadly, the CRQB cannot accommodate all registers--there are
2048 	 * only 11 bytes...so we must pick and choose required
2049 	 * registers based on the command.  So, we drop feature and
2050 	 * hob_feature for [RW] DMA commands, but they are needed for
2051 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2052 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2053 	 */
2054 	switch (tf->command) {
2055 	case ATA_CMD_READ:
2056 	case ATA_CMD_READ_EXT:
2057 	case ATA_CMD_WRITE:
2058 	case ATA_CMD_WRITE_EXT:
2059 	case ATA_CMD_WRITE_FUA_EXT:
2060 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2061 		break;
2062 	case ATA_CMD_FPDMA_READ:
2063 	case ATA_CMD_FPDMA_WRITE:
2064 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2065 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2066 		break;
2067 	default:
2068 		/* The only other commands EDMA supports in non-queued and
2069 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2070 		 * of which are defined/used by Linux.  If we get here, this
2071 		 * driver needs work.
2072 		 *
2073 		 * FIXME: modify libata to give qc_prep a return value and
2074 		 * return error here.
2075 		 */
2076 		BUG_ON(tf->command);
2077 		break;
2078 	}
2079 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2080 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2081 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2082 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2083 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2084 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2085 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2086 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2087 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2088 
2089 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2090 		return;
2091 	mv_fill_sg(qc);
2092 }
2093 
2094 /**
2095  *      mv_qc_prep_iie - Host specific command preparation.
2096  *      @qc: queued command to prepare
2097  *
2098  *      This routine simply redirects to the general purpose routine
2099  *      if command is not DMA.  Else, it handles prep of the CRQB
2100  *      (command request block), does some sanity checking, and calls
2101  *      the SG load routine.
2102  *
2103  *      LOCKING:
2104  *      Inherited from caller.
2105  */
mv_qc_prep_iie(struct ata_queued_cmd * qc)2106 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2107 {
2108 	struct ata_port *ap = qc->ap;
2109 	struct mv_port_priv *pp = ap->private_data;
2110 	struct mv_crqb_iie *crqb;
2111 	struct ata_taskfile *tf = &qc->tf;
2112 	unsigned in_index;
2113 	u32 flags = 0;
2114 
2115 	if ((tf->protocol != ATA_PROT_DMA) &&
2116 	    (tf->protocol != ATA_PROT_NCQ))
2117 		return;
2118 	if (tf->command == ATA_CMD_DSM)
2119 		return;  /* use bmdma for this */
2120 
2121 	/* Fill in Gen IIE command request block */
2122 	if (!(tf->flags & ATA_TFLAG_WRITE))
2123 		flags |= CRQB_FLAG_READ;
2124 
2125 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2126 	flags |= qc->tag << CRQB_TAG_SHIFT;
2127 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2128 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2129 
2130 	/* get current queue index from software */
2131 	in_index = pp->req_idx;
2132 
2133 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2134 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2135 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2136 	crqb->flags = cpu_to_le32(flags);
2137 
2138 	crqb->ata_cmd[0] = cpu_to_le32(
2139 			(tf->command << 16) |
2140 			(tf->feature << 24)
2141 		);
2142 	crqb->ata_cmd[1] = cpu_to_le32(
2143 			(tf->lbal << 0) |
2144 			(tf->lbam << 8) |
2145 			(tf->lbah << 16) |
2146 			(tf->device << 24)
2147 		);
2148 	crqb->ata_cmd[2] = cpu_to_le32(
2149 			(tf->hob_lbal << 0) |
2150 			(tf->hob_lbam << 8) |
2151 			(tf->hob_lbah << 16) |
2152 			(tf->hob_feature << 24)
2153 		);
2154 	crqb->ata_cmd[3] = cpu_to_le32(
2155 			(tf->nsect << 0) |
2156 			(tf->hob_nsect << 8)
2157 		);
2158 
2159 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2160 		return;
2161 	mv_fill_sg(qc);
2162 }
2163 
2164 /**
2165  *	mv_sff_check_status - fetch device status, if valid
2166  *	@ap: ATA port to fetch status from
2167  *
2168  *	When using command issue via mv_qc_issue_fis(),
2169  *	the initial ATA_BUSY state does not show up in the
2170  *	ATA status (shadow) register.  This can confuse libata!
2171  *
2172  *	So we have a hook here to fake ATA_BUSY for that situation,
2173  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2174  *
2175  *	The rest of the time, it simply returns the ATA status register.
2176  */
mv_sff_check_status(struct ata_port * ap)2177 static u8 mv_sff_check_status(struct ata_port *ap)
2178 {
2179 	u8 stat = ioread8(ap->ioaddr.status_addr);
2180 	struct mv_port_priv *pp = ap->private_data;
2181 
2182 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2183 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2184 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2185 		else
2186 			stat = ATA_BUSY;
2187 	}
2188 	return stat;
2189 }
2190 
2191 /**
2192  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2193  *	@fis: fis to be sent
2194  *	@nwords: number of 32-bit words in the fis
2195  */
mv_send_fis(struct ata_port * ap,u32 * fis,int nwords)2196 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2197 {
2198 	void __iomem *port_mmio = mv_ap_base(ap);
2199 	u32 ifctl, old_ifctl, ifstat;
2200 	int i, timeout = 200, final_word = nwords - 1;
2201 
2202 	/* Initiate FIS transmission mode */
2203 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2204 	ifctl = 0x100 | (old_ifctl & 0xf);
2205 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2206 
2207 	/* Send all words of the FIS except for the final word */
2208 	for (i = 0; i < final_word; ++i)
2209 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2210 
2211 	/* Flag end-of-transmission, and then send the final word */
2212 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2213 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2214 
2215 	/*
2216 	 * Wait for FIS transmission to complete.
2217 	 * This typically takes just a single iteration.
2218 	 */
2219 	do {
2220 		ifstat = readl(port_mmio + SATA_IFSTAT);
2221 	} while (!(ifstat & 0x1000) && --timeout);
2222 
2223 	/* Restore original port configuration */
2224 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2225 
2226 	/* See if it worked */
2227 	if ((ifstat & 0x3000) != 0x1000) {
2228 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2229 			      __func__, ifstat);
2230 		return AC_ERR_OTHER;
2231 	}
2232 	return 0;
2233 }
2234 
2235 /**
2236  *	mv_qc_issue_fis - Issue a command directly as a FIS
2237  *	@qc: queued command to start
2238  *
2239  *	Note that the ATA shadow registers are not updated
2240  *	after command issue, so the device will appear "READY"
2241  *	if polled, even while it is BUSY processing the command.
2242  *
2243  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2244  *
2245  *	Note: we don't get updated shadow regs on *completion*
2246  *	of non-data commands. So avoid sending them via this function,
2247  *	as they will appear to have completed immediately.
2248  *
2249  *	GEN_IIE has special registers that we could get the result tf from,
2250  *	but earlier chipsets do not.  For now, we ignore those registers.
2251  */
mv_qc_issue_fis(struct ata_queued_cmd * qc)2252 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2253 {
2254 	struct ata_port *ap = qc->ap;
2255 	struct mv_port_priv *pp = ap->private_data;
2256 	struct ata_link *link = qc->dev->link;
2257 	u32 fis[5];
2258 	int err = 0;
2259 
2260 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2261 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2262 	if (err)
2263 		return err;
2264 
2265 	switch (qc->tf.protocol) {
2266 	case ATAPI_PROT_PIO:
2267 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2268 		/* fall through */
2269 	case ATAPI_PROT_NODATA:
2270 		ap->hsm_task_state = HSM_ST_FIRST;
2271 		break;
2272 	case ATA_PROT_PIO:
2273 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2274 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2275 			ap->hsm_task_state = HSM_ST_FIRST;
2276 		else
2277 			ap->hsm_task_state = HSM_ST;
2278 		break;
2279 	default:
2280 		ap->hsm_task_state = HSM_ST_LAST;
2281 		break;
2282 	}
2283 
2284 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2285 		ata_sff_queue_pio_task(link, 0);
2286 	return 0;
2287 }
2288 
2289 /**
2290  *      mv_qc_issue - Initiate a command to the host
2291  *      @qc: queued command to start
2292  *
2293  *      This routine simply redirects to the general purpose routine
2294  *      if command is not DMA.  Else, it sanity checks our local
2295  *      caches of the request producer/consumer indices then enables
2296  *      DMA and bumps the request producer index.
2297  *
2298  *      LOCKING:
2299  *      Inherited from caller.
2300  */
mv_qc_issue(struct ata_queued_cmd * qc)2301 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2302 {
2303 	static int limit_warnings = 10;
2304 	struct ata_port *ap = qc->ap;
2305 	void __iomem *port_mmio = mv_ap_base(ap);
2306 	struct mv_port_priv *pp = ap->private_data;
2307 	u32 in_index;
2308 	unsigned int port_irqs;
2309 
2310 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2311 
2312 	switch (qc->tf.protocol) {
2313 	case ATA_PROT_DMA:
2314 		if (qc->tf.command == ATA_CMD_DSM) {
2315 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2316 				return AC_ERR_OTHER;
2317 			break;  /* use bmdma for this */
2318 		}
2319 		/* fall thru */
2320 	case ATA_PROT_NCQ:
2321 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2322 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2323 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2324 
2325 		/* Write the request in pointer to kick the EDMA to life */
2326 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2327 					port_mmio + EDMA_REQ_Q_IN_PTR);
2328 		return 0;
2329 
2330 	case ATA_PROT_PIO:
2331 		/*
2332 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2333 		 *
2334 		 * Someday, we might implement special polling workarounds
2335 		 * for these, but it all seems rather unnecessary since we
2336 		 * normally use only DMA for commands which transfer more
2337 		 * than a single block of data.
2338 		 *
2339 		 * Much of the time, this could just work regardless.
2340 		 * So for now, just log the incident, and allow the attempt.
2341 		 */
2342 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2343 			--limit_warnings;
2344 			ata_link_warn(qc->dev->link, DRV_NAME
2345 				      ": attempting PIO w/multiple DRQ: "
2346 				      "this may fail due to h/w errata\n");
2347 		}
2348 		/* drop through */
2349 	case ATA_PROT_NODATA:
2350 	case ATAPI_PROT_PIO:
2351 	case ATAPI_PROT_NODATA:
2352 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2353 			qc->tf.flags |= ATA_TFLAG_POLLING;
2354 		break;
2355 	}
2356 
2357 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2358 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2359 	else
2360 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2361 
2362 	/*
2363 	 * We're about to send a non-EDMA capable command to the
2364 	 * port.  Turn off EDMA so there won't be problems accessing
2365 	 * shadow block, etc registers.
2366 	 */
2367 	mv_stop_edma(ap);
2368 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2369 	mv_pmp_select(ap, qc->dev->link->pmp);
2370 
2371 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2372 		struct mv_host_priv *hpriv = ap->host->private_data;
2373 		/*
2374 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2375 		 *
2376 		 * After any NCQ error, the READ_LOG_EXT command
2377 		 * from libata-eh *must* use mv_qc_issue_fis().
2378 		 * Otherwise it might fail, due to chip errata.
2379 		 *
2380 		 * Rather than special-case it, we'll just *always*
2381 		 * use this method here for READ_LOG_EXT, making for
2382 		 * easier testing.
2383 		 */
2384 		if (IS_GEN_II(hpriv))
2385 			return mv_qc_issue_fis(qc);
2386 	}
2387 	return ata_bmdma_qc_issue(qc);
2388 }
2389 
mv_get_active_qc(struct ata_port * ap)2390 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2391 {
2392 	struct mv_port_priv *pp = ap->private_data;
2393 	struct ata_queued_cmd *qc;
2394 
2395 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2396 		return NULL;
2397 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2398 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2399 		return qc;
2400 	return NULL;
2401 }
2402 
mv_pmp_error_handler(struct ata_port * ap)2403 static void mv_pmp_error_handler(struct ata_port *ap)
2404 {
2405 	unsigned int pmp, pmp_map;
2406 	struct mv_port_priv *pp = ap->private_data;
2407 
2408 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2409 		/*
2410 		 * Perform NCQ error analysis on failed PMPs
2411 		 * before we freeze the port entirely.
2412 		 *
2413 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2414 		 */
2415 		pmp_map = pp->delayed_eh_pmp_map;
2416 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2417 		for (pmp = 0; pmp_map != 0; pmp++) {
2418 			unsigned int this_pmp = (1 << pmp);
2419 			if (pmp_map & this_pmp) {
2420 				struct ata_link *link = &ap->pmp_link[pmp];
2421 				pmp_map &= ~this_pmp;
2422 				ata_eh_analyze_ncq_error(link);
2423 			}
2424 		}
2425 		ata_port_freeze(ap);
2426 	}
2427 	sata_pmp_error_handler(ap);
2428 }
2429 
mv_get_err_pmp_map(struct ata_port * ap)2430 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2431 {
2432 	void __iomem *port_mmio = mv_ap_base(ap);
2433 
2434 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2435 }
2436 
mv_pmp_eh_prep(struct ata_port * ap,unsigned int pmp_map)2437 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2438 {
2439 	struct ata_eh_info *ehi;
2440 	unsigned int pmp;
2441 
2442 	/*
2443 	 * Initialize EH info for PMPs which saw device errors
2444 	 */
2445 	ehi = &ap->link.eh_info;
2446 	for (pmp = 0; pmp_map != 0; pmp++) {
2447 		unsigned int this_pmp = (1 << pmp);
2448 		if (pmp_map & this_pmp) {
2449 			struct ata_link *link = &ap->pmp_link[pmp];
2450 
2451 			pmp_map &= ~this_pmp;
2452 			ehi = &link->eh_info;
2453 			ata_ehi_clear_desc(ehi);
2454 			ata_ehi_push_desc(ehi, "dev err");
2455 			ehi->err_mask |= AC_ERR_DEV;
2456 			ehi->action |= ATA_EH_RESET;
2457 			ata_link_abort(link);
2458 		}
2459 	}
2460 }
2461 
mv_req_q_empty(struct ata_port * ap)2462 static int mv_req_q_empty(struct ata_port *ap)
2463 {
2464 	void __iomem *port_mmio = mv_ap_base(ap);
2465 	u32 in_ptr, out_ptr;
2466 
2467 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2468 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2469 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2470 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2471 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2472 }
2473 
mv_handle_fbs_ncq_dev_err(struct ata_port * ap)2474 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2475 {
2476 	struct mv_port_priv *pp = ap->private_data;
2477 	int failed_links;
2478 	unsigned int old_map, new_map;
2479 
2480 	/*
2481 	 * Device error during FBS+NCQ operation:
2482 	 *
2483 	 * Set a port flag to prevent further I/O being enqueued.
2484 	 * Leave the EDMA running to drain outstanding commands from this port.
2485 	 * Perform the post-mortem/EH only when all responses are complete.
2486 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2487 	 */
2488 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2489 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2490 		pp->delayed_eh_pmp_map = 0;
2491 	}
2492 	old_map = pp->delayed_eh_pmp_map;
2493 	new_map = old_map | mv_get_err_pmp_map(ap);
2494 
2495 	if (old_map != new_map) {
2496 		pp->delayed_eh_pmp_map = new_map;
2497 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2498 	}
2499 	failed_links = hweight16(new_map);
2500 
2501 	ata_port_info(ap,
2502 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2503 		      __func__, pp->delayed_eh_pmp_map,
2504 		      ap->qc_active, failed_links,
2505 		      ap->nr_active_links);
2506 
2507 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2508 		mv_process_crpb_entries(ap, pp);
2509 		mv_stop_edma(ap);
2510 		mv_eh_freeze(ap);
2511 		ata_port_info(ap, "%s: done\n", __func__);
2512 		return 1;	/* handled */
2513 	}
2514 	ata_port_info(ap, "%s: waiting\n", __func__);
2515 	return 1;	/* handled */
2516 }
2517 
mv_handle_fbs_non_ncq_dev_err(struct ata_port * ap)2518 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2519 {
2520 	/*
2521 	 * Possible future enhancement:
2522 	 *
2523 	 * FBS+non-NCQ operation is not yet implemented.
2524 	 * See related notes in mv_edma_cfg().
2525 	 *
2526 	 * Device error during FBS+non-NCQ operation:
2527 	 *
2528 	 * We need to snapshot the shadow registers for each failed command.
2529 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2530 	 */
2531 	return 0;	/* not handled */
2532 }
2533 
mv_handle_dev_err(struct ata_port * ap,u32 edma_err_cause)2534 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2535 {
2536 	struct mv_port_priv *pp = ap->private_data;
2537 
2538 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2539 		return 0;	/* EDMA was not active: not handled */
2540 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2541 		return 0;	/* FBS was not active: not handled */
2542 
2543 	if (!(edma_err_cause & EDMA_ERR_DEV))
2544 		return 0;	/* non DEV error: not handled */
2545 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2546 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2547 		return 0;	/* other problems: not handled */
2548 
2549 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2550 		/*
2551 		 * EDMA should NOT have self-disabled for this case.
2552 		 * If it did, then something is wrong elsewhere,
2553 		 * and we cannot handle it here.
2554 		 */
2555 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2556 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2557 				      __func__, edma_err_cause, pp->pp_flags);
2558 			return 0; /* not handled */
2559 		}
2560 		return mv_handle_fbs_ncq_dev_err(ap);
2561 	} else {
2562 		/*
2563 		 * EDMA should have self-disabled for this case.
2564 		 * If it did not, then something is wrong elsewhere,
2565 		 * and we cannot handle it here.
2566 		 */
2567 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2568 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2569 				      __func__, edma_err_cause, pp->pp_flags);
2570 			return 0; /* not handled */
2571 		}
2572 		return mv_handle_fbs_non_ncq_dev_err(ap);
2573 	}
2574 	return 0;	/* not handled */
2575 }
2576 
mv_unexpected_intr(struct ata_port * ap,int edma_was_enabled)2577 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2578 {
2579 	struct ata_eh_info *ehi = &ap->link.eh_info;
2580 	char *when = "idle";
2581 
2582 	ata_ehi_clear_desc(ehi);
2583 	if (edma_was_enabled) {
2584 		when = "EDMA enabled";
2585 	} else {
2586 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2587 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2588 			when = "polling";
2589 	}
2590 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2591 	ehi->err_mask |= AC_ERR_OTHER;
2592 	ehi->action   |= ATA_EH_RESET;
2593 	ata_port_freeze(ap);
2594 }
2595 
2596 /**
2597  *      mv_err_intr - Handle error interrupts on the port
2598  *      @ap: ATA channel to manipulate
2599  *
2600  *      Most cases require a full reset of the chip's state machine,
2601  *      which also performs a COMRESET.
2602  *      Also, if the port disabled DMA, update our cached copy to match.
2603  *
2604  *      LOCKING:
2605  *      Inherited from caller.
2606  */
mv_err_intr(struct ata_port * ap)2607 static void mv_err_intr(struct ata_port *ap)
2608 {
2609 	void __iomem *port_mmio = mv_ap_base(ap);
2610 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2611 	u32 fis_cause = 0;
2612 	struct mv_port_priv *pp = ap->private_data;
2613 	struct mv_host_priv *hpriv = ap->host->private_data;
2614 	unsigned int action = 0, err_mask = 0;
2615 	struct ata_eh_info *ehi = &ap->link.eh_info;
2616 	struct ata_queued_cmd *qc;
2617 	int abort = 0;
2618 
2619 	/*
2620 	 * Read and clear the SError and err_cause bits.
2621 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2622 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2623 	 */
2624 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2625 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2626 
2627 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2628 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2629 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2630 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2631 	}
2632 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2633 
2634 	if (edma_err_cause & EDMA_ERR_DEV) {
2635 		/*
2636 		 * Device errors during FIS-based switching operation
2637 		 * require special handling.
2638 		 */
2639 		if (mv_handle_dev_err(ap, edma_err_cause))
2640 			return;
2641 	}
2642 
2643 	qc = mv_get_active_qc(ap);
2644 	ata_ehi_clear_desc(ehi);
2645 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2646 			  edma_err_cause, pp->pp_flags);
2647 
2648 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2649 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2650 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2651 			u32 ec = edma_err_cause &
2652 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2653 			sata_async_notification(ap);
2654 			if (!ec)
2655 				return; /* Just an AN; no need for the nukes */
2656 			ata_ehi_push_desc(ehi, "SDB notify");
2657 		}
2658 	}
2659 	/*
2660 	 * All generations share these EDMA error cause bits:
2661 	 */
2662 	if (edma_err_cause & EDMA_ERR_DEV) {
2663 		err_mask |= AC_ERR_DEV;
2664 		action |= ATA_EH_RESET;
2665 		ata_ehi_push_desc(ehi, "dev error");
2666 	}
2667 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2668 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2669 			EDMA_ERR_INTRL_PAR)) {
2670 		err_mask |= AC_ERR_ATA_BUS;
2671 		action |= ATA_EH_RESET;
2672 		ata_ehi_push_desc(ehi, "parity error");
2673 	}
2674 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2675 		ata_ehi_hotplugged(ehi);
2676 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2677 			"dev disconnect" : "dev connect");
2678 		action |= ATA_EH_RESET;
2679 	}
2680 
2681 	/*
2682 	 * Gen-I has a different SELF_DIS bit,
2683 	 * different FREEZE bits, and no SERR bit:
2684 	 */
2685 	if (IS_GEN_I(hpriv)) {
2686 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2687 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2688 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2689 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2690 		}
2691 	} else {
2692 		eh_freeze_mask = EDMA_EH_FREEZE;
2693 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2694 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2695 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2696 		}
2697 		if (edma_err_cause & EDMA_ERR_SERR) {
2698 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2699 			err_mask |= AC_ERR_ATA_BUS;
2700 			action |= ATA_EH_RESET;
2701 		}
2702 	}
2703 
2704 	if (!err_mask) {
2705 		err_mask = AC_ERR_OTHER;
2706 		action |= ATA_EH_RESET;
2707 	}
2708 
2709 	ehi->serror |= serr;
2710 	ehi->action |= action;
2711 
2712 	if (qc)
2713 		qc->err_mask |= err_mask;
2714 	else
2715 		ehi->err_mask |= err_mask;
2716 
2717 	if (err_mask == AC_ERR_DEV) {
2718 		/*
2719 		 * Cannot do ata_port_freeze() here,
2720 		 * because it would kill PIO access,
2721 		 * which is needed for further diagnosis.
2722 		 */
2723 		mv_eh_freeze(ap);
2724 		abort = 1;
2725 	} else if (edma_err_cause & eh_freeze_mask) {
2726 		/*
2727 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2728 		 */
2729 		ata_port_freeze(ap);
2730 	} else {
2731 		abort = 1;
2732 	}
2733 
2734 	if (abort) {
2735 		if (qc)
2736 			ata_link_abort(qc->dev->link);
2737 		else
2738 			ata_port_abort(ap);
2739 	}
2740 }
2741 
mv_process_crpb_response(struct ata_port * ap,struct mv_crpb * response,unsigned int tag,int ncq_enabled)2742 static bool mv_process_crpb_response(struct ata_port *ap,
2743 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2744 {
2745 	u8 ata_status;
2746 	u16 edma_status = le16_to_cpu(response->flags);
2747 
2748 	/*
2749 	 * edma_status from a response queue entry:
2750 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2751 	 *   MSB is saved ATA status from command completion.
2752 	 */
2753 	if (!ncq_enabled) {
2754 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2755 		if (err_cause) {
2756 			/*
2757 			 * Error will be seen/handled by
2758 			 * mv_err_intr().  So do nothing at all here.
2759 			 */
2760 			return false;
2761 		}
2762 	}
2763 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2764 	if (!ac_err_mask(ata_status))
2765 		return true;
2766 	/* else: leave it for mv_err_intr() */
2767 	return false;
2768 }
2769 
mv_process_crpb_entries(struct ata_port * ap,struct mv_port_priv * pp)2770 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2771 {
2772 	void __iomem *port_mmio = mv_ap_base(ap);
2773 	struct mv_host_priv *hpriv = ap->host->private_data;
2774 	u32 in_index;
2775 	bool work_done = false;
2776 	u32 done_mask = 0;
2777 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2778 
2779 	/* Get the hardware queue position index */
2780 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2781 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2782 
2783 	/* Process new responses from since the last time we looked */
2784 	while (in_index != pp->resp_idx) {
2785 		unsigned int tag;
2786 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2787 
2788 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2789 
2790 		if (IS_GEN_I(hpriv)) {
2791 			/* 50xx: no NCQ, only one command active at a time */
2792 			tag = ap->link.active_tag;
2793 		} else {
2794 			/* Gen II/IIE: get command tag from CRPB entry */
2795 			tag = le16_to_cpu(response->id) & 0x1f;
2796 		}
2797 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2798 			done_mask |= 1 << tag;
2799 		work_done = true;
2800 	}
2801 
2802 	if (work_done) {
2803 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2804 
2805 		/* Update the software queue position index in hardware */
2806 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2807 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2808 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2809 	}
2810 }
2811 
mv_port_intr(struct ata_port * ap,u32 port_cause)2812 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2813 {
2814 	struct mv_port_priv *pp;
2815 	int edma_was_enabled;
2816 
2817 	/*
2818 	 * Grab a snapshot of the EDMA_EN flag setting,
2819 	 * so that we have a consistent view for this port,
2820 	 * even if something we call of our routines changes it.
2821 	 */
2822 	pp = ap->private_data;
2823 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2824 	/*
2825 	 * Process completed CRPB response(s) before other events.
2826 	 */
2827 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2828 		mv_process_crpb_entries(ap, pp);
2829 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2830 			mv_handle_fbs_ncq_dev_err(ap);
2831 	}
2832 	/*
2833 	 * Handle chip-reported errors, or continue on to handle PIO.
2834 	 */
2835 	if (unlikely(port_cause & ERR_IRQ)) {
2836 		mv_err_intr(ap);
2837 	} else if (!edma_was_enabled) {
2838 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2839 		if (qc)
2840 			ata_bmdma_port_intr(ap, qc);
2841 		else
2842 			mv_unexpected_intr(ap, edma_was_enabled);
2843 	}
2844 }
2845 
2846 /**
2847  *      mv_host_intr - Handle all interrupts on the given host controller
2848  *      @host: host specific structure
2849  *      @main_irq_cause: Main interrupt cause register for the chip.
2850  *
2851  *      LOCKING:
2852  *      Inherited from caller.
2853  */
mv_host_intr(struct ata_host * host,u32 main_irq_cause)2854 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2855 {
2856 	struct mv_host_priv *hpriv = host->private_data;
2857 	void __iomem *mmio = hpriv->base, *hc_mmio;
2858 	unsigned int handled = 0, port;
2859 
2860 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2861 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2862 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2863 
2864 	for (port = 0; port < hpriv->n_ports; port++) {
2865 		struct ata_port *ap = host->ports[port];
2866 		unsigned int p, shift, hardport, port_cause;
2867 
2868 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2869 		/*
2870 		 * Each hc within the host has its own hc_irq_cause register,
2871 		 * where the interrupting ports bits get ack'd.
2872 		 */
2873 		if (hardport == 0) {	/* first port on this hc ? */
2874 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2875 			u32 port_mask, ack_irqs;
2876 			/*
2877 			 * Skip this entire hc if nothing pending for any ports
2878 			 */
2879 			if (!hc_cause) {
2880 				port += MV_PORTS_PER_HC - 1;
2881 				continue;
2882 			}
2883 			/*
2884 			 * We don't need/want to read the hc_irq_cause register,
2885 			 * because doing so hurts performance, and
2886 			 * main_irq_cause already gives us everything we need.
2887 			 *
2888 			 * But we do have to *write* to the hc_irq_cause to ack
2889 			 * the ports that we are handling this time through.
2890 			 *
2891 			 * This requires that we create a bitmap for those
2892 			 * ports which interrupted us, and use that bitmap
2893 			 * to ack (only) those ports via hc_irq_cause.
2894 			 */
2895 			ack_irqs = 0;
2896 			if (hc_cause & PORTS_0_3_COAL_DONE)
2897 				ack_irqs = HC_COAL_IRQ;
2898 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2899 				if ((port + p) >= hpriv->n_ports)
2900 					break;
2901 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2902 				if (hc_cause & port_mask)
2903 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2904 			}
2905 			hc_mmio = mv_hc_base_from_port(mmio, port);
2906 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2907 			handled = 1;
2908 		}
2909 		/*
2910 		 * Handle interrupts signalled for this port:
2911 		 */
2912 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2913 		if (port_cause)
2914 			mv_port_intr(ap, port_cause);
2915 	}
2916 	return handled;
2917 }
2918 
mv_pci_error(struct ata_host * host,void __iomem * mmio)2919 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2920 {
2921 	struct mv_host_priv *hpriv = host->private_data;
2922 	struct ata_port *ap;
2923 	struct ata_queued_cmd *qc;
2924 	struct ata_eh_info *ehi;
2925 	unsigned int i, err_mask, printed = 0;
2926 	u32 err_cause;
2927 
2928 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2929 
2930 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2931 
2932 	DPRINTK("All regs @ PCI error\n");
2933 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2934 
2935 	writelfl(0, mmio + hpriv->irq_cause_offset);
2936 
2937 	for (i = 0; i < host->n_ports; i++) {
2938 		ap = host->ports[i];
2939 		if (!ata_link_offline(&ap->link)) {
2940 			ehi = &ap->link.eh_info;
2941 			ata_ehi_clear_desc(ehi);
2942 			if (!printed++)
2943 				ata_ehi_push_desc(ehi,
2944 					"PCI err cause 0x%08x", err_cause);
2945 			err_mask = AC_ERR_HOST_BUS;
2946 			ehi->action = ATA_EH_RESET;
2947 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2948 			if (qc)
2949 				qc->err_mask |= err_mask;
2950 			else
2951 				ehi->err_mask |= err_mask;
2952 
2953 			ata_port_freeze(ap);
2954 		}
2955 	}
2956 	return 1;	/* handled */
2957 }
2958 
2959 /**
2960  *      mv_interrupt - Main interrupt event handler
2961  *      @irq: unused
2962  *      @dev_instance: private data; in this case the host structure
2963  *
2964  *      Read the read only register to determine if any host
2965  *      controllers have pending interrupts.  If so, call lower level
2966  *      routine to handle.  Also check for PCI errors which are only
2967  *      reported here.
2968  *
2969  *      LOCKING:
2970  *      This routine holds the host lock while processing pending
2971  *      interrupts.
2972  */
mv_interrupt(int irq,void * dev_instance)2973 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2974 {
2975 	struct ata_host *host = dev_instance;
2976 	struct mv_host_priv *hpriv = host->private_data;
2977 	unsigned int handled = 0;
2978 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2979 	u32 main_irq_cause, pending_irqs;
2980 
2981 	spin_lock(&host->lock);
2982 
2983 	/* for MSI:  block new interrupts while in here */
2984 	if (using_msi)
2985 		mv_write_main_irq_mask(0, hpriv);
2986 
2987 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2988 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2989 	/*
2990 	 * Deal with cases where we either have nothing pending, or have read
2991 	 * a bogus register value which can indicate HW removal or PCI fault.
2992 	 */
2993 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2994 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2995 			handled = mv_pci_error(host, hpriv->base);
2996 		else
2997 			handled = mv_host_intr(host, pending_irqs);
2998 	}
2999 
3000 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3001 	if (using_msi)
3002 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3003 
3004 	spin_unlock(&host->lock);
3005 
3006 	return IRQ_RETVAL(handled);
3007 }
3008 
mv5_scr_offset(unsigned int sc_reg_in)3009 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3010 {
3011 	unsigned int ofs;
3012 
3013 	switch (sc_reg_in) {
3014 	case SCR_STATUS:
3015 	case SCR_ERROR:
3016 	case SCR_CONTROL:
3017 		ofs = sc_reg_in * sizeof(u32);
3018 		break;
3019 	default:
3020 		ofs = 0xffffffffU;
3021 		break;
3022 	}
3023 	return ofs;
3024 }
3025 
mv5_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)3026 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3027 {
3028 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3029 	void __iomem *mmio = hpriv->base;
3030 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3031 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3032 
3033 	if (ofs != 0xffffffffU) {
3034 		*val = readl(addr + ofs);
3035 		return 0;
3036 	} else
3037 		return -EINVAL;
3038 }
3039 
mv5_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)3040 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3041 {
3042 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3043 	void __iomem *mmio = hpriv->base;
3044 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3045 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3046 
3047 	if (ofs != 0xffffffffU) {
3048 		writelfl(val, addr + ofs);
3049 		return 0;
3050 	} else
3051 		return -EINVAL;
3052 }
3053 
mv5_reset_bus(struct ata_host * host,void __iomem * mmio)3054 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3055 {
3056 	struct pci_dev *pdev = to_pci_dev(host->dev);
3057 	int early_5080;
3058 
3059 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3060 
3061 	if (!early_5080) {
3062 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3063 		tmp |= (1 << 0);
3064 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3065 	}
3066 
3067 	mv_reset_pci_bus(host, mmio);
3068 }
3069 
mv5_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3070 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3071 {
3072 	writel(0x0fcfffff, mmio + FLASH_CTL);
3073 }
3074 
mv5_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3075 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3076 			   void __iomem *mmio)
3077 {
3078 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3079 	u32 tmp;
3080 
3081 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3082 
3083 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3084 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3085 }
3086 
mv5_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3087 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3088 {
3089 	u32 tmp;
3090 
3091 	writel(0, mmio + GPIO_PORT_CTL);
3092 
3093 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3094 
3095 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3096 	tmp |= ~(1 << 0);
3097 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3098 }
3099 
mv5_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3100 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3101 			   unsigned int port)
3102 {
3103 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3104 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3105 	u32 tmp;
3106 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3107 
3108 	if (fix_apm_sq) {
3109 		tmp = readl(phy_mmio + MV5_LTMODE);
3110 		tmp |= (1 << 19);
3111 		writel(tmp, phy_mmio + MV5_LTMODE);
3112 
3113 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3114 		tmp &= ~0x3;
3115 		tmp |= 0x1;
3116 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3117 	}
3118 
3119 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3120 	tmp &= ~mask;
3121 	tmp |= hpriv->signal[port].pre;
3122 	tmp |= hpriv->signal[port].amps;
3123 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3124 }
3125 
3126 
3127 #undef ZERO
3128 #define ZERO(reg) writel(0, port_mmio + (reg))
mv5_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3129 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3130 			     unsigned int port)
3131 {
3132 	void __iomem *port_mmio = mv_port_base(mmio, port);
3133 
3134 	mv_reset_channel(hpriv, mmio, port);
3135 
3136 	ZERO(0x028);	/* command */
3137 	writel(0x11f, port_mmio + EDMA_CFG);
3138 	ZERO(0x004);	/* timer */
3139 	ZERO(0x008);	/* irq err cause */
3140 	ZERO(0x00c);	/* irq err mask */
3141 	ZERO(0x010);	/* rq bah */
3142 	ZERO(0x014);	/* rq inp */
3143 	ZERO(0x018);	/* rq outp */
3144 	ZERO(0x01c);	/* respq bah */
3145 	ZERO(0x024);	/* respq outp */
3146 	ZERO(0x020);	/* respq inp */
3147 	ZERO(0x02c);	/* test control */
3148 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3149 }
3150 #undef ZERO
3151 
3152 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv5_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int hc)3153 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3154 			unsigned int hc)
3155 {
3156 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3157 	u32 tmp;
3158 
3159 	ZERO(0x00c);
3160 	ZERO(0x010);
3161 	ZERO(0x014);
3162 	ZERO(0x018);
3163 
3164 	tmp = readl(hc_mmio + 0x20);
3165 	tmp &= 0x1c1c1c1c;
3166 	tmp |= 0x03030303;
3167 	writel(tmp, hc_mmio + 0x20);
3168 }
3169 #undef ZERO
3170 
mv5_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3171 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3172 			unsigned int n_hc)
3173 {
3174 	unsigned int hc, port;
3175 
3176 	for (hc = 0; hc < n_hc; hc++) {
3177 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3178 			mv5_reset_hc_port(hpriv, mmio,
3179 					  (hc * MV_PORTS_PER_HC) + port);
3180 
3181 		mv5_reset_one_hc(hpriv, mmio, hc);
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 #undef ZERO
3188 #define ZERO(reg) writel(0, mmio + (reg))
mv_reset_pci_bus(struct ata_host * host,void __iomem * mmio)3189 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3190 {
3191 	struct mv_host_priv *hpriv = host->private_data;
3192 	u32 tmp;
3193 
3194 	tmp = readl(mmio + MV_PCI_MODE);
3195 	tmp &= 0xff00ffff;
3196 	writel(tmp, mmio + MV_PCI_MODE);
3197 
3198 	ZERO(MV_PCI_DISC_TIMER);
3199 	ZERO(MV_PCI_MSI_TRIGGER);
3200 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3201 	ZERO(MV_PCI_SERR_MASK);
3202 	ZERO(hpriv->irq_cause_offset);
3203 	ZERO(hpriv->irq_mask_offset);
3204 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3205 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3206 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3207 	ZERO(MV_PCI_ERR_COMMAND);
3208 }
3209 #undef ZERO
3210 
mv6_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3211 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3212 {
3213 	u32 tmp;
3214 
3215 	mv5_reset_flash(hpriv, mmio);
3216 
3217 	tmp = readl(mmio + GPIO_PORT_CTL);
3218 	tmp &= 0x3;
3219 	tmp |= (1 << 5) | (1 << 6);
3220 	writel(tmp, mmio + GPIO_PORT_CTL);
3221 }
3222 
3223 /**
3224  *      mv6_reset_hc - Perform the 6xxx global soft reset
3225  *      @mmio: base address of the HBA
3226  *
3227  *      This routine only applies to 6xxx parts.
