1 /*
2  * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the version 2 of the GNU General Public License
23  * as published by the Free Software Foundation
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
33  *
34  *
35  *
36  * Your platform definition file should specify something like:
37  *
38  * static struct mcp251x_platform_data mcp251x_info = {
39  *         .oscillator_frequency = 8000000,
40  *         .board_specific_setup = &mcp251x_setup,
41  *         .power_enable = mcp251x_power_enable,
42  *         .transceiver_enable = NULL,
43  * };
44  *
45  * static struct spi_board_info spi_board_info[] = {
46  *         {
47  *                 .modalias = "mcp2510",
48  *			// or "mcp2515" depending on your controller
49  *                 .platform_data = &mcp251x_info,
50  *                 .irq = IRQ_EINT13,
51  *                 .max_speed_hz = 2*1000*1000,
52  *                 .chip_select = 2,
53  *         },
54  * };
55  *
56  * Please see mcp251x.h for a description of the fields in
57  * struct mcp251x_platform_data.
58  *
59  */
60 
61 #include <linux/can/core.h>
62 #include <linux/can/dev.h>
63 #include <linux/can/platform/mcp251x.h>
64 #include <linux/completion.h>
65 #include <linux/delay.h>
66 #include <linux/device.h>
67 #include <linux/dma-mapping.h>
68 #include <linux/freezer.h>
69 #include <linux/interrupt.h>
70 #include <linux/io.h>
71 #include <linux/kernel.h>
72 #include <linux/module.h>
73 #include <linux/netdevice.h>
74 #include <linux/platform_device.h>
75 #include <linux/slab.h>
76 #include <linux/spi/spi.h>
77 #include <linux/uaccess.h>
78 
79 /* SPI interface instruction set */
80 #define INSTRUCTION_WRITE	0x02
81 #define INSTRUCTION_READ	0x03
82 #define INSTRUCTION_BIT_MODIFY	0x05
83 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
84 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
85 #define INSTRUCTION_RESET	0xC0
86 #define RTS_TXB0		0x01
87 #define RTS_TXB1		0x02
88 #define RTS_TXB2		0x04
89 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
90 
91 
92 /* MPC251x registers */
93 #define CANSTAT	      0x0e
94 #define CANCTRL	      0x0f
95 #  define CANCTRL_REQOP_MASK	    0xe0
96 #  define CANCTRL_REQOP_CONF	    0x80
97 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
98 #  define CANCTRL_REQOP_LOOPBACK    0x40
99 #  define CANCTRL_REQOP_SLEEP	    0x20
100 #  define CANCTRL_REQOP_NORMAL	    0x00
101 #  define CANCTRL_OSM		    0x08
102 #  define CANCTRL_ABAT		    0x10
103 #define TEC	      0x1c
104 #define REC	      0x1d
105 #define CNF1	      0x2a
106 #  define CNF1_SJW_SHIFT   6
107 #define CNF2	      0x29
108 #  define CNF2_BTLMODE	   0x80
109 #  define CNF2_SAM         0x40
110 #  define CNF2_PS1_SHIFT   3
111 #define CNF3	      0x28
112 #  define CNF3_SOF	   0x08
113 #  define CNF3_WAKFIL	   0x04
114 #  define CNF3_PHSEG2_MASK 0x07
115 #define CANINTE	      0x2b
116 #  define CANINTE_MERRE 0x80
117 #  define CANINTE_WAKIE 0x40
118 #  define CANINTE_ERRIE 0x20
119 #  define CANINTE_TX2IE 0x10
120 #  define CANINTE_TX1IE 0x08
121 #  define CANINTE_TX0IE 0x04
122 #  define CANINTE_RX1IE 0x02
123 #  define CANINTE_RX0IE 0x01
124 #define CANINTF	      0x2c
125 #  define CANINTF_MERRF 0x80
126 #  define CANINTF_WAKIF 0x40
127 #  define CANINTF_ERRIF 0x20
128 #  define CANINTF_TX2IF 0x10
129 #  define CANINTF_TX1IF 0x08
130 #  define CANINTF_TX0IF 0x04
131 #  define CANINTF_RX1IF 0x02
132 #  define CANINTF_RX0IF 0x01
133 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
134 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
135 #  define CANINTF_ERR (CANINTF_ERRIF)
136 #define EFLG	      0x2d
137 #  define EFLG_EWARN	0x01
138 #  define EFLG_RXWAR	0x02
139 #  define EFLG_TXWAR	0x04
140 #  define EFLG_RXEP	0x08
141 #  define EFLG_TXEP	0x10
142 #  define EFLG_TXBO	0x20
143 #  define EFLG_RX0OVR	0x40
144 #  define EFLG_RX1OVR	0x80
145 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
146 #  define TXBCTRL_ABTF	0x40
147 #  define TXBCTRL_MLOA	0x20
148 #  define TXBCTRL_TXERR 0x10
149 #  define TXBCTRL_TXREQ 0x08
150 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
151 #  define SIDH_SHIFT    3
152 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
153 #  define SIDL_SID_MASK    7
154 #  define SIDL_SID_SHIFT   5
155 #  define SIDL_EXIDE_SHIFT 3
156 #  define SIDL_EID_SHIFT   16
157 #  define SIDL_EID_MASK    3
158 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
159 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
160 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
161 #  define DLC_RTR_SHIFT    6
162 #define TXBCTRL_OFF 0
163 #define TXBSIDH_OFF 1
164 #define TXBSIDL_OFF 2
165 #define TXBEID8_OFF 3
166 #define TXBEID0_OFF 4
167 #define TXBDLC_OFF  5
168 #define TXBDAT_OFF  6
169 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
170 #  define RXBCTRL_BUKT	0x04
171 #  define RXBCTRL_RXM0	0x20
172 #  define RXBCTRL_RXM1	0x40
173 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
174 #  define RXBSIDH_SHIFT 3
175 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
176 #  define RXBSIDL_IDE   0x08
177 #  define RXBSIDL_SRR   0x10
178 #  define RXBSIDL_EID   3
179 #  define RXBSIDL_SHIFT 5
180 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
181 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
182 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
183 #  define RXBDLC_LEN_MASK  0x0f
184 #  define RXBDLC_RTR       0x40
185 #define RXBCTRL_OFF 0
186 #define RXBSIDH_OFF 1
187 #define RXBSIDL_OFF 2
188 #define RXBEID8_OFF 3
189 #define RXBEID0_OFF 4
190 #define RXBDLC_OFF  5
191 #define RXBDAT_OFF  6
192 #define RXFSIDH(n) ((n) * 4)
193 #define RXFSIDL(n) ((n) * 4 + 1)
194 #define RXFEID8(n) ((n) * 4 + 2)
195 #define RXFEID0(n) ((n) * 4 + 3)
196 #define RXMSIDH(n) ((n) * 4 + 0x20)
197 #define RXMSIDL(n) ((n) * 4 + 0x21)
198 #define RXMEID8(n) ((n) * 4 + 0x22)
199 #define RXMEID0(n) ((n) * 4 + 0x23)
200 
201 #define GET_BYTE(val, byte)			\
202 	(((val) >> ((byte) * 8)) & 0xff)
203 #define SET_BYTE(val, byte)			\
204 	(((val) & 0xff) << ((byte) * 8))
205 
206 /*
207  * Buffer size required for the largest SPI transfer (i.e., reading a
208  * frame)
209  */
210 #define CAN_FRAME_MAX_DATA_LEN	8
211 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
212 #define CAN_FRAME_MAX_BITS	128
213 
214 #define TX_ECHO_SKB_MAX	1
215 
216 #define DEVICE_NAME "mcp251x"
217 
218 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
219 module_param(mcp251x_enable_dma, int, S_IRUGO);
220 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
221 
222 static struct can_bittiming_const mcp251x_bittiming_const = {
223 	.name = DEVICE_NAME,
224 	.tseg1_min = 3,
225 	.tseg1_max = 16,
226 	.tseg2_min = 2,
227 	.tseg2_max = 8,
228 	.sjw_max = 4,
229 	.brp_min = 1,
230 	.brp_max = 64,
231 	.brp_inc = 1,
232 };
233 
234 enum mcp251x_model {
235 	CAN_MCP251X_MCP2510	= 0x2510,
236 	CAN_MCP251X_MCP2515	= 0x2515,
237 };
238 
239 struct mcp251x_priv {
240 	struct can_priv	   can;
241 	struct net_device *net;
242 	struct spi_device *spi;
243 	enum mcp251x_model model;
244 
245 	struct mutex mcp_lock; /* SPI device lock */
246 
247 	u8 *spi_tx_buf;
248 	u8 *spi_rx_buf;
249 	dma_addr_t spi_tx_dma;
250 	dma_addr_t spi_rx_dma;
251 
252 	struct sk_buff *tx_skb;
253 	int tx_len;
254 
255 	struct workqueue_struct *wq;
256 	struct work_struct tx_work;
257 	struct work_struct restart_work;
258 
259 	int force_quit;
260 	int after_suspend;
261 #define AFTER_SUSPEND_UP 1
262 #define AFTER_SUSPEND_DOWN 2
263 #define AFTER_SUSPEND_POWER 4
264 #define AFTER_SUSPEND_RESTART 8
265 	int restart_tx;
266 };
267 
268 #define MCP251X_IS(_model) \
269 static inline int mcp251x_is_##_model(struct spi_device *spi) \
270 { \
271 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
272 	return priv->model == CAN_MCP251X_MCP##_model; \
273 }
274 
275 MCP251X_IS(2510);
276 MCP251X_IS(2515);
277 
mcp251x_clean(struct net_device * net)278 static void mcp251x_clean(struct net_device *net)
279 {
280 	struct mcp251x_priv *priv = netdev_priv(net);
281 
282 	if (priv->tx_skb || priv->tx_len)
283 		net->stats.tx_errors++;
284 	if (priv->tx_skb)
285 		dev_kfree_skb(priv->tx_skb);
286 	if (priv->tx_len)
287 		can_free_echo_skb(priv->net, 0);
288 	priv->tx_skb = NULL;
289 	priv->tx_len = 0;
290 }
291 
292 /*
293  * Note about handling of error return of mcp251x_spi_trans: accessing
294  * registers via SPI is not really different conceptually than using
295  * normal I/O assembler instructions, although it's much more
296  * complicated from a practical POV. So it's not advisable to always
297  * check the return value of this function. Imagine that every
298  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
299  * error();", it would be a great mess (well there are some situation
300  * when exception handling C++ like could be useful after all). So we
301  * just check that transfers are OK at the beginning of our
302  * conversation with the chip and to avoid doing really nasty things
303  * (like injecting bogus packets in the network stack).
