1 #include <linux/delay.h>
2 #include <linux/pci.h>
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/slab.h>
6 #include <linux/ioport.h>
7 #include <linux/wait.h>
8 
9 #include "pci.h"
10 
11 /*
12  * This interrupt-safe spinlock protects all accesses to PCI
13  * configuration space.
14  */
15 
16 DEFINE_RAW_SPINLOCK(pci_lock);
17 
18 /*
19  *  Wrappers for all PCI configuration access functions.  They just check
20  *  alignment, do locking and call the low-level functions pointed to
21  *  by pci_dev->ops.
22  */
23 
24 #define PCI_byte_BAD 0
25 #define PCI_word_BAD (pos & 1)
26 #define PCI_dword_BAD (pos & 3)
27 
28 #define PCI_OP_READ(size,type,len) \
29 int pci_bus_read_config_##size \
30 	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
31 {									\
32 	int res;							\
33 	unsigned long flags;						\
34 	u32 data = 0;							\
35 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36 	raw_spin_lock_irqsave(&pci_lock, flags);			\
37 	res = bus->ops->read(bus, devfn, pos, len, &data);		\
38 	*value = (type)data;						\
39 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
40 	return res;							\
41 }
42 
43 #define PCI_OP_WRITE(size,type,len) \
44 int pci_bus_write_config_##size \
45 	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
46 {									\
47 	int res;							\
48 	unsigned long flags;						\
49 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50 	raw_spin_lock_irqsave(&pci_lock, flags);			\
51 	res = bus->ops->write(bus, devfn, pos, len, value);		\
52 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
53 	return res;							\
54 }
55 
56 PCI_OP_READ(byte, u8, 1)
57 PCI_OP_READ(word, u16, 2)
58 PCI_OP_READ(dword, u32, 4)
59 PCI_OP_WRITE(byte, u8, 1)
60 PCI_OP_WRITE(word, u16, 2)
61 PCI_OP_WRITE(dword, u32, 4)
62 
63 EXPORT_SYMBOL(pci_bus_read_config_byte);
64 EXPORT_SYMBOL(pci_bus_read_config_word);
65 EXPORT_SYMBOL(pci_bus_read_config_dword);
66 EXPORT_SYMBOL(pci_bus_write_config_byte);
67 EXPORT_SYMBOL(pci_bus_write_config_word);
68 EXPORT_SYMBOL(pci_bus_write_config_dword);
69 
70 /**
71  * pci_bus_set_ops - Set raw operations of pci bus
72  * @bus:	pci bus struct
73  * @ops:	new raw operations
74  *
75  * Return previous raw operations
76  */
pci_bus_set_ops(struct pci_bus * bus,struct pci_ops * ops)77 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
78 {
79 	struct pci_ops *old_ops;
80 	unsigned long flags;
81 
82 	raw_spin_lock_irqsave(&pci_lock, flags);
83 	old_ops = bus->ops;
84 	bus->ops = ops;
85 	raw_spin_unlock_irqrestore(&pci_lock, flags);
86 	return old_ops;
87 }
88 EXPORT_SYMBOL(pci_bus_set_ops);
89 
90 /**
91  * pci_read_vpd - Read one entry from Vital Product Data
92  * @dev:	pci device struct
93  * @pos:	offset in vpd space
94  * @count:	number of bytes to read
95  * @buf:	pointer to where to store result
96  *
97  */
pci_read_vpd(struct pci_dev * dev,loff_t pos,size_t count,void * buf)98 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
99 {
100 	if (!dev->vpd || !dev->vpd->ops)
101 		return -ENODEV;
102 	return dev->vpd->ops->read(dev, pos, count, buf);
103 }
104 EXPORT_SYMBOL(pci_read_vpd);
105 
106 /**
107  * pci_write_vpd - Write entry to Vital Product Data
108  * @dev:	pci device struct
109  * @pos:	offset in vpd space
110  * @count:	number of bytes to write
111  * @buf:	buffer containing write data
112  *
113  */
pci_write_vpd(struct pci_dev * dev,loff_t pos,size_t count,const void * buf)114 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
115 {
116 	if (!dev->vpd || !dev->vpd->ops)
117 		return -ENODEV;
118 	return dev->vpd->ops->write(dev, pos, count, buf);
119 }
120 EXPORT_SYMBOL(pci_write_vpd);
121 
122 /*
123  * The following routines are to prevent the user from accessing PCI config
124  * space when it's unsafe to do so.  Some devices require this during BIST and
125  * we're required to prevent it during D-state transitions.
