1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
3
4 /*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6 *
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 */
17
18 /*
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22 */
23
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42
43 #include <asm/io.h>
44 #include <asm/dma.h>
45
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51
52 /* FIXME:
53 *
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
61 * safely?
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
70 */
71 #warning this driver is still not properly converted to the DMA API
72
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
75
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
78
79 /*
80 * Portable Data Types
81 *
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
87 */
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
92
93 typedef unsigned char uchar;
94
95 #ifndef TRUE
96 #define TRUE (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE (0)
100 #endif
101
102 #define ERR (-1)
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
105
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
113
114 /*
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118 * SRB structure.
119 */
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
122
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
126
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
129
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
132
133 #define ASC_CS_TYPE unsigned short
134
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
146
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
168
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
179
180 /*
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
183 */
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
186
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
189
190 #define ASC_SG_LIST_PER_Q 7
191 #define QS_FREE 0x00
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
195 #define QS_BUSY 0x08
196 #define QS_ABORTED 0x40
197 #define QS_DONE 0x80
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
302
303 typedef struct asc_scsiq_1 {
304 uchar status;
305 uchar q_no;
306 uchar cntl;
307 uchar sg_queue_cnt;
308 uchar target_id;
309 uchar target_lun;
310 ASC_PADDR data_addr;
311 ASC_DCNT data_cnt;
312 ASC_PADDR sense_addr;
313 uchar sense_len;
314 uchar extra_bytes;
315 } ASC_SCSIQ_1;
316
317 typedef struct asc_scsiq_2 {
318 ASC_VADDR srb_ptr;
319 uchar target_ix;
320 uchar flag;
321 uchar cdb_len;
322 uchar tag_code;
323 ushort vm_id;
324 } ASC_SCSIQ_2;
325
326 typedef struct asc_scsiq_3 {
327 uchar done_stat;
328 uchar host_stat;
329 uchar scsi_stat;
330 uchar scsi_msg;
331 } ASC_SCSIQ_3;
332
333 typedef struct asc_scsiq_4 {
334 uchar cdb[ASC_MAX_CDB_LEN];
335 uchar y_first_sg_list_qp;
336 uchar y_working_sg_qp;
337 uchar y_working_sg_ix;
338 uchar y_res;
339 ushort x_req_count;
340 ushort x_reconnect_rtn;
341 ASC_PADDR x_saved_data_addr;
342 ASC_DCNT x_saved_data_cnt;
343 } ASC_SCSIQ_4;
344
345 typedef struct asc_q_done_info {
346 ASC_SCSIQ_2 d2;
347 ASC_SCSIQ_3 d3;
348 uchar q_status;
349 uchar q_no;
350 uchar cntl;
351 uchar sense_len;
352 uchar extra_bytes;
353 uchar res;
354 ASC_DCNT remain_bytes;
355 } ASC_QDONE_INFO;
356
357 typedef struct asc_sg_list {
358 ASC_PADDR addr;
359 ASC_DCNT bytes;
360 } ASC_SG_LIST;
361
362 typedef struct asc_sg_head {
363 ushort entry_cnt;
364 ushort queue_cnt;
365 ushort entry_to_copy;
366 ushort res;
367 ASC_SG_LIST sg_list[0];
368 } ASC_SG_HEAD;
369
370 typedef struct asc_scsi_q {
371 ASC_SCSIQ_1 q1;
372 ASC_SCSIQ_2 q2;
373 uchar *cdbptr;
374 ASC_SG_HEAD *sg_head;
375 ushort remain_sg_entry_cnt;
376 ushort next_sg_index;
377 } ASC_SCSI_Q;
378
379 typedef struct asc_scsi_req_q {
380 ASC_SCSIQ_1 r1;
381 ASC_SCSIQ_2 r2;
382 uchar *cdbptr;
383 ASC_SG_HEAD *sg_head;
384 uchar *sense_ptr;
385 ASC_SCSIQ_3 r3;
386 uchar cdb[ASC_MAX_CDB_LEN];
387 uchar sense[ASC_MIN_SENSE_LEN];
388 } ASC_SCSI_REQ_Q;
389
390 typedef struct asc_scsi_bios_req_q {
391 ASC_SCSIQ_1 r1;
392 ASC_SCSIQ_2 r2;
393 uchar *cdbptr;
394 ASC_SG_HEAD *sg_head;
395 uchar *sense_ptr;
396 ASC_SCSIQ_3 r3;
397 uchar cdb[ASC_MAX_CDB_LEN];
398 uchar sense[ASC_MIN_SENSE_LEN];
399 } ASC_SCSI_BIOS_REQ_Q;
400
401 typedef struct asc_risc_q {
402 uchar fwd;
403 uchar bwd;
404 ASC_SCSIQ_1 i1;
405 ASC_SCSIQ_2 i2;
406 ASC_SCSIQ_3 i3;
407 ASC_SCSIQ_4 i4;
408 } ASC_RISC_Q;
409
410 typedef struct asc_sg_list_q {
411 uchar seq_no;
412 uchar q_no;
413 uchar cntl;
414 uchar sg_head_qp;
415 uchar sg_list_cnt;
416 uchar sg_cur_list_cnt;
417 } ASC_SG_LIST_Q;
418
419 typedef struct asc_risc_sg_list_q {
420 uchar fwd;
421 uchar bwd;
422 ASC_SG_LIST_Q sg;
423 ASC_SG_LIST sg_list[7];
424 } ASC_RISC_SG_LIST_Q;
425
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
432
433 /*
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
435 */
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
444
445 /*
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
447 */
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
462
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
477
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
481 */
482 static const unsigned char asc_syn_xfer_period[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
484 };
485
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
488 };
489
490 typedef struct ext_msg {
491 uchar msg_type;
492 uchar msg_len;
493 uchar msg_req;
494 union {
495 struct {
496 uchar sdtr_xfer_period;
497 uchar sdtr_req_ack_offset;
498 } sdtr;
499 struct {
500 uchar wdtr_width;
501 } wdtr;
502 struct {
503 uchar mdp_b3;
504 uchar mdp_b2;
505 uchar mdp_b1;
506 uchar mdp_b0;
507 } mdp;
508 } u_ext_msg;
509 uchar res;
510 } EXT_MSG;
511
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
519
520 typedef struct asc_dvc_cfg {
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523 ASC_SCSI_BIT_ID_TYPE disc_enable;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525 uchar chip_scsi_id;
526 uchar isa_dma_speed;
527 uchar isa_dma_channel;
528 uchar chip_version;
529 ushort mcode_date;
530 ushort mcode_version;
531 uchar max_tag_qng[ASC_MAX_TID + 1];
532 uchar sdtr_period_offset[ASC_MAX_TID + 1];
533 uchar adapter_info[6];
534 } ASC_DVC_CFG;
535
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
554
555 struct asc_dvc_var; /* Forward Declaration. */
556
557 typedef struct asc_dvc_var {
558 PortAddr iop_base;
559 ushort err_code;
560 ushort dvc_cntl;
561 ushort bug_fix_cntl;
562 ushort bus_type;
563 ASC_SCSI_BIT_ID_TYPE init_sdtr;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568 ASC_SCSI_BIT_ID_TYPE start_motor;
569 uchar *overrun_buf;
570 dma_addr_t overrun_dma;
571 uchar scsi_reset_wait;
572 uchar chip_no;
573 char is_in_int;
574 uchar max_total_qng;
575 uchar cur_total_qng;
576 uchar in_critical_cnt;
577 uchar last_q_shortage;
578 ushort init_state;
579 uchar cur_dvc_qng[ASC_MAX_TID + 1];
580 uchar max_dvc_qng[ASC_MAX_TID + 1];
581 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583 const uchar *sdtr_period_tbl;
584 ASC_DVC_CFG *cfg;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586 char redo_scam;
587 ushort res2;
588 uchar dos_int13_table[ASC_MAX_TID + 1];
589 ASC_DCNT max_dma_count;
590 ASC_SCSI_BIT_ID_TYPE no_scam;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592 uchar min_sdtr_index;
593 uchar max_sdtr_index;
594 struct asc_board *drv_ptr;
595 int ptr_map_count;
596 void **ptr_map;
597 ASC_DCNT uc_break;
598 } ASC_DVC_VAR;
599
600 typedef struct asc_dvc_inq_info {
601 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602 } ASC_DVC_INQ_INFO;
603
604 typedef struct asc_cap_info {
605 ASC_DCNT lba;
606 ASC_DCNT blk_size;
607 } ASC_CAP_INFO;
608
609 typedef struct asc_cap_info_array {
610 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611 } ASC_CAP_INFO_ARRAY;
612
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
634
635 /*
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
639 * not used.
640 */
641
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
648
649 typedef struct asceep_config {
650 ushort cfg_lsw;
651 ushort cfg_msw;
652 uchar init_sdtr;
653 uchar disc_enable;
654 uchar use_cmd_qng;
655 uchar start_motor;
656 uchar max_total_qng;
657 uchar max_tag_qng;
658 uchar bios_scan;
659 uchar power_up_wait;
660 uchar no_scam;
661 uchar id_speed; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table[ASC_MAX_TID + 1];
664 uchar adapter_info[6];
665 ushort cntl;
666 ushort chksum;
667 } ASCEEP_CONFIG;
668
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
687
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
858
859 typedef struct asc_mc_saved {
860 ushort data[ASC_MC_SAVE_DATA_WSIZE];
861 ushort code[ASC_MC_SAVE_CODE_WSIZE];
862 } ASC_MC_SAVED;
863
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
931
932 /*
933 * Portable Data Types
934 *
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
940 */
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
945
946 /*
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
952 * addresses.
953 */
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
956
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
958
959 /*
960 * Define Adv Library required memory access macros.
961 */
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
967
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
969
970 /*
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
978 */
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
980
981 /*
982 * Define maximum number of scatter-gather elements per request.
983 */
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
986
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
991
992 #define ADV_EEP_DELAY_MS 100
993
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
996 /*
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1000 */
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1003 /*
1004 * ASC38C1600 Bit 11
1005 *
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1009 *
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1013 */
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1015
1016 typedef struct adveep_3550_config {
1017 /* Word Offset, Description */
1018
1019 ushort cfg_lsw; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw; /* 01 unused */
1024 ushort disc_enable; /* 02 disconnect enable */
1025 ushort wdtr_able; /* 03 Wide DTR able */
1026 ushort sdtr_able; /* 04 Synchronous DTR able */
1027 ushort start_motor; /* 05 send start up motor */
1028 ushort tagqng_able; /* 06 tag queuing able */
1029 ushort bios_scan; /* 07 BIOS device control */
1030 ushort scam_tolerant; /* 08 no scam */
1031
1032 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay; /* power up wait */
1034
1035 uchar scsi_reset_delay; /* 10 reset delay */
1036 uchar bios_id_lun; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1039
1040 uchar termination; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1045
1046 uchar reserved1; /* reserved byte (not used) */
1047
1048 ushort bios_ctrl; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1059 /* bit 10 */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1062 /* bit 13 */
1063 /* bit 14 */
1064 /* bit 15 */
1065 ushort ultra_able; /* 13 ULTRA speed able */
1066 ushort reserved2; /* 14 reserved */
1067 uchar max_host_qng; /* 15 maximum host queuing */
1068 uchar max_dvc_qng; /* maximum per device queuing */
1069 ushort dvc_cntl; /* 16 control bit for driver */
1070 ushort bug_fix; /* 17 control bit for bug fix */
1071 ushort serial_number_word1; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3; /* 20 Board serial number word 3 */
1074 ushort check_sum; /* 21 EEP check sum */
1075 uchar oem_name[16]; /* 22 OEM name */
1076 ushort dvc_err_code; /* 30 last device driver error code */
1077 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr; /* 32 last uc error address */
1079 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1082 ushort num_of_err; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG;
1084
1085 typedef struct adveep_38C0800_config {
1086 /* Word Offset, Description */
1087
1088 ushort cfg_lsw; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw; /* 01 unused */
1093 ushort disc_enable; /* 02 disconnect enable */
1094 ushort wdtr_able; /* 03 Wide DTR able */
1095 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor; /* 05 send start up motor */
1097 ushort tagqng_able; /* 06 tag queuing able */
1098 ushort bios_scan; /* 07 BIOS device control */
1099 ushort scam_tolerant; /* 08 no scam */
1100
1101 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay; /* power up wait */
1103
1104 uchar scsi_reset_delay; /* 10 reset delay */
1105 uchar bios_id_lun; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1108
1109 uchar termination_se; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1114
1115 uchar termination_lvd; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1120
1121 ushort bios_ctrl; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1132 /* bit 10 */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1135 /* bit 13 */
1136 /* bit 14 */
1137 /* bit 15 */
1138 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng; /* 15 maximum host queueing */
1141 uchar max_dvc_qng; /* maximum per device queuing */
1142 ushort dvc_cntl; /* 16 control bit for driver */
1143 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3; /* 20 Board serial number word 3 */
1147 ushort check_sum; /* 21 EEP check sum */
1148 uchar oem_name[16]; /* 22 OEM name */
1149 ushort dvc_err_code; /* 30 last device driver error code */
1150 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr; /* 32 last uc error address */
1152 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1155 ushort reserved36; /* 36 reserved */
1156 ushort reserved37; /* 37 reserved */
1157 ushort reserved38; /* 38 reserved */
1158 ushort reserved39; /* 39 reserved */
1159 ushort reserved40; /* 40 reserved */
1160 ushort reserved41; /* 41 reserved */
1161 ushort reserved42; /* 42 reserved */
1162 ushort reserved43; /* 43 reserved */
1163 ushort reserved44; /* 44 reserved */
1164 ushort reserved45; /* 45 reserved */
1165 ushort reserved46; /* 46 reserved */
1166 ushort reserved47; /* 47 reserved */
1167 ushort reserved48; /* 48 reserved */
1168 ushort reserved49; /* 49 reserved */
1169 ushort reserved50; /* 50 reserved */
1170 ushort reserved51; /* 51 reserved */
1171 ushort reserved52; /* 52 reserved */
1172 ushort reserved53; /* 53 reserved */
1173 ushort reserved54; /* 54 reserved */
1174 ushort reserved55; /* 55 reserved */
1175 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw; /* 57 CIS PTR MSW */
1177 ushort subsysvid; /* 58 SubSystem Vendor ID */
1178 ushort subsysid; /* 59 SubSystem ID */
1179 ushort reserved60; /* 60 reserved */
1180 ushort reserved61; /* 61 reserved */
1181 ushort reserved62; /* 62 reserved */
1182 ushort reserved63; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG;
1184
1185 typedef struct adveep_38C1600_config {
1186 /* Word Offset, Description */
1187
1188 ushort cfg_lsw; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw; /* 01 unused */
1195 ushort disc_enable; /* 02 disconnect enable */
1196 ushort wdtr_able; /* 03 Wide DTR able */
1197 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor; /* 05 send start up motor */
1199 ushort tagqng_able; /* 06 tag queuing able */
1200 ushort bios_scan; /* 07 BIOS device control */
1201 ushort scam_tolerant; /* 08 no scam */
1202
1203 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay; /* power up wait */
1205
1206 uchar scsi_reset_delay; /* 10 reset delay */
1207 uchar bios_id_lun; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1210
1211 uchar termination_se; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1216
1217 uchar termination_lvd; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1222
1223 ushort bios_ctrl; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238 /* bit 14 */
1239 /* bit 15 */
1240 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng; /* 15 maximum host queueing */
1243 uchar max_dvc_qng; /* maximum per device queuing */
1244 ushort dvc_cntl; /* 16 control bit for driver */
1245 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3; /* 20 Board serial number word 3 */
1249 ushort check_sum; /* 21 EEP check sum */
1250 uchar oem_name[16]; /* 22 OEM name */
1251 ushort dvc_err_code; /* 30 last device driver error code */
1252 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr; /* 32 last uc error address */
1254 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1257 ushort reserved36; /* 36 reserved */
1258 ushort reserved37; /* 37 reserved */
1259 ushort reserved38; /* 38 reserved */
1260 ushort reserved39; /* 39 reserved */
1261 ushort reserved40; /* 40 reserved */
1262 ushort reserved41; /* 41 reserved */
1263 ushort reserved42; /* 42 reserved */
1264 ushort reserved43; /* 43 reserved */
1265 ushort reserved44; /* 44 reserved */
1266 ushort reserved45; /* 45 reserved */
1267 ushort reserved46; /* 46 reserved */
1268 ushort reserved47; /* 47 reserved */
1269 ushort reserved48; /* 48 reserved */
1270 ushort reserved49; /* 49 reserved */
1271 ushort reserved50; /* 50 reserved */
1272 ushort reserved51; /* 51 reserved */
1273 ushort reserved52; /* 52 reserved */
1274 ushort reserved53; /* 53 reserved */
1275 ushort reserved54; /* 54 reserved */
1276 ushort reserved55; /* 55 reserved */
1277 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw; /* 57 CIS PTR MSW */
1279 ushort subsysvid; /* 58 SubSystem Vendor ID */
1280 ushort subsysid; /* 59 SubSystem ID */
1281 ushort reserved60; /* 60 reserved */
1282 ushort reserved61; /* 61 reserved */
1283 ushort reserved62; /* 62 reserved */
1284 ushort reserved63; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG;
1286
1287 /*
1288 * EEPROM Commands
1289 */
1290 #define ASC_EEP_CMD_DONE 0x0200
1291
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1305
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1307
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1309
1310 /*
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1314 *
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1316 */
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1318
1319 /*
1320 * Byte I/O register address from base of 'iop_base'.
1321 */
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1386
1387 /*
1388 * Word I/O register address from base of 'iop_base'.
1389 */
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1423
1424 /*
1425 * Doubleword I/O register address from base of 'iop_base'.
1426 */
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1443
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1446
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1455
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1459
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1464
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1474
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1480
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1485
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488
1489 /*
1490 * SCSI_CFG0 Register bit definitions
1491 */
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1503
1504 /*
1505 * SCSI_CFG1 Register bit definitions
1506 */
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1522
1523 /*
1524 * Addendum for ASC-38C0800 Chip
1525 *
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533 */
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1551
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1554
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1557
1558 /*
1559 * MEM_CFG Register bit definitions
1560 */
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1570
1571 /*
1572 * DMA_CFG0 Register bit definitions
1573 *
1574 * This register is only accessible to the host.
1575 */
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1594
1595 /*
1596 * ASC-38C0800 RAM BIST Register bit definitions
1597 */
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1610
1611 /*
1612 * ASC38C1600 Definitions
1613 *
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1615 */
1616
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1618
1619 /*
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1624 */
1625 #define TOTEMPOLE 0x02
1626
1627 /*
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631 * INT A is used.
1632 *
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1635 */
1636 #define INTAB 0x01
1637
1638 /*
1639 * Adv Library Status Definitions
1640 */
1641 #define ADV_TRUE 1
1642 #define ADV_FALSE 0
1643 #define ADV_SUCCESS 1
1644 #define ADV_BUSY 0
1645 #define ADV_ERROR (-1)
1646
1647 /*
1648 * ADV_DVC_VAR 'warn_code' values
1649 */
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1654
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1657
1658 /*
1659 * Fixed locations of microcode operating variables.
1660 */
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1697
1698 /*
1699 * BIOS LRAM variable absolute offsets.
1700 */
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1705
1706 /*
1707 * Microcode Control Flags
1708 *
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1711 */
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1714
1715 /*
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717 */
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1721
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1726
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1732
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1738 /*
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741 */
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1744
1745 /*
1746 * All fields here are accessed by the board microcode and need to be
1747 * little-endian.
1748 */
1749 typedef struct adv_carr_t {
1750 ADV_VADDR carr_va; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753 /*
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1755 *
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1758 */
1759 ADV_VADDR next_vpa;
1760 } ADV_CARR_T;
1761
1762 /*
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764 */
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1766
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1770
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778
1779 /*
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1781 *
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784 */
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1788
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1792
1793 /*
1794 * Adapter temporary configuration structure
1795 *
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1798 *
1799 * Field naming convention:
1800 *
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1803 */
1804 typedef struct adv_dvc_cfg {
1805 ushort disc_enable; /* enable disconnection */
1806 uchar chip_version; /* chip version */
1807 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag; /* Microcode Control Flag */
1809 ushort mcode_date; /* Microcode date */
1810 ushort mcode_version; /* Microcode version */
1811 ushort serial1; /* EEPROM serial number word 1 */
1812 ushort serial2; /* EEPROM serial number word 2 */
1813 ushort serial3; /* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1815
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1818
1819 typedef struct asc_sg_block {
1820 uchar reserved1;
1821 uchar reserved2;
1822 uchar reserved3;
1823 uchar sg_cnt; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1825 struct {
1826 ADV_PADDR sg_addr; /* SG element address. */
1827 ADV_DCNT sg_count; /* SG element count. */
1828 } sg_list[NO_OF_SG_PER_BLOCK];
1829 } ADV_SG_BLOCK;
1830
1831 /*
1832 * ADV_SCSI_REQ_Q - microcode request structure
1833 *
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1838 *
1839 * All fields accessed by microcode must be maintained in little_endian
1840 * order.
1841 */
1842 typedef struct adv_scsi_req_q {
1843 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1844 uchar target_cmd;
1845 uchar target_id; /* Device target identifier. */
1846 uchar target_lun; /* Device target logical unit number. */
1847 ADV_PADDR data_addr; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr;
1850 ADV_PADDR carr_pa;
1851 uchar mflag;
1852 uchar sense_len;
1853 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1854 uchar scsi_cntl;
1855 uchar done_status; /* Completion status. */
1856 uchar scsi_status; /* SCSI status byte. */
1857 uchar host_status; /* Ucode host status. */
1858 uchar sg_working_ix;
1859 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr;
1862 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr;
1864 ADV_VADDR carr_va;
1865 /*
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1868 */
1869 ADV_VADDR srb_ptr;
1870 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1871 char *vdata_addr; /* Data buffer virtual address. */
1872 uchar a_flag;
1873 uchar pad[2]; /* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1875
1876 /*
1877 * The following two structures are used to process Wide Board requests.
1878 *
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1883 *
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1887 * ADV_SCSI_REQ_Q.
1888 *
1889 * Both structures must be 32 byte aligned.
1890 */
1891 typedef struct adv_sgblk {
1892 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1893 uchar align[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1896
1897 typedef struct adv_req {
1898 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1899 uchar align[32]; /* Request structure padding. */
1900 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1902 struct adv_req *next_reqp; /* Next Request Structure. */
1903 } adv_req_t;
1904
1905 /*
1906 * Adapter operation variable structure.
1907 *
1908 * One structure is required per host adapter.
1909 *
1910 * Field naming convention:
1911 *
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1916 */
1917 typedef struct adv_dvc_var {
1918 AdvPortAddr iop_base; /* I/O port address */
1919 ushort err_code; /* fatal error code */
1920 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able; /* try WDTR for a device */
1922 ushort sdtr_able; /* try SDTR for a device */
1923 ushort ultra_able; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able; /* try tagged queuing with a device */
1929 ushort ppr_able; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1931 ushort start_motor; /* start motor command allowed */
1932 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1933 uchar chip_no; /* should be assigned by caller */
1934 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1935 ushort no_scam; /* scam_tolerant of EEPROM */
1936 struct asc_board *drv_ptr; /* driver pointer to private structure */
1937 uchar chip_scsi_id; /* chip SCSI target ID */
1938 uchar chip_type;
1939 uchar bist_err_code;
1940 ADV_CARR_T *carrier_buf;
1941 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1942 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt; /* Count of pending carriers. */
1945 struct adv_req *orig_reqp; /* adv_req_t memory block. */
1946 /*
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1949 */
1950 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1951 } ADV_DVC_VAR;
1952
1953 /*
1954 * Microcode idle loop commands
1955 */
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1965
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1968
1969 /*
1970 * AdvSendIdleCmd() flag definitions.
1971 */
1972 #define ADV_NOWAIT 0x01
1973
1974 /*
1975 * Wait loop time out values.
1976 */
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1980
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1985
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1987
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1991
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
1999
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2014
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2026
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049
2050 /*
2051 * Define macro to check for Condor signature.
2052 *
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055 */
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2061
2062 /*
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2064 *
2065 * The second parameter 'bus_type' is currently unused.
2066 */
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069
2070 /*
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073 *
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2077 *
2078 * Return value:
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2081 */
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084 (ADV_DCNT) (scsiq))
2085
2086 /*
2087 * Send a Bus Device Reset Message to the specified target ID.
2088 *
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2091 *
2092 * Return Value:
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095 * are not purged.
2096 */
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2100
2101 /*
2102 * SCSI Wide Type definition.
2103 */
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2105
2106 /*
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2108 */
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2111
2112 /*
2113 * Convert target id to target id bit mask.
2114 */
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2116
2117 /*
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119 */
2120
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2125
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2154
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2159
2160 /*
2161 * Total contiguous memory needed for driver SG blocks.
2162 *
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2165 * single request.
2166 */
2167
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2174
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2178
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2180
2181 #ifdef CONFIG_PROC_FS
2182 /* /proc/scsi/advansys/[0...] related definitions */
2183 #define ASC_PRTBUF_SIZE 2048
2184 #define ASC_PRTLINE_SIZE 160
2185
2186 #define ASC_PRT_NEXT() \
2187 if (cp) { \
2188 totlen += len; \
2189 leftlen -= len; \
2190 if (leftlen == 0) { \
2191 return totlen; \
2192 } \
2193 cp += len; \
2194 }
2195 #endif /* CONFIG_PROC_FS */
2196
2197 /* Asc Library return codes */
2198 #define ASC_TRUE 1
2199 #define ASC_FALSE 0
2200 #define ASC_NOERROR 1
2201 #define ASC_BUSY 0
2202 #define ASC_ERROR (-1)
2203
2204 /* struct scsi_cmnd function return codes */
2205 #define STATUS_BYTE(byte) (byte)
2206 #define MSG_BYTE(byte) ((byte) << 8)
2207 #define HOST_BYTE(byte) ((byte) << 16)
2208 #define DRIVER_BYTE(byte) ((byte) << 24)
2209
2210 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2211 #ifndef ADVANSYS_STATS
2212 #define ASC_STATS_ADD(shost, counter, count)
2213 #else /* ADVANSYS_STATS */
2214 #define ASC_STATS_ADD(shost, counter, count) \
2215 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2216 #endif /* ADVANSYS_STATS */
2217
2218 /* If the result wraps when calculating tenths, return 0. */
2219 #define ASC_TENTHS(num, den) \
2220 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2221 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2222
2223 /*
2224 * Display a message to the console.
2225 */
2226 #define ASC_PRINT(s) \
2227 { \
2228 printk("advansys: "); \
2229 printk(s); \
2230 }
2231
2232 #define ASC_PRINT1(s, a1) \
2233 { \
2234 printk("advansys: "); \
2235 printk((s), (a1)); \
2236 }
2237
2238 #define ASC_PRINT2(s, a1, a2) \
2239 { \
2240 printk("advansys: "); \
2241 printk((s), (a1), (a2)); \
2242 }
2243
2244 #define ASC_PRINT3(s, a1, a2, a3) \
2245 { \
2246 printk("advansys: "); \
2247 printk((s), (a1), (a2), (a3)); \
2248 }
2249
2250 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2251 { \
2252 printk("advansys: "); \
2253 printk((s), (a1), (a2), (a3), (a4)); \
2254 }
2255
2256 #ifndef ADVANSYS_DEBUG
2257
2258 #define ASC_DBG(lvl, s...)
2259 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2260 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2261 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2263 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2264 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2265 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2266 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2267 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2268
2269 #else /* ADVANSYS_DEBUG */
2270
2271 /*
2272 * Debugging Message Levels:
2273 * 0: Errors Only
2274 * 1: High-Level Tracing
2275 * 2-N: Verbose Tracing
2276 */
2277
2278 #define ASC_DBG(lvl, format, arg...) { \
2279 if (asc_dbglvl >= (lvl)) \
2280 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2281 __func__ , ## arg); \
2282 }
2283
2284 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2285 { \
2286 if (asc_dbglvl >= (lvl)) { \
2287 asc_prt_scsi_host(s); \
2288 } \
2289 }
2290
2291 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2292 { \
2293 if (asc_dbglvl >= (lvl)) { \
2294 asc_prt_asc_scsi_q(scsiqp); \
2295 } \
2296 }
2297
2298 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2299 { \
2300 if (asc_dbglvl >= (lvl)) { \
2301 asc_prt_asc_qdone_info(qdone); \
2302 } \
2303 }
2304
2305 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2306 { \
2307 if (asc_dbglvl >= (lvl)) { \
2308 asc_prt_adv_scsi_req_q(scsiqp); \
2309 } \
2310 }
2311
2312 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2313 { \
2314 if (asc_dbglvl >= (lvl)) { \
2315 asc_prt_hex((name), (start), (length)); \
2316 } \
2317 }
2318
2319 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2320 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2321
2322 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2323 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2324
2325 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2326 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2327 #endif /* ADVANSYS_DEBUG */
2328
2329 #ifdef ADVANSYS_STATS
2330
2331 /* Per board statistics structure */
2332 struct asc_stats {
2333 /* Driver Entrypoint Statistics */
2334 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2335 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2336 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2337 ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2338 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2339 ADV_DCNT done; /* # calls to request's scsi_done function */
2340 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2341 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2342 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2343 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2344 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2345 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2346 ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2347 ADV_DCNT exe_unknown; /* # unknown returns. */
2348 /* Data Transfer Statistics */
2349 ADV_DCNT xfer_cnt; /* # I/O requests received */
2350 ADV_DCNT xfer_elem; /* # scatter-gather elements */
2351 ADV_DCNT xfer_sect; /* # 512-byte blocks */
2352 };
2353 #endif /* ADVANSYS_STATS */
2354
2355 /*
2356 * Structure allocated for each board.
2357 *
2358 * This structure is allocated by scsi_host_alloc() at the end
2359 * of the 'Scsi_Host' structure starting at the 'hostdata'
2360 * field. It is guaranteed to be allocated from DMA-able memory.
2361 */
2362 struct asc_board {
2363 struct device *dev;
2364 uint flags; /* Board flags */
2365 unsigned int irq;
2366 union {
2367 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2368 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2369 } dvc_var;
2370 union {
2371 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2372 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2373 } dvc_cfg;
2374 ushort asc_n_io_port; /* Number I/O ports. */
2375 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2376 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2377 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2378 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2379 union {
2380 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2381 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2382 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2383 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2384 } eep_config;
2385 ulong last_reset; /* Saved last reset time */
2386 /* /proc/scsi/advansys/[0...] */
2387 char *prtbuf; /* /proc print buffer */
2388 #ifdef ADVANSYS_STATS
2389 struct asc_stats asc_stats; /* Board statistics */
2390 #endif /* ADVANSYS_STATS */
2391 /*
2392 * The following fields are used only for Narrow Boards.
2393 */
2394 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2395 /*
2396 * The following fields are used only for Wide Boards.
2397 */
2398 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2399 ushort ioport; /* I/O Port address. */
2400 adv_req_t *adv_reqp; /* Request structures. */
2401 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2402 ushort bios_signature; /* BIOS Signature. */
2403 ushort bios_version; /* BIOS Version. */
2404 ushort bios_codeseg; /* BIOS Code Segment. */
2405 ushort bios_codelen; /* BIOS Code Segment Length. */
2406 };
2407
2408 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2409 dvc_var.asc_dvc_var)
2410 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2411 dvc_var.adv_dvc_var)
2412 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2413
2414 #ifdef ADVANSYS_DEBUG
2415 static int asc_dbglvl = 3;
2416
2417 /*
2418 * asc_prt_asc_dvc_var()
2419 */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2420 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2421 {
2422 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2423
2424 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2425 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2426
2427 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2428 (unsigned)h->init_sdtr);
2429
2430 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2431 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2432 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2433 (unsigned)h->chip_no);
2434
2435 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2436 "%u,\n", (unsigned)h->queue_full_or_busy,
2437 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2438
2439 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2440 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2441 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2442 (unsigned)h->in_critical_cnt);
2443
2444 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2445 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2446 (unsigned)h->init_state, (unsigned)h->no_scam,
2447 (unsigned)h->pci_fix_asyn_xfer);
2448
2449 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2450 }
2451
2452 /*
2453 * asc_prt_asc_dvc_cfg()
2454 */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2455 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2456 {
2457 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2458
2459 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2460 h->can_tagged_qng, h->cmd_qng_enabled);
2461 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2462 h->disc_enable, h->sdtr_enable);
2463
2464 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2465 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2466 h->isa_dma_channel, h->chip_version);
2467
2468 printk(" mcode_date 0x%x, mcode_version %d\n",
2469 h->mcode_date, h->mcode_version);
2470 }
2471
2472 /*
2473 * asc_prt_adv_dvc_var()
2474 *
2475 * Display an ADV_DVC_VAR structure.
2476 */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2477 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2478 {
2479 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2480
2481 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2482 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2483
2484 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2485 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2486
2487 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2488 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2489
2490 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2491 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2492 (ulong)h->carr_freelist);
2493
2494 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2495 (ulong)h->icq_sp, (ulong)h->irq_sp);
2496
2497 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2498 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2499
2500 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2501 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2502 }
2503
2504 /*
2505 * asc_prt_adv_dvc_cfg()
2506 *
2507 * Display an ADV_DVC_CFG structure.
2508 */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2509 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2510 {
2511 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2512
2513 printk(" disc_enable 0x%x, termination 0x%x\n",
2514 h->disc_enable, h->termination);
2515
2516 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2517 h->chip_version, h->mcode_date);
2518
2519 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2520 h->mcode_version, h->control_flag);
2521 }
2522
2523 /*
2524 * asc_prt_scsi_host()
2525 */
asc_prt_scsi_host(struct Scsi_Host * s)2526 static void asc_prt_scsi_host(struct Scsi_Host *s)
2527 {
2528 struct asc_board *boardp = shost_priv(s);
2529
2530 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2531 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2532 s->host_busy, s->host_no, (unsigned)s->last_reset);
2533
2534 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2535 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2536
2537 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2538 s->dma_channel, s->this_id, s->can_queue);
2539
2540 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2541 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2542
2543 if (ASC_NARROW_BOARD(boardp)) {
2544 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2545 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2546 } else {
2547 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2548 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2549 }
2550 }
2551
2552 /*
2553 * asc_prt_hex()
2554 *
2555 * Print hexadecimal output in 4 byte groupings 32 bytes
2556 * or 8 double-words per line.
2557 */
asc_prt_hex(char * f,uchar * s,int l)2558 static void asc_prt_hex(char *f, uchar *s, int l)
2559 {
2560 int i;
2561 int j;
2562 int k;
2563 int m;
2564
2565 printk("%s: (%d bytes)\n", f, l);
2566
2567 for (i = 0; i < l; i += 32) {
2568
2569 /* Display a maximum of 8 double-words per line. */
2570 if ((k = (l - i) / 4) >= 8) {
2571 k = 8;
2572 m = 0;
2573 } else {
2574 m = (l - i) % 4;
2575 }
2576
2577 for (j = 0; j < k; j++) {
2578 printk(" %2.2X%2.2X%2.2X%2.2X",
2579 (unsigned)s[i + (j * 4)],
2580 (unsigned)s[i + (j * 4) + 1],
2581 (unsigned)s[i + (j * 4) + 2],
2582 (unsigned)s[i + (j * 4) + 3]);
2583 }
2584
2585 switch (m) {
2586 case 0:
2587 default:
2588 break;
2589 case 1:
2590 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2591 break;
2592 case 2:
2593 printk(" %2.2X%2.2X",
2594 (unsigned)s[i + (j * 4)],
2595 (unsigned)s[i + (j * 4) + 1]);
2596 break;
2597 case 3:
2598 printk(" %2.2X%2.2X%2.2X",
2599 (unsigned)s[i + (j * 4) + 1],
2600 (unsigned)s[i + (j * 4) + 2],
2601 (unsigned)s[i + (j * 4) + 3]);
2602 break;
2603 }
2604
2605 printk("\n");
2606 }
2607 }
2608
2609 /*
2610 * asc_prt_asc_scsi_q()
2611 */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2612 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2613 {
2614 ASC_SG_HEAD *sgp;
2615 int i;
2616
2617 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2618
2619 printk
2620 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2621 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2622 q->q2.tag_code);
2623
2624 printk
2625 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2626 (ulong)le32_to_cpu(q->q1.data_addr),
2627 (ulong)le32_to_cpu(q->q1.data_cnt),
2628 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2629
2630 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2631 (ulong)q->cdbptr, q->q2.cdb_len,
2632 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2633
2634 if (q->sg_head) {
2635 sgp = q->sg_head;
2636 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2637 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2638 sgp->queue_cnt);
2639 for (i = 0; i < sgp->entry_cnt; i++) {
2640 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2641 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2642 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2643 }
2644
2645 }
2646 }
2647
2648 /*
2649 * asc_prt_asc_qdone_info()
2650 */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2651 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2652 {
2653 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2654 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2655 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2656 q->d2.tag_code);
2657 printk
2658 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2659 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2660 }
2661
2662 /*
2663 * asc_prt_adv_sgblock()
2664 *
2665 * Display an ADV_SG_BLOCK structure.
2666 */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2667 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2668 {
2669 int i;
2670
2671 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2672 (ulong)b, sgblockno);
2673 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2674 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2675 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2676 if (b->sg_ptr != 0)
2677 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2678 for (i = 0; i < b->sg_cnt; i++) {
2679 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2680 i, (ulong)b->sg_list[i].sg_addr,
2681 (ulong)b->sg_list[i].sg_count);
2682 }
2683 }
2684
2685 /*
2686 * asc_prt_adv_scsi_req_q()
2687 *
2688 * Display an ADV_SCSI_REQ_Q structure.
2689 */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2690 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2691 {
2692 int sg_blk_cnt;
2693 struct asc_sg_block *sg_ptr;
2694
2695 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2696
2697 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2698 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2699
2700 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2701 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2702
2703 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2704 (ulong)le32_to_cpu(q->data_cnt),
2705 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2706
2707 printk
2708 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2709 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2710
2711 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2712 q->sg_working_ix, q->target_cmd);
2713
2714 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2715 (ulong)le32_to_cpu(q->scsiq_rptr),
2716 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2717
2718 /* Display the request's ADV_SG_BLOCK structures. */
2719 if (q->sg_list_ptr != NULL) {
2720 sg_blk_cnt = 0;
2721 while (1) {
2722 /*
2723 * 'sg_ptr' is a physical address. Convert it to a virtual
2724 * address by indexing 'sg_blk_cnt' into the virtual address
2725 * array 'sg_list_ptr'.
2726 *
2727 * XXX - Assumes all SG physical blocks are virtually contiguous.
2728 */
2729 sg_ptr =
2730 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2731 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2732 if (sg_ptr->sg_ptr == 0) {
2733 break;
2734 }
2735 sg_blk_cnt++;
2736 }
2737 }
2738 }
2739 #endif /* ADVANSYS_DEBUG */
2740
2741 /*
2742 * The advansys chip/microcode contains a 32-bit identifier for each command
2743 * known as the 'srb'. I don't know what it stands for. The driver used
2744 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2745 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2746 * pointers. It auto-expands when full, unless it can't allocate memory.
2747 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2748 * the return of i+1 in this routine, and the corresponding subtraction in
2749 * the inverse routine.
2750 */
2751 #define BAD_SRB 0
advansys_ptr_to_srb(struct asc_dvc_var * asc_dvc,void * ptr)2752 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2753 {
2754 int i;
2755 void **new_ptr;
2756
2757 for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2758 if (!asc_dvc->ptr_map[i])
2759 goto out;
2760 }
2761
2762 if (asc_dvc->ptr_map_count == 0)
2763 asc_dvc->ptr_map_count = 1;
2764 else
2765 asc_dvc->ptr_map_count *= 2;
2766
2767 new_ptr = krealloc(asc_dvc->ptr_map,
2768 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2769 if (!new_ptr)
2770 return BAD_SRB;
2771 asc_dvc->ptr_map = new_ptr;
2772 out:
2773 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2774 asc_dvc->ptr_map[i] = ptr;
2775 return i + 1;
2776 }
2777
advansys_srb_to_ptr(struct asc_dvc_var * asc_dvc,u32 srb)2778 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2779 {
2780 void *ptr;
2781
2782 srb--;
2783 if (srb >= asc_dvc->ptr_map_count) {
2784 printk("advansys: bad SRB %u, max %u\n", srb,
2785 asc_dvc->ptr_map_count);
2786 return NULL;
2787 }
2788 ptr = asc_dvc->ptr_map[srb];
2789 asc_dvc->ptr_map[srb] = NULL;
2790 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2791 return ptr;
2792 }
2793
2794 /*
2795 * advansys_info()
2796 *
2797 * Return suitable for printing on the console with the argument
2798 * adapter's configuration information.
2799 *
2800 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2801 * otherwise the static 'info' array will be overrun.
2802 */
advansys_info(struct Scsi_Host * shost)2803 static const char *advansys_info(struct Scsi_Host *shost)
2804 {
2805 static char info[ASC_INFO_SIZE];
2806 struct asc_board *boardp = shost_priv(shost);
2807 ASC_DVC_VAR *asc_dvc_varp;
2808 ADV_DVC_VAR *adv_dvc_varp;
2809 char *busname;
2810 char *widename = NULL;
2811
2812 if (ASC_NARROW_BOARD(boardp)) {
2813 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2814 ASC_DBG(1, "begin\n");
2815 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2816 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2817 ASC_IS_ISAPNP) {
2818 busname = "ISA PnP";
2819 } else {
2820 busname = "ISA";
2821 }
2822 sprintf(info,
2823 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2824 ASC_VERSION, busname,
2825 (ulong)shost->io_port,
2826 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2827 boardp->irq, shost->dma_channel);
2828 } else {
2829 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2830 busname = "VL";
2831 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2832 busname = "EISA";
2833 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2834 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2835 == ASC_IS_PCI_ULTRA) {
2836 busname = "PCI Ultra";
2837 } else {
2838 busname = "PCI";
2839 }
2840 } else {
2841 busname = "?";
2842 shost_printk(KERN_ERR, shost, "unknown bus "
2843 "type %d\n", asc_dvc_varp->bus_type);
2844 }
2845 sprintf(info,
2846 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2847 ASC_VERSION, busname, (ulong)shost->io_port,
2848 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2849 boardp->irq);
2850 }
2851 } else {
2852 /*
2853 * Wide Adapter Information
2854 *
2855 * Memory-mapped I/O is used instead of I/O space to access
2856 * the adapter, but display the I/O Port range. The Memory
2857 * I/O address is displayed through the driver /proc file.
2858 */
2859 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2860 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2861 widename = "Ultra-Wide";
2862 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2863 widename = "Ultra2-Wide";
2864 } else {
2865 widename = "Ultra3-Wide";
2866 }
2867 sprintf(info,
2868 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2869 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2870 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2871 }
2872 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2873 ASC_DBG(1, "end\n");
2874 return info;
2875 }
2876
2877 #ifdef CONFIG_PROC_FS
2878 /*
2879 * asc_prt_line()
2880 *
2881 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2882 *
2883 * Return 0 if printing to the console, otherwise return the number of
2884 * bytes written to the buffer.
2885 *
2886 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2887 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2888 */
asc_prt_line(char * buf,int buflen,char * fmt,...)2889 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2890 {
2891 va_list args;
2892 int ret;
2893 char s[ASC_PRTLINE_SIZE];
2894
2895 va_start(args, fmt);
2896 ret = vsprintf(s, fmt, args);
2897 BUG_ON(ret >= ASC_PRTLINE_SIZE);
2898 if (buf == NULL) {
2899 (void)printk(s);
2900 ret = 0;
2901 } else {
2902 ret = min(buflen, ret);
2903 memcpy(buf, s, ret);
2904 }
2905 va_end(args);
2906 return ret;
2907 }
2908
2909 /*
2910 * asc_prt_board_devices()
2911 *
2912 * Print driver information for devices attached to the board.
2913 *
2914 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2915 * cf. asc_prt_line().
2916 *
2917 * Return the number of characters copied into 'cp'. No more than
2918 * 'cplen' characters will be copied to 'cp'.
2919 */
asc_prt_board_devices(struct Scsi_Host * shost,char * cp,int cplen)2920 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2921 {
2922 struct asc_board *boardp = shost_priv(shost);
2923 int leftlen;
2924 int totlen;
2925 int len;
2926 int chip_scsi_id;
2927 int i;
2928
2929 leftlen = cplen;
2930 totlen = len = 0;
2931
2932 len = asc_prt_line(cp, leftlen,
2933 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2934 shost->host_no);
2935 ASC_PRT_NEXT();
2936
2937 if (ASC_NARROW_BOARD(boardp)) {
2938 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2939 } else {
2940 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2941 }
2942
2943 len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2944 ASC_PRT_NEXT();
2945 for (i = 0; i <= ADV_MAX_TID; i++) {
2946 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2947 len = asc_prt_line(cp, leftlen, " %X,", i);
2948 ASC_PRT_NEXT();
2949 }
2950 }
2951 len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2952 ASC_PRT_NEXT();
2953
2954 return totlen;
2955 }
2956
2957 /*
2958 * Display Wide Board BIOS Information.
2959 */
asc_prt_adv_bios(struct Scsi_Host * shost,char * cp,int cplen)2960 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2961 {
2962 struct asc_board *boardp = shost_priv(shost);
2963 int leftlen;
2964 int totlen;
2965 int len;
2966 ushort major, minor, letter;
2967
2968 leftlen = cplen;
2969 totlen = len = 0;
2970
2971 len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2972 ASC_PRT_NEXT();
2973
2974 /*
2975 * If the BIOS saved a valid signature, then fill in
2976 * the BIOS code segment base address.
2977 */
2978 if (boardp->bios_signature != 0x55AA) {
2979 len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2980 ASC_PRT_NEXT();
2981 len = asc_prt_line(cp, leftlen,
2982 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2983 ASC_PRT_NEXT();
2984 len = asc_prt_line(cp, leftlen,
2985 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2986 ASC_PRT_NEXT();
2987 } else {
2988 major = (boardp->bios_version >> 12) & 0xF;
2989 minor = (boardp->bios_version >> 8) & 0xF;
2990 letter = (boardp->bios_version & 0xFF);
2991
2992 len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2993 major, minor,
2994 letter >= 26 ? '?' : letter + 'A');
2995 ASC_PRT_NEXT();
2996
2997 /*
2998 * Current available ROM BIOS release is 3.1I for UW
2999 * and 3.2I for U2W. This code doesn't differentiate
3000 * UW and U2W boards.
3001 */
3002 if (major < 3 || (major <= 3 && minor < 1) ||
3003 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3004 len = asc_prt_line(cp, leftlen,
3005 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3006 ASC_PRT_NEXT();
3007 len = asc_prt_line(cp, leftlen,
3008 "ftp://ftp.connectcom.net/pub\n");
3009 ASC_PRT_NEXT();
3010 }
3011 }
3012
3013 return totlen;
3014 }
3015
3016 /*
3017 * Add serial number to information bar if signature AAh
3018 * is found in at bit 15-9 (7 bits) of word 1.
3019 *
3020 * Serial Number consists fo 12 alpha-numeric digits.
3021 *
3022 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3023 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3024 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3025 * 5 - Product revision (A-J) Word0: " "
3026 *
3027 * Signature Word1: 15-9 (7 bits)
3028 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3029 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3030 *
3031 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3032 *
3033 * Note 1: Only production cards will have a serial number.
3034 *
3035 * Note 2: Signature is most significant 7 bits (0xFE).
3036 *
3037 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3038 */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)3039 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3040 {
3041 ushort w, num;
3042
3043 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3044 return ASC_FALSE;
3045 } else {
3046 /*
3047 * First word - 6 digits.
3048 */
3049 w = serialnum[0];
3050
3051 /* Product type - 1st digit. */
3052 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3053 /* Product type is P=Prototype */
3054 *cp += 0x8;
3055 }
3056 cp++;
3057
3058 /* Manufacturing location - 2nd digit. */
3059 *cp++ = 'A' + ((w & 0x1C00) >> 10);
3060
3061 /* Product ID - 3rd, 4th digits. */
3062 num = w & 0x3FF;
3063 *cp++ = '0' + (num / 100);
3064 num %= 100;
3065 *cp++ = '0' + (num / 10);
3066
3067 /* Product revision - 5th digit. */
3068 *cp++ = 'A' + (num % 10);
3069
3070 /*
3071 * Second word
3072 */
3073 w = serialnum[1];
3074
3075 /*
3076 * Year - 6th digit.
3077 *
3078 * If bit 15 of third word is set, then the
3079 * last digit of the year is greater than 7.
3080 */
3081 if (serialnum[2] & 0x8000) {
3082 *cp++ = '8' + ((w & 0x1C0) >> 6);
3083 } else {
3084 *cp++ = '0' + ((w & 0x1C0) >> 6);
3085 }
3086
3087 /* Week of year - 7th, 8th digits. */
3088 num = w & 0x003F;
3089 *cp++ = '0' + num / 10;
3090 num %= 10;
3091 *cp++ = '0' + num;
3092
3093 /*
3094 * Third word
3095 */
3096 w = serialnum[2] & 0x7FFF;
3097
3098 /* Serial number - 9th digit. */
3099 *cp++ = 'A' + (w / 1000);
3100
3101 /* 10th, 11th, 12th digits. */
3102 num = w % 1000;
3103 *cp++ = '0' + num / 100;
3104 num %= 100;
3105 *cp++ = '0' + num / 10;
3106 num %= 10;
3107 *cp++ = '0' + num;
3108
3109 *cp = '\0'; /* Null Terminate the string. */
3110 return ASC_TRUE;
3111 }
3112 }
3113
3114 /*
3115 * asc_prt_asc_board_eeprom()
3116 *
3117 * Print board EEPROM configuration.
3118 *
3119 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3120 * cf. asc_prt_line().
3121 *
3122 * Return the number of characters copied into 'cp'. No more than
3123 * 'cplen' characters will be copied to 'cp'.
3124 */
asc_prt_asc_board_eeprom(struct Scsi_Host * shost,char * cp,int cplen)3125 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3126 {
3127 struct asc_board *boardp = shost_priv(shost);
3128 ASC_DVC_VAR *asc_dvc_varp;
3129 int leftlen;
3130 int totlen;
3131 int len;
3132 ASCEEP_CONFIG *ep;
3133 int i;
3134 #ifdef CONFIG_ISA
3135 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3136 #endif /* CONFIG_ISA */
3137 uchar serialstr[13];
3138
3139 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3140 ep = &boardp->eep_config.asc_eep;
3141
3142 leftlen = cplen;
3143 totlen = len = 0;
3144
3145 len = asc_prt_line(cp, leftlen,
3146 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3147 shost->host_no);
3148 ASC_PRT_NEXT();
3149
3150 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3151 == ASC_TRUE) {
3152 len =
3153 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3154 serialstr);
3155 ASC_PRT_NEXT();
3156 } else {
3157 if (ep->adapter_info[5] == 0xBB) {
3158 len = asc_prt_line(cp, leftlen,
3159 " Default Settings Used for EEPROM-less Adapter.\n");
3160 ASC_PRT_NEXT();
3161 } else {
3162 len = asc_prt_line(cp, leftlen,
3163 " Serial Number Signature Not Present.\n");
3164 ASC_PRT_NEXT();
3165 }
3166 }
3167
3168 len = asc_prt_line(cp, leftlen,
3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3170 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3171 ep->max_tag_qng);
3172 ASC_PRT_NEXT();
3173
3174 len = asc_prt_line(cp, leftlen,
3175 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3176 ASC_PRT_NEXT();
3177
3178 len = asc_prt_line(cp, leftlen, " Target ID: ");
3179 ASC_PRT_NEXT();
3180 for (i = 0; i <= ASC_MAX_TID; i++) {
3181 len = asc_prt_line(cp, leftlen, " %d", i);
3182 ASC_PRT_NEXT();
3183 }
3184 len = asc_prt_line(cp, leftlen, "\n");
3185 ASC_PRT_NEXT();
3186
3187 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3188 ASC_PRT_NEXT();
3189 for (i = 0; i <= ASC_MAX_TID; i++) {
3190 len = asc_prt_line(cp, leftlen, " %c",
3191 (ep->
3192 disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3193 'N');
3194 ASC_PRT_NEXT();
3195 }
3196 len = asc_prt_line(cp, leftlen, "\n");
3197 ASC_PRT_NEXT();
3198
3199 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3200 ASC_PRT_NEXT();
3201 for (i = 0; i <= ASC_MAX_TID; i++) {
3202 len = asc_prt_line(cp, leftlen, " %c",
3203 (ep->
3204 use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3205 'N');
3206 ASC_PRT_NEXT();
3207 }
3208 len = asc_prt_line(cp, leftlen, "\n");
3209 ASC_PRT_NEXT();
3210
3211 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3212 ASC_PRT_NEXT();
3213 for (i = 0; i <= ASC_MAX_TID; i++) {
3214 len = asc_prt_line(cp, leftlen, " %c",
3215 (ep->
3216 start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3217 'N');
3218 ASC_PRT_NEXT();
3219 }
3220 len = asc_prt_line(cp, leftlen, "\n");
3221 ASC_PRT_NEXT();
3222
3223 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3224 ASC_PRT_NEXT();
3225 for (i = 0; i <= ASC_MAX_TID; i++) {
3226 len = asc_prt_line(cp, leftlen, " %c",
3227 (ep->
3228 init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3229 'N');
3230 ASC_PRT_NEXT();
3231 }
3232 len = asc_prt_line(cp, leftlen, "\n");
3233 ASC_PRT_NEXT();
3234
3235 #ifdef CONFIG_ISA
3236 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3237 len = asc_prt_line(cp, leftlen,
3238 " Host ISA DMA speed: %d MB/S\n",
3239 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3240 ASC_PRT_NEXT();
3241 }
3242 #endif /* CONFIG_ISA */
3243
3244 return totlen;
3245 }
3246
3247 /*
3248 * asc_prt_adv_board_eeprom()
3249 *
3250 * Print board EEPROM configuration.
3251 *
3252 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3253 * cf. asc_prt_line().
3254 *
3255 * Return the number of characters copied into 'cp'. No more than
3256 * 'cplen' characters will be copied to 'cp'.
3257 */
asc_prt_adv_board_eeprom(struct Scsi_Host * shost,char * cp,int cplen)3258 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3259 {
3260 struct asc_board *boardp = shost_priv(shost);
3261 ADV_DVC_VAR *adv_dvc_varp;
3262 int leftlen;
3263 int totlen;
3264 int len;
3265 int i;
3266 char *termstr;
3267 uchar serialstr[13];
3268 ADVEEP_3550_CONFIG *ep_3550 = NULL;
3269 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3270 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3271 ushort word;
3272 ushort *wordp;
3273 ushort sdtr_speed = 0;
3274
3275 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3276 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3277 ep_3550 = &boardp->eep_config.adv_3550_eep;
3278 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3279 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3280 } else {
3281 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3282 }
3283
3284 leftlen = cplen;
3285 totlen = len = 0;
3286
3287 len = asc_prt_line(cp, leftlen,
3288 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3289 shost->host_no);
3290 ASC_PRT_NEXT();
3291
3292 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3293 wordp = &ep_3550->serial_number_word1;
3294 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3295 wordp = &ep_38C0800->serial_number_word1;
3296 } else {
3297 wordp = &ep_38C1600->serial_number_word1;
3298 }
3299
3300 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3301 len =
3302 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3303 serialstr);
3304 ASC_PRT_NEXT();
3305 } else {
3306 len = asc_prt_line(cp, leftlen,
3307 " Serial Number Signature Not Present.\n");
3308 ASC_PRT_NEXT();
3309 }
3310
3311 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3312 len = asc_prt_line(cp, leftlen,
3313 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3314 ep_3550->adapter_scsi_id,
3315 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3316 ASC_PRT_NEXT();
3317 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3318 len = asc_prt_line(cp, leftlen,
3319 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3320 ep_38C0800->adapter_scsi_id,
3321 ep_38C0800->max_host_qng,
3322 ep_38C0800->max_dvc_qng);
3323 ASC_PRT_NEXT();
3324 } else {
3325 len = asc_prt_line(cp, leftlen,
3326 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3327 ep_38C1600->adapter_scsi_id,
3328 ep_38C1600->max_host_qng,
3329 ep_38C1600->max_dvc_qng);
3330 ASC_PRT_NEXT();
3331 }
3332 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3333 word = ep_3550->termination;
3334 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3335 word = ep_38C0800->termination_lvd;
3336 } else {
3337 word = ep_38C1600->termination_lvd;
3338 }
3339 switch (word) {
3340 case 1:
3341 termstr = "Low Off/High Off";
3342 break;
3343 case 2:
3344 termstr = "Low Off/High On";
3345 break;
3346 case 3:
3347 termstr = "Low On/High On";
3348 break;
3349 default:
3350 case 0:
3351 termstr = "Automatic";
3352 break;
3353 }
3354
3355 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3356 len = asc_prt_line(cp, leftlen,
3357 " termination: %u (%s), bios_ctrl: 0x%x\n",
3358 ep_3550->termination, termstr,
3359 ep_3550->bios_ctrl);
3360 ASC_PRT_NEXT();
3361 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3362 len = asc_prt_line(cp, leftlen,
3363 " termination: %u (%s), bios_ctrl: 0x%x\n",
3364 ep_38C0800->termination_lvd, termstr,
3365 ep_38C0800->bios_ctrl);
3366 ASC_PRT_NEXT();
3367 } else {
3368 len = asc_prt_line(cp, leftlen,
3369 " termination: %u (%s), bios_ctrl: 0x%x\n",
3370 ep_38C1600->termination_lvd, termstr,
3371 ep_38C1600->bios_ctrl);
3372 ASC_PRT_NEXT();
3373 }
3374
3375 len = asc_prt_line(cp, leftlen, " Target ID: ");
3376 ASC_PRT_NEXT();
3377 for (i = 0; i <= ADV_MAX_TID; i++) {
3378 len = asc_prt_line(cp, leftlen, " %X", i);
3379 ASC_PRT_NEXT();
3380 }
3381 len = asc_prt_line(cp, leftlen, "\n");
3382 ASC_PRT_NEXT();
3383
3384 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3385 word = ep_3550->disc_enable;
3386 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3387 word = ep_38C0800->disc_enable;
3388 } else {
3389 word = ep_38C1600->disc_enable;
3390 }
3391 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3392 ASC_PRT_NEXT();
3393 for (i = 0; i <= ADV_MAX_TID; i++) {
3394 len = asc_prt_line(cp, leftlen, " %c",
3395 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3396 ASC_PRT_NEXT();
3397 }
3398 len = asc_prt_line(cp, leftlen, "\n");
3399 ASC_PRT_NEXT();
3400
3401 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3402 word = ep_3550->tagqng_able;
3403 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3404 word = ep_38C0800->tagqng_able;
3405 } else {
3406 word = ep_38C1600->tagqng_able;
3407 }
3408 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3409 ASC_PRT_NEXT();
3410 for (i = 0; i <= ADV_MAX_TID; i++) {
3411 len = asc_prt_line(cp, leftlen, " %c",
3412 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3413 ASC_PRT_NEXT();
3414 }
3415 len = asc_prt_line(cp, leftlen, "\n");
3416 ASC_PRT_NEXT();
3417
3418 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3419 word = ep_3550->start_motor;
3420 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3421 word = ep_38C0800->start_motor;
3422 } else {
3423 word = ep_38C1600->start_motor;
3424 }
3425 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3426 ASC_PRT_NEXT();
3427 for (i = 0; i <= ADV_MAX_TID; i++) {
3428 len = asc_prt_line(cp, leftlen, " %c",
3429 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3430 ASC_PRT_NEXT();
3431 }
3432 len = asc_prt_line(cp, leftlen, "\n");
3433 ASC_PRT_NEXT();
3434
3435 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3436 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3437 ASC_PRT_NEXT();
3438 for (i = 0; i <= ADV_MAX_TID; i++) {
3439 len = asc_prt_line(cp, leftlen, " %c",
3440 (ep_3550->
3441 sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3442 'Y' : 'N');
3443 ASC_PRT_NEXT();
3444 }
3445 len = asc_prt_line(cp, leftlen, "\n");
3446 ASC_PRT_NEXT();
3447 }
3448
3449 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3450 len = asc_prt_line(cp, leftlen, " Ultra Transfer: ");
3451 ASC_PRT_NEXT();
3452 for (i = 0; i <= ADV_MAX_TID; i++) {
3453 len = asc_prt_line(cp, leftlen, " %c",
3454 (ep_3550->
3455 ultra_able & ADV_TID_TO_TIDMASK(i))
3456 ? 'Y' : 'N');
3457 ASC_PRT_NEXT();
3458 }
3459 len = asc_prt_line(cp, leftlen, "\n");
3460 ASC_PRT_NEXT();
3461 }
3462
3463 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3464 word = ep_3550->wdtr_able;
3465 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3466 word = ep_38C0800->wdtr_able;
3467 } else {
3468 word = ep_38C1600->wdtr_able;
3469 }
3470 len = asc_prt_line(cp, leftlen, " Wide Transfer: ");
3471 ASC_PRT_NEXT();
3472 for (i = 0; i <= ADV_MAX_TID; i++) {
3473 len = asc_prt_line(cp, leftlen, " %c",
3474 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3475 ASC_PRT_NEXT();
3476 }
3477 len = asc_prt_line(cp, leftlen, "\n");
3478 ASC_PRT_NEXT();
3479
3480 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3481 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3482 len = asc_prt_line(cp, leftlen,
3483 " Synchronous Transfer Speed (Mhz):\n ");
3484 ASC_PRT_NEXT();
3485 for (i = 0; i <= ADV_MAX_TID; i++) {
3486 char *speed_str;
3487
3488 if (i == 0) {
3489 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3490 } else if (i == 4) {
3491 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3492 } else if (i == 8) {
3493 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3494 } else if (i == 12) {
3495 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3496 }
3497 switch (sdtr_speed & ADV_MAX_TID) {
3498 case 0:
3499 speed_str = "Off";
3500 break;
3501 case 1:
3502 speed_str = " 5";
3503 break;
3504 case 2:
3505 speed_str = " 10";
3506 break;
3507 case 3:
3508 speed_str = " 20";
3509 break;
3510 case 4:
3511 speed_str = " 40";
3512 break;
3513 case 5:
3514 speed_str = " 80";
3515 break;
3516 default:
3517 speed_str = "Unk";
3518 break;
3519 }
3520 len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3521 ASC_PRT_NEXT();
3522 if (i == 7) {
3523 len = asc_prt_line(cp, leftlen, "\n ");
3524 ASC_PRT_NEXT();
3525 }
3526 sdtr_speed >>= 4;
3527 }
3528 len = asc_prt_line(cp, leftlen, "\n");
3529 ASC_PRT_NEXT();
3530 }
3531
3532 return totlen;
3533 }
3534
3535 /*
3536 * asc_prt_driver_conf()
3537 *
3538 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3539 * cf. asc_prt_line().
3540 *
3541 * Return the number of characters copied into 'cp'. No more than
3542 * 'cplen' characters will be copied to 'cp'.
3543 */
asc_prt_driver_conf(struct Scsi_Host * shost,char * cp,int cplen)3544 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3545 {
3546 struct asc_board *boardp = shost_priv(shost);
3547 int leftlen;
3548 int totlen;
3549 int len;
3550 int chip_scsi_id;
3551
3552 leftlen = cplen;
3553 totlen = len = 0;
3554
3555 len = asc_prt_line(cp, leftlen,
3556 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3557 shost->host_no);
3558 ASC_PRT_NEXT();
3559
3560 len = asc_prt_line(cp, leftlen,
3561 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3562 shost->host_busy, shost->last_reset, shost->max_id,
3563 shost->max_lun, shost->max_channel);
3564 ASC_PRT_NEXT();
3565
3566 len = asc_prt_line(cp, leftlen,
3567 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3568 shost->unique_id, shost->can_queue, shost->this_id,
3569 shost->sg_tablesize, shost->cmd_per_lun);
3570 ASC_PRT_NEXT();
3571
3572 len = asc_prt_line(cp, leftlen,
3573 " unchecked_isa_dma %d, use_clustering %d\n",
3574 shost->unchecked_isa_dma, shost->use_clustering);
3575 ASC_PRT_NEXT();
3576
3577 len = asc_prt_line(cp, leftlen,
3578 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3579 boardp->flags, boardp->last_reset, jiffies,
3580 boardp->asc_n_io_port);
3581 ASC_PRT_NEXT();
3582
3583 len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3584 ASC_PRT_NEXT();
3585
3586 if (ASC_NARROW_BOARD(boardp)) {
3587 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3588 } else {
3589 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3590 }
3591
3592 return totlen;
3593 }
3594
3595 /*
3596 * asc_prt_asc_board_info()
3597 *
3598 * Print dynamic board configuration information.
3599 *
3600 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3601 * cf. asc_prt_line().
3602 *
3603 * Return the number of characters copied into 'cp'. No more than
3604 * 'cplen' characters will be copied to 'cp'.
3605 */
asc_prt_asc_board_info(struct Scsi_Host * shost,char * cp,int cplen)3606 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3607 {
3608 struct asc_board *boardp = shost_priv(shost);
3609 int chip_scsi_id;
3610 int leftlen;
3611 int totlen;
3612 int len;
3613 ASC_DVC_VAR *v;
3614 ASC_DVC_CFG *c;
3615 int i;
3616 int renegotiate = 0;
3617
3618 v = &boardp->dvc_var.asc_dvc_var;
3619 c = &boardp->dvc_cfg.asc_dvc_cfg;
3620 chip_scsi_id = c->chip_scsi_id;
3621
3622 leftlen = cplen;
3623 totlen = len = 0;
3624
3625 len = asc_prt_line(cp, leftlen,
3626 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3627 shost->host_no);
3628 ASC_PRT_NEXT();
3629
3630 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3631 "mcode_version 0x%x, err_code %u\n",
3632 c->chip_version, c->mcode_date, c->mcode_version,
3633 v->err_code);
3634 ASC_PRT_NEXT();
3635
3636 /* Current number of commands waiting for the host. */
3637 len = asc_prt_line(cp, leftlen,
3638 " Total Command Pending: %d\n", v->cur_total_qng);
3639 ASC_PRT_NEXT();
3640
3641 len = asc_prt_line(cp, leftlen, " Command Queuing:");
3642 ASC_PRT_NEXT();
3643 for (i = 0; i <= ASC_MAX_TID; i++) {
3644 if ((chip_scsi_id == i) ||
3645 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3646 continue;
3647 }
3648 len = asc_prt_line(cp, leftlen, " %X:%c",
3649 i,
3650 (v->
3651 use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3652 'Y' : 'N');
3653 ASC_PRT_NEXT();
3654 }
3655 len = asc_prt_line(cp, leftlen, "\n");
3656 ASC_PRT_NEXT();
3657
3658 /* Current number of commands waiting for a device. */
3659 len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3660 ASC_PRT_NEXT();
3661 for (i = 0; i <= ASC_MAX_TID; i++) {
3662 if ((chip_scsi_id == i) ||
3663 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3664 continue;
3665 }
3666 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3667 ASC_PRT_NEXT();
3668 }
3669 len = asc_prt_line(cp, leftlen, "\n");
3670 ASC_PRT_NEXT();
3671
3672 /* Current limit on number of commands that can be sent to a device. */
3673 len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3674 ASC_PRT_NEXT();
3675 for (i = 0; i <= ASC_MAX_TID; i++) {
3676 if ((chip_scsi_id == i) ||
3677 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3678 continue;
3679 }
3680 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3681 ASC_PRT_NEXT();
3682 }
3683 len = asc_prt_line(cp, leftlen, "\n");
3684 ASC_PRT_NEXT();
3685
3686 /* Indicate whether the device has returned queue full status. */
3687 len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3688 ASC_PRT_NEXT();
3689 for (i = 0; i <= ASC_MAX_TID; i++) {
3690 if ((chip_scsi_id == i) ||
3691 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3692 continue;
3693 }
3694 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3695 len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3696 i, boardp->queue_full_cnt[i]);
3697 } else {
3698 len = asc_prt_line(cp, leftlen, " %X:N", i);
3699 }
3700 ASC_PRT_NEXT();
3701 }
3702 len = asc_prt_line(cp, leftlen, "\n");
3703 ASC_PRT_NEXT();
3704
3705 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3706 ASC_PRT_NEXT();
3707 for (i = 0; i <= ASC_MAX_TID; i++) {
3708 if ((chip_scsi_id == i) ||
3709 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3710 continue;
3711 }
3712 len = asc_prt_line(cp, leftlen, " %X:%c",
3713 i,
3714 (v->
3715 sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3716 'N');
3717 ASC_PRT_NEXT();
3718 }
3719 len = asc_prt_line(cp, leftlen, "\n");
3720 ASC_PRT_NEXT();
3721
3722 for (i = 0; i <= ASC_MAX_TID; i++) {
3723 uchar syn_period_ix;
3724
3725 if ((chip_scsi_id == i) ||
3726 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3727 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3728 continue;
3729 }
3730
3731 len = asc_prt_line(cp, leftlen, " %X:", i);
3732 ASC_PRT_NEXT();
3733
3734 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3735 len = asc_prt_line(cp, leftlen, " Asynchronous");
3736 ASC_PRT_NEXT();
3737 } else {
3738 syn_period_ix =
3739 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3740 1);
3741
3742 len = asc_prt_line(cp, leftlen,
3743 " Transfer Period Factor: %d (%d.%d Mhz),",
3744 v->sdtr_period_tbl[syn_period_ix],
3745 250 /
3746 v->sdtr_period_tbl[syn_period_ix],
3747 ASC_TENTHS(250,
3748 v->
3749 sdtr_period_tbl
3750 [syn_period_ix]));
3751 ASC_PRT_NEXT();
3752
3753 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3754 boardp->
3755 sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3756 ASC_PRT_NEXT();
3757 }
3758
3759 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3760 len = asc_prt_line(cp, leftlen, "*\n");
3761 renegotiate = 1;
3762 } else {
3763 len = asc_prt_line(cp, leftlen, "\n");
3764 }
3765 ASC_PRT_NEXT();
3766 }
3767
3768 if (renegotiate) {
3769 len = asc_prt_line(cp, leftlen,
3770 " * = Re-negotiation pending before next command.\n");
3771 ASC_PRT_NEXT();
3772 }
3773
3774 return totlen;
3775 }
3776
3777 /*
3778 * asc_prt_adv_board_info()
3779 *
3780 * Print dynamic board configuration information.
3781 *
3782 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3783 * cf. asc_prt_line().
3784 *
3785 * Return the number of characters copied into 'cp'. No more than
3786 * 'cplen' characters will be copied to 'cp'.
3787 */
asc_prt_adv_board_info(struct Scsi_Host * shost,char * cp,int cplen)3788 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3789 {
3790 struct asc_board *boardp = shost_priv(shost);
3791 int leftlen;
3792 int totlen;
3793 int len;
3794 int i;
3795 ADV_DVC_VAR *v;
3796 ADV_DVC_CFG *c;
3797 AdvPortAddr iop_base;
3798 ushort chip_scsi_id;
3799 ushort lramword;
3800 uchar lrambyte;
3801 ushort tagqng_able;
3802 ushort sdtr_able, wdtr_able;
3803 ushort wdtr_done, sdtr_done;
3804 ushort period = 0;
3805 int renegotiate = 0;
3806
3807 v = &boardp->dvc_var.adv_dvc_var;
3808 c = &boardp->dvc_cfg.adv_dvc_cfg;
3809 iop_base = v->iop_base;
3810 chip_scsi_id = v->chip_scsi_id;
3811
3812 leftlen = cplen;
3813 totlen = len = 0;
3814
3815 len = asc_prt_line(cp, leftlen,
3816 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3817 shost->host_no);
3818 ASC_PRT_NEXT();
3819
3820 len = asc_prt_line(cp, leftlen,
3821 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3822 v->iop_base,
3823 AdvReadWordRegister(iop_base,
3824 IOPW_SCSI_CFG1) & CABLE_DETECT,
3825 v->err_code);
3826 ASC_PRT_NEXT();
3827
3828 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3829 "mcode_version 0x%x\n", c->chip_version,
3830 c->mcode_date, c->mcode_version);
3831 ASC_PRT_NEXT();
3832
3833 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3834 len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3835 ASC_PRT_NEXT();
3836 for (i = 0; i <= ADV_MAX_TID; i++) {
3837 if ((chip_scsi_id == i) ||
3838 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3839 continue;
3840 }
3841
3842 len = asc_prt_line(cp, leftlen, " %X:%c",
3843 i,
3844 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3845 'N');
3846 ASC_PRT_NEXT();
3847 }
3848 len = asc_prt_line(cp, leftlen, "\n");
3849 ASC_PRT_NEXT();
3850
3851 len = asc_prt_line(cp, leftlen, " Queue Limit:");
3852 ASC_PRT_NEXT();
3853 for (i = 0; i <= ADV_MAX_TID; i++) {
3854 if ((chip_scsi_id == i) ||
3855 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3856 continue;
3857 }
3858
3859 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3860 lrambyte);
3861
3862 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3863 ASC_PRT_NEXT();
3864 }
3865 len = asc_prt_line(cp, leftlen, "\n");
3866 ASC_PRT_NEXT();
3867
3868 len = asc_prt_line(cp, leftlen, " Command Pending:");
3869 ASC_PRT_NEXT();
3870 for (i = 0; i <= ADV_MAX_TID; i++) {
3871 if ((chip_scsi_id == i) ||
3872 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3873 continue;
3874 }
3875
3876 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3877 lrambyte);
3878
3879 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3880 ASC_PRT_NEXT();
3881 }
3882 len = asc_prt_line(cp, leftlen, "\n");
3883 ASC_PRT_NEXT();
3884
3885 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3886 len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3887 ASC_PRT_NEXT();
3888 for (i = 0; i <= ADV_MAX_TID; i++) {
3889 if ((chip_scsi_id == i) ||
3890 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3891 continue;
3892 }
3893
3894 len = asc_prt_line(cp, leftlen, " %X:%c",
3895 i,
3896 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3897 'N');
3898 ASC_PRT_NEXT();
3899 }
3900 len = asc_prt_line(cp, leftlen, "\n");
3901 ASC_PRT_NEXT();
3902
3903 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3904 len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3905 ASC_PRT_NEXT();
3906 for (i = 0; i <= ADV_MAX_TID; i++) {
3907 if ((chip_scsi_id == i) ||
3908 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3909 continue;
3910 }
3911
3912 AdvReadWordLram(iop_base,
3913 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3914 lramword);
3915
3916 len = asc_prt_line(cp, leftlen, " %X:%d",
3917 i, (lramword & 0x8000) ? 16 : 8);
3918 ASC_PRT_NEXT();
3919
3920 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3921 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3922 len = asc_prt_line(cp, leftlen, "*");
3923 ASC_PRT_NEXT();
3924 renegotiate = 1;
3925 }
3926 }
3927 len = asc_prt_line(cp, leftlen, "\n");
3928 ASC_PRT_NEXT();
3929
3930 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3931 len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3932 ASC_PRT_NEXT();
3933 for (i = 0; i <= ADV_MAX_TID; i++) {
3934 if ((chip_scsi_id == i) ||
3935 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3936 continue;
3937 }
3938
3939 len = asc_prt_line(cp, leftlen, " %X:%c",
3940 i,
3941 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3942 'N');
3943 ASC_PRT_NEXT();
3944 }
3945 len = asc_prt_line(cp, leftlen, "\n");
3946 ASC_PRT_NEXT();
3947
3948 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3949 for (i = 0; i <= ADV_MAX_TID; i++) {
3950
3951 AdvReadWordLram(iop_base,
3952 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3953 lramword);
3954 lramword &= ~0x8000;
3955
3956 if ((chip_scsi_id == i) ||
3957 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3958 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3959 continue;
3960 }
3961
3962 len = asc_prt_line(cp, leftlen, " %X:", i);
3963 ASC_PRT_NEXT();
3964
3965 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3966 len = asc_prt_line(cp, leftlen, " Asynchronous");
3967 ASC_PRT_NEXT();
3968 } else {
3969 len =
3970 asc_prt_line(cp, leftlen,
3971 " Transfer Period Factor: ");
3972 ASC_PRT_NEXT();
3973
3974 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3975 len =
3976 asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3977 ASC_PRT_NEXT();
3978 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3979 len =
3980 asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3981 ASC_PRT_NEXT();
3982 } else { /* 20 Mhz or below. */
3983
3984 period = (((lramword >> 8) * 25) + 50) / 4;
3985
3986 if (period == 0) { /* Should never happen. */
3987 len =
3988 asc_prt_line(cp, leftlen,
3989 "%d (? Mhz), ");
3990 ASC_PRT_NEXT();
3991 } else {
3992 len = asc_prt_line(cp, leftlen,
3993 "%d (%d.%d Mhz),",
3994 period, 250 / period,
3995 ASC_TENTHS(250,
3996 period));
3997 ASC_PRT_NEXT();
3998 }
3999 }
4000
4001 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4002 lramword & 0x1F);
4003 ASC_PRT_NEXT();
4004 }
4005
4006 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4007 len = asc_prt_line(cp, leftlen, "*\n");
4008 renegotiate = 1;
4009 } else {
4010 len = asc_prt_line(cp, leftlen, "\n");
4011 }
4012 ASC_PRT_NEXT();
4013 }
4014
4015 if (renegotiate) {
4016 len = asc_prt_line(cp, leftlen,
4017 " * = Re-negotiation pending before next command.\n");
4018 ASC_PRT_NEXT();
4019 }
4020
4021 return totlen;
4022 }
4023
4024 /*
4025 * asc_proc_copy()
4026 *
4027 * Copy proc information to a read buffer taking into account the current
4028 * read offset in the file and the remaining space in the read buffer.
4029 */
4030 static int
asc_proc_copy(off_t advoffset,off_t offset,char * curbuf,int leftlen,char * cp,int cplen)4031 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4032 char *cp, int cplen)
4033 {
4034 int cnt = 0;
4035
4036 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4037 (unsigned)offset, (unsigned)advoffset, cplen);
4038 if (offset <= advoffset) {
4039 /* Read offset below current offset, copy everything. */
4040 cnt = min(cplen, leftlen);
4041 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4042 (ulong)curbuf, (ulong)cp, cnt);
4043 memcpy(curbuf, cp, cnt);
4044 } else if (offset < advoffset + cplen) {
4045 /* Read offset within current range, partial copy. */
4046 cnt = (advoffset + cplen) - offset;
4047 cp = (cp + cplen) - cnt;
4048 cnt = min(cnt, leftlen);
4049 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4050 (ulong)curbuf, (ulong)cp, cnt);
4051 memcpy(curbuf, cp, cnt);
4052 }
4053 return cnt;
4054 }
4055
4056 #ifdef ADVANSYS_STATS
4057 /*
4058 * asc_prt_board_stats()
4059 *
4060 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4061 * cf. asc_prt_line().
4062 *
4063 * Return the number of characters copied into 'cp'. No more than
4064 * 'cplen' characters will be copied to 'cp'.
4065 */
asc_prt_board_stats(struct Scsi_Host * shost,char * cp,int cplen)4066 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4067 {
4068 struct asc_board *boardp = shost_priv(shost);
4069 struct asc_stats *s = &boardp->asc_stats;
4070
4071 int leftlen = cplen;
4072 int len, totlen = 0;
4073
4074 len = asc_prt_line(cp, leftlen,
4075 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4076 shost->host_no);
4077 ASC_PRT_NEXT();
4078
4079 len = asc_prt_line(cp, leftlen,
4080 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4081 s->queuecommand, s->reset, s->biosparam,
4082 s->interrupt);
4083 ASC_PRT_NEXT();
4084
4085 len = asc_prt_line(cp, leftlen,
4086 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4087 s->callback, s->done, s->build_error,
4088 s->adv_build_noreq, s->adv_build_nosg);
4089 ASC_PRT_NEXT();
4090
4091 len = asc_prt_line(cp, leftlen,
4092 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4093 s->exe_noerror, s->exe_busy, s->exe_error,
4094 s->exe_unknown);
4095 ASC_PRT_NEXT();
4096
4097 /*
4098 * Display data transfer statistics.
4099 */
4100 if (s->xfer_cnt > 0) {
4101 len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4102 s->xfer_cnt, s->xfer_elem);
4103 ASC_PRT_NEXT();
4104
4105 len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4106 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4107 ASC_PRT_NEXT();
4108
4109 /* Scatter gather transfer statistics */
4110 len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4111 s->xfer_elem / s->xfer_cnt,
4112 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4113 ASC_PRT_NEXT();
4114
4115 len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4116 (s->xfer_sect / 2) / s->xfer_elem,
4117 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4118 ASC_PRT_NEXT();
4119
4120 len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4121 (s->xfer_sect / 2) / s->xfer_cnt,
4122 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4123 ASC_PRT_NEXT();
4124 }
4125
4126 return totlen;
4127 }
4128 #endif /* ADVANSYS_STATS */
4129
4130 /*
4131 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4132 *
4133 * *buffer: I/O buffer
4134 * **start: if inout == FALSE pointer into buffer where user read should start
4135 * offset: current offset into a /proc/scsi/advansys/[0...] file
4136 * length: length of buffer
4137 * hostno: Scsi_Host host_no
4138 * inout: TRUE - user is writing; FALSE - user is reading
4139 *
4140 * Return the number of bytes read from or written to a
4141 * /proc/scsi/advansys/[0...] file.
4142 *
4143 * Note: This function uses the per board buffer 'prtbuf' which is
4144 * allocated when the board is initialized in advansys_detect(). The
4145 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4146 * used to write to the buffer. The way asc_proc_copy() is written
4147 * if 'prtbuf' is too small it will not be overwritten. Instead the
4148 * user just won't get all the available statistics.
4149 */
4150 static int
advansys_proc_info(struct Scsi_Host * shost,char * buffer,char ** start,off_t offset,int length,int inout)4151 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4152 off_t offset, int length, int inout)
4153 {
4154 struct asc_board *boardp = shost_priv(shost);
4155 char *cp;
4156 int cplen;
4157 int cnt;
4158 int totcnt;
4159 int leftlen;
4160 char *curbuf;
4161 off_t advoffset;
4162
4163 ASC_DBG(1, "begin\n");
4164
4165 /*
4166 * User write not supported.
4167 */
4168 if (inout == TRUE)
4169 return -ENOSYS;
4170
4171 /*
4172 * User read of /proc/scsi/advansys/[0...] file.
4173 */
4174
4175 /* Copy read data starting at the beginning of the buffer. */
4176 *start = buffer;
4177 curbuf = buffer;
4178 advoffset = 0;
4179 totcnt = 0;
4180 leftlen = length;
4181
4182 /*
4183 * Get board configuration information.
4184 *
4185 * advansys_info() returns the board string from its own static buffer.
4186 */
4187 cp = (char *)advansys_info(shost);
4188 strcat(cp, "\n");
4189 cplen = strlen(cp);
4190 /* Copy board information. */
4191 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4192 totcnt += cnt;
4193 leftlen -= cnt;
4194 if (leftlen == 0) {
4195 ASC_DBG(1, "totcnt %d\n", totcnt);
4196 return totcnt;
4197 }
4198 advoffset += cplen;
4199 curbuf += cnt;
4200
4201 /*
4202 * Display Wide Board BIOS Information.
4203 */
4204 if (!ASC_NARROW_BOARD(boardp)) {
4205 cp = boardp->prtbuf;
4206 cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4207 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4208 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4209 cplen);
4210 totcnt += cnt;
4211 leftlen -= cnt;
4212 if (leftlen == 0) {
4213 ASC_DBG(1, "totcnt %d\n", totcnt);
4214 return totcnt;
4215 }
4216 advoffset += cplen;
4217 curbuf += cnt;
4218 }
4219
4220 /*
4221 * Display driver information for each device attached to the board.
4222 */
4223 cp = boardp->prtbuf;
4224 cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4225 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4226 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4227 totcnt += cnt;
4228 leftlen -= cnt;
4229 if (leftlen == 0) {
4230 ASC_DBG(1, "totcnt %d\n", totcnt);
4231 return totcnt;
4232 }
4233 advoffset += cplen;
4234 curbuf += cnt;
4235
4236 /*
4237 * Display EEPROM configuration for the board.
4238 */
4239 cp = boardp->prtbuf;
4240 if (ASC_NARROW_BOARD(boardp)) {
4241 cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4242 } else {
4243 cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4244 }
4245 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4246 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4247 totcnt += cnt;
4248 leftlen -= cnt;
4249 if (leftlen == 0) {
4250 ASC_DBG(1, "totcnt %d\n", totcnt);
4251 return totcnt;
4252 }
4253 advoffset += cplen;
4254 curbuf += cnt;
4255
4256 /*
4257 * Display driver configuration and information for the board.
4258 */
4259 cp = boardp->prtbuf;
4260 cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4261 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4262 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4263 totcnt += cnt;
4264 leftlen -= cnt;
4265 if (leftlen == 0) {
4266 ASC_DBG(1, "totcnt %d\n", totcnt);
4267 return totcnt;
4268 }
4269 advoffset += cplen;
4270 curbuf += cnt;
4271
4272 #ifdef ADVANSYS_STATS
4273 /*
4274 * Display driver statistics for the board.
4275 */
4276 cp = boardp->prtbuf;
4277 cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4278 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4279 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4280 totcnt += cnt;
4281 leftlen -= cnt;
4282 if (leftlen == 0) {
4283 ASC_DBG(1, "totcnt %d\n", totcnt);
4284 return totcnt;
4285 }
4286 advoffset += cplen;
4287 curbuf += cnt;
4288 #endif /* ADVANSYS_STATS */
4289
4290 /*
4291 * Display Asc Library dynamic configuration information
4292 * for the board.
4293 */
4294 cp = boardp->prtbuf;
4295 if (ASC_NARROW_BOARD(boardp)) {
4296 cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4297 } else {
4298 cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4299 }
4300 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4301 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4302 totcnt += cnt;
4303 leftlen -= cnt;
4304 if (leftlen == 0) {
4305 ASC_DBG(1, "totcnt %d\n", totcnt);
4306 return totcnt;
4307 }
4308 advoffset += cplen;
4309 curbuf += cnt;
4310
4311 ASC_DBG(1, "totcnt %d\n", totcnt);
4312
4313 return totcnt;
4314 }
4315 #endif /* CONFIG_PROC_FS */
4316
asc_scsi_done(struct scsi_cmnd * scp)4317 static void asc_scsi_done(struct scsi_cmnd *scp)
4318 {
4319 scsi_dma_unmap(scp);
4320 ASC_STATS(scp->device->host, done);
4321 scp->scsi_done(scp);
4322 }
4323
AscSetBank(PortAddr iop_base,uchar bank)4324 static void AscSetBank(PortAddr iop_base, uchar bank)
4325 {
4326 uchar val;
4327
4328 val = AscGetChipControl(iop_base) &
4329 (~
4330 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4331 CC_CHIP_RESET));
4332 if (bank == 1) {
4333 val |= CC_BANK_ONE;
4334 } else if (bank == 2) {
4335 val |= CC_DIAG | CC_BANK_ONE;
4336 } else {
4337 val &= ~CC_BANK_ONE;
4338 }
4339 AscSetChipControl(iop_base, val);
4340 }
4341
AscSetChipIH(PortAddr iop_base,ushort ins_code)4342 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4343 {
4344 AscSetBank(iop_base, 1);
4345 AscWriteChipIH(iop_base, ins_code);
4346 AscSetBank(iop_base, 0);
4347 }
4348
AscStartChip(PortAddr iop_base)4349 static int AscStartChip(PortAddr iop_base)
4350 {
4351 AscSetChipControl(iop_base, 0);
4352 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4353 return (0);
4354 }
4355 return (1);
4356 }
4357
AscStopChip(PortAddr iop_base)4358 static int AscStopChip(PortAddr iop_base)
4359 {
4360 uchar cc_val;
4361
4362 cc_val =
4363 AscGetChipControl(iop_base) &
4364 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4365 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4366 AscSetChipIH(iop_base, INS_HALT);
4367 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4368 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4369 return (0);
4370 }
4371 return (1);
4372 }
4373
AscIsChipHalted(PortAddr iop_base)4374 static int AscIsChipHalted(PortAddr iop_base)
4375 {
4376 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4377 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4378 return (1);
4379 }
4380 }
4381 return (0);
4382 }
4383
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)4384 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4385 {
4386 PortAddr iop_base;
4387 int i = 10;
4388
4389 iop_base = asc_dvc->iop_base;
4390 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4391 && (i-- > 0)) {
4392 mdelay(100);
4393 }
4394 AscStopChip(iop_base);
4395 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4396 udelay(60);
4397 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4398 AscSetChipIH(iop_base, INS_HALT);
4399 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4400 AscSetChipControl(iop_base, CC_HALT);
4401 mdelay(200);
4402 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4403 AscSetChipStatus(iop_base, 0);
4404 return (AscIsChipHalted(iop_base));
4405 }
4406
AscFindSignature(PortAddr iop_base)4407 static int AscFindSignature(PortAddr iop_base)
4408 {
4409 ushort sig_word;
4410
4411 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4412 iop_base, AscGetChipSignatureByte(iop_base));
4413 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4414 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4415 iop_base, AscGetChipSignatureWord(iop_base));
4416 sig_word = AscGetChipSignatureWord(iop_base);
4417 if ((sig_word == (ushort)ASC_1000_ID0W) ||
4418 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4419 return (1);
4420 }
4421 }
4422 return (0);
4423 }
4424
AscEnableInterrupt(PortAddr iop_base)4425 static void AscEnableInterrupt(PortAddr iop_base)
4426 {
4427 ushort cfg;
4428
4429 cfg = AscGetChipCfgLsw(iop_base);
4430 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4431 }
4432
AscDisableInterrupt(PortAddr iop_base)4433 static void AscDisableInterrupt(PortAddr iop_base)
4434 {
4435 ushort cfg;
4436
4437 cfg = AscGetChipCfgLsw(iop_base);
4438 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4439 }
4440
AscReadLramByte(PortAddr iop_base,ushort addr)4441 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4442 {
4443 unsigned char byte_data;
4444 unsigned short word_data;
4445
4446 if (isodd_word(addr)) {
4447 AscSetChipLramAddr(iop_base, addr - 1);
4448 word_data = AscGetChipLramData(iop_base);
4449 byte_data = (word_data >> 8) & 0xFF;
4450 } else {
4451 AscSetChipLramAddr(iop_base, addr);
4452 word_data = AscGetChipLramData(iop_base);
4453 byte_data = word_data & 0xFF;
4454 }
4455 return byte_data;
4456 }
4457
AscReadLramWord(PortAddr iop_base,ushort addr)4458 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4459 {
4460 ushort word_data;
4461
4462 AscSetChipLramAddr(iop_base, addr);
4463 word_data = AscGetChipLramData(iop_base);
4464 return (word_data);
4465 }
4466
4467 #if CC_VERY_LONG_SG_LIST
AscReadLramDWord(PortAddr iop_base,ushort addr)4468 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4469 {
4470 ushort val_low, val_high;
4471 ASC_DCNT dword_data;
4472
4473 AscSetChipLramAddr(iop_base, addr);
4474 val_low = AscGetChipLramData(iop_base);
4475 val_high = AscGetChipLramData(iop_base);
4476 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4477 return (dword_data);
4478 }
4479 #endif /* CC_VERY_LONG_SG_LIST */
4480
4481 static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)4482 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4483 {
4484 int i;
4485
4486 AscSetChipLramAddr(iop_base, s_addr);
4487 for (i = 0; i < words; i++) {
4488 AscSetChipLramData(iop_base, set_wval);
4489 }
4490 }
4491
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)4492 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4493 {
4494 AscSetChipLramAddr(iop_base, addr);
4495 AscSetChipLramData(iop_base, word_val);
4496 }
4497
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)4498 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4499 {
4500 ushort word_data;
4501
4502 if (isodd_word(addr)) {
4503 addr--;
4504 word_data = AscReadLramWord(iop_base, addr);
4505 word_data &= 0x00FF;
4506 word_data |= (((ushort)byte_val << 8) & 0xFF00);
4507 } else {
4508 word_data = AscReadLramWord(iop_base, addr);
4509 word_data &= 0xFF00;
4510 word_data |= ((ushort)byte_val & 0x00FF);
4511 }
4512 AscWriteLramWord(iop_base, addr, word_data);
4513 }
4514
4515 /*
4516 * Copy 2 bytes to LRAM.
4517 *
4518 * The source data is assumed to be in little-endian order in memory
4519 * and is maintained in little-endian order when written to LRAM.
4520 */
4521 static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)4522 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4523 const uchar *s_buffer, int words)
4524 {
4525 int i;
4526
4527 AscSetChipLramAddr(iop_base, s_addr);
4528 for (i = 0; i < 2 * words; i += 2) {
4529 /*
4530 * On a little-endian system the second argument below
4531 * produces a little-endian ushort which is written to
4532 * LRAM in little-endian order. On a big-endian system
4533 * the second argument produces a big-endian ushort which
4534 * is "transparently" byte-swapped by outpw() and written
4535 * in little-endian order to LRAM.
4536 */
4537 outpw(iop_base + IOP_RAM_DATA,
4538 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4539 }
4540 }
4541
4542 /*
4543 * Copy 4 bytes to LRAM.
4544 *
4545 * The source data is assumed to be in little-endian order in memory
4546 * and is maintained in little-endian order when written to LRAM.
4547 */
4548 static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)4549 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4550 ushort s_addr, uchar *s_buffer, int dwords)
4551 {
4552 int i;
4553
4554 AscSetChipLramAddr(iop_base, s_addr);
4555 for (i = 0; i < 4 * dwords; i += 4) {
4556 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4557 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4558 }
4559 }
4560
4561 /*
4562 * Copy 2 bytes from LRAM.
4563 *
4564 * The source data is assumed to be in little-endian order in LRAM
4565 * and is maintained in little-endian order when written to memory.
4566 */
4567 static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)4568 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4569 ushort s_addr, uchar *d_buffer, int words)
4570 {
4571 int i;
4572 ushort word;
4573
4574 AscSetChipLramAddr(iop_base, s_addr);
4575 for (i = 0; i < 2 * words; i += 2) {
4576 word = inpw(iop_base + IOP_RAM_DATA);
4577 d_buffer[i] = word & 0xff;
4578 d_buffer[i + 1] = (word >> 8) & 0xff;
4579 }
4580 }
4581
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)4582 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4583 {
4584 ASC_DCNT sum;
4585 int i;
4586
4587 sum = 0L;
4588 for (i = 0; i < words; i++, s_addr += 2) {
4589 sum += AscReadLramWord(iop_base, s_addr);
4590 }
4591 return (sum);
4592 }
4593
AscInitLram(ASC_DVC_VAR * asc_dvc)4594 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4595 {
4596 uchar i;
4597 ushort s_addr;
4598 PortAddr iop_base;
4599 ushort warn_code;
4600
4601 iop_base = asc_dvc->iop_base;
4602 warn_code = 0;
4603 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4604 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4605 64) >> 1));
4606 i = ASC_MIN_ACTIVE_QNO;
4607 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4608 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4609 (uchar)(i + 1));
4610 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4611 (uchar)(asc_dvc->max_total_qng));
4612 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4613 (uchar)i);
4614 i++;
4615 s_addr += ASC_QBLK_SIZE;
4616 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4617 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4618 (uchar)(i + 1));
4619 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4620 (uchar)(i - 1));
4621 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4622 (uchar)i);
4623 }
4624 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4625 (uchar)ASC_QLINK_END);
4626 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4627 (uchar)(asc_dvc->max_total_qng - 1));
4628 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4629 (uchar)asc_dvc->max_total_qng);
4630 i++;
4631 s_addr += ASC_QBLK_SIZE;
4632 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4633 i++, s_addr += ASC_QBLK_SIZE) {
4634 AscWriteLramByte(iop_base,
4635 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4636 AscWriteLramByte(iop_base,
4637 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4638 AscWriteLramByte(iop_base,
4639 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4640 }
4641 return warn_code;
4642 }
4643
4644 static ASC_DCNT
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)4645 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4646 const uchar *mcode_buf, ushort mcode_size)
4647 {
4648 ASC_DCNT chksum;
4649 ushort mcode_word_size;
4650 ushort mcode_chksum;
4651
4652 /* Write the microcode buffer starting at LRAM address 0. */
4653 mcode_word_size = (ushort)(mcode_size >> 1);
4654 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4655 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4656
4657 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4658 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4659 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4660 (ushort)ASC_CODE_SEC_BEG,
4661 (ushort)((mcode_size -
4662 s_addr - (ushort)
4663 ASC_CODE_SEC_BEG) /
4664 2));
4665 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4666 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4667 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4668 return chksum;
4669 }
4670
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)4671 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4672 {
4673 PortAddr iop_base;
4674 int i;
4675 ushort lram_addr;
4676
4677 iop_base = asc_dvc->iop_base;
4678 AscPutRiscVarFreeQHead(iop_base, 1);
4679 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4680 AscPutVarFreeQHead(iop_base, 1);
4681 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4682 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4683 (uchar)((int)asc_dvc->max_total_qng + 1));
4684 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4685 (uchar)((int)asc_dvc->max_total_qng + 2));
4686 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4687 asc_dvc->max_total_qng);
4688 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4689 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4690 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4691 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4692 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4693 AscPutQDoneInProgress(iop_base, 0);
4694 lram_addr = ASC_QADR_BEG;
4695 for (i = 0; i < 32; i++, lram_addr += 2) {
4696 AscWriteLramWord(iop_base, lram_addr, 0);
4697 }
4698 }
4699
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)4700 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4701 {
4702 int i;
4703 ushort warn_code;
4704 PortAddr iop_base;
4705 ASC_PADDR phy_addr;
4706 ASC_DCNT phy_size;
4707 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4708
4709 iop_base = asc_dvc->iop_base;
4710 warn_code = 0;
4711 for (i = 0; i <= ASC_MAX_TID; i++) {
4712 AscPutMCodeInitSDTRAtID(iop_base, i,
4713 asc_dvc->cfg->sdtr_period_offset[i]);
4714 }
4715
4716 AscInitQLinkVar(asc_dvc);
4717 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4718 asc_dvc->cfg->disc_enable);
4719 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4720 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4721
4722 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4723 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4724 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4725 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4726 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4727 warn_code = -ENOMEM;
4728 goto err_dma_map;
4729 }
4730 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4731 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4732 (uchar *)&phy_addr, 1);
4733 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4734 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4735 (uchar *)&phy_size, 1);
4736
4737 asc_dvc->cfg->mcode_date =
4738 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4739 asc_dvc->cfg->mcode_version =
4740 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4741
4742 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4743 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4744 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4745 warn_code = UW_ERR;
4746 goto err_mcode_start;
4747 }
4748 if (AscStartChip(iop_base) != 1) {
4749 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4750 warn_code = UW_ERR;
4751 goto err_mcode_start;
4752 }
4753
4754 return warn_code;
4755
4756 err_mcode_start:
4757 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4758 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4759 err_dma_map:
4760 asc_dvc->overrun_dma = 0;
4761 return warn_code;
4762 }
4763
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4764 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4765 {
4766 const struct firmware *fw;
4767 const char fwname[] = "advansys/mcode.bin";
4768 int err;
4769 unsigned long chksum;
4770 ushort warn_code;
4771 PortAddr iop_base;
4772
4773 iop_base = asc_dvc->iop_base;
4774 warn_code = 0;
4775 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4776 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4777 AscResetChipAndScsiBus(asc_dvc);
4778 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4779 }
4780 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4781 if (asc_dvc->err_code != 0)
4782 return UW_ERR;
4783 if (!AscFindSignature(asc_dvc->iop_base)) {
4784 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4785 return warn_code;
4786 }
4787 AscDisableInterrupt(iop_base);
4788 warn_code |= AscInitLram(asc_dvc);
4789 if (asc_dvc->err_code != 0)
4790 return UW_ERR;
4791
4792 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4793 if (err) {
4794 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4795 fwname, err);
4796 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4797 return err;
4798 }
4799 if (fw->size < 4) {
4800 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4801 fw->size, fwname);
4802 release_firmware(fw);
4803 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4804 return -EINVAL;
4805 }
4806 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4807 (fw->data[1] << 8) | fw->data[0];
4808 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4809 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4810 fw->size - 4) != chksum) {
4811 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4812 release_firmware(fw);
4813 return warn_code;
4814 }
4815 release_firmware(fw);
4816 warn_code |= AscInitMicroCodeVar(asc_dvc);
4817 if (!asc_dvc->overrun_dma)
4818 return warn_code;
4819 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4820 AscEnableInterrupt(iop_base);
4821 return warn_code;
4822 }
4823
4824 /*
4825 * Load the Microcode
4826 *
4827 * Write the microcode image to RISC memory starting at address 0.
4828 *
4829 * The microcode is stored compressed in the following format:
4830 *
4831 * 254 word (508 byte) table indexed by byte code followed
4832 * by the following byte codes:
4833 *
4834 * 1-Byte Code:
4835 * 00: Emit word 0 in table.
4836 * 01: Emit word 1 in table.
4837 * .
4838 * FD: Emit word 253 in table.
4839 *
4840 * Multi-Byte Code:
4841 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4842 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4843 *
4844 * Returns 0 or an error if the checksum doesn't match
4845 */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4846 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4847 int size, int memsize, int chksum)
4848 {
4849 int i, j, end, len = 0;
4850 ADV_DCNT sum;
4851
4852 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4853
4854 for (i = 253 * 2; i < size; i++) {
4855 if (buf[i] == 0xff) {
4856 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4857 for (j = 0; j < buf[i + 1]; j++) {
4858 AdvWriteWordAutoIncLram(iop_base, word);
4859 len += 2;
4860 }
4861 i += 3;
4862 } else if (buf[i] == 0xfe) {
4863 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4864 AdvWriteWordAutoIncLram(iop_base, word);
4865 i += 2;
4866 len += 2;
4867 } else {
4868 unsigned int off = buf[i] * 2;
4869 unsigned short word = (buf[off + 1] << 8) | buf[off];
4870 AdvWriteWordAutoIncLram(iop_base, word);
4871 len += 2;
4872 }
4873 }
4874
4875 end = len;
4876
4877 while (len < memsize) {
4878 AdvWriteWordAutoIncLram(iop_base, 0);
4879 len += 2;
4880 }
4881
4882 /* Verify the microcode checksum. */
4883 sum = 0;
4884 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4885
4886 for (len = 0; len < end; len += 2) {
4887 sum += AdvReadWordAutoIncLram(iop_base);
4888 }
4889
4890 if (sum != chksum)
4891 return ASC_IERR_MCODE_CHKSUM;
4892
4893 return 0;
4894 }
4895
AdvBuildCarrierFreelist(struct adv_dvc_var * asc_dvc)4896 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4897 {
4898 ADV_CARR_T *carrp;
4899 ADV_SDCNT buf_size;
4900 ADV_PADDR carr_paddr;
4901
4902 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4903 asc_dvc->carr_freelist = NULL;
4904 if (carrp == asc_dvc->carrier_buf) {
4905 buf_size = ADV_CARRIER_BUFSIZE;
4906 } else {
4907 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4908 }
4909
4910 do {
4911 /* Get physical address of the carrier 'carrp'. */
4912 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4913
4914 buf_size -= sizeof(ADV_CARR_T);
4915
4916 carrp->carr_pa = carr_paddr;
4917 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4918
4919 /*
4920 * Insert the carrier at the beginning of the freelist.
4921 */
4922 carrp->next_vpa =
4923 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4924 asc_dvc->carr_freelist = carrp;
4925
4926 carrp++;
4927 } while (buf_size > 0);
4928 }
4929
4930 /*
4931 * Send an idle command to the chip and wait for completion.
4932 *
4933 * Command completion is polled for once per microsecond.
4934 *
4935 * The function can be called from anywhere including an interrupt handler.
4936 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4937 * functions to prevent reentrancy.
4938 *
4939 * Return Values:
4940 * ADV_TRUE - command completed successfully
4941 * ADV_FALSE - command failed
4942 * ADV_ERROR - command timed out
4943 */
4944 static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,ADV_DCNT idle_cmd_parameter)4945 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4946 ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4947 {
4948 int result;
4949 ADV_DCNT i, j;
4950 AdvPortAddr iop_base;
4951
4952 iop_base = asc_dvc->iop_base;
4953
4954 /*
4955 * Clear the idle command status which is set by the microcode
4956 * to a non-zero value to indicate when the command is completed.
4957 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4958 */
4959 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4960
4961 /*
4962 * Write the idle command value after the idle command parameter
4963 * has been written to avoid a race condition. If the order is not
4964 * followed, the microcode may process the idle command before the
4965 * parameters have been written to LRAM.
4966 */
4967 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4968 cpu_to_le32(idle_cmd_parameter));
4969 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4970
4971 /*
4972 * Tickle the RISC to tell it to process the idle command.
4973 */
4974 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4975 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4976 /*
4977 * Clear the tickle value. In the ASC-3550 the RISC flag
4978 * command 'clr_tickle_b' does not work unless the host
4979 * value is cleared.
4980 */
4981 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4982 }
4983
4984 /* Wait for up to 100 millisecond for the idle command to timeout. */
4985 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4986 /* Poll once each microsecond for command completion. */
4987 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4988 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4989 result);
4990 if (result != 0)
4991 return result;
4992 udelay(1);
4993 }
4994 }
4995
4996 BUG(); /* The idle command should never timeout. */
4997 return ADV_ERROR;
4998 }
4999
5000 /*
5001 * Reset SCSI Bus and purge all outstanding requests.
5002 *
5003 * Return Value:
5004 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
5005 * ADV_FALSE(0) - Microcode command failed.
5006 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5007 * may be hung which requires driver recovery.
5008 */
AdvResetSB(ADV_DVC_VAR * asc_dvc)5009 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
5010 {
5011 int status;
5012
5013 /*
5014 * Send the SCSI Bus Reset idle start idle command which asserts
5015 * the SCSI Bus Reset signal.
5016 */
5017 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5018 if (status != ADV_TRUE) {
5019 return status;
5020 }
5021
5022 /*
5023 * Delay for the specified SCSI Bus Reset hold time.
5024 *
5025 * The hold time delay is done on the host because the RISC has no
5026 * microsecond accurate timer.
5027 */
5028 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5029
5030 /*
5031 * Send the SCSI Bus Reset end idle command which de-asserts
5032 * the SCSI Bus Reset signal and purges any pending requests.
5033 */
5034 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5035 if (status != ADV_TRUE) {
5036 return status;
5037 }
5038
5039 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
5040
5041 return status;
5042 }
5043
5044 /*
5045 * Initialize the ASC-3550.
5046 *
5047 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5048 *
5049 * For a non-fatal error return a warning code. If there are no warnings
5050 * then 0 is returned.
5051 *
5052 * Needed after initialization for error recovery.
5053 */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)5054 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5055 {
5056 const struct firmware *fw;
5057 const char fwname[] = "advansys/3550.bin";
5058 AdvPortAddr iop_base;
5059 ushort warn_code;
5060 int begin_addr;
5061 int end_addr;
5062 ushort code_sum;
5063 int word;
5064 int i;
5065 int err;
5066 unsigned long chksum;
5067 ushort scsi_cfg1;
5068 uchar tid;
5069 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5070 ushort wdtr_able = 0, sdtr_able, tagqng_able;
5071 uchar max_cmd[ADV_MAX_TID + 1];
5072
5073 /* If there is already an error, don't continue. */
5074 if (asc_dvc->err_code != 0)
5075 return ADV_ERROR;
5076
5077 /*
5078 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5079 */
5080 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5081 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5082 return ADV_ERROR;
5083 }
5084
5085 warn_code = 0;
5086 iop_base = asc_dvc->iop_base;
5087
5088 /*
5089 * Save the RISC memory BIOS region before writing the microcode.
5090 * The BIOS may already be loaded and using its RISC LRAM region
5091 * so its region must be saved and restored.
5092 *
5093 * Note: This code makes the assumption, which is currently true,
5094 * that a chip reset does not clear RISC LRAM.
5095 */
5096 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5097 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5098 bios_mem[i]);
5099 }
5100
5101 /*
5102 * Save current per TID negotiated values.
5103 */
5104 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5105 ushort bios_version, major, minor;
5106
5107 bios_version =
5108 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5109 major = (bios_version >> 12) & 0xF;
5110 minor = (bios_version >> 8) & 0xF;
5111 if (major < 3 || (major == 3 && minor == 1)) {
5112 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5113 AdvReadWordLram(iop_base, 0x120, wdtr_able);
5114 } else {
5115 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5116 }
5117 }
5118 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5119 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5120 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5121 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5122 max_cmd[tid]);
5123 }
5124
5125 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5126 if (err) {
5127 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5128 fwname, err);
5129 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5130 return err;
5131 }
5132 if (fw->size < 4) {
5133 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5134 fw->size, fwname);
5135 release_firmware(fw);
5136 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5137 return -EINVAL;
5138 }
5139 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5140 (fw->data[1] << 8) | fw->data[0];
5141 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5142 fw->size - 4, ADV_3550_MEMSIZE,
5143 chksum);
5144 release_firmware(fw);
5145 if (asc_dvc->err_code)
5146 return ADV_ERROR;
5147
5148 /*
5149 * Restore the RISC memory BIOS region.
5150 */
5151 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5152 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5153 bios_mem[i]);
5154 }
5155
5156 /*
5157 * Calculate and write the microcode code checksum to the microcode
5158 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5159 */
5160 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5161 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5162 code_sum = 0;
5163 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5164 for (word = begin_addr; word < end_addr; word += 2) {
5165 code_sum += AdvReadWordAutoIncLram(iop_base);
5166 }
5167 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5168
5169 /*
5170 * Read and save microcode version and date.
5171 */
5172 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5173 asc_dvc->cfg->mcode_date);
5174 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5175 asc_dvc->cfg->mcode_version);
5176
5177 /*
5178 * Set the chip type to indicate the ASC3550.
5179 */
5180 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5181
5182 /*
5183 * If the PCI Configuration Command Register "Parity Error Response
5184 * Control" Bit was clear (0), then set the microcode variable
5185 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5186 * to ignore DMA parity errors.
5187 */
5188 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5189 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5190 word |= CONTROL_FLAG_IGNORE_PERR;
5191 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5192 }
5193
5194 /*
5195 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5196 * threshold of 128 bytes. This register is only accessible to the host.
5197 */
5198 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5199 START_CTL_EMFU | READ_CMD_MRM);
5200
5201 /*
5202 * Microcode operating variables for WDTR, SDTR, and command tag
5203 * queuing will be set in slave_configure() based on what a
5204 * device reports it is capable of in Inquiry byte 7.
5205 *
5206 * If SCSI Bus Resets have been disabled, then directly set
5207 * SDTR and WDTR from the EEPROM configuration. This will allow
5208 * the BIOS and warm boot to work without a SCSI bus hang on
5209 * the Inquiry caused by host and target mismatched DTR values.
5210 * Without the SCSI Bus Reset, before an Inquiry a device can't
5211 * be assumed to be in Asynchronous, Narrow mode.
5212 */
5213 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5214 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5215 asc_dvc->wdtr_able);
5216 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5217 asc_dvc->sdtr_able);
5218 }
5219
5220 /*
5221 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5222 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5223 * bitmask. These values determine the maximum SDTR speed negotiated
5224 * with a device.
5225 *
5226 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5227 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5228 * without determining here whether the device supports SDTR.
5229 *
5230 * 4-bit speed SDTR speed name
5231 * =========== ===============
5232 * 0000b (0x0) SDTR disabled
5233 * 0001b (0x1) 5 Mhz
5234 * 0010b (0x2) 10 Mhz
5235 * 0011b (0x3) 20 Mhz (Ultra)
5236 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5237 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5238 * 0110b (0x6) Undefined
5239 * .
5240 * 1111b (0xF) Undefined
5241 */
5242 word = 0;
5243 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5244 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5245 /* Set Ultra speed for TID 'tid'. */
5246 word |= (0x3 << (4 * (tid % 4)));
5247 } else {
5248 /* Set Fast speed for TID 'tid'. */
5249 word |= (0x2 << (4 * (tid % 4)));
5250 }
5251 if (tid == 3) { /* Check if done with sdtr_speed1. */
5252 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5253 word = 0;
5254 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
5255 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5256 word = 0;
5257 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5258 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5259 word = 0;
5260 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5261 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5262 /* End of loop. */
5263 }
5264 }
5265
5266 /*
5267 * Set microcode operating variable for the disconnect per TID bitmask.
5268 */
5269 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5270 asc_dvc->cfg->disc_enable);
5271
5272 /*
5273 * Set SCSI_CFG0 Microcode Default Value.
5274 *
5275 * The microcode will set the SCSI_CFG0 register using this value
5276 * after it is started below.
5277 */
5278 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5279 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5280 asc_dvc->chip_scsi_id);
5281
5282 /*
5283 * Determine SCSI_CFG1 Microcode Default Value.
5284 *
5285 * The microcode will set the SCSI_CFG1 register using this value
5286 * after it is started below.
5287 */
5288
5289 /* Read current SCSI_CFG1 Register value. */
5290 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5291
5292 /*
5293 * If all three connectors are in use, return an error.
5294 */
5295 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5296 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5297 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5298 return ADV_ERROR;
5299 }
5300
5301 /*
5302 * If the internal narrow cable is reversed all of the SCSI_CTRL
5303 * register signals will be set. Check for and return an error if
5304 * this condition is found.
5305 */
5306 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5307 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5308 return ADV_ERROR;
5309 }
5310
5311 /*
5312 * If this is a differential board and a single-ended device
5313 * is attached to one of the connectors, return an error.
5314 */
5315 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5316 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5317 return ADV_ERROR;
5318 }
5319
5320 /*
5321 * If automatic termination control is enabled, then set the
5322 * termination value based on a table listed in a_condor.h.
5323 *
5324 * If manual termination was specified with an EEPROM setting
5325 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5326 * is ready to be 'ored' into SCSI_CFG1.
5327 */
5328 if (asc_dvc->cfg->termination == 0) {
5329 /*
5330 * The software always controls termination by setting TERM_CTL_SEL.
5331 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5332 */
5333 asc_dvc->cfg->termination |= TERM_CTL_SEL;
5334
5335 switch (scsi_cfg1 & CABLE_DETECT) {
5336 /* TERM_CTL_H: on, TERM_CTL_L: on */
5337 case 0x3:
5338 case 0x7:
5339 case 0xB:
5340 case 0xD:
5341 case 0xE:
5342 case 0xF:
5343 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5344 break;
5345
5346 /* TERM_CTL_H: on, TERM_CTL_L: off */
5347 case 0x1:
5348 case 0x5:
5349 case 0x9:
5350 case 0xA:
5351 case 0xC:
5352 asc_dvc->cfg->termination |= TERM_CTL_H;
5353 break;
5354
5355 /* TERM_CTL_H: off, TERM_CTL_L: off */
5356 case 0x2:
5357 case 0x6:
5358 break;
5359 }
5360 }
5361
5362 /*
5363 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5364 */
5365 scsi_cfg1 &= ~TERM_CTL;
5366
5367 /*
5368 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5369 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5370 * referenced, because the hardware internally inverts
5371 * the Termination High and Low bits if TERM_POL is set.
5372 */
5373 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5374
5375 /*
5376 * Set SCSI_CFG1 Microcode Default Value
5377 *
5378 * Set filter value and possibly modified termination control
5379 * bits in the Microcode SCSI_CFG1 Register Value.
5380 *
5381 * The microcode will set the SCSI_CFG1 register using this value
5382 * after it is started below.
5383 */
5384 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5385 FLTR_DISABLE | scsi_cfg1);
5386
5387 /*
5388 * Set MEM_CFG Microcode Default Value
5389 *
5390 * The microcode will set the MEM_CFG register using this value
5391 * after it is started below.
5392 *
5393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5394 * are defined.
5395 *
5396 * ASC-3550 has 8KB internal memory.
5397 */
5398 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5399 BIOS_EN | RAM_SZ_8KB);
5400
5401 /*
5402 * Set SEL_MASK Microcode Default Value
5403 *
5404 * The microcode will set the SEL_MASK register using this value
5405 * after it is started below.
5406 */
5407 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5408 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5409
5410 AdvBuildCarrierFreelist(asc_dvc);
5411
5412 /*
5413 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5414 */
5415
5416 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5417 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5418 return ADV_ERROR;
5419 }
5420 asc_dvc->carr_freelist = (ADV_CARR_T *)
5421 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5422
5423 /*
5424 * The first command issued will be placed in the stopper carrier.
5425 */
5426 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5427
5428 /*
5429 * Set RISC ICQ physical address start value.
5430 */
5431 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5432
5433 /*
5434 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5435 */
5436 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5437 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5438 return ADV_ERROR;
5439 }
5440 asc_dvc->carr_freelist = (ADV_CARR_T *)
5441 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5442
5443 /*
5444 * The first command completed by the RISC will be placed in
5445 * the stopper.
5446 *
5447 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5448 * completed the RISC will set the ASC_RQ_STOPPER bit.
5449 */
5450 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5451
5452 /*
5453 * Set RISC IRQ physical address start value.
5454 */
5455 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5456 asc_dvc->carr_pending_cnt = 0;
5457
5458 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5459 (ADV_INTR_ENABLE_HOST_INTR |
5460 ADV_INTR_ENABLE_GLOBAL_INTR));
5461
5462 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5463 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5464
5465 /* finally, finally, gentlemen, start your engine */
5466 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5467
5468 /*
5469 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5470 * Resets should be performed. The RISC has to be running
5471 * to issue a SCSI Bus Reset.
5472 */
5473 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5474 /*
5475 * If the BIOS Signature is present in memory, restore the
5476 * BIOS Handshake Configuration Table and do not perform
5477 * a SCSI Bus Reset.
5478 */
5479 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5480 0x55AA) {
5481 /*
5482 * Restore per TID negotiated values.
5483 */
5484 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5485 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5486 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5487 tagqng_able);
5488 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5489 AdvWriteByteLram(iop_base,
5490 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5491 max_cmd[tid]);
5492 }
5493 } else {
5494 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5495 warn_code = ASC_WARN_BUSRESET_ERROR;
5496 }
5497 }
5498 }
5499
5500 return warn_code;
5501 }
5502
5503 /*
5504 * Initialize the ASC-38C0800.
5505 *
5506 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5507 *
5508 * For a non-fatal error return a warning code. If there are no warnings
5509 * then 0 is returned.
5510 *
5511 * Needed after initialization for error recovery.
5512 */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)5513 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5514 {
5515 const struct firmware *fw;
5516 const char fwname[] = "advansys/38C0800.bin";
5517 AdvPortAddr iop_base;
5518 ushort warn_code;
5519 int begin_addr;
5520 int end_addr;
5521 ushort code_sum;
5522 int word;
5523 int i;
5524 int err;
5525 unsigned long chksum;
5526 ushort scsi_cfg1;
5527 uchar byte;
5528 uchar tid;
5529 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5530 ushort wdtr_able, sdtr_able, tagqng_able;
5531 uchar max_cmd[ADV_MAX_TID + 1];
5532
5533 /* If there is already an error, don't continue. */
5534 if (asc_dvc->err_code != 0)
5535 return ADV_ERROR;
5536
5537 /*
5538 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5539 */
5540 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5541 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5542 return ADV_ERROR;
5543 }
5544
5545 warn_code = 0;
5546 iop_base = asc_dvc->iop_base;
5547
5548 /*
5549 * Save the RISC memory BIOS region before writing the microcode.
5550 * The BIOS may already be loaded and using its RISC LRAM region
5551 * so its region must be saved and restored.
5552 *
5553 * Note: This code makes the assumption, which is currently true,
5554 * that a chip reset does not clear RISC LRAM.
5555 */
5556 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5557 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5558 bios_mem[i]);
5559 }
5560
5561 /*
5562 * Save current per TID negotiated values.
5563 */
5564 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5565 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5566 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5567 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5568 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5569 max_cmd[tid]);
5570 }
5571
5572 /*
5573 * RAM BIST (RAM Built-In Self Test)
5574 *
5575 * Address : I/O base + offset 0x38h register (byte).
5576 * Function: Bit 7-6(RW) : RAM mode
5577 * Normal Mode : 0x00
5578 * Pre-test Mode : 0x40
5579 * RAM Test Mode : 0x80
5580 * Bit 5 : unused
5581 * Bit 4(RO) : Done bit
5582 * Bit 3-0(RO) : Status
5583 * Host Error : 0x08
5584 * Int_RAM Error : 0x04
5585 * RISC Error : 0x02
5586 * SCSI Error : 0x01
5587 * No Error : 0x00
5588 *
5589 * Note: RAM BIST code should be put right here, before loading the
5590 * microcode and after saving the RISC memory BIOS region.
5591 */
5592
5593 /*
5594 * LRAM Pre-test
5595 *
5596 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5597 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5598 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5599 * to NORMAL_MODE, return an error too.
5600 */
5601 for (i = 0; i < 2; i++) {
5602 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5603 mdelay(10); /* Wait for 10ms before reading back. */
5604 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5605 if ((byte & RAM_TEST_DONE) == 0
5606 || (byte & 0x0F) != PRE_TEST_VALUE) {
5607 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5608 return ADV_ERROR;
5609 }
5610
5611 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5612 mdelay(10); /* Wait for 10ms before reading back. */
5613 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5614 != NORMAL_VALUE) {
5615 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5616 return ADV_ERROR;
5617 }
5618 }
5619
5620 /*
5621 * LRAM Test - It takes about 1.5 ms to run through the test.
5622 *
5623 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5624 * If Done bit not set or Status not 0, save register byte, set the
5625 * err_code, and return an error.
5626 */
5627 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5628 mdelay(10); /* Wait for 10ms before checking status. */
5629
5630 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5631 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5632 /* Get here if Done bit not set or Status not 0. */
5633 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5634 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5635 return ADV_ERROR;
5636 }
5637
5638 /* We need to reset back to normal mode after LRAM test passes. */
5639 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5640
5641 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5642 if (err) {
5643 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5644 fwname, err);
5645 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5646 return err;
5647 }
5648 if (fw->size < 4) {
5649 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5650 fw->size, fwname);
5651 release_firmware(fw);
5652 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5653 return -EINVAL;
5654 }
5655 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5656 (fw->data[1] << 8) | fw->data[0];
5657 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5658 fw->size - 4, ADV_38C0800_MEMSIZE,
5659 chksum);
5660 release_firmware(fw);
5661 if (asc_dvc->err_code)
5662 return ADV_ERROR;
5663
5664 /*
5665 * Restore the RISC memory BIOS region.
5666 */
5667 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5668 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5669 bios_mem[i]);
5670 }
5671
5672 /*
5673 * Calculate and write the microcode code checksum to the microcode
5674 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5675 */
5676 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5677 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5678 code_sum = 0;
5679 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5680 for (word = begin_addr; word < end_addr; word += 2) {
5681 code_sum += AdvReadWordAutoIncLram(iop_base);
5682 }
5683 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5684
5685 /*
5686 * Read microcode version and date.
5687 */
5688 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5689 asc_dvc->cfg->mcode_date);
5690 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5691 asc_dvc->cfg->mcode_version);
5692
5693 /*
5694 * Set the chip type to indicate the ASC38C0800.
5695 */
5696 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5697
5698 /*
5699 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5700 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5701 * cable detection and then we are able to read C_DET[3:0].
5702 *
5703 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5704 * Microcode Default Value' section below.
5705 */
5706 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5707 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5708 scsi_cfg1 | DIS_TERM_DRV);
5709
5710 /*
5711 * If the PCI Configuration Command Register "Parity Error Response
5712 * Control" Bit was clear (0), then set the microcode variable
5713 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5714 * to ignore DMA parity errors.
5715 */
5716 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5717 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5718 word |= CONTROL_FLAG_IGNORE_PERR;
5719 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5720 }
5721
5722 /*
5723 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5724 * bits for the default FIFO threshold.
5725 *
5726 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5727 *
5728 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5729 */
5730 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5731 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5732 READ_CMD_MRM);
5733
5734 /*
5735 * Microcode operating variables for WDTR, SDTR, and command tag
5736 * queuing will be set in slave_configure() based on what a
5737 * device reports it is capable of in Inquiry byte 7.
5738 *
5739 * If SCSI Bus Resets have been disabled, then directly set
5740 * SDTR and WDTR from the EEPROM configuration. This will allow
5741 * the BIOS and warm boot to work without a SCSI bus hang on
5742 * the Inquiry caused by host and target mismatched DTR values.
5743 * Without the SCSI Bus Reset, before an Inquiry a device can't
5744 * be assumed to be in Asynchronous, Narrow mode.
5745 */
5746 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5747 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5748 asc_dvc->wdtr_able);
5749 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5750 asc_dvc->sdtr_able);
5751 }
5752
5753 /*
5754 * Set microcode operating variables for DISC and SDTR_SPEED1,
5755 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5756 * configuration values.
5757 *
5758 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5759 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5760 * without determining here whether the device supports SDTR.
5761 */
5762 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5763 asc_dvc->cfg->disc_enable);
5764 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5766 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5767 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5768
5769 /*
5770 * Set SCSI_CFG0 Microcode Default Value.
5771 *
5772 * The microcode will set the SCSI_CFG0 register using this value
5773 * after it is started below.
5774 */
5775 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5776 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5777 asc_dvc->chip_scsi_id);
5778
5779 /*
5780 * Determine SCSI_CFG1 Microcode Default Value.
5781 *
5782 * The microcode will set the SCSI_CFG1 register using this value
5783 * after it is started below.
5784 */
5785
5786 /* Read current SCSI_CFG1 Register value. */
5787 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5788
5789 /*
5790 * If the internal narrow cable is reversed all of the SCSI_CTRL
5791 * register signals will be set. Check for and return an error if
5792 * this condition is found.
5793 */
5794 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5795 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5796 return ADV_ERROR;
5797 }
5798
5799 /*
5800 * All kind of combinations of devices attached to one of four
5801 * connectors are acceptable except HVD device attached. For example,
5802 * LVD device can be attached to SE connector while SE device attached
5803 * to LVD connector. If LVD device attached to SE connector, it only
5804 * runs up to Ultra speed.
5805 *
5806 * If an HVD device is attached to one of LVD connectors, return an
5807 * error. However, there is no way to detect HVD device attached to
5808 * SE connectors.
5809 */
5810 if (scsi_cfg1 & HVD) {
5811 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5812 return ADV_ERROR;
5813 }
5814
5815 /*
5816 * If either SE or LVD automatic termination control is enabled, then
5817 * set the termination value based on a table listed in a_condor.h.
5818 *
5819 * If manual termination was specified with an EEPROM setting then
5820 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5821 * to be 'ored' into SCSI_CFG1.
5822 */
5823 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5824 /* SE automatic termination control is enabled. */
5825 switch (scsi_cfg1 & C_DET_SE) {
5826 /* TERM_SE_HI: on, TERM_SE_LO: on */
5827 case 0x1:
5828 case 0x2:
5829 case 0x3:
5830 asc_dvc->cfg->termination |= TERM_SE;
5831 break;
5832
5833 /* TERM_SE_HI: on, TERM_SE_LO: off */
5834 case 0x0:
5835 asc_dvc->cfg->termination |= TERM_SE_HI;
5836 break;
5837 }
5838 }
5839
5840 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5841 /* LVD automatic termination control is enabled. */
5842 switch (scsi_cfg1 & C_DET_LVD) {
5843 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5844 case 0x4:
5845 case 0x8:
5846 case 0xC:
5847 asc_dvc->cfg->termination |= TERM_LVD;
5848 break;
5849
5850 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5851 case 0x0:
5852 break;
5853 }
5854 }
5855
5856 /*
5857 * Clear any set TERM_SE and TERM_LVD bits.
5858 */
5859 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5860
5861 /*
5862 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5863 */
5864 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5865
5866 /*
5867 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5868 * bits and set possibly modified termination control bits in the
5869 * Microcode SCSI_CFG1 Register Value.
5870 */
5871 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5872
5873 /*
5874 * Set SCSI_CFG1 Microcode Default Value
5875 *
5876 * Set possibly modified termination control and reset DIS_TERM_DRV
5877 * bits in the Microcode SCSI_CFG1 Register Value.
5878 *
5879 * The microcode will set the SCSI_CFG1 register using this value
5880 * after it is started below.
5881 */
5882 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5883
5884 /*
5885 * Set MEM_CFG Microcode Default Value
5886 *
5887 * The microcode will set the MEM_CFG register using this value
5888 * after it is started below.
5889 *
5890 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5891 * are defined.
5892 *
5893 * ASC-38C0800 has 16KB internal memory.
5894 */
5895 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5896 BIOS_EN | RAM_SZ_16KB);
5897
5898 /*
5899 * Set SEL_MASK Microcode Default Value
5900 *
5901 * The microcode will set the SEL_MASK register using this value
5902 * after it is started below.
5903 */
5904 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5905 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5906
5907 AdvBuildCarrierFreelist(asc_dvc);
5908
5909 /*
5910 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5911 */
5912
5913 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5914 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5915 return ADV_ERROR;
5916 }
5917 asc_dvc->carr_freelist = (ADV_CARR_T *)
5918 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5919
5920 /*
5921 * The first command issued will be placed in the stopper carrier.
5922 */
5923 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5924
5925 /*
5926 * Set RISC ICQ physical address start value.
5927 * carr_pa is LE, must be native before write
5928 */
5929 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930
5931 /*
5932 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5933 */
5934 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5935 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5936 return ADV_ERROR;
5937 }
5938 asc_dvc->carr_freelist = (ADV_CARR_T *)
5939 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5940
5941 /*
5942 * The first command completed by the RISC will be placed in
5943 * the stopper.
5944 *
5945 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5946 * completed the RISC will set the ASC_RQ_STOPPER bit.
5947 */
5948 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5949
5950 /*
5951 * Set RISC IRQ physical address start value.
5952 *
5953 * carr_pa is LE, must be native before write *
5954 */
5955 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956 asc_dvc->carr_pending_cnt = 0;
5957
5958 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5959 (ADV_INTR_ENABLE_HOST_INTR |
5960 ADV_INTR_ENABLE_GLOBAL_INTR));
5961
5962 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5963 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5964
5965 /* finally, finally, gentlemen, start your engine */
5966 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5967
5968 /*
5969 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5970 * Resets should be performed. The RISC has to be running
5971 * to issue a SCSI Bus Reset.
5972 */
5973 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5974 /*
5975 * If the BIOS Signature is present in memory, restore the
5976 * BIOS Handshake Configuration Table and do not perform
5977 * a SCSI Bus Reset.
5978 */
5979 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5980 0x55AA) {
5981 /*
5982 * Restore per TID negotiated values.
5983 */
5984 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5985 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5986 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5987 tagqng_able);
5988 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5989 AdvWriteByteLram(iop_base,
5990 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5991 max_cmd[tid]);
5992 }
5993 } else {
5994 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5995 warn_code = ASC_WARN_BUSRESET_ERROR;
5996 }
5997 }
5998 }
5999
6000 return warn_code;
6001 }
6002
6003 /*
6004 * Initialize the ASC-38C1600.
6005 *
6006 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6007 *
6008 * For a non-fatal error return a warning code. If there are no warnings
6009 * then 0 is returned.
6010 *
6011 * Needed after initialization for error recovery.
6012 */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)6013 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
6014 {
6015 const struct firmware *fw;
6016 const char fwname[] = "advansys/38C1600.bin";
6017 AdvPortAddr iop_base;
6018 ushort warn_code;
6019 int begin_addr;
6020 int end_addr;
6021 ushort code_sum;
6022 long word;
6023 int i;
6024 int err;
6025 unsigned long chksum;
6026 ushort scsi_cfg1;
6027 uchar byte;
6028 uchar tid;
6029 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
6030 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6031 uchar max_cmd[ASC_MAX_TID + 1];
6032
6033 /* If there is already an error, don't continue. */
6034 if (asc_dvc->err_code != 0) {
6035 return ADV_ERROR;
6036 }
6037
6038 /*
6039 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6040 */
6041 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6042 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6043 return ADV_ERROR;
6044 }
6045
6046 warn_code = 0;
6047 iop_base = asc_dvc->iop_base;
6048
6049 /*
6050 * Save the RISC memory BIOS region before writing the microcode.
6051 * The BIOS may already be loaded and using its RISC LRAM region
6052 * so its region must be saved and restored.
6053 *
6054 * Note: This code makes the assumption, which is currently true,
6055 * that a chip reset does not clear RISC LRAM.
6056 */
6057 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6058 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6059 bios_mem[i]);
6060 }
6061
6062 /*
6063 * Save current per TID negotiated values.
6064 */
6065 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6066 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6067 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6068 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6069 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6070 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6071 max_cmd[tid]);
6072 }
6073
6074 /*
6075 * RAM BIST (Built-In Self Test)
6076 *
6077 * Address : I/O base + offset 0x38h register (byte).
6078 * Function: Bit 7-6(RW) : RAM mode
6079 * Normal Mode : 0x00
6080 * Pre-test Mode : 0x40
6081 * RAM Test Mode : 0x80
6082 * Bit 5 : unused
6083 * Bit 4(RO) : Done bit
6084 * Bit 3-0(RO) : Status
6085 * Host Error : 0x08
6086 * Int_RAM Error : 0x04
6087 * RISC Error : 0x02
6088 * SCSI Error : 0x01
6089 * No Error : 0x00
6090 *
6091 * Note: RAM BIST code should be put right here, before loading the
6092 * microcode and after saving the RISC memory BIOS region.
6093 */
6094
6095 /*
6096 * LRAM Pre-test
6097 *
6098 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6099 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6100 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6101 * to NORMAL_MODE, return an error too.
6102 */
6103 for (i = 0; i < 2; i++) {
6104 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6105 mdelay(10); /* Wait for 10ms before reading back. */
6106 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6107 if ((byte & RAM_TEST_DONE) == 0
6108 || (byte & 0x0F) != PRE_TEST_VALUE) {
6109 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6110 return ADV_ERROR;
6111 }
6112
6113 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6114 mdelay(10); /* Wait for 10ms before reading back. */
6115 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6116 != NORMAL_VALUE) {
6117 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6118 return ADV_ERROR;
6119 }
6120 }
6121
6122 /*
6123 * LRAM Test - It takes about 1.5 ms to run through the test.
6124 *
6125 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6126 * If Done bit not set or Status not 0, save register byte, set the
6127 * err_code, and return an error.
6128 */
6129 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6130 mdelay(10); /* Wait for 10ms before checking status. */
6131
6132 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6133 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6134 /* Get here if Done bit not set or Status not 0. */
6135 asc_dvc->bist_err_code = byte; /* for BIOS display message */
6136 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6137 return ADV_ERROR;
6138 }
6139
6140 /* We need to reset back to normal mode after LRAM test passes. */
6141 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6142
6143 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6144 if (err) {
6145 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6146 fwname, err);
6147 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6148 return err;
6149 }
6150 if (fw->size < 4) {
6151 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6152 fw->size, fwname);
6153 release_firmware(fw);
6154 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6155 return -EINVAL;
6156 }
6157 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6158 (fw->data[1] << 8) | fw->data[0];
6159 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6160 fw->size - 4, ADV_38C1600_MEMSIZE,
6161 chksum);
6162 release_firmware(fw);
6163 if (asc_dvc->err_code)
6164 return ADV_ERROR;
6165
6166 /*
6167 * Restore the RISC memory BIOS region.
6168 */
6169 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6170 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6171 bios_mem[i]);
6172 }
6173
6174 /*
6175 * Calculate and write the microcode code checksum to the microcode
6176 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6177 */
6178 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6179 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6180 code_sum = 0;
6181 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6182 for (word = begin_addr; word < end_addr; word += 2) {
6183 code_sum += AdvReadWordAutoIncLram(iop_base);
6184 }
6185 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6186
6187 /*
6188 * Read microcode version and date.
6189 */
6190 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6191 asc_dvc->cfg->mcode_date);
6192 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6193 asc_dvc->cfg->mcode_version);
6194
6195 /*
6196 * Set the chip type to indicate the ASC38C1600.
6197 */
6198 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6199
6200 /*
6201 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6202 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6203 * cable detection and then we are able to read C_DET[3:0].
6204 *
6205 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6206 * Microcode Default Value' section below.
6207 */
6208 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6209 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6210 scsi_cfg1 | DIS_TERM_DRV);
6211
6212 /*
6213 * If the PCI Configuration Command Register "Parity Error Response
6214 * Control" Bit was clear (0), then set the microcode variable
6215 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6216 * to ignore DMA parity errors.
6217 */
6218 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6219 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6220 word |= CONTROL_FLAG_IGNORE_PERR;
6221 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6222 }
6223
6224 /*
6225 * If the BIOS control flag AIPP (Asynchronous Information
6226 * Phase Protection) disable bit is not set, then set the firmware
6227 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6228 * AIPP checking and encoding.
6229 */
6230 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6231 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6232 word |= CONTROL_FLAG_ENABLE_AIPP;
6233 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6234 }
6235
6236 /*
6237 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6238 * and START_CTL_TH [3:2].
6239 */
6240 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6241 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6242
6243 /*
6244 * Microcode operating variables for WDTR, SDTR, and command tag
6245 * queuing will be set in slave_configure() based on what a
6246 * device reports it is capable of in Inquiry byte 7.
6247 *
6248 * If SCSI Bus Resets have been disabled, then directly set
6249 * SDTR and WDTR from the EEPROM configuration. This will allow
6250 * the BIOS and warm boot to work without a SCSI bus hang on
6251 * the Inquiry caused by host and target mismatched DTR values.
6252 * Without the SCSI Bus Reset, before an Inquiry a device can't
6253 * be assumed to be in Asynchronous, Narrow mode.
6254 */
6255 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6256 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6257 asc_dvc->wdtr_able);
6258 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6259 asc_dvc->sdtr_able);
6260 }
6261
6262 /*
6263 * Set microcode operating variables for DISC and SDTR_SPEED1,
6264 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6265 * configuration values.
6266 *
6267 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6268 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6269 * without determining here whether the device supports SDTR.
6270 */
6271 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6272 asc_dvc->cfg->disc_enable);
6273 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6274 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6275 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6276 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6277
6278 /*
6279 * Set SCSI_CFG0 Microcode Default Value.
6280 *
6281 * The microcode will set the SCSI_CFG0 register using this value
6282 * after it is started below.
6283 */
6284 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6285 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6286 asc_dvc->chip_scsi_id);
6287
6288 /*
6289 * Calculate SCSI_CFG1 Microcode Default Value.
6290 *
6291 * The microcode will set the SCSI_CFG1 register using this value
6292 * after it is started below.
6293 *
6294 * Each ASC-38C1600 function has only two cable detect bits.
6295 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6296 */
6297 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6298
6299 /*
6300 * If the cable is reversed all of the SCSI_CTRL register signals
6301 * will be set. Check for and return an error if this condition is
6302 * found.
6303 */
6304 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6305 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6306 return ADV_ERROR;
6307 }
6308
6309 /*
6310 * Each ASC-38C1600 function has two connectors. Only an HVD device
6311 * can not be connected to either connector. An LVD device or SE device
6312 * may be connected to either connecor. If an SE device is connected,
6313 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6314 *
6315 * If an HVD device is attached, return an error.
6316 */
6317 if (scsi_cfg1 & HVD) {
6318 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6319 return ADV_ERROR;
6320 }
6321
6322 /*
6323 * Each function in the ASC-38C1600 uses only the SE cable detect and
6324 * termination because there are two connectors for each function. Each
6325 * function may use either LVD or SE mode. Corresponding the SE automatic
6326 * termination control EEPROM bits are used for each function. Each
6327 * function has its own EEPROM. If SE automatic control is enabled for
6328 * the function, then set the termination value based on a table listed
6329 * in a_condor.h.
6330 *
6331 * If manual termination is specified in the EEPROM for the function,
6332 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6333 * ready to be 'ored' into SCSI_CFG1.
6334 */
6335 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6336 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6337 /* SE automatic termination control is enabled. */
6338 switch (scsi_cfg1 & C_DET_SE) {
6339 /* TERM_SE_HI: on, TERM_SE_LO: on */
6340 case 0x1:
6341 case 0x2:
6342 case 0x3:
6343 asc_dvc->cfg->termination |= TERM_SE;
6344 break;
6345
6346 case 0x0:
6347 if (PCI_FUNC(pdev->devfn) == 0) {
6348 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6349 } else {
6350 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6351 asc_dvc->cfg->termination |= TERM_SE_HI;
6352 }
6353 break;
6354 }
6355 }
6356
6357 /*
6358 * Clear any set TERM_SE bits.
6359 */
6360 scsi_cfg1 &= ~TERM_SE;
6361
6362 /*
6363 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6364 */
6365 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6366
6367 /*
6368 * Clear Big Endian and Terminator Polarity bits and set possibly
6369 * modified termination control bits in the Microcode SCSI_CFG1
6370 * Register Value.
6371 *
6372 * Big Endian bit is not used even on big endian machines.
6373 */
6374 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6375
6376 /*
6377 * Set SCSI_CFG1 Microcode Default Value
6378 *
6379 * Set possibly modified termination control bits in the Microcode
6380 * SCSI_CFG1 Register Value.
6381 *
6382 * The microcode will set the SCSI_CFG1 register using this value
6383 * after it is started below.
6384 */
6385 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6386
6387 /*
6388 * Set MEM_CFG Microcode Default Value
6389 *
6390 * The microcode will set the MEM_CFG register using this value
6391 * after it is started below.
6392 *
6393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6394 * are defined.
6395 *
6396 * ASC-38C1600 has 32KB internal memory.
6397 *
6398 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6399 * out a special 16K Adv Library and Microcode version. After the issue
6400 * resolved, we should turn back to the 32K support. Both a_condor.h and
6401 * mcode.sas files also need to be updated.
6402 *
6403 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6404 * BIOS_EN | RAM_SZ_32KB);
6405 */
6406 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6407 BIOS_EN | RAM_SZ_16KB);
6408
6409 /*
6410 * Set SEL_MASK Microcode Default Value
6411 *
6412 * The microcode will set the SEL_MASK register using this value
6413 * after it is started below.
6414 */
6415 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6416 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6417
6418 AdvBuildCarrierFreelist(asc_dvc);
6419
6420 /*
6421 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6422 */
6423 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6424 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6425 return ADV_ERROR;
6426 }
6427 asc_dvc->carr_freelist = (ADV_CARR_T *)
6428 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6429
6430 /*
6431 * The first command issued will be placed in the stopper carrier.
6432 */
6433 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6434
6435 /*
6436 * Set RISC ICQ physical address start value. Initialize the
6437 * COMMA register to the same value otherwise the RISC will
6438 * prematurely detect a command is available.
6439 */
6440 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6441 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6442 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6443
6444 /*
6445 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6446 */
6447 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6448 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6449 return ADV_ERROR;
6450 }
6451 asc_dvc->carr_freelist = (ADV_CARR_T *)
6452 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6453
6454 /*
6455 * The first command completed by the RISC will be placed in
6456 * the stopper.
6457 *
6458 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6459 * completed the RISC will set the ASC_RQ_STOPPER bit.
6460 */
6461 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6462
6463 /*
6464 * Set RISC IRQ physical address start value.
6465 */
6466 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6467 asc_dvc->carr_pending_cnt = 0;
6468
6469 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6470 (ADV_INTR_ENABLE_HOST_INTR |
6471 ADV_INTR_ENABLE_GLOBAL_INTR));
6472 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6473 AdvWriteWordRegister(iop_base, IOPW_PC, word);
6474
6475 /* finally, finally, gentlemen, start your engine */
6476 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6477
6478 /*
6479 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6480 * Resets should be performed. The RISC has to be running
6481 * to issue a SCSI Bus Reset.
6482 */
6483 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6484 /*
6485 * If the BIOS Signature is present in memory, restore the
6486 * per TID microcode operating variables.
6487 */
6488 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6489 0x55AA) {
6490 /*
6491 * Restore per TID negotiated values.
6492 */
6493 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6494 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6495 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6496 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6497 tagqng_able);
6498 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6499 AdvWriteByteLram(iop_base,
6500 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6501 max_cmd[tid]);
6502 }
6503 } else {
6504 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6505 warn_code = ASC_WARN_BUSRESET_ERROR;
6506 }
6507 }
6508 }
6509
6510 return warn_code;
6511 }
6512
6513 /*
6514 * Reset chip and SCSI Bus.
6515 *
6516 * Return Value:
6517 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6518 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6519 */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)6520 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6521 {
6522 int status;
6523 ushort wdtr_able, sdtr_able, tagqng_able;
6524 ushort ppr_able = 0;
6525 uchar tid, max_cmd[ADV_MAX_TID + 1];
6526 AdvPortAddr iop_base;
6527 ushort bios_sig;
6528
6529 iop_base = asc_dvc->iop_base;
6530
6531 /*
6532 * Save current per TID negotiated values.
6533 */
6534 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6535 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6536 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6537 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6538 }
6539 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6540 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6541 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6542 max_cmd[tid]);
6543 }
6544
6545 /*
6546 * Force the AdvInitAsc3550/38C0800Driver() function to
6547 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6548 * The initialization functions assumes a SCSI Bus Reset is not
6549 * needed if the BIOS signature word is present.
6550 */
6551 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6552 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6553
6554 /*
6555 * Stop chip and reset it.
6556 */
6557 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6558 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6559 mdelay(100);
6560 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6561 ADV_CTRL_REG_CMD_WR_IO_REG);
6562
6563 /*
6564 * Reset Adv Library error code, if any, and try
6565 * re-initializing the chip.
6566 */
6567 asc_dvc->err_code = 0;
6568 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6569 status = AdvInitAsc38C1600Driver(asc_dvc);
6570 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6571 status = AdvInitAsc38C0800Driver(asc_dvc);
6572 } else {
6573 status = AdvInitAsc3550Driver(asc_dvc);
6574 }
6575
6576 /* Translate initialization return value to status value. */
6577 if (status == 0) {
6578 status = ADV_TRUE;
6579 } else {
6580 status = ADV_FALSE;
6581 }
6582
6583 /*
6584 * Restore the BIOS signature word.
6585 */
6586 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6587
6588 /*
6589 * Restore per TID negotiated values.
6590 */
6591 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6592 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6593 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6594 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6595 }
6596 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6597 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6598 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6599 max_cmd[tid]);
6600 }
6601
6602 return status;
6603 }
6604
6605 /*
6606 * adv_async_callback() - Adv Library asynchronous event callback function.
6607 */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)6608 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6609 {
6610 switch (code) {
6611 case ADV_ASYNC_SCSI_BUS_RESET_DET:
6612 /*
6613 * The firmware detected a SCSI Bus reset.
6614 */
6615 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6616 break;
6617
6618 case ADV_ASYNC_RDMA_FAILURE:
6619 /*
6620 * Handle RDMA failure by resetting the SCSI Bus and
6621 * possibly the chip if it is unresponsive. Log the error
6622 * with a unique code.
6623 */
6624 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6625 AdvResetChipAndSB(adv_dvc_varp);
6626 break;
6627
6628 case ADV_HOST_SCSI_BUS_RESET:
6629 /*
6630 * Host generated SCSI bus reset occurred.
6631 */
6632 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6633 break;
6634
6635 default:
6636 ASC_DBG(0, "unknown code 0x%x\n", code);
6637 break;
6638 }
6639 }
6640
6641 /*
6642 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6643 *
6644 * Callback function for the Wide SCSI Adv Library.
6645 */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)6646 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6647 {
6648 struct asc_board *boardp;
6649 adv_req_t *reqp;
6650 adv_sgblk_t *sgblkp;
6651 struct scsi_cmnd *scp;
6652 struct Scsi_Host *shost;
6653 ADV_DCNT resid_cnt;
6654
6655 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6656 (ulong)adv_dvc_varp, (ulong)scsiqp);
6657 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6658
6659 /*
6660 * Get the adv_req_t structure for the command that has been
6661 * completed. The adv_req_t structure actually contains the
6662 * completed ADV_SCSI_REQ_Q structure.
6663 */
6664 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6665 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6666 if (reqp == NULL) {
6667 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6668 return;
6669 }
6670
6671 /*
6672 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6673 * command that has been completed.
6674 *
6675 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6676 * if any, are dropped, because a board structure pointer can not be
6677 * determined.
6678 */
6679 scp = reqp->cmndp;
6680 ASC_DBG(1, "scp 0x%p\n", scp);
6681 if (scp == NULL) {
6682 ASC_PRINT
6683 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6684 return;
6685 }
6686 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6687
6688 shost = scp->device->host;
6689 ASC_STATS(shost, callback);
6690 ASC_DBG(1, "shost 0x%p\n", shost);
6691
6692 boardp = shost_priv(shost);
6693 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6694
6695 /*
6696 * 'done_status' contains the command's ending status.
6697 */
6698 switch (scsiqp->done_status) {
6699 case QD_NO_ERROR:
6700 ASC_DBG(2, "QD_NO_ERROR\n");
6701 scp->result = 0;
6702
6703 /*
6704 * Check for an underrun condition.
6705 *
6706 * If there was no error and an underrun condition, then
6707 * then return the number of underrun bytes.
6708 */
6709 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6710 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6711 resid_cnt <= scsi_bufflen(scp)) {
6712 ASC_DBG(1, "underrun condition %lu bytes\n",
6713 (ulong)resid_cnt);
6714 scsi_set_resid(scp, resid_cnt);
6715 }
6716 break;
6717
6718 case QD_WITH_ERROR:
6719 ASC_DBG(2, "QD_WITH_ERROR\n");
6720 switch (scsiqp->host_status) {
6721 case QHSTA_NO_ERROR:
6722 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6723 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6725 SCSI_SENSE_BUFFERSIZE);
6726 /*
6727 * Note: The 'status_byte()' macro used by
6728 * target drivers defined in scsi.h shifts the
6729 * status byte returned by host drivers right
6730 * by 1 bit. This is why target drivers also
6731 * use right shifted status byte definitions.
6732 * For instance target drivers use
6733 * CHECK_CONDITION, defined to 0x1, instead of
6734 * the SCSI defined check condition value of
6735 * 0x2. Host drivers are supposed to return
6736 * the status byte as it is defined by SCSI.
6737 */
6738 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6739 STATUS_BYTE(scsiqp->scsi_status);
6740 } else {
6741 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6742 }
6743 break;
6744
6745 default:
6746 /* Some other QHSTA error occurred. */
6747 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6748 scp->result = HOST_BYTE(DID_BAD_TARGET);
6749 break;
6750 }
6751 break;
6752
6753 case QD_ABORTED_BY_HOST:
6754 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6755 scp->result =
6756 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6757 break;
6758
6759 default:
6760 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6761 scp->result =
6762 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6763 break;
6764 }
6765
6766 /*
6767 * If the 'init_tidmask' bit isn't already set for the target and the
6768 * current request finished normally, then set the bit for the target
6769 * to indicate that a device is present.
6770 */
6771 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6772 scsiqp->done_status == QD_NO_ERROR &&
6773 scsiqp->host_status == QHSTA_NO_ERROR) {
6774 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6775 }
6776
6777 asc_scsi_done(scp);
6778
6779 /*
6780 * Free all 'adv_sgblk_t' structures allocated for the request.
6781 */
6782 while ((sgblkp = reqp->sgblkp) != NULL) {
6783 /* Remove 'sgblkp' from the request list. */
6784 reqp->sgblkp = sgblkp->next_sgblkp;
6785
6786 /* Add 'sgblkp' to the board free list. */
6787 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6788 boardp->adv_sgblkp = sgblkp;
6789 }
6790
6791 /*
6792 * Free the adv_req_t structure used with the command by adding
6793 * it back to the board free list.
6794 */
6795 reqp->next_reqp = boardp->adv_reqp;
6796 boardp->adv_reqp = reqp;
6797
6798 ASC_DBG(1, "done\n");
6799 }
6800
6801 /*
6802 * Adv Library Interrupt Service Routine
6803 *
6804 * This function is called by a driver's interrupt service routine.
6805 * The function disables and re-enables interrupts.
6806 *
6807 * When a microcode idle command is completed, the ADV_DVC_VAR
6808 * 'idle_cmd_done' field is set to ADV_TRUE.
6809 *
6810 * Note: AdvISR() can be called when interrupts are disabled or even
6811 * when there is no hardware interrupt condition present. It will
6812 * always check for completed idle commands and microcode requests.
6813 * This is an important feature that shouldn't be changed because it
6814 * allows commands to be completed from polling mode loops.
6815 *
6816 * Return:
6817 * ADV_TRUE(1) - interrupt was pending
6818 * ADV_FALSE(0) - no interrupt was pending
6819 */
AdvISR(ADV_DVC_VAR * asc_dvc)6820 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6821 {
6822 AdvPortAddr iop_base;
6823 uchar int_stat;
6824 ushort target_bit;
6825 ADV_CARR_T *free_carrp;
6826 ADV_VADDR irq_next_vpa;
6827 ADV_SCSI_REQ_Q *scsiq;
6828
6829 iop_base = asc_dvc->iop_base;
6830
6831 /* Reading the register clears the interrupt. */
6832 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6833
6834 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6835 ADV_INTR_STATUS_INTRC)) == 0) {
6836 return ADV_FALSE;
6837 }
6838
6839 /*
6840 * Notify the driver of an asynchronous microcode condition by
6841 * calling the adv_async_callback function. The function
6842 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6843 */
6844 if (int_stat & ADV_INTR_STATUS_INTRB) {
6845 uchar intrb_code;
6846
6847 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6848
6849 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6850 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6851 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6852 asc_dvc->carr_pending_cnt != 0) {
6853 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6854 ADV_TICKLE_A);
6855 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6856 AdvWriteByteRegister(iop_base,
6857 IOPB_TICKLE,
6858 ADV_TICKLE_NOP);
6859 }
6860 }
6861 }
6862
6863 adv_async_callback(asc_dvc, intrb_code);
6864 }
6865
6866 /*
6867 * Check if the IRQ stopper carrier contains a completed request.
6868 */
6869 while (((irq_next_vpa =
6870 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6871 /*
6872 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6873 * The RISC will have set 'areq_vpa' to a virtual address.
6874 *
6875 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6876 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6877 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6878 * in AdvExeScsiQueue().
6879 */
6880 scsiq = (ADV_SCSI_REQ_Q *)
6881 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6882
6883 /*
6884 * Request finished with good status and the queue was not
6885 * DMAed to host memory by the firmware. Set all status fields
6886 * to indicate good status.
6887 */
6888 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6889 scsiq->done_status = QD_NO_ERROR;
6890 scsiq->host_status = scsiq->scsi_status = 0;
6891 scsiq->data_cnt = 0L;
6892 }
6893
6894 /*
6895 * Advance the stopper pointer to the next carrier
6896 * ignoring the lower four bits. Free the previous
6897 * stopper carrier.
6898 */
6899 free_carrp = asc_dvc->irq_sp;
6900 asc_dvc->irq_sp = (ADV_CARR_T *)
6901 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6902
6903 free_carrp->next_vpa =
6904 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6905 asc_dvc->carr_freelist = free_carrp;
6906 asc_dvc->carr_pending_cnt--;
6907
6908 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6909
6910 /*
6911 * Clear request microcode control flag.
6912 */
6913 scsiq->cntl = 0;
6914
6915 /*
6916 * Notify the driver of the completed request by passing
6917 * the ADV_SCSI_REQ_Q pointer to its callback function.
6918 */
6919 scsiq->a_flag |= ADV_SCSIQ_DONE;
6920 adv_isr_callback(asc_dvc, scsiq);
6921 /*
6922 * Note: After the driver callback function is called, 'scsiq'
6923 * can no longer be referenced.
6924 *
6925 * Fall through and continue processing other completed
6926 * requests...
6927 */
6928 }
6929 return ADV_TRUE;
6930 }
6931
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6932 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6933 {
6934 if (asc_dvc->err_code == 0) {
6935 asc_dvc->err_code = err_code;
6936 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6937 err_code);
6938 }
6939 return err_code;
6940 }
6941
AscAckInterrupt(PortAddr iop_base)6942 static void AscAckInterrupt(PortAddr iop_base)
6943 {
6944 uchar host_flag;
6945 uchar risc_flag;
6946 ushort loop;
6947
6948 loop = 0;
6949 do {
6950 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6951 if (loop++ > 0x7FFF) {
6952 break;
6953 }
6954 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6955 host_flag =
6956 AscReadLramByte(iop_base,
6957 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6958 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6959 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6960 AscSetChipStatus(iop_base, CIW_INT_ACK);
6961 loop = 0;
6962 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6963 AscSetChipStatus(iop_base, CIW_INT_ACK);
6964 if (loop++ > 3) {
6965 break;
6966 }
6967 }
6968 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6969 }
6970
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6971 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6972 {
6973 const uchar *period_table;
6974 int max_index;
6975 int min_index;
6976 int i;
6977
6978 period_table = asc_dvc->sdtr_period_tbl;
6979 max_index = (int)asc_dvc->max_sdtr_index;
6980 min_index = (int)asc_dvc->min_sdtr_index;
6981 if ((syn_time <= period_table[max_index])) {
6982 for (i = min_index; i < (max_index - 1); i++) {
6983 if (syn_time <= period_table[i]) {
6984 return (uchar)i;
6985 }
6986 }
6987 return (uchar)max_index;
6988 } else {
6989 return (uchar)(max_index + 1);
6990 }
6991 }
6992
6993 static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6994 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6995 {
6996 EXT_MSG sdtr_buf;
6997 uchar sdtr_period_index;
6998 PortAddr iop_base;
6999
7000 iop_base = asc_dvc->iop_base;
7001 sdtr_buf.msg_type = EXTENDED_MESSAGE;
7002 sdtr_buf.msg_len = MS_SDTR_LEN;
7003 sdtr_buf.msg_req = EXTENDED_SDTR;
7004 sdtr_buf.xfer_period = sdtr_period;
7005 sdtr_offset &= ASC_SYN_MAX_OFFSET;
7006 sdtr_buf.req_ack_offset = sdtr_offset;
7007 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7008 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
7009 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7010 (uchar *)&sdtr_buf,
7011 sizeof(EXT_MSG) >> 1);
7012 return ((sdtr_period_index << 4) | sdtr_offset);
7013 } else {
7014 sdtr_buf.req_ack_offset = 0;
7015 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7016 (uchar *)&sdtr_buf,
7017 sizeof(EXT_MSG) >> 1);
7018 return 0;
7019 }
7020 }
7021
7022 static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)7023 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7024 {
7025 uchar byte;
7026 uchar sdtr_period_ix;
7027
7028 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7029 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7030 return 0xFF;
7031 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7032 return byte;
7033 }
7034
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)7035 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7036 {
7037 ASC_SCSI_BIT_ID_TYPE org_id;
7038 int i;
7039 int sta = TRUE;
7040
7041 AscSetBank(iop_base, 1);
7042 org_id = AscReadChipDvcID(iop_base);
7043 for (i = 0; i <= ASC_MAX_TID; i++) {
7044 if (org_id == (0x01 << i))
7045 break;
7046 }
7047 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7048 AscWriteChipDvcID(iop_base, id);
7049 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7050 AscSetBank(iop_base, 0);
7051 AscSetChipSyn(iop_base, sdtr_data);
7052 if (AscGetChipSyn(iop_base) != sdtr_data) {
7053 sta = FALSE;
7054 }
7055 } else {
7056 sta = FALSE;
7057 }
7058 AscSetBank(iop_base, 1);
7059 AscWriteChipDvcID(iop_base, org_id);
7060 AscSetBank(iop_base, 0);
7061 return (sta);
7062 }
7063
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)7064 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7065 {
7066 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7067 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7068 }
7069
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)7070 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7071 {
7072 EXT_MSG ext_msg;
7073 EXT_MSG out_msg;
7074 ushort halt_q_addr;
7075 int sdtr_accept;
7076 ushort int_halt_code;
7077 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7078 ASC_SCSI_BIT_ID_TYPE target_id;
7079 PortAddr iop_base;
7080 uchar tag_code;
7081 uchar q_status;
7082 uchar halt_qp;
7083 uchar sdtr_data;
7084 uchar target_ix;
7085 uchar q_cntl, tid_no;
7086 uchar cur_dvc_qng;
7087 uchar asyn_sdtr;
7088 uchar scsi_status;
7089 struct asc_board *boardp;
7090
7091 BUG_ON(!asc_dvc->drv_ptr);
7092 boardp = asc_dvc->drv_ptr;
7093
7094 iop_base = asc_dvc->iop_base;
7095 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7096
7097 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7098 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7099 target_ix = AscReadLramByte(iop_base,
7100 (ushort)(halt_q_addr +
7101 (ushort)ASC_SCSIQ_B_TARGET_IX));
7102 q_cntl = AscReadLramByte(iop_base,
7103 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7104 tid_no = ASC_TIX_TO_TID(target_ix);
7105 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7106 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7107 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7108 } else {
7109 asyn_sdtr = 0;
7110 }
7111 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7112 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7113 AscSetChipSDTR(iop_base, 0, tid_no);
7114 boardp->sdtr_data[tid_no] = 0;
7115 }
7116 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7117 return (0);
7118 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7119 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7120 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7121 boardp->sdtr_data[tid_no] = asyn_sdtr;
7122 }
7123 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7124 return (0);
7125 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7126 AscMemWordCopyPtrFromLram(iop_base,
7127 ASCV_MSGIN_BEG,
7128 (uchar *)&ext_msg,
7129 sizeof(EXT_MSG) >> 1);
7130
7131 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7132 ext_msg.msg_req == EXTENDED_SDTR &&
7133 ext_msg.msg_len == MS_SDTR_LEN) {
7134 sdtr_accept = TRUE;
7135 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7136
7137 sdtr_accept = FALSE;
7138 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7139 }
7140 if ((ext_msg.xfer_period <
7141 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7142 || (ext_msg.xfer_period >
7143 asc_dvc->sdtr_period_tbl[asc_dvc->
7144 max_sdtr_index])) {
7145 sdtr_accept = FALSE;
7146 ext_msg.xfer_period =
7147 asc_dvc->sdtr_period_tbl[asc_dvc->
7148 min_sdtr_index];
7149 }
7150 if (sdtr_accept) {
7151 sdtr_data =
7152 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7153 ext_msg.req_ack_offset);
7154 if ((sdtr_data == 0xFF)) {
7155
7156 q_cntl |= QC_MSG_OUT;
7157 asc_dvc->init_sdtr &= ~target_id;
7158 asc_dvc->sdtr_done &= ~target_id;
7159 AscSetChipSDTR(iop_base, asyn_sdtr,
7160 tid_no);
7161 boardp->sdtr_data[tid_no] = asyn_sdtr;
7162 }
7163 }
7164 if (ext_msg.req_ack_offset == 0) {
7165
7166 q_cntl &= ~QC_MSG_OUT;
7167 asc_dvc->init_sdtr &= ~target_id;
7168 asc_dvc->sdtr_done &= ~target_id;
7169 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7170 } else {
7171 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7172 q_cntl &= ~QC_MSG_OUT;
7173 asc_dvc->sdtr_done |= target_id;
7174 asc_dvc->init_sdtr |= target_id;
7175 asc_dvc->pci_fix_asyn_xfer &=
7176 ~target_id;
7177 sdtr_data =
7178 AscCalSDTRData(asc_dvc,
7179 ext_msg.xfer_period,
7180 ext_msg.
7181 req_ack_offset);
7182 AscSetChipSDTR(iop_base, sdtr_data,
7183 tid_no);
7184 boardp->sdtr_data[tid_no] = sdtr_data;
7185 } else {
7186 q_cntl |= QC_MSG_OUT;
7187 AscMsgOutSDTR(asc_dvc,
7188 ext_msg.xfer_period,
7189 ext_msg.req_ack_offset);
7190 asc_dvc->pci_fix_asyn_xfer &=
7191 ~target_id;
7192 sdtr_data =
7193 AscCalSDTRData(asc_dvc,
7194 ext_msg.xfer_period,
7195 ext_msg.
7196 req_ack_offset);
7197 AscSetChipSDTR(iop_base, sdtr_data,
7198 tid_no);
7199 boardp->sdtr_data[tid_no] = sdtr_data;
7200 asc_dvc->sdtr_done |= target_id;
7201 asc_dvc->init_sdtr |= target_id;
7202 }
7203 }
7204
7205 AscWriteLramByte(iop_base,
7206 (ushort)(halt_q_addr +
7207 (ushort)ASC_SCSIQ_B_CNTL),
7208 q_cntl);
7209 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7210 return (0);
7211 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7212 ext_msg.msg_req == EXTENDED_WDTR &&
7213 ext_msg.msg_len == MS_WDTR_LEN) {
7214
7215 ext_msg.wdtr_width = 0;
7216 AscMemWordCopyPtrToLram(iop_base,
7217 ASCV_MSGOUT_BEG,
7218 (uchar *)&ext_msg,
7219 sizeof(EXT_MSG) >> 1);
7220 q_cntl |= QC_MSG_OUT;
7221 AscWriteLramByte(iop_base,
7222 (ushort)(halt_q_addr +
7223 (ushort)ASC_SCSIQ_B_CNTL),
7224 q_cntl);
7225 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7226 return (0);
7227 } else {
7228
7229 ext_msg.msg_type = MESSAGE_REJECT;
7230 AscMemWordCopyPtrToLram(iop_base,
7231 ASCV_MSGOUT_BEG,
7232 (uchar *)&ext_msg,
7233 sizeof(EXT_MSG) >> 1);
7234 q_cntl |= QC_MSG_OUT;
7235 AscWriteLramByte(iop_base,
7236 (ushort)(halt_q_addr +
7237 (ushort)ASC_SCSIQ_B_CNTL),
7238 q_cntl);
7239 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7240 return (0);
7241 }
7242 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7243
7244 q_cntl |= QC_REQ_SENSE;
7245
7246 if ((asc_dvc->init_sdtr & target_id) != 0) {
7247
7248 asc_dvc->sdtr_done &= ~target_id;
7249
7250 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7251 q_cntl |= QC_MSG_OUT;
7252 AscMsgOutSDTR(asc_dvc,
7253 asc_dvc->
7254 sdtr_period_tbl[(sdtr_data >> 4) &
7255 (uchar)(asc_dvc->
7256 max_sdtr_index -
7257 1)],
7258 (uchar)(sdtr_data & (uchar)
7259 ASC_SYN_MAX_OFFSET));
7260 }
7261
7262 AscWriteLramByte(iop_base,
7263 (ushort)(halt_q_addr +
7264 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7265
7266 tag_code = AscReadLramByte(iop_base,
7267 (ushort)(halt_q_addr + (ushort)
7268 ASC_SCSIQ_B_TAG_CODE));
7269 tag_code &= 0xDC;
7270 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7271 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7272 ) {
7273
7274 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7275 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7276
7277 }
7278 AscWriteLramByte(iop_base,
7279 (ushort)(halt_q_addr +
7280 (ushort)ASC_SCSIQ_B_TAG_CODE),
7281 tag_code);
7282
7283 q_status = AscReadLramByte(iop_base,
7284 (ushort)(halt_q_addr + (ushort)
7285 ASC_SCSIQ_B_STATUS));
7286 q_status |= (QS_READY | QS_BUSY);
7287 AscWriteLramByte(iop_base,
7288 (ushort)(halt_q_addr +
7289 (ushort)ASC_SCSIQ_B_STATUS),
7290 q_status);
7291
7292 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7293 scsi_busy &= ~target_id;
7294 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7295
7296 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7297 return (0);
7298 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7299
7300 AscMemWordCopyPtrFromLram(iop_base,
7301 ASCV_MSGOUT_BEG,
7302 (uchar *)&out_msg,
7303 sizeof(EXT_MSG) >> 1);
7304
7305 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7306 (out_msg.msg_len == MS_SDTR_LEN) &&
7307 (out_msg.msg_req == EXTENDED_SDTR)) {
7308
7309 asc_dvc->init_sdtr &= ~target_id;
7310 asc_dvc->sdtr_done &= ~target_id;
7311 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7312 boardp->sdtr_data[tid_no] = asyn_sdtr;
7313 }
7314 q_cntl &= ~QC_MSG_OUT;
7315 AscWriteLramByte(iop_base,
7316 (ushort)(halt_q_addr +
7317 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7318 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7319 return (0);
7320 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7321
7322 scsi_status = AscReadLramByte(iop_base,
7323 (ushort)((ushort)halt_q_addr +
7324 (ushort)
7325 ASC_SCSIQ_SCSI_STATUS));
7326 cur_dvc_qng =
7327 AscReadLramByte(iop_base,
7328 (ushort)((ushort)ASC_QADR_BEG +
7329 (ushort)target_ix));
7330 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7331
7332 scsi_busy = AscReadLramByte(iop_base,
7333 (ushort)ASCV_SCSIBUSY_B);
7334 scsi_busy |= target_id;
7335 AscWriteLramByte(iop_base,
7336 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7337 asc_dvc->queue_full_or_busy |= target_id;
7338
7339 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7340 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7341 cur_dvc_qng -= 1;
7342 asc_dvc->max_dvc_qng[tid_no] =
7343 cur_dvc_qng;
7344
7345 AscWriteLramByte(iop_base,
7346 (ushort)((ushort)
7347 ASCV_MAX_DVC_QNG_BEG
7348 + (ushort)
7349 tid_no),
7350 cur_dvc_qng);
7351
7352 /*
7353 * Set the device queue depth to the
7354 * number of active requests when the
7355 * QUEUE FULL condition was encountered.
7356 */
7357 boardp->queue_full |= target_id;
7358 boardp->queue_full_cnt[tid_no] =
7359 cur_dvc_qng;
7360 }
7361 }
7362 }
7363 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7364 return (0);
7365 }
7366 #if CC_VERY_LONG_SG_LIST
7367 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7368 uchar q_no;
7369 ushort q_addr;
7370 uchar sg_wk_q_no;
7371 uchar first_sg_wk_q_no;
7372 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
7373 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
7374 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
7375 ushort sg_list_dwords;
7376 ushort sg_entry_cnt;
7377 uchar next_qp;
7378 int i;
7379
7380 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7381 if (q_no == ASC_QLINK_END)
7382 return 0;
7383
7384 q_addr = ASC_QNO_TO_QADDR(q_no);
7385
7386 /*
7387 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7388 * structure pointer using a macro provided by the driver.
7389 * The ASC_SCSI_REQ pointer provides a pointer to the
7390 * host ASC_SG_HEAD structure.
7391 */
7392 /* Read request's SRB pointer. */
7393 scsiq = (ASC_SCSI_Q *)
7394 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7395 (ushort)
7396 (q_addr +
7397 ASC_SCSIQ_D_SRBPTR))));
7398
7399 /*
7400 * Get request's first and working SG queue.
7401 */
7402 sg_wk_q_no = AscReadLramByte(iop_base,
7403 (ushort)(q_addr +
7404 ASC_SCSIQ_B_SG_WK_QP));
7405
7406 first_sg_wk_q_no = AscReadLramByte(iop_base,
7407 (ushort)(q_addr +
7408 ASC_SCSIQ_B_FIRST_SG_WK_QP));
7409
7410 /*
7411 * Reset request's working SG queue back to the
7412 * first SG queue.
7413 */
7414 AscWriteLramByte(iop_base,
7415 (ushort)(q_addr +
7416 (ushort)ASC_SCSIQ_B_SG_WK_QP),
7417 first_sg_wk_q_no);
7418
7419 sg_head = scsiq->sg_head;
7420
7421 /*
7422 * Set sg_entry_cnt to the number of SG elements
7423 * that will be completed on this interrupt.
7424 *
7425 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7426 * SG elements. The data_cnt and data_addr fields which
7427 * add 1 to the SG element capacity are not used when
7428 * restarting SG handling after a halt.
7429 */
7430 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7431 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7432
7433 /*
7434 * Keep track of remaining number of SG elements that
7435 * will need to be handled on the next interrupt.
7436 */
7437 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7438 } else {
7439 sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7440 scsiq->remain_sg_entry_cnt = 0;
7441 }
7442
7443 /*
7444 * Copy SG elements into the list of allocated SG queues.
7445 *
7446 * Last index completed is saved in scsiq->next_sg_index.
7447 */
7448 next_qp = first_sg_wk_q_no;
7449 q_addr = ASC_QNO_TO_QADDR(next_qp);
7450 scsi_sg_q.sg_head_qp = q_no;
7451 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7452 for (i = 0; i < sg_head->queue_cnt; i++) {
7453 scsi_sg_q.seq_no = i + 1;
7454 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7455 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7456 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7457 /*
7458 * After very first SG queue RISC FW uses next
7459 * SG queue first element then checks sg_list_cnt
7460 * against zero and then decrements, so set
7461 * sg_list_cnt 1 less than number of SG elements
7462 * in each SG queue.
7463 */
7464 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7465 scsi_sg_q.sg_cur_list_cnt =
7466 ASC_SG_LIST_PER_Q - 1;
7467 } else {
7468 /*
7469 * This is the last SG queue in the list of
7470 * allocated SG queues. If there are more
7471 * SG elements than will fit in the allocated
7472 * queues, then set the QCSG_SG_XFER_MORE flag.
7473 */
7474 if (scsiq->remain_sg_entry_cnt != 0) {
7475 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7476 } else {
7477 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7478 }
7479 /* equals sg_entry_cnt * 2 */
7480 sg_list_dwords = sg_entry_cnt << 1;
7481 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7482 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7483 sg_entry_cnt = 0;
7484 }
7485
7486 scsi_sg_q.q_no = next_qp;
7487 AscMemWordCopyPtrToLram(iop_base,
7488 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7489 (uchar *)&scsi_sg_q,
7490 sizeof(ASC_SG_LIST_Q) >> 1);
7491
7492 AscMemDWordCopyPtrToLram(iop_base,
7493 q_addr + ASC_SGQ_LIST_BEG,
7494 (uchar *)&sg_head->
7495 sg_list[scsiq->next_sg_index],
7496 sg_list_dwords);
7497
7498 scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7499
7500 /*
7501 * If the just completed SG queue contained the
7502 * last SG element, then no more SG queues need
7503 * to be written.
7504 */
7505 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7506 break;
7507 }
7508
7509 next_qp = AscReadLramByte(iop_base,
7510 (ushort)(q_addr +
7511 ASC_SCSIQ_B_FWD));
7512 q_addr = ASC_QNO_TO_QADDR(next_qp);
7513 }
7514
7515 /*
7516 * Clear the halt condition so the RISC will be restarted
7517 * after the return.
7518 */
7519 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7520 return (0);
7521 }
7522 #endif /* CC_VERY_LONG_SG_LIST */
7523 return (0);
7524 }
7525
7526 /*
7527 * void
7528 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7529 *
7530 * Calling/Exit State:
7531 * none
7532 *
7533 * Description:
7534 * Input an ASC_QDONE_INFO structure from the chip
7535 */
7536 static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)7537 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7538 {
7539 int i;
7540 ushort word;
7541
7542 AscSetChipLramAddr(iop_base, s_addr);
7543 for (i = 0; i < 2 * words; i += 2) {
7544 if (i == 10) {
7545 continue;
7546 }
7547 word = inpw(iop_base + IOP_RAM_DATA);
7548 inbuf[i] = word & 0xff;
7549 inbuf[i + 1] = (word >> 8) & 0xff;
7550 }
7551 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7552 }
7553
7554 static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,ASC_DCNT max_dma_count)7555 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7556 ushort q_addr,
7557 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7558 {
7559 ushort _val;
7560 uchar sg_queue_cnt;
7561
7562 DvcGetQinfo(iop_base,
7563 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7564 (uchar *)scsiq,
7565 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7566
7567 _val = AscReadLramWord(iop_base,
7568 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7569 scsiq->q_status = (uchar)_val;
7570 scsiq->q_no = (uchar)(_val >> 8);
7571 _val = AscReadLramWord(iop_base,
7572 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7573 scsiq->cntl = (uchar)_val;
7574 sg_queue_cnt = (uchar)(_val >> 8);
7575 _val = AscReadLramWord(iop_base,
7576 (ushort)(q_addr +
7577 (ushort)ASC_SCSIQ_B_SENSE_LEN));
7578 scsiq->sense_len = (uchar)_val;
7579 scsiq->extra_bytes = (uchar)(_val >> 8);
7580
7581 /*
7582 * Read high word of remain bytes from alternate location.
7583 */
7584 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7585 (ushort)(q_addr +
7586 (ushort)
7587 ASC_SCSIQ_W_ALT_DC1)))
7588 << 16);
7589 /*
7590 * Read low word of remain bytes from original location.
7591 */
7592 scsiq->remain_bytes += AscReadLramWord(iop_base,
7593 (ushort)(q_addr + (ushort)
7594 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7595
7596 scsiq->remain_bytes &= max_dma_count;
7597 return sg_queue_cnt;
7598 }
7599
7600 /*
7601 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7602 *
7603 * Interrupt callback function for the Narrow SCSI Asc Library.
7604 */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)7605 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7606 {
7607 struct asc_board *boardp;
7608 struct scsi_cmnd *scp;
7609 struct Scsi_Host *shost;
7610
7611 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7612 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7613
7614 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7615 if (!scp)
7616 return;
7617
7618 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7619
7620 shost = scp->device->host;
7621 ASC_STATS(shost, callback);
7622 ASC_DBG(1, "shost 0x%p\n", shost);
7623
7624 boardp = shost_priv(shost);
7625 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7626
7627 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7628 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7629 /*
7630 * 'qdonep' contains the command's ending status.
7631 */
7632 switch (qdonep->d3.done_stat) {
7633 case QD_NO_ERROR:
7634 ASC_DBG(2, "QD_NO_ERROR\n");
7635 scp->result = 0;
7636
7637 /*
7638 * Check for an underrun condition.
7639 *
7640 * If there was no error and an underrun condition, then
7641 * return the number of underrun bytes.
7642 */
7643 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7644 qdonep->remain_bytes <= scsi_bufflen(scp)) {
7645 ASC_DBG(1, "underrun condition %u bytes\n",
7646 (unsigned)qdonep->remain_bytes);
7647 scsi_set_resid(scp, qdonep->remain_bytes);
7648 }
7649 break;
7650
7651 case QD_WITH_ERROR:
7652 ASC_DBG(2, "QD_WITH_ERROR\n");
7653 switch (qdonep->d3.host_stat) {
7654 case QHSTA_NO_ERROR:
7655 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7656 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7657 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7658 SCSI_SENSE_BUFFERSIZE);
7659 /*
7660 * Note: The 'status_byte()' macro used by
7661 * target drivers defined in scsi.h shifts the
7662 * status byte returned by host drivers right
7663 * by 1 bit. This is why target drivers also
7664 * use right shifted status byte definitions.
7665 * For instance target drivers use
7666 * CHECK_CONDITION, defined to 0x1, instead of
7667 * the SCSI defined check condition value of
7668 * 0x2. Host drivers are supposed to return
7669 * the status byte as it is defined by SCSI.
7670 */
7671 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7672 STATUS_BYTE(qdonep->d3.scsi_stat);
7673 } else {
7674 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7675 }
7676 break;
7677
7678 default:
7679 /* QHSTA error occurred */
7680 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7681 scp->result = HOST_BYTE(DID_BAD_TARGET);
7682 break;
7683 }
7684 break;
7685
7686 case QD_ABORTED_BY_HOST:
7687 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7688 scp->result =
7689 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7690 scsi_msg) |
7691 STATUS_BYTE(qdonep->d3.scsi_stat);
7692 break;
7693
7694 default:
7695 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7696 scp->result =
7697 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7698 scsi_msg) |
7699 STATUS_BYTE(qdonep->d3.scsi_stat);
7700 break;
7701 }
7702
7703 /*
7704 * If the 'init_tidmask' bit isn't already set for the target and the
7705 * current request finished normally, then set the bit for the target
7706 * to indicate that a device is present.
7707 */
7708 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7709 qdonep->d3.done_stat == QD_NO_ERROR &&
7710 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7711 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7712 }
7713
7714 asc_scsi_done(scp);
7715 }
7716
AscIsrQDone(ASC_DVC_VAR * asc_dvc)7717 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7718 {
7719 uchar next_qp;
7720 uchar n_q_used;
7721 uchar sg_list_qp;
7722 uchar sg_queue_cnt;
7723 uchar q_cnt;
7724 uchar done_q_tail;
7725 uchar tid_no;
7726 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7727 ASC_SCSI_BIT_ID_TYPE target_id;
7728 PortAddr iop_base;
7729 ushort q_addr;
7730 ushort sg_q_addr;
7731 uchar cur_target_qng;
7732 ASC_QDONE_INFO scsiq_buf;
7733 ASC_QDONE_INFO *scsiq;
7734 int false_overrun;
7735
7736 iop_base = asc_dvc->iop_base;
7737 n_q_used = 1;
7738 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7739 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7740 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7741 next_qp = AscReadLramByte(iop_base,
7742 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7743 if (next_qp != ASC_QLINK_END) {
7744 AscPutVarDoneQTail(iop_base, next_qp);
7745 q_addr = ASC_QNO_TO_QADDR(next_qp);
7746 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7747 asc_dvc->max_dma_count);
7748 AscWriteLramByte(iop_base,
7749 (ushort)(q_addr +
7750 (ushort)ASC_SCSIQ_B_STATUS),
7751 (uchar)(scsiq->
7752 q_status & (uchar)~(QS_READY |
7753 QS_ABORTED)));
7754 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7755 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7756 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7757 sg_q_addr = q_addr;
7758 sg_list_qp = next_qp;
7759 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7760 sg_list_qp = AscReadLramByte(iop_base,
7761 (ushort)(sg_q_addr
7762 + (ushort)
7763 ASC_SCSIQ_B_FWD));
7764 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7765 if (sg_list_qp == ASC_QLINK_END) {
7766 AscSetLibErrorCode(asc_dvc,
7767 ASCQ_ERR_SG_Q_LINKS);
7768 scsiq->d3.done_stat = QD_WITH_ERROR;
7769 scsiq->d3.host_stat =
7770 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7771 goto FATAL_ERR_QDONE;
7772 }
7773 AscWriteLramByte(iop_base,
7774 (ushort)(sg_q_addr + (ushort)
7775 ASC_SCSIQ_B_STATUS),
7776 QS_FREE);
7777 }
7778 n_q_used = sg_queue_cnt + 1;
7779 AscPutVarDoneQTail(iop_base, sg_list_qp);
7780 }
7781 if (asc_dvc->queue_full_or_busy & target_id) {
7782 cur_target_qng = AscReadLramByte(iop_base,
7783 (ushort)((ushort)
7784 ASC_QADR_BEG
7785 + (ushort)
7786 scsiq->d2.
7787 target_ix));
7788 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7789 scsi_busy = AscReadLramByte(iop_base, (ushort)
7790 ASCV_SCSIBUSY_B);
7791 scsi_busy &= ~target_id;
7792 AscWriteLramByte(iop_base,
7793 (ushort)ASCV_SCSIBUSY_B,
7794 scsi_busy);
7795 asc_dvc->queue_full_or_busy &= ~target_id;
7796 }
7797 }
7798 if (asc_dvc->cur_total_qng >= n_q_used) {
7799 asc_dvc->cur_total_qng -= n_q_used;
7800 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7801 asc_dvc->cur_dvc_qng[tid_no]--;
7802 }
7803 } else {
7804 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7805 scsiq->d3.done_stat = QD_WITH_ERROR;
7806 goto FATAL_ERR_QDONE;
7807 }
7808 if ((scsiq->d2.srb_ptr == 0UL) ||
7809 ((scsiq->q_status & QS_ABORTED) != 0)) {
7810 return (0x11);
7811 } else if (scsiq->q_status == QS_DONE) {
7812 false_overrun = FALSE;
7813 if (scsiq->extra_bytes != 0) {
7814 scsiq->remain_bytes +=
7815 (ADV_DCNT)scsiq->extra_bytes;
7816 }
7817 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7818 if (scsiq->d3.host_stat ==
7819 QHSTA_M_DATA_OVER_RUN) {
7820 if ((scsiq->
7821 cntl & (QC_DATA_IN | QC_DATA_OUT))
7822 == 0) {
7823 scsiq->d3.done_stat =
7824 QD_NO_ERROR;
7825 scsiq->d3.host_stat =
7826 QHSTA_NO_ERROR;
7827 } else if (false_overrun) {
7828 scsiq->d3.done_stat =
7829 QD_NO_ERROR;
7830 scsiq->d3.host_stat =
7831 QHSTA_NO_ERROR;
7832 }
7833 } else if (scsiq->d3.host_stat ==
7834 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7835 AscStopChip(iop_base);
7836 AscSetChipControl(iop_base,
7837 (uchar)(CC_SCSI_RESET
7838 | CC_HALT));
7839 udelay(60);
7840 AscSetChipControl(iop_base, CC_HALT);
7841 AscSetChipStatus(iop_base,
7842 CIW_CLR_SCSI_RESET_INT);
7843 AscSetChipStatus(iop_base, 0);
7844 AscSetChipControl(iop_base, 0);
7845 }
7846 }
7847 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7848 asc_isr_callback(asc_dvc, scsiq);
7849 } else {
7850 if ((AscReadLramByte(iop_base,
7851 (ushort)(q_addr + (ushort)
7852 ASC_SCSIQ_CDB_BEG))
7853 == START_STOP)) {
7854 asc_dvc->unit_not_ready &= ~target_id;
7855 if (scsiq->d3.done_stat != QD_NO_ERROR) {
7856 asc_dvc->start_motor &=
7857 ~target_id;
7858 }
7859 }
7860 }
7861 return (1);
7862 } else {
7863 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7864 FATAL_ERR_QDONE:
7865 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7866 asc_isr_callback(asc_dvc, scsiq);
7867 }
7868 return (0x80);
7869 }
7870 }
7871 return (0);
7872 }
7873
AscISR(ASC_DVC_VAR * asc_dvc)7874 static int AscISR(ASC_DVC_VAR *asc_dvc)
7875 {
7876 ASC_CS_TYPE chipstat;
7877 PortAddr iop_base;
7878 ushort saved_ram_addr;
7879 uchar ctrl_reg;
7880 uchar saved_ctrl_reg;
7881 int int_pending;
7882 int status;
7883 uchar host_flag;
7884
7885 iop_base = asc_dvc->iop_base;
7886 int_pending = FALSE;
7887
7888 if (AscIsIntPending(iop_base) == 0)
7889 return int_pending;
7890
7891 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7892 return ERR;
7893 }
7894 if (asc_dvc->in_critical_cnt != 0) {
7895 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7896 return ERR;
7897 }
7898 if (asc_dvc->is_in_int) {
7899 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7900 return ERR;
7901 }
7902 asc_dvc->is_in_int = TRUE;
7903 ctrl_reg = AscGetChipControl(iop_base);
7904 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7905 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7906 chipstat = AscGetChipStatus(iop_base);
7907 if (chipstat & CSW_SCSI_RESET_LATCH) {
7908 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7909 int i = 10;
7910 int_pending = TRUE;
7911 asc_dvc->sdtr_done = 0;
7912 saved_ctrl_reg &= (uchar)(~CC_HALT);
7913 while ((AscGetChipStatus(iop_base) &
7914 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7915 mdelay(100);
7916 }
7917 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7918 AscSetChipControl(iop_base, CC_HALT);
7919 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7920 AscSetChipStatus(iop_base, 0);
7921 chipstat = AscGetChipStatus(iop_base);
7922 }
7923 }
7924 saved_ram_addr = AscGetChipLramAddr(iop_base);
7925 host_flag = AscReadLramByte(iop_base,
7926 ASCV_HOST_FLAG_B) &
7927 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7928 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7929 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7930 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7931 AscAckInterrupt(iop_base);
7932 int_pending = TRUE;
7933 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7934 if (AscIsrChipHalted(asc_dvc) == ERR) {
7935 goto ISR_REPORT_QDONE_FATAL_ERROR;
7936 } else {
7937 saved_ctrl_reg &= (uchar)(~CC_HALT);
7938 }
7939 } else {
7940 ISR_REPORT_QDONE_FATAL_ERROR:
7941 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7942 while (((status =
7943 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7944 }
7945 } else {
7946 do {
7947 if ((status =
7948 AscIsrQDone(asc_dvc)) == 1) {
7949 break;
7950 }
7951 } while (status == 0x11);
7952 }
7953 if ((status & 0x80) != 0)
7954 int_pending = ERR;
7955 }
7956 }
7957 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7958 AscSetChipLramAddr(iop_base, saved_ram_addr);
7959 AscSetChipControl(iop_base, saved_ctrl_reg);
7960 asc_dvc->is_in_int = FALSE;
7961 return int_pending;
7962 }
7963
7964 /*
7965 * advansys_reset()
7966 *
7967 * Reset the bus associated with the command 'scp'.
7968 *
7969 * This function runs its own thread. Interrupts must be blocked but
7970 * sleeping is allowed and no locking other than for host structures is
7971 * required. Returns SUCCESS or FAILED.
7972 */
advansys_reset(struct scsi_cmnd * scp)7973 static int advansys_reset(struct scsi_cmnd *scp)
7974 {
7975 struct Scsi_Host *shost = scp->device->host;
7976 struct asc_board *boardp = shost_priv(shost);
7977 unsigned long flags;
7978 int status;
7979 int ret = SUCCESS;
7980
7981 ASC_DBG(1, "0x%p\n", scp);
7982
7983 ASC_STATS(shost, reset);
7984
7985 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7986
7987 if (ASC_NARROW_BOARD(boardp)) {
7988 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7989
7990 /* Reset the chip and SCSI bus. */
7991 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7992 status = AscInitAsc1000Driver(asc_dvc);
7993
7994 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7995 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7996 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7997 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7998 status);
7999 ret = FAILED;
8000 } else if (status) {
8001 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
8002 "0x%x\n", status);
8003 } else {
8004 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8005 "successful\n");
8006 }
8007
8008 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8009 spin_lock_irqsave(shost->host_lock, flags);
8010 } else {
8011 /*
8012 * If the suggest reset bus flags are set, then reset the bus.
8013 * Otherwise only reset the device.
8014 */
8015 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8016
8017 /*
8018 * Reset the target's SCSI bus.
8019 */
8020 ASC_DBG(1, "before AdvResetChipAndSB()\n");
8021 switch (AdvResetChipAndSB(adv_dvc)) {
8022 case ASC_TRUE:
8023 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8024 "successful\n");
8025 break;
8026 case ASC_FALSE:
8027 default:
8028 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8029 ret = FAILED;
8030 break;
8031 }
8032 spin_lock_irqsave(shost->host_lock, flags);
8033 AdvISR(adv_dvc);
8034 }
8035
8036 /* Save the time of the most recently completed reset. */
8037 boardp->last_reset = jiffies;
8038 spin_unlock_irqrestore(shost->host_lock, flags);
8039
8040 ASC_DBG(1, "ret %d\n", ret);
8041
8042 return ret;
8043 }
8044
8045 /*
8046 * advansys_biosparam()
8047 *
8048 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8049 * support is enabled for a drive.
8050 *
8051 * ip (information pointer) is an int array with the following definition:
8052 * ip[0]: heads
8053 * ip[1]: sectors
8054 * ip[2]: cylinders
8055 */
8056 static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])8057 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8058 sector_t capacity, int ip[])
8059 {
8060 struct asc_board *boardp = shost_priv(sdev->host);
8061
8062 ASC_DBG(1, "begin\n");
8063 ASC_STATS(sdev->host, biosparam);
8064 if (ASC_NARROW_BOARD(boardp)) {
8065 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8066 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8067 ip[0] = 255;
8068 ip[1] = 63;
8069 } else {
8070 ip[0] = 64;
8071 ip[1] = 32;
8072 }
8073 } else {
8074 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8075 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8076 ip[0] = 255;
8077 ip[1] = 63;
8078 } else {
8079 ip[0] = 64;
8080 ip[1] = 32;
8081 }
8082 }
8083 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8084 ASC_DBG(1, "end\n");
8085 return 0;
8086 }
8087
8088 /*
8089 * First-level interrupt handler.
8090 *
8091 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8092 */
advansys_interrupt(int irq,void * dev_id)8093 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8094 {
8095 struct Scsi_Host *shost = dev_id;
8096 struct asc_board *boardp = shost_priv(shost);
8097 irqreturn_t result = IRQ_NONE;
8098
8099 ASC_DBG(2, "boardp 0x%p\n", boardp);
8100 spin_lock(shost->host_lock);
8101 if (ASC_NARROW_BOARD(boardp)) {
8102 if (AscIsIntPending(shost->io_port)) {
8103 result = IRQ_HANDLED;
8104 ASC_STATS(shost, interrupt);
8105 ASC_DBG(1, "before AscISR()\n");
8106 AscISR(&boardp->dvc_var.asc_dvc_var);
8107 }
8108 } else {
8109 ASC_DBG(1, "before AdvISR()\n");
8110 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8111 result = IRQ_HANDLED;
8112 ASC_STATS(shost, interrupt);
8113 }
8114 }
8115 spin_unlock(shost->host_lock);
8116
8117 ASC_DBG(1, "end\n");
8118 return result;
8119 }
8120
AscHostReqRiscHalt(PortAddr iop_base)8121 static int AscHostReqRiscHalt(PortAddr iop_base)
8122 {
8123 int count = 0;
8124 int sta = 0;
8125 uchar saved_stop_code;
8126
8127 if (AscIsChipHalted(iop_base))
8128 return (1);
8129 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8130 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8131 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8132 do {
8133 if (AscIsChipHalted(iop_base)) {
8134 sta = 1;
8135 break;
8136 }
8137 mdelay(100);
8138 } while (count++ < 20);
8139 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8140 return (sta);
8141 }
8142
8143 static int
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)8144 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8145 {
8146 int sta = FALSE;
8147
8148 if (AscHostReqRiscHalt(iop_base)) {
8149 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8150 AscStartChip(iop_base);
8151 }
8152 return sta;
8153 }
8154
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)8155 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8156 {
8157 char type = sdev->type;
8158 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8159
8160 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8161 return;
8162 if (asc_dvc->init_sdtr & tid_bits)
8163 return;
8164
8165 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8166 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8167
8168 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8169 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8170 (type == TYPE_ROM) || (type == TYPE_TAPE))
8171 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8172
8173 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8174 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8175 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8176 }
8177
8178 static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)8179 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8180 {
8181 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8182 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8183
8184 if (sdev->lun == 0) {
8185 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8186 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8187 asc_dvc->init_sdtr |= tid_bit;
8188 } else {
8189 asc_dvc->init_sdtr &= ~tid_bit;
8190 }
8191
8192 if (orig_init_sdtr != asc_dvc->init_sdtr)
8193 AscAsyncFix(asc_dvc, sdev);
8194 }
8195
8196 if (sdev->tagged_supported) {
8197 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8198 if (sdev->lun == 0) {
8199 asc_dvc->cfg->can_tagged_qng |= tid_bit;
8200 asc_dvc->use_tagged_qng |= tid_bit;
8201 }
8202 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8203 asc_dvc->max_dvc_qng[sdev->id]);
8204 }
8205 } else {
8206 if (sdev->lun == 0) {
8207 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8208 asc_dvc->use_tagged_qng &= ~tid_bit;
8209 }
8210 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8211 }
8212
8213 if ((sdev->lun == 0) &&
8214 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8215 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8216 asc_dvc->cfg->disc_enable);
8217 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8218 asc_dvc->use_tagged_qng);
8219 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8220 asc_dvc->cfg->can_tagged_qng);
8221
8222 asc_dvc->max_dvc_qng[sdev->id] =
8223 asc_dvc->cfg->max_tag_qng[sdev->id];
8224 AscWriteLramByte(asc_dvc->iop_base,
8225 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8226 asc_dvc->max_dvc_qng[sdev->id]);
8227 }
8228 }
8229
8230 /*
8231 * Wide Transfers
8232 *
8233 * If the EEPROM enabled WDTR for the device and the device supports wide
8234 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8235 * write the new value to the microcode.
8236 */
8237 static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)8238 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8239 {
8240 unsigned short cfg_word;
8241 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8242 if ((cfg_word & tidmask) != 0)
8243 return;
8244
8245 cfg_word |= tidmask;
8246 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8247
8248 /*
8249 * Clear the microcode SDTR and WDTR negotiation done indicators for
8250 * the target to cause it to negotiate with the new setting set above.
8251 * WDTR when accepted causes the target to enter asynchronous mode, so
8252 * SDTR must be negotiated.
8253 */
8254 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8255 cfg_word &= ~tidmask;
8256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8257 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8258 cfg_word &= ~tidmask;
8259 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8260 }
8261
8262 /*
8263 * Synchronous Transfers
8264 *
8265 * If the EEPROM enabled SDTR for the device and the device
8266 * supports synchronous transfers, then turn on the device's
8267 * 'sdtr_able' bit. Write the new value to the microcode.
8268 */
8269 static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)8270 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8271 {
8272 unsigned short cfg_word;
8273 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8274 if ((cfg_word & tidmask) != 0)
8275 return;
8276
8277 cfg_word |= tidmask;
8278 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8279
8280 /*
8281 * Clear the microcode "SDTR negotiation" done indicator for the
8282 * target to cause it to negotiate with the new setting set above.
8283 */
8284 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8285 cfg_word &= ~tidmask;
8286 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8287 }
8288
8289 /*
8290 * PPR (Parallel Protocol Request) Capable
8291 *
8292 * If the device supports DT mode, then it must be PPR capable.
8293 * The PPR message will be used in place of the SDTR and WDTR
8294 * messages to negotiate synchronous speed and offset, transfer
8295 * width, and protocol options.
8296 */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)8297 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8298 AdvPortAddr iop_base, unsigned short tidmask)
8299 {
8300 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8301 adv_dvc->ppr_able |= tidmask;
8302 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8303 }
8304
8305 static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)8306 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8307 {
8308 AdvPortAddr iop_base = adv_dvc->iop_base;
8309 unsigned short tidmask = 1 << sdev->id;
8310
8311 if (sdev->lun == 0) {
8312 /*
8313 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8314 * is enabled in the EEPROM and the device supports the
8315 * feature, then enable it in the microcode.
8316 */
8317
8318 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8319 advansys_wide_enable_wdtr(iop_base, tidmask);
8320 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8321 advansys_wide_enable_sdtr(iop_base, tidmask);
8322 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8323 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8324
8325 /*
8326 * Tag Queuing is disabled for the BIOS which runs in polled
8327 * mode and would see no benefit from Tag Queuing. Also by
8328 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8329 * bugs will at least work with the BIOS.
8330 */
8331 if ((adv_dvc->tagqng_able & tidmask) &&
8332 sdev->tagged_supported) {
8333 unsigned short cfg_word;
8334 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8335 cfg_word |= tidmask;
8336 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8337 cfg_word);
8338 AdvWriteByteLram(iop_base,
8339 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8340 adv_dvc->max_dvc_qng);
8341 }
8342 }
8343
8344 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8345 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8346 adv_dvc->max_dvc_qng);
8347 } else {
8348 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8349 }
8350 }
8351
8352 /*
8353 * Set the number of commands to queue per device for the
8354 * specified host adapter.
8355 */
advansys_slave_configure(struct scsi_device * sdev)8356 static int advansys_slave_configure(struct scsi_device *sdev)
8357 {
8358 struct asc_board *boardp = shost_priv(sdev->host);
8359
8360 if (ASC_NARROW_BOARD(boardp))
8361 advansys_narrow_slave_configure(sdev,
8362 &boardp->dvc_var.asc_dvc_var);
8363 else
8364 advansys_wide_slave_configure(sdev,
8365 &boardp->dvc_var.adv_dvc_var);
8366
8367 return 0;
8368 }
8369
advansys_get_sense_buffer_dma(struct scsi_cmnd * scp)8370 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8371 {
8372 struct asc_board *board = shost_priv(scp->device->host);
8373 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8374 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8375 dma_cache_sync(board->dev, scp->sense_buffer,
8376 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8377 return cpu_to_le32(scp->SCp.dma_handle);
8378 }
8379
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)8380 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8381 struct asc_scsi_q *asc_scsi_q)
8382 {
8383 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8384 int use_sg;
8385
8386 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8387
8388 /*
8389 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8390 */
8391 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8392 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8393 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8394 return ASC_ERROR;
8395 }
8396
8397 /*
8398 * Build the ASC_SCSI_Q request.
8399 */
8400 asc_scsi_q->cdbptr = &scp->cmnd[0];
8401 asc_scsi_q->q2.cdb_len = scp->cmd_len;
8402 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8403 asc_scsi_q->q1.target_lun = scp->device->lun;
8404 asc_scsi_q->q2.target_ix =
8405 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8406 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8407 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8408
8409 /*
8410 * If there are any outstanding requests for the current target,
8411 * then every 255th request send an ORDERED request. This heuristic
8412 * tries to retain the benefit of request sorting while preventing
8413 * request starvation. 255 is the max number of tags or pending commands
8414 * a device may have outstanding.
8415 *
8416 * The request count is incremented below for every successfully
8417 * started request.
8418 *
8419 */
8420 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8421 (boardp->reqcnt[scp->device->id] % 255) == 0) {
8422 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8423 } else {
8424 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8425 }
8426
8427 /* Build ASC_SCSI_Q */
8428 use_sg = scsi_dma_map(scp);
8429 if (use_sg != 0) {
8430 int sgcnt;
8431 struct scatterlist *slp;
8432 struct asc_sg_head *asc_sg_head;
8433
8434 if (use_sg > scp->device->host->sg_tablesize) {
8435 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8436 "sg_tablesize %d\n", use_sg,
8437 scp->device->host->sg_tablesize);
8438 scsi_dma_unmap(scp);
8439 scp->result = HOST_BYTE(DID_ERROR);
8440 return ASC_ERROR;
8441 }
8442
8443 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8444 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8445 if (!asc_sg_head) {
8446 scsi_dma_unmap(scp);
8447 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8448 return ASC_ERROR;
8449 }
8450
8451 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8452 asc_scsi_q->sg_head = asc_sg_head;
8453 asc_scsi_q->q1.data_cnt = 0;
8454 asc_scsi_q->q1.data_addr = 0;
8455 /* This is a byte value, otherwise it would need to be swapped. */
8456 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8457 ASC_STATS_ADD(scp->device->host, xfer_elem,
8458 asc_sg_head->entry_cnt);
8459
8460 /*
8461 * Convert scatter-gather list into ASC_SG_HEAD list.
8462 */
8463 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8464 asc_sg_head->sg_list[sgcnt].addr =
8465 cpu_to_le32(sg_dma_address(slp));
8466 asc_sg_head->sg_list[sgcnt].bytes =
8467 cpu_to_le32(sg_dma_len(slp));
8468 ASC_STATS_ADD(scp->device->host, xfer_sect,
8469 DIV_ROUND_UP(sg_dma_len(slp), 512));
8470 }
8471 }
8472
8473 ASC_STATS(scp->device->host, xfer_cnt);
8474
8475 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8476 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8477
8478 return ASC_NOERROR;
8479 }
8480
8481 /*
8482 * Build scatter-gather list for Adv Library (Wide Board).
8483 *
8484 * Additional ADV_SG_BLOCK structures will need to be allocated
8485 * if the total number of scatter-gather elements exceeds
8486 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8487 * assumed to be physically contiguous.
8488 *
8489 * Return:
8490 * ADV_SUCCESS(1) - SG List successfully created
8491 * ADV_ERROR(-1) - SG List creation failed
8492 */
8493 static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,struct scsi_cmnd * scp,int use_sg)8494 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8495 int use_sg)
8496 {
8497 adv_sgblk_t *sgblkp;
8498 ADV_SCSI_REQ_Q *scsiqp;
8499 struct scatterlist *slp;
8500 int sg_elem_cnt;
8501 ADV_SG_BLOCK *sg_block, *prev_sg_block;
8502 ADV_PADDR sg_block_paddr;
8503 int i;
8504
8505 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8506 slp = scsi_sglist(scp);
8507 sg_elem_cnt = use_sg;
8508 prev_sg_block = NULL;
8509 reqp->sgblkp = NULL;
8510
8511 for (;;) {
8512 /*
8513 * Allocate a 'adv_sgblk_t' structure from the board free
8514 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8515 * (15) scatter-gather elements.
8516 */
8517 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8518 ASC_DBG(1, "no free adv_sgblk_t\n");
8519 ASC_STATS(scp->device->host, adv_build_nosg);
8520
8521 /*
8522 * Allocation failed. Free 'adv_sgblk_t' structures
8523 * already allocated for the request.
8524 */
8525 while ((sgblkp = reqp->sgblkp) != NULL) {
8526 /* Remove 'sgblkp' from the request list. */
8527 reqp->sgblkp = sgblkp->next_sgblkp;
8528
8529 /* Add 'sgblkp' to the board free list. */
8530 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8531 boardp->adv_sgblkp = sgblkp;
8532 }
8533 return ASC_BUSY;
8534 }
8535
8536 /* Complete 'adv_sgblk_t' board allocation. */
8537 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8538 sgblkp->next_sgblkp = NULL;
8539
8540 /*
8541 * Get 8 byte aligned virtual and physical addresses
8542 * for the allocated ADV_SG_BLOCK structure.
8543 */
8544 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8545 sg_block_paddr = virt_to_bus(sg_block);
8546
8547 /*
8548 * Check if this is the first 'adv_sgblk_t' for the
8549 * request.
8550 */
8551 if (reqp->sgblkp == NULL) {
8552 /* Request's first scatter-gather block. */
8553 reqp->sgblkp = sgblkp;
8554
8555 /*
8556 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8557 * address pointers.
8558 */
8559 scsiqp->sg_list_ptr = sg_block;
8560 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8561 } else {
8562 /* Request's second or later scatter-gather block. */
8563 sgblkp->next_sgblkp = reqp->sgblkp;
8564 reqp->sgblkp = sgblkp;
8565
8566 /*
8567 * Point the previous ADV_SG_BLOCK structure to
8568 * the newly allocated ADV_SG_BLOCK structure.
8569 */
8570 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8571 }
8572
8573 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8574 sg_block->sg_list[i].sg_addr =
8575 cpu_to_le32(sg_dma_address(slp));
8576 sg_block->sg_list[i].sg_count =
8577 cpu_to_le32(sg_dma_len(slp));
8578 ASC_STATS_ADD(scp->device->host, xfer_sect,
8579 DIV_ROUND_UP(sg_dma_len(slp), 512));
8580
8581 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8582 sg_block->sg_cnt = i + 1;
8583 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8584 return ADV_SUCCESS;
8585 }
8586 slp++;
8587 }
8588 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8589 prev_sg_block = sg_block;
8590 }
8591 }
8592
8593 /*
8594 * Build a request structure for the Adv Library (Wide Board).
8595 *
8596 * If an adv_req_t can not be allocated to issue the request,
8597 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8598 *
8599 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8600 * microcode for DMA addresses or math operations are byte swapped
8601 * to little-endian order.
8602 */
8603 static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,ADV_SCSI_REQ_Q ** adv_scsiqpp)8604 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8605 ADV_SCSI_REQ_Q **adv_scsiqpp)
8606 {
8607 adv_req_t *reqp;
8608 ADV_SCSI_REQ_Q *scsiqp;
8609 int i;
8610 int ret;
8611 int use_sg;
8612
8613 /*
8614 * Allocate an adv_req_t structure from the board to execute
8615 * the command.
8616 */
8617 if (boardp->adv_reqp == NULL) {
8618 ASC_DBG(1, "no free adv_req_t\n");
8619 ASC_STATS(scp->device->host, adv_build_noreq);
8620 return ASC_BUSY;
8621 } else {
8622 reqp = boardp->adv_reqp;
8623 boardp->adv_reqp = reqp->next_reqp;
8624 reqp->next_reqp = NULL;
8625 }
8626
8627 /*
8628 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8629 */
8630 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8631
8632 /*
8633 * Initialize the structure.
8634 */
8635 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8636
8637 /*
8638 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8639 */
8640 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8641
8642 /*
8643 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8644 */
8645 reqp->cmndp = scp;
8646
8647 /*
8648 * Build the ADV_SCSI_REQ_Q request.
8649 */
8650
8651 /* Set CDB length and copy it to the request structure. */
8652 scsiqp->cdb_len = scp->cmd_len;
8653 /* Copy first 12 CDB bytes to cdb[]. */
8654 for (i = 0; i < scp->cmd_len && i < 12; i++) {
8655 scsiqp->cdb[i] = scp->cmnd[i];
8656 }
8657 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8658 for (; i < scp->cmd_len; i++) {
8659 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8660 }
8661
8662 scsiqp->target_id = scp->device->id;
8663 scsiqp->target_lun = scp->device->lun;
8664
8665 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8666 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8667
8668 /* Build ADV_SCSI_REQ_Q */
8669
8670 use_sg = scsi_dma_map(scp);
8671 if (use_sg == 0) {
8672 /* Zero-length transfer */
8673 reqp->sgblkp = NULL;
8674 scsiqp->data_cnt = 0;
8675 scsiqp->vdata_addr = NULL;
8676
8677 scsiqp->data_addr = 0;
8678 scsiqp->sg_list_ptr = NULL;
8679 scsiqp->sg_real_addr = 0;
8680 } else {
8681 if (use_sg > ADV_MAX_SG_LIST) {
8682 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8683 "ADV_MAX_SG_LIST %d\n", use_sg,
8684 scp->device->host->sg_tablesize);
8685 scsi_dma_unmap(scp);
8686 scp->result = HOST_BYTE(DID_ERROR);
8687
8688 /*
8689 * Free the 'adv_req_t' structure by adding it back
8690 * to the board free list.
8691 */
8692 reqp->next_reqp = boardp->adv_reqp;
8693 boardp->adv_reqp = reqp;
8694
8695 return ASC_ERROR;
8696 }
8697
8698 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8699
8700 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8701 if (ret != ADV_SUCCESS) {
8702 /*
8703 * Free the adv_req_t structure by adding it back to
8704 * the board free list.
8705 */
8706 reqp->next_reqp = boardp->adv_reqp;
8707 boardp->adv_reqp = reqp;
8708
8709 return ret;
8710 }
8711
8712 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8713 }
8714
8715 ASC_STATS(scp->device->host, xfer_cnt);
8716
8717 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8718 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8719
8720 *adv_scsiqpp = scsiqp;
8721
8722 return ASC_NOERROR;
8723 }
8724
AscSgListToQueue(int sg_list)8725 static int AscSgListToQueue(int sg_list)
8726 {
8727 int n_sg_list_qs;
8728
8729 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8730 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8731 n_sg_list_qs++;
8732 return n_sg_list_qs + 1;
8733 }
8734
8735 static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)8736 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8737 {
8738 uint cur_used_qs;
8739 uint cur_free_qs;
8740 ASC_SCSI_BIT_ID_TYPE target_id;
8741 uchar tid_no;
8742
8743 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8744 tid_no = ASC_TIX_TO_TID(target_ix);
8745 if ((asc_dvc->unit_not_ready & target_id) ||
8746 (asc_dvc->queue_full_or_busy & target_id)) {
8747 return 0;
8748 }
8749 if (n_qs == 1) {
8750 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8751 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8752 } else {
8753 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8754 (uint) ASC_MIN_FREE_Q;
8755 }
8756 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8757 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8758 if (asc_dvc->cur_dvc_qng[tid_no] >=
8759 asc_dvc->max_dvc_qng[tid_no]) {
8760 return 0;
8761 }
8762 return cur_free_qs;
8763 }
8764 if (n_qs > 1) {
8765 if ((n_qs > asc_dvc->last_q_shortage)
8766 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8767 asc_dvc->last_q_shortage = n_qs;
8768 }
8769 }
8770 return 0;
8771 }
8772
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)8773 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8774 {
8775 ushort q_addr;
8776 uchar next_qp;
8777 uchar q_status;
8778
8779 q_addr = ASC_QNO_TO_QADDR(free_q_head);
8780 q_status = (uchar)AscReadLramByte(iop_base,
8781 (ushort)(q_addr +
8782 ASC_SCSIQ_B_STATUS));
8783 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8784 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8785 return next_qp;
8786 return ASC_QLINK_END;
8787 }
8788
8789 static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)8790 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8791 {
8792 uchar i;
8793
8794 for (i = 0; i < n_free_q; i++) {
8795 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8796 if (free_q_head == ASC_QLINK_END)
8797 break;
8798 }
8799 return free_q_head;
8800 }
8801
8802 /*
8803 * void
8804 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8805 *
8806 * Calling/Exit State:
8807 * none
8808 *
8809 * Description:
8810 * Output an ASC_SCSI_Q structure to the chip
8811 */
8812 static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)8813 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8814 {
8815 int i;
8816
8817 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8818 AscSetChipLramAddr(iop_base, s_addr);
8819 for (i = 0; i < 2 * words; i += 2) {
8820 if (i == 4 || i == 20) {
8821 continue;
8822 }
8823 outpw(iop_base + IOP_RAM_DATA,
8824 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8825 }
8826 }
8827
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8828 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8829 {
8830 ushort q_addr;
8831 uchar tid_no;
8832 uchar sdtr_data;
8833 uchar syn_period_ix;
8834 uchar syn_offset;
8835 PortAddr iop_base;
8836
8837 iop_base = asc_dvc->iop_base;
8838 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8839 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8840 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8841 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8842 syn_period_ix =
8843 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8844 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8845 AscMsgOutSDTR(asc_dvc,
8846 asc_dvc->sdtr_period_tbl[syn_period_ix],
8847 syn_offset);
8848 scsiq->q1.cntl |= QC_MSG_OUT;
8849 }
8850 q_addr = ASC_QNO_TO_QADDR(q_no);
8851 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8852 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8853 }
8854 scsiq->q1.status = QS_FREE;
8855 AscMemWordCopyPtrToLram(iop_base,
8856 q_addr + ASC_SCSIQ_CDB_BEG,
8857 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8858
8859 DvcPutScsiQ(iop_base,
8860 q_addr + ASC_SCSIQ_CPY_BEG,
8861 (uchar *)&scsiq->q1.cntl,
8862 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8863 AscWriteLramWord(iop_base,
8864 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8865 (ushort)(((ushort)scsiq->q1.
8866 q_no << 8) | (ushort)QS_READY));
8867 return 1;
8868 }
8869
8870 static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8871 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8872 {
8873 int sta;
8874 int i;
8875 ASC_SG_HEAD *sg_head;
8876 ASC_SG_LIST_Q scsi_sg_q;
8877 ASC_DCNT saved_data_addr;
8878 ASC_DCNT saved_data_cnt;
8879 PortAddr iop_base;
8880 ushort sg_list_dwords;
8881 ushort sg_index;
8882 ushort sg_entry_cnt;
8883 ushort q_addr;
8884 uchar next_qp;
8885
8886 iop_base = asc_dvc->iop_base;
8887 sg_head = scsiq->sg_head;
8888 saved_data_addr = scsiq->q1.data_addr;
8889 saved_data_cnt = scsiq->q1.data_cnt;
8890 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8891 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8892 #if CC_VERY_LONG_SG_LIST
8893 /*
8894 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8895 * then not all SG elements will fit in the allocated queues.
8896 * The rest of the SG elements will be copied when the RISC
8897 * completes the SG elements that fit and halts.
8898 */
8899 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8900 /*
8901 * Set sg_entry_cnt to be the number of SG elements that
8902 * will fit in the allocated SG queues. It is minus 1, because
8903 * the first SG element is handled above. ASC_MAX_SG_LIST is
8904 * already inflated by 1 to account for this. For example it
8905 * may be 50 which is 1 + 7 queues * 7 SG elements.
8906 */
8907 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8908
8909 /*
8910 * Keep track of remaining number of SG elements that will
8911 * need to be handled from a_isr.c.
8912 */
8913 scsiq->remain_sg_entry_cnt =
8914 sg_head->entry_cnt - ASC_MAX_SG_LIST;
8915 } else {
8916 #endif /* CC_VERY_LONG_SG_LIST */
8917 /*
8918 * Set sg_entry_cnt to be the number of SG elements that
8919 * will fit in the allocated SG queues. It is minus 1, because
8920 * the first SG element is handled above.
8921 */
8922 sg_entry_cnt = sg_head->entry_cnt - 1;
8923 #if CC_VERY_LONG_SG_LIST
8924 }
8925 #endif /* CC_VERY_LONG_SG_LIST */
8926 if (sg_entry_cnt != 0) {
8927 scsiq->q1.cntl |= QC_SG_HEAD;
8928 q_addr = ASC_QNO_TO_QADDR(q_no);
8929 sg_index = 1;
8930 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8931 scsi_sg_q.sg_head_qp = q_no;
8932 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8933 for (i = 0; i < sg_head->queue_cnt; i++) {
8934 scsi_sg_q.seq_no = i + 1;
8935 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8936 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8937 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8938 if (i == 0) {
8939 scsi_sg_q.sg_list_cnt =
8940 ASC_SG_LIST_PER_Q;
8941 scsi_sg_q.sg_cur_list_cnt =
8942 ASC_SG_LIST_PER_Q;
8943 } else {
8944 scsi_sg_q.sg_list_cnt =
8945 ASC_SG_LIST_PER_Q - 1;
8946 scsi_sg_q.sg_cur_list_cnt =
8947 ASC_SG_LIST_PER_Q - 1;
8948 }
8949 } else {
8950 #if CC_VERY_LONG_SG_LIST
8951 /*
8952 * This is the last SG queue in the list of
8953 * allocated SG queues. If there are more
8954 * SG elements than will fit in the allocated
8955 * queues, then set the QCSG_SG_XFER_MORE flag.
8956 */
8957 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8958 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8959 } else {
8960 #endif /* CC_VERY_LONG_SG_LIST */
8961 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8962 #if CC_VERY_LONG_SG_LIST
8963 }
8964 #endif /* CC_VERY_LONG_SG_LIST */
8965 sg_list_dwords = sg_entry_cnt << 1;
8966 if (i == 0) {
8967 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8968 scsi_sg_q.sg_cur_list_cnt =
8969 sg_entry_cnt;
8970 } else {
8971 scsi_sg_q.sg_list_cnt =
8972 sg_entry_cnt - 1;
8973 scsi_sg_q.sg_cur_list_cnt =
8974 sg_entry_cnt - 1;
8975 }
8976 sg_entry_cnt = 0;
8977 }
8978 next_qp = AscReadLramByte(iop_base,
8979 (ushort)(q_addr +
8980 ASC_SCSIQ_B_FWD));
8981 scsi_sg_q.q_no = next_qp;
8982 q_addr = ASC_QNO_TO_QADDR(next_qp);
8983 AscMemWordCopyPtrToLram(iop_base,
8984 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8985 (uchar *)&scsi_sg_q,
8986 sizeof(ASC_SG_LIST_Q) >> 1);
8987 AscMemDWordCopyPtrToLram(iop_base,
8988 q_addr + ASC_SGQ_LIST_BEG,
8989 (uchar *)&sg_head->
8990 sg_list[sg_index],
8991 sg_list_dwords);
8992 sg_index += ASC_SG_LIST_PER_Q;
8993 scsiq->next_sg_index = sg_index;
8994 }
8995 } else {
8996 scsiq->q1.cntl &= ~QC_SG_HEAD;
8997 }
8998 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8999 scsiq->q1.data_addr = saved_data_addr;
9000 scsiq->q1.data_cnt = saved_data_cnt;
9001 return (sta);
9002 }
9003
9004 static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)9005 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
9006 {
9007 PortAddr iop_base;
9008 uchar free_q_head;
9009 uchar next_qp;
9010 uchar tid_no;
9011 uchar target_ix;
9012 int sta;
9013
9014 iop_base = asc_dvc->iop_base;
9015 target_ix = scsiq->q2.target_ix;
9016 tid_no = ASC_TIX_TO_TID(target_ix);
9017 sta = 0;
9018 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
9019 if (n_q_required > 1) {
9020 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
9021 (uchar)n_q_required);
9022 if (next_qp != ASC_QLINK_END) {
9023 asc_dvc->last_q_shortage = 0;
9024 scsiq->sg_head->queue_cnt = n_q_required - 1;
9025 scsiq->q1.q_no = free_q_head;
9026 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9027 free_q_head);
9028 }
9029 } else if (n_q_required == 1) {
9030 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9031 if (next_qp != ASC_QLINK_END) {
9032 scsiq->q1.q_no = free_q_head;
9033 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9034 }
9035 }
9036 if (sta == 1) {
9037 AscPutVarFreeQHead(iop_base, next_qp);
9038 asc_dvc->cur_total_qng += n_q_required;
9039 asc_dvc->cur_dvc_qng[tid_no]++;
9040 }
9041 return sta;
9042 }
9043
9044 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9045 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9046 INQUIRY,
9047 REQUEST_SENSE,
9048 READ_CAPACITY,
9049 READ_TOC,
9050 MODE_SELECT,
9051 MODE_SENSE,
9052 MODE_SELECT_10,
9053 MODE_SENSE_10,
9054 0xFF,
9055 0xFF,
9056 0xFF,
9057 0xFF,
9058 0xFF,
9059 0xFF,
9060 0xFF,
9061 0xFF
9062 };
9063
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)9064 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9065 {
9066 PortAddr iop_base;
9067 int sta;
9068 int n_q_required;
9069 int disable_syn_offset_one_fix;
9070 int i;
9071 ASC_PADDR addr;
9072 ushort sg_entry_cnt = 0;
9073 ushort sg_entry_cnt_minus_one = 0;
9074 uchar target_ix;
9075 uchar tid_no;
9076 uchar sdtr_data;
9077 uchar extra_bytes;
9078 uchar scsi_cmd;
9079 uchar disable_cmd;
9080 ASC_SG_HEAD *sg_head;
9081 ASC_DCNT data_cnt;
9082
9083 iop_base = asc_dvc->iop_base;
9084 sg_head = scsiq->sg_head;
9085 if (asc_dvc->err_code != 0)
9086 return (ERR);
9087 scsiq->q1.q_no = 0;
9088 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9089 scsiq->q1.extra_bytes = 0;
9090 }
9091 sta = 0;
9092 target_ix = scsiq->q2.target_ix;
9093 tid_no = ASC_TIX_TO_TID(target_ix);
9094 n_q_required = 1;
9095 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9096 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9097 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9098 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9099 AscMsgOutSDTR(asc_dvc,
9100 asc_dvc->
9101 sdtr_period_tbl[(sdtr_data >> 4) &
9102 (uchar)(asc_dvc->
9103 max_sdtr_index -
9104 1)],
9105 (uchar)(sdtr_data & (uchar)
9106 ASC_SYN_MAX_OFFSET));
9107 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9108 }
9109 }
9110 if (asc_dvc->in_critical_cnt != 0) {
9111 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9112 return (ERR);
9113 }
9114 asc_dvc->in_critical_cnt++;
9115 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9116 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9117 asc_dvc->in_critical_cnt--;
9118 return (ERR);
9119 }
9120 #if !CC_VERY_LONG_SG_LIST
9121 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9122 asc_dvc->in_critical_cnt--;
9123 return (ERR);
9124 }
9125 #endif /* !CC_VERY_LONG_SG_LIST */
9126 if (sg_entry_cnt == 1) {
9127 scsiq->q1.data_addr =
9128 (ADV_PADDR)sg_head->sg_list[0].addr;
9129 scsiq->q1.data_cnt =
9130 (ADV_DCNT)sg_head->sg_list[0].bytes;
9131 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9132 }
9133 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9134 }
9135 scsi_cmd = scsiq->cdbptr[0];
9136 disable_syn_offset_one_fix = FALSE;
9137 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9138 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9139 if (scsiq->q1.cntl & QC_SG_HEAD) {
9140 data_cnt = 0;
9141 for (i = 0; i < sg_entry_cnt; i++) {
9142 data_cnt +=
9143 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9144 bytes);
9145 }
9146 } else {
9147 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9148 }
9149 if (data_cnt != 0UL) {
9150 if (data_cnt < 512UL) {
9151 disable_syn_offset_one_fix = TRUE;
9152 } else {
9153 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9154 i++) {
9155 disable_cmd =
9156 _syn_offset_one_disable_cmd[i];
9157 if (disable_cmd == 0xFF) {
9158 break;
9159 }
9160 if (scsi_cmd == disable_cmd) {
9161 disable_syn_offset_one_fix =
9162 TRUE;
9163 break;
9164 }
9165 }
9166 }
9167 }
9168 }
9169 if (disable_syn_offset_one_fix) {
9170 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9171 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9172 ASC_TAG_FLAG_DISABLE_DISCONNECT);
9173 } else {
9174 scsiq->q2.tag_code &= 0x27;
9175 }
9176 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9177 if (asc_dvc->bug_fix_cntl) {
9178 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9179 if ((scsi_cmd == READ_6) ||
9180 (scsi_cmd == READ_10)) {
9181 addr =
9182 (ADV_PADDR)le32_to_cpu(sg_head->
9183 sg_list
9184 [sg_entry_cnt_minus_one].
9185 addr) +
9186 (ADV_DCNT)le32_to_cpu(sg_head->
9187 sg_list
9188 [sg_entry_cnt_minus_one].
9189 bytes);
9190 extra_bytes =
9191 (uchar)((ushort)addr & 0x0003);
9192 if ((extra_bytes != 0)
9193 &&
9194 ((scsiq->q2.
9195 tag_code &
9196 ASC_TAG_FLAG_EXTRA_BYTES)
9197 == 0)) {
9198 scsiq->q2.tag_code |=
9199 ASC_TAG_FLAG_EXTRA_BYTES;
9200 scsiq->q1.extra_bytes =
9201 extra_bytes;
9202 data_cnt =
9203 le32_to_cpu(sg_head->
9204 sg_list
9205 [sg_entry_cnt_minus_one].
9206 bytes);
9207 data_cnt -=
9208 (ASC_DCNT) extra_bytes;
9209 sg_head->
9210 sg_list
9211 [sg_entry_cnt_minus_one].
9212 bytes =
9213 cpu_to_le32(data_cnt);
9214 }
9215 }
9216 }
9217 }
9218 sg_head->entry_to_copy = sg_head->entry_cnt;
9219 #if CC_VERY_LONG_SG_LIST
9220 /*
9221 * Set the sg_entry_cnt to the maximum possible. The rest of
9222 * the SG elements will be copied when the RISC completes the
9223 * SG elements that fit and halts.
9224 */
9225 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9226 sg_entry_cnt = ASC_MAX_SG_LIST;
9227 }
9228 #endif /* CC_VERY_LONG_SG_LIST */
9229 n_q_required = AscSgListToQueue(sg_entry_cnt);
9230 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9231 (uint) n_q_required)
9232 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9233 if ((sta =
9234 AscSendScsiQueue(asc_dvc, scsiq,
9235 n_q_required)) == 1) {
9236 asc_dvc->in_critical_cnt--;
9237 return (sta);
9238 }
9239 }
9240 } else {
9241 if (asc_dvc->bug_fix_cntl) {
9242 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9243 if ((scsi_cmd == READ_6) ||
9244 (scsi_cmd == READ_10)) {
9245 addr =
9246 le32_to_cpu(scsiq->q1.data_addr) +
9247 le32_to_cpu(scsiq->q1.data_cnt);
9248 extra_bytes =
9249 (uchar)((ushort)addr & 0x0003);
9250 if ((extra_bytes != 0)
9251 &&
9252 ((scsiq->q2.
9253 tag_code &
9254 ASC_TAG_FLAG_EXTRA_BYTES)
9255 == 0)) {
9256 data_cnt =
9257 le32_to_cpu(scsiq->q1.
9258 data_cnt);
9259 if (((ushort)data_cnt & 0x01FF)
9260 == 0) {
9261 scsiq->q2.tag_code |=
9262 ASC_TAG_FLAG_EXTRA_BYTES;
9263 data_cnt -= (ASC_DCNT)
9264 extra_bytes;
9265 scsiq->q1.data_cnt =
9266 cpu_to_le32
9267 (data_cnt);
9268 scsiq->q1.extra_bytes =
9269 extra_bytes;
9270 }
9271 }
9272 }
9273 }
9274 }
9275 n_q_required = 1;
9276 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9277 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9278 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9279 n_q_required)) == 1) {
9280 asc_dvc->in_critical_cnt--;
9281 return (sta);
9282 }
9283 }
9284 }
9285 asc_dvc->in_critical_cnt--;
9286 return (sta);
9287 }
9288
9289 /*
9290 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9291 *
9292 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9293 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9294 * RISC to notify it a new command is ready to be executed.
9295 *
9296 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9297 * set to SCSI_MAX_RETRY.
9298 *
9299 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9300 * for DMA addresses or math operations are byte swapped to little-endian
9301 * order.
9302 *
9303 * Return:
9304 * ADV_SUCCESS(1) - The request was successfully queued.
9305 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9306 * request completes.
9307 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9308 * host IC error.
9309 */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,ADV_SCSI_REQ_Q * scsiq)9310 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9311 {
9312 AdvPortAddr iop_base;
9313 ADV_PADDR req_paddr;
9314 ADV_CARR_T *new_carrp;
9315
9316 /*
9317 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9318 */
9319 if (scsiq->target_id > ADV_MAX_TID) {
9320 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9321 scsiq->done_status = QD_WITH_ERROR;
9322 return ADV_ERROR;
9323 }
9324
9325 iop_base = asc_dvc->iop_base;
9326
9327 /*
9328 * Allocate a carrier ensuring at least one carrier always
9329 * remains on the freelist and initialize fields.
9330 */
9331 if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9332 return ADV_BUSY;
9333 }
9334 asc_dvc->carr_freelist = (ADV_CARR_T *)
9335 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9336 asc_dvc->carr_pending_cnt++;
9337
9338 /*
9339 * Set the carrier to be a stopper by setting 'next_vpa'
9340 * to the stopper value. The current stopper will be changed
9341 * below to point to the new stopper.
9342 */
9343 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9344
9345 /*
9346 * Clear the ADV_SCSI_REQ_Q done flag.
9347 */
9348 scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9349
9350 req_paddr = virt_to_bus(scsiq);
9351 BUG_ON(req_paddr & 31);
9352 /* Wait for assertion before making little-endian */
9353 req_paddr = cpu_to_le32(req_paddr);
9354
9355 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9356 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9357 scsiq->scsiq_rptr = req_paddr;
9358
9359 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9360 /*
9361 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9362 * order during initialization.
9363 */
9364 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9365
9366 /*
9367 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9368 * the microcode. The newly allocated stopper will become the new
9369 * stopper.
9370 */
9371 asc_dvc->icq_sp->areq_vpa = req_paddr;
9372
9373 /*
9374 * Set the 'next_vpa' pointer for the old stopper to be the
9375 * physical address of the new stopper. The RISC can only
9376 * follow physical addresses.
9377 */
9378 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9379
9380 /*
9381 * Set the host adapter stopper pointer to point to the new carrier.
9382 */
9383 asc_dvc->icq_sp = new_carrp;
9384
9385 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9386 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9387 /*
9388 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9389 */
9390 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9391 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9392 /*
9393 * Clear the tickle value. In the ASC-3550 the RISC flag
9394 * command 'clr_tickle_a' does not work unless the host
9395 * value is cleared.
9396 */
9397 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9398 ADV_TICKLE_NOP);
9399 }
9400 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9401 /*
9402 * Notify the RISC a carrier is ready by writing the physical
9403 * address of the new carrier stopper to the COMMA register.
9404 */
9405 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9406 le32_to_cpu(new_carrp->carr_pa));
9407 }
9408
9409 return ADV_SUCCESS;
9410 }
9411
9412 /*
9413 * Execute a single 'Scsi_Cmnd'.
9414 */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)9415 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9416 {
9417 int ret, err_code;
9418 struct asc_board *boardp = shost_priv(scp->device->host);
9419
9420 ASC_DBG(1, "scp 0x%p\n", scp);
9421
9422 if (ASC_NARROW_BOARD(boardp)) {
9423 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9424 struct asc_scsi_q asc_scsi_q;
9425
9426 /* asc_build_req() can not return ASC_BUSY. */
9427 ret = asc_build_req(boardp, scp, &asc_scsi_q);
9428 if (ret == ASC_ERROR) {
9429 ASC_STATS(scp->device->host, build_error);
9430 return ASC_ERROR;
9431 }
9432
9433 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9434 kfree(asc_scsi_q.sg_head);
9435 err_code = asc_dvc->err_code;
9436 } else {
9437 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9438 ADV_SCSI_REQ_Q *adv_scsiqp;
9439
9440 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9441 case ASC_NOERROR:
9442 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9443 break;
9444 case ASC_BUSY:
9445 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9446 /*
9447 * The asc_stats fields 'adv_build_noreq' and
9448 * 'adv_build_nosg' count wide board busy conditions.
9449 * They are updated in adv_build_req and
9450 * adv_get_sglist, respectively.
9451 */
9452 return ASC_BUSY;
9453 case ASC_ERROR:
9454 default:
9455 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9456 ASC_STATS(scp->device->host, build_error);
9457 return ASC_ERROR;
9458 }
9459
9460 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9461 err_code = adv_dvc->err_code;
9462 }
9463
9464 switch (ret) {
9465 case ASC_NOERROR:
9466 ASC_STATS(scp->device->host, exe_noerror);
9467 /*
9468 * Increment monotonically increasing per device
9469 * successful request counter. Wrapping doesn't matter.
9470 */
9471 boardp->reqcnt[scp->device->id]++;
9472 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9473 break;
9474 case ASC_BUSY:
9475 ASC_STATS(scp->device->host, exe_busy);
9476 break;
9477 case ASC_ERROR:
9478 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9479 "err_code 0x%x\n", err_code);
9480 ASC_STATS(scp->device->host, exe_error);
9481 scp->result = HOST_BYTE(DID_ERROR);
9482 break;
9483 default:
9484 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9485 "err_code 0x%x\n", err_code);
9486 ASC_STATS(scp->device->host, exe_unknown);
9487 scp->result = HOST_BYTE(DID_ERROR);
9488 break;
9489 }
9490
9491 ASC_DBG(1, "end\n");
9492 return ret;
9493 }
9494
9495 /*
9496 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9497 *
9498 * This function always returns 0. Command return status is saved
9499 * in the 'scp' result field.
9500 */
9501 static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))9502 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9503 {
9504 struct Scsi_Host *shost = scp->device->host;
9505 int asc_res, result = 0;
9506
9507 ASC_STATS(shost, queuecommand);
9508 scp->scsi_done = done;
9509
9510 asc_res = asc_execute_scsi_cmnd(scp);
9511
9512 switch (asc_res) {
9513 case ASC_NOERROR:
9514 break;
9515 case ASC_BUSY:
9516 result = SCSI_MLQUEUE_HOST_BUSY;
9517 break;
9518 case ASC_ERROR:
9519 default:
9520 asc_scsi_done(scp);
9521 break;
9522 }
9523
9524 return result;
9525 }
9526
DEF_SCSI_QCMD(advansys_queuecommand)9527 static DEF_SCSI_QCMD(advansys_queuecommand)
9528
9529 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9530 {
9531 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9532 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9533 return inpw(eisa_cfg_iop);
9534 }
9535
9536 /*
9537 * Return the BIOS address of the adapter at the specified
9538 * I/O port and with the specified bus type.
9539 */
9540 static unsigned short __devinit
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)9541 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9542 {
9543 unsigned short cfg_lsw;
9544 unsigned short bios_addr;
9545
9546 /*
9547 * The PCI BIOS is re-located by the motherboard BIOS. Because
9548 * of this the driver can not determine where a PCI BIOS is
9549 * loaded and executes.
9550 */
9551 if (bus_type & ASC_IS_PCI)
9552 return 0;
9553
9554 if ((bus_type & ASC_IS_EISA) != 0) {
9555 cfg_lsw = AscGetEisaChipCfg(iop_base);
9556 cfg_lsw &= 0x000F;
9557 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9558 return bios_addr;
9559 }
9560
9561 cfg_lsw = AscGetChipCfgLsw(iop_base);
9562
9563 /*
9564 * ISA PnP uses the top bit as the 32K BIOS flag
9565 */
9566 if (bus_type == ASC_IS_ISAPNP)
9567 cfg_lsw &= 0x7FFF;
9568 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9569 return bios_addr;
9570 }
9571
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)9572 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9573 {
9574 ushort cfg_lsw;
9575
9576 if (AscGetChipScsiID(iop_base) == new_host_id) {
9577 return (new_host_id);
9578 }
9579 cfg_lsw = AscGetChipCfgLsw(iop_base);
9580 cfg_lsw &= 0xF8FF;
9581 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9582 AscSetChipCfgLsw(iop_base, cfg_lsw);
9583 return (AscGetChipScsiID(iop_base));
9584 }
9585
AscGetChipScsiCtrl(PortAddr iop_base)9586 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9587 {
9588 unsigned char sc;
9589
9590 AscSetBank(iop_base, 1);
9591 sc = inp(iop_base + IOP_REG_SC);
9592 AscSetBank(iop_base, 0);
9593 return sc;
9594 }
9595
9596 static unsigned char __devinit
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)9597 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9598 {
9599 if (bus_type & ASC_IS_EISA) {
9600 PortAddr eisa_iop;
9601 unsigned char revision;
9602 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9603 (PortAddr) ASC_EISA_REV_IOP_MASK;
9604 revision = inp(eisa_iop);
9605 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9606 }
9607 return AscGetChipVerNo(iop_base);
9608 }
9609
9610 #ifdef CONFIG_ISA
AscEnableIsaDma(uchar dma_channel)9611 static void __devinit AscEnableIsaDma(uchar dma_channel)
9612 {
9613 if (dma_channel < 4) {
9614 outp(0x000B, (ushort)(0xC0 | dma_channel));
9615 outp(0x000A, dma_channel);
9616 } else if (dma_channel < 8) {
9617 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9618 outp(0x00D4, (ushort)(dma_channel - 4));
9619 }
9620 }
9621 #endif /* CONFIG_ISA */
9622
AscStopQueueExe(PortAddr iop_base)9623 static int AscStopQueueExe(PortAddr iop_base)
9624 {
9625 int count = 0;
9626
9627 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9628 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9629 ASC_STOP_REQ_RISC_STOP);
9630 do {
9631 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9632 ASC_STOP_ACK_RISC_STOP) {
9633 return (1);
9634 }
9635 mdelay(100);
9636 } while (count++ < 20);
9637 }
9638 return (0);
9639 }
9640
AscGetMaxDmaCount(ushort bus_type)9641 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9642 {
9643 if (bus_type & ASC_IS_ISA)
9644 return ASC_MAX_ISA_DMA_COUNT;
9645 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9646 return ASC_MAX_VL_DMA_COUNT;
9647 return ASC_MAX_PCI_DMA_COUNT;
9648 }
9649
9650 #ifdef CONFIG_ISA
AscGetIsaDmaChannel(PortAddr iop_base)9651 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9652 {
9653 ushort channel;
9654
9655 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9656 if (channel == 0x03)
9657 return (0);
9658 else if (channel == 0x00)
9659 return (7);
9660 return (channel + 4);
9661 }
9662
AscSetIsaDmaChannel(PortAddr iop_base,ushort dma_channel)9663 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9664 {
9665 ushort cfg_lsw;
9666 uchar value;
9667
9668 if ((dma_channel >= 5) && (dma_channel <= 7)) {
9669 if (dma_channel == 7)
9670 value = 0x00;
9671 else
9672 value = dma_channel - 4;
9673 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9674 cfg_lsw |= value;
9675 AscSetChipCfgLsw(iop_base, cfg_lsw);
9676 return (AscGetIsaDmaChannel(iop_base));
9677 }
9678 return 0;
9679 }
9680
AscGetIsaDmaSpeed(PortAddr iop_base)9681 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9682 {
9683 uchar speed_value;
9684
9685 AscSetBank(iop_base, 1);
9686 speed_value = AscReadChipDmaSpeed(iop_base);
9687 speed_value &= 0x07;
9688 AscSetBank(iop_base, 0);
9689 return speed_value;
9690 }
9691
AscSetIsaDmaSpeed(PortAddr iop_base,uchar speed_value)9692 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9693 {
9694 speed_value &= 0x07;
9695 AscSetBank(iop_base, 1);
9696 AscWriteChipDmaSpeed(iop_base, speed_value);
9697 AscSetBank(iop_base, 0);
9698 return AscGetIsaDmaSpeed(iop_base);
9699 }
9700 #endif /* CONFIG_ISA */
9701
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)9702 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9703 {
9704 int i;
9705 PortAddr iop_base;
9706 ushort warn_code;
9707 uchar chip_version;
9708
9709 iop_base = asc_dvc->iop_base;
9710 warn_code = 0;
9711 asc_dvc->err_code = 0;
9712 if ((asc_dvc->bus_type &
9713 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9714 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9715 }
9716 AscSetChipControl(iop_base, CC_HALT);
9717 AscSetChipStatus(iop_base, 0);
9718 asc_dvc->bug_fix_cntl = 0;
9719 asc_dvc->pci_fix_asyn_xfer = 0;
9720 asc_dvc->pci_fix_asyn_xfer_always = 0;
9721 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9722 asc_dvc->sdtr_done = 0;
9723 asc_dvc->cur_total_qng = 0;
9724 asc_dvc->is_in_int = 0;
9725 asc_dvc->in_critical_cnt = 0;
9726 asc_dvc->last_q_shortage = 0;
9727 asc_dvc->use_tagged_qng = 0;
9728 asc_dvc->no_scam = 0;
9729 asc_dvc->unit_not_ready = 0;
9730 asc_dvc->queue_full_or_busy = 0;
9731 asc_dvc->redo_scam = 0;
9732 asc_dvc->res2 = 0;
9733 asc_dvc->min_sdtr_index = 0;
9734 asc_dvc->cfg->can_tagged_qng = 0;
9735 asc_dvc->cfg->cmd_qng_enabled = 0;
9736 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9737 asc_dvc->init_sdtr = 0;
9738 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9739 asc_dvc->scsi_reset_wait = 3;
9740 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9741 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9742 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9743 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9744 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9745 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9746 asc_dvc->cfg->chip_version = chip_version;
9747 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9748 asc_dvc->max_sdtr_index = 7;
9749 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9750 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9751 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9752 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9753 asc_dvc->max_sdtr_index = 15;
9754 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9755 AscSetExtraControl(iop_base,
9756 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9757 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9758 AscSetExtraControl(iop_base,
9759 (SEC_ACTIVE_NEGATE |
9760 SEC_ENABLE_FILTER));
9761 }
9762 }
9763 if (asc_dvc->bus_type == ASC_IS_PCI) {
9764 AscSetExtraControl(iop_base,
9765 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9766 }
9767
9768 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9769 #ifdef CONFIG_ISA
9770 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9771 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9772 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9773 asc_dvc->bus_type = ASC_IS_ISAPNP;
9774 }
9775 asc_dvc->cfg->isa_dma_channel =
9776 (uchar)AscGetIsaDmaChannel(iop_base);
9777 }
9778 #endif /* CONFIG_ISA */
9779 for (i = 0; i <= ASC_MAX_TID; i++) {
9780 asc_dvc->cur_dvc_qng[i] = 0;
9781 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9782 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9783 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9784 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9785 }
9786 return warn_code;
9787 }
9788
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)9789 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9790 {
9791 int retry;
9792
9793 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9794 unsigned char read_back;
9795 AscSetChipEEPCmd(iop_base, cmd_reg);
9796 mdelay(1);
9797 read_back = AscGetChipEEPCmd(iop_base);
9798 if (read_back == cmd_reg)
9799 return 1;
9800 }
9801 return 0;
9802 }
9803
AscWaitEEPRead(void)9804 static void __devinit AscWaitEEPRead(void)
9805 {
9806 mdelay(1);
9807 }
9808
AscReadEEPWord(PortAddr iop_base,uchar addr)9809 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9810 {
9811 ushort read_wval;
9812 uchar cmd_reg;
9813
9814 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9815 AscWaitEEPRead();
9816 cmd_reg = addr | ASC_EEP_CMD_READ;
9817 AscWriteEEPCmdReg(iop_base, cmd_reg);
9818 AscWaitEEPRead();
9819 read_wval = AscGetChipEEPData(iop_base);
9820 AscWaitEEPRead();
9821 return read_wval;
9822 }
9823
9824 static ushort __devinit
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9825 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9826 {
9827 ushort wval;
9828 ushort sum;
9829 ushort *wbuf;
9830 int cfg_beg;
9831 int cfg_end;
9832 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9833 int s_addr;
9834
9835 wbuf = (ushort *)cfg_buf;
9836 sum = 0;
9837 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9838 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9839 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9840 sum += *wbuf;
9841 }
9842 if (bus_type & ASC_IS_VL) {
9843 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9844 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9845 } else {
9846 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9847 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9848 }
9849 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9850 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9851 if (s_addr <= uchar_end_in_config) {
9852 /*
9853 * Swap all char fields - must unswap bytes already swapped
9854 * by AscReadEEPWord().
9855 */
9856 *wbuf = le16_to_cpu(wval);
9857 } else {
9858 /* Don't swap word field at the end - cntl field. */
9859 *wbuf = wval;
9860 }
9861 sum += wval; /* Checksum treats all EEPROM data as words. */
9862 }
9863 /*
9864 * Read the checksum word which will be compared against 'sum'
9865 * by the caller. Word field already swapped.
9866 */
9867 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9868 return sum;
9869 }
9870
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)9871 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9872 {
9873 PortAddr iop_base;
9874 ushort q_addr;
9875 ushort saved_word;
9876 int sta;
9877
9878 iop_base = asc_dvc->iop_base;
9879 sta = 0;
9880 q_addr = ASC_QNO_TO_QADDR(241);
9881 saved_word = AscReadLramWord(iop_base, q_addr);
9882 AscSetChipLramAddr(iop_base, q_addr);
9883 AscSetChipLramData(iop_base, 0x55AA);
9884 mdelay(10);
9885 AscSetChipLramAddr(iop_base, q_addr);
9886 if (AscGetChipLramData(iop_base) == 0x55AA) {
9887 sta = 1;
9888 AscWriteLramWord(iop_base, q_addr, saved_word);
9889 }
9890 return (sta);
9891 }
9892
AscWaitEEPWrite(void)9893 static void __devinit AscWaitEEPWrite(void)
9894 {
9895 mdelay(20);
9896 }
9897
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)9898 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9899 {
9900 ushort read_back;
9901 int retry;
9902
9903 retry = 0;
9904 while (TRUE) {
9905 AscSetChipEEPData(iop_base, data_reg);
9906 mdelay(1);
9907 read_back = AscGetChipEEPData(iop_base);
9908 if (read_back == data_reg) {
9909 return (1);
9910 }
9911 if (retry++ > ASC_EEP_MAX_RETRY) {
9912 return (0);
9913 }
9914 }
9915 }
9916
9917 static ushort __devinit
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)9918 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9919 {
9920 ushort read_wval;
9921
9922 read_wval = AscReadEEPWord(iop_base, addr);
9923 if (read_wval != word_val) {
9924 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9925 AscWaitEEPRead();
9926 AscWriteEEPDataReg(iop_base, word_val);
9927 AscWaitEEPRead();
9928 AscWriteEEPCmdReg(iop_base,
9929 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9930 AscWaitEEPWrite();
9931 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9932 AscWaitEEPRead();
9933 return (AscReadEEPWord(iop_base, addr));
9934 }
9935 return (read_wval);
9936 }
9937
9938 static int __devinit
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9939 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9940 {
9941 int n_error;
9942 ushort *wbuf;
9943 ushort word;
9944 ushort sum;
9945 int s_addr;
9946 int cfg_beg;
9947 int cfg_end;
9948 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9949
9950 wbuf = (ushort *)cfg_buf;
9951 n_error = 0;
9952 sum = 0;
9953 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9954 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9955 sum += *wbuf;
9956 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9957 n_error++;
9958 }
9959 }
9960 if (bus_type & ASC_IS_VL) {
9961 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9962 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9963 } else {
9964 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9965 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9966 }
9967 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9968 if (s_addr <= uchar_end_in_config) {
9969 /*
9970 * This is a char field. Swap char fields before they are
9971 * swapped again by AscWriteEEPWord().
9972 */
9973 word = cpu_to_le16(*wbuf);
9974 if (word !=
9975 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9976 n_error++;
9977 }
9978 } else {
9979 /* Don't swap word field at the end - cntl field. */
9980 if (*wbuf !=
9981 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9982 n_error++;
9983 }
9984 }
9985 sum += *wbuf; /* Checksum calculated from word values. */
9986 }
9987 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9988 *wbuf = sum;
9989 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9990 n_error++;
9991 }
9992
9993 /* Read EEPROM back again. */
9994 wbuf = (ushort *)cfg_buf;
9995 /*
9996 * Read two config words; Byte-swapping done by AscReadEEPWord().
9997 */
9998 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9999 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
10000 n_error++;
10001 }
10002 }
10003 if (bus_type & ASC_IS_VL) {
10004 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
10005 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
10006 } else {
10007 cfg_beg = ASC_EEP_DVC_CFG_BEG;
10008 cfg_end = ASC_EEP_MAX_DVC_ADDR;
10009 }
10010 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
10011 if (s_addr <= uchar_end_in_config) {
10012 /*
10013 * Swap all char fields. Must unswap bytes already swapped
10014 * by AscReadEEPWord().
10015 */
10016 word =
10017 le16_to_cpu(AscReadEEPWord
10018 (iop_base, (uchar)s_addr));
10019 } else {
10020 /* Don't swap word field at the end - cntl field. */
10021 word = AscReadEEPWord(iop_base, (uchar)s_addr);
10022 }
10023 if (*wbuf != word) {
10024 n_error++;
10025 }
10026 }
10027 /* Read checksum; Byte swapping not needed. */
10028 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10029 n_error++;
10030 }
10031 return n_error;
10032 }
10033
10034 static int __devinit
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)10035 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10036 {
10037 int retry;
10038 int n_error;
10039
10040 retry = 0;
10041 while (TRUE) {
10042 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10043 bus_type)) == 0) {
10044 break;
10045 }
10046 if (++retry > ASC_EEP_MAX_RETRY) {
10047 break;
10048 }
10049 }
10050 return n_error;
10051 }
10052
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)10053 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10054 {
10055 ASCEEP_CONFIG eep_config_buf;
10056 ASCEEP_CONFIG *eep_config;
10057 PortAddr iop_base;
10058 ushort chksum;
10059 ushort warn_code;
10060 ushort cfg_msw, cfg_lsw;
10061 int i;
10062 int write_eep = 0;
10063
10064 iop_base = asc_dvc->iop_base;
10065 warn_code = 0;
10066 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10067 AscStopQueueExe(iop_base);
10068 if ((AscStopChip(iop_base) == FALSE) ||
10069 (AscGetChipScsiCtrl(iop_base) != 0)) {
10070 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10071 AscResetChipAndScsiBus(asc_dvc);
10072 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10073 }
10074 if (AscIsChipHalted(iop_base) == FALSE) {
10075 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10076 return (warn_code);
10077 }
10078 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10079 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10080 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10081 return (warn_code);
10082 }
10083 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10084 cfg_msw = AscGetChipCfgMsw(iop_base);
10085 cfg_lsw = AscGetChipCfgLsw(iop_base);
10086 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10087 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10088 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10089 AscSetChipCfgMsw(iop_base, cfg_msw);
10090 }
10091 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10092 ASC_DBG(1, "chksum 0x%x\n", chksum);
10093 if (chksum == 0) {
10094 chksum = 0xaa55;
10095 }
10096 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10097 warn_code |= ASC_WARN_AUTO_CONFIG;
10098 if (asc_dvc->cfg->chip_version == 3) {
10099 if (eep_config->cfg_lsw != cfg_lsw) {
10100 warn_code |= ASC_WARN_EEPROM_RECOVER;
10101 eep_config->cfg_lsw =
10102 AscGetChipCfgLsw(iop_base);
10103 }
10104 if (eep_config->cfg_msw != cfg_msw) {
10105 warn_code |= ASC_WARN_EEPROM_RECOVER;
10106 eep_config->cfg_msw =
10107 AscGetChipCfgMsw(iop_base);
10108 }
10109 }
10110 }
10111 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10112 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10113 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10114 if (chksum != eep_config->chksum) {
10115 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10116 ASC_CHIP_VER_PCI_ULTRA_3050) {
10117 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10118 eep_config->init_sdtr = 0xFF;
10119 eep_config->disc_enable = 0xFF;
10120 eep_config->start_motor = 0xFF;
10121 eep_config->use_cmd_qng = 0;
10122 eep_config->max_total_qng = 0xF0;
10123 eep_config->max_tag_qng = 0x20;
10124 eep_config->cntl = 0xBFFF;
10125 ASC_EEP_SET_CHIP_ID(eep_config, 7);
10126 eep_config->no_scam = 0;
10127 eep_config->adapter_info[0] = 0;
10128 eep_config->adapter_info[1] = 0;
10129 eep_config->adapter_info[2] = 0;
10130 eep_config->adapter_info[3] = 0;
10131 eep_config->adapter_info[4] = 0;
10132 /* Indicate EEPROM-less board. */
10133 eep_config->adapter_info[5] = 0xBB;
10134 } else {
10135 ASC_PRINT
10136 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10137 write_eep = 1;
10138 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10139 }
10140 }
10141 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10142 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10143 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10144 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10145 asc_dvc->start_motor = eep_config->start_motor;
10146 asc_dvc->dvc_cntl = eep_config->cntl;
10147 asc_dvc->no_scam = eep_config->no_scam;
10148 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10149 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10150 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10151 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10152 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10153 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10154 if (!AscTestExternalLram(asc_dvc)) {
10155 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10156 ASC_IS_PCI_ULTRA)) {
10157 eep_config->max_total_qng =
10158 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10159 eep_config->max_tag_qng =
10160 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10161 } else {
10162 eep_config->cfg_msw |= 0x0800;
10163 cfg_msw |= 0x0800;
10164 AscSetChipCfgMsw(iop_base, cfg_msw);
10165 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10166 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10167 }
10168 } else {
10169 }
10170 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10171 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10172 }
10173 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10174 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10175 }
10176 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10177 eep_config->max_tag_qng = eep_config->max_total_qng;
10178 }
10179 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10180 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10181 }
10182 asc_dvc->max_total_qng = eep_config->max_total_qng;
10183 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10184 eep_config->use_cmd_qng) {
10185 eep_config->disc_enable = eep_config->use_cmd_qng;
10186 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10187 }
10188 ASC_EEP_SET_CHIP_ID(eep_config,
10189 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10190 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10191 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10192 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10193 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10194 }
10195
10196 for (i = 0; i <= ASC_MAX_TID; i++) {
10197 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10198 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10199 asc_dvc->cfg->sdtr_period_offset[i] =
10200 (uchar)(ASC_DEF_SDTR_OFFSET |
10201 (asc_dvc->min_sdtr_index << 4));
10202 }
10203 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10204 if (write_eep) {
10205 if ((i = AscSetEEPConfig(iop_base, eep_config,
10206 asc_dvc->bus_type)) != 0) {
10207 ASC_PRINT1
10208 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10209 i);
10210 } else {
10211 ASC_PRINT
10212 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10213 }
10214 }
10215 return (warn_code);
10216 }
10217
AscInitGetConfig(struct Scsi_Host * shost)10218 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10219 {
10220 struct asc_board *board = shost_priv(shost);
10221 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10222 unsigned short warn_code = 0;
10223
10224 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10225 if (asc_dvc->err_code != 0)
10226 return asc_dvc->err_code;
10227
10228 if (AscFindSignature(asc_dvc->iop_base)) {
10229 warn_code |= AscInitAscDvcVar(asc_dvc);
10230 warn_code |= AscInitFromEEP(asc_dvc);
10231 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10232 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10233 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10234 } else {
10235 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10236 }
10237
10238 switch (warn_code) {
10239 case 0: /* No error */
10240 break;
10241 case ASC_WARN_IO_PORT_ROTATE:
10242 shost_printk(KERN_WARNING, shost, "I/O port address "
10243 "modified\n");
10244 break;
10245 case ASC_WARN_AUTO_CONFIG:
10246 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10247 "enabled\n");
10248 break;
10249 case ASC_WARN_EEPROM_CHKSUM:
10250 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10251 break;
10252 case ASC_WARN_IRQ_MODIFIED:
10253 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10254 break;
10255 case ASC_WARN_CMD_QNG_CONFLICT:
10256 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10257 "disconnects\n");
10258 break;
10259 default:
10260 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10261 warn_code);
10262 break;
10263 }
10264
10265 if (asc_dvc->err_code != 0)
10266 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10267 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10268
10269 return asc_dvc->err_code;
10270 }
10271
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10272 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10273 {
10274 struct asc_board *board = shost_priv(shost);
10275 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10276 PortAddr iop_base = asc_dvc->iop_base;
10277 unsigned short cfg_msw;
10278 unsigned short warn_code = 0;
10279
10280 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10281 if (asc_dvc->err_code != 0)
10282 return asc_dvc->err_code;
10283 if (!AscFindSignature(asc_dvc->iop_base)) {
10284 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10285 return asc_dvc->err_code;
10286 }
10287
10288 cfg_msw = AscGetChipCfgMsw(iop_base);
10289 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10290 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10291 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10292 AscSetChipCfgMsw(iop_base, cfg_msw);
10293 }
10294 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10295 asc_dvc->cfg->cmd_qng_enabled) {
10296 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10297 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10298 }
10299 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10300 warn_code |= ASC_WARN_AUTO_CONFIG;
10301 }
10302 #ifdef CONFIG_PCI
10303 if (asc_dvc->bus_type & ASC_IS_PCI) {
10304 cfg_msw &= 0xFFC0;
10305 AscSetChipCfgMsw(iop_base, cfg_msw);
10306 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10307 } else {
10308 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10309 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10310 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10311 asc_dvc->bug_fix_cntl |=
10312 ASC_BUG_FIX_ASYN_USE_SYN;
10313 }
10314 }
10315 } else
10316 #endif /* CONFIG_PCI */
10317 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10318 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10319 == ASC_CHIP_VER_ASYN_BUG) {
10320 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10321 }
10322 }
10323 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10324 asc_dvc->cfg->chip_scsi_id) {
10325 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10326 }
10327 #ifdef CONFIG_ISA
10328 if (asc_dvc->bus_type & ASC_IS_ISA) {
10329 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10330 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10331 }
10332 #endif /* CONFIG_ISA */
10333
10334 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10335
10336 switch (warn_code) {
10337 case 0: /* No error. */
10338 break;
10339 case ASC_WARN_IO_PORT_ROTATE:
10340 shost_printk(KERN_WARNING, shost, "I/O port address "
10341 "modified\n");
10342 break;
10343 case ASC_WARN_AUTO_CONFIG:
10344 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10345 "enabled\n");
10346 break;
10347 case ASC_WARN_EEPROM_CHKSUM:
10348 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10349 break;
10350 case ASC_WARN_IRQ_MODIFIED:
10351 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10352 break;
10353 case ASC_WARN_CMD_QNG_CONFLICT:
10354 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10355 "disconnects\n");
10356 break;
10357 default:
10358 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10359 warn_code);
10360 break;
10361 }
10362
10363 if (asc_dvc->err_code != 0)
10364 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10365 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10366
10367 return asc_dvc->err_code;
10368 }
10369
10370 /*
10371 * EEPROM Configuration.
10372 *
10373 * All drivers should use this structure to set the default EEPROM
10374 * configuration. The BIOS now uses this structure when it is built.
10375 * Additional structure information can be found in a_condor.h where
10376 * the structure is defined.
10377 *
10378 * The *_Field_IsChar structs are needed to correct for endianness.
10379 * These values are read from the board 16 bits at a time directly
10380 * into the structs. Because some fields are char, the values will be
10381 * in the wrong order. The *_Field_IsChar tells when to flip the
10382 * bytes. Data read and written to PCI memory is automatically swapped
10383 * on big-endian platforms so char fields read as words are actually being
10384 * unswapped on big-endian platforms.
10385 */
10386 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10387 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10388 0x0000, /* cfg_msw */
10389 0xFFFF, /* disc_enable */
10390 0xFFFF, /* wdtr_able */
10391 0xFFFF, /* sdtr_able */
10392 0xFFFF, /* start_motor */
10393 0xFFFF, /* tagqng_able */
10394 0xFFFF, /* bios_scan */
10395 0, /* scam_tolerant */
10396 7, /* adapter_scsi_id */
10397 0, /* bios_boot_delay */
10398 3, /* scsi_reset_delay */
10399 0, /* bios_id_lun */
10400 0, /* termination */
10401 0, /* reserved1 */
10402 0xFFE7, /* bios_ctrl */
10403 0xFFFF, /* ultra_able */
10404 0, /* reserved2 */
10405 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
10406 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10407 0, /* dvc_cntl */
10408 0, /* bug_fix */
10409 0, /* serial_number_word1 */
10410 0, /* serial_number_word2 */
10411 0, /* serial_number_word3 */
10412 0, /* check_sum */
10413 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10414 , /* oem_name[16] */
10415 0, /* dvc_err_code */
10416 0, /* adv_err_code */
10417 0, /* adv_err_addr */
10418 0, /* saved_dvc_err_code */
10419 0, /* saved_adv_err_code */
10420 0, /* saved_adv_err_addr */
10421 0 /* num_of_err */
10422 };
10423
10424 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10425 0, /* cfg_lsw */
10426 0, /* cfg_msw */
10427 0, /* -disc_enable */
10428 0, /* wdtr_able */
10429 0, /* sdtr_able */
10430 0, /* start_motor */
10431 0, /* tagqng_able */
10432 0, /* bios_scan */
10433 0, /* scam_tolerant */
10434 1, /* adapter_scsi_id */
10435 1, /* bios_boot_delay */
10436 1, /* scsi_reset_delay */
10437 1, /* bios_id_lun */
10438 1, /* termination */
10439 1, /* reserved1 */
10440 0, /* bios_ctrl */
10441 0, /* ultra_able */
10442 0, /* reserved2 */
10443 1, /* max_host_qng */
10444 1, /* max_dvc_qng */
10445 0, /* dvc_cntl */
10446 0, /* bug_fix */
10447 0, /* serial_number_word1 */
10448 0, /* serial_number_word2 */
10449 0, /* serial_number_word3 */
10450 0, /* check_sum */
10451 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10452 , /* oem_name[16] */
10453 0, /* dvc_err_code */
10454 0, /* adv_err_code */
10455 0, /* adv_err_addr */
10456 0, /* saved_dvc_err_code */
10457 0, /* saved_adv_err_code */
10458 0, /* saved_adv_err_addr */
10459 0 /* num_of_err */
10460 };
10461
10462 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10463 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10464 0x0000, /* 01 cfg_msw */
10465 0xFFFF, /* 02 disc_enable */
10466 0xFFFF, /* 03 wdtr_able */
10467 0x4444, /* 04 sdtr_speed1 */
10468 0xFFFF, /* 05 start_motor */
10469 0xFFFF, /* 06 tagqng_able */
10470 0xFFFF, /* 07 bios_scan */
10471 0, /* 08 scam_tolerant */
10472 7, /* 09 adapter_scsi_id */
10473 0, /* bios_boot_delay */
10474 3, /* 10 scsi_reset_delay */
10475 0, /* bios_id_lun */
10476 0, /* 11 termination_se */
10477 0, /* termination_lvd */
10478 0xFFE7, /* 12 bios_ctrl */
10479 0x4444, /* 13 sdtr_speed2 */
10480 0x4444, /* 14 sdtr_speed3 */
10481 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10482 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10483 0, /* 16 dvc_cntl */
10484 0x4444, /* 17 sdtr_speed4 */
10485 0, /* 18 serial_number_word1 */
10486 0, /* 19 serial_number_word2 */
10487 0, /* 20 serial_number_word3 */
10488 0, /* 21 check_sum */
10489 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10490 , /* 22-29 oem_name[16] */
10491 0, /* 30 dvc_err_code */
10492 0, /* 31 adv_err_code */
10493 0, /* 32 adv_err_addr */
10494 0, /* 33 saved_dvc_err_code */
10495 0, /* 34 saved_adv_err_code */
10496 0, /* 35 saved_adv_err_addr */
10497 0, /* 36 reserved */
10498 0, /* 37 reserved */
10499 0, /* 38 reserved */
10500 0, /* 39 reserved */
10501 0, /* 40 reserved */
10502 0, /* 41 reserved */
10503 0, /* 42 reserved */
10504 0, /* 43 reserved */
10505 0, /* 44 reserved */
10506 0, /* 45 reserved */
10507 0, /* 46 reserved */
10508 0, /* 47 reserved */
10509 0, /* 48 reserved */
10510 0, /* 49 reserved */
10511 0, /* 50 reserved */
10512 0, /* 51 reserved */
10513 0, /* 52 reserved */
10514 0, /* 53 reserved */
10515 0, /* 54 reserved */
10516 0, /* 55 reserved */
10517 0, /* 56 cisptr_lsw */
10518 0, /* 57 cisprt_msw */
10519 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10520 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10521 0, /* 60 reserved */
10522 0, /* 61 reserved */
10523 0, /* 62 reserved */
10524 0 /* 63 reserved */
10525 };
10526
10527 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10528 0, /* 00 cfg_lsw */
10529 0, /* 01 cfg_msw */
10530 0, /* 02 disc_enable */
10531 0, /* 03 wdtr_able */
10532 0, /* 04 sdtr_speed1 */
10533 0, /* 05 start_motor */
10534 0, /* 06 tagqng_able */
10535 0, /* 07 bios_scan */
10536 0, /* 08 scam_tolerant */
10537 1, /* 09 adapter_scsi_id */
10538 1, /* bios_boot_delay */
10539 1, /* 10 scsi_reset_delay */
10540 1, /* bios_id_lun */
10541 1, /* 11 termination_se */
10542 1, /* termination_lvd */
10543 0, /* 12 bios_ctrl */
10544 0, /* 13 sdtr_speed2 */
10545 0, /* 14 sdtr_speed3 */
10546 1, /* 15 max_host_qng */
10547 1, /* max_dvc_qng */
10548 0, /* 16 dvc_cntl */
10549 0, /* 17 sdtr_speed4 */
10550 0, /* 18 serial_number_word1 */
10551 0, /* 19 serial_number_word2 */
10552 0, /* 20 serial_number_word3 */
10553 0, /* 21 check_sum */
10554 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10555 , /* 22-29 oem_name[16] */
10556 0, /* 30 dvc_err_code */
10557 0, /* 31 adv_err_code */
10558 0, /* 32 adv_err_addr */
10559 0, /* 33 saved_dvc_err_code */
10560 0, /* 34 saved_adv_err_code */
10561 0, /* 35 saved_adv_err_addr */
10562 0, /* 36 reserved */
10563 0, /* 37 reserved */
10564 0, /* 38 reserved */
10565 0, /* 39 reserved */
10566 0, /* 40 reserved */
10567 0, /* 41 reserved */
10568 0, /* 42 reserved */
10569 0, /* 43 reserved */
10570 0, /* 44 reserved */
10571 0, /* 45 reserved */
10572 0, /* 46 reserved */
10573 0, /* 47 reserved */
10574 0, /* 48 reserved */
10575 0, /* 49 reserved */
10576 0, /* 50 reserved */
10577 0, /* 51 reserved */
10578 0, /* 52 reserved */
10579 0, /* 53 reserved */
10580 0, /* 54 reserved */
10581 0, /* 55 reserved */
10582 0, /* 56 cisptr_lsw */
10583 0, /* 57 cisprt_msw */
10584 0, /* 58 subsysvid */
10585 0, /* 59 subsysid */
10586 0, /* 60 reserved */
10587 0, /* 61 reserved */
10588 0, /* 62 reserved */
10589 0 /* 63 reserved */
10590 };
10591
10592 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10593 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10594 0x0000, /* 01 cfg_msw */
10595 0xFFFF, /* 02 disc_enable */
10596 0xFFFF, /* 03 wdtr_able */
10597 0x5555, /* 04 sdtr_speed1 */
10598 0xFFFF, /* 05 start_motor */
10599 0xFFFF, /* 06 tagqng_able */
10600 0xFFFF, /* 07 bios_scan */
10601 0, /* 08 scam_tolerant */
10602 7, /* 09 adapter_scsi_id */
10603 0, /* bios_boot_delay */
10604 3, /* 10 scsi_reset_delay */
10605 0, /* bios_id_lun */
10606 0, /* 11 termination_se */
10607 0, /* termination_lvd */
10608 0xFFE7, /* 12 bios_ctrl */
10609 0x5555, /* 13 sdtr_speed2 */
10610 0x5555, /* 14 sdtr_speed3 */
10611 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10612 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10613 0, /* 16 dvc_cntl */
10614 0x5555, /* 17 sdtr_speed4 */
10615 0, /* 18 serial_number_word1 */
10616 0, /* 19 serial_number_word2 */
10617 0, /* 20 serial_number_word3 */
10618 0, /* 21 check_sum */
10619 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10620 , /* 22-29 oem_name[16] */
10621 0, /* 30 dvc_err_code */
10622 0, /* 31 adv_err_code */
10623 0, /* 32 adv_err_addr */
10624 0, /* 33 saved_dvc_err_code */
10625 0, /* 34 saved_adv_err_code */
10626 0, /* 35 saved_adv_err_addr */
10627 0, /* 36 reserved */
10628 0, /* 37 reserved */
10629 0, /* 38 reserved */
10630 0, /* 39 reserved */
10631 0, /* 40 reserved */
10632 0, /* 41 reserved */
10633 0, /* 42 reserved */
10634 0, /* 43 reserved */
10635 0, /* 44 reserved */
10636 0, /* 45 reserved */
10637 0, /* 46 reserved */
10638 0, /* 47 reserved */
10639 0, /* 48 reserved */
10640 0, /* 49 reserved */
10641 0, /* 50 reserved */
10642 0, /* 51 reserved */
10643 0, /* 52 reserved */
10644 0, /* 53 reserved */
10645 0, /* 54 reserved */
10646 0, /* 55 reserved */
10647 0, /* 56 cisptr_lsw */
10648 0, /* 57 cisprt_msw */
10649 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10650 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10651 0, /* 60 reserved */
10652 0, /* 61 reserved */
10653 0, /* 62 reserved */
10654 0 /* 63 reserved */
10655 };
10656
10657 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10658 0, /* 00 cfg_lsw */
10659 0, /* 01 cfg_msw */
10660 0, /* 02 disc_enable */
10661 0, /* 03 wdtr_able */
10662 0, /* 04 sdtr_speed1 */
10663 0, /* 05 start_motor */
10664 0, /* 06 tagqng_able */
10665 0, /* 07 bios_scan */
10666 0, /* 08 scam_tolerant */
10667 1, /* 09 adapter_scsi_id */
10668 1, /* bios_boot_delay */
10669 1, /* 10 scsi_reset_delay */
10670 1, /* bios_id_lun */
10671 1, /* 11 termination_se */
10672 1, /* termination_lvd */
10673 0, /* 12 bios_ctrl */
10674 0, /* 13 sdtr_speed2 */
10675 0, /* 14 sdtr_speed3 */
10676 1, /* 15 max_host_qng */
10677 1, /* max_dvc_qng */
10678 0, /* 16 dvc_cntl */
10679 0, /* 17 sdtr_speed4 */
10680 0, /* 18 serial_number_word1 */
10681 0, /* 19 serial_number_word2 */
10682 0, /* 20 serial_number_word3 */
10683 0, /* 21 check_sum */
10684 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10685 , /* 22-29 oem_name[16] */
10686 0, /* 30 dvc_err_code */
10687 0, /* 31 adv_err_code */
10688 0, /* 32 adv_err_addr */
10689 0, /* 33 saved_dvc_err_code */
10690 0, /* 34 saved_adv_err_code */
10691 0, /* 35 saved_adv_err_addr */
10692 0, /* 36 reserved */
10693 0, /* 37 reserved */
10694 0, /* 38 reserved */
10695 0, /* 39 reserved */
10696 0, /* 40 reserved */
10697 0, /* 41 reserved */
10698 0, /* 42 reserved */
10699 0, /* 43 reserved */
10700 0, /* 44 reserved */
10701 0, /* 45 reserved */
10702 0, /* 46 reserved */
10703 0, /* 47 reserved */
10704 0, /* 48 reserved */
10705 0, /* 49 reserved */
10706 0, /* 50 reserved */
10707 0, /* 51 reserved */
10708 0, /* 52 reserved */
10709 0, /* 53 reserved */
10710 0, /* 54 reserved */
10711 0, /* 55 reserved */
10712 0, /* 56 cisptr_lsw */
10713 0, /* 57 cisprt_msw */
10714 0, /* 58 subsysvid */
10715 0, /* 59 subsysid */
10716 0, /* 60 reserved */
10717 0, /* 61 reserved */
10718 0, /* 62 reserved */
10719 0 /* 63 reserved */
10720 };
10721
10722 #ifdef CONFIG_PCI
10723 /*
10724 * Wait for EEPROM command to complete
10725 */
AdvWaitEEPCmd(AdvPortAddr iop_base)10726 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10727 {
10728 int eep_delay_ms;
10729
10730 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10731 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10732 ASC_EEP_CMD_DONE) {
10733 break;
10734 }
10735 mdelay(1);
10736 }
10737 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10738 0)
10739 BUG();
10740 }
10741
10742 /*
10743 * Read the EEPROM from specified location
10744 */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)10745 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10746 {
10747 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10748 ASC_EEP_CMD_READ | eep_word_addr);
10749 AdvWaitEEPCmd(iop_base);
10750 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10751 }
10752
10753 /*
10754 * Write the EEPROM from 'cfg_buf'.
10755 */
10756 static void __devinit
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10757 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10758 {
10759 ushort *wbuf;
10760 ushort addr, chksum;
10761 ushort *charfields;
10762
10763 wbuf = (ushort *)cfg_buf;
10764 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10765 chksum = 0;
10766
10767 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10768 AdvWaitEEPCmd(iop_base);
10769
10770 /*
10771 * Write EEPROM from word 0 to word 20.
10772 */
10773 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10774 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10775 ushort word;
10776
10777 if (*charfields++) {
10778 word = cpu_to_le16(*wbuf);
10779 } else {
10780 word = *wbuf;
10781 }
10782 chksum += *wbuf; /* Checksum is calculated from word values. */
10783 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10784 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10785 ASC_EEP_CMD_WRITE | addr);
10786 AdvWaitEEPCmd(iop_base);
10787 mdelay(ADV_EEP_DELAY_MS);
10788 }
10789
10790 /*
10791 * Write EEPROM checksum at word 21.
10792 */
10793 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10794 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10795 AdvWaitEEPCmd(iop_base);
10796 wbuf++;
10797 charfields++;
10798
10799 /*
10800 * Write EEPROM OEM name at words 22 to 29.
10801 */
10802 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10803 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10804 ushort word;
10805
10806 if (*charfields++) {
10807 word = cpu_to_le16(*wbuf);
10808 } else {
10809 word = *wbuf;
10810 }
10811 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10812 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10813 ASC_EEP_CMD_WRITE | addr);
10814 AdvWaitEEPCmd(iop_base);
10815 }
10816 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10817 AdvWaitEEPCmd(iop_base);
10818 }
10819
10820 /*
10821 * Write the EEPROM from 'cfg_buf'.
10822 */
10823 static void __devinit
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)10824 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10825 {
10826 ushort *wbuf;
10827 ushort *charfields;
10828 ushort addr, chksum;
10829
10830 wbuf = (ushort *)cfg_buf;
10831 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10832 chksum = 0;
10833
10834 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10835 AdvWaitEEPCmd(iop_base);
10836
10837 /*
10838 * Write EEPROM from word 0 to word 20.
10839 */
10840 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10841 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10842 ushort word;
10843
10844 if (*charfields++) {
10845 word = cpu_to_le16(*wbuf);
10846 } else {
10847 word = *wbuf;
10848 }
10849 chksum += *wbuf; /* Checksum is calculated from word values. */
10850 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10851 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10852 ASC_EEP_CMD_WRITE | addr);
10853 AdvWaitEEPCmd(iop_base);
10854 mdelay(ADV_EEP_DELAY_MS);
10855 }
10856
10857 /*
10858 * Write EEPROM checksum at word 21.
10859 */
10860 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10861 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10862 AdvWaitEEPCmd(iop_base);
10863 wbuf++;
10864 charfields++;
10865
10866 /*
10867 * Write EEPROM OEM name at words 22 to 29.
10868 */
10869 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10870 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10871 ushort word;
10872
10873 if (*charfields++) {
10874 word = cpu_to_le16(*wbuf);
10875 } else {
10876 word = *wbuf;
10877 }
10878 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10879 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10880 ASC_EEP_CMD_WRITE | addr);
10881 AdvWaitEEPCmd(iop_base);
10882 }
10883 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10884 AdvWaitEEPCmd(iop_base);
10885 }
10886
10887 /*
10888 * Write the EEPROM from 'cfg_buf'.
10889 */
10890 static void __devinit
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)10891 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10892 {
10893 ushort *wbuf;
10894 ushort *charfields;
10895 ushort addr, chksum;
10896
10897 wbuf = (ushort *)cfg_buf;
10898 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10899 chksum = 0;
10900
10901 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10902 AdvWaitEEPCmd(iop_base);
10903
10904 /*
10905 * Write EEPROM from word 0 to word 20.
10906 */
10907 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10908 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10909 ushort word;
10910
10911 if (*charfields++) {
10912 word = cpu_to_le16(*wbuf);
10913 } else {
10914 word = *wbuf;
10915 }
10916 chksum += *wbuf; /* Checksum is calculated from word values. */
10917 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10918 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10919 ASC_EEP_CMD_WRITE | addr);
10920 AdvWaitEEPCmd(iop_base);
10921 mdelay(ADV_EEP_DELAY_MS);
10922 }
10923
10924 /*
10925 * Write EEPROM checksum at word 21.
10926 */
10927 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10928 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10929 AdvWaitEEPCmd(iop_base);
10930 wbuf++;
10931 charfields++;
10932
10933 /*
10934 * Write EEPROM OEM name at words 22 to 29.
10935 */
10936 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10937 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10938 ushort word;
10939
10940 if (*charfields++) {
10941 word = cpu_to_le16(*wbuf);
10942 } else {
10943 word = *wbuf;
10944 }
10945 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10946 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10947 ASC_EEP_CMD_WRITE | addr);
10948 AdvWaitEEPCmd(iop_base);
10949 }
10950 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10951 AdvWaitEEPCmd(iop_base);
10952 }
10953
10954 /*
10955 * Read EEPROM configuration into the specified buffer.
10956 *
10957 * Return a checksum based on the EEPROM configuration read.
10958 */
10959 static ushort __devinit
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10960 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10961 {
10962 ushort wval, chksum;
10963 ushort *wbuf;
10964 int eep_addr;
10965 ushort *charfields;
10966
10967 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10968 wbuf = (ushort *)cfg_buf;
10969 chksum = 0;
10970
10971 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10972 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10973 wval = AdvReadEEPWord(iop_base, eep_addr);
10974 chksum += wval; /* Checksum is calculated from word values. */
10975 if (*charfields++) {
10976 *wbuf = le16_to_cpu(wval);
10977 } else {
10978 *wbuf = wval;
10979 }
10980 }
10981 /* Read checksum word. */
10982 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10983 wbuf++;
10984 charfields++;
10985
10986 /* Read rest of EEPROM not covered by the checksum. */
10987 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10988 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10989 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10990 if (*charfields++) {
10991 *wbuf = le16_to_cpu(*wbuf);
10992 }
10993 }
10994 return chksum;
10995 }
10996
10997 /*
10998 * Read EEPROM configuration into the specified buffer.
10999 *
11000 * Return a checksum based on the EEPROM configuration read.
11001 */
11002 static ushort __devinit
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)11003 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
11004 {
11005 ushort wval, chksum;
11006 ushort *wbuf;
11007 int eep_addr;
11008 ushort *charfields;
11009
11010 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
11011 wbuf = (ushort *)cfg_buf;
11012 chksum = 0;
11013
11014 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11015 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11016 wval = AdvReadEEPWord(iop_base, eep_addr);
11017 chksum += wval; /* Checksum is calculated from word values. */
11018 if (*charfields++) {
11019 *wbuf = le16_to_cpu(wval);
11020 } else {
11021 *wbuf = wval;
11022 }
11023 }
11024 /* Read checksum word. */
11025 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11026 wbuf++;
11027 charfields++;
11028
11029 /* Read rest of EEPROM not covered by the checksum. */
11030 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11031 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11032 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11033 if (*charfields++) {
11034 *wbuf = le16_to_cpu(*wbuf);
11035 }
11036 }
11037 return chksum;
11038 }
11039
11040 /*
11041 * Read EEPROM configuration into the specified buffer.
11042 *
11043 * Return a checksum based on the EEPROM configuration read.
11044 */
11045 static ushort __devinit
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)11046 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11047 {
11048 ushort wval, chksum;
11049 ushort *wbuf;
11050 int eep_addr;
11051 ushort *charfields;
11052
11053 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11054 wbuf = (ushort *)cfg_buf;
11055 chksum = 0;
11056
11057 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11058 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11059 wval = AdvReadEEPWord(iop_base, eep_addr);
11060 chksum += wval; /* Checksum is calculated from word values. */
11061 if (*charfields++) {
11062 *wbuf = le16_to_cpu(wval);
11063 } else {
11064 *wbuf = wval;
11065 }
11066 }
11067 /* Read checksum word. */
11068 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11069 wbuf++;
11070 charfields++;
11071
11072 /* Read rest of EEPROM not covered by the checksum. */
11073 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11074 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11075 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11076 if (*charfields++) {
11077 *wbuf = le16_to_cpu(*wbuf);
11078 }
11079 }
11080 return chksum;
11081 }
11082
11083 /*
11084 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11085 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11086 * all of this is done.
11087 *
11088 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11089 *
11090 * For a non-fatal error return a warning code. If there are no warnings
11091 * then 0 is returned.
11092 *
11093 * Note: Chip is stopped on entry.
11094 */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)11095 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11096 {
11097 AdvPortAddr iop_base;
11098 ushort warn_code;
11099 ADVEEP_3550_CONFIG eep_config;
11100
11101 iop_base = asc_dvc->iop_base;
11102
11103 warn_code = 0;
11104
11105 /*
11106 * Read the board's EEPROM configuration.
11107 *
11108 * Set default values if a bad checksum is found.
11109 */
11110 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11111 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11112
11113 /*
11114 * Set EEPROM default values.
11115 */
11116 memcpy(&eep_config, &Default_3550_EEPROM_Config,
11117 sizeof(ADVEEP_3550_CONFIG));
11118
11119 /*
11120 * Assume the 6 byte board serial number that was read from
11121 * EEPROM is correct even if the EEPROM checksum failed.
11122 */
11123 eep_config.serial_number_word3 =
11124 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11125
11126 eep_config.serial_number_word2 =
11127 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11128
11129 eep_config.serial_number_word1 =
11130 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11131
11132 AdvSet3550EEPConfig(iop_base, &eep_config);
11133 }
11134 /*
11135 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11136 * EEPROM configuration that was read.
11137 *
11138 * This is the mapping of EEPROM fields to Adv Library fields.
11139 */
11140 asc_dvc->wdtr_able = eep_config.wdtr_able;
11141 asc_dvc->sdtr_able = eep_config.sdtr_able;
11142 asc_dvc->ultra_able = eep_config.ultra_able;
11143 asc_dvc->tagqng_able = eep_config.tagqng_able;
11144 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11145 asc_dvc->max_host_qng = eep_config.max_host_qng;
11146 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11147 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11148 asc_dvc->start_motor = eep_config.start_motor;
11149 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11150 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11151 asc_dvc->no_scam = eep_config.scam_tolerant;
11152 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11153 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11154 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11155
11156 /*
11157 * Set the host maximum queuing (max. 253, min. 16) and the per device
11158 * maximum queuing (max. 63, min. 4).
11159 */
11160 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11161 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11162 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11163 /* If the value is zero, assume it is uninitialized. */
11164 if (eep_config.max_host_qng == 0) {
11165 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11166 } else {
11167 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11168 }
11169 }
11170
11171 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11172 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11173 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11174 /* If the value is zero, assume it is uninitialized. */
11175 if (eep_config.max_dvc_qng == 0) {
11176 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11177 } else {
11178 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11179 }
11180 }
11181
11182 /*
11183 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11184 * set 'max_dvc_qng' to 'max_host_qng'.
11185 */
11186 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11187 eep_config.max_dvc_qng = eep_config.max_host_qng;
11188 }
11189
11190 /*
11191 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11192 * values based on possibly adjusted EEPROM values.
11193 */
11194 asc_dvc->max_host_qng = eep_config.max_host_qng;
11195 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11196
11197 /*
11198 * If the EEPROM 'termination' field is set to automatic (0), then set
11199 * the ADV_DVC_CFG 'termination' field to automatic also.
11200 *
11201 * If the termination is specified with a non-zero 'termination'
11202 * value check that a legal value is set and set the ADV_DVC_CFG
11203 * 'termination' field appropriately.
11204 */
11205 if (eep_config.termination == 0) {
11206 asc_dvc->cfg->termination = 0; /* auto termination */
11207 } else {
11208 /* Enable manual control with low off / high off. */
11209 if (eep_config.termination == 1) {
11210 asc_dvc->cfg->termination = TERM_CTL_SEL;
11211
11212 /* Enable manual control with low off / high on. */
11213 } else if (eep_config.termination == 2) {
11214 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11215
11216 /* Enable manual control with low on / high on. */
11217 } else if (eep_config.termination == 3) {
11218 asc_dvc->cfg->termination =
11219 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11220 } else {
11221 /*
11222 * The EEPROM 'termination' field contains a bad value. Use
11223 * automatic termination instead.
11224 */
11225 asc_dvc->cfg->termination = 0;
11226 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11227 }
11228 }
11229
11230 return warn_code;
11231 }
11232
11233 /*
11234 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11235 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11236 * all of this is done.
11237 *
11238 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11239 *
11240 * For a non-fatal error return a warning code. If there are no warnings
11241 * then 0 is returned.
11242 *
11243 * Note: Chip is stopped on entry.
11244 */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)11245 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11246 {
11247 AdvPortAddr iop_base;
11248 ushort warn_code;
11249 ADVEEP_38C0800_CONFIG eep_config;
11250 uchar tid, termination;
11251 ushort sdtr_speed = 0;
11252
11253 iop_base = asc_dvc->iop_base;
11254
11255 warn_code = 0;
11256
11257 /*
11258 * Read the board's EEPROM configuration.
11259 *
11260 * Set default values if a bad checksum is found.
11261 */
11262 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11263 eep_config.check_sum) {
11264 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11265
11266 /*
11267 * Set EEPROM default values.
11268 */
11269 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11270 sizeof(ADVEEP_38C0800_CONFIG));
11271
11272 /*
11273 * Assume the 6 byte board serial number that was read from
11274 * EEPROM is correct even if the EEPROM checksum failed.
11275 */
11276 eep_config.serial_number_word3 =
11277 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11278
11279 eep_config.serial_number_word2 =
11280 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11281
11282 eep_config.serial_number_word1 =
11283 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11284
11285 AdvSet38C0800EEPConfig(iop_base, &eep_config);
11286 }
11287 /*
11288 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11289 * EEPROM configuration that was read.
11290 *
11291 * This is the mapping of EEPROM fields to Adv Library fields.
11292 */
11293 asc_dvc->wdtr_able = eep_config.wdtr_able;
11294 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11295 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11296 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11297 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11298 asc_dvc->tagqng_able = eep_config.tagqng_able;
11299 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11300 asc_dvc->max_host_qng = eep_config.max_host_qng;
11301 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11302 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11303 asc_dvc->start_motor = eep_config.start_motor;
11304 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11305 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11306 asc_dvc->no_scam = eep_config.scam_tolerant;
11307 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11308 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11309 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11310
11311 /*
11312 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11313 * are set, then set an 'sdtr_able' bit for it.
11314 */
11315 asc_dvc->sdtr_able = 0;
11316 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11317 if (tid == 0) {
11318 sdtr_speed = asc_dvc->sdtr_speed1;
11319 } else if (tid == 4) {
11320 sdtr_speed = asc_dvc->sdtr_speed2;
11321 } else if (tid == 8) {
11322 sdtr_speed = asc_dvc->sdtr_speed3;
11323 } else if (tid == 12) {
11324 sdtr_speed = asc_dvc->sdtr_speed4;
11325 }
11326 if (sdtr_speed & ADV_MAX_TID) {
11327 asc_dvc->sdtr_able |= (1 << tid);
11328 }
11329 sdtr_speed >>= 4;
11330 }
11331
11332 /*
11333 * Set the host maximum queuing (max. 253, min. 16) and the per device
11334 * maximum queuing (max. 63, min. 4).
11335 */
11336 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11337 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11338 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11339 /* If the value is zero, assume it is uninitialized. */
11340 if (eep_config.max_host_qng == 0) {
11341 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11342 } else {
11343 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11344 }
11345 }
11346
11347 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11348 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11349 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11350 /* If the value is zero, assume it is uninitialized. */
11351 if (eep_config.max_dvc_qng == 0) {
11352 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11353 } else {
11354 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11355 }
11356 }
11357
11358 /*
11359 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11360 * set 'max_dvc_qng' to 'max_host_qng'.
11361 */
11362 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11363 eep_config.max_dvc_qng = eep_config.max_host_qng;
11364 }
11365
11366 /*
11367 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11368 * values based on possibly adjusted EEPROM values.
11369 */
11370 asc_dvc->max_host_qng = eep_config.max_host_qng;
11371 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11372
11373 /*
11374 * If the EEPROM 'termination' field is set to automatic (0), then set
11375 * the ADV_DVC_CFG 'termination' field to automatic also.
11376 *
11377 * If the termination is specified with a non-zero 'termination'
11378 * value check that a legal value is set and set the ADV_DVC_CFG
11379 * 'termination' field appropriately.
11380 */
11381 if (eep_config.termination_se == 0) {
11382 termination = 0; /* auto termination for SE */
11383 } else {
11384 /* Enable manual control with low off / high off. */
11385 if (eep_config.termination_se == 1) {
11386 termination = 0;
11387
11388 /* Enable manual control with low off / high on. */
11389 } else if (eep_config.termination_se == 2) {
11390 termination = TERM_SE_HI;
11391
11392 /* Enable manual control with low on / high on. */
11393 } else if (eep_config.termination_se == 3) {
11394 termination = TERM_SE;
11395 } else {
11396 /*
11397 * The EEPROM 'termination_se' field contains a bad value.
11398 * Use automatic termination instead.
11399 */
11400 termination = 0;
11401 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11402 }
11403 }
11404
11405 if (eep_config.termination_lvd == 0) {
11406 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11407 } else {
11408 /* Enable manual control with low off / high off. */
11409 if (eep_config.termination_lvd == 1) {
11410 asc_dvc->cfg->termination = termination;
11411
11412 /* Enable manual control with low off / high on. */
11413 } else if (eep_config.termination_lvd == 2) {
11414 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11415
11416 /* Enable manual control with low on / high on. */
11417 } else if (eep_config.termination_lvd == 3) {
11418 asc_dvc->cfg->termination = termination | TERM_LVD;
11419 } else {
11420 /*
11421 * The EEPROM 'termination_lvd' field contains a bad value.
11422 * Use automatic termination instead.
11423 */
11424 asc_dvc->cfg->termination = termination;
11425 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11426 }
11427 }
11428
11429 return warn_code;
11430 }
11431
11432 /*
11433 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11434 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11435 * all of this is done.
11436 *
11437 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11438 *
11439 * For a non-fatal error return a warning code. If there are no warnings
11440 * then 0 is returned.
11441 *
11442 * Note: Chip is stopped on entry.
11443 */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)11444 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11445 {
11446 AdvPortAddr iop_base;
11447 ushort warn_code;
11448 ADVEEP_38C1600_CONFIG eep_config;
11449 uchar tid, termination;
11450 ushort sdtr_speed = 0;
11451
11452 iop_base = asc_dvc->iop_base;
11453
11454 warn_code = 0;
11455
11456 /*
11457 * Read the board's EEPROM configuration.
11458 *
11459 * Set default values if a bad checksum is found.
11460 */
11461 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11462 eep_config.check_sum) {
11463 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11464 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11465
11466 /*
11467 * Set EEPROM default values.
11468 */
11469 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11470 sizeof(ADVEEP_38C1600_CONFIG));
11471
11472 if (PCI_FUNC(pdev->devfn) != 0) {
11473 u8 ints;
11474 /*
11475 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11476 * and old Mac system booting problem. The Expansion
11477 * ROM must be disabled in Function 1 for these systems
11478 */
11479 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11480 /*
11481 * Clear the INTAB (bit 11) if the GPIO 0 input
11482 * indicates the Function 1 interrupt line is wired
11483 * to INTB.
11484 *
11485 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11486 * 1 - Function 1 interrupt line wired to INT A.
11487 * 0 - Function 1 interrupt line wired to INT B.
11488 *
11489 * Note: Function 0 is always wired to INTA.
11490 * Put all 5 GPIO bits in input mode and then read
11491 * their input values.
11492 */
11493 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11494 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11495 if ((ints & 0x01) == 0)
11496 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11497 }
11498
11499 /*
11500 * Assume the 6 byte board serial number that was read from
11501 * EEPROM is correct even if the EEPROM checksum failed.
11502 */
11503 eep_config.serial_number_word3 =
11504 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11505 eep_config.serial_number_word2 =
11506 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11507 eep_config.serial_number_word1 =
11508 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11509
11510 AdvSet38C1600EEPConfig(iop_base, &eep_config);
11511 }
11512
11513 /*
11514 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11515 * EEPROM configuration that was read.
11516 *
11517 * This is the mapping of EEPROM fields to Adv Library fields.
11518 */
11519 asc_dvc->wdtr_able = eep_config.wdtr_able;
11520 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11521 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11522 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11523 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11524 asc_dvc->ppr_able = 0;
11525 asc_dvc->tagqng_able = eep_config.tagqng_able;
11526 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11527 asc_dvc->max_host_qng = eep_config.max_host_qng;
11528 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11529 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11530 asc_dvc->start_motor = eep_config.start_motor;
11531 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11532 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11533 asc_dvc->no_scam = eep_config.scam_tolerant;
11534
11535 /*
11536 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11537 * are set, then set an 'sdtr_able' bit for it.
11538 */
11539 asc_dvc->sdtr_able = 0;
11540 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11541 if (tid == 0) {
11542 sdtr_speed = asc_dvc->sdtr_speed1;
11543 } else if (tid == 4) {
11544 sdtr_speed = asc_dvc->sdtr_speed2;
11545 } else if (tid == 8) {
11546 sdtr_speed = asc_dvc->sdtr_speed3;
11547 } else if (tid == 12) {
11548 sdtr_speed = asc_dvc->sdtr_speed4;
11549 }
11550 if (sdtr_speed & ASC_MAX_TID) {
11551 asc_dvc->sdtr_able |= (1 << tid);
11552 }
11553 sdtr_speed >>= 4;
11554 }
11555
11556 /*
11557 * Set the host maximum queuing (max. 253, min. 16) and the per device
11558 * maximum queuing (max. 63, min. 4).
11559 */
11560 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11561 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11562 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11563 /* If the value is zero, assume it is uninitialized. */
11564 if (eep_config.max_host_qng == 0) {
11565 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11566 } else {
11567 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11568 }
11569 }
11570
11571 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11572 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11573 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11574 /* If the value is zero, assume it is uninitialized. */
11575 if (eep_config.max_dvc_qng == 0) {
11576 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11577 } else {
11578 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11579 }
11580 }
11581
11582 /*
11583 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11584 * set 'max_dvc_qng' to 'max_host_qng'.
11585 */
11586 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11587 eep_config.max_dvc_qng = eep_config.max_host_qng;
11588 }
11589
11590 /*
11591 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11592 * values based on possibly adjusted EEPROM values.
11593 */
11594 asc_dvc->max_host_qng = eep_config.max_host_qng;
11595 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11596
11597 /*
11598 * If the EEPROM 'termination' field is set to automatic (0), then set
11599 * the ASC_DVC_CFG 'termination' field to automatic also.
11600 *
11601 * If the termination is specified with a non-zero 'termination'
11602 * value check that a legal value is set and set the ASC_DVC_CFG
11603 * 'termination' field appropriately.
11604 */
11605 if (eep_config.termination_se == 0) {
11606 termination = 0; /* auto termination for SE */
11607 } else {
11608 /* Enable manual control with low off / high off. */
11609 if (eep_config.termination_se == 1) {
11610 termination = 0;
11611
11612 /* Enable manual control with low off / high on. */
11613 } else if (eep_config.termination_se == 2) {
11614 termination = TERM_SE_HI;
11615
11616 /* Enable manual control with low on / high on. */
11617 } else if (eep_config.termination_se == 3) {
11618 termination = TERM_SE;
11619 } else {
11620 /*
11621 * The EEPROM 'termination_se' field contains a bad value.
11622 * Use automatic termination instead.
11623 */
11624 termination = 0;
11625 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11626 }
11627 }
11628
11629 if (eep_config.termination_lvd == 0) {
11630 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11631 } else {
11632 /* Enable manual control with low off / high off. */
11633 if (eep_config.termination_lvd == 1) {
11634 asc_dvc->cfg->termination = termination;
11635
11636 /* Enable manual control with low off / high on. */
11637 } else if (eep_config.termination_lvd == 2) {
11638 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11639
11640 /* Enable manual control with low on / high on. */
11641 } else if (eep_config.termination_lvd == 3) {
11642 asc_dvc->cfg->termination = termination | TERM_LVD;
11643 } else {
11644 /*
11645 * The EEPROM 'termination_lvd' field contains a bad value.
11646 * Use automatic termination instead.
11647 */
11648 asc_dvc->cfg->termination = termination;
11649 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11650 }
11651 }
11652
11653 return warn_code;
11654 }
11655
11656 /*
11657 * Initialize the ADV_DVC_VAR structure.
11658 *
11659 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11660 *
11661 * For a non-fatal error return a warning code. If there are no warnings
11662 * then 0 is returned.
11663 */
11664 static int __devinit
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)11665 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11666 {
11667 struct asc_board *board = shost_priv(shost);
11668 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11669 unsigned short warn_code = 0;
11670 AdvPortAddr iop_base = asc_dvc->iop_base;
11671 u16 cmd;
11672 int status;
11673
11674 asc_dvc->err_code = 0;
11675
11676 /*
11677 * Save the state of the PCI Configuration Command Register
11678 * "Parity Error Response Control" Bit. If the bit is clear (0),
11679 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11680 * DMA parity errors.
11681 */
11682 asc_dvc->cfg->control_flag = 0;
11683 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11684 if ((cmd & PCI_COMMAND_PARITY) == 0)
11685 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11686
11687 asc_dvc->cfg->chip_version =
11688 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11689
11690 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11691 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11692 (ushort)ADV_CHIP_ID_BYTE);
11693
11694 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11695 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11696 (ushort)ADV_CHIP_ID_WORD);
11697
11698 /*
11699 * Reset the chip to start and allow register writes.
11700 */
11701 if (AdvFindSignature(iop_base) == 0) {
11702 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11703 return ADV_ERROR;
11704 } else {
11705 /*
11706 * The caller must set 'chip_type' to a valid setting.
11707 */
11708 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11709 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11710 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11711 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11712 return ADV_ERROR;
11713 }
11714
11715 /*
11716 * Reset Chip.
11717 */
11718 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11719 ADV_CTRL_REG_CMD_RESET);
11720 mdelay(100);
11721 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11722 ADV_CTRL_REG_CMD_WR_IO_REG);
11723
11724 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11725 status = AdvInitFrom38C1600EEP(asc_dvc);
11726 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11727 status = AdvInitFrom38C0800EEP(asc_dvc);
11728 } else {
11729 status = AdvInitFrom3550EEP(asc_dvc);
11730 }
11731 warn_code |= status;
11732 }
11733
11734 if (warn_code != 0)
11735 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11736
11737 if (asc_dvc->err_code)
11738 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11739 asc_dvc->err_code);
11740
11741 return asc_dvc->err_code;
11742 }
11743 #endif
11744
11745 static struct scsi_host_template advansys_template = {
11746 .proc_name = DRV_NAME,
11747 #ifdef CONFIG_PROC_FS
11748 .proc_info = advansys_proc_info,
11749 #endif
11750 .name = DRV_NAME,
11751 .info = advansys_info,
11752 .queuecommand = advansys_queuecommand,
11753 .eh_bus_reset_handler = advansys_reset,
11754 .bios_param = advansys_biosparam,
11755 .slave_configure = advansys_slave_configure,
11756 /*
11757 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11758 * must be set. The flag will be cleared in advansys_board_found
11759 * for non-ISA adapters.
11760 */
11761 .unchecked_isa_dma = 1,
11762 /*
11763 * All adapters controlled by this driver are capable of large
11764 * scatter-gather lists. According to the mid-level SCSI documentation
11765 * this obviates any performance gain provided by setting
11766 * 'use_clustering'. But empirically while CPU utilization is increased
11767 * by enabling clustering, I/O throughput increases as well.
11768 */
11769 .use_clustering = ENABLE_CLUSTERING,
11770 };
11771
advansys_wide_init_chip(struct Scsi_Host * shost)11772 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11773 {
11774 struct asc_board *board = shost_priv(shost);
11775 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11776 int req_cnt = 0;
11777 adv_req_t *reqp = NULL;
11778 int sg_cnt = 0;
11779 adv_sgblk_t *sgp;
11780 int warn_code, err_code;
11781
11782 /*
11783 * Allocate buffer carrier structures. The total size
11784 * is about 4 KB, so allocate all at once.
11785 */
11786 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11787 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11788
11789 if (!adv_dvc->carrier_buf)
11790 goto kmalloc_failed;
11791
11792 /*
11793 * Allocate up to 'max_host_qng' request structures for the Wide
11794 * board. The total size is about 16 KB, so allocate all at once.
11795 * If the allocation fails decrement and try again.
11796 */
11797 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11798 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11799
11800 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11801 (ulong)sizeof(adv_req_t) * req_cnt);
11802
11803 if (reqp)
11804 break;
11805 }
11806
11807 if (!reqp)
11808 goto kmalloc_failed;
11809
11810 adv_dvc->orig_reqp = reqp;
11811
11812 /*
11813 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11814 * the Wide board. Each structure is about 136 bytes.
11815 */
11816 board->adv_sgblkp = NULL;
11817 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11818 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11819
11820 if (!sgp)
11821 break;
11822
11823 sgp->next_sgblkp = board->adv_sgblkp;
11824 board->adv_sgblkp = sgp;
11825
11826 }
11827
11828 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11829 sizeof(adv_sgblk_t) * sg_cnt);
11830
11831 if (!board->adv_sgblkp)
11832 goto kmalloc_failed;
11833
11834 /*
11835 * Point 'adv_reqp' to the request structures and
11836 * link them together.
11837 */
11838 req_cnt--;
11839 reqp[req_cnt].next_reqp = NULL;
11840 for (; req_cnt > 0; req_cnt--) {
11841 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11842 }
11843 board->adv_reqp = &reqp[0];
11844
11845 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11846 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11847 warn_code = AdvInitAsc3550Driver(adv_dvc);
11848 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11849 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11850 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11851 } else {
11852 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11853 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11854 }
11855 err_code = adv_dvc->err_code;
11856
11857 if (warn_code || err_code) {
11858 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11859 "0x%x\n", warn_code, err_code);
11860 }
11861
11862 goto exit;
11863
11864 kmalloc_failed:
11865 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11866 err_code = ADV_ERROR;
11867 exit:
11868 return err_code;
11869 }
11870
advansys_wide_free_mem(struct asc_board * board)11871 static void advansys_wide_free_mem(struct asc_board *board)
11872 {
11873 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11874 kfree(adv_dvc->carrier_buf);
11875 adv_dvc->carrier_buf = NULL;
11876 kfree(adv_dvc->orig_reqp);
11877 adv_dvc->orig_reqp = board->adv_reqp = NULL;
11878 while (board->adv_sgblkp) {
11879 adv_sgblk_t *sgp = board->adv_sgblkp;
11880 board->adv_sgblkp = sgp->next_sgblkp;
11881 kfree(sgp);
11882 }
11883 }
11884
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)11885 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11886 unsigned int iop, int bus_type)
11887 {
11888 struct pci_dev *pdev;
11889 struct asc_board *boardp = shost_priv(shost);
11890 ASC_DVC_VAR *asc_dvc_varp = NULL;
11891 ADV_DVC_VAR *adv_dvc_varp = NULL;
11892 int share_irq, warn_code, ret;
11893
11894 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11895
11896 if (ASC_NARROW_BOARD(boardp)) {
11897 ASC_DBG(1, "narrow board\n");
11898 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11899 asc_dvc_varp->bus_type = bus_type;
11900 asc_dvc_varp->drv_ptr = boardp;
11901 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11902 asc_dvc_varp->iop_base = iop;
11903 } else {
11904 #ifdef CONFIG_PCI
11905 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11906 adv_dvc_varp->drv_ptr = boardp;
11907 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11908 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11909 ASC_DBG(1, "wide board ASC-3550\n");
11910 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11911 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11912 ASC_DBG(1, "wide board ASC-38C0800\n");
11913 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11914 } else {
11915 ASC_DBG(1, "wide board ASC-38C1600\n");
11916 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11917 }
11918
11919 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11920 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11921 if (!boardp->ioremap_addr) {
11922 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11923 "returned NULL\n",
11924 (long)pci_resource_start(pdev, 1),
11925 boardp->asc_n_io_port);
11926 ret = -ENODEV;
11927 goto err_shost;
11928 }
11929 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11930 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11931
11932 /*
11933 * Even though it isn't used to access wide boards, other
11934 * than for the debug line below, save I/O Port address so
11935 * that it can be reported.
11936 */
11937 boardp->ioport = iop;
11938
11939 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11940 (ushort)inp(iop + 1), (ushort)inpw(iop));
11941 #endif /* CONFIG_PCI */
11942 }
11943
11944 #ifdef CONFIG_PROC_FS
11945 /*
11946 * Allocate buffer for printing information from
11947 * /proc/scsi/advansys/[0...].
11948 */
11949 boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11950 if (!boardp->prtbuf) {
11951 shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11952 ASC_PRTBUF_SIZE);
11953 ret = -ENOMEM;
11954 goto err_unmap;
11955 }
11956 #endif /* CONFIG_PROC_FS */
11957
11958 if (ASC_NARROW_BOARD(boardp)) {
11959 /*
11960 * Set the board bus type and PCI IRQ before
11961 * calling AscInitGetConfig().
11962 */
11963 switch (asc_dvc_varp->bus_type) {
11964 #ifdef CONFIG_ISA
11965 case ASC_IS_ISA:
11966 shost->unchecked_isa_dma = TRUE;
11967 share_irq = 0;
11968 break;
11969 case ASC_IS_VL:
11970 shost->unchecked_isa_dma = FALSE;
11971 share_irq = 0;
11972 break;
11973 case ASC_IS_EISA:
11974 shost->unchecked_isa_dma = FALSE;
11975 share_irq = IRQF_SHARED;
11976 break;
11977 #endif /* CONFIG_ISA */
11978 #ifdef CONFIG_PCI
11979 case ASC_IS_PCI:
11980 shost->unchecked_isa_dma = FALSE;
11981 share_irq = IRQF_SHARED;
11982 break;
11983 #endif /* CONFIG_PCI */
11984 default:
11985 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11986 "%d\n", asc_dvc_varp->bus_type);
11987 shost->unchecked_isa_dma = TRUE;
11988 share_irq = 0;
11989 break;
11990 }
11991
11992 /*
11993 * NOTE: AscInitGetConfig() may change the board's
11994 * bus_type value. The bus_type value should no
11995 * longer be used. If the bus_type field must be
11996 * referenced only use the bit-wise AND operator "&".
11997 */
11998 ASC_DBG(2, "AscInitGetConfig()\n");
11999 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
12000 } else {
12001 #ifdef CONFIG_PCI
12002 /*
12003 * For Wide boards set PCI information before calling
12004 * AdvInitGetConfig().
12005 */
12006 shost->unchecked_isa_dma = FALSE;
12007 share_irq = IRQF_SHARED;
12008 ASC_DBG(2, "AdvInitGetConfig()\n");
12009
12010 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
12011 #endif /* CONFIG_PCI */
12012 }
12013
12014 if (ret)
12015 goto err_free_proc;
12016
12017 /*
12018 * Save the EEPROM configuration so that it can be displayed
12019 * from /proc/scsi/advansys/[0...].
12020 */
12021 if (ASC_NARROW_BOARD(boardp)) {
12022
12023 ASCEEP_CONFIG *ep;
12024
12025 /*
12026 * Set the adapter's target id bit in the 'init_tidmask' field.
12027 */
12028 boardp->init_tidmask |=
12029 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12030
12031 /*
12032 * Save EEPROM settings for the board.
12033 */
12034 ep = &boardp->eep_config.asc_eep;
12035
12036 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12037 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12038 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12039 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12040 ep->start_motor = asc_dvc_varp->start_motor;
12041 ep->cntl = asc_dvc_varp->dvc_cntl;
12042 ep->no_scam = asc_dvc_varp->no_scam;
12043 ep->max_total_qng = asc_dvc_varp->max_total_qng;
12044 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12045 /* 'max_tag_qng' is set to the same value for every device. */
12046 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12047 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12048 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12049 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12050 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12051 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12052 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12053
12054 /*
12055 * Modify board configuration.
12056 */
12057 ASC_DBG(2, "AscInitSetConfig()\n");
12058 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12059 if (ret)
12060 goto err_free_proc;
12061 } else {
12062 ADVEEP_3550_CONFIG *ep_3550;
12063 ADVEEP_38C0800_CONFIG *ep_38C0800;
12064 ADVEEP_38C1600_CONFIG *ep_38C1600;
12065
12066 /*
12067 * Save Wide EEP Configuration Information.
12068 */
12069 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12070 ep_3550 = &boardp->eep_config.adv_3550_eep;
12071
12072 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12073 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12074 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12075 ep_3550->termination = adv_dvc_varp->cfg->termination;
12076 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12077 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12078 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12079 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12080 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12081 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12082 ep_3550->start_motor = adv_dvc_varp->start_motor;
12083 ep_3550->scsi_reset_delay =
12084 adv_dvc_varp->scsi_reset_wait;
12085 ep_3550->serial_number_word1 =
12086 adv_dvc_varp->cfg->serial1;
12087 ep_3550->serial_number_word2 =
12088 adv_dvc_varp->cfg->serial2;
12089 ep_3550->serial_number_word3 =
12090 adv_dvc_varp->cfg->serial3;
12091 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12092 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12093
12094 ep_38C0800->adapter_scsi_id =
12095 adv_dvc_varp->chip_scsi_id;
12096 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12097 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12098 ep_38C0800->termination_lvd =
12099 adv_dvc_varp->cfg->termination;
12100 ep_38C0800->disc_enable =
12101 adv_dvc_varp->cfg->disc_enable;
12102 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12103 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12104 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12105 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12106 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12107 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12108 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12109 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12110 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12111 ep_38C0800->scsi_reset_delay =
12112 adv_dvc_varp->scsi_reset_wait;
12113 ep_38C0800->serial_number_word1 =
12114 adv_dvc_varp->cfg->serial1;
12115 ep_38C0800->serial_number_word2 =
12116 adv_dvc_varp->cfg->serial2;
12117 ep_38C0800->serial_number_word3 =
12118 adv_dvc_varp->cfg->serial3;
12119 } else {
12120 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12121
12122 ep_38C1600->adapter_scsi_id =
12123 adv_dvc_varp->chip_scsi_id;
12124 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12125 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12126 ep_38C1600->termination_lvd =
12127 adv_dvc_varp->cfg->termination;
12128 ep_38C1600->disc_enable =
12129 adv_dvc_varp->cfg->disc_enable;
12130 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12131 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12132 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12133 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12134 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12135 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12136 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12137 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12138 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12139 ep_38C1600->scsi_reset_delay =
12140 adv_dvc_varp->scsi_reset_wait;
12141 ep_38C1600->serial_number_word1 =
12142 adv_dvc_varp->cfg->serial1;
12143 ep_38C1600->serial_number_word2 =
12144 adv_dvc_varp->cfg->serial2;
12145 ep_38C1600->serial_number_word3 =
12146 adv_dvc_varp->cfg->serial3;
12147 }
12148
12149 /*
12150 * Set the adapter's target id bit in the 'init_tidmask' field.
12151 */
12152 boardp->init_tidmask |=
12153 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12154 }
12155
12156 /*
12157 * Channels are numbered beginning with 0. For AdvanSys one host
12158 * structure supports one channel. Multi-channel boards have a
12159 * separate host structure for each channel.
12160 */
12161 shost->max_channel = 0;
12162 if (ASC_NARROW_BOARD(boardp)) {
12163 shost->max_id = ASC_MAX_TID + 1;
12164 shost->max_lun = ASC_MAX_LUN + 1;
12165 shost->max_cmd_len = ASC_MAX_CDB_LEN;
12166
12167 shost->io_port = asc_dvc_varp->iop_base;
12168 boardp->asc_n_io_port = ASC_IOADR_GAP;
12169 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12170
12171 /* Set maximum number of queues the adapter can handle. */
12172 shost->can_queue = asc_dvc_varp->max_total_qng;
12173 } else {
12174 shost->max_id = ADV_MAX_TID + 1;
12175 shost->max_lun = ADV_MAX_LUN + 1;
12176 shost->max_cmd_len = ADV_MAX_CDB_LEN;
12177
12178 /*
12179 * Save the I/O Port address and length even though
12180 * I/O ports are not used to access Wide boards.
12181 * Instead the Wide boards are accessed with
12182 * PCI Memory Mapped I/O.
12183 */
12184 shost->io_port = iop;
12185
12186 shost->this_id = adv_dvc_varp->chip_scsi_id;
12187
12188 /* Set maximum number of queues the adapter can handle. */
12189 shost->can_queue = adv_dvc_varp->max_host_qng;
12190 }
12191
12192 /*
12193 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12194 * and should be set to zero.
12195 *
12196 * But because of a bug introduced in v1.3.89 if the driver is
12197 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12198 * SCSI function 'allocate_device' will panic. To allow the driver
12199 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12200 *
12201 * Note: This is wrong. cmd_per_lun should be set to the depth
12202 * you want on untagged devices always.
12203 #ifdef MODULE
12204 */
12205 shost->cmd_per_lun = 1;
12206 /* #else
12207 shost->cmd_per_lun = 0;
12208 #endif */
12209
12210 /*
12211 * Set the maximum number of scatter-gather elements the
12212 * adapter can handle.
12213 */
12214 if (ASC_NARROW_BOARD(boardp)) {
12215 /*
12216 * Allow two commands with 'sg_tablesize' scatter-gather
12217 * elements to be executed simultaneously. This value is
12218 * the theoretical hardware limit. It may be decreased
12219 * below.
12220 */
12221 shost->sg_tablesize =
12222 (((asc_dvc_varp->max_total_qng - 2) / 2) *
12223 ASC_SG_LIST_PER_Q) + 1;
12224 } else {
12225 shost->sg_tablesize = ADV_MAX_SG_LIST;
12226 }
12227
12228 /*
12229 * The value of 'sg_tablesize' can not exceed the SCSI
12230 * mid-level driver definition of SG_ALL. SG_ALL also
12231 * must not be exceeded, because it is used to define the
12232 * size of the scatter-gather table in 'struct asc_sg_head'.
12233 */
12234 if (shost->sg_tablesize > SG_ALL) {
12235 shost->sg_tablesize = SG_ALL;
12236 }
12237
12238 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12239
12240 /* BIOS start address. */
12241 if (ASC_NARROW_BOARD(boardp)) {
12242 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12243 asc_dvc_varp->bus_type);
12244 } else {
12245 /*
12246 * Fill-in BIOS board variables. The Wide BIOS saves
12247 * information in LRAM that is used by the driver.
12248 */
12249 AdvReadWordLram(adv_dvc_varp->iop_base,
12250 BIOS_SIGNATURE, boardp->bios_signature);
12251 AdvReadWordLram(adv_dvc_varp->iop_base,
12252 BIOS_VERSION, boardp->bios_version);
12253 AdvReadWordLram(adv_dvc_varp->iop_base,
12254 BIOS_CODESEG, boardp->bios_codeseg);
12255 AdvReadWordLram(adv_dvc_varp->iop_base,
12256 BIOS_CODELEN, boardp->bios_codelen);
12257
12258 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12259 boardp->bios_signature, boardp->bios_version);
12260
12261 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12262 boardp->bios_codeseg, boardp->bios_codelen);
12263
12264 /*
12265 * If the BIOS saved a valid signature, then fill in
12266 * the BIOS code segment base address.
12267 */
12268 if (boardp->bios_signature == 0x55AA) {
12269 /*
12270 * Convert x86 realmode code segment to a linear
12271 * address by shifting left 4.
12272 */
12273 shost->base = ((ulong)boardp->bios_codeseg << 4);
12274 } else {
12275 shost->base = 0;
12276 }
12277 }
12278
12279 /*
12280 * Register Board Resources - I/O Port, DMA, IRQ
12281 */
12282
12283 /* Register DMA Channel for Narrow boards. */
12284 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
12285 #ifdef CONFIG_ISA
12286 if (ASC_NARROW_BOARD(boardp)) {
12287 /* Register DMA channel for ISA bus. */
12288 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12289 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12290 ret = request_dma(shost->dma_channel, DRV_NAME);
12291 if (ret) {
12292 shost_printk(KERN_ERR, shost, "request_dma() "
12293 "%d failed %d\n",
12294 shost->dma_channel, ret);
12295 goto err_free_proc;
12296 }
12297 AscEnableIsaDma(shost->dma_channel);
12298 }
12299 }
12300 #endif /* CONFIG_ISA */
12301
12302 /* Register IRQ Number. */
12303 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12304
12305 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12306 DRV_NAME, shost);
12307
12308 if (ret) {
12309 if (ret == -EBUSY) {
12310 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12311 "already in use\n", boardp->irq);
12312 } else if (ret == -EINVAL) {
12313 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12314 "not valid\n", boardp->irq);
12315 } else {
12316 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12317 "failed with %d\n", boardp->irq, ret);
12318 }
12319 goto err_free_dma;
12320 }
12321
12322 /*
12323 * Initialize board RISC chip and enable interrupts.
12324 */
12325 if (ASC_NARROW_BOARD(boardp)) {
12326 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12327
12328 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12329 if (!asc_dvc_varp->overrun_buf) {
12330 ret = -ENOMEM;
12331 goto err_free_irq;
12332 }
12333 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12334
12335 if (warn_code || asc_dvc_varp->err_code) {
12336 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12337 "warn 0x%x, error 0x%x\n",
12338 asc_dvc_varp->init_state, warn_code,
12339 asc_dvc_varp->err_code);
12340 if (!asc_dvc_varp->overrun_dma) {
12341 ret = -ENODEV;
12342 goto err_free_mem;
12343 }
12344 }
12345 } else {
12346 if (advansys_wide_init_chip(shost)) {
12347 ret = -ENODEV;
12348 goto err_free_mem;
12349 }
12350 }
12351
12352 ASC_DBG_PRT_SCSI_HOST(2, shost);
12353
12354 ret = scsi_add_host(shost, boardp->dev);
12355 if (ret)
12356 goto err_free_mem;
12357
12358 scsi_scan_host(shost);
12359 return 0;
12360
12361 err_free_mem:
12362 if (ASC_NARROW_BOARD(boardp)) {
12363 if (asc_dvc_varp->overrun_dma)
12364 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
12365 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12366 kfree(asc_dvc_varp->overrun_buf);
12367 } else
12368 advansys_wide_free_mem(boardp);
12369 err_free_irq:
12370 free_irq(boardp->irq, shost);
12371 err_free_dma:
12372 #ifdef CONFIG_ISA
12373 if (shost->dma_channel != NO_ISA_DMA)
12374 free_dma(shost->dma_channel);
12375 #endif
12376 err_free_proc:
12377 kfree(boardp->prtbuf);
12378 err_unmap:
12379 if (boardp->ioremap_addr)
12380 iounmap(boardp->ioremap_addr);
12381 err_shost:
12382 return ret;
12383 }
12384
12385 /*
12386 * advansys_release()
12387 *
12388 * Release resources allocated for a single AdvanSys adapter.
12389 */
advansys_release(struct Scsi_Host * shost)12390 static int advansys_release(struct Scsi_Host *shost)
12391 {
12392 struct asc_board *board = shost_priv(shost);
12393 ASC_DBG(1, "begin\n");
12394 scsi_remove_host(shost);
12395 free_irq(board->irq, shost);
12396 #ifdef CONFIG_ISA
12397 if (shost->dma_channel != NO_ISA_DMA) {
12398 ASC_DBG(1, "free_dma()\n");
12399 free_dma(shost->dma_channel);
12400 }
12401 #endif
12402 if (ASC_NARROW_BOARD(board)) {
12403 dma_unmap_single(board->dev,
12404 board->dvc_var.asc_dvc_var.overrun_dma,
12405 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12406 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12407 } else {
12408 iounmap(board->ioremap_addr);
12409 advansys_wide_free_mem(board);
12410 }
12411 kfree(board->prtbuf);
12412 scsi_host_put(shost);
12413 ASC_DBG(1, "end\n");
12414 return 0;
12415 }
12416
12417 #define ASC_IOADR_TABLE_MAX_IX 11
12418
12419 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12420 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12421 0x0210, 0x0230, 0x0250, 0x0330
12422 };
12423
12424 /*
12425 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12426 * 00: 10
12427 * 01: 11
12428 * 10: 12
12429 * 11: 15
12430 */
advansys_isa_irq_no(PortAddr iop_base)12431 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12432 {
12433 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12434 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12435 if (chip_irq == 13)
12436 chip_irq = 15;
12437 return chip_irq;
12438 }
12439
advansys_isa_probe(struct device * dev,unsigned int id)12440 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12441 {
12442 int err = -ENODEV;
12443 PortAddr iop_base = _asc_def_iop_base[id];
12444 struct Scsi_Host *shost;
12445 struct asc_board *board;
12446
12447 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12448 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12449 return -ENODEV;
12450 }
12451 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12452 if (!AscFindSignature(iop_base))
12453 goto release_region;
12454 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12455 goto release_region;
12456
12457 err = -ENOMEM;
12458 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12459 if (!shost)
12460 goto release_region;
12461
12462 board = shost_priv(shost);
12463 board->irq = advansys_isa_irq_no(iop_base);
12464 board->dev = dev;
12465
12466 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12467 if (err)
12468 goto free_host;
12469
12470 dev_set_drvdata(dev, shost);
12471 return 0;
12472
12473 free_host:
12474 scsi_host_put(shost);
12475 release_region:
12476 release_region(iop_base, ASC_IOADR_GAP);
12477 return err;
12478 }
12479
advansys_isa_remove(struct device * dev,unsigned int id)12480 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12481 {
12482 int ioport = _asc_def_iop_base[id];
12483 advansys_release(dev_get_drvdata(dev));
12484 release_region(ioport, ASC_IOADR_GAP);
12485 return 0;
12486 }
12487
12488 static struct isa_driver advansys_isa_driver = {
12489 .probe = advansys_isa_probe,
12490 .remove = __devexit_p(advansys_isa_remove),
12491 .driver = {
12492 .owner = THIS_MODULE,
12493 .name = DRV_NAME,
12494 },
12495 };
12496
12497 /*
12498 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12499 * 000: invalid
12500 * 001: 10
12501 * 010: 11
12502 * 011: 12
12503 * 100: invalid
12504 * 101: 14
12505 * 110: 15
12506 * 111: invalid
12507 */
advansys_vlb_irq_no(PortAddr iop_base)12508 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12509 {
12510 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12511 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12512 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12513 return 0;
12514 return chip_irq;
12515 }
12516
advansys_vlb_probe(struct device * dev,unsigned int id)12517 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12518 {
12519 int err = -ENODEV;
12520 PortAddr iop_base = _asc_def_iop_base[id];
12521 struct Scsi_Host *shost;
12522 struct asc_board *board;
12523
12524 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12525 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12526 return -ENODEV;
12527 }
12528 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12529 if (!AscFindSignature(iop_base))
12530 goto release_region;
12531 /*
12532 * I don't think this condition can actually happen, but the old
12533 * driver did it, and the chances of finding a VLB setup in 2007
12534 * to do testing with is slight to none.
12535 */
12536 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12537 goto release_region;
12538
12539 err = -ENOMEM;
12540 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12541 if (!shost)
12542 goto release_region;
12543
12544 board = shost_priv(shost);
12545 board->irq = advansys_vlb_irq_no(iop_base);
12546 board->dev = dev;
12547
12548 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12549 if (err)
12550 goto free_host;
12551
12552 dev_set_drvdata(dev, shost);
12553 return 0;
12554
12555 free_host:
12556 scsi_host_put(shost);
12557 release_region:
12558 release_region(iop_base, ASC_IOADR_GAP);
12559 return -ENODEV;
12560 }
12561
12562 static struct isa_driver advansys_vlb_driver = {
12563 .probe = advansys_vlb_probe,
12564 .remove = __devexit_p(advansys_isa_remove),
12565 .driver = {
12566 .owner = THIS_MODULE,
12567 .name = "advansys_vlb",
12568 },
12569 };
12570
12571 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12572 { "ABP7401" },
12573 { "ABP7501" },
12574 { "" }
12575 };
12576
12577 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12578
12579 /*
12580 * EISA is a little more tricky than PCI; each EISA device may have two
12581 * channels, and this driver is written to make each channel its own Scsi_Host
12582 */
12583 struct eisa_scsi_data {
12584 struct Scsi_Host *host[2];
12585 };
12586
12587 /*
12588 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12589 * 000: 10
12590 * 001: 11
12591 * 010: 12
12592 * 011: invalid
12593 * 100: 14
12594 * 101: 15
12595 * 110: invalid
12596 * 111: invalid
12597 */
advansys_eisa_irq_no(struct eisa_device * edev)12598 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12599 {
12600 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12601 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12602 if ((chip_irq == 13) || (chip_irq > 15))
12603 return 0;
12604 return chip_irq;
12605 }
12606
advansys_eisa_probe(struct device * dev)12607 static int __devinit advansys_eisa_probe(struct device *dev)
12608 {
12609 int i, ioport, irq = 0;
12610 int err;
12611 struct eisa_device *edev = to_eisa_device(dev);
12612 struct eisa_scsi_data *data;
12613
12614 err = -ENOMEM;
12615 data = kzalloc(sizeof(*data), GFP_KERNEL);
12616 if (!data)
12617 goto fail;
12618 ioport = edev->base_addr + 0xc30;
12619
12620 err = -ENODEV;
12621 for (i = 0; i < 2; i++, ioport += 0x20) {
12622 struct asc_board *board;
12623 struct Scsi_Host *shost;
12624 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12625 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12626 ioport + ASC_IOADR_GAP - 1);
12627 continue;
12628 }
12629 if (!AscFindSignature(ioport)) {
12630 release_region(ioport, ASC_IOADR_GAP);
12631 continue;
12632 }
12633
12634 /*
12635 * I don't know why we need to do this for EISA chips, but
12636 * not for any others. It looks to be equivalent to
12637 * AscGetChipCfgMsw, but I may have overlooked something,
12638 * so I'm not converting it until I get an EISA board to
12639 * test with.
12640 */
12641 inw(ioport + 4);
12642
12643 if (!irq)
12644 irq = advansys_eisa_irq_no(edev);
12645
12646 err = -ENOMEM;
12647 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12648 if (!shost)
12649 goto release_region;
12650
12651 board = shost_priv(shost);
12652 board->irq = irq;
12653 board->dev = dev;
12654
12655 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12656 if (!err) {
12657 data->host[i] = shost;
12658 continue;
12659 }
12660
12661 scsi_host_put(shost);
12662 release_region:
12663 release_region(ioport, ASC_IOADR_GAP);
12664 break;
12665 }
12666
12667 if (err)
12668 goto free_data;
12669 dev_set_drvdata(dev, data);
12670 return 0;
12671
12672 free_data:
12673 kfree(data->host[0]);
12674 kfree(data->host[1]);
12675 kfree(data);
12676 fail:
12677 return err;
12678 }
12679
advansys_eisa_remove(struct device * dev)12680 static __devexit int advansys_eisa_remove(struct device *dev)
12681 {
12682 int i;
12683 struct eisa_scsi_data *data = dev_get_drvdata(dev);
12684
12685 for (i = 0; i < 2; i++) {
12686 int ioport;
12687 struct Scsi_Host *shost = data->host[i];
12688 if (!shost)
12689 continue;
12690 ioport = shost->io_port;
12691 advansys_release(shost);
12692 release_region(ioport, ASC_IOADR_GAP);
12693 }
12694
12695 kfree(data);
12696 return 0;
12697 }
12698
12699 static struct eisa_driver advansys_eisa_driver = {
12700 .id_table = advansys_eisa_table,
12701 .driver = {
12702 .name = DRV_NAME,
12703 .probe = advansys_eisa_probe,
12704 .remove = __devexit_p(advansys_eisa_remove),
12705 }
12706 };
12707
12708 /* PCI Devices supported by this driver */
12709 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12710 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12711 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12712 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12713 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12714 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12715 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12716 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12717 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12718 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12719 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12720 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12721 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12722 {}
12723 };
12724
12725 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12726
advansys_set_latency(struct pci_dev * pdev)12727 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12728 {
12729 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12730 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12731 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12732 } else {
12733 u8 latency;
12734 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12735 if (latency < 0x20)
12736 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12737 }
12738 }
12739
12740 static int __devinit
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)12741 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12742 {
12743 int err, ioport;
12744 struct Scsi_Host *shost;
12745 struct asc_board *board;
12746
12747 err = pci_enable_device(pdev);
12748 if (err)
12749 goto fail;
12750 err = pci_request_regions(pdev, DRV_NAME);
12751 if (err)
12752 goto disable_device;
12753 pci_set_master(pdev);
12754 advansys_set_latency(pdev);
12755
12756 err = -ENODEV;
12757 if (pci_resource_len(pdev, 0) == 0)
12758 goto release_region;
12759
12760 ioport = pci_resource_start(pdev, 0);
12761
12762 err = -ENOMEM;
12763 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12764 if (!shost)
12765 goto release_region;
12766
12767 board = shost_priv(shost);
12768 board->irq = pdev->irq;
12769 board->dev = &pdev->dev;
12770
12771 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12772 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12773 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12774 board->flags |= ASC_IS_WIDE_BOARD;
12775 }
12776
12777 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12778 if (err)
12779 goto free_host;
12780
12781 pci_set_drvdata(pdev, shost);
12782 return 0;
12783
12784 free_host:
12785 scsi_host_put(shost);
12786 release_region:
12787 pci_release_regions(pdev);
12788 disable_device:
12789 pci_disable_device(pdev);
12790 fail:
12791 return err;
12792 }
12793
advansys_pci_remove(struct pci_dev * pdev)12794 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12795 {
12796 advansys_release(pci_get_drvdata(pdev));
12797 pci_release_regions(pdev);
12798 pci_disable_device(pdev);
12799 }
12800
12801 static struct pci_driver advansys_pci_driver = {
12802 .name = DRV_NAME,
12803 .id_table = advansys_pci_tbl,
12804 .probe = advansys_pci_probe,
12805 .remove = __devexit_p(advansys_pci_remove),
12806 };
12807
advansys_init(void)12808 static int __init advansys_init(void)
12809 {
12810 int error;
12811
12812 error = isa_register_driver(&advansys_isa_driver,
12813 ASC_IOADR_TABLE_MAX_IX);
12814 if (error)
12815 goto fail;
12816
12817 error = isa_register_driver(&advansys_vlb_driver,
12818 ASC_IOADR_TABLE_MAX_IX);
12819 if (error)
12820 goto unregister_isa;
12821
12822 error = eisa_driver_register(&advansys_eisa_driver);
12823 if (error)
12824 goto unregister_vlb;
12825
12826 error = pci_register_driver(&advansys_pci_driver);
12827 if (error)
12828 goto unregister_eisa;
12829
12830 return 0;
12831
12832 unregister_eisa:
12833 eisa_driver_unregister(&advansys_eisa_driver);
12834 unregister_vlb:
12835 isa_unregister_driver(&advansys_vlb_driver);
12836 unregister_isa:
12837 isa_unregister_driver(&advansys_isa_driver);
12838 fail:
12839 return error;
12840 }
12841
advansys_exit(void)12842 static void __exit advansys_exit(void)
12843 {
12844 pci_unregister_driver(&advansys_pci_driver);
12845 eisa_driver_unregister(&advansys_eisa_driver);
12846 isa_unregister_driver(&advansys_vlb_driver);
12847 isa_unregister_driver(&advansys_isa_driver);
12848 }
12849
12850 module_init(advansys_init);
12851 module_exit(advansys_exit);
12852
12853 MODULE_LICENSE("GPL");
12854 MODULE_FIRMWARE("advansys/mcode.bin");
12855 MODULE_FIRMWARE("advansys/3550.bin");
12856 MODULE_FIRMWARE("advansys/38C0800.bin");
12857 MODULE_FIRMWARE("advansys/38C1600.bin");
12858