304  */
mcp251x_spi_trans(struct spi_device * spi,int len)305 static int mcp251x_spi_trans(struct spi_device *spi, int len)
306 {
307 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
308 	struct spi_transfer t = {
309 		.tx_buf = priv->spi_tx_buf,
310 		.rx_buf = priv->spi_rx_buf,
311 		.len = len,
312 		.cs_change = 0,
313 	};
314 	struct spi_message m;
315 	int ret;
316 
317 	spi_message_init(&m);
318 
319 	if (mcp251x_enable_dma) {
320 		t.tx_dma = priv->spi_tx_dma;
321 		t.rx_dma = priv->spi_rx_dma;
322 		m.is_dma_mapped = 1;
323 	}
324 
325 	spi_message_add_tail(&t, &m);
326 
327 	ret = spi_sync(spi, &m);
328 	if (ret)
329 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
330 	return ret;
331 }
332 
mcp251x_read_reg(struct spi_device * spi,uint8_t reg)333 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
334 {
335 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
336 	u8 val = 0;
337 
338 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
339 	priv->spi_tx_buf[1] = reg;
340 
341 	mcp251x_spi_trans(spi, 3);
342 	val = priv->spi_rx_buf[2];
343 
344 	return val;
345 }
346 
mcp251x_read_2regs(struct spi_device * spi,uint8_t reg,uint8_t * v1,uint8_t * v2)347 static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
348 		uint8_t *v1, uint8_t *v2)
349 {
350 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
351 
352 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
353 	priv->spi_tx_buf[1] = reg;
354 
355 	mcp251x_spi_trans(spi, 4);
356 
357 	*v1 = priv->spi_rx_buf[2];
358 	*v2 = priv->spi_rx_buf[3];
359 }
360 
mcp251x_write_reg(struct spi_device * spi,u8 reg,uint8_t val)361 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
362 {
363 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
364 
365 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
366 	priv->spi_tx_buf[1] = reg;
367 	priv->spi_tx_buf[2] = val;
368 
369 	mcp251x_spi_trans(spi, 3);
370 }
371 
mcp251x_write_bits(struct spi_device * spi,u8 reg,u8 mask,uint8_t val)372 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
373 			       u8 mask, uint8_t val)
374 {
375 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
376 
377 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
378 	priv->spi_tx_buf[1] = reg;
379 	priv->spi_tx_buf[2] = mask;
380 	priv->spi_tx_buf[3] = val;
381 
382 	mcp251x_spi_trans(spi, 4);
383 }
384 
mcp251x_hw_tx_frame(struct spi_device * spi,u8 * buf,int len,int tx_buf_idx)385 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
386 				int len, int tx_buf_idx)
387 {
388 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
389 
390 	if (mcp251x_is_2510(spi)) {
391 		int i;
392 
393 		for (i = 1; i < TXBDAT_OFF + len; i++)
394 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
395 					  buf[i]);
396 	} else {
397 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
398 		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
399 	}
400 }
401 
mcp251x_hw_tx(struct spi_device * spi,struct can_frame * frame,int tx_buf_idx)402 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
403 			  int tx_buf_idx)
404 {
405 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
406 	u32 sid, eid, exide, rtr;
407 	u8 buf[SPI_TRANSFER_BUF_LEN];
408 
409 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
410 	if (exide)
411 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
412 	else
413 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
414 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
415 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
416 
417 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
418 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
419 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
420 		(exide << SIDL_EXIDE_SHIFT) |
421 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
422 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
423 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
424 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
425 	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
426 	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
427 
428 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
429 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
430 	mcp251x_spi_trans(priv->spi, 1);
431 }
432 
mcp251x_hw_rx_frame(struct spi_device * spi,u8 * buf,int buf_idx)433 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
434 				int buf_idx)
435 {
436 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
437 
438 	if (mcp251x_is_2510(spi)) {
439 		int i, len;
440 
441 		for (i = 1; i < RXBDAT_OFF; i++)
442 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
443 
444 		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
445 		for (; i < (RXBDAT_OFF + len); i++)
446 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
447 	} else {
448 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
449 		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
450 		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
451 	}
452 }
453 
mcp251x_hw_rx(struct spi_device * spi,int buf_idx)454 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
455 {
456 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
457 	struct sk_buff *skb;
458 	struct can_frame *frame;
459 	u8 buf[SPI_TRANSFER_BUF_LEN];
460 
461 	skb = alloc_can_skb(priv->net, &frame);
462 	if (!skb) {
463 		dev_err(&spi->dev, "cannot allocate RX skb\n");
464 		priv->net->stats.rx_dropped++;
465 		return;
466 	}
467 
468 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
469 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
470 		/* Extended ID format */
471 		frame->can_id = CAN_EFF_FLAG;
472 		frame->can_id |=
473 			/* Extended ID part */
474 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
475 			SET_BYTE(buf[RXBEID8_OFF], 1) |
476 			SET_BYTE(buf[RXBEID0_OFF], 0) |
477 			/* Standard ID part */
478 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
479 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
480 		/* Remote transmission request */
481 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
482 			frame->can_id |= CAN_RTR_FLAG;
483 	} else {
484 		/* Standard ID format */
485 		frame->can_id =
486 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
487 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
488 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
489 			frame->can_id |= CAN_RTR_FLAG;
490 	}
491 	/* Data length */
492 	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
493 	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
494 
495 	priv->net->stats.rx_packets++;
496 	priv->net->stats.rx_bytes += frame->can_dlc;
497 	netif_rx_ni(skb);
498 }
499 
mcp251x_hw_sleep(struct spi_device * spi)500 static void mcp251x_hw_sleep(struct spi_device *spi)
501 {
502 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
503 }
504 
mcp251x_hard_start_xmit(struct sk_buff * skb,struct net_device * net)505 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
506 					   struct net_device *net)
507 {
508 	struct mcp251x_priv *priv = netdev_priv(net);
509 	struct spi_device *spi = priv->spi;
510 
511 	if (priv->tx_skb || priv->tx_len) {
512 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
513 		return NETDEV_TX_BUSY;
514 	}
515 
516 	if (can_dropped_invalid_skb(net, skb))
517 		return NETDEV_TX_OK;
518 
519 	netif_stop_queue(net);
520 	priv->tx_skb = skb;
521 	queue_work(priv->wq, &priv->tx_work);
522 
523 	return NETDEV_TX_OK;
524 }
525 
mcp251x_do_set_mode(struct net_device * net,enum can_mode mode)526 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
527 {
528 	struct mcp251x_priv *priv = netdev_priv(net);
529 
530 	switch (mode) {
531 	case CAN_MODE_START:
532 		mcp251x_clean(net);
533 		/* We have to delay work since SPI I/O may sleep */
534 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
535 		priv->restart_tx = 1;
536 		if (priv->can.restart_ms == 0)
537 			priv->after_suspend = AFTER_SUSPEND_RESTART;
538 		queue_work(priv->wq, &priv->restart_work);
539 		break;
540 	default:
541 		return -EOPNOTSUPP;
542 	}
543 
544 	return 0;
545 }
546 
mcp251x_set_normal_mode(struct spi_device * spi)547 static int mcp251x_set_normal_mode(struct spi_device *spi)
548 {
549 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
550 	unsigned long timeout;
551 
552 	/* Enable interrupts */
553 	mcp251x_write_reg(spi, CANINTE,
554 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
555 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
556 
557 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
558 		/* Put device into loopback mode */
559 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
560 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
561 		/* Put device into listen-only mode */
562 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
563 	} else {
564 		/* Put device into normal mode */
565 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
566 
567 		/* Wait for the device to enter normal mode */
568 		timeout = jiffies + HZ;
569 		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
570 			schedule();
571 			if (time_after(jiffies, timeout)) {
572 				dev_err(&spi->dev, "MCP251x didn't"
573 					" enter in normal mode\n");
574 				return -EBUSY;
575 			}
576 		}
577 	}
578 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
579 	return 0;
580 }
581 
mcp251x_do_set_bittiming(struct net_device * net)582 static int mcp251x_do_set_bittiming(struct net_device *net)
583 {
584 	struct mcp251x_priv *priv = netdev_priv(net);
585 	struct can_bittiming *bt = &priv->can.bittiming;
586 	struct spi_device *spi = priv->spi;
587 
588 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
589 			  (bt->brp - 1));
590 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
591 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
592 			   CNF2_SAM : 0) |
593 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
594 			  (bt->prop_seg - 1));
595 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
596 			   (bt->phase_seg2 - 1));
597 	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
598 		 mcp251x_read_reg(spi, CNF1),
599 		 mcp251x_read_reg(spi, CNF2),
600 		 mcp251x_read_reg(spi, CNF3));
601 
602 	return 0;
603 }
604 
mcp251x_setup(struct net_device * net,struct mcp251x_priv * priv,struct spi_device * spi)605 static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
606 			 struct spi_device *spi)
607 {
608 	mcp251x_do_set_bittiming(net);
609 
610 	mcp251x_write_reg(spi, RXBCTRL(0),
611 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
612 	mcp251x_write_reg(spi, RXBCTRL(1),
613 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
614 	return 0;
615 }
616 
mcp251x_hw_reset(struct spi_device * spi)617 static int mcp251x_hw_reset(struct spi_device *spi)
618 {
619 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
620 	int ret;
621 	unsigned long timeout;
622 
623 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
624 	ret = spi_write(spi, priv->spi_tx_buf, 1);
625 	if (ret) {
626 		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
627 		return -EIO;
628 	}
629 
630 	/* Wait for reset to finish */
631 	timeout = jiffies + HZ;
632 	mdelay(10);
633 	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
634 	       != CANCTRL_REQOP_CONF) {
635 		schedule();
636 		if (time_after(jiffies, timeout)) {
637 			dev_err(&spi->dev, "MCP251x didn't"
638 				" enter in conf mode after reset\n");
639 			return -EBUSY;
640 		}
641 	}
642 	return 0;
643 }
644 
mcp251x_hw_probe(struct spi_device * spi)645 static int mcp251x_hw_probe(struct spi_device *spi)
646 {
647 	int st1, st2;
648 
649 	mcp251x_hw_reset(spi);
650 
651 	/*
652 	 * Please note that these are "magic values" based on after
653 	 * reset defaults taken from data sheet which allows us to see
654 	 * if we really have a chip on the bus (we avoid common all
655 	 * zeroes or all ones situations)
656 	 */
657 	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
658 	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
659 
660 	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
661 
662 	/* Check for power up default values */
663 	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
664 }
665 
mcp251x_open_clean(struct net_device * net)666 static void mcp251x_open_clean(struct net_device *net)
667 {
668 	struct mcp251x_priv *priv = netdev_priv(net);
669 	struct spi_device *spi = priv->spi;
670 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
671 
672 	free_irq(spi->irq, priv);
673 	mcp251x_hw_sleep(spi);
674 	if (pdata->transceiver_enable)
675 		pdata->transceiver_enable(0);
676 	close_candev(net);
677 }
678 
mcp251x_stop(struct net_device * net)679 static int mcp251x_stop(struct net_device *net)
680 {
681 	struct mcp251x_priv *priv = netdev_priv(net);
682 	struct spi_device *spi = priv->spi;
683 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
684 
685 	close_candev(net);
686 
687 	priv->force_quit = 1;
688 	free_irq(spi->irq, priv);
689 	destroy_workqueue(priv->wq);
690 	priv->wq = NULL;
691 
692 	mutex_lock(&priv->mcp_lock);
693 
694 	/* Disable and clear pending interrupts */
695 	mcp251x_write_reg(spi, CANINTE, 0x00);
696 	mcp251x_write_reg(spi, CANINTF, 0x00);
697 
698 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
699 	mcp251x_clean(net);
700 
701 	mcp251x_hw_sleep(spi);
702 
703 	if (pdata->transceiver_enable)
704 		pdata->transceiver_enable(0);
705 
706 	priv->can.state = CAN_STATE_STOPPED;
707 
708 	mutex_unlock(&priv->mcp_lock);
709 
710 	return 0;
711 }
712 
mcp251x_error_skb(struct net_device * net,int can_id,int data1)713 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
714 {
715 	struct sk_buff *skb;
716 	struct can_frame *frame;
717 
718 	skb = alloc_can_err_skb(net, &frame);
719 	if (skb) {
720 		frame->can_id |= can_id;
721 		frame->data[1] = data1;
722 		netif_rx_ni(skb);
723 	} else {
724 		netdev_err(net, "cannot allocate error skb\n");
725 	}
726 }
727 
mcp251x_tx_work_handler(struct work_struct * ws)728 static void mcp251x_tx_work_handler(struct work_struct *ws)
729 {
730 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
731 						 tx_work);
732 	struct spi_device *spi = priv->spi;
733 	struct net_device *net = priv->net;
734 	struct can_frame *frame;
735 
736 	mutex_lock(&priv->mcp_lock);
737 	if (priv->tx_skb) {
738 		if (priv->can.state == CAN_STATE_BUS_OFF) {
739 			mcp251x_clean(net);
740 		} else {
741 			frame = (struct can_frame *)priv->tx_skb->data;
742 
743 			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
744 				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
745 			mcp251x_hw_tx(spi, frame, 0);
746 			priv->tx_len = 1 + frame->can_dlc;
747 			can_put_echo_skb(priv->tx_skb, net, 0);
748 			priv->tx_skb = NULL;
749 		}
750 	}
751 	mutex_unlock(&priv->mcp_lock);
752 }
753 
mcp251x_restart_work_handler(struct work_struct * ws)754 static void mcp251x_restart_work_handler(struct work_struct *ws)
755 {
756 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
757 						 restart_work);
758 	struct spi_device *spi = priv->spi;
759 	struct net_device *net = priv->net;
760 
761 	mutex_lock(&priv->mcp_lock);
762 	if (priv->after_suspend) {
763 		mdelay(10);
764 		mcp251x_hw_reset(spi);
765 		mcp251x_setup(net, priv, spi);
766 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
767 			mcp251x_set_normal_mode(spi);
768 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
769 			netif_device_attach(net);
770 			mcp251x_clean(net);
771 			mcp251x_set_normal_mode(spi);
772 			netif_wake_queue(net);
773 		} else {
774 			mcp251x_hw_sleep(spi);
775 		}
776 		priv->after_suspend = 0;
777 		priv->force_quit = 0;
778 	}
779 
780 	if (priv->restart_tx) {
781 		priv->restart_tx = 0;
782 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
783 		mcp251x_clean(net);
784 		netif_wake_queue(net);
785 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
786 	}
787 	mutex_unlock(&priv->mcp_lock);
788 }
789 
mcp251x_can_ist(int irq,void * dev_id)790 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
791 {
792 	struct mcp251x_priv *priv = dev_id;
793 	struct spi_device *spi = priv->spi;
794 	struct net_device *net = priv->net;
795 
796 	mutex_lock(&priv->mcp_lock);
797 	while (!priv->force_quit) {
798 		enum can_state new_state;
799 		u8 intf, eflag;
800 		u8 clear_intf = 0;
801 		int can_id = 0, data1 = 0;
802 
803 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
804 
805 		/* mask out flags we don't care about */
806 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
807 
808 		/* receive buffer 0 */
809 		if (intf & CANINTF_RX0IF) {
810 			mcp251x_hw_rx(spi, 0);
811 			/*
812 			 * Free one buffer ASAP
813 			 * (The MCP2515 does this automatically.)
814 			 */
815 			if (mcp251x_is_2510(spi))
816 				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
817 		}
818 
819 		/* receive buffer 1 */
820 		if (intf & CANINTF_RX1IF) {
821 			mcp251x_hw_rx(spi, 1);
822 			/* the MCP2515 does this automatically */
823 			if (mcp251x_is_2510(spi))
824 				clear_intf |= CANINTF_RX1IF;
825 		}
826 
827 		/* any error or tx interrupt we need to clear? */
828 		if (intf & (CANINTF_ERR | CANINTF_TX))
829 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
830 		if (clear_intf)
831 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
832 
833 		if (eflag)
834 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
835 
836 		/* Update can state */
837 		if (eflag & EFLG_TXBO) {
838 			new_state = CAN_STATE_BUS_OFF;
839 			can_id |= CAN_ERR_BUSOFF;
840 		} else if (eflag & EFLG_TXEP) {
841 			new_state = CAN_STATE_ERROR_PASSIVE;
842 			can_id |= CAN_ERR_CRTL;
843 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
844 		} else if (eflag & EFLG_RXEP) {
845 			new_state = CAN_STATE_ERROR_PASSIVE;
846 			can_id |= CAN_ERR_CRTL;
847 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
848 		} else if (eflag & EFLG_TXWAR) {
849 			new_state = CAN_STATE_ERROR_WARNING;
850 			can_id |= CAN_ERR_CRTL;
851 			data1 |= CAN_ERR_CRTL_TX_WARNING;
852 		} else if (eflag & EFLG_RXWAR) {
853 			new_state = CAN_STATE_ERROR_WARNING;
854 			can_id |= CAN_ERR_CRTL;
855 			data1 |= CAN_ERR_CRTL_RX_WARNING;
856 		} else {
857 			new_state = CAN_STATE_ERROR_ACTIVE;
858 		}
859 
860 		/* Update can state statistics */
861 		switch (priv->can.state) {
862 		case CAN_STATE_ERROR_ACTIVE:
863 			if (new_state >= CAN_STATE_ERROR_WARNING &&
864 			    new_state <= CAN_STATE_BUS_OFF)
865 				priv->can.can_stats.error_warning++;
866 		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
867 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
868 			    new_state <= CAN_STATE_BUS_OFF)
869 				priv->can.can_stats.error_passive++;
870 			break;
871 		default:
872 			break;
873 		}
874 		priv->can.state = new_state;
875 
876 		if (intf & CANINTF_ERRIF) {
877 			/* Handle overflow counters */
878 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
879 				if (eflag & EFLG_RX0OVR) {
880 					net->stats.rx_over_errors++;
881 					net->stats.rx_errors++;
882 				}
883 				if (eflag & EFLG_RX1OVR) {
884 					net->stats.rx_over_errors++;
885 					net->stats.rx_errors++;
886 				}
887 				can_id |= CAN_ERR_CRTL;
888 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
889 			}
890 			mcp251x_error_skb(net, can_id, data1);
891 		}
892 
893 		if (priv->can.state == CAN_STATE_BUS_OFF) {
894 			if (priv->can.restart_ms == 0) {
895 				priv->force_quit = 1;
896 				can_bus_off(net);
897 				mcp251x_hw_sleep(spi);
898 				break;
899 			}
900 		}
901 
902 		if (intf == 0)
903 			break;
904 
905 		if (intf & CANINTF_TX) {
906 			net->stats.tx_packets++;
907 			net->stats.tx_bytes += priv->tx_len - 1;
908 			if (priv->tx_len) {
909 				can_get_echo_skb(net, 0);
910 				priv->tx_len = 0;
911 			}
912 			netif_wake_queue(net);
913 		}
914 
915 	}
916 	mutex_unlock(&priv->mcp_lock);
917 	return IRQ_HANDLED;
918 }
919 
mcp251x_open(struct net_device * net)920 static int mcp251x_open(struct net_device *net)
921 {
922 	struct mcp251x_priv *priv = netdev_priv(net);
923 	struct spi_device *spi = priv->spi;
924 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
925 	int ret;
926 
927 	ret = open_candev(net);
928 	if (ret) {
929 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
930 		return ret;
931 	}
932 
933 	mutex_lock(&priv->mcp_lock);
934 	if (pdata->transceiver_enable)
935 		pdata->transceiver_enable(1);
936 
937 	priv->force_quit = 0;
938 	priv->tx_skb = NULL;
939 	priv->tx_len = 0;
940 
941 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
942 		  pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
943 		  DEVICE_NAME, priv);
944 	if (ret) {
945 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
946 		if (pdata->transceiver_enable)
947 			pdata->transceiver_enable(0);
