1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
3
4 Copyright 1994, 1995 Digital Equipment Corporation.
5
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9 The author may be reached at davies@maniac.ultranet.com.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
15
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
30
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
33
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
39
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
43
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
49
50 So far the driver is known to work with the following cards:
51
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
63
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
70
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
74
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
81
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
86
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
91
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
98
99 To utilise this ability, you have to do 8 things:
100
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
107
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
110
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
113
114 insmod de4x5
115
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
126
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
129
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
134
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
139
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
146
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
149
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
153
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
158
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
169
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
190
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
198
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
205
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
213
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
237
238 TO DO:
239 ------
240
241 Revision History
242 ----------------
243
244 Version Date Description
245
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] __devinitconst =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
499 };
500
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
518 };
519
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC 1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600 bool fdx;
601 int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS 250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct net_device *dev);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
918
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int de4x5_strncmp(char *a, char *b, int n);
999 static int dc21041_infoleaf(struct net_device *dev);
1000 static int dc21140_infoleaf(struct net_device *dev);
1001 static int dc21142_infoleaf(struct net_device *dev);
1002 static int dc21143_infoleaf(struct net_device *dev);
1003 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010
1011 /*
1012 ** Note now that module autoprobing is allowed under EISA and PCI. The
1013 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1014 ** to "do the right thing".
1015 */
1016
1017 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1018
1019 module_param(io, int, 0);
1020 module_param(de4x5_debug, int, 0);
1021 module_param(dec_only, int, 0);
1022 module_param(args, charp, 0);
1023
1024 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1025 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1026 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1027 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1028 MODULE_LICENSE("GPL");
1029
1030 /*
1031 ** List the SROM infoleaf functions and chipsets
1032 */
1033 struct InfoLeaf {
1034 int chipset;
1035 int (*fn)(struct net_device *);
1036 };
1037 static struct InfoLeaf infoleaf_array[] = {
1038 {DC21041, dc21041_infoleaf},
1039 {DC21140, dc21140_infoleaf},
1040 {DC21142, dc21142_infoleaf},
1041 {DC21143, dc21143_infoleaf}
1042 };
1043 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044
1045 /*
1046 ** List the SROM info block functions
1047 */
1048 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1049 type0_infoblock,
1050 type1_infoblock,
1051 type2_infoblock,
1052 type3_infoblock,
1053 type4_infoblock,
1054 type5_infoblock,
1055 compact_infoblock
1056 };
1057
1058 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059
1060 /*
1061 ** Miscellaneous defines...
1062 */
1063 #define RESET_DE4X5 {\
1064 int i;\
1065 i=inl(DE4X5_BMR);\
1066 mdelay(1);\
1067 outl(i | BMR_SWR, DE4X5_BMR);\
1068 mdelay(1);\
1069 outl(i, DE4X5_BMR);\
1070 mdelay(1);\
1071 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1072 mdelay(1);\
1073 }
1074
1075 #define PHY_HARD_RESET {\
1076 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1077 mdelay(1); /* Assert for 1ms */\
1078 outl(0x00, DE4X5_GEP);\
1079 mdelay(2); /* Wait for 2ms */\
1080 }
1081
1082 static const struct net_device_ops de4x5_netdev_ops = {
1083 .ndo_open = de4x5_open,
1084 .ndo_stop = de4x5_close,
1085 .ndo_start_xmit = de4x5_queue_pkt,
1086 .ndo_get_stats = de4x5_get_stats,
1087 .ndo_set_rx_mode = set_multicast_list,
1088 .ndo_do_ioctl = de4x5_ioctl,
1089 .ndo_change_mtu = eth_change_mtu,
1090 .ndo_set_mac_address= eth_mac_addr,
1091 .ndo_validate_addr = eth_validate_addr,
1092 };
1093
1094
1095 static int __devinit
de4x5_hw_init(struct net_device * dev,u_long iobase,struct device * gendev)1096 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1097 {
1098 char name[DE4X5_NAME_LENGTH + 1];
1099 struct de4x5_private *lp = netdev_priv(dev);
1100 struct pci_dev *pdev = NULL;
1101 int i, status=0;
1102
1103 dev_set_drvdata(gendev, dev);
1104
1105 /* Ensure we're not sleeping */
1106 if (lp->bus == EISA) {
1107 outb(WAKEUP, PCI_CFPM);
1108 } else {
1109 pdev = to_pci_dev (gendev);
1110 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1111 }
1112 mdelay(10);
1113
1114 RESET_DE4X5;
1115
1116 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1117 return -ENXIO; /* Hardware could not reset */
1118 }
1119
1120 /*
1121 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1122 */
1123 lp->useSROM = false;
1124 if (lp->bus == PCI) {
1125 PCI_signature(name, lp);
1126 } else {
1127 EISA_signature(name, gendev);
1128 }
1129
1130 if (*name == '\0') { /* Not found a board signature */
1131 return -ENXIO;
1132 }
1133
1134 dev->base_addr = iobase;
1135 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1136
1137 status = get_hw_addr(dev);
1138 printk(", h/w address %pM\n", dev->dev_addr);
1139
1140 if (status != 0) {
1141 printk(" which has an Ethernet PROM CRC error.\n");
1142 return -ENXIO;
1143 } else {
1144 skb_queue_head_init(&lp->cache.queue);
1145 lp->cache.gepc = GEP_INIT;
1146 lp->asBit = GEP_SLNK;
1147 lp->asPolarity = GEP_SLNK;
1148 lp->asBitValid = ~0;
1149 lp->timeout = -1;
1150 lp->gendev = gendev;
1151 spin_lock_init(&lp->lock);
1152 init_timer(&lp->timer);
1153 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1154 lp->timer.data = (unsigned long)dev;
1155 de4x5_parse_params(dev);
1156
1157 /*
1158 ** Choose correct autosensing in case someone messed up
1159 */
1160 lp->autosense = lp->params.autosense;
1161 if (lp->chipset != DC21140) {
1162 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1163 lp->params.autosense = TP;
1164 }
1165 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1166 lp->params.autosense = BNC;
1167 }
1168 }
1169 lp->fdx = lp->params.fdx;
1170 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1171
1172 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1173 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1174 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1175 #endif
1176 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1177 &lp->dma_rings, GFP_ATOMIC);
1178 if (lp->rx_ring == NULL) {
1179 return -ENOMEM;
1180 }
1181
1182 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1183
1184 /*
1185 ** Set up the RX descriptor ring (Intels)
1186 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1187 */
1188 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1189 for (i=0; i<NUM_RX_DESC; i++) {
1190 lp->rx_ring[i].status = 0;
1191 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1192 lp->rx_ring[i].buf = 0;
1193 lp->rx_ring[i].next = 0;
1194 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1195 }
1196
1197 #else
1198 {
1199 dma_addr_t dma_rx_bufs;
1200
1201 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1202 * sizeof(struct de4x5_desc);
1203 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1204 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1205 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1206 for (i=0; i<NUM_RX_DESC; i++) {
1207 lp->rx_ring[i].status = 0;
1208 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1209 lp->rx_ring[i].buf =
1210 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1211 lp->rx_ring[i].next = 0;
1212 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1213 }
1214
1215 }
1216 #endif
1217
1218 barrier();
1219
1220 lp->rxRingSize = NUM_RX_DESC;
1221 lp->txRingSize = NUM_TX_DESC;
1222
1223 /* Write the end of list marker to the descriptor lists */
1224 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1225 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1226
1227 /* Tell the adapter where the TX/RX rings are located. */
1228 outl(lp->dma_rings, DE4X5_RRBA);
1229 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1230 DE4X5_TRBA);
1231
1232 /* Initialise the IRQ mask and Enable/Disable */
1233 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1234 lp->irq_en = IMR_NIM | IMR_AIM;
1235
1236 /* Create a loopback packet frame for later media probing */
1237 create_packet(dev, lp->frame, sizeof(lp->frame));
1238
1239 /* Check if the RX overflow bug needs testing for */
1240 i = lp->cfrv & 0x000000fe;
1241 if ((lp->chipset == DC21140) && (i == 0x20)) {
1242 lp->rx_ovf = 1;
1243 }
1244
1245 /* Initialise the SROM pointers if possible */
1246 if (lp->useSROM) {
1247 lp->state = INITIALISED;
1248 if (srom_infoleaf_info(dev)) {
1249 dma_free_coherent (gendev, lp->dma_size,
1250 lp->rx_ring, lp->dma_rings);
1251 return -ENXIO;
1252 }
1253 srom_init(dev);
1254 }
1255
1256 lp->state = CLOSED;
1257
1258 /*
1259 ** Check for an MII interface
1260 */
1261 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1262 mii_get_phy(dev);
1263 }
1264
1265 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1266 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1267 }
1268
1269 if (de4x5_debug & DEBUG_VERSION) {
1270 printk(version);
1271 }
1272
1273 /* The DE4X5-specific entries in the device structure. */
1274 SET_NETDEV_DEV(dev, gendev);
1275 dev->netdev_ops = &de4x5_netdev_ops;
1276 dev->mem_start = 0;
1277
1278 /* Fill in the generic fields of the device structure. */
1279 if ((status = register_netdev (dev))) {
1280 dma_free_coherent (gendev, lp->dma_size,
1281 lp->rx_ring, lp->dma_rings);
1282 return status;
1283 }
1284
1285 /* Let the adapter sleep to save power */
1286 yawn(dev, SLEEP);
1287
1288 return status;
1289 }
1290
1291
1292 static int
de4x5_open(struct net_device * dev)1293 de4x5_open(struct net_device *dev)
1294 {
1295 struct de4x5_private *lp = netdev_priv(dev);
1296 u_long iobase = dev->base_addr;
1297 int i, status = 0;
1298 s32 omr;
1299
1300 /* Allocate the RX buffers */
1301 for (i=0; i<lp->rxRingSize; i++) {
1302 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1303 de4x5_free_rx_buffs(dev);
1304 return -EAGAIN;
1305 }
1306 }
1307
1308 /*
1309 ** Wake up the adapter
1310 */
1311 yawn(dev, WAKEUP);
1312
1313 /*
1314 ** Re-initialize the DE4X5...