3228  *
3229  *      LOCKING:
3230  *      Inherited from caller.
3231  */
mv6_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3232 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3233 			unsigned int n_hc)
3234 {
3235 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3236 	int i, rc = 0;
3237 	u32 t;
3238 
3239 	/* Following procedure defined in PCI "main command and status
3240 	 * register" table.
3241 	 */
3242 	t = readl(reg);
3243 	writel(t | STOP_PCI_MASTER, reg);
3244 
3245 	for (i = 0; i < 1000; i++) {
3246 		udelay(1);
3247 		t = readl(reg);
3248 		if (PCI_MASTER_EMPTY & t)
3249 			break;
3250 	}
3251 	if (!(PCI_MASTER_EMPTY & t)) {
3252 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3253 		rc = 1;
3254 		goto done;
3255 	}
3256 
3257 	/* set reset */
3258 	i = 5;
3259 	do {
3260 		writel(t | GLOB_SFT_RST, reg);
3261 		t = readl(reg);
3262 		udelay(1);
3263 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3264 
3265 	if (!(GLOB_SFT_RST & t)) {
3266 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3267 		rc = 1;
3268 		goto done;
3269 	}
3270 
3271 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3272 	i = 5;
3273 	do {
3274 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3275 		t = readl(reg);
3276 		udelay(1);
3277 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3278 
3279 	if (GLOB_SFT_RST & t) {
3280 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3281 		rc = 1;
3282 	}
3283 done:
3284 	return rc;
3285 }
3286 
mv6_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3287 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3288 			   void __iomem *mmio)
3289 {
3290 	void __iomem *port_mmio;
3291 	u32 tmp;
3292 
3293 	tmp = readl(mmio + RESET_CFG);
3294 	if ((tmp & (1 << 0)) == 0) {
3295 		hpriv->signal[idx].amps = 0x7 << 8;
3296 		hpriv->signal[idx].pre = 0x1 << 5;
3297 		return;
3298 	}
3299 
3300 	port_mmio = mv_port_base(mmio, idx);
3301 	tmp = readl(port_mmio + PHY_MODE2);
3302 
3303 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3304 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3305 }
3306 
mv6_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3307 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3308 {
3309 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3310 }
3311 
mv6_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3312 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3313 			   unsigned int port)
3314 {
3315 	void __iomem *port_mmio = mv_port_base(mmio, port);
3316 
3317 	u32 hp_flags = hpriv->hp_flags;
3318 	int fix_phy_mode2 =
3319 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3320 	int fix_phy_mode4 =
3321 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3322 	u32 m2, m3;
3323 
3324 	if (fix_phy_mode2) {
3325 		m2 = readl(port_mmio + PHY_MODE2);
3326 		m2 &= ~(1 << 16);
3327 		m2 |= (1 << 31);
3328 		writel(m2, port_mmio + PHY_MODE2);
3329 
3330 		udelay(200);
3331 
3332 		m2 = readl(port_mmio + PHY_MODE2);
3333 		m2 &= ~((1 << 16) | (1 << 31));
3334 		writel(m2, port_mmio + PHY_MODE2);
3335 
3336 		udelay(200);
3337 	}
3338 
3339 	/*
3340 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3341 	 * Achieves better receiver noise performance than the h/w default:
3342 	 */
3343 	m3 = readl(port_mmio + PHY_MODE3);
3344 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3345 
3346 	/* Guideline 88F5182 (GL# SATA-S11) */
3347 	if (IS_SOC(hpriv))
3348 		m3 &= ~0x1c;
3349 
3350 	if (fix_phy_mode4) {
3351 		u32 m4 = readl(port_mmio + PHY_MODE4);
3352 		/*
3353 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3354 		 * For earlier chipsets, force only the internal config field
3355 		 *  (workaround for errata FEr SATA#10 part 1).
3356 		 */
3357 		if (IS_GEN_IIE(hpriv))
3358 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3359 		else
3360 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3361 		writel(m4, port_mmio + PHY_MODE4);
3362 	}
3363 	/*
3364 	 * Workaround for 60x1-B2 errata SATA#13:
3365 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3366 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3367 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3368 	 */
3369 	writel(m3, port_mmio + PHY_MODE3);
3370 
3371 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3372 	m2 = readl(port_mmio + PHY_MODE2);
3373 
3374 	m2 &= ~MV_M2_PREAMP_MASK;
3375 	m2 |= hpriv->signal[port].amps;
3376 	m2 |= hpriv->signal[port].pre;
3377 	m2 &= ~(1 << 16);
3378 
3379 	/* according to mvSata 3.6.1, some IIE values are fixed */
3380 	if (IS_GEN_IIE(hpriv)) {
3381 		m2 &= ~0xC30FF01F;
3382 		m2 |= 0x0000900F;
3383 	}
3384 
3385 	writel(m2, port_mmio + PHY_MODE2);
3386 }
3387 
3388 /* TODO: use the generic LED interface to configure the SATA Presence */
3389 /* & Acitivy LEDs on the board */
mv_soc_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3390 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3391 				      void __iomem *mmio)
3392 {
3393 	return;
3394 }
3395 
mv_soc_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3396 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3397 			   void __iomem *mmio)
3398 {
3399 	void __iomem *port_mmio;
3400 	u32 tmp;
3401 
3402 	port_mmio = mv_port_base(mmio, idx);
3403 	tmp = readl(port_mmio + PHY_MODE2);
3404 
3405 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3406 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3407 }
3408 
3409 #undef ZERO
3410 #define ZERO(reg) writel(0, port_mmio + (reg))
mv_soc_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3411 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3412 					void __iomem *mmio, unsigned int port)
3413 {
3414 	void __iomem *port_mmio = mv_port_base(mmio, port);
3415 
3416 	mv_reset_channel(hpriv, mmio, port);
3417 
3418 	ZERO(0x028);		/* command */
3419 	writel(0x101f, port_mmio + EDMA_CFG);
3420 	ZERO(0x004);		/* timer */
3421 	ZERO(0x008);		/* irq err cause */
3422 	ZERO(0x00c);		/* irq err mask */
3423 	ZERO(0x010);		/* rq bah */
3424 	ZERO(0x014);		/* rq inp */
3425 	ZERO(0x018);		/* rq outp */
3426 	ZERO(0x01c);		/* respq bah */
3427 	ZERO(0x024);		/* respq outp */
3428 	ZERO(0x020);		/* respq inp */
3429 	ZERO(0x02c);		/* test control */
3430 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3431 }
3432 
3433 #undef ZERO
3434 
3435 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv_soc_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio)3436 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3437 				       void __iomem *mmio)
3438 {
3439 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3440 
3441 	ZERO(0x00c);
3442 	ZERO(0x010);
3443 	ZERO(0x014);
3444 
3445 }
3446 
3447 #undef ZERO
3448 
mv_soc_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3449 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3450 				  void __iomem *mmio, unsigned int n_hc)
3451 {
3452 	unsigned int port;
3453 
3454 	for (port = 0; port < hpriv->n_ports; port++)
3455 		mv_soc_reset_hc_port(hpriv, mmio, port);
3456 
3457 	mv_soc_reset_one_hc(hpriv, mmio);
3458 
3459 	return 0;
3460 }
3461 
mv_soc_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3462 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3463 				      void __iomem *mmio)
3464 {
3465 	return;
3466 }
3467 
mv_soc_reset_bus(struct ata_host * host,void __iomem * mmio)3468 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3469 {
3470 	return;
3471 }
3472 
mv_soc_65n_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3473 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3474 				  void __iomem *mmio, unsigned int port)
3475 {
3476 	void __iomem *port_mmio = mv_port_base(mmio, port);
3477 	u32	reg;
3478 
3479 	reg = readl(port_mmio + PHY_MODE3);
3480 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3481 	reg |= (0x1 << 27);
3482 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3483 	reg |= (0x1 << 29);
3484 	writel(reg, port_mmio + PHY_MODE3);
3485 
3486 	reg = readl(port_mmio + PHY_MODE4);
3487 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3488 	reg |= (0x1 << 16);
3489 	writel(reg, port_mmio + PHY_MODE4);
3490 
3491 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3492 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3493 	reg |= 0x8;
3494 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3495 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3496 
3497 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3498 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3499 	reg |= 0x8;
3500 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3501 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3502 }
3503 
3504 /**
3505  *	soc_is_65 - check if the soc is 65 nano device
3506  *
3507  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3508  *	register, this register should contain non-zero value and it exists only
3509  *	in the 65 nano devices, when reading it from older devices we get 0.