948 		close_candev(net);
949 		goto open_unlock;
950 	}
951 
952 	priv->wq = create_freezable_workqueue("mcp251x_wq");
953 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
954 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
955 
956 	ret = mcp251x_hw_reset(spi);
957 	if (ret) {
958 		mcp251x_open_clean(net);
959 		goto open_unlock;
960 	}
961 	ret = mcp251x_setup(net, priv, spi);
962 	if (ret) {
963 		mcp251x_open_clean(net);
964 		goto open_unlock;
965 	}
966 	ret = mcp251x_set_normal_mode(spi);
967 	if (ret) {
968 		mcp251x_open_clean(net);
969 		goto open_unlock;
970 	}
971 	netif_wake_queue(net);
972 
973 open_unlock:
974 	mutex_unlock(&priv->mcp_lock);
975 	return ret;
976 }
977 
978 static const struct net_device_ops mcp251x_netdev_ops = {
979 	.ndo_open = mcp251x_open,
980 	.ndo_stop = mcp251x_stop,
981 	.ndo_start_xmit = mcp251x_hard_start_xmit,
982 };
983 
mcp251x_can_probe(struct spi_device * spi)984 static int __devinit mcp251x_can_probe(struct spi_device *spi)
985 {
986 	struct net_device *net;
987 	struct mcp251x_priv *priv;
988 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
989 	int ret = -ENODEV;
990 
991 	if (!pdata)
992 		/* Platform data is required for osc freq */
993 		goto error_out;
994 
995 	/* Allocate can/net device */
996 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
997 	if (!net) {
998 		ret = -ENOMEM;
999 		goto error_alloc;
1000 	}
1001 
1002 	net->netdev_ops = &mcp251x_netdev_ops;
1003 	net->flags |= IFF_ECHO;
1004 
1005 	priv = netdev_priv(net);
1006 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1007 	priv->can.do_set_mode = mcp251x_do_set_mode;
1008 	priv->can.clock.freq = pdata->oscillator_frequency / 2;
1009 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1010 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1011 	priv->model = spi_get_device_id(spi)->driver_data;
1012 	priv->net = net;
1013 	dev_set_drvdata(&spi->dev, priv);
1014 
1015 	priv->spi = spi;
1016 	mutex_init(&priv->mcp_lock);
1017 
1018 	/* If requested, allocate DMA buffers */
1019 	if (mcp251x_enable_dma) {
1020 		spi->dev.coherent_dma_mask = ~0;
1021 
1022 		/*
1023 		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1024 		 * that much and share it between Tx and Rx DMA buffers.
1025 		 */
1026 		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1027 						      PAGE_SIZE,
1028 						      &priv->spi_tx_dma,
1029 						      GFP_DMA);
1030 
1031 		if (priv->spi_tx_buf) {
1032 			priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1033 						  (PAGE_SIZE / 2));
1034 			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1035 							(PAGE_SIZE / 2));
1036 		} else {
1037 			/* Fall back to non-DMA */
1038 			mcp251x_enable_dma = 0;
1039 		}
1040 	}
1041 
1042 	/* Allocate non-DMA buffers */
1043 	if (!mcp251x_enable_dma) {
1044 		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1045 		if (!priv->spi_tx_buf) {
1046 			ret = -ENOMEM;
1047 			goto error_tx_buf;
1048 		}
1049 		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1050 		if (!priv->spi_rx_buf) {
1051 			ret = -ENOMEM;
1052 			goto error_rx_buf;
1053 		}
1054 	}
1055 
1056 	if (pdata->power_enable)
1057 		pdata->power_enable(1);
1058 
1059 	/* Call out to platform specific setup */
1060 	if (pdata->board_specific_setup)
1061 		pdata->board_specific_setup(spi);
1062 
1063 	SET_NETDEV_DEV(net, &spi->dev);
1064 
1065 	/* Configure the SPI bus */
1066 	spi->mode = SPI_MODE_0;
1067 	spi->bits_per_word = 8;
1068 	spi_setup(spi);
1069 
1070 	/* Here is OK to not lock the MCP, no one knows about it yet */
1071 	if (!mcp251x_hw_probe(spi)) {
1072 		dev_info(&spi->dev, "Probe failed\n");
1073 		goto error_probe;
1074 	}
1075 	mcp251x_hw_sleep(spi);
1076 
1077 	if (pdata->transceiver_enable)
1078 		pdata->transceiver_enable(0);
1079 
1080 	ret = register_candev(net);
1081 	if (!ret) {
1082 		dev_info(&spi->dev, "probed\n");
1083 		return ret;
1084 	}
1085 error_probe:
1086 	if (!mcp251x_enable_dma)
1087 		kfree(priv->spi_rx_buf);
1088 error_rx_buf:
1089 	if (!mcp251x_enable_dma)
1090 		kfree(priv->spi_tx_buf);
1091 error_tx_buf:
1092 	free_candev(net);
1093 	if (mcp251x_enable_dma)
1094 		dma_free_coherent(&spi->dev, PAGE_SIZE,
1095 				  priv->spi_tx_buf, priv->spi_tx_dma);
1096 error_alloc:
1097 	if (pdata->power_enable)
1098 		pdata->power_enable(0);
1099 	dev_err(&spi->dev, "probe failed\n");
1100 error_out:
1101 	return ret;
1102 }
1103 
mcp251x_can_remove(struct spi_device * spi)1104 static int __devexit mcp251x_can_remove(struct spi_device *spi)
1105 {
1106 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1107 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1108 	struct net_device *net = priv->net;
1109 
1110 	unregister_candev(net);
1111 	free_candev(net);
1112 
1113 	if (mcp251x_enable_dma) {
1114 		dma_free_coherent(&spi->dev, PAGE_SIZE,
1115 				  priv->spi_tx_buf, priv->spi_tx_dma);
1116 	} else {
1117 		kfree(priv->spi_tx_buf);
1118 		kfree(priv->spi_rx_buf);
1119 	}
1120 
1121 	if (pdata->power_enable)
1122 		pdata->power_enable(0);
1123 
1124 	return 0;
1125 }
1126 
1127 #ifdef CONFIG_PM
mcp251x_can_suspend(struct spi_device * spi,pm_message_t state)1128 static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1129 {
1130 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1131 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1132 	struct net_device *net = priv->net;
1133 
1134 	priv->force_quit = 1;
1135 	disable_irq(spi->irq);
1136 	/*
1137 	 * Note: at this point neither IST nor workqueues are running.
1138 	 * open/stop cannot be called anyway so locking is not needed
1139 	 */
1140 	if (netif_running(net)) {
1141 		netif_device_detach(net);
1142 
1143 		mcp251x_hw_sleep(spi);
1144 		if (pdata->transceiver_enable)
1145 			pdata->transceiver_enable(0);
1146 		priv->after_suspend = AFTER_SUSPEND_UP;
1147 	} else {
1148 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1149 	}
1150 
1151 	if (pdata->power_enable) {
1152 		pdata->power_enable(0);
1153 		priv->after_suspend |= AFTER_SUSPEND_POWER;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
mcp251x_can_resume(struct spi_device * spi)1159 static int mcp251x_can_resume(struct spi_device *spi)
1160 {
1161 	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1162 	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1163 
1164 	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1165 		pdata->power_enable(1);
1166 		queue_work(priv->wq, &priv->restart_work);
1167 	} else {
1168 		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1169 			if (pdata->transceiver_enable)
1170 				pdata->transceiver_enable(1);
1171 			queue_work(priv->wq, &priv->restart_work);
1172 		} else {
1173 			priv->after_suspend = 0;
1174 		}
1175 	}
1176 	priv->force_quit = 0;
1177 	enable_irq(spi->irq);
1178 	return 0;
1179 }
1180 #else
1181 #define mcp251x_can_suspend NULL
1182 #define mcp251x_can_resume NULL
1183 #endif
1184 
1185 static const struct spi_device_id mcp251x_id_table[] = {
1186 	{ "mcp2510",	CAN_MCP251X_MCP2510 },
1187 	{ "mcp2515",	CAN_MCP251X_MCP2515 },
1188 	{ },
1189 };
1190 
1191 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1192 
1193 static struct spi_driver mcp251x_can_driver = {
1194 	.driver = {
1195 		.name = DEVICE_NAME,
1196 		.bus = &spi_bus_type,
1197 		.owner = THIS_MODULE,
1198 	},
1199 
1200 	.id_table = mcp251x_id_table,
1201 	.probe = mcp251x_can_probe,
1202 	.remove = __devexit_p(mcp251x_can_remove),
1203 	.suspend = mcp251x_can_suspend,
1204 	.resume = mcp251x_can_resume,
1205 };
1206 
mcp251x_can_init(void)1207 static int __init mcp251x_can_init(void)
1208 {
1209 	return spi_register_driver(&mcp251x_can_driver);
1210 }
1211 
mcp251x_can_exit(void)1212 static void __exit mcp251x_can_exit(void)
1213 {
1214 	spi_unregister_driver(&mcp251x_can_driver);
1215 }
1216 
1217 module_init(mcp251x_can_init);
1218 module_exit(mcp251x_can_exit);
1219 
1220 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1221 	      "Christian Pellegrin <chripell@evolware.org>");
1222 MODULE_DESCRIPTION("Microchip 251x CAN driver");
1223 MODULE_LICENSE("GPL v2");
1224