126  *
127  * We have a bit per device to indicate it's blocked and a global wait queue
128  * for callers to sleep on until devices are unblocked.
129  */
130 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
131 
pci_wait_cfg(struct pci_dev * dev)132 static noinline void pci_wait_cfg(struct pci_dev *dev)
133 {
134 	DECLARE_WAITQUEUE(wait, current);
135 
136 	__add_wait_queue(&pci_cfg_wait, &wait);
137 	do {
138 		set_current_state(TASK_UNINTERRUPTIBLE);
139 		raw_spin_unlock_irq(&pci_lock);
140 		schedule();
141 		raw_spin_lock_irq(&pci_lock);
142 	} while (dev->block_cfg_access);
143 	__remove_wait_queue(&pci_cfg_wait, &wait);
144 }
145 
146 /* Returns 0 on success, negative values indicate error. */
147 #define PCI_USER_READ_CONFIG(size,type)					\
148 int pci_user_read_config_##size						\
149 	(struct pci_dev *dev, int pos, type *val)			\
150 {									\
151 	int ret = 0;							\
152 	u32 data = -1;							\
153 	if (PCI_##size##_BAD)						\
154 		return -EINVAL;						\
155 	raw_spin_lock_irq(&pci_lock);				\
156 	if (unlikely(dev->block_cfg_access))				\
157 		pci_wait_cfg(dev);					\
158 	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
159 					pos, sizeof(type), &data);	\
160 	raw_spin_unlock_irq(&pci_lock);				\
161 	*val = (type)data;						\
162 	if (ret > 0)							\
163 		ret = -EINVAL;						\
164 	return ret;							\
165 }
166 
167 /* Returns 0 on success, negative values indicate error. */
168 #define PCI_USER_WRITE_CONFIG(size,type)				\
169 int pci_user_write_config_##size					\
170 	(struct pci_dev *dev, int pos, type val)			\
171 {									\
172 	int ret = -EIO;							\
173 	if (PCI_##size##_BAD)						\
174 		return -EINVAL;						\
175 	raw_spin_lock_irq(&pci_lock);				\
176 	if (unlikely(dev->block_cfg_access))				\
177 		pci_wait_cfg(dev);					\
178 	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
179 					pos, sizeof(type), val);	\
180 	raw_spin_unlock_irq(&pci_lock);				\
181 	if (ret > 0)							\
182 		ret = -EINVAL;						\
183 	return ret;							\
184 }
185 
186 PCI_USER_READ_CONFIG(byte, u8)
187 PCI_USER_READ_CONFIG(word, u16)
188 PCI_USER_READ_CONFIG(dword, u32)
189 PCI_USER_WRITE_CONFIG(byte, u8)
190 PCI_USER_WRITE_CONFIG(word, u16)
191 PCI_USER_WRITE_CONFIG(dword, u32)
192 
193 /* VPD access through PCI 2.2+ VPD capability */
194 
195 #define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)
196 
197 struct pci_vpd_pci22 {
198 	struct pci_vpd base;
199 	struct mutex lock;
200 	u16	flag;
201 	bool	busy;
202 	u8	cap;
203 };
204 
205 /*
206  * Wait for last operation to complete.
207  * This code has to spin since there is no other notification from the PCI
208  * hardware. Since the VPD is often implemented by serial attachment to an
209  * EEPROM, it may take many milliseconds to complete.
210  *
211  * Returns 0 on success, negative values indicate error.
212  */
pci_vpd_pci22_wait(struct pci_dev * dev)213 static int pci_vpd_pci22_wait(struct pci_dev *dev)
214 {
215 	struct pci_vpd_pci22 *vpd =
216 		container_of(dev->vpd, struct pci_vpd_pci22, base);
217 	unsigned long timeout = jiffies + HZ/20 + 2;
218 	u16 status;
219 	int ret;
220 
221 	if (!vpd->busy)
222 		return 0;
223 
224 	for (;;) {
225 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
226 						&status);
227 		if (ret < 0)
228 			return ret;
229 
230 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
231 			vpd->busy = false;
232 			return 0;
233 		}
234 
235 		if (time_after(jiffies, timeout)) {
236 			dev_printk(KERN_DEBUG, &dev->dev,
237 				   "vpd r/w failed.  This is likely a firmware "
238 				   "bug on this device.  Contact the card "
239 				   "vendor for a firmware update.");
240 			return -ETIMEDOUT;
241 		}
242 		if (fatal_signal_pending(current))
243 			return -EINTR;
244 		if (!cond_resched())
245 			udelay(10);
246 	}
247 }
248 
pci_vpd_pci22_read(struct pci_dev * dev,loff_t pos,size_t count,void * arg)249 static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count,
250 				  void *arg)
251 {
252 	struct pci_vpd_pci22 *vpd =
253 		container_of(dev->vpd, struct pci_vpd_pci22, base);
254 	int ret;
255 	loff_t end = pos + count;
256 	u8 *buf = arg;
257 
258 	if (pos < 0 || pos > vpd->base.len || end > vpd->base.len)
259 		return -EINVAL;
260 
261 	if (mutex_lock_killable(&vpd->lock))
262 		return -EINTR;
263 
264 	ret = pci_vpd_pci22_wait(dev);
265 	if (ret < 0)
266 		goto out;
267 
268 	while (pos < end) {
269 		u32 val;
270 		unsigned int i, skip;
271 
272 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
273 						 pos & ~3);
274 		if (ret < 0)
275 			break;
276 		vpd->busy = true;
277 		vpd->flag = PCI_VPD_ADDR_F;
278 		ret = pci_vpd_pci22_wait(dev);
279 		if (ret < 0)
280 			break;
281 
282 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
283 		if (ret < 0)
284 			break;
285 
286 		skip = pos & 3;
287 		for (i = 0;  i < sizeof(u32); i++) {
288 			if (i >= skip) {
289 				*buf++ = val;
290 				if (++pos == end)
291 					break;
292 			}
293 			val >>= 8;
294 		}
295 	}
296 out:
297 	mutex_unlock(&vpd->lock);
298 	return ret ? ret : count;
299 }
300 
pci_vpd_pci22_write(struct pci_dev * dev,loff_t pos,size_t count,const void * arg)301 static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count,
302 				   const void *arg)
303 {
304 	struct pci_vpd_pci22 *vpd =
305 		container_of(dev->vpd, struct pci_vpd_pci22, base);
306 	const u8 *buf = arg;
307 	loff_t end = pos + count;
308 	int ret = 0;
309 
310 	if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len)
311 		return -EINVAL;
312 
313 	if (mutex_lock_killable(&vpd->lock))
314 		return -EINTR;
315 
316 	ret = pci_vpd_pci22_wait(dev);
317 	if (ret < 0)
318 		goto out;
319 
320 	while (pos < end) {
321 		u32 val;
322 
323 		val = *buf++;
324 		val |= *buf++ << 8;
325 		val |= *buf++ << 16;
326 		val |= *buf++ << 24;
327 
328 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
329 		if (ret < 0)
330 			break;
331 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
332 						 pos | PCI_VPD_ADDR_F);
333 		if (ret < 0)
334 			break;
335 
336 		vpd->busy = true;
337 		vpd->flag = 0;
338 		ret = pci_vpd_pci22_wait(dev);
339 		if (ret < 0)
340 			break;
341 
342 		pos += sizeof(u32);
343 	}
344 out:
345 	mutex_unlock(&vpd->lock);
346 	return ret ? ret : count;
347 }
348 
pci_vpd_pci22_release(struct pci_dev * dev)349 static void pci_vpd_pci22_release(struct pci_dev *dev)
350 {
351 	kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
352 }
353 
354 static const struct pci_vpd_ops pci_vpd_pci22_ops = {
355 	.read = pci_vpd_pci22_read,
356 	.write = pci_vpd_pci22_write,
357 	.release = pci_vpd_pci22_release,
358 };
359 
pci_vpd_pci22_init(struct pci_dev * dev)360 int pci_vpd_pci22_init(struct pci_dev *dev)
361 {
362 	struct pci_vpd_pci22 *vpd;
363 	u8 cap;
364 
365 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
366 	if (!cap)
367 		return -ENODEV;
368 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
369 	if (!vpd)
370 		return -ENOMEM;
371 
372 	vpd->base.len = PCI_VPD_PCI22_SIZE;
373 	vpd->base.ops = &pci_vpd_pci22_ops;
374 	mutex_init(&vpd->lock);
375 	vpd->cap = cap;
376 	vpd->busy = false;
377 	dev->vpd = &vpd->base;
378 	return 0;
379 }
380 
381 /**
382  * pci_vpd_truncate - Set available Vital Product Data size
383  * @dev:	pci device struct
384  * @size:	available memory in bytes
385  *
386  * Adjust size of available VPD area.