3510  */
soc_is_65n(struct mv_host_priv * hpriv)3511 static bool soc_is_65n(struct mv_host_priv *hpriv)
3512 {
3513 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3514 
3515 	if (readl(port0_mmio + PHYCFG_OFS))
3516 		return true;
3517 	return false;
3518 }
3519 
mv_setup_ifcfg(void __iomem * port_mmio,int want_gen2i)3520 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3521 {
3522 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3523 
3524 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3525 	if (want_gen2i)
3526 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3527 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3528 }
3529 
mv_reset_channel(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port_no)3530 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3531 			     unsigned int port_no)
3532 {
3533 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3534 
3535 	/*
3536 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3537 	 * (but doesn't say what the problem might be).  So we first try
3538 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3539 	 */
3540 	mv_stop_edma_engine(port_mmio);
3541 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3542 
3543 	if (!IS_GEN_I(hpriv)) {
3544 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3545 		mv_setup_ifcfg(port_mmio, 1);
3546 	}
3547 	/*
3548 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3549 	 * link, and physical layers.  It resets all SATA interface registers
3550 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3551 	 */
3552 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3553 	udelay(25);	/* allow reset propagation */
3554 	writelfl(0, port_mmio + EDMA_CMD);
3555 
3556 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3557 
3558 	if (IS_GEN_I(hpriv))
3559 		mdelay(1);
3560 }
3561 
mv_pmp_select(struct ata_port * ap,int pmp)3562 static void mv_pmp_select(struct ata_port *ap, int pmp)
3563 {
3564 	if (sata_pmp_supported(ap)) {
3565 		void __iomem *port_mmio = mv_ap_base(ap);
3566 		u32 reg = readl(port_mmio + SATA_IFCTL);
3567 		int old = reg & 0xf;
3568 
3569 		if (old != pmp) {
3570 			reg = (reg & ~0xf) | pmp;
3571 			writelfl(reg, port_mmio + SATA_IFCTL);
3572 		}
3573 	}
3574 }
3575 
mv_pmp_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3576 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3577 				unsigned long deadline)
3578 {
3579 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3580 	return sata_std_hardreset(link, class, deadline);
3581 }
3582 
mv_softreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3583 static int mv_softreset(struct ata_link *link, unsigned int *class,
3584 				unsigned long deadline)
3585 {
3586 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3587 	return ata_sff_softreset(link, class, deadline);
3588 }
3589 
mv_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3590 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3591 			unsigned long deadline)
3592 {
3593 	struct ata_port *ap = link->ap;
3594 	struct mv_host_priv *hpriv = ap->host->private_data;
3595 	struct mv_port_priv *pp = ap->private_data;
3596 	void __iomem *mmio = hpriv->base;
3597 	int rc, attempts = 0, extra = 0;
3598 	u32 sstatus;
3599 	bool online;
3600 
3601 	mv_reset_channel(hpriv, mmio, ap->port_no);
3602 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3603 	pp->pp_flags &=
3604 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3605 
3606 	/* Workaround for errata FEr SATA#10 (part 2) */
3607 	do {
3608 		const unsigned long *timing =
3609 				sata_ehc_deb_timing(&link->eh_context);
3610 
3611 		rc = sata_link_hardreset(link, timing, deadline + extra,
3612 					 &online, NULL);
3613 		rc = online ? -EAGAIN : rc;
3614 		if (rc)
3615 			return rc;
3616 		sata_scr_read(link, SCR_STATUS, &sstatus);
3617 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3618 			/* Force 1.5gb/s link speed and try again */
3619 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3620 			if (time_after(jiffies + HZ, deadline))
3621 				extra = HZ; /* only extend it once, max */
3622 		}
3623 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3624 	mv_save_cached_regs(ap);
3625 	mv_edma_cfg(ap, 0, 0);
3626 
3627 	return rc;
3628 }
3629 
mv_eh_freeze(struct ata_port * ap)3630 static void mv_eh_freeze(struct ata_port *ap)
3631 {
3632 	mv_stop_edma(ap);
3633 	mv_enable_port_irqs(ap, 0);
3634 }
3635 
mv_eh_thaw(struct ata_port * ap)3636 static void mv_eh_thaw(struct ata_port *ap)
3637 {
3638 	struct mv_host_priv *hpriv = ap->host->private_data;
3639 	unsigned int port = ap->port_no;
3640 	unsigned int hardport = mv_hardport_from_port(port);
3641 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3642 	void __iomem *port_mmio = mv_ap_base(ap);
3643 	u32 hc_irq_cause;
3644 
3645 	/* clear EDMA errors on this port */
3646 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3647 
3648 	/* clear pending irq events */
3649 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3650 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3651 
3652 	mv_enable_port_irqs(ap, ERR_IRQ);
3653 }
3654 
3655 /**
3656  *      mv_port_init - Perform some early initialization on a single port.
3657  *      @port: libata data structure storing shadow register addresses
3658  *      @port_mmio: base address of the port
3659  *
3660  *      Initialize shadow register mmio addresses, clear outstanding
3661  *      interrupts on the port, and unmask interrupts for the future
3662  *      start of the port.
3663  *
3664  *      LOCKING:
3665  *      Inherited from caller.
3666  */
mv_port_init(struct ata_ioports * port,void __iomem * port_mmio)3667 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3668 {
3669 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3670 
3671 	/* PIO related setup
3672 	 */
3673 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3674 	port->error_addr =
3675 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3676 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3677 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3678 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3679 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3680 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3681 	port->status_addr =
3682 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3683 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3684 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3685 
3686 	/* Clear any currently outstanding port interrupt conditions */
3687 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3688 	writelfl(readl(serr), serr);
3689 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3690 
3691 	/* unmask all non-transient EDMA error interrupts */
3692 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3693 
3694 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3695 		readl(port_mmio + EDMA_CFG),
3696 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3697 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3698 }
3699 
mv_in_pcix_mode(struct ata_host * host)3700 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3701 {
3702 	struct mv_host_priv *hpriv = host->private_data;
3703 	void __iomem *mmio = hpriv->base;
3704 	u32 reg;
3705 
3706 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3707 		return 0;	/* not PCI-X capable */
3708 	reg = readl(mmio + MV_PCI_MODE);
3709 	if ((reg & MV_PCI_MODE_MASK) == 0)
3710 		return 0;	/* conventional PCI mode */
3711 	return 1;	/* chip is in PCI-X mode */
3712 }
3713 
mv_pci_cut_through_okay(struct ata_host * host)3714 static int mv_pci_cut_through_okay(struct ata_host *host)
3715 {
3716 	struct mv_host_priv *hpriv = host->private_data;
3717 	void __iomem *mmio = hpriv->base;
3718 	u32 reg;
3719 
3720 	if (!mv_in_pcix_mode(host)) {
3721 		reg = readl(mmio + MV_PCI_COMMAND);
3722 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3723 			return 0; /* not okay */
3724 	}
3725 	return 1; /* okay */
3726 }
3727 
mv_60x1b2_errata_pci7(struct ata_host * host)3728 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3729 {
3730 	struct mv_host_priv *hpriv = host->private_data;
3731 	void __iomem *mmio = hpriv->base;
3732 
3733 	/* workaround for 60x1-B2 errata PCI#7 */
3734 	if (mv_in_pcix_mode(host)) {
3735 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3736 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3737 	}
3738 }
3739 
mv_chip_id(struct ata_host * host,unsigned int board_idx)3740 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3741 {
3742 	struct pci_dev *pdev = to_pci_dev(host->dev);
3743 	struct mv_host_priv *hpriv = host->private_data;
3744 	u32 hp_flags = hpriv->hp_flags;
3745 
3746 	switch (board_idx) {
3747 	case chip_5080:
3748 		hpriv->ops = &mv5xxx_ops;
3749 		hp_flags |= MV_HP_GEN_I;
3750 
3751 		switch (pdev->revision) {
3752 		case 0x1:
3753 			hp_flags |= MV_HP_ERRATA_50XXB0;
3754 			break;
3755 		case 0x3:
3756 			hp_flags |= MV_HP_ERRATA_50XXB2;
3757 			break;
3758 		default:
3759 			dev_warn(&pdev->dev,
3760 				 "Applying 50XXB2 workarounds to unknown rev\n");
3761 			hp_flags |= MV_HP_ERRATA_50XXB2;
3762 			break;
3763 		}
3764 		break;
3765 
3766 	case chip_504x:
3767 	case chip_508x:
3768 		hpriv->ops = &mv5xxx_ops;
3769 		hp_flags |= MV_HP_GEN_I;
3770 
3771 		switch (pdev->revision) {
3772 		case 0x0:
3773 			hp_flags |= MV_HP_ERRATA_50XXB0;
3774 			break;
3775 		case 0x3:
3776 			hp_flags |= MV_HP_ERRATA_50XXB2;
3777 			break;
3778 		default:
3779 			dev_warn(&pdev->dev,
3780 				 "Applying B2 workarounds to unknown rev\n");
3781 			hp_flags |= MV_HP_ERRATA_50XXB2;
3782 			break;
3783 		}
3784 		break;
3785 
3786 	case chip_604x:
3787 	case chip_608x:
3788 		hpriv->ops = &mv6xxx_ops;
3789 		hp_flags |= MV_HP_GEN_II;
3790 
3791 		switch (pdev->revision) {
3792 		case 0x7:
3793 			mv_60x1b2_errata_pci7(host);
3794 			hp_flags |= MV_HP_ERRATA_60X1B2;
3795 			break;
3796 		case 0x9:
3797 			hp_flags |= MV_HP_ERRATA_60X1C0;
3798 			break;
3799 		default:
3800 			dev_warn(&pdev->dev,
3801 				 "Applying B2 workarounds to unknown rev\n");
3802 			hp_flags |= MV_HP_ERRATA_60X1B2;
3803 			break;
3804 		}
3805 		break;
3806 
3807 	case chip_7042:
3808 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3809 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3810 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3811 		{
3812 			/*
3813 			 * Highpoint RocketRAID PCIe 23xx series cards:
3814 			 *
3815 			 * Unconfigured drives are treated as "Legacy"
3816 			 * by the BIOS, and it overwrites sector 8 with
3817 			 * a "Lgcy" metadata block prior to Linux boot.
3818 			 *
3819 			 * Configured drives (RAID or JBOD) leave sector 8
3820 			 * alone, but instead overwrite a high numbered
3821 			 * sector for the RAID metadata.  This sector can
3822 			 * be determined exactly, by truncating the physical
3823 			 * drive capacity to a nice even GB value.
3824 			 *
3825 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3826 			 *
3827 			 * Warn the user, lest they think we're just buggy.
3828 			 */
3829 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3830 				" BIOS CORRUPTS DATA on all attached drives,"
3831 				" regardless of if/how they are configured."
3832 				" BEWARE!\n");
3833 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3834 				" use sectors 8-9 on \"Legacy\" drives,"
3835 				" and avoid the final two gigabytes on"
3836 				" all RocketRAID BIOS initialized drives.\n");
3837 		}
3838 		/* drop through */
3839 	case chip_6042:
3840 		hpriv->ops = &mv6xxx_ops;
3841 		hp_flags |= MV_HP_GEN_IIE;
3842 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3843 			hp_flags |= MV_HP_CUT_THROUGH;
3844 
3845 		switch (pdev->revision) {
3846 		case 0x2: /* Rev.B0: the first/only public release */
3847 			hp_flags |= MV_HP_ERRATA_60X1C0;
3848 			break;
3849 		default:
3850 			dev_warn(&pdev->dev,
3851 				 "Applying 60X1C0 workarounds to unknown rev\n");
3852 			hp_flags |= MV_HP_ERRATA_60X1C0;
3853 			break;
3854 		}
3855 		break;
3856 	case chip_soc:
3857 		if (soc_is_65n(hpriv))
3858 			hpriv->ops = &mv_soc_65n_ops;
3859 		else
3860 			hpriv->ops = &mv_soc_ops;
3861 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3862 			MV_HP_ERRATA_60X1C0;
3863 		break;
3864 
3865 	default:
3866 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3867 		return 1;
3868 	}
3869 
3870 	hpriv->hp_flags = hp_flags;
3871 	if (hp_flags & MV_HP_PCIE) {
3872 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3873 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3874 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3875 	} else {
3876 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3877 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3878 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3879 	}
3880 
3881 	return 0;
3882 }
3883 
3884 /**
3885  *      mv_init_host - Perform some early initialization of the host.
3886  *	@host: ATA host to initialize
3887  *
3888  *      If possible, do an early global reset of the host.  Then do
3889  *      our port init and clear/unmask all/relevant host interrupts.
3890  *
3891  *      LOCKING:
3892  *      Inherited from caller.
3893  */
mv_init_host(struct ata_host * host)3894 static int mv_init_host(struct ata_host *host)
3895 {
3896 	int rc = 0, n_hc, port, hc;
3897 	struct mv_host_priv *hpriv = host->private_data;
3898 	void __iomem *mmio = hpriv->base;
3899 
3900 	rc = mv_chip_id(host, hpriv->board_idx);
3901 	if (rc)
3902 		goto done;
3903 
3904 	if (IS_SOC(hpriv)) {
3905 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3906 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3907 	} else {
3908 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3909 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3910 	}
3911 
3912 	/* initialize shadow irq mask with register's value */
3913 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3914 
3915 	/* global interrupt mask: 0 == mask everything */
3916 	mv_set_main_irq_mask(host, ~0, 0);
3917 
3918 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3919 
3920 	for (port = 0; port < host->n_ports; port++)
3921 		if (hpriv->ops->read_preamp)
3922 			hpriv->ops->read_preamp(hpriv, port, mmio);
3923 
3924 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3925 	if (rc)
3926 		goto done;
3927 
3928 	hpriv->ops->reset_flash(hpriv, mmio);
3929 	hpriv->ops->reset_bus(host, mmio);
3930 	hpriv->ops->enable_leds(hpriv, mmio);
3931 
3932 	for (port = 0; port < host->n_ports; port++) {
3933 		struct ata_port *ap = host->ports[port];
3934 		void __iomem *port_mmio = mv_port_base(mmio, port);
3935 
3936 		mv_port_init(&ap->ioaddr, port_mmio);
3937 	}
3938 
3939 	for (hc = 0; hc < n_hc; hc++) {
3940 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3941 
3942 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3943 			"(before clear)=0x%08x\n", hc,
3944 			readl(hc_mmio + HC_CFG),
3945 			readl(hc_mmio + HC_IRQ_CAUSE));
3946 
3947 		/* Clear any currently outstanding hc interrupt conditions */
3948 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3949 	}
3950 
3951 	if (!IS_SOC(hpriv)) {
3952 		/* Clear any currently outstanding host interrupt conditions */
3953 		writelfl(0, mmio + hpriv->irq_cause_offset);
3954 
3955 		/* and unmask interrupt generation for host regs */
3956 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3957 	}
3958 
3959 	/*
3960 	 * enable only global host interrupts for now.
3961 	 * The per-port interrupts get done later as ports are set up.
3962 	 */
3963 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3964 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3965 				    irq_coalescing_usecs);
3966 done:
3967 	return rc;
3968 }
3969 
mv_create_dma_pools(struct mv_host_priv * hpriv,struct device * dev)3970 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3971 {
3972 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3973 							     MV_CRQB_Q_SZ, 0);
3974 	if (!hpriv->crqb_pool)
3975 		return -ENOMEM;
3976 
3977 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3978 							     MV_CRPB_Q_SZ, 0);
3979 	if (!hpriv->crpb_pool)
3980 		return -ENOMEM;
3981 
3982 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3983 							     MV_SG_TBL_SZ, 0);
3984 	if (!hpriv->sg_tbl_pool)
3985 		return -ENOMEM;
3986 
3987 	return 0;
3988 }
3989 
mv_conf_mbus_windows(struct mv_host_priv * hpriv,const struct mbus_dram_target_info * dram)3990 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3991 				 const struct mbus_dram_target_info *dram)
3992 {
3993 	int i;
3994 
3995 	for (i = 0; i < 4; i++) {
3996 		writel(0, hpriv->base + WINDOW_CTRL(i));
3997 		writel(0, hpriv->base + WINDOW_BASE(i));
3998 	}
3999 
4000 	for (i = 0; i < dram->num_cs; i++) {
4001 		const struct mbus_dram_window *cs = dram->cs + i;
4002 
4003 		writel(((cs->size - 1) & 0xffff0000) |
4004 			(cs->mbus_attr << 8) |
4005 			(dram->mbus_dram_target_id << 4) | 1,
4006 			hpriv->base + WINDOW_CTRL(i));
4007 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4008 	}
4009 }
4010 
4011 /**
4012  *      mv_platform_probe - handle a positive probe of an soc Marvell
4013  *      host
4014  *      @pdev: platform device found
4015  *
4016  *      LOCKING:
4017  *      Inherited from caller.
4018  */
mv_platform_probe(struct platform_device * pdev)4019 static int mv_platform_probe(struct platform_device *pdev)
4020 {
4021 	const struct mv_sata_platform_data *mv_platform_data;
4022 	const struct mbus_dram_target_info *dram;
4023 	const struct ata_port_info *ppi[] =
4024 	    { &mv_port_info[chip_soc], NULL };
4025 	struct ata_host *host;
4026 	struct mv_host_priv *hpriv;
4027 	struct resource *res;
4028 	int n_ports = 0;
4029 	int rc;
4030 
4031 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4032 
4033 	/*
4034 	 * Simple resource validation ..
4035 	 */
4036 	if (unlikely(pdev->num_resources != 2)) {
4037 		dev_err(&pdev->dev, "invalid number of resources\n");
4038 		return -EINVAL;
4039 	}
4040 
4041 	/*
4042 	 * Get the register base first
4043 	 */
4044 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4045 	if (res == NULL)
4046 		return -EINVAL;
4047 
4048 	/* allocate host */
4049 	mv_platform_data = pdev->dev.platform_data;
4050 	n_ports = mv_platform_data->n_ports;
4051 
4052 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4053 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4054 
4055 	if (!host || !hpriv)
4056 		return -ENOMEM;
4057 	host->private_data = hpriv;
4058 	hpriv->n_ports = n_ports;
4059 	hpriv->board_idx = chip_soc;
4060 
4061 	host->iomap = NULL;
4062 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4063 				   resource_size(res));
4064 	hpriv->base -= SATAHC0_REG_BASE;
4065 
4066 #if defined(CONFIG_HAVE_CLK)
4067 	hpriv->clk = clk_get(&pdev->dev, NULL);
4068 	if (IS_ERR(hpriv->clk))
4069 		dev_notice(&pdev->dev, "cannot get clkdev\n");
4070 	else
4071 		clk_enable(hpriv->clk);
4072 #endif
4073 
4074 	/*
4075 	 * (Re-)program MBUS remapping windows if we are asked to.
4076 	 */
4077 	dram = mv_mbus_dram_info();
4078 	if (dram)
4079 		mv_conf_mbus_windows(hpriv, dram);
4080 
4081 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4082 	if (rc)
4083 		goto err;
4084 
4085 	/* initialize adapter */
4086 	rc = mv_init_host(host);
4087 	if (rc)
4088 		goto err;
4089 
4090 	dev_info(&pdev->dev, "slots %u ports %d\n",
4091 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4092 
4093 	rc = ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4094 			       IRQF_SHARED, &mv6_sht);
4095 	if (!rc)
4096 		return 0;
4097 
4098 err:
4099 #if defined(CONFIG_HAVE_CLK)
4100 	if (!IS_ERR(hpriv->clk)) {
4101 		clk_disable(hpriv->clk);
4102 		clk_put(hpriv->clk);
4103 	}
4104 #endif
4105 
4106 	return rc;
4107 }
4108 
4109 /*
4110  *
4111  *      mv_platform_remove    -       unplug a platform interface
4112  *      @pdev: platform device
4113  *
4114  *      A platform bus SATA device has been unplugged. Perform the needed
4115  *      cleanup. Also called on module unload for any active devices.
4116  */
mv_platform_remove(struct platform_device * pdev)4117 static int __devexit mv_platform_remove(struct platform_device *pdev)
4118 {
4119 	struct ata_host *host = platform_get_drvdata(pdev);
4120 #if defined(CONFIG_HAVE_CLK)
4121 	struct mv_host_priv *hpriv = host->private_data;
4122 #endif
4123 	ata_host_detach(host);
4124 
4125 #if defined(CONFIG_HAVE_CLK)
4126 	if (!IS_ERR(hpriv->clk)) {
4127 		clk_disable(hpriv->clk);
4128 		clk_put(hpriv->clk);
4129 	}
4130 #endif
4131 	return 0;
4132 }
4133 
4134 #ifdef CONFIG_PM
mv_platform_suspend(struct platform_device * pdev,pm_message_t state)4135 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4136 {
4137 	struct ata_host *host = platform_get_drvdata(pdev);
4138 	if (host)
4139 		return ata_host_suspend(host, state);
4140 	else
4141 		return 0;
4142 }
4143 
mv_platform_resume(struct platform_device * pdev)4144 static int mv_platform_resume(struct platform_device *pdev)
4145 {
4146 	struct ata_host *host = platform_get_drvdata(pdev);
4147 	const struct mbus_dram_target_info *dram;
4148 	int ret;
4149 
4150 	if (host) {
4151 		struct mv_host_priv *hpriv = host->private_data;
4152 
4153 		/*
4154 		 * (Re-)program MBUS remapping windows if we are asked to.
4155 		 */
4156 		dram = mv_mbus_dram_info();
4157 		if (dram)
4158 			mv_conf_mbus_windows(hpriv, dram);
4159 
4160 		/* initialize adapter */
4161 		ret = mv_init_host(host);
4162 		if (ret) {
4163 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4164 			return ret;
4165 		}
4166 		ata_host_resume(host);
4167 	}
4168 
4169 	return 0;
4170 }
4171 #else
4172 #define mv_platform_suspend NULL
4173 #define mv_platform_resume NULL
4174 #endif
4175 
4176 static struct platform_driver mv_platform_driver = {
4177 	.probe			= mv_platform_probe,
4178 	.remove			= __devexit_p(mv_platform_remove),
4179 	.suspend		= mv_platform_suspend,
4180 	.resume			= mv_platform_resume,
4181 	.driver			= {
4182 				   .name = DRV_NAME,
4183 				   .owner = THIS_MODULE,
4184 				  },
4185 };
4186 
4187 
4188 #ifdef CONFIG_PCI
4189 static int mv_pci_init_one(struct pci_dev *pdev,
4190 			   const struct pci_device_id *ent);
4191 #ifdef CONFIG_PM
4192 static int mv_pci_device_resume(struct pci_dev *pdev);
4193 #endif
4194 
4195 
4196 static struct pci_driver mv_pci_driver = {
4197 	.name			= DRV_NAME,
4198 	.id_table		= mv_pci_tbl,
4199 	.probe			= mv_pci_init_one,
4200 	.remove			= ata_pci_remove_one,
4201 #ifdef CONFIG_PM
4202 	.suspend		= ata_pci_device_suspend,
4203 	.resume			= mv_pci_device_resume,
4204 #endif
4205 
4206 };
4207 
4208 /* move to PCI layer or libata core? */
pci_go_64(struct pci_dev * pdev)4209 static int pci_go_64(struct pci_dev *pdev)
4210 {
4211 	int rc;
4212 
4213 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4214 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4215 		if (rc) {
4216 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4217 			if (rc) {
4218 				dev_err(&pdev->dev,
4219 					"64-bit DMA enable failed\n");
4220 				return rc;
4221 			}
4222 		}
4223 	} else {
4224 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4225 		if (rc) {
4226 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4227 			return rc;
4228 		}
4229 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4230 		if (rc) {
4231 			dev_err(&pdev->dev,
4232 				"32-bit consistent DMA enable failed\n");
4233 			return rc;
4234 		}
4235 	}
4236 
4237 	return rc;
4238 }
4239 
4240 /**
4241  *      mv_print_info - Dump key info to kernel log for perusal.
4242  *      @host: ATA host to print info about
4243  *
4244  *      FIXME: complete this.
4245  *
4246  *      LOCKING:
4247  *      Inherited from caller.
4248  */
mv_print_info(struct ata_host * host)4249 static void mv_print_info(struct ata_host *host)
4250 {
4251 	struct pci_dev *pdev = to_pci_dev(host->dev);
4252 	struct mv_host_priv *hpriv = host->private_data;
4253 	u8 scc;
4254 	const char *scc_s, *gen;
4255 
4256 	/* Use this to determine the HW stepping of the chip so we know
4257 	 * what errata to workaround
4258 	 */
4259 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4260 	if (scc == 0)
4261 		scc_s = "SCSI";
4262 	else if (scc == 0x01)
4263 		scc_s = "RAID";
4264 	else
4265 		scc_s = "?";
4266 
4267 	if (IS_GEN_I(hpriv))
4268 		gen = "I";
4269 	else if (IS_GEN_II(hpriv))
4270 		gen = "II";
4271 	else if (IS_GEN_IIE(hpriv))
4272 		gen = "IIE";
4273 	else
4274 		gen = "?";
4275 
4276 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4277 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4278 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4279 }
4280 
4281 /**
4282  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4283  *      @pdev: PCI device found
4284  *      @ent: PCI device ID entry for the matched host
4285  *
4286  *      LOCKING:
4287  *      Inherited from caller.
4288  */
mv_pci_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4289 static int mv_pci_init_one(struct pci_dev *pdev,
4290 			   const struct pci_device_id *ent)
4291 {
4292 	unsigned int board_idx = (unsigned int)ent->driver_data;
4293 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4294 	struct ata_host *host;
4295 	struct mv_host_priv *hpriv;
4296 	int n_ports, port, rc;
4297 
4298 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4299 
4300 	/* allocate host */
4301 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4302 
4303 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4304 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4305 	if (!host || !hpriv)
4306 		return -ENOMEM;
4307 	host->private_data = hpriv;
4308 	hpriv->n_ports = n_ports;
4309 	hpriv->board_idx = board_idx;
4310 
4311 	/* acquire resources */
4312 	rc = pcim_enable_device(pdev);
4313 	if (rc)
4314 		return rc;
4315 
4316 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4317 	if (rc == -EBUSY)
4318 		pcim_pin_device(pdev);
4319 	if (rc)
4320 		return rc;
4321 	host->iomap = pcim_iomap_table(pdev);
4322 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4323 
4324 	rc = pci_go_64(pdev);
4325 	if (rc)
4326 		return rc;
4327 
4328 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4329 	if (rc)
4330 		return rc;
4331 
4332 	for (port = 0; port < host->n_ports; port++) {
4333 		struct ata_port *ap = host->ports[port];
4334 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4335 		unsigned int offset = port_mmio - hpriv->base;
4336 
4337 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4338 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4339 	}
4340 
4341 	/* initialize adapter */
4342 	rc = mv_init_host(host);
4343 	if (rc)
4344 		return rc;
4345 
4346 	/* Enable message-switched interrupts, if requested */
4347 	if (msi && pci_enable_msi(pdev) == 0)
4348 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4349 
4350 	mv_dump_pci_cfg(pdev, 0x68);
4351 	mv_print_info(host);
4352 
4353 	pci_set_master(pdev);
4354 	pci_try_set_mwi(pdev);
4355 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4356 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4357 }
4358 
4359 #ifdef CONFIG_PM
mv_pci_device_resume(struct pci_dev * pdev)4360 static int mv_pci_device_resume(struct pci_dev *pdev)
4361 {
4362 	struct ata_host *host = pci_get_drvdata(pdev);
4363 	int rc;
4364 
4365 	rc = ata_pci_device_do_resume(pdev);
4366 	if (rc)
4367 		return rc;
4368 
4369 	/* initialize adapter */
4370 	rc = mv_init_host(host);
4371 	if (rc)
4372 		return rc;
4373 
4374 	ata_host_resume(host);
4375 
4376 	return 0;
4377 }
4378 #endif
4379 #endif
4380 
4381 static int mv_platform_probe(struct platform_device *pdev);
4382 static int __devexit mv_platform_remove(struct platform_device *pdev);
4383 
mv_init(void)4384 static int __init mv_init(void)
4385 {
4386 	int rc = -ENODEV;
4387 #ifdef CONFIG_PCI
4388 	rc = pci_register_driver(&mv_pci_driver);
4389 	if (rc < 0)
4390 		return rc;
4391 #endif
4392 	rc = platform_driver_register(&mv_platform_driver);
4393 
4394 #ifdef CONFIG_PCI
4395 	if (rc < 0)
4396 		pci_unregister_driver(&mv_pci_driver);
4397 #endif
4398 	return rc;
4399 }
4400 
mv_exit(void)4401 static void __exit mv_exit(void)
4402 {
4403 #ifdef CONFIG_PCI
4404 	pci_unregister_driver(&mv_pci_driver);
4405 #endif
4406 	platform_driver_unregister(&mv_platform_driver);
4407 }
4408 
4409 MODULE_AUTHOR("Brett Russ");
4410 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4411 MODULE_LICENSE("GPL");
4412 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4413 MODULE_VERSION(DRV_VERSION);
4414 MODULE_ALIAS("platform:" DRV_NAME);
4415 
4416 module_init(mv_init);
4417 module_exit(mv_exit);
4418