1315 */
1316 status = de4x5_init(dev);
1317 spin_lock_init(&lp->lock);
1318 lp->state = OPEN;
1319 de4x5_dbg_open(dev);
1320
1321 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1322 lp->adapter_name, dev)) {
1323 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1324 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1325 lp->adapter_name, dev)) {
1326 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1327 disable_ast(dev);
1328 de4x5_free_rx_buffs(dev);
1329 de4x5_free_tx_buffs(dev);
1330 yawn(dev, SLEEP);
1331 lp->state = CLOSED;
1332 return -EAGAIN;
1333 } else {
1334 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1335 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1336 }
1337 }
1338
1339 lp->interrupt = UNMASK_INTERRUPTS;
1340 dev->trans_start = jiffies; /* prevent tx timeout */
1341
1342 START_DE4X5;
1343
1344 de4x5_setup_intr(dev);
1345
1346 if (de4x5_debug & DEBUG_OPEN) {
1347 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1348 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1349 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1350 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1351 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1352 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1353 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1354 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1355 }
1356
1357 return status;
1358 }
1359
1360 /*
1361 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1362 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1363 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1364 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1365 ** to be data corruption problems if it is larger (UDP errors seen from a
1366 ** ttcp source).
1367 */
1368 static int
de4x5_init(struct net_device * dev)1369 de4x5_init(struct net_device *dev)
1370 {
1371 /* Lock out other processes whilst setting up the hardware */
1372 netif_stop_queue(dev);
1373
1374 de4x5_sw_reset(dev);
1375
1376 /* Autoconfigure the connected port */
1377 autoconf_media(dev);
1378
1379 return 0;
1380 }
1381
1382 static int
de4x5_sw_reset(struct net_device * dev)1383 de4x5_sw_reset(struct net_device *dev)
1384 {
1385 struct de4x5_private *lp = netdev_priv(dev);
1386 u_long iobase = dev->base_addr;
1387 int i, j, status = 0;
1388 s32 bmr, omr;
1389
1390 /* Select the MII or SRL port now and RESET the MAC */
1391 if (!lp->useSROM) {
1392 if (lp->phy[lp->active].id != 0) {
1393 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1394 } else {
1395 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1396 }
1397 de4x5_switch_mac_port(dev);
1398 }
1399
1400 /*
1401 ** Set the programmable burst length to 8 longwords for all the DC21140
1402 ** Fasternet chips and 4 longwords for all others: DMA errors result
1403 ** without these values. Cache align 16 long.
1404 */
1405 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1406 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1407 outl(bmr, DE4X5_BMR);
1408
1409 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1410 if (lp->chipset == DC21140) {
1411 omr |= (OMR_SDP | OMR_SB);
1412 }
1413 lp->setup_f = PERFECT;
1414 outl(lp->dma_rings, DE4X5_RRBA);
1415 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1416 DE4X5_TRBA);
1417
1418 lp->rx_new = lp->rx_old = 0;
1419 lp->tx_new = lp->tx_old = 0;
1420
1421 for (i = 0; i < lp->rxRingSize; i++) {
1422 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1423 }
1424
1425 for (i = 0; i < lp->txRingSize; i++) {
1426 lp->tx_ring[i].status = cpu_to_le32(0);
1427 }
1428
1429 barrier();
1430
1431 /* Build the setup frame depending on filtering mode */
1432 SetMulticastFilter(dev);
1433
1434 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1435 outl(omr|OMR_ST, DE4X5_OMR);
1436
1437 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1438
1439 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1440 mdelay(1);
1441 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1442 }
1443 outl(omr, DE4X5_OMR); /* Stop everything! */
1444
1445 if (j == 0) {
1446 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1447 inl(DE4X5_STS));
1448 status = -EIO;
1449 }
1450
1451 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1452 lp->tx_old = lp->tx_new;
1453
1454 return status;
1455 }
1456
1457 /*
1458 ** Writes a socket buffer address to the next available transmit descriptor.
1459 */
1460 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff * skb,struct net_device * dev)1461 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1462 {
1463 struct de4x5_private *lp = netdev_priv(dev);
1464 u_long iobase = dev->base_addr;
1465 u_long flags = 0;
1466
1467 netif_stop_queue(dev);
1468 if (!lp->tx_enable) /* Cannot send for now */
1469 return NETDEV_TX_LOCKED;
1470
1471 /*
1472 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1473 ** interrupts are lost by delayed descriptor status updates relative to
1474 ** the irq assertion, especially with a busy PCI bus.
1475 */
1476 spin_lock_irqsave(&lp->lock, flags);
1477 de4x5_tx(dev);
1478 spin_unlock_irqrestore(&lp->lock, flags);
1479
1480 /* Test if cache is already locked - requeue skb if so */
1481 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1482 return NETDEV_TX_LOCKED;
1483
1484 /* Transmit descriptor ring full or stale skb */
1485 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1486 if (lp->interrupt) {
1487 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1488 } else {
1489 de4x5_put_cache(dev, skb);
1490 }
1491 if (de4x5_debug & DEBUG_TX) {
1492 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1493 }
1494 } else if (skb->len > 0) {
1495 /* If we already have stuff queued locally, use that first */
1496 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1497 de4x5_put_cache(dev, skb);
1498 skb = de4x5_get_cache(dev);
1499 }
1500
1501 while (skb && !netif_queue_stopped(dev) &&
1502 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1503 spin_lock_irqsave(&lp->lock, flags);
1504 netif_stop_queue(dev);
1505 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1506 lp->stats.tx_bytes += skb->len;
1507 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1508
1509 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1510
1511 if (TX_BUFFS_AVAIL) {
1512 netif_start_queue(dev); /* Another pkt may be queued */
1513 }
1514 skb = de4x5_get_cache(dev);
1515 spin_unlock_irqrestore(&lp->lock, flags);
1516 }
1517 if (skb) de4x5_putb_cache(dev, skb);
1518 }
1519
1520 lp->cache.lock = 0;
1521
1522 return NETDEV_TX_OK;
1523 }
1524
1525 /*
1526 ** The DE4X5 interrupt handler.
1527 **
1528 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1529 ** so that the asserted interrupt always has some real data to work with -
1530 ** if these I/O accesses are ever changed to memory accesses, ensure the
1531 ** STS write is read immediately to complete the transaction if the adapter
1532 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1533 ** is high and descriptor status bits cannot be set before the associated
1534 ** interrupt is asserted and this routine entered.
1535 */
1536 static irqreturn_t
de4x5_interrupt(int irq,void * dev_id)1537 de4x5_interrupt(int irq, void *dev_id)
1538 {
1539 struct net_device *dev = dev_id;
1540 struct de4x5_private *lp;
1541 s32 imr, omr, sts, limit;
1542 u_long iobase;
1543 unsigned int handled = 0;
1544
1545 lp = netdev_priv(dev);
1546 spin_lock(&lp->lock);
1547 iobase = dev->base_addr;
1548
1549 DISABLE_IRQs; /* Ensure non re-entrancy */
1550
1551 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1552 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1553
1554 synchronize_irq(dev->irq);
1555
1556 for (limit=0; limit<8; limit++) {
1557 sts = inl(DE4X5_STS); /* Read IRQ status */
1558 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1559
1560 if (!(sts & lp->irq_mask)) break;/* All done */
1561 handled = 1;
1562
1563 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1564 de4x5_rx(dev);
1565
1566 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1567 de4x5_tx(dev);
1568
1569 if (sts & STS_LNF) { /* TP Link has failed */
1570 lp->irq_mask &= ~IMR_LFM;
1571 }
1572
1573 if (sts & STS_UNF) { /* Transmit underrun */
1574 de4x5_txur(dev);
1575 }
1576
1577 if (sts & STS_SE) { /* Bus Error */
1578 STOP_DE4X5;
1579 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1580 dev->name, sts);
1581 spin_unlock(&lp->lock);
1582 return IRQ_HANDLED;
1583 }
1584 }
1585
1586 /* Load the TX ring with any locally stored packets */
1587 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1588 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1589 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1590 }
1591 lp->cache.lock = 0;
1592 }
1593
1594 lp->interrupt = UNMASK_INTERRUPTS;
1595 ENABLE_IRQs;
1596 spin_unlock(&lp->lock);
1597
1598 return IRQ_RETVAL(handled);
1599 }
1600
1601 static int
de4x5_rx(struct net_device * dev)1602 de4x5_rx(struct net_device *dev)
1603 {
1604 struct de4x5_private *lp = netdev_priv(dev);
1605 u_long iobase = dev->base_addr;
1606 int entry;
1607 s32 status;
1608
1609 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1610 entry=lp->rx_new) {
1611 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1612
1613 if (lp->rx_ovf) {
1614 if (inl(DE4X5_MFC) & MFC_FOCM) {
1615 de4x5_rx_ovfc(dev);
1616 break;
1617 }
1618 }
1619
1620 if (status & RD_FS) { /* Remember the start of frame */
1621 lp->rx_old = entry;
1622 }
1623
1624 if (status & RD_LS) { /* Valid frame status */
1625 if (lp->tx_enable) lp->linkOK++;
1626 if (status & RD_ES) { /* There was an error. */
1627 lp->stats.rx_errors++; /* Update the error stats. */
1628 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1629 if (status & RD_CE) lp->stats.rx_crc_errors++;
1630 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1631 if (status & RD_TL) lp->stats.rx_length_errors++;
1632 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1633 if (status & RD_CS) lp->pktStats.rx_collision++;
1634 if (status & RD_DB) lp->pktStats.rx_dribble++;
1635 if (status & RD_OF) lp->pktStats.rx_overflow++;
1636 } else { /* A valid frame received */
1637 struct sk_buff *skb;
1638 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1639 >> 16) - 4;
1640
1641 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1642 printk("%s: Insufficient memory; nuking packet.\n",
1643 dev->name);
1644 lp->stats.rx_dropped++;
1645 } else {
1646 de4x5_dbg_rx(skb, pkt_len);
1647
1648 /* Push up the protocol stack */
1649 skb->protocol=eth_type_trans(skb,dev);
1650 de4x5_local_stats(dev, skb->data, pkt_len);
1651 netif_rx(skb);
1652
1653 /* Update stats */
1654 lp->stats.rx_packets++;
1655 lp->stats.rx_bytes += pkt_len;
1656 }
1657 }
1658
1659 /* Change buffer ownership for this frame, back to the adapter */
1660 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1661 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1662 barrier();
1663 }
1664 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1665 barrier();
1666 }
1667
1668 /*
1669 ** Update entry information
1670 */
1671 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static inline void
de4x5_free_tx_buff(struct de4x5_private * lp,int entry)1678 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1679 {
1680 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1681 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1682 DMA_TO_DEVICE);
1683 if ((u_long) lp->tx_skb[entry] > 1)
1684 dev_kfree_skb_irq(lp->tx_skb[entry]);
1685 lp->tx_skb[entry] = NULL;
1686 }
1687
1688 /*
1689 ** Buffer sent - check for TX buffer errors.
1690 */
1691 static int
de4x5_tx(struct net_device * dev)1692 de4x5_tx(struct net_device *dev)
1693 {
1694 struct de4x5_private *lp = netdev_priv(dev);
1695 u_long iobase = dev->base_addr;
1696 int entry;
1697 s32 status;
1698
1699 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1700 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1701 if (status < 0) { /* Buffer not sent yet */
1702 break;
1703 } else if (status != 0x7fffffff) { /* Not setup frame */
1704 if (status & TD_ES) { /* An error happened */
1705 lp->stats.tx_errors++;
1706 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1707 if (status & TD_LC) lp->stats.tx_window_errors++;
1708 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1709 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1710 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1711
1712 if (TX_PKT_PENDING) {
1713 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1714 }
1715 } else { /* Packet sent */
1716 lp->stats.tx_packets++;
1717 if (lp->tx_enable) lp->linkOK++;
1718 }
1719 /* Update the collision counter */
1720 lp->stats.collisions += ((status & TD_EC) ? 16 :
1721 ((status & TD_CC) >> 3));
1722
1723 /* Free the buffer. */
1724 if (lp->tx_skb[entry] != NULL)
1725 de4x5_free_tx_buff(lp, entry);
1726 }
1727
1728 /* Update all the pointers */
1729 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1730 }
1731
1732 /* Any resources available? */
1733 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1734 if (lp->interrupt)
1735 netif_wake_queue(dev);
1736 else
1737 netif_start_queue(dev);
1738 }
1739
1740 return 0;
1741 }
1742
1743 static void
de4x5_ast(struct net_device * dev)1744 de4x5_ast(struct net_device *dev)
1745 {
1746 struct de4x5_private *lp = netdev_priv(dev);
1747 int next_tick = DE4X5_AUTOSENSE_MS;
1748 int dt;
1749
1750 if (lp->useSROM)
1751 next_tick = srom_autoconf(dev);
1752 else if (lp->chipset == DC21140)
1753 next_tick = dc21140m_autoconf(dev);
1754 else if (lp->chipset == DC21041)
1755 next_tick = dc21041_autoconf(dev);
1756 else if (lp->chipset == DC21040)
1757 next_tick = dc21040_autoconf(dev);
1758 lp->linkOK = 0;
1759
1760 dt = (next_tick * HZ) / 1000;
1761
1762 if (!dt)
1763 dt = 1;
1764
1765 mod_timer(&lp->timer, jiffies + dt);
1766 }
1767
1768 static int
de4x5_txur(struct net_device * dev)1769 de4x5_txur(struct net_device *dev)
1770 {
1771 struct de4x5_private *lp = netdev_priv(dev);
1772 u_long iobase = dev->base_addr;
1773 int omr;
1774
1775 omr = inl(DE4X5_OMR);
1776 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 omr &= ~(OMR_ST|OMR_SR);
1778 outl(omr, DE4X5_OMR);
1779 while (inl(DE4X5_STS) & STS_TS);
1780 if ((omr & OMR_TR) < OMR_TR) {
1781 omr += 0x4000;
1782 } else {
1783 omr |= OMR_SF;
1784 }
1785 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int
de4x5_rx_ovfc(struct net_device * dev)1792 de4x5_rx_ovfc(struct net_device *dev)
1793 {
1794 struct de4x5_private *lp = netdev_priv(dev);
1795 u_long iobase = dev->base_addr;
1796 int omr;
1797
1798 omr = inl(DE4X5_OMR);
1799 outl(omr & ~OMR_SR, DE4X5_OMR);
1800 while (inl(DE4X5_STS) & STS_RS);
1801
1802 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805 }
1806
1807 outl(omr, DE4X5_OMR);
1808
1809 return 0;
1810 }
1811
1812 static int
de4x5_close(struct net_device * dev)1813 de4x5_close(struct net_device *dev)
1814 {
1815 struct de4x5_private *lp = netdev_priv(dev);
1816 u_long iobase = dev->base_addr;
1817 s32 imr, omr;
1818
1819 disable_ast(dev);
1820
1821 netif_stop_queue(dev);
1822
1823 if (de4x5_debug & DEBUG_CLOSE) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev->name, inl(DE4X5_STS));
1826 }
1827
1828 /*
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830 */
1831 DISABLE_IRQs;
1832 STOP_DE4X5;
1833
1834 /* Free the associated irq */
1835 free_irq(dev->irq, dev);
1836 lp->state = CLOSED;
1837
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev);
1840 de4x5_free_tx_buffs(dev);
1841
1842 /* Put the adapter to sleep to save power */
1843 yawn(dev, SLEEP);
1844
1845 return 0;
1846 }
1847
1848 static struct net_device_stats *
de4x5_get_stats(struct net_device * dev)1849 de4x5_get_stats(struct net_device *dev)
1850 {
1851 struct de4x5_private *lp = netdev_priv(dev);
1852 u_long iobase = dev->base_addr;
1853
1854 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856 return &lp->stats;
1857 }
1858
1859 static void
de4x5_local_stats(struct net_device * dev,char * buf,int pkt_len)1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861 {
1862 struct de4x5_private *lp = netdev_priv(dev);
1863 int i;
1864
1865 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 lp->pktStats.bins[i]++;
1868 i = DE4X5_PKT_STAT_SZ;
1869 }
1870 }
1871 if (is_multicast_ether_addr(buf)) {
1872 if (is_broadcast_ether_addr(buf)) {
1873 lp->pktStats.broadcast++;
1874 } else {
1875 lp->pktStats.multicast++;
1876 }
1877 } else if (compare_ether_addr(buf, dev->dev_addr) == 0) {
1878 lp->pktStats.unicast++;
1879 }
1880
1881 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1882 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884 }
1885 }
1886
1887 /*
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1894 */
1895 static void
load_packet(struct net_device * dev,char * buf,u32 flags,struct sk_buff * skb)1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897 {
1898 struct de4x5_private *lp = netdev_priv(dev);
1899 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905 lp->tx_skb[lp->tx_new] = skb;
1906 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907 barrier();
1908
1909 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910 barrier();
1911 }
1912
1913 /*
1914 ** Set or clear the multicast filter for this adaptor.
1915 */
1916 static void
set_multicast_list(struct net_device * dev)1917 set_multicast_list(struct net_device *dev)
1918 {
1919 struct de4x5_private *lp = netdev_priv(dev);
1920 u_long iobase = dev->base_addr;
1921
1922 /* First, double check that the adapter is open */
1923 if (lp->state == OPEN) {
1924 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1925 u32 omr;
1926 omr = inl(DE4X5_OMR);
1927 omr |= OMR_PR;
1928 outl(omr, DE4X5_OMR);
1929 } else {
1930 SetMulticastFilter(dev);
1931 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1936 dev->trans_start = jiffies; /* prevent tx timeout */
1937 }
1938 }
1939 }
1940
1941 /*
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1945 */
1946 static void
SetMulticastFilter(struct net_device * dev)1947 SetMulticastFilter(struct net_device *dev)
1948 {
1949 struct de4x5_private *lp = netdev_priv(dev);
1950 struct netdev_hw_addr *ha;
1951 u_long iobase = dev->base_addr;
1952 int i, bit, byte;
1953 u16 hashcode;
1954 u32 omr, crc;
1955 char *pa;
1956 unsigned char *addrs;
1957
1958 omr = inl(DE4X5_OMR);
1959 omr &= ~(OMR_PR | OMR_PM);
1960 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1961
1962 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963 omr |= OMR_PM; /* Pass all multicasts */
1964 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1965 netdev_for_each_mc_addr(ha, dev) {
1966 crc = ether_crc_le(ETH_ALEN, ha->addr);
1967 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1968
1969 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1970 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972 byte <<= 1; /* calc offset into setup frame */
1973 if (byte & 0x02) {
1974 byte -= 1;
1975 }
1976 lp->setup_frame[byte] |= bit;
1977 }
1978 } else { /* Perfect filtering */
1979 netdev_for_each_mc_addr(ha, dev) {
1980 addrs = ha->addr;
1981 for (i=0; i<ETH_ALEN; i++) {
1982 *(pa + (i&1)) = *addrs++;
1983 if (i & 0x01) pa += 4;
1984 }
1985 }
1986 }
1987 outl(omr, DE4X5_OMR);
1988 }
1989
1990 #ifdef CONFIG_EISA
1991
1992 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
de4x5_eisa_probe(struct device * gendev)1994 static int __init de4x5_eisa_probe (struct device *gendev)
1995 {
1996 struct eisa_device *edev;
1997 u_long iobase;
1998 u_char irq, regval;
1999 u_short vendor;
2000 u32 cfid;
2001 int status, device;
2002 struct net_device *dev;
2003 struct de4x5_private *lp;
2004
2005 edev = to_eisa_device (gendev);
2006 iobase = edev->base_addr;
2007
2008 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009 return -EBUSY;
2010
2011 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013 status = -EBUSY;
2014 goto release_reg_1;
2015 }
2016
2017 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018 status = -ENOMEM;
2019 goto release_reg_2;
2020 }
2021 lp = netdev_priv(dev);
2022
2023 cfid = (u32) inl(PCI_CFID);
2024 lp->cfrv = (u_short) inl(PCI_CFRV);
2025 device = (cfid >> 8) & 0x00ffff00;
2026 vendor = (u_short) cfid;
2027
2028 /* Read the EISA Configuration Registers */
2029 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030 #ifdef CONFIG_ALPHA
2031 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 * care about the EISA configuration, and thus doesn't
2033 * configure the PLX bridge properly. Oh well... Simply mimic
2034 * the EISA config file to sort it out. */
2035
2036 /* EISA REG1: Assert DecChip 21040 HW Reset */
2037 outb (ER1_IAM | 1, EISA_REG1);
2038 mdelay (1);
2039
2040 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 outb (ER1_IAM, EISA_REG1);
2042 mdelay (1);
2043
2044 /* EISA REG3: R/W Burst Transfer Enable */
2045 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049 #endif
2050 irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052 if (is_DC2114x) {
2053 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054 }
2055 lp->chipset = device;
2056 lp->bus = EISA;
2057
2058 /* Write the PCI Configuration Registers */
2059 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060 outl(0x00006000, PCI_CFLT);
2061 outl(iobase, PCI_CBIO);
2062
2063 DevicePresent(dev, EISA_APROM);
2064
2065 dev->irq = irq;
2066
2067 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068 return 0;
2069 }
2070
2071 free_netdev (dev);
2072 release_reg_2:
2073 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077 return status;
2078 }
2079
de4x5_eisa_remove(struct device * device)2080 static int __devexit de4x5_eisa_remove (struct device *device)
2081 {
2082 struct net_device *dev;
2083 u_long iobase;
2084
2085 dev = dev_get_drvdata(device);
2086 iobase = dev->base_addr;
2087
2088 unregister_netdev (dev);
2089 free_netdev (dev);
2090 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093 return 0;
2094 }
2095
2096 static struct eisa_device_id de4x5_eisa_ids[] = {
2097 { "DEC4250", 0 }, /* 0 is the board name index... */
2098 { "" }
2099 };
2100 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102 static struct eisa_driver de4x5_eisa_driver = {
2103 .id_table = de4x5_eisa_ids,
2104 .driver = {
2105 .name = "de4x5",
2106 .probe = de4x5_eisa_probe,
2107 .remove = __devexit_p (de4x5_eisa_remove),
2108 }
2109 };
2110 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2111 #endif
2112
2113 #ifdef CONFIG_PCI
2114
2115 /*
2116 ** This function searches the current bus (which is >0) for a DECchip with an
2117 ** SROM, so that in multiport cards that have one SROM shared between multiple
2118 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119 ** For single port cards this is a time waster...
2120 */
2121 static void __devinit
srom_search(struct net_device * dev,struct pci_dev * pdev)2122 srom_search(struct net_device *dev, struct pci_dev *pdev)
2123 {
2124 u_char pb;
2125 u_short vendor, status;
2126 u_int irq = 0, device;
2127 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2128 int i, j;
2129 struct de4x5_private *lp = netdev_priv(dev);
2130 struct pci_dev *this_dev;
2131
2132 list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2133 vendor = this_dev->vendor;
2134 device = this_dev->device << 8;
2135 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2136
2137 /* Get the chip configuration revision register */
2138 pb = this_dev->bus->number;
2139
2140 /* Set the device number information */
2141 lp->device = PCI_SLOT(this_dev->devfn);
2142 lp->bus_num = pb;
2143
2144 /* Set the chipset information */
2145 if (is_DC2114x) {
2146 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2147 ? DC21142 : DC21143);
2148 }
2149 lp->chipset = device;
2150
2151 /* Get the board I/O address (64 bits on sparc64) */
2152 iobase = pci_resource_start(this_dev, 0);
2153
2154 /* Fetch the IRQ to be used */
2155 irq = this_dev->irq;
2156 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2157
2158 /* Check if I/O accesses are enabled */
2159 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2160 if (!(status & PCI_COMMAND_IO)) continue;
2161
2162 /* Search for a valid SROM attached to this DECchip */
2163 DevicePresent(dev, DE4X5_APROM);
2164 for (j=0, i=0; i<ETH_ALEN; i++) {
2165 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2166 }
2167 if (j != 0 && j != 6 * 0xff) {
2168 last.chipset = device;
2169 last.bus = pb;
2170 last.irq = irq;
2171 for (i=0; i<ETH_ALEN; i++) {
2172 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2173 }
2174 return;
2175 }
2176 }
2177 }
2178
2179 /*
2180 ** PCI bus I/O device probe
2181 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2182 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2183 ** enabled by the user first in the set up utility. Hence we just check for
2184 ** enabled features and silently ignore the card if they're not.
2185 **
2186 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2187 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2188 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2189 ** PC doesn't conform to the PCI standard)!
2190 **
2191 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2192 ** kernels use the V0.535[n] drivers.
2193 */
2194
de4x5_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2195 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2196 const struct pci_device_id *ent)
2197 {
2198 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2199 u_short vendor, status;
2200 u_int irq = 0, device;
2201 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2202 int error;
2203 struct net_device *dev;
2204 struct de4x5_private *lp;
2205
2206 dev_num = PCI_SLOT(pdev->devfn);
2207 pb = pdev->bus->number;
2208
2209 if (io) { /* probe a single PCI device */
2210 pbus = (u_short)(io >> 8);
2211 dnum = (u_short)(io & 0xff);
2212 if ((pbus != pb) || (dnum != dev_num))
2213 return -ENODEV;
2214 }
2215
2216 vendor = pdev->vendor;
2217 device = pdev->device << 8;
2218 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2219 return -ENODEV;
2220
2221 /* Ok, the device seems to be for us. */
2222 if ((error = pci_enable_device (pdev)))
2223 return error;
2224
2225 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2226 error = -ENOMEM;
2227 goto disable_dev;
2228 }
2229
2230 lp = netdev_priv(dev);
2231 lp->bus = PCI;
2232 lp->bus_num = 0;
2233
2234 /* Search for an SROM on this bus */
2235 if (lp->bus_num != pb) {
2236 lp->bus_num = pb;
2237 srom_search(dev, pdev);
2238 }
2239
2240 /* Get the chip configuration revision register */
2241 lp->cfrv = pdev->revision;
2242
2243 /* Set the device number information */
2244 lp->device = dev_num;
2245 lp->bus_num = pb;
2246
2247 /* Set the chipset information */
2248 if (is_DC2114x) {
2249 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2250 }
2251 lp->chipset = device;
2252
2253 /* Get the board I/O address (64 bits on sparc64) */
2254 iobase = pci_resource_start(pdev, 0);
2255
2256 /* Fetch the IRQ to be used */
2257 irq = pdev->irq;
2258 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2259 error = -ENODEV;
2260 goto free_dev;
2261 }
2262
2263 /* Check if I/O accesses and Bus Mastering are enabled */
2264 pci_read_config_word(pdev, PCI_COMMAND, &status);
2265 #ifdef __powerpc__
2266 if (!(status & PCI_COMMAND_IO)) {
2267 status |= PCI_COMMAND_IO;
2268 pci_write_config_word(pdev, PCI_COMMAND, status);
2269 pci_read_config_word(pdev, PCI_COMMAND, &status);
2270 }
2271 #endif /* __powerpc__ */
2272 if (!(status & PCI_COMMAND_IO)) {
2273 error = -ENODEV;
2274 goto free_dev;
2275 }
2276
2277 if (!(status & PCI_COMMAND_MASTER)) {
2278 status |= PCI_COMMAND_MASTER;
2279 pci_write_config_word(pdev, PCI_COMMAND, status);
2280 pci_read_config_word(pdev, PCI_COMMAND, &status);
2281 }
2282 if (!(status & PCI_COMMAND_MASTER)) {
2283 error = -ENODEV;
2284 goto free_dev;
2285 }
2286
2287 /* Check the latency timer for values >= 0x60 */
2288 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2289 if (timer < 0x60) {
2290 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2291 }
2292
2293 DevicePresent(dev, DE4X5_APROM);
2294
2295 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2296 error = -EBUSY;
2297 goto free_dev;
2298 }
2299
2300 dev->irq = irq;
2301
2302 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2303 goto release;
2304 }
2305
2306 return 0;
2307
2308 release:
2309 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2310 free_dev:
2311 free_netdev (dev);
2312 disable_dev:
2313 pci_disable_device (pdev);
2314 return error;
2315 }
2316
de4x5_pci_remove(struct pci_dev * pdev)2317 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2318 {
2319 struct net_device *dev;
2320 u_long iobase;
2321
2322 dev = dev_get_drvdata(&pdev->dev);
2323 iobase = dev->base_addr;
2324
2325 unregister_netdev (dev);
2326 free_netdev (dev);
2327 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2328 pci_disable_device (pdev);
2329 }
2330
2331 static struct pci_device_id de4x5_pci_tbl[] = {
2332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2336 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2337 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2338 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2339 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2340 { },
2341 };
2342
2343 static struct pci_driver de4x5_pci_driver = {
2344 .name = "de4x5",
2345 .id_table = de4x5_pci_tbl,
2346 .probe = de4x5_pci_probe,
2347 .remove = __devexit_p (de4x5_pci_remove),
2348 };
2349
2350 #endif
2351
2352 /*
2353 ** Auto configure the media here rather than setting the port at compile
2354 ** time. This routine is called by de4x5_init() and when a loss of media is
2355 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2356 ** [TP] or no recent receive activity) to check whether the user has been
2357 ** sneaky and changed the port on us.
2358 */
2359 static int
autoconf_media(struct net_device * dev)2360 autoconf_media(struct net_device *dev)
2361 {
2362 struct de4x5_private *lp = netdev_priv(dev);
2363 u_long iobase = dev->base_addr;
2364
2365 disable_ast(dev);
2366
2367 lp->c_media = AUTO; /* Bogus last media */
2368 inl(DE4X5_MFC); /* Zero the lost frames counter */
2369 lp->media = INIT;
2370 lp->tcount = 0;
2371
2372 de4x5_ast(dev);
2373
2374 return lp->media;
2375 }
2376
2377 /*
2378 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2379 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2380 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2381 ** The only way to test for that is to place a loopback packet onto the
2382 ** network and watch for errors. Since we're messing with the interrupt mask
2383 ** register, disable the board interrupts and do not allow any more packets to
2384 ** be queued to the hardware. Re-enable everything only when the media is
2385 ** found.
2386 ** I may have to "age out" locally queued packets so that the higher layer
2387 ** timeouts don't effectively duplicate packets on the network.
2388 */
2389 static int
dc21040_autoconf(struct net_device * dev)2390 dc21040_autoconf(struct net_device *dev)
2391 {
2392 struct de4x5_private *lp = netdev_priv(dev);
2393 u_long iobase = dev->base_addr;
2394 int next_tick = DE4X5_AUTOSENSE_MS;
2395 s32 imr;
2396
2397 switch (lp->media) {
2398 case INIT:
2399 DISABLE_IRQs;
2400 lp->tx_enable = false;
2401 lp->timeout = -1;
2402 de4x5_save_skbs(dev);
2403 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2404 lp->media = TP;
2405 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2406 lp->media = BNC_AUI;
2407 } else if (lp->autosense == EXT_SIA) {
2408 lp->media = EXT_SIA;
2409 } else {
2410 lp->media = NC;
2411 }
2412 lp->local_state = 0;
2413 next_tick = dc21040_autoconf(dev);
2414 break;
2415
2416 case TP:
2417 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2418 TP_SUSPECT, test_tp);
2419 break;
2420
2421 case TP_SUSPECT:
2422 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2423 break;
2424
2425 case BNC:
2426 case AUI:
2427 case BNC_AUI:
2428 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2429 BNC_AUI_SUSPECT, ping_media);
2430 break;
2431
2432 case BNC_AUI_SUSPECT:
2433 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2434 break;
2435
2436 case EXT_SIA:
2437 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2438 NC, EXT_SIA_SUSPECT, ping_media);
2439 break;
2440
2441 case EXT_SIA_SUSPECT:
2442 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2443 break;
2444
2445 case NC:
2446 /* default to TP for all */
2447 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2448 if (lp->media != lp->c_media) {
2449 de4x5_dbg_media(dev);
2450 lp->c_media = lp->media;
2451 }
2452 lp->media = INIT;
2453 lp->tx_enable = false;
2454 break;
2455 }
2456
2457 return next_tick;
2458 }
2459
2460 static int
dc21040_state(struct net_device * dev,int csr13,int csr14,int csr15,int timeout,int next_state,int suspect_state,int (* fn)(struct net_device *,int))2461 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2462 int next_state, int suspect_state,
2463 int (*fn)(struct net_device *, int))
2464 {
2465 struct de4x5_private *lp = netdev_priv(dev);
2466 int next_tick = DE4X5_AUTOSENSE_MS;
2467 int linkBad;
2468
2469 switch (lp->local_state) {
2470 case 0:
2471 reset_init_sia(dev, csr13, csr14, csr15);
2472 lp->local_state++;
2473 next_tick = 500;
2474 break;
2475
2476 case 1:
2477 if (!lp->tx_enable) {
2478 linkBad = fn(dev, timeout);
2479 if (linkBad < 0) {
2480 next_tick = linkBad & ~TIMER_CB;
2481 } else {
2482 if (linkBad && (lp->autosense == AUTO)) {
2483 lp->local_state = 0;
2484 lp->media = next_state;
2485 } else {
2486 de4x5_init_connection(dev);
2487 }
2488 }
2489 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2490 lp->media = suspect_state;
2491 next_tick = 3000;
2492 }
2493 break;
2494 }
2495
2496 return next_tick;
2497 }
2498
2499 static int
de4x5_suspect_state(struct net_device * dev,int timeout,int prev_state,int (* fn)(struct net_device *,int),int (* asfn)(struct net_device *))2500 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2501 int (*fn)(struct net_device *, int),
2502 int (*asfn)(struct net_device *))
2503 {
2504 struct de4x5_private *lp = netdev_priv(dev);
2505 int next_tick = DE4X5_AUTOSENSE_MS;
2506 int linkBad;
2507
2508 switch (lp->local_state) {
2509 case 1:
2510 if (lp->linkOK) {
2511 lp->media = prev_state;
2512 } else {
2513 lp->local_state++;
2514 next_tick = asfn(dev);
2515 }
2516 break;
2517
2518 case 2:
2519 linkBad = fn(dev, timeout);
2520 if (linkBad < 0) {
2521 next_tick = linkBad & ~TIMER_CB;
2522 } else if (!linkBad) {
2523 lp->local_state--;
2524 lp->media = prev_state;
2525 } else {
2526 lp->media = INIT;
2527 lp->tcount++;
2528 }
2529 }
2530
2531 return next_tick;
2532 }
2533
2534 /*
2535 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2536 ** before BNC, because the BNC port will indicate activity if it's not
2537 ** terminated correctly. The only way to test for that is to place a loopback
2538 ** packet onto the network and watch for errors. Since we're messing with
2539 ** the interrupt mask register, disable the board interrupts and do not allow
2540 ** any more packets to be queued to the hardware. Re-enable everything only
2541 ** when the media is found.
2542 */
2543 static int
dc21041_autoconf(struct net_device * dev)2544 dc21041_autoconf(struct net_device *dev)
2545 {
2546 struct de4x5_private *lp = netdev_priv(dev);
2547 u_long iobase = dev->base_addr;
2548 s32 sts, irqs, irq_mask, imr, omr;
2549 int next_tick = DE4X5_AUTOSENSE_MS;
2550
2551 switch (lp->media) {
2552 case INIT:
2553 DISABLE_IRQs;
2554 lp->tx_enable = false;
2555 lp->timeout = -1;
2556 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2557 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2558 lp->media = TP; /* On chip auto negotiation is broken */
2559 } else if (lp->autosense == TP) {
2560 lp->media = TP;
2561 } else if (lp->autosense == BNC) {
2562 lp->media = BNC;
2563 } else if (lp->autosense == AUI) {
2564 lp->media = AUI;
2565 } else {
2566 lp->media = NC;
2567 }
2568 lp->local_state = 0;
2569 next_tick = dc21041_autoconf(dev);
2570 break;
2571
2572 case TP_NW:
2573 if (lp->timeout < 0) {
2574 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2575 outl(omr | OMR_FDX, DE4X5_OMR);
2576 }
2577 irqs = STS_LNF | STS_LNP;
2578 irq_mask = IMR_LFM | IMR_LPM;
2579 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2580 if (sts < 0) {
2581 next_tick = sts & ~TIMER_CB;
2582 } else {
2583 if (sts & STS_LNP) {
2584 lp->media = ANS;
2585 } else {
2586 lp->media = AUI;
2587 }
2588 next_tick = dc21041_autoconf(dev);
2589 }
2590 break;
2591
2592 case ANS:
2593 if (!lp->tx_enable) {
2594 irqs = STS_LNP;
2595 irq_mask = IMR_LPM;
2596 sts = test_ans(dev, irqs, irq_mask, 3000);
2597 if (sts < 0) {
2598 next_tick = sts & ~TIMER_CB;
2599 } else {
2600 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2601 lp->media = TP;
2602 next_tick = dc21041_autoconf(dev);
2603 } else {
2604 lp->local_state = 1;
2605 de4x5_init_connection(dev);
2606 }
2607 }
2608 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2609 lp->media = ANS_SUSPECT;
2610 next_tick = 3000;
2611 }
2612 break;
2613
2614 case ANS_SUSPECT:
2615 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2616 break;
2617
2618 case TP:
2619 if (!lp->tx_enable) {
2620 if (lp->timeout < 0) {
2621 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2622 outl(omr & ~OMR_FDX, DE4X5_OMR);
2623 }
2624 irqs = STS_LNF | STS_LNP;
2625 irq_mask = IMR_LFM | IMR_LPM;
2626 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2627 if (sts < 0) {
2628 next_tick = sts & ~TIMER_CB;
2629 } else {
2630 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2631 if (inl(DE4X5_SISR) & SISR_NRA) {
2632 lp->media = AUI; /* Non selected port activity */
2633 } else {
2634 lp->media = BNC;
2635 }
2636 next_tick = dc21041_autoconf(dev);
2637 } else {
2638 lp->local_state = 1;
2639 de4x5_init_connection(dev);
2640 }
2641 }
2642 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2643 lp->media = TP_SUSPECT;
2644 next_tick = 3000;
2645 }
2646 break;
2647
2648 case TP_SUSPECT:
2649 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2650 break;
2651
2652 case AUI:
2653 if (!lp->tx_enable) {
2654 if (lp->timeout < 0) {
2655 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2656 outl(omr & ~OMR_FDX, DE4X5_OMR);
2657 }
2658 irqs = 0;
2659 irq_mask = 0;
2660 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2661 if (sts < 0) {
2662 next_tick = sts & ~TIMER_CB;
2663 } else {
2664 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2665 lp->media = BNC;
2666 next_tick = dc21041_autoconf(dev);
2667 } else {
2668 lp->local_state = 1;
2669 de4x5_init_connection(dev);
2670 }
2671 }
2672 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2673 lp->media = AUI_SUSPECT;
2674 next_tick = 3000;
2675 }
2676 break;
2677
2678 case AUI_SUSPECT:
2679 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2680 break;
2681
2682 case BNC:
2683 switch (lp->local_state) {
2684 case 0:
2685 if (lp->timeout < 0) {
2686 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2687 outl(omr & ~OMR_FDX, DE4X5_OMR);
2688 }
2689 irqs = 0;
2690 irq_mask = 0;
2691 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2692 if (sts < 0) {
2693 next_tick = sts & ~TIMER_CB;
2694 } else {
2695 lp->local_state++; /* Ensure media connected */
2696 next_tick = dc21041_autoconf(dev);
2697 }
2698 break;
2699
2700 case 1:
2701 if (!lp->tx_enable) {
2702 if ((sts = ping_media(dev, 3000)) < 0) {
2703 next_tick = sts & ~TIMER_CB;
2704 } else {
2705 if (sts) {
2706 lp->local_state = 0;
2707 lp->media = NC;
2708 } else {
2709 de4x5_init_connection(dev);
2710 }
2711 }
2712 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2713 lp->media = BNC_SUSPECT;
2714 next_tick = 3000;
2715 }
2716 break;
2717 }
2718 break;
2719
2720 case BNC_SUSPECT:
2721 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2722 break;
2723
2724 case NC:
2725 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2726 outl(omr | OMR_FDX, DE4X5_OMR);
2727 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2728 if (lp->media != lp->c_media) {
2729 de4x5_dbg_media(dev);
2730 lp->c_media = lp->media;
2731 }
2732 lp->media = INIT;
2733 lp->tx_enable = false;
2734 break;
2735 }
2736
2737 return next_tick;
2738 }
2739
2740 /*
2741 ** Some autonegotiation chips are broken in that they do not return the
2742 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2743 ** register, except at the first power up negotiation.
2744 */
2745 static int
dc21140m_autoconf(struct net_device * dev)2746 dc21140m_autoconf(struct net_device *dev)
2747 {
2748 struct de4x5_private *lp = netdev_priv(dev);
2749 int ana, anlpa, cap, cr, slnk, sr;
2750 int next_tick = DE4X5_AUTOSENSE_MS;
2751 u_long imr, omr, iobase = dev->base_addr;
2752
2753 switch(lp->media) {
2754 case INIT:
2755 if (lp->timeout < 0) {
2756 DISABLE_IRQs;
2757 lp->tx_enable = false;
2758 lp->linkOK = 0;
2759 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2760 }
2761 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2762 next_tick &= ~TIMER_CB;
2763 } else {
2764 if (lp->useSROM) {
2765 if (srom_map_media(dev) < 0) {
2766 lp->tcount++;
2767 return next_tick;
2768 }
2769 srom_exec(dev, lp->phy[lp->active].gep);
2770 if (lp->infoblock_media == ANS) {
2771 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2772 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2773 }
2774 } else {
2775 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2776 SET_10Mb;
2777 if (lp->autosense == _100Mb) {
2778 lp->media = _100Mb;
2779 } else if (lp->autosense == _10Mb) {
2780 lp->media = _10Mb;
2781 } else if ((lp->autosense == AUTO) &&
2782 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2783 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2784 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2785 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2786 lp->media = ANS;
2787 } else if (lp->autosense == AUTO) {
2788 lp->media = SPD_DET;
2789 } else if (is_spd_100(dev) && is_100_up(dev)) {
2790 lp->media = _100Mb;
2791 } else {
2792 lp->media = NC;
2793 }
2794 }
2795 lp->local_state = 0;
2796 next_tick = dc21140m_autoconf(dev);
2797 }
2798 break;
2799
2800 case ANS:
2801 switch (lp->local_state) {
2802 case 0:
2803 if (lp->timeout < 0) {
2804 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2805 }
2806 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2807 if (cr < 0) {
2808 next_tick = cr & ~TIMER_CB;
2809 } else {
2810 if (cr) {
2811 lp->local_state = 0;
2812 lp->media = SPD_DET;
2813 } else {
2814 lp->local_state++;
2815 }
2816 next_tick = dc21140m_autoconf(dev);
2817 }
2818 break;
2819
2820 case 1:
2821 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2822 next_tick = sr & ~TIMER_CB;
2823 } else {
2824 lp->media = SPD_DET;
2825 lp->local_state = 0;
2826 if (sr) { /* Success! */
2827 lp->tmp = MII_SR_ASSC;
2828 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2829 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2830 if (!(anlpa & MII_ANLPA_RF) &&
2831 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2832 if (cap & MII_ANA_100M) {
2833 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2834 lp->media = _100Mb;
2835 } else if (cap & MII_ANA_10M) {
2836 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2837
2838 lp->media = _10Mb;
2839 }
2840 }
2841 } /* Auto Negotiation failed to finish */
2842 next_tick = dc21140m_autoconf(dev);
2843 } /* Auto Negotiation failed to start */
2844 break;
2845 }
2846 break;
2847
2848 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2849 if (lp->timeout < 0) {
2850 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2851 (~gep_rd(dev) & GEP_LNP));
2852 SET_100Mb_PDET;
2853 }
2854 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2855 next_tick = slnk & ~TIMER_CB;
2856 } else {
2857 if (is_spd_100(dev) && is_100_up(dev)) {
2858 lp->media = _100Mb;
2859 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2860 lp->media = _10Mb;
2861 } else {
2862 lp->media = NC;
2863 }
2864 next_tick = dc21140m_autoconf(dev);
2865 }
2866 break;
2867
2868 case _100Mb: /* Set 100Mb/s */
2869 next_tick = 3000;
2870 if (!lp->tx_enable) {
2871 SET_100Mb;
2872 de4x5_init_connection(dev);
2873 } else {
2874 if (!lp->linkOK && (lp->autosense == AUTO)) {
2875 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2876 lp->media = INIT;
2877 lp->tcount++;
2878 next_tick = DE4X5_AUTOSENSE_MS;
2879 }
2880 }
2881 }
2882 break;
2883
2884 case BNC:
2885 case AUI:
2886 case _10Mb: /* Set 10Mb/s */
2887 next_tick = 3000;
2888 if (!lp->tx_enable) {
2889 SET_10Mb;
2890 de4x5_init_connection(dev);
2891 } else {
2892 if (!lp->linkOK && (lp->autosense == AUTO)) {
2893 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2894 lp->media = INIT;
2895 lp->tcount++;
2896 next_tick = DE4X5_AUTOSENSE_MS;
2897 }
2898 }
2899 }
2900 break;
2901
2902 case NC:
2903 if (lp->media != lp->c_media) {
2904 de4x5_dbg_media(dev);
2905 lp->c_media = lp->media;
2906 }
2907 lp->media = INIT;
2908 lp->tx_enable = false;
2909 break;
2910 }
2911
2912 return next_tick;
2913 }
2914
2915 /*
2916 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2917 ** changing how I figure out the media - but trying to keep it backwards
2918 ** compatible with the de500-xa and de500-aa.
2919 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2920 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2921 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2922 ** active.
2923 ** When autonegotiation is working, the ANS part searches the SROM for
2924 ** the highest common speed (TP) link that both can run and if that can
2925 ** be full duplex. That infoblock is executed and then the link speed set.
2926 **
2927 ** Only _10Mb and _100Mb are tested here.
2928 */
2929 static int
dc2114x_autoconf(struct net_device * dev)2930 dc2114x_autoconf(struct net_device *dev)
2931 {
2932 struct de4x5_private *lp = netdev_priv(dev);
2933 u_long iobase = dev->base_addr;
2934 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2935 int next_tick = DE4X5_AUTOSENSE_MS;
2936
2937 switch (lp->media) {
2938 case INIT:
2939 if (lp->timeout < 0) {
2940 DISABLE_IRQs;
2941 lp->tx_enable = false;
2942 lp->linkOK = 0;
2943 lp->timeout = -1;
2944 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2945 if (lp->params.autosense & ~AUTO) {
2946 srom_map_media(dev); /* Fixed media requested */
2947 if (lp->media != lp->params.autosense) {
2948 lp->tcount++;
2949 lp->media = INIT;
2950 return next_tick;
2951 }
2952 lp->media = INIT;
2953 }
2954 }
2955 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2956 next_tick &= ~TIMER_CB;
2957 } else {
2958 if (lp->autosense == _100Mb) {
2959 lp->media = _100Mb;
2960 } else if (lp->autosense == _10Mb) {
2961 lp->media = _10Mb;
2962 } else if (lp->autosense == TP) {
2963 lp->media = TP;
2964 } else if (lp->autosense == BNC) {
2965 lp->media = BNC;
2966 } else if (lp->autosense == AUI) {
2967 lp->media = AUI;
2968 } else {
2969 lp->media = SPD_DET;
2970 if ((lp->infoblock_media == ANS) &&
2971 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2972 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2973 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2974 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2975 lp->media = ANS;
2976 }
2977 }
2978 lp->local_state = 0;
2979 next_tick = dc2114x_autoconf(dev);
2980 }
2981 break;
2982
2983 case ANS:
2984 switch (lp->local_state) {
2985 case 0:
2986 if (lp->timeout < 0) {
2987 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2988 }
2989 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2990 if (cr < 0) {
2991 next_tick = cr & ~TIMER_CB;
2992 } else {
2993 if (cr) {
2994 lp->local_state = 0;
2995 lp->media = SPD_DET;
2996 } else {
2997 lp->local_state++;
2998 }
2999 next_tick = dc2114x_autoconf(dev);
3000 }
3001 break;
3002
3003 case 1:
3004 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3005 if (sr < 0) {
3006 next_tick = sr & ~TIMER_CB;
3007 } else {
3008 lp->media = SPD_DET;
3009 lp->local_state = 0;
3010 if (sr) { /* Success! */
3011 lp->tmp = MII_SR_ASSC;
3012 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3013 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3014 if (!(anlpa & MII_ANLPA_RF) &&
3015 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3016 if (cap & MII_ANA_100M) {
3017 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3018 lp->media = _100Mb;
3019 } else if (cap & MII_ANA_10M) {
3020 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3021 lp->media = _10Mb;
3022 }
3023 }
3024 } /* Auto Negotiation failed to finish */
3025 next_tick = dc2114x_autoconf(dev);
3026 } /* Auto Negotiation failed to start */
3027 break;
3028 }
3029 break;
3030
3031 case AUI:
3032 if (!lp->tx_enable) {
3033 if (lp->timeout < 0) {
3034 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3035 outl(omr & ~OMR_FDX, DE4X5_OMR);
3036 }
3037 irqs = 0;
3038 irq_mask = 0;
3039 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3040 if (sts < 0) {
3041 next_tick = sts & ~TIMER_CB;
3042 } else {
3043 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3044 lp->media = BNC;
3045 next_tick = dc2114x_autoconf(dev);
3046 } else {
3047 lp->local_state = 1;
3048 de4x5_init_connection(dev);
3049 }
3050 }
3051 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3052 lp->media = AUI_SUSPECT;
3053 next_tick = 3000;
3054 }
3055 break;
3056
3057 case AUI_SUSPECT:
3058 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3059 break;
3060
3061 case BNC:
3062 switch (lp->local_state) {
3063 case 0:
3064 if (lp->timeout < 0) {
3065 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3066 outl(omr & ~OMR_FDX, DE4X5_OMR);
3067 }
3068 irqs = 0;
3069 irq_mask = 0;
3070 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3071 if (sts < 0) {
3072 next_tick = sts & ~TIMER_CB;
3073 } else {
3074 lp->local_state++; /* Ensure media connected */
3075 next_tick = dc2114x_autoconf(dev);
3076 }
3077 break;
3078
3079 case 1:
3080 if (!lp->tx_enable) {
3081 if ((sts = ping_media(dev, 3000)) < 0) {
3082 next_tick = sts & ~TIMER_CB;
3083 } else {
3084 if (sts) {
3085 lp->local_state = 0;
3086 lp->tcount++;
3087 lp->media = INIT;
3088 } else {
3089 de4x5_init_connection(dev);
3090 }
3091 }
3092 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3093 lp->media = BNC_SUSPECT;
3094 next_tick = 3000;
3095 }
3096 break;
3097 }
3098 break;
3099
3100 case BNC_SUSPECT:
3101 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3102 break;
3103
3104 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3105 if (srom_map_media(dev) < 0) {
3106 lp->tcount++;
3107 lp->media = INIT;
3108 return next_tick;
3109 }
3110 if (lp->media == _100Mb) {
3111 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3112 lp->media = SPD_DET;
3113 return slnk & ~TIMER_CB;
3114 }
3115 } else {
3116 if (wait_for_link(dev) < 0) {
3117 lp->media = SPD_DET;
3118 return PDET_LINK_WAIT;
3119 }
3120 }
3121 if (lp->media == ANS) { /* Do MII parallel detection */
3122 if (is_spd_100(dev)) {
3123 lp->media = _100Mb;
3124 } else {
3125 lp->media = _10Mb;
3126 }
3127 next_tick = dc2114x_autoconf(dev);
3128 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3129 (((lp->media == _10Mb) || (lp->media == TP) ||
3130 (lp->media == BNC) || (lp->media == AUI)) &&
3131 is_10_up(dev))) {
3132 next_tick = dc2114x_autoconf(dev);
3133 } else {
3134 lp->tcount++;
3135 lp->media = INIT;
3136 }
3137 break;
3138
3139 case _10Mb:
3140 next_tick = 3000;
3141 if (!lp->tx_enable) {
3142 SET_10Mb;
3143 de4x5_init_connection(dev);
3144 } else {
3145 if (!lp->linkOK && (lp->autosense == AUTO)) {
3146 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3147 lp->media = INIT;
3148 lp->tcount++;
3149 next_tick = DE4X5_AUTOSENSE_MS;
3150 }
3151 }
3152 }
3153 break;
3154
3155 case _100Mb:
3156 next_tick = 3000;
3157 if (!lp->tx_enable) {
3158 SET_100Mb;
3159 de4x5_init_connection(dev);
3160 } else {
3161 if (!lp->linkOK && (lp->autosense == AUTO)) {
3162 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3163 lp->media = INIT;
3164 lp->tcount++;
3165 next_tick = DE4X5_AUTOSENSE_MS;
3166 }
3167 }
3168 }
3169 break;
3170
3171 default:
3172 lