1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 					"ACPI", "SMBIOS", "PCI",
112 					"device-tree", "default" };
113 
114 #define DEVICE_NAME "ipmi_si"
115 
116 static struct platform_driver ipmi_driver;
117 
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122 	/*
123 	 * Number of times the driver requested a timer while an operation
124 	 * was in progress.
125 	 */
126 	SI_STAT_short_timeouts = 0,
127 
128 	/*
129 	 * Number of times the driver requested a timer while nothing was in
130 	 * progress.
131 	 */
132 	SI_STAT_long_timeouts,
133 
134 	/* Number of times the interface was idle while being polled. */
135 	SI_STAT_idles,
136 
137 	/* Number of interrupts the driver handled. */
138 	SI_STAT_interrupts,
139 
140 	/* Number of time the driver got an ATTN from the hardware. */
141 	SI_STAT_attentions,
142 
143 	/* Number of times the driver requested flags from the hardware. */
144 	SI_STAT_flag_fetches,
145 
146 	/* Number of times the hardware didn't follow the state machine. */
147 	SI_STAT_hosed_count,
148 
149 	/* Number of completed messages. */
150 	SI_STAT_complete_transactions,
151 
152 	/* Number of IPMI events received from the hardware. */
153 	SI_STAT_events,
154 
155 	/* Number of watchdog pretimeouts. */
156 	SI_STAT_watchdog_pretimeouts,
157 
158 	/* Number of asyncronous messages received. */
159 	SI_STAT_incoming_messages,
160 
161 
162 	/* This *must* remain last, add new values above this. */
163 	SI_NUM_STATS
164 };
165 
166 struct smi_info {
167 	int                    intf_num;
168 	ipmi_smi_t             intf;
169 	struct si_sm_data      *si_sm;
170 	struct si_sm_handlers  *handlers;
171 	enum si_type           si_type;
172 	spinlock_t             si_lock;
173 	struct list_head       xmit_msgs;
174 	struct list_head       hp_xmit_msgs;
175 	struct ipmi_smi_msg    *curr_msg;
176 	enum si_intf_state     si_state;
177 
178 	/*
179 	 * Used to handle the various types of I/O that can occur with
180 	 * IPMI
181 	 */
182 	struct si_sm_io io;
183 	int (*io_setup)(struct smi_info *info);
184 	void (*io_cleanup)(struct smi_info *info);
185 	int (*irq_setup)(struct smi_info *info);
186 	void (*irq_cleanup)(struct smi_info *info);
187 	unsigned int io_size;
188 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 	void (*addr_source_cleanup)(struct smi_info *info);
190 	void *addr_source_data;
191 
192 	/*
193 	 * Per-OEM handler, called from handle_flags().  Returns 1
194 	 * when handle_flags() needs to be re-run or 0 indicating it
195 	 * set si_state itself.
196 	 */
197 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
198 
199 	/*
200 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 	 * is set to hold the flags until we are done handling everything
202 	 * from the flags.
203 	 */
204 #define RECEIVE_MSG_AVAIL	0x01
205 #define EVENT_MSG_BUFFER_FULL	0x02
206 #define WDT_PRE_TIMEOUT_INT	0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211 			     OEM1_DATA_AVAIL | \
212 			     OEM2_DATA_AVAIL)
213 	unsigned char       msg_flags;
214 
215 	/* Does the BMC have an event buffer? */
216 	char		    has_event_buffer;
217 
218 	/*
219 	 * If set to true, this will request events the next time the
220 	 * state machine is idle.
221 	 */
222 	atomic_t            req_events;
223 
224 	/*
225 	 * If true, run the state machine to completion on every send
226 	 * call.  Generally used after a panic to make sure stuff goes
227 	 * out.
228 	 */
229 	int                 run_to_completion;
230 
231 	/* The I/O port of an SI interface. */
232 	int                 port;
233 
234 	/*
235 	 * The space between start addresses of the two ports.  For
236 	 * instance, if the first port is 0xca2 and the spacing is 4, then
237 	 * the second port is 0xca6.
238 	 */
239 	unsigned int        spacing;
240 
241 	/* zero if no irq; */
242 	int                 irq;
243 
244 	/* The timer for this si. */
245 	struct timer_list   si_timer;
246 
247 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 	bool		    timer_running;
249 
250 	/* The time (in jiffies) the last timeout occurred at. */
251 	unsigned long       last_timeout_jiffies;
252 
253 	/* Used to gracefully stop the timer without race conditions. */
254 	atomic_t            stop_operation;
255 
256 	/*
257 	 * The driver will disable interrupts when it gets into a
258 	 * situation where it cannot handle messages due to lack of
259 	 * memory.  Once that situation clears up, it will re-enable
260 	 * interrupts.
261 	 */
262 	int interrupt_disabled;
263 
264 	/* From the get device id response... */
265 	struct ipmi_device_id device_id;
266 
267 	/* Driver model stuff. */
268 	struct device *dev;
269 	struct platform_device *pdev;
270 
271 	/*
272 	 * True if we allocated the device, false if it came from
273 	 * someplace else (like PCI).
274 	 */
275 	int dev_registered;
276 
277 	/* Slave address, could be reported from DMI. */
278 	unsigned char slave_addr;
279 
280 	/* Counters and things for the proc filesystem. */
281 	atomic_t stats[SI_NUM_STATS];
282 
283 	struct task_struct *thread;
284 
285 	struct list_head link;
286 	union ipmi_smi_info_union addr_info;
287 };
288 
289 #define smi_inc_stat(smi, stat) \
290 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
291 #define smi_get_stat(smi, stat) \
292 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293 
294 #define SI_MAX_PARMS 4
295 
296 static int force_kipmid[SI_MAX_PARMS];
297 static int num_force_kipmid;
298 #ifdef CONFIG_PCI
299 static int pci_registered;
300 #endif
301 #ifdef CONFIG_ACPI
302 static int pnp_registered;
303 #endif
304 
305 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
306 static int num_max_busy_us;
307 
308 static int unload_when_empty = 1;
309 
310 static int add_smi(struct smi_info *smi);
311 static int try_smi_init(struct smi_info *smi);
312 static void cleanup_one_si(struct smi_info *to_clean);
313 static void cleanup_ipmi_si(void);
314 
315 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)316 static int register_xaction_notifier(struct notifier_block *nb)
317 {
318 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
319 }
320 
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)321 static void deliver_recv_msg(struct smi_info *smi_info,
322 			     struct ipmi_smi_msg *msg)
323 {
324 	/* Deliver the message to the upper layer. */
325 	ipmi_smi_msg_received(smi_info->intf, msg);
326 }
327 
return_hosed_msg(struct smi_info * smi_info,int cCode)328 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
329 {
330 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
331 
332 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
333 		cCode = IPMI_ERR_UNSPECIFIED;
334 	/* else use it as is */
335 
336 	/* Make it a response */
337 	msg->rsp[0] = msg->data[0] | 4;
338 	msg->rsp[1] = msg->data[1];
339 	msg->rsp[2] = cCode;
340 	msg->rsp_size = 3;
341 
342 	smi_info->curr_msg = NULL;
343 	deliver_recv_msg(smi_info, msg);
344 }
345 
start_next_msg(struct smi_info * smi_info)346 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
347 {
348 	int              rv;
349 	struct list_head *entry = NULL;
350 #ifdef DEBUG_TIMING
351 	struct timeval t;
352 #endif
353 
354 	/* Pick the high priority queue first. */
355 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
356 		entry = smi_info->hp_xmit_msgs.next;
357 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
358 		entry = smi_info->xmit_msgs.next;
359 	}
360 
361 	if (!entry) {
362 		smi_info->curr_msg = NULL;
363 		rv = SI_SM_IDLE;
364 	} else {
365 		int err;
366 
367 		list_del(entry);
368 		smi_info->curr_msg = list_entry(entry,
369 						struct ipmi_smi_msg,
370 						link);
371 #ifdef DEBUG_TIMING
372 		do_gettimeofday(&t);
373 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
374 #endif
375 		err = atomic_notifier_call_chain(&xaction_notifier_list,
376 				0, smi_info);
377 		if (err & NOTIFY_STOP_MASK) {
378 			rv = SI_SM_CALL_WITHOUT_DELAY;
379 			goto out;
380 		}
381 		err = smi_info->handlers->start_transaction(
382 			smi_info->si_sm,
383 			smi_info->curr_msg->data,
384 			smi_info->curr_msg->data_size);
385 		if (err)
386 			return_hosed_msg(smi_info, err);
387 
388 		rv = SI_SM_CALL_WITHOUT_DELAY;
389 	}
390  out:
391 	return rv;
392 }
393 
start_enable_irq(struct smi_info * smi_info)394 static void start_enable_irq(struct smi_info *smi_info)
395 {
396 	unsigned char msg[2];
397 
398 	/*
399 	 * If we are enabling interrupts, we have to tell the
400 	 * BMC to use them.
401 	 */
402 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
404 
405 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
407 }
408 
start_disable_irq(struct smi_info * smi_info)409 static void start_disable_irq(struct smi_info *smi_info)
410 {
411 	unsigned char msg[2];
412 
413 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
415 
416 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
418 }
419 
start_clear_flags(struct smi_info * smi_info)420 static void start_clear_flags(struct smi_info *smi_info)
421 {
422 	unsigned char msg[3];
423 
424 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
425 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427 	msg[2] = WDT_PRE_TIMEOUT_INT;
428 
429 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430 	smi_info->si_state = SI_CLEARING_FLAGS;
431 }
432 
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)433 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
434 {
435 	smi_info->last_timeout_jiffies = jiffies;
436 	mod_timer(&smi_info->si_timer, new_val);
437 	smi_info->timer_running = true;
438 }
439 
440 /*
441  * When we have a situtaion where we run out of memory and cannot
442  * allocate messages, we just leave them in the BMC and run the system
443  * polled until we can allocate some memory.  Once we have some
444  * memory, we will re-enable the interrupt.
445  */
disable_si_irq(struct smi_info * smi_info)446 static inline void disable_si_irq(struct smi_info *smi_info)
447 {
448 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
449 		start_disable_irq(smi_info);
450 		smi_info->interrupt_disabled = 1;
451 		if (!atomic_read(&smi_info->stop_operation))
452 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
453 	}
454 }
455 
enable_si_irq(struct smi_info * smi_info)456 static inline void enable_si_irq(struct smi_info *smi_info)
457 {
458 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
459 		start_enable_irq(smi_info);
460 		smi_info->interrupt_disabled = 0;
461 	}
462 }
463 
handle_flags(struct smi_info * smi_info)464 static void handle_flags(struct smi_info *smi_info)
465 {
466  retry:
467 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
468 		/* Watchdog pre-timeout */
469 		smi_inc_stat(smi_info, watchdog_pretimeouts);
470 
471 		start_clear_flags(smi_info);
472 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
473 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
474 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
475 		/* Messages available. */
476 		smi_info->curr_msg = ipmi_alloc_smi_msg();
477 		if (!smi_info->curr_msg) {
478 			disable_si_irq(smi_info);
479 			smi_info->si_state = SI_NORMAL;
480 			return;
481 		}
482 		enable_si_irq(smi_info);
483 
484 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
485 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
486 		smi_info->curr_msg->data_size = 2;
487 
488 		smi_info->handlers->start_transaction(
489 			smi_info->si_sm,
490 			smi_info->curr_msg->data,
491 			smi_info->curr_msg->data_size);
492 		smi_info->si_state = SI_GETTING_MESSAGES;
493 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
494 		/* Events available. */
495 		smi_info->curr_msg = ipmi_alloc_smi_msg();
496 		if (!smi_info->curr_msg) {
497 			disable_si_irq(smi_info);
498 			smi_info->si_state = SI_NORMAL;
499 			return;
500 		}
501 		enable_si_irq(smi_info);
502 
503 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
504 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
505 		smi_info->curr_msg->data_size = 2;
506 
507 		smi_info->handlers->start_transaction(
508 			smi_info->si_sm,
509 			smi_info->curr_msg->data,
510 			smi_info->curr_msg->data_size);
511 		smi_info->si_state = SI_GETTING_EVENTS;
512 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
513 		   smi_info->oem_data_avail_handler) {
514 		if (smi_info->oem_data_avail_handler(smi_info))
515 			goto retry;
516 	} else
517 		smi_info->si_state = SI_NORMAL;
518 }
519 
handle_transaction_done(struct smi_info * smi_info)520 static void handle_transaction_done(struct smi_info *smi_info)
521 {
522 	struct ipmi_smi_msg *msg;
523 #ifdef DEBUG_TIMING
524 	struct timeval t;
525 
526 	do_gettimeofday(&t);
527 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
528 #endif
529 	switch (smi_info->si_state) {
530 	case SI_NORMAL:
531 		if (!smi_info->curr_msg)
532 			break;
533 
534 		smi_info->curr_msg->rsp_size
535 			= smi_info->handlers->get_result(
536 				smi_info->si_sm,
537 				smi_info->curr_msg->rsp,
538 				IPMI_MAX_MSG_LENGTH);
539 
540 		/*
541 		 * Do this here becase deliver_recv_msg() releases the
542 		 * lock, and a new message can be put in during the
543 		 * time the lock is released.
544 		 */
545 		msg = smi_info->curr_msg;
546 		smi_info->curr_msg = NULL;
547 		deliver_recv_msg(smi_info, msg);
548 		break;
549 
550 	case SI_GETTING_FLAGS:
551 	{
552 		unsigned char msg[4];
553 		unsigned int  len;
554 
555 		/* We got the flags from the SMI, now handle them. */
556 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
557 		if (msg[2] != 0) {
558 			/* Error fetching flags, just give up for now. */
559 			smi_info->si_state = SI_NORMAL;
560 		} else if (len < 4) {
561 			/*
562 			 * Hmm, no flags.  That's technically illegal, but
563 			 * don't use uninitialized data.