387  */
pci_vpd_truncate(struct pci_dev * dev,size_t size)388 int pci_vpd_truncate(struct pci_dev *dev, size_t size)
389 {
390 	if (!dev->vpd)
391 		return -EINVAL;
392 
393 	/* limited by the access method */
394 	if (size > dev->vpd->len)
395 		return -EINVAL;
396 
397 	dev->vpd->len = size;
398 	if (dev->vpd->attr)
399 		dev->vpd->attr->size = size;
400 
401 	return 0;
402 }
403 EXPORT_SYMBOL(pci_vpd_truncate);
404 
405 /**
406  * pci_cfg_access_lock - Lock PCI config reads/writes
407  * @dev:	pci device struct
408  *
409  * When access is locked, any userspace reads or writes to config
410  * space and concurrent lock requests will sleep until access is
411  * allowed via pci_cfg_access_unlocked again.
412  */
pci_cfg_access_lock(struct pci_dev * dev)413 void pci_cfg_access_lock(struct pci_dev *dev)
414 {
415 	might_sleep();
416 
417 	raw_spin_lock_irq(&pci_lock);
418 	if (dev->block_cfg_access)
419 		pci_wait_cfg(dev);
420 	dev->block_cfg_access = 1;
421 	raw_spin_unlock_irq(&pci_lock);
422 }
423 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
424 
425 /**
426  * pci_cfg_access_trylock - try to lock PCI config reads/writes
427  * @dev:	pci device struct
428  *
429  * Same as pci_cfg_access_lock, but will return 0 if access is
430  * already locked, 1 otherwise. This function can be used from
431  * atomic contexts.
432  */
pci_cfg_access_trylock(struct pci_dev * dev)433 bool pci_cfg_access_trylock(struct pci_dev *dev)
434 {
435 	unsigned long flags;
436 	bool locked = true;
437 
438 	raw_spin_lock_irqsave(&pci_lock, flags);
439 	if (dev->block_cfg_access)
440 		locked = false;
441 	else
442 		dev->block_cfg_access = 1;
443 	raw_spin_unlock_irqrestore(&pci_lock, flags);
444 
445 	return locked;
446 }
447 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
448 
449 /**
450  * pci_cfg_access_unlock - Unlock PCI config reads/writes
451  * @dev:	pci device struct
452  *
453  * This function allows PCI config accesses to resume.
454  */
pci_cfg_access_unlock(struct pci_dev * dev)455 void pci_cfg_access_unlock(struct pci_dev *dev)
456 {
457 	unsigned long flags;
458 
459 	raw_spin_lock_irqsave(&pci_lock, flags);
460 
461 	/* This indicates a problem in the caller, but we don't need
462 	 * to kill them, unlike a double-block above. */
463 	WARN_ON(!dev->block_cfg_access);
464 
465 	dev->block_cfg_access = 0;
466 	wake_up_all(&pci_cfg_wait);
467 	raw_spin_unlock_irqrestore(&pci_lock, flags);
468 }
469 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
470