564 			 */
565 			smi_info->si_state = SI_NORMAL;
566 		} else {
567 			smi_info->msg_flags = msg[3];
568 			handle_flags(smi_info);
569 		}
570 		break;
571 	}
572 
573 	case SI_CLEARING_FLAGS:
574 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
575 	{
576 		unsigned char msg[3];
577 
578 		/* We cleared the flags. */
579 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
580 		if (msg[2] != 0) {
581 			/* Error clearing flags */
582 			dev_warn(smi_info->dev,
583 				 "Error clearing flags: %2.2x\n", msg[2]);
584 		}
585 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
586 			start_enable_irq(smi_info);
587 		else
588 			smi_info->si_state = SI_NORMAL;
589 		break;
590 	}
591 
592 	case SI_GETTING_EVENTS:
593 	{
594 		smi_info->curr_msg->rsp_size
595 			= smi_info->handlers->get_result(
596 				smi_info->si_sm,
597 				smi_info->curr_msg->rsp,
598 				IPMI_MAX_MSG_LENGTH);
599 
600 		/*
601 		 * Do this here becase deliver_recv_msg() releases the
602 		 * lock, and a new message can be put in during the
603 		 * time the lock is released.
604 		 */
605 		msg = smi_info->curr_msg;
606 		smi_info->curr_msg = NULL;
607 		if (msg->rsp[2] != 0) {
608 			/* Error getting event, probably done. */
609 			msg->done(msg);
610 
611 			/* Take off the event flag. */
612 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
613 			handle_flags(smi_info);
614 		} else {
615 			smi_inc_stat(smi_info, events);
616 
617 			/*
618 			 * Do this before we deliver the message
619 			 * because delivering the message releases the
620 			 * lock and something else can mess with the
621 			 * state.
622 			 */
623 			handle_flags(smi_info);
624 
625 			deliver_recv_msg(smi_info, msg);
626 		}
627 		break;
628 	}
629 
630 	case SI_GETTING_MESSAGES:
631 	{
632 		smi_info->curr_msg->rsp_size
633 			= smi_info->handlers->get_result(
634 				smi_info->si_sm,
635 				smi_info->curr_msg->rsp,
636 				IPMI_MAX_MSG_LENGTH);
637 
638 		/*
639 		 * Do this here becase deliver_recv_msg() releases the
640 		 * lock, and a new message can be put in during the
641 		 * time the lock is released.
642 		 */
643 		msg = smi_info->curr_msg;
644 		smi_info->curr_msg = NULL;
645 		if (msg->rsp[2] != 0) {
646 			/* Error getting event, probably done. */
647 			msg->done(msg);
648 
649 			/* Take off the msg flag. */
650 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
651 			handle_flags(smi_info);
652 		} else {
653 			smi_inc_stat(smi_info, incoming_messages);
654 
655 			/*
656 			 * Do this before we deliver the message
657 			 * because delivering the message releases the
658 			 * lock and something else can mess with the
659 			 * state.
660 			 */
661 			handle_flags(smi_info);
662 
663 			deliver_recv_msg(smi_info, msg);
664 		}
665 		break;
666 	}
667 
668 	case SI_ENABLE_INTERRUPTS1:
669 	{
670 		unsigned char msg[4];
671 
672 		/* We got the flags from the SMI, now handle them. */
673 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
674 		if (msg[2] != 0) {
675 			dev_warn(smi_info->dev, "Could not enable interrupts"
676 				 ", failed get, using polled mode.\n");
677 			smi_info->si_state = SI_NORMAL;
678 		} else {
679 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
680 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
681 			msg[2] = (msg[3] |
682 				  IPMI_BMC_RCV_MSG_INTR |
683 				  IPMI_BMC_EVT_MSG_INTR);
684 			smi_info->handlers->start_transaction(
685 				smi_info->si_sm, msg, 3);
686 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
687 		}
688 		break;
689 	}
690 
691 	case SI_ENABLE_INTERRUPTS2:
692 	{
693 		unsigned char msg[4];
694 
695 		/* We got the flags from the SMI, now handle them. */
696 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 		if (msg[2] != 0)
698 			dev_warn(smi_info->dev, "Could not enable interrupts"
699 				 ", failed set, using polled mode.\n");
700 		else
701 			smi_info->interrupt_disabled = 0;
702 		smi_info->si_state = SI_NORMAL;
703 		break;
704 	}
705 
706 	case SI_DISABLE_INTERRUPTS1:
707 	{
708 		unsigned char msg[4];
709 
710 		/* We got the flags from the SMI, now handle them. */
711 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
712 		if (msg[2] != 0) {
713 			dev_warn(smi_info->dev, "Could not disable interrupts"
714 				 ", failed get.\n");
715 			smi_info->si_state = SI_NORMAL;
716 		} else {
717 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
718 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719 			msg[2] = (msg[3] &
720 				  ~(IPMI_BMC_RCV_MSG_INTR |
721 				    IPMI_BMC_EVT_MSG_INTR));
722 			smi_info->handlers->start_transaction(
723 				smi_info->si_sm, msg, 3);
724 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
725 		}
726 		break;
727 	}
728 
729 	case SI_DISABLE_INTERRUPTS2:
730 	{
731 		unsigned char msg[4];
732 
733 		/* We got the flags from the SMI, now handle them. */
734 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 		if (msg[2] != 0) {
736 			dev_warn(smi_info->dev, "Could not disable interrupts"
737 				 ", failed set.\n");
738 		}
739 		smi_info->si_state = SI_NORMAL;
740 		break;
741 	}
742 	}
743 }
744 
745 /*
746  * Called on timeouts and events.  Timeouts should pass the elapsed
747  * time, interrupts should pass in zero.  Must be called with
748  * si_lock held and interrupts disabled.
749  */
smi_event_handler(struct smi_info * smi_info,int time)750 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
751 					   int time)
752 {
753 	enum si_sm_result si_sm_result;
754 
755  restart:
756 	/*
757 	 * There used to be a loop here that waited a little while
758 	 * (around 25us) before giving up.  That turned out to be
759 	 * pointless, the minimum delays I was seeing were in the 300us
760 	 * range, which is far too long to wait in an interrupt.  So
761 	 * we just run until the state machine tells us something
762 	 * happened or it needs a delay.
763 	 */
764 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
765 	time = 0;
766 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
767 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
768 
769 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
770 		smi_inc_stat(smi_info, complete_transactions);
771 
772 		handle_transaction_done(smi_info);
773 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
774 	} else if (si_sm_result == SI_SM_HOSED) {
775 		smi_inc_stat(smi_info, hosed_count);
776 
777 		/*
778 		 * Do the before return_hosed_msg, because that
779 		 * releases the lock.
780 		 */
781 		smi_info->si_state = SI_NORMAL;
782 		if (smi_info->curr_msg != NULL) {
783 			/*
784 			 * If we were handling a user message, format
785 			 * a response to send to the upper layer to
786 			 * tell it about the error.
787 			 */
788 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
789 		}
790 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791 	}
792 
793 	/*
794 	 * We prefer handling attn over new messages.  But don't do
795 	 * this if there is not yet an upper layer to handle anything.
796 	 */
797 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
798 		unsigned char msg[2];
799 
800 		smi_inc_stat(smi_info, attentions);
801 
802 		/*
803 		 * Got a attn, send down a get message flags to see
804 		 * what's causing it.  It would be better to handle
805 		 * this in the upper layer, but due to the way
806 		 * interrupts work with the SMI, that's not really
807 		 * possible.
808 		 */
809 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
810 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
811 
812 		smi_info->handlers->start_transaction(
813 			smi_info->si_sm, msg, 2);
814 		smi_info->si_state = SI_GETTING_FLAGS;
815 		goto restart;
816 	}
817 
818 	/* If we are currently idle, try to start the next message. */
819 	if (si_sm_result == SI_SM_IDLE) {
820 		smi_inc_stat(smi_info, idles);
821 
822 		si_sm_result = start_next_msg(smi_info);
823 		if (si_sm_result != SI_SM_IDLE)
824 			goto restart;
825 	}
826 
827 	if ((si_sm_result == SI_SM_IDLE)
828 	    && (atomic_read(&smi_info->req_events))) {
829 		/*
830 		 * We are idle and the upper layer requested that I fetch
831 		 * events, so do so.
832 		 */
833 		atomic_set(&smi_info->req_events, 0);
834 
835 		smi_info->curr_msg = ipmi_alloc_smi_msg();
836 		if (!smi_info->curr_msg)
837 			goto out;
838 
839 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
840 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
841 		smi_info->curr_msg->data_size = 2;
842 
843 		smi_info->handlers->start_transaction(
844 			smi_info->si_sm,
845 			smi_info->curr_msg->data,
846 			smi_info->curr_msg->data_size);
847 		smi_info->si_state = SI_GETTING_EVENTS;
848 		goto restart;
849 	}
850  out:
851 	return si_sm_result;
852 }
853 
sender(void * send_info,struct ipmi_smi_msg * msg,int priority)854 static void sender(void                *send_info,
855 		   struct ipmi_smi_msg *msg,
856 		   int                 priority)
857 {
858 	struct smi_info   *smi_info = send_info;
859 	enum si_sm_result result;
860 	unsigned long     flags;
861 #ifdef DEBUG_TIMING
862 	struct timeval    t;
863 #endif
864 
865 	if (atomic_read(&smi_info->stop_operation)) {
866 		msg->rsp[0] = msg->data[0] | 4;
867 		msg->rsp[1] = msg->data[1];
868 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
869 		msg->rsp_size = 3;
870 		deliver_recv_msg(smi_info, msg);
871 		return;
872 	}
873 
874 #ifdef DEBUG_TIMING
875 	do_gettimeofday(&t);
876 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
877 #endif
878 
879 	if (smi_info->run_to_completion) {
880 		/*
881 		 * If we are running to completion, then throw it in
882 		 * the list and run transactions until everything is
883 		 * clear.  Priority doesn't matter here.
884 		 */
885 
886 		/*
887 		 * Run to completion means we are single-threaded, no
888 		 * need for locks.
889 		 */
890 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
891 
892 		result = smi_event_handler(smi_info, 0);
893 		while (result != SI_SM_IDLE) {
894 			udelay(SI_SHORT_TIMEOUT_USEC);
895 			result = smi_event_handler(smi_info,
896 						   SI_SHORT_TIMEOUT_USEC);
897 		}
898 		return;
899 	}
900 
901 	spin_lock_irqsave(&smi_info->si_lock, flags);
902 	if (priority > 0)
903 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
904 	else
905 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
906 
907 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
908 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
909 
910 		if (smi_info->thread)
911 			wake_up_process(smi_info->thread);
912 
913 		start_next_msg(smi_info);
914 		smi_event_handler(smi_info, 0);
915 	}
916 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
917 }
918 
set_run_to_completion(void * send_info,int i_run_to_completion)919 static void set_run_to_completion(void *send_info, int i_run_to_completion)
920 {
921 	struct smi_info   *smi_info = send_info;
922 	enum si_sm_result result;
923 
924 	smi_info->run_to_completion = i_run_to_completion;
925 	if (i_run_to_completion) {
926 		result = smi_event_handler(smi_info, 0);
927 		while (result != SI_SM_IDLE) {
928 			udelay(SI_SHORT_TIMEOUT_USEC);
929 			result = smi_event_handler(smi_info,
930 						   SI_SHORT_TIMEOUT_USEC);
931 		}
932 	}
933 }
934 
935 /*
936  * Use -1 in the nsec value of the busy waiting timespec to tell that
937  * we are spinning in kipmid looking for something and not delaying
938  * between checks
939  */
ipmi_si_set_not_busy(struct timespec * ts)940 static inline void ipmi_si_set_not_busy(struct timespec *ts)
941 {
942 	ts->tv_nsec = -1;
943 }
ipmi_si_is_busy(struct timespec * ts)944 static inline int ipmi_si_is_busy(struct timespec *ts)
945 {
946 	return ts->tv_nsec != -1;
947 }
948 
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec * busy_until)949 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
950 				 const struct smi_info *smi_info,
951 				 struct timespec *busy_until)
952 {
953 	unsigned int max_busy_us = 0;
954 
955 	if (smi_info->intf_num < num_max_busy_us)
956 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
957 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
958 		ipmi_si_set_not_busy(busy_until);
959 	else if (!ipmi_si_is_busy(busy_until)) {
960 		getnstimeofday(busy_until);
961 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
962 	} else {
963 		struct timespec now;
964 		getnstimeofday(&now);
965 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
966 			ipmi_si_set_not_busy(busy_until);
967 			return 0;
968 		}
969 	}
970 	return 1;
971 }
972 
973 
974 /*
975  * A busy-waiting loop for speeding up IPMI operation.
976  *
977  * Lousy hardware makes this hard.  This is only enabled for systems
978  * that are not BT and do not have interrupts.  It starts spinning
979  * when an operation is complete or until max_busy tells it to stop
980  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
981  * Documentation/IPMI.txt for details.
982  */
ipmi_thread(void * data)983 static int ipmi_thread(void *data)
984 {
985 	struct smi_info *smi_info = data;
986 	unsigned long flags;
987 	enum si_sm_result smi_result;
988 	struct timespec busy_until;
989 
990 	ipmi_si_set_not_busy(&busy_until);
991 	set_user_nice(current, 19);
992 	while (!kthread_should_stop()) {
993 		int busy_wait;
994 
995 		spin_lock_irqsave(&(smi_info->si_lock), flags);
996 		smi_result = smi_event_handler(smi_info, 0);
997 
998 		/*
999 		 * If the driver is doing something, there is a possible
1000 		 * race with the timer.  If the timer handler see idle,
1001 		 * and the thread here sees something else, the timer
1002 		 * handler won't restart the timer even though it is
1003 		 * required.  So start it here if necessary.
1004 		 */
1005 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1006 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1007 
1008 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1009 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1010 						  &busy_until);
1011 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1012 			; /* do nothing */
1013 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1014 			schedule();
1015 		else if (smi_result == SI_SM_IDLE)
1016 			schedule_timeout_interruptible(100);
1017 		else
1018 			schedule_timeout_interruptible(1);
1019 	}
1020 	return 0;
1021 }
1022 
1023 
poll(void * send_info)1024 static void poll(void *send_info)
1025 {
1026 	struct smi_info *smi_info = send_info;
1027 	unsigned long flags = 0;
1028 	int run_to_completion = smi_info->run_to_completion;
1029 
1030 	/*
1031 	 * Make sure there is some delay in the poll loop so we can
1032 	 * drive time forward and timeout things.
1033 	 */
1034 	udelay(10);
1035 	if (!run_to_completion)
1036 		spin_lock_irqsave(&smi_info->si_lock, flags);
1037 	smi_event_handler(smi_info, 10);
1038 	if (!run_to_completion)
1039 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1040 }
1041 
request_events(void * send_info)1042 static void request_events(void *send_info)
1043 {
1044 	struct smi_info *smi_info = send_info;
1045 
1046 	if (atomic_read(&smi_info->stop_operation) ||
1047 				!smi_info->has_event_buffer)
1048 		return;
1049 
1050 	atomic_set(&smi_info->req_events, 1);
1051 }
1052 
1053 static int initialized;
1054 
smi_timeout(unsigned long data)1055 static void smi_timeout(unsigned long data)
1056 {
1057 	struct smi_info   *smi_info = (struct smi_info *) data;
1058 	enum si_sm_result smi_result;
1059 	unsigned long     flags;
1060 	unsigned long     jiffies_now;
1061 	long              time_diff;
1062 	long		  timeout;
1063 #ifdef DEBUG_TIMING
1064 	struct timeval    t;
1065 #endif
1066 
1067 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 #ifdef DEBUG_TIMING
1069 	do_gettimeofday(&t);
1070 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1071 #endif
1072 	jiffies_now = jiffies;
1073 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1074 		     * SI_USEC_PER_JIFFY);
1075 	smi_result = smi_event_handler(smi_info, time_diff);
1076 
1077 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1078 		/* Running with interrupts, only do long timeouts. */
1079 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1080 		smi_inc_stat(smi_info, long_timeouts);
1081 		goto do_mod_timer;
1082 	}
1083 
1084 	/*
1085 	 * If the state machine asks for a short delay, then shorten
1086 	 * the timer timeout.
1087 	 */
1088 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1089 		smi_inc_stat(smi_info, short_timeouts);
1090 		timeout = jiffies + 1;
1091 	} else {
1092 		smi_inc_stat(smi_info, long_timeouts);
1093 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1094 	}
1095 
1096  do_mod_timer:
1097 	if (smi_result != SI_SM_IDLE)
1098 		smi_mod_timer(smi_info, timeout);
1099 	else
1100 		smi_info->timer_running = false;
1101 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1102 }
1103 
si_irq_handler(int irq,void * data)1104 static irqreturn_t si_irq_handler(int irq, void *data)
1105 {
1106 	struct smi_info *smi_info = data;
1107 	unsigned long   flags;
1108 #ifdef DEBUG_TIMING
1109 	struct timeval  t;
1110 #endif
1111 
1112 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1113 
1114 	smi_inc_stat(smi_info, interrupts);
1115 
1116 #ifdef DEBUG_TIMING
1117 	do_gettimeofday(&t);
1118 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1119 #endif
1120 	smi_event_handler(smi_info, 0);
1121 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1122 	return IRQ_HANDLED;
1123 }
1124 
si_bt_irq_handler(int irq,void * data)1125 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1126 {
1127 	struct smi_info *smi_info = data;
1128 	/* We need to clear the IRQ flag for the BT interface. */
1129 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1130 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1131 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1132 	return si_irq_handler(irq, data);
1133 }
1134 
smi_start_processing(void * send_info,ipmi_smi_t intf)1135 static int smi_start_processing(void       *send_info,
1136 				ipmi_smi_t intf)
1137 {
1138 	struct smi_info *new_smi = send_info;
1139 	int             enable = 0;
1140 
1141 	new_smi->intf = intf;
1142 
1143 	/* Try to claim any interrupts. */
1144 	if (new_smi->irq_setup)
1145 		new_smi->irq_setup(new_smi);
1146 
1147 	/* Set up the timer that drives the interface. */
1148 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1149 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1150 
1151 	/*
1152 	 * Check if the user forcefully enabled the daemon.
1153 	 */
1154 	if (new_smi->intf_num < num_force_kipmid)
1155 		enable = force_kipmid[new_smi->intf_num];
1156 	/*
1157 	 * The BT interface is efficient enough to not need a thread,
1158 	 * and there is no need for a thread if we have interrupts.
1159 	 */
1160 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1161 		enable = 1;
1162 
1163 	if (enable) {
1164 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1165 					      "kipmi%d", new_smi->intf_num);
1166 		if (IS_ERR(new_smi->thread)) {
1167 			dev_notice(new_smi->dev, "Could not start"
1168 				   " kernel thread due to error %ld, only using"
1169 				   " timers to drive the interface\n",
1170 				   PTR_ERR(new_smi->thread));
1171 			new_smi->thread = NULL;
1172 		}
1173 	}
1174 
1175 	return 0;
1176 }
1177 
get_smi_info(void * send_info,struct ipmi_smi_info * data)1178 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1179 {
1180 	struct smi_info *smi = send_info;
1181 
1182 	data->addr_src = smi->addr_source;
1183 	data->dev = smi->dev;
1184 	data->addr_info = smi->addr_info;
1185 	get_device(smi->dev);
1186 
1187 	return 0;
1188 }
1189 
set_maintenance_mode(void * send_info,int enable)1190 static void set_maintenance_mode(void *send_info, int enable)
1191 {
1192 	struct smi_info   *smi_info = send_info;
1193 
1194 	if (!enable)
1195 		atomic_set(&smi_info->req_events, 0);
1196 }
1197 
1198 static struct ipmi_smi_handlers handlers = {
1199 	.owner                  = THIS_MODULE,
1200 	.start_processing       = smi_start_processing,
1201 	.get_smi_info		= get_smi_info,
1202 	.sender			= sender,
1203 	.request_events		= request_events,
1204 	.set_maintenance_mode   = set_maintenance_mode,
1205 	.set_run_to_completion  = set_run_to_completion,
1206 	.poll			= poll,
1207 };
1208 
1209 /*
1210  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1211  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1212  */
1213 
1214 static LIST_HEAD(smi_infos);
1215 static DEFINE_MUTEX(smi_infos_lock);
1216 static int smi_num; /* Used to sequence the SMIs */
1217 
1218 #define DEFAULT_REGSPACING	1
1219 #define DEFAULT_REGSIZE		1
1220 
1221 static bool          si_trydefaults = 1;
1222 static char          *si_type[SI_MAX_PARMS];
1223 #define MAX_SI_TYPE_STR 30
1224 static char          si_type_str[MAX_SI_TYPE_STR];
1225 static unsigned long addrs[SI_MAX_PARMS];
1226 static unsigned int num_addrs;
1227 static unsigned int  ports[SI_MAX_PARMS];
1228 static unsigned int num_ports;
1229 static int           irqs[SI_MAX_PARMS];
1230 static unsigned int num_irqs;
1231 static int           regspacings[SI_MAX_PARMS];
1232 static unsigned int num_regspacings;
1233 static int           regsizes[SI_MAX_PARMS];
1234 static unsigned int num_regsizes;
1235 static int           regshifts[SI_MAX_PARMS];
1236 static unsigned int num_regshifts;
1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1238 static unsigned int num_slave_addrs;
1239 
1240 #define IPMI_IO_ADDR_SPACE  0
1241 #define IPMI_MEM_ADDR_SPACE 1
1242 static char *addr_space_to_str[] = { "i/o", "mem" };
1243 
1244 static int hotmod_handler(const char *val, struct kernel_param *kp);
1245 
1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1248 		 " Documentation/IPMI.txt in the kernel sources for the"
1249 		 " gory details.");
1250 
1251 module_param_named(trydefaults, si_trydefaults, bool, 0);
1252 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1253 		 " default scan of the KCS and SMIC interface at the standard"
1254 		 " address");
1255 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1256 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1257 		 " interface separated by commas.  The types are 'kcs',"
1258 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1259 		 " the first interface to kcs and the second to bt");
1260 module_param_array(addrs, ulong, &num_addrs, 0);
1261 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1262 		 " addresses separated by commas.  Only use if an interface"
1263 		 " is in memory.  Otherwise, set it to zero or leave"
1264 		 " it blank.");
1265 module_param_array(ports, uint, &num_ports, 0);
1266 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1267 		 " addresses separated by commas.  Only use if an interface"
1268 		 " is a port.  Otherwise, set it to zero or leave"
1269 		 " it blank.");
1270 module_param_array(irqs, int, &num_irqs, 0);
1271 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1272 		 " addresses separated by commas.  Only use if an interface"
1273 		 " has an interrupt.  Otherwise, set it to zero or leave"
1274 		 " it blank.");
1275 module_param_array(regspacings, int, &num_regspacings, 0);
1276 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1277 		 " and each successive register used by the interface.  For"
1278 		 " instance, if the start address is 0xca2 and the spacing"
1279 		 " is 2, then the second address is at 0xca4.  Defaults"
1280 		 " to 1.");
1281 module_param_array(regsizes, int, &num_regsizes, 0);
1282 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1283 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1284 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1285 		 " the 8-bit IPMI register has to be read from a larger"
1286 		 " register.");
1287 module_param_array(regshifts, int, &num_regshifts, 0);
1288 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1289 		 " IPMI register, in bits.  For instance, if the data"
1290 		 " is read from a 32-bit word and the IPMI data is in"
1291 		 " bit 8-15, then the shift would be 8");
1292 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1293 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1294 		 " the controller.  Normally this is 0x20, but can be"
1295 		 " overridden by this parm.  This is an array indexed"
1296 		 " by interface number.");
1297 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1298 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1299 		 " disabled(0).  Normally the IPMI driver auto-detects"
1300 		 " this, but the value may be overridden by this parm.");
1301 module_param(unload_when_empty, int, 0);
1302 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1303 		 " specified or found, default is 1.  Setting to 0"
1304 		 " is useful for hot add of devices using hotmod.");
1305 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1306 MODULE_PARM_DESC(kipmid_max_busy_us,
1307 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1308 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1309 		 " if kipmid is using up a lot of CPU time.");
1310 
1311 
std_irq_cleanup(struct smi_info * info)1312 static void std_irq_cleanup(struct smi_info *info)
1313 {
1314 	if (info->si_type == SI_BT)
1315 		/* Disable the interrupt in the BT interface. */
1316 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1317 	free_irq(info->irq, info);
1318 }
1319 
std_irq_setup(struct smi_info * info)1320 static int std_irq_setup(struct smi_info *info)
1321 {
1322 	int rv;
1323 
1324 	if (!info->irq)
1325 		return 0;
1326 
1327 	if (info->si_type == SI_BT) {
1328 		rv = request_irq(info->irq,
1329 				 si_bt_irq_handler,
1330 				 IRQF_SHARED | IRQF_DISABLED,
1331 				 DEVICE_NAME,
1332 				 info);
1333 		if (!rv)
1334 			/* Enable the interrupt in the BT interface. */
1335 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1336 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1337 	} else
1338 		rv = request_irq(info->irq,
1339 				 si_irq_handler,
1340 				 IRQF_SHARED | IRQF_DISABLED,
1341 				 DEVICE_NAME,
1342 				 info);
1343 	if (rv) {
1344 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1345 			 " running polled\n",
1346 			 DEVICE_NAME, info->irq);
1347 		info->irq = 0;
1348 	} else {
1349 		info->irq_cleanup = std_irq_cleanup;
1350 		dev_info(info->dev, "Using irq %d\n", info->irq);
1351 	}
1352 
1353 	return rv;
1354 }
1355 
port_inb(struct si_sm_io * io,unsigned int offset)1356 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1357 {
1358 	unsigned int addr = io->addr_data;
1359 
1360 	return inb(addr + (offset * io->regspacing));
1361 }
1362 
port_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1363 static void port_outb(struct si_sm_io *io, unsigned int offset,
1364 		      unsigned char b)
1365 {
1366 	unsigned int addr = io->addr_data;
1367 
1368 	outb(b, addr + (offset * io->regspacing));
1369 }
1370 
port_inw(struct si_sm_io * io,unsigned int offset)1371 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1372 {
1373 	unsigned int addr = io->addr_data;
1374 
1375 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1376 }
1377 
port_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1378 static void port_outw(struct si_sm_io *io, unsigned int offset,
1379 		      unsigned char b)
1380 {
1381 	unsigned int addr = io->addr_data;
1382 
1383 	outw(b << io->regshift, addr + (offset * io->regspacing));
1384 }
1385 
port_inl(struct si_sm_io * io,unsigned int offset)1386 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1387 {
1388 	unsigned int addr = io->addr_data;
1389 
1390 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1391 }
1392 
port_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1393 static void port_outl(struct si_sm_io *io, unsigned int offset,
1394 		      unsigned char b)
1395 {
1396 	unsigned int addr = io->addr_data;
1397 
1398 	outl(b << io->regshift, addr+(offset * io->regspacing));
1399 }
1400 
port_cleanup(struct smi_info * info)1401 static void port_cleanup(struct smi_info *info)
1402 {
1403 	unsigned int addr = info->io.addr_data;
1404 	int          idx;
1405 
1406 	if (addr) {
1407 		for (idx = 0; idx < info->io_size; idx++)
1408 			release_region(addr + idx * info->io.regspacing,
1409 				       info->io.regsize);
1410 	}
1411 }
1412 
port_setup(struct smi_info * info)1413 static int port_setup(struct smi_info *info)
1414 {
1415 	unsigned int addr = info->io.addr_data;
1416 	int          idx;
1417 
1418 	if (!addr)
1419 		return -ENODEV;
1420 
1421 	info->io_cleanup = port_cleanup;
1422 
1423 	/*
1424 	 * Figure out the actual inb/inw/inl/etc routine to use based
1425 	 * upon the register size.
1426 	 */
1427 	switch (info->io.regsize) {
1428 	case 1:
1429 		info->io.inputb = port_inb;
1430 		info->io.outputb = port_outb;
1431 		break;
1432 	case 2:
1433 		info->io.inputb = port_inw;
1434 		info->io.outputb = port_outw;
1435 		break;
1436 	case 4:
1437 		info->io.inputb = port_inl;
1438 		info->io.outputb = port_outl;
1439 		break;
1440 	default:
1441 		dev_warn(info->dev, "Invalid register size: %d\n",
1442 			 info->io.regsize);
1443 		return -EINVAL;
1444 	}
1445 
1446 	/*
1447 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1448 	 * tables.  This causes problems when trying to register the
1449 	 * entire I/O region.  Therefore we must register each I/O
1450 	 * port separately.
1451 	 */
1452 	for (idx = 0; idx < info->io_size; idx++) {
1453 		if (request_region(addr + idx * info->io.regspacing,
1454 				   info->io.regsize, DEVICE_NAME) == NULL) {
1455 			/* Undo allocations */
1456 			while (idx--) {
1457 				release_region(addr + idx * info->io.regspacing,
1458 					       info->io.regsize);
1459 			}
1460 			return -EIO;
1461 		}
1462 	}
1463 	return 0;
1464 }
1465 
intf_mem_inb(struct si_sm_io * io,unsigned int offset)1466 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1467 {
1468 	return readb((io->addr)+(offset * io->regspacing));
1469 }
1470 
intf_mem_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1471 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1472 		     unsigned char b)
1473 {
1474 	writeb(b, (io->addr)+(offset * io->regspacing));
1475 }
1476 
intf_mem_inw(struct si_sm_io * io,unsigned int offset)1477 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1478 {
1479 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1480 		& 0xff;
1481 }
1482 
intf_mem_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1483 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1484 		     unsigned char b)
1485 {
1486 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1487 }
1488 
intf_mem_inl(struct si_sm_io * io,unsigned int offset)1489 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1490 {
1491 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1492 		& 0xff;
1493 }
1494 
intf_mem_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1495 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1496 		     unsigned char b)
1497 {
1498 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499 }
1500 
1501 #ifdef readq
mem_inq(struct si_sm_io * io,unsigned int offset)1502 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1503 {
1504 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1505 		& 0xff;
1506 }
1507 
mem_outq(struct si_sm_io * io,unsigned int offset,unsigned char b)1508 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1509 		     unsigned char b)
1510 {
1511 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1512 }
1513 #endif
1514 
mem_cleanup(struct smi_info * info)1515 static void mem_cleanup(struct smi_info *info)
1516 {
1517 	unsigned long addr = info->io.addr_data;
1518 	int           mapsize;
1519 
1520 	if (info->io.addr) {
1521 		iounmap(info->io.addr);
1522 
1523 		mapsize = ((info->io_size * info->io.regspacing)
1524 			   - (info->io.regspacing - info->io.regsize));
1525 
1526 		release_mem_region(addr, mapsize);
1527 	}
1528 }
1529 
mem_setup(struct smi_info * info)1530 static int mem_setup(struct smi_info *info)
1531 {
1532 	unsigned long addr = info->io.addr_data;
1533 	int           mapsize;
1534 
1535 	if (!addr)
1536 		return -ENODEV;
1537 
1538 	info->io_cleanup = mem_cleanup;
1539 
1540 	/*
1541 	 * Figure out the actual readb/readw/readl/etc routine to use based
1542 	 * upon the register size.
1543 	 */
1544 	switch (info->io.regsize) {
1545 	case 1:
1546 		info->io.inputb = intf_mem_inb;
1547 		info->io.outputb = intf_mem_outb;
1548 		break;
1549 	case 2:
1550 		info->io.inputb = intf_mem_inw;
1551 		info->io.outputb = intf_mem_outw;
1552 		break;
1553 	case 4:
1554 		info->io.inputb = intf_mem_inl;
1555 		info->io.outputb = intf_mem_outl;
1556 		break;
1557 #ifdef readq
1558 	case 8:
1559 		info->io.inputb = mem_inq;
1560 		info->io.outputb = mem_outq;
1561 		break;
1562 #endif
1563 	default:
1564 		dev_warn(info->dev, "Invalid register size: %d\n",
1565 			 info->io.regsize);
1566 		return -EINVAL;
1567 	}
1568 
1569 	/*
1570 	 * Calculate the total amount of memory to claim.  This is an
1571 	 * unusual looking calculation, but it avoids claiming any
1572 	 * more memory than it has to.  It will claim everything
1573 	 * between the first address to the end of the last full
1574 	 * register.
1575 	 */
1576 	mapsize = ((info->io_size * info->io.regspacing)
1577 		   - (info->io.regspacing - info->io.regsize));
1578 
1579 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1580 		return -EIO;
1581 
1582 	info->io.addr = ioremap(addr, mapsize);
1583 	if (info->io.addr == NULL) {
1584 		release_mem_region(addr, mapsize);
1585 		return -EIO;
1586 	}
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1592  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1593  * Options are:
1594  *   rsp=<regspacing>
1595  *   rsi=<regsize>
1596  *   rsh=<regshift>
1597  *   irq=<irq>
1598  *   ipmb=<ipmb addr>
1599  */
1600 enum hotmod_op { HM_ADD, HM_REMOVE };
1601 struct hotmod_vals {
1602 	char *name;
1603 	int  val;
1604 };
1605 static struct hotmod_vals hotmod_ops[] = {
1606 	{ "add",	HM_ADD },
1607 	{ "remove",	HM_REMOVE },
1608 	{ NULL }
1609 };
1610 static struct hotmod_vals hotmod_si[] = {
1611 	{ "kcs",	SI_KCS },
1612 	{ "smic",	SI_SMIC },
1613 	{ "bt",		SI_BT },
1614 	{ NULL }
1615 };
1616 static struct hotmod_vals hotmod_as[] = {
1617 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1618 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1619 	{ NULL }
1620 };
1621 
parse_str(struct hotmod_vals * v,int * val,char * name,char ** curr)1622 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1623 {
1624 	char *s;
1625 	int  i;
1626 
1627 	s = strchr(*curr, ',');
1628 	if (!s) {
1629 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1630 		return -EINVAL;
1631 	}
1632 	*s = '\0';
1633 	s++;
1634 	for (i = 0; hotmod_ops[i].name; i++) {
1635 		if (strcmp(*curr, v[i].name) == 0) {
1636 			*val = v[i].val;
1637 			*curr = s;
1638 			return 0;
1639 		}
1640 	}
1641 
1642 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1643 	return -EINVAL;
1644 }
1645 
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1646 static int check_hotmod_int_op(const char *curr, const char *option,
1647 			       const char *name, int *val)
1648 {
1649 	char *n;
1650 
1651 	if (strcmp(curr, name) == 0) {
1652 		if (!option) {
1653 			printk(KERN_WARNING PFX
1654 			       "No option given for '%s'\n",
1655 			       curr);
1656 			return -EINVAL;
1657 		}
1658 		*val = simple_strtoul(option, &n, 0);
1659 		if ((*n != '\0') || (*option == '\0')) {
1660 			printk(KERN_WARNING PFX
1661 			       "Bad option given for '%s'\n",
1662 			       curr);
1663 			return -EINVAL;
1664 		}
1665 		return 1;
1666 	}
1667 	return 0;
1668 }
1669 
smi_info_alloc(void)1670 static struct smi_info *smi_info_alloc(void)
1671 {
1672 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1673 
1674 	if (info)
1675 		spin_lock_init(&info->si_lock);
1676 	return info;
1677 }
1678 
hotmod_handler(const char * val,struct kernel_param * kp)1679 static int hotmod_handler(const char *val, struct kernel_param *kp)
1680 {
1681 	char *str = kstrdup(val, GFP_KERNEL);
1682 	int  rv;
1683 	char *next, *curr, *s, *n, *o;
1684 	enum hotmod_op op;
1685 	enum si_type si_type;
1686 	int  addr_space;
1687 	unsigned long addr;
1688 	int regspacing;
1689 	int regsize;
1690 	int regshift;
1691 	int irq;
1692 	int ipmb;
1693 	int ival;
1694 	int len;
1695 	struct smi_info *info;
1696 
1697 	if (!str)
1698 		return -ENOMEM;
1699 
1700 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1701 	len = strlen(str);
1702 	ival = len - 1;
1703 	while ((ival >= 0) && isspace(str[ival])) {
1704 		str[ival] = '\0';
1705 		ival--;
1706 	}
1707 
1708 	for (curr = str; curr; curr = next) {
1709 		regspacing = 1;
1710 		regsize = 1;
1711 		regshift = 0;
1712 		irq = 0;
1713 		ipmb = 0; /* Choose the default if not specified */
1714 
1715 		next = strchr(curr, ':');
1716 		if (next) {
1717 			*next = '\0';
1718 			next++;
1719 		}
1720 
1721 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1722 		if (rv)
1723 			break;
1724 		op = ival;
1725 
1726 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1727 		if (rv)
1728 			break;
1729 		si_type = ival;
1730 
1731 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1732 		if (rv)
1733 			break;
1734 
1735 		s = strchr(curr, ',');
1736 		if (s) {
1737 			*s = '\0';
1738 			s++;
1739 		}
1740 		addr = simple_strtoul(curr, &n, 0);
1741 		if ((*n != '\0') || (*curr == '\0')) {
1742 			printk(KERN_WARNING PFX "Invalid hotmod address"
1743 			       " '%s'\n", curr);
1744 			break;
1745 		}
1746 
1747 		while (s) {
1748 			curr = s;
1749 			s = strchr(curr, ',');
1750 			if (s) {
1751 				*s = '\0';
1752 				s++;
1753 			}
1754 			o = strchr(curr, '=');
1755 			if (o) {
1756 				*o = '\0';
1757 				o++;
1758 			}
1759 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1760 			if (rv < 0)
1761 				goto out;
1762 			else if (rv)
1763 				continue;
1764 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1765 			if (rv < 0)
1766 				goto out;
1767 			else if (rv)
1768 				continue;
1769 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1770 			if (rv < 0)
1771 				goto out;
1772 			else if (rv)
1773 				continue;
1774 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1775 			if (rv < 0)
1776 				goto out;
1777 			else if (rv)
1778 				continue;
1779 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1780 			if (rv < 0)
1781 				goto out;
1782 			else if (rv)
1783 				continue;
1784 
1785 			rv = -EINVAL;
1786 			printk(KERN_WARNING PFX
1787 			       "Invalid hotmod option '%s'\n",
1788 			       curr);
1789 			goto out;
1790 		}
1791 
1792 		if (op == HM_ADD) {
1793 			info = smi_info_alloc();
1794 			if (!info) {
1795 				rv = -ENOMEM;
1796 				goto out;
1797 			}
1798 
1799 			info->addr_source = SI_HOTMOD;
1800 			info->si_type = si_type;
1801 			info->io.addr_data = addr;
1802 			info->io.addr_type = addr_space;
1803 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1804 				info->io_setup = mem_setup;
1805 			else
1806 				info->io_setup = port_setup;
1807 
1808 			info->io.addr = NULL;
1809 			info->io.regspacing = regspacing;
1810 			if (!info->io.regspacing)
1811 				info->io.regspacing = DEFAULT_REGSPACING;
1812 			info->io.regsize = regsize;
1813 			if (!info->io.regsize)
1814 				info->io.regsize = DEFAULT_REGSPACING;
1815 			info->io.regshift = regshift;
1816 			info->irq = irq;
1817 			if (info->irq)
1818 				info->irq_setup = std_irq_setup;
1819 			info->slave_addr = ipmb;
1820 
1821 			if (!add_smi(info)) {
1822 				if (try_smi_init(info))
1823 					cleanup_one_si(info);
1824 			} else {
1825 				kfree(info);
1826 			}
1827 		} else {
1828 			/* remove */
1829 			struct smi_info *e, *tmp_e;
1830 
1831 			mutex_lock(&smi_infos_lock);
1832 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1833 				if (e->io.addr_type != addr_space)
1834 					continue;
1835 				if (e->si_type != si_type)
1836 					continue;
1837 				if (e->io.addr_data == addr)
1838 					cleanup_one_si(e);
1839 			}
1840 			mutex_unlock(&smi_infos_lock);
1841 		}
1842 	}
1843 	rv = len;
1844  out:
1845 	kfree(str);
1846 	return rv;
1847 }
1848 
hardcode_find_bmc(void)1849 static int __devinit hardcode_find_bmc(void)
1850 {
1851 	int ret = -ENODEV;
1852 	int             i;
1853 	struct smi_info *info;
1854 
1855 	for (i = 0; i < SI_MAX_PARMS; i++) {
1856 		if (!ports[i] && !addrs[i])
1857 			continue;
1858 
1859 		info = smi_info_alloc();
1860 		if (!info)
1861 			return -ENOMEM;
1862 
1863 		info->addr_source = SI_HARDCODED;
1864 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1865 
1866 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1867 			info->si_type = SI_KCS;
1868 		} else if (strcmp(si_type[i], "smic") == 0) {
1869 			info->si_type = SI_SMIC;
1870 		} else if (strcmp(si_type[i], "bt") == 0) {
1871 			info->si_type = SI_BT;
1872 		} else {
1873 			printk(KERN_WARNING PFX "Interface type specified "
1874 			       "for interface %d, was invalid: %s\n",
1875 			       i, si_type[i]);
1876 			kfree(info);
1877 			continue;
1878 		}
1879 
1880 		if (ports[i]) {
1881 			/* An I/O port */
1882 			info->io_setup = port_setup;
1883 			info->io.addr_data = ports[i];
1884 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1885 		} else if (addrs[i]) {
1886 			/* A memory port */
1887 			info->io_setup = mem_setup;
1888 			info->io.addr_data = addrs[i];
1889 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1890 		} else {
1891 			printk(KERN_WARNING PFX "Interface type specified "
1892 			       "for interface %d, but port and address were "
1893 			       "not set or set to zero.\n", i);
1894 			kfree(info);
1895 			continue;
1896 		}
1897 
1898 		info->io.addr = NULL;
1899 		info->io.regspacing = regspacings[i];
1900 		if (!info->io.regspacing)
1901 			info->io.regspacing = DEFAULT_REGSPACING;
1902 		info->io.regsize = regsizes[i];
1903 		if (!info->io.regsize)
1904 			info->io.regsize = DEFAULT_REGSPACING;
1905 		info->io.regshift = regshifts[i];
1906 		info->irq = irqs[i];
1907 		if (info->irq)
1908 			info->irq_setup = std_irq_setup;
1909 		info->slave_addr = slave_addrs[i];
1910 
1911 		if (!add_smi(info)) {
1912 			if (try_smi_init(info))
1913 				cleanup_one_si(info);
1914 			ret = 0;
1915 		} else {
1916 			kfree(info);
1917 		}
1918 	}
1919 	return ret;
1920 }
1921 
1922 #ifdef CONFIG_ACPI
1923 
1924 #include <linux/acpi.h>
1925 
1926 /*
1927  * Once we get an ACPI failure, we don't try any more, because we go
1928  * through the tables sequentially.  Once we don't find a table, there
1929  * are no more.
1930  */
1931 static int acpi_failure;
1932 
1933 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)1934 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1935 	u32 gpe_number, void *context)
1936 {
1937 	struct smi_info *smi_info = context;
1938 	unsigned long   flags;
1939 #ifdef DEBUG_TIMING
1940 	struct timeval t;
1941 #endif
1942 
1943 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1944 
1945 	smi_inc_stat(smi_info, interrupts);
1946 
1947 #ifdef DEBUG_TIMING
1948 	do_gettimeofday(&t);
1949 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1950 #endif
1951 	smi_event_handler(smi_info, 0);
1952 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1953 
1954 	return ACPI_INTERRUPT_HANDLED;
1955 }
1956 
acpi_gpe_irq_cleanup(struct smi_info * info)1957 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1958 {
1959 	if (!info->irq)
1960 		return;
1961 
1962 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1963 }
1964 
acpi_gpe_irq_setup(struct smi_info * info)1965 static int acpi_gpe_irq_setup(struct smi_info *info)
1966 {
1967 	acpi_status status;
1968 
1969 	if (!info->irq)
1970 		return 0;
1971 
1972 	/* FIXME - is level triggered right? */
1973 	status = acpi_install_gpe_handler(NULL,
1974 					  info->irq,
1975 					  ACPI_GPE_LEVEL_TRIGGERED,
1976 					  &ipmi_acpi_gpe,
1977 					  info);
1978 	if (status != AE_OK) {
1979 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1980 			 " running polled\n", DEVICE_NAME, info->irq);
1981 		info->irq = 0;
1982 		return -EINVAL;
1983 	} else {
1984 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1985 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1986 		return 0;
1987 	}
1988 }
1989 
1990 /*
1991  * Defined at
1992  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1993  */
1994 struct SPMITable {
1995 	s8	Signature[4];
1996 	u32	Length;
1997 	u8	Revision;
1998 	u8	Checksum;
1999 	s8	OEMID[6];
2000 	s8	OEMTableID[8];
2001 	s8	OEMRevision[4];
2002 	s8	CreatorID[4];
2003 	s8	CreatorRevision[4];
2004 	u8	InterfaceType;
2005 	u8	IPMIlegacy;
2006 	s16	SpecificationRevision;
2007 
2008 	/*
2009 	 * Bit 0 - SCI interrupt supported
2010 	 * Bit 1 - I/O APIC/SAPIC
2011 	 */
2012 	u8	InterruptType;
2013 
2014 	/*
2015 	 * If bit 0 of InterruptType is set, then this is the SCI
2016 	 * interrupt in the GPEx_STS register.
2017 	 */
2018 	u8	GPE;
2019 
2020 	s16	Reserved;
2021 
2022 	/*
2023 	 * If bit 1 of InterruptType is set, then this is the I/O
2024 	 * APIC/SAPIC interrupt.
2025 	 */
2026 	u32	GlobalSystemInterrupt;
2027 
2028 	/* The actual register address. */
2029 	struct acpi_generic_address addr;
2030 
2031 	u8	UID[4];
2032 
2033 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2034 };
2035 
try_init_spmi(struct SPMITable * spmi)2036 static int __devinit try_init_spmi(struct SPMITable *spmi)
2037 {
2038 	struct smi_info  *info;
2039 
2040 	if (spmi->IPMIlegacy != 1) {
2041 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2042 		return -ENODEV;
2043 	}
2044 
2045 	info = smi_info_alloc();
2046 	if (!info) {
2047 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2048 		return -ENOMEM;
2049 	}
2050 
2051 	info->addr_source = SI_SPMI;
2052 	printk(KERN_INFO PFX "probing via SPMI\n");
2053 
2054 	/* Figure out the interface type. */
2055 	switch (spmi->InterfaceType) {
2056 	case 1:	/* KCS */
2057 		info->si_type = SI_KCS;
2058 		break;
2059 	case 2:	/* SMIC */
2060 		info->si_type = SI_SMIC;
2061 		break;
2062 	case 3:	/* BT */
2063 		info->si_type = SI_BT;
2064 		break;
2065 	default:
2066 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2067 		       spmi->InterfaceType);
2068 		kfree(info);
2069 		return -EIO;
2070 	}
2071 
2072 	if (spmi->InterruptType & 1) {
2073 		/* We've got a GPE interrupt. */
2074 		info->irq = spmi->GPE;
2075 		info->irq_setup = acpi_gpe_irq_setup;
2076 	} else if (spmi->InterruptType & 2) {
2077 		/* We've got an APIC/SAPIC interrupt. */
2078 		info->irq = spmi->GlobalSystemInterrupt;
2079 		info->irq_setup = std_irq_setup;
2080 	} else {
2081 		/* Use the default interrupt setting. */
2082 		info->irq = 0;
2083 		info->irq_setup = NULL;
2084 	}
2085 
2086 	if (spmi->addr.bit_width) {
2087 		/* A (hopefully) properly formed register bit width. */
2088 		info->io.regspacing = spmi->addr.bit_width / 8;
2089 	} else {
2090 		info->io.regspacing = DEFAULT_REGSPACING;
2091 	}
2092 	info->io.regsize = info->io.regspacing;
2093 	info->io.regshift = spmi->addr.bit_offset;
2094 
2095 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2096 		info->io_setup = mem_setup;
2097 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2098 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2099 		info->io_setup = port_setup;
2100 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2101 	} else {
2102 		kfree(info);
2103 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2104 		return -EIO;
2105 	}
2106 	info->io.addr_data = spmi->addr.address;
2107 
2108 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2109 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2110 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2111 		 info->irq);
2112 
2113 	if (add_smi(info))
2114 		kfree(info);
2115 
2116 	return 0;
2117 }
2118 
spmi_find_bmc(void)2119 static void __devinit spmi_find_bmc(void)
2120 {
2121 	acpi_status      status;
2122 	struct SPMITable *spmi;
2123 	int              i;
2124 
2125 	if (acpi_disabled)
2126 		return;
2127 
2128 	if (acpi_failure)
2129 		return;
2130 
2131 	for (i = 0; ; i++) {
2132 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2133 					(struct acpi_table_header **)&spmi);
2134 		if (status != AE_OK)
2135 			return;
2136 
2137 		try_init_spmi(spmi);
2138 	}
2139 }
2140 
ipmi_pnp_probe(struct pnp_dev * dev,const struct pnp_device_id * dev_id)2141 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2142 				    const struct pnp_device_id *dev_id)
2143 {
2144 	struct acpi_device *acpi_dev;
2145 	struct smi_info *info;
2146 	struct resource *res, *res_second;
2147 	acpi_handle handle;
2148 	acpi_status status;
2149 	unsigned long long tmp;
2150 
2151 	acpi_dev = pnp_acpi_device(dev);
2152 	if (!acpi_dev)
2153 		return -ENODEV;
2154 
2155 	info = smi_info_alloc();
2156 	if (!info)
2157 		return -ENOMEM;
2158 
2159 	info->addr_source = SI_ACPI;
2160 	printk(KERN_INFO PFX "probing via ACPI\n");
2161 
2162 	handle = acpi_dev->handle;
2163 	info->addr_info.acpi_info.acpi_handle = handle;
2164 
2165 	/* _IFT tells us the interface type: KCS, BT, etc */
2166 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2167 	if (ACPI_FAILURE(status))
2168 		goto err_free;
2169 
2170 	switch (tmp) {
2171 	case 1:
2172 		info->si_type = SI_KCS;
2173 		break;
2174 	case 2:
2175 		info->si_type = SI_SMIC;
2176 		break;
2177 	case 3:
2178 		info->si_type = SI_BT;
2179 		break;
2180 	default:
2181 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2182 		goto err_free;
2183 	}
2184 
2185 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2186 	if (res) {
2187 		info->io_setup = port_setup;
2188 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2189 	} else {
2190 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2191 		if (res) {
2192 			info->io_setup = mem_setup;
2193 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2194 		}
2195 	}
2196 	if (!res) {
2197 		dev_err(&dev->dev, "no I/O or memory address\n");
2198 		goto err_free;
2199 	}
2200 	info->io.addr_data = res->start;
2201 
2202 	info->io.regspacing = DEFAULT_REGSPACING;
2203 	res_second = pnp_get_resource(dev,
2204 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2205 					IORESOURCE_IO : IORESOURCE_MEM,
2206 			       1);
2207 	if (res_second) {
2208 		if (res_second->start > info->io.addr_data)
2209 			info->io.regspacing = res_second->start - info->io.addr_data;
2210 	}
2211 	info->io.regsize = DEFAULT_REGSPACING;
2212 	info->io.regshift = 0;
2213 
2214 	/* If _GPE exists, use it; otherwise use standard interrupts */
2215 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2216 	if (ACPI_SUCCESS(status)) {
2217 		info->irq = tmp;
2218 		info->irq_setup = acpi_gpe_irq_setup;
2219 	} else if (pnp_irq_valid(dev, 0)) {
2220 		info->irq = pnp_irq(dev, 0);
2221 		info->irq_setup = std_irq_setup;
2222 	}
2223 
2224 	info->dev = &dev->dev;
2225 	pnp_set_drvdata(dev, info);
2226 
2227 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2228 		 res, info->io.regsize, info->io.regspacing,
2229 		 info->irq);
2230 
2231 	if (add_smi(info))
2232 		goto err_free;
2233 
2234 	return 0;
2235 
2236 err_free:
2237 	kfree(info);
2238 	return -EINVAL;
2239 }
2240 
ipmi_pnp_remove(struct pnp_dev * dev)2241 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2242 {
2243 	struct smi_info *info = pnp_get_drvdata(dev);
2244 
2245 	cleanup_one_si(info);
2246 }
2247 
2248 static const struct pnp_device_id pnp_dev_table[] = {
2249 	{"IPI0001", 0},
2250 	{"", 0},
2251 };
2252 
2253 static struct pnp_driver ipmi_pnp_driver = {
2254 	.name		= DEVICE_NAME,
2255 	.probe		= ipmi_pnp_probe,
2256 	.remove		= __devexit_p(ipmi_pnp_remove),
2257 	.id_table	= pnp_dev_table,
2258 };
2259 #endif
2260 
2261 #ifdef CONFIG_DMI
2262 struct dmi_ipmi_data {
2263 	u8   		type;
2264 	u8   		addr_space;
2265 	unsigned long	base_addr;
2266 	u8   		irq;
2267 	u8              offset;
2268 	u8              slave_addr;
2269 };
2270 
decode_dmi(const struct dmi_header * dm,struct dmi_ipmi_data * dmi)2271 static int __devinit decode_dmi(const struct dmi_header *dm,
2272 				struct dmi_ipmi_data *dmi)
2273 {
2274 	const u8	*data = (const u8 *)dm;
2275 	unsigned long  	base_addr;
2276 	u8		reg_spacing;
2277 	u8              len = dm->length;
2278 
2279 	dmi->type = data[4];
2280 
2281 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2282 	if (len >= 0x11) {
2283 		if (base_addr & 1) {
2284 			/* I/O */
2285 			base_addr &= 0xFFFE;
2286 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2287 		} else
2288 			/* Memory */
2289 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2290 
2291 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2292 		   is odd. */
2293 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2294 
2295 		dmi->irq = data[0x11];
2296 
2297 		/* The top two bits of byte 0x10 hold the register spacing. */
2298 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2299 		switch (reg_spacing) {
2300 		case 0x00: /* Byte boundaries */
2301 		    dmi->offset = 1;
2302 		    break;
2303 		case 0x01: /* 32-bit boundaries */
2304 		    dmi->offset = 4;
2305 		    break;
2306 		case 0x02: /* 16-byte boundaries */
2307 		    dmi->offset = 16;
2308 		    break;
2309 		default:
2310 		    /* Some other interface, just ignore it. */
2311 		    return -EIO;
2312 		}
2313 	} else {
2314 		/* Old DMI spec. */
2315 		/*
2316 		 * Note that technically, the lower bit of the base
2317 		 * address should be 1 if the address is I/O and 0 if
2318 		 * the address is in memory.  So many systems get that
2319 		 * wrong (and all that I have seen are I/O) so we just
2320 		 * ignore that bit and assume I/O.  Systems that use
2321 		 * memory should use the newer spec, anyway.
2322 		 */
2323 		dmi->base_addr = base_addr & 0xfffe;
2324 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2325 		dmi->offset = 1;
2326 	}
2327 
2328 	dmi->slave_addr = data[6];
2329 
2330 	return 0;
2331 }
2332 
try_init_dmi(struct dmi_ipmi_data * ipmi_data)2333 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2334 {
2335 	struct smi_info *info;
2336 
2337 	info = smi_info_alloc();
2338 	if (!info) {
2339 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2340 		return;
2341 	}
2342 
2343 	info->addr_source = SI_SMBIOS;
2344 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2345 
2346 	switch (ipmi_data->type) {
2347 	case 0x01: /* KCS */
2348 		info->si_type = SI_KCS;
2349 		break;
2350 	case 0x02: /* SMIC */
2351 		info->si_type = SI_SMIC;
2352 		break;
2353 	case 0x03: /* BT */
2354 		info->si_type = SI_BT;
2355 		break;
2356 	default:
2357 		kfree(info);
2358 		return;
2359 	}
2360 
2361 	switch (ipmi_data->addr_space) {
2362 	case IPMI_MEM_ADDR_SPACE:
2363 		info->io_setup = mem_setup;
2364 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2365 		break;
2366 
2367 	case IPMI_IO_ADDR_SPACE:
2368 		info->io_setup = port_setup;
2369 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2370 		break;
2371 
2372 	default:
2373 		kfree(info);
2374 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2375 		       ipmi_data->addr_space);
2376 		return;
2377 	}
2378 	info->io.addr_data = ipmi_data->base_addr;
2379 
2380 	info->io.regspacing = ipmi_data->offset;
2381 	if (!info->io.regspacing)
2382 		info->io.regspacing = DEFAULT_REGSPACING;
2383 	info->io.regsize = DEFAULT_REGSPACING;
2384 	info->io.regshift = 0;
2385 
2386 	info->slave_addr = ipmi_data->slave_addr;
2387 
2388 	info->irq = ipmi_data->irq;
2389 	if (info->irq)
2390 		info->irq_setup = std_irq_setup;
2391 
2392 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2393 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2394 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2395 		 info->irq);
2396 
2397 	if (add_smi(info))
2398 		kfree(info);
2399 }
2400 
dmi_find_bmc(void)2401 static void __devinit dmi_find_bmc(void)
2402 {
2403 	const struct dmi_device *dev = NULL;
2404 	struct dmi_ipmi_data data;
2405 	int                  rv;
2406 
2407 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2408 		memset(&data, 0, sizeof(data));
2409 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2410 				&data);
2411 		if (!rv)
2412 			try_init_dmi(&data);
2413 	}
2414 }
2415 #endif /* CONFIG_DMI */
2416 
2417 #ifdef CONFIG_PCI
2418 
2419 #define PCI_ERMC_CLASSCODE		0x0C0700
2420 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2421 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2422 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2423 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2424 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2425 
2426 #define PCI_HP_VENDOR_ID    0x103C
2427 #define PCI_MMC_DEVICE_ID   0x121A
2428 #define PCI_MMC_ADDR_CW     0x10
2429 
ipmi_pci_cleanup(struct smi_info * info)2430 static void ipmi_pci_cleanup(struct smi_info *info)
2431 {
2432 	struct pci_dev *pdev = info->addr_source_data;
2433 
2434 	pci_disable_device(pdev);
2435 }
2436 
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2437 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2438 				    const struct pci_device_id *ent)
2439 {
2440 	int rv;
2441 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2442 	struct smi_info *info;
2443 
2444 	info = smi_info_alloc();
2445 	if (!info)
2446 		return -ENOMEM;
2447 
2448 	info->addr_source = SI_PCI;
2449 	dev_info(&pdev->dev, "probing via PCI");
2450 
2451 	switch (class_type) {
2452 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2453 		info->si_type = SI_SMIC;
2454 		break;
2455 
2456 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2457 		info->si_type = SI_KCS;
2458 		break;
2459 
2460 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2461 		info->si_type = SI_BT;
2462 		break;
2463 
2464 	default:
2465 		kfree(info);
2466 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2467 		return -ENOMEM;
2468 	}
2469 
2470 	rv = pci_enable_device(pdev);
2471 	if (rv) {
2472 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2473 		kfree(info);
2474 		return rv;
2475 	}
2476 
2477 	info->addr_source_cleanup = ipmi_pci_cleanup;
2478 	info->addr_source_data = pdev;
2479 
2480 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2481 		info->io_setup = port_setup;
2482 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2483 	} else {
2484 		info->io_setup = mem_setup;
2485 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2486 	}
2487 	info->io.addr_data = pci_resource_start(pdev, 0);
2488 
2489 	info->io.regspacing = DEFAULT_REGSPACING;
2490 	info->io.regsize = DEFAULT_REGSPACING;
2491 	info->io.regshift = 0;
2492 
2493 	info->irq = pdev->irq;
2494 	if (info->irq)
2495 		info->irq_setup = std_irq_setup;
2496 
2497 	info->dev = &pdev->dev;
2498 	pci_set_drvdata(pdev, info);
2499 
2500 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2501 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2502 		info->irq);
2503 
2504 	if (add_smi(info))
2505 		kfree(info);
2506 
2507 	return 0;
2508 }
2509 
ipmi_pci_remove(struct pci_dev * pdev)2510 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2511 {
2512 	struct smi_info *info = pci_get_drvdata(pdev);
2513 	cleanup_one_si(info);
2514 }
2515 
2516 #ifdef CONFIG_PM
ipmi_pci_suspend(struct pci_dev * pdev,pm_message_t state)2517 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2518 {
2519 	return 0;
2520 }
2521 
ipmi_pci_resume(struct pci_dev * pdev)2522 static int ipmi_pci_resume(struct pci_dev *pdev)
2523 {
2524 	return 0;
2525 }
2526 #endif
2527 
2528 static struct pci_device_id ipmi_pci_devices[] = {
2529 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2530 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2531 	{ 0, }
2532 };
2533 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2534 
2535 static struct pci_driver ipmi_pci_driver = {
2536 	.name =         DEVICE_NAME,
2537 	.id_table =     ipmi_pci_devices,
2538 	.probe =        ipmi_pci_probe,
2539 	.remove =       __devexit_p(ipmi_pci_remove),
2540 #ifdef CONFIG_PM
2541 	.suspend =      ipmi_pci_suspend,
2542 	.resume =       ipmi_pci_resume,
2543 #endif
2544 };
2545 #endif /* CONFIG_PCI */
2546 
2547 static struct of_device_id ipmi_match[];
ipmi_probe(struct platform_device * dev)2548 static int __devinit ipmi_probe(struct platform_device *dev)
2549 {
2550 #ifdef CONFIG_OF
2551 	const struct of_device_id *match;
2552 	struct smi_info *info;
2553 	struct resource resource;
2554 	const __be32 *regsize, *regspacing, *regshift;
2555 	struct device_node *np = dev->dev.of_node;
2556 	int ret;
2557 	int proplen;
2558 
2559 	dev_info(&dev->dev, "probing via device tree\n");
2560 
2561 	match = of_match_device(ipmi_match, &dev->dev);
2562 	if (!match)
2563 		return -EINVAL;
2564 
2565 	ret = of_address_to_resource(np, 0, &resource);
2566 	if (ret) {
2567 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2568 		return ret;
2569 	}
2570 
2571 	regsize = of_get_property(np, "reg-size", &proplen);
2572 	if (regsize && proplen != 4) {
2573 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2578 	if (regspacing && proplen != 4) {
2579 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2580 		return -EINVAL;
2581 	}
2582 
2583 	regshift = of_get_property(np, "reg-shift", &proplen);
2584 	if (regshift && proplen != 4) {
2585 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2586 		return -EINVAL;
2587 	}
2588 
2589 	info = smi_info_alloc();
2590 
2591 	if (!info) {
2592 		dev_err(&dev->dev,
2593 			"could not allocate memory for OF probe\n");
2594 		return -ENOMEM;
2595 	}
2596 
2597 	info->si_type		= (enum si_type) match->data;
2598 	info->addr_source	= SI_DEVICETREE;
2599 	info->irq_setup		= std_irq_setup;
2600 
2601 	if (resource.flags & IORESOURCE_IO) {
2602 		info->io_setup		= port_setup;
2603 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2604 	} else {
2605 		info->io_setup		= mem_setup;
2606 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2607 	}
2608 
2609 	info->io.addr_data	= resource.start;
2610 
2611 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2612 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2613 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2614 
2615 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2616 	info->dev		= &dev->dev;
2617 
2618 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2619 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2620 		info->irq);
2621 
2622 	dev_set_drvdata(&dev->dev, info);
2623 
2624 	if (add_smi(info)) {
2625 		kfree(info);
2626 		return -EBUSY;
2627 	}
2628 #endif
2629 	return 0;
2630 }
2631 
ipmi_remove(struct platform_device * dev)2632 static int __devexit ipmi_remove(struct platform_device *dev)
2633 {
2634 #ifdef CONFIG_OF
2635 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2636 #endif
2637 	return 0;
2638 }
2639 
2640 static struct of_device_id ipmi_match[] =
2641 {
2642 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2643 	  .data = (void *)(unsigned long) SI_KCS },
2644 	{ .type = "ipmi", .compatible = "ipmi-smic",
2645 	  .data = (void *)(unsigned long) SI_SMIC },
2646 	{ .type = "ipmi", .compatible = "ipmi-bt",
2647 	  .data = (void *)(unsigned long) SI_BT },
2648 	{},
2649 };
2650 
2651 static struct platform_driver ipmi_driver = {
2652 	.driver = {
2653 		.name = DEVICE_NAME,
2654 		.owner = THIS_MODULE,
2655 		.of_match_table = ipmi_match,
2656 	},
2657 	.probe		= ipmi_probe,
2658 	.remove		= __devexit_p(ipmi_remove),
2659 };
2660 
wait_for_msg_done(struct smi_info * smi_info)2661 static int wait_for_msg_done(struct smi_info *smi_info)
2662 {
2663 	enum si_sm_result     smi_result;
2664 
2665 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2666 	for (;;) {
2667 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2668 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2669 			schedule_timeout_uninterruptible(1);
2670 			smi_result = smi_info->handlers->event(
2671 				smi_info->si_sm, 100);
2672 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2673 			smi_result = smi_info->handlers->event(
2674 				smi_info->si_sm, 0);
2675 		} else
2676 			break;
2677 	}
2678 	if (smi_result == SI_SM_HOSED)
2679 		/*
2680 		 * We couldn't get the state machine to run, so whatever's at
2681 		 * the port is probably not an IPMI SMI interface.
2682 		 */
2683 		return -ENODEV;
2684 
2685 	return 0;
2686 }
2687 
try_get_dev_id(struct smi_info * smi_info)2688 static int try_get_dev_id(struct smi_info *smi_info)
2689 {
2690 	unsigned char         msg[2];
2691 	unsigned char         *resp;
2692 	unsigned long         resp_len;
2693 	int                   rv = 0;
2694 
2695 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2696 	if (!resp)
2697 		return -ENOMEM;
2698 
2699 	/*
2700 	 * Do a Get Device ID command, since it comes back with some
2701 	 * useful info.
2702 	 */
2703 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2704 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2705 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2706 
2707 	rv = wait_for_msg_done(smi_info);
2708 	if (rv)
2709 		goto out;
2710 
2711 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2712 						  resp, IPMI_MAX_MSG_LENGTH);
2713 
2714 	/* Check and record info from the get device id, in case we need it. */
2715 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2716 
2717  out:
2718 	kfree(resp);
2719 	return rv;
2720 }
2721 
try_enable_event_buffer(struct smi_info * smi_info)2722 static int try_enable_event_buffer(struct smi_info *smi_info)
2723 {
2724 	unsigned char         msg[3];
2725 	unsigned char         *resp;
2726 	unsigned long         resp_len;
2727 	int                   rv = 0;
2728 
2729 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2730 	if (!resp)
2731 		return -ENOMEM;
2732 
2733 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2734 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2735 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2736 
2737 	rv = wait_for_msg_done(smi_info);
2738 	if (rv) {
2739 		printk(KERN_WARNING PFX "Error getting response from get"
2740 		       " global enables command, the event buffer is not"
2741 		       " enabled.\n");
2742 		goto out;
2743 	}
2744 
2745 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2746 						  resp, IPMI_MAX_MSG_LENGTH);
2747 
2748 	if (resp_len < 4 ||
2749 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2750 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2751 			resp[2] != 0) {
2752 		printk(KERN_WARNING PFX "Invalid return from get global"
2753 		       " enables command, cannot enable the event buffer.\n");
2754 		rv = -EINVAL;
2755 		goto out;
2756 	}
2757 
2758 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2759 		/* buffer is already enabled, nothing to do. */
2760 		goto out;
2761 
2762 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2763 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2764 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2765 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2766 
2767 	rv = wait_for_msg_done(smi_info);
2768 	if (rv) {
2769 		printk(KERN_WARNING PFX "Error getting response from set"
2770 		       " global, enables command, the event buffer is not"
2771 		       " enabled.\n");
2772 		goto out;
2773 	}
2774 
2775 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2776 						  resp, IPMI_MAX_MSG_LENGTH);
2777 
2778 	if (resp_len < 3 ||
2779 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2780 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2781 		printk(KERN_WARNING PFX "Invalid return from get global,"
2782 		       "enables command, not enable the event buffer.\n");
2783 		rv = -EINVAL;
2784 		goto out;
2785 	}
2786 
2787 	if (resp[2] != 0)
2788 		/*
2789 		 * An error when setting the event buffer bit means
2790 		 * that the event buffer is not supported.
2791 		 */
2792 		rv = -ENOENT;
2793  out:
2794 	kfree(resp);
2795 	return rv;
2796 }
2797 
smi_type_proc_show(struct seq_file * m,void * v)2798 static int smi_type_proc_show(struct seq_file *m, void *v)
2799 {
2800 	struct smi_info *smi = m->private;
2801 
2802 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2803 }
2804 
smi_type_proc_open(struct inode * inode,struct file * file)2805 static int smi_type_proc_open(struct inode *inode, struct file *file)
2806 {
2807 	return single_open(file, smi_type_proc_show, PDE(inode)->data);
2808 }
2809 
2810 static const struct file_operations smi_type_proc_ops = {
2811 	.open		= smi_type_proc_open,
2812 	.read		= seq_read,
2813 	.llseek		= seq_lseek,
2814 	.release	= single_release,
2815 };
2816 
smi_si_stats_proc_show(struct seq_file * m,void * v)2817 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2818 {
2819 	struct smi_info *smi = m->private;
2820 
2821 	seq_printf(m, "interrupts_enabled:    %d\n",
2822 		       smi->irq && !smi->interrupt_disabled);
2823 	seq_printf(m, "short_timeouts:        %u\n",
2824 		       smi_get_stat(smi, short_timeouts));
2825 	seq_printf(m, "long_timeouts:         %u\n",
2826 		       smi_get_stat(smi, long_timeouts));
2827 	seq_printf(m, "idles:                 %u\n",
2828 		       smi_get_stat(smi, idles));
2829 	seq_printf(m, "interrupts:            %u\n",
2830 		       smi_get_stat(smi, interrupts));
2831 	seq_printf(m, "attentions:            %u\n",
2832 		       smi_get_stat(smi, attentions));
2833 	seq_printf(m, "flag_fetches:          %u\n",
2834 		       smi_get_stat(smi, flag_fetches));
2835 	seq_printf(m, "hosed_count:           %u\n",
2836 		       smi_get_stat(smi, hosed_count));
2837 	seq_printf(m, "complete_transactions: %u\n",
2838 		       smi_get_stat(smi, complete_transactions));
2839 	seq_printf(m, "events:                %u\n",
2840 		       smi_get_stat(smi, events));
2841 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2842 		       smi_get_stat(smi, watchdog_pretimeouts));
2843 	seq_printf(m, "incoming_messages:     %u\n",
2844 		       smi_get_stat(smi, incoming_messages));
2845 	return 0;
2846 }
2847 
smi_si_stats_proc_open(struct inode * inode,struct file * file)2848 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2849 {
2850 	return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2851 }
2852 
2853 static const struct file_operations smi_si_stats_proc_ops = {
2854 	.open		= smi_si_stats_proc_open,
2855 	.read		= seq_read,
2856 	.llseek		= seq_lseek,
2857 	.release	= single_release,
2858 };
2859 
smi_params_proc_show(struct seq_file * m,void * v)2860 static int smi_params_proc_show(struct seq_file *m, void *v)
2861 {
2862 	struct smi_info *smi = m->private;
2863 
2864 	return seq_printf(m,
2865 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2866 		       si_to_str[smi->si_type],
2867 		       addr_space_to_str[smi->io.addr_type],
2868 		       smi->io.addr_data,
2869 		       smi->io.regspacing,
2870 		       smi->io.regsize,
2871 		       smi->io.regshift,
2872 		       smi->irq,
2873 		       smi->slave_addr);
2874 }
2875 
smi_params_proc_open(struct inode * inode,struct file * file)2876 static int smi_params_proc_open(struct inode *inode, struct file *file)
2877 {
2878 	return single_open(file, smi_params_proc_show, PDE(inode)->data);
2879 }
2880 
2881 static const struct file_operations smi_params_proc_ops = {
2882 	.open		= smi_params_proc_open,
2883 	.read		= seq_read,
2884 	.llseek		= seq_lseek,
2885 	.release	= single_release,
2886 };
2887 
2888 /*
2889  * oem_data_avail_to_receive_msg_avail
2890  * @info - smi_info structure with msg_flags set
2891  *
2892  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2893  * Returns 1 indicating need to re-run handle_flags().
2894  */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)2895 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2896 {
2897 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2898 			       RECEIVE_MSG_AVAIL);
2899 	return 1;
2900 }
2901 
2902 /*
2903  * setup_dell_poweredge_oem_data_handler
2904  * @info - smi_info.device_id must be populated
2905  *
2906  * Systems that match, but have firmware version < 1.40 may assert
2907  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2908  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2909  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2910  * as RECEIVE_MSG_AVAIL instead.
2911  *
2912  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2913  * assert the OEM[012] bits, and if it did, the driver would have to
2914  * change to handle that properly, we don't actually check for the
2915  * firmware version.
2916  * Device ID = 0x20                BMC on PowerEdge 8G servers
2917  * Device Revision = 0x80
2918  * Firmware Revision1 = 0x01       BMC version 1.40
2919  * Firmware Revision2 = 0x40       BCD encoded
2920  * IPMI Version = 0x51             IPMI 1.5
2921  * Manufacturer ID = A2 02 00      Dell IANA
2922  *
2923  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2924  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2925  *
2926  */
2927 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2928 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2929 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2930 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)2931 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2932 {
2933 	struct ipmi_device_id *id = &smi_info->device_id;
2934 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2935 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2936 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2937 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2938 			smi_info->oem_data_avail_handler =
2939 				oem_data_avail_to_receive_msg_avail;
2940 		} else if (ipmi_version_major(id) < 1 ||
2941 			   (ipmi_version_major(id) == 1 &&
2942 			    ipmi_version_minor(id) < 5)) {
2943 			smi_info->oem_data_avail_handler =
2944 				oem_data_avail_to_receive_msg_avail;
2945 		}
2946 	}
2947 }
2948 
2949 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)2950 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2951 {
2952 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2953 
2954 	/* Make it a response */
2955 	msg->rsp[0] = msg->data[0] | 4;
2956 	msg->rsp[1] = msg->data[1];
2957 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2958 	msg->rsp_size = 3;
2959 	smi_info->curr_msg = NULL;
2960 	deliver_recv_msg(smi_info, msg);
2961 }
2962 
2963 /*
2964  * dell_poweredge_bt_xaction_handler
2965  * @info - smi_info.device_id must be populated
2966  *
2967  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2968  * not respond to a Get SDR command if the length of the data
2969  * requested is exactly 0x3A, which leads to command timeouts and no
2970  * data returned.  This intercepts such commands, and causes userspace
2971  * callers to try again with a different-sized buffer, which succeeds.
2972  */
2973 
2974 #define STORAGE_NETFN 0x0A
2975 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)2976 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2977 					     unsigned long unused,
2978 					     void *in)
2979 {
2980 	struct smi_info *smi_info = in;
2981 	unsigned char *data = smi_info->curr_msg->data;
2982 	unsigned int size   = smi_info->curr_msg->data_size;
2983 	if (size >= 8 &&
2984 	    (data[0]>>2) == STORAGE_NETFN &&
2985 	    data[1] == STORAGE_CMD_GET_SDR &&
2986 	    data[7] == 0x3A) {
2987 		return_hosed_msg_badsize(smi_info);
2988 		return NOTIFY_STOP;
2989 	}
2990 	return NOTIFY_DONE;
2991 }
2992 
2993 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2994 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2995 };
2996 
2997 /*
2998  * setup_dell_poweredge_bt_xaction_handler
2999  * @info - smi_info.device_id must be filled in already
3000  *
3001  * Fills in smi_info.device_id.start_transaction_pre_hook
3002  * when we know what function to use there.
3003  */
3004 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3005 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3006 {
3007 	struct ipmi_device_id *id = &smi_info->device_id;
3008 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3009 	    smi_info->si_type == SI_BT)
3010 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3011 }
3012 
3013 /*
3014  * setup_oem_data_handler
3015  * @info - smi_info.device_id must be filled in already
3016  *
3017  * Fills in smi_info.device_id.oem_data_available_handler
3018  * when we know what function to use there.
3019  */
3020 
setup_oem_data_handler(struct smi_info * smi_info)3021 static void setup_oem_data_handler(struct smi_info *smi_info)
3022 {
3023 	setup_dell_poweredge_oem_data_handler(smi_info);
3024 }
3025 
setup_xaction_handlers(struct smi_info * smi_info)3026 static void setup_xaction_handlers(struct smi_info *smi_info)
3027 {
3028 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3029 }
3030 
wait_for_timer_and_thread(struct smi_info * smi_info)3031 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3032 {
3033 	if (smi_info->intf) {
3034 		/*
3035 		 * The timer and thread are only running if the
3036 		 * interface has been started up and registered.
3037 		 */
3038 		if (smi_info->thread != NULL)
3039 			kthread_stop(smi_info->thread);
3040 		del_timer_sync(&smi_info->si_timer);
3041 	}
3042 }
3043 
3044 static __devinitdata struct ipmi_default_vals
3045 {
3046 	int type;
3047 	int port;
3048 } ipmi_defaults[] =
3049 {
3050 	{ .type = SI_KCS, .port = 0xca2 },
3051 	{ .type = SI_SMIC, .port = 0xca9 },
3052 	{ .type = SI_BT, .port = 0xe4 },
3053 	{ .port = 0 }
3054 };
3055 
default_find_bmc(void)3056 static void __devinit default_find_bmc(void)
3057 {
3058 	struct smi_info *info;
3059 	int             i;
3060 
3061 	for (i = 0; ; i++) {
3062 		if (!ipmi_defaults[i].port)
3063 			break;
3064 #ifdef CONFIG_PPC
3065 		if (check_legacy_ioport(ipmi_defaults[i].port))
3066 			continue;
3067 #endif
3068 		info = smi_info_alloc();
3069 		if (!info)
3070 			return;
3071 
3072 		info->addr_source = SI_DEFAULT;
3073 
3074 		info->si_type = ipmi_defaults[i].type;
3075 		info->io_setup = port_setup;
3076 		info->io.addr_data = ipmi_defaults[i].port;
3077 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3078 
3079 		info->io.addr = NULL;
3080 		info->io.regspacing = DEFAULT_REGSPACING;
3081 		info->io.regsize = DEFAULT_REGSPACING;
3082 		info->io.regshift = 0;
3083 
3084 		if (add_smi(info) == 0) {
3085 			if ((try_smi_init(info)) == 0) {
3086 				/* Found one... */
3087 				printk(KERN_INFO PFX "Found default %s"
3088 				" state machine at %s address 0x%lx\n",
3089 				si_to_str[info->si_type],
3090 				addr_space_to_str[info->io.addr_type],
3091 				info->io.addr_data);
3092 			} else
3093 				cleanup_one_si(info);
3094 		} else {
3095 			kfree(info);
3096 		}
3097 	}
3098 }
3099 
is_new_interface(struct smi_info * info)3100 static int is_new_interface(struct smi_info *info)
3101 {
3102 	struct smi_info *e;
3103 
3104 	list_for_each_entry(e, &smi_infos, link) {
3105 		if (e->io.addr_type != info->io.addr_type)
3106 			continue;
3107 		if (e->io.addr_data == info->io.addr_data)
3108 			return 0;
3109 	}
3110 
3111 	return 1;
3112 }
3113 
add_smi(struct smi_info * new_smi)3114 static int add_smi(struct smi_info *new_smi)
3115 {
3116 	int rv = 0;
3117 
3118 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3119 			ipmi_addr_src_to_str[new_smi->addr_source],
3120 			si_to_str[new_smi->si_type]);
3121 	mutex_lock(&smi_infos_lock);
3122 	if (!is_new_interface(new_smi)) {
3123 		printk(KERN_CONT " duplicate interface\n");
3124 		rv = -EBUSY;
3125 		goto out_err;
3126 	}
3127 
3128 	printk(KERN_CONT "\n");
3129 
3130 	/* So we know not to free it unless we have allocated one. */
3131 	new_smi->intf = NULL;
3132 	new_smi->si_sm = NULL;
3133 	new_smi->handlers = NULL;
3134 
3135 	list_add_tail(&new_smi->link, &smi_infos);
3136 
3137 out_err:
3138 	mutex_unlock(&smi_infos_lock);
3139 	return rv;
3140 }
3141 
try_smi_init(struct smi_info * new_smi)3142 static int try_smi_init(struct smi_info *new_smi)
3143 {
3144 	int rv = 0;
3145 	int i;
3146 
3147 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3148 	       " machine at %s address 0x%lx, slave address 0x%x,"
3149 	       " irq %d\n",
3150 	       ipmi_addr_src_to_str[new_smi->addr_source],
3151 	       si_to_str[new_smi->si_type],
3152 	       addr_space_to_str[new_smi->io.addr_type],
3153 	       new_smi->io.addr_data,
3154 	       new_smi->slave_addr, new_smi->irq);
3155 
3156 	switch (new_smi->si_type) {
3157 	case SI_KCS:
3158 		new_smi->handlers = &kcs_smi_handlers;
3159 		break;
3160 
3161 	case SI_SMIC:
3162 		new_smi->handlers = &smic_smi_handlers;
3163 		break;
3164 
3165 	case SI_BT:
3166 		new_smi->handlers = &bt_smi_handlers;
3167 		break;
3168 
3169 	default:
3170 		/* No support for anything else yet. */
3171 		rv = -EIO;
3172 		goto out_err;
3173 	}
3174 
3175 	/* Allocate the state machine's data and initialize it. */
3176 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3177 	if (!new_smi->si_sm) {
3178 		printk(KERN_ERR PFX
3179 		       "Could not allocate state machine memory\n");
3180 		rv = -ENOMEM;
3181 		goto out_err;
3182 	}
3183 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3184 							&new_smi->io);
3185 
3186 	/* Now that we know the I/O size, we can set up the I/O. */
3187 	rv = new_smi->io_setup(new_smi);
3188 	if (rv) {
3189 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3190 		goto out_err;
3191 	}
3192 
3193 	/* Do low-level detection first. */
3194 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3195 		if (new_smi->addr_source)
3196 			printk(KERN_INFO PFX "Interface detection failed\n");
3197 		rv = -ENODEV;
3198 		goto out_err;
3199 	}
3200 
3201 	/*
3202 	 * Attempt a get device id command.  If it fails, we probably
3203 	 * don't have a BMC here.
3204 	 */
3205 	rv = try_get_dev_id(new_smi);
3206 	if (rv) {
3207 		if (new_smi->addr_source)
3208 			printk(KERN_INFO PFX "There appears to be no BMC"
3209 			       " at this location\n");
3210 		goto out_err;
3211 	}
3212 
3213 	setup_oem_data_handler(new_smi);
3214 	setup_xaction_handlers(new_smi);
3215 
3216 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3217 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3218 	new_smi->curr_msg = NULL;
3219 	atomic_set(&new_smi->req_events, 0);
3220 	new_smi->run_to_completion = 0;
3221 	for (i = 0; i < SI_NUM_STATS; i++)
3222 		atomic_set(&new_smi->stats[i], 0);
3223 
3224 	new_smi->interrupt_disabled = 1;
3225 	atomic_set(&new_smi->stop_operation, 0);
3226 	new_smi->intf_num = smi_num;
3227 	smi_num++;
3228 
3229 	rv = try_enable_event_buffer(new_smi);
3230 	if (rv == 0)
3231 		new_smi->has_event_buffer = 1;
3232 
3233 	/*
3234 	 * Start clearing the flags before we enable interrupts or the
3235 	 * timer to avoid racing with the timer.
3236 	 */
3237 	start_clear_flags(new_smi);
3238 	/* IRQ is defined to be set when non-zero. */
3239 	if (new_smi->irq)
3240 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3241 
3242 	if (!new_smi->dev) {
3243 		/*
3244 		 * If we don't already have a device from something
3245 		 * else (like PCI), then register a new one.
3246 		 */
3247 		new_smi->pdev = platform_device_alloc("ipmi_si",
3248 						      new_smi->intf_num);
3249 		if (!new_smi->pdev) {
3250 			printk(KERN_ERR PFX
3251 			       "Unable to allocate platform device\n");
3252 			goto out_err;
3253 		}
3254 		new_smi->dev = &new_smi->pdev->dev;
3255 		new_smi->dev->driver = &ipmi_driver.driver;
3256 
3257 		rv = platform_device_add(new_smi->pdev);
3258 		if (rv) {
3259 			printk(KERN_ERR PFX
3260 			       "Unable to register system interface device:"
3261 			       " %d\n",
3262 			       rv);
3263 			goto out_err;
3264 		}
3265 		new_smi->dev_registered = 1;
3266 	}
3267 
3268 	rv = ipmi_register_smi(&handlers,
3269 			       new_smi,
3270 			       &new_smi->device_id,
3271 			       new_smi->dev,
3272 			       "bmc",
3273 			       new_smi->slave_addr);
3274 	if (rv) {
3275 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3276 			rv);
3277 		goto out_err_stop_timer;
3278 	}
3279 
3280 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3281 				     &smi_type_proc_ops,
3282 				     new_smi);
3283 	if (rv) {
3284 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3285 		goto out_err_stop_timer;
3286 	}
3287 
3288 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3289 				     &smi_si_stats_proc_ops,
3290 				     new_smi);
3291 	if (rv) {
3292 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3293 		goto out_err_stop_timer;
3294 	}
3295 
3296 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3297 				     &smi_params_proc_ops,
3298 				     new_smi);
3299 	if (rv) {
3300 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3301 		goto out_err_stop_timer;
3302 	}
3303 
3304 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3305 		 si_to_str[new_smi->si_type]);
3306 
3307 	return 0;
3308 
3309  out_err_stop_timer:
3310 	atomic_inc(&new_smi->stop_operation);
3311 	wait_for_timer_and_thread(new_smi);
3312 
3313  out_err:
3314 	new_smi->interrupt_disabled = 1;
3315 
3316 	if (new_smi->intf) {
3317 		ipmi_unregister_smi(new_smi->intf);
3318 		new_smi->intf = NULL;
3319 	}
3320 
3321 	if (new_smi->irq_cleanup) {
3322 		new_smi->irq_cleanup(new_smi);
3323 		new_smi->irq_cleanup = NULL;
3324 	}
3325 
3326 	/*
3327 	 * Wait until we know that we are out of any interrupt
3328 	 * handlers might have been running before we freed the
3329 	 * interrupt.
3330 	 */
3331 	synchronize_sched();
3332 
3333 	if (new_smi->si_sm) {
3334 		if (new_smi->handlers)
3335 			new_smi->handlers->cleanup(new_smi->si_sm);
3336 		kfree(new_smi->si_sm);
3337 		new_smi->si_sm = NULL;
3338 	}
3339 	if (new_smi->addr_source_cleanup) {
3340 		new_smi->addr_source_cleanup(new_smi);
3341 		new_smi->addr_source_cleanup = NULL;
3342 	}
3343 	if (new_smi->io_cleanup) {
3344 		new_smi->io_cleanup(new_smi);
3345 		new_smi->io_cleanup = NULL;
3346 	}
3347 
3348 	if (new_smi->dev_registered) {
3349 		platform_device_unregister(new_smi->pdev);
3350 		new_smi->dev_registered = 0;
3351 	}
3352 
3353 	return rv;
3354 }
3355 
init_ipmi_si(void)3356 static int __devinit init_ipmi_si(void)
3357 {
3358 	int  i;
3359 	char *str;
3360 	int  rv;
3361 	struct smi_info *e;
3362 	enum ipmi_addr_src type = SI_INVALID;
3363 
3364 	if (initialized)
3365 		return 0;
3366 	initialized = 1;
3367 
3368 	rv = platform_driver_register(&ipmi_driver);
3369 	if (rv) {
3370 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3371 		return rv;
3372 	}
3373 
3374 
3375 	/* Parse out the si_type string into its components. */
3376 	str = si_type_str;
3377 	if (*str != '\0') {
3378 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3379 			si_type[i] = str;
3380 			str = strchr(str, ',');
3381 			if (str) {
3382 				*str = '\0';
3383 				str++;
3384 			} else {
3385 				break;
3386 			}
3387 		}
3388 	}
3389 
3390 	printk(KERN_INFO "IPMI System Interface driver.\n");
3391 
3392 	/* If the user gave us a device, they presumably want us to use it */
3393 	if (!hardcode_find_bmc())
3394 		return 0;
3395 
3396 #ifdef CONFIG_PCI
3397 	rv = pci_register_driver(&ipmi_pci_driver);
3398 	if (rv)
3399 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3400 	else
3401 		pci_registered = 1;
3402 #endif
3403 
3404 #ifdef CONFIG_ACPI
3405 	pnp_register_driver(&ipmi_pnp_driver);
3406 	pnp_registered = 1;
3407 #endif
3408 
3409 #ifdef CONFIG_DMI
3410 	dmi_find_bmc();
3411 #endif
3412 
3413 #ifdef CONFIG_ACPI
3414 	spmi_find_bmc();
3415 #endif
3416 
3417 	/* We prefer devices with interrupts, but in the case of a machine
3418 	   with multiple BMCs we assume that there will be several instances
3419 	   of a given type so if we succeed in registering a type then also
3420 	   try to register everything else of the same type */
3421 
3422 	mutex_lock(&smi_infos_lock);
3423 	list_for_each_entry(e, &smi_infos, link) {
3424 		/* Try to register a device if it has an IRQ and we either
3425 		   haven't successfully registered a device yet or this
3426 		   device has the same type as one we successfully registered */
3427 		if (e->irq && (!type || e->addr_source == type)) {
3428 			if (!try_smi_init(e)) {
3429 				type = e->addr_source;
3430 			}
3431 		}
3432 	}
3433 
3434 	/* type will only have been set if we successfully registered an si */
3435 	if (type) {
3436 		mutex_unlock(&smi_infos_lock);
3437 		return 0;
3438 	}
3439 
3440 	/* Fall back to the preferred device */
3441 
3442 	list_for_each_entry(e, &smi_infos, link) {
3443 		if (!e->irq && (!type || e->addr_source == type)) {
3444 			if (!try_smi_init(e)) {
3445 				type = e->addr_source;
3446 			}
3447 		}
3448 	}
3449 	mutex_unlock(&smi_infos_lock);
3450 
3451 	if (type)
3452 		return 0;
3453 
3454 	if (si_trydefaults) {
3455 		mutex_lock(&smi_infos_lock);
3456 		if (list_empty(&smi_infos)) {
3457 			/* No BMC was found, try defaults. */
3458 			mutex_unlock(&smi_infos_lock);
3459 			default_find_bmc();
3460 		} else
3461 			mutex_unlock(&smi_infos_lock);
3462 	}
3463 
3464 	mutex_lock(&smi_infos_lock);
3465 	if (unload_when_empty && list_empty(&smi_infos)) {
3466 		mutex_unlock(&smi_infos_lock);
3467 		cleanup_ipmi_si();
3468 		printk(KERN_WARNING PFX
3469 		       "Unable to find any System Interface(s)\n");
3470 		return -ENODEV;
3471 	} else {
3472 		mutex_unlock(&smi_infos_lock);
3473 		return 0;
3474 	}
3475 }
3476 module_init(init_ipmi_si);
3477 
cleanup_one_si(struct smi_info * to_clean)3478 static void cleanup_one_si(struct smi_info *to_clean)
3479 {
3480 	int           rv = 0;
3481 	unsigned long flags;
3482 
3483 	if (!to_clean)
3484 		return;
3485 
3486 	list_del(&to_clean->link);
3487 
3488 	/* Tell the driver that we are shutting down. */
3489 	atomic_inc(&to_clean->stop_operation);
3490 
3491 	/*
3492 	 * Make sure the timer and thread are stopped and will not run
3493 	 * again.
3494 	 */
3495 	wait_for_timer_and_thread(to_clean);
3496 
3497 	/*
3498 	 * Timeouts are stopped, now make sure the interrupts are off
3499 	 * for the device.  A little tricky with locks to make sure
3500 	 * there are no races.
3501 	 */
3502 	spin_lock_irqsave(&to_clean->si_lock, flags);
3503 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3504 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3505 		poll(to_clean);
3506 		schedule_timeout_uninterruptible(1);
3507 		spin_lock_irqsave(&to_clean->si_lock, flags);
3508 	}
3509 	disable_si_irq(to_clean);
3510 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3511 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3512 		poll(to_clean);
3513 		schedule_timeout_uninterruptible(1);
3514 	}
3515 
3516 	/* Clean up interrupts and make sure that everything is done. */
3517 	if (to_clean->irq_cleanup)
3518 		to_clean->irq_cleanup(to_clean);
3519 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3520 		poll(to_clean);
3521 		schedule_timeout_uninterruptible(1);
3522 	}
3523 
3524 	if (to_clean->intf)
3525 		rv = ipmi_unregister_smi(to_clean->intf);
3526 
3527 	if (rv) {
3528 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3529 		       rv);
3530 	}
3531 
3532 	if (to_clean->handlers)
3533 		to_clean->handlers->cleanup(to_clean->si_sm);
3534 
3535 	kfree(to_clean->si_sm);
3536 
3537 	if (to_clean->addr_source_cleanup)
3538 		to_clean->addr_source_cleanup(to_clean);
3539 	if (to_clean->io_cleanup)
3540 		to_clean->io_cleanup(to_clean);
3541 
3542 	if (to_clean->dev_registered)
3543 		platform_device_unregister(to_clean->pdev);
3544 
3545 	kfree(to_clean);
3546 }
3547 
cleanup_ipmi_si(void)3548 static void cleanup_ipmi_si(void)
3549 {
3550 	struct smi_info *e, *tmp_e;
3551 
3552 	if (!initialized)
3553 		return;
3554 
3555 #ifdef CONFIG_PCI
3556 	if (pci_registered)
3557 		pci_unregister_driver(&ipmi_pci_driver);
3558 #endif
3559 #ifdef CONFIG_ACPI
3560 	if (pnp_registered)
3561 		pnp_unregister_driver(&ipmi_pnp_driver);
3562 #endif
3563 
3564 	platform_driver_unregister(&ipmi_driver);
3565 
3566 	mutex_lock(&smi_infos_lock);
3567 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3568 		cleanup_one_si(e);
3569 	mutex_unlock(&smi_infos_lock);
3570 }
3571 module_exit(cleanup_ipmi_si);
3572 
3573 MODULE_LICENSE("GPL");
3574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576 		   " system interfaces.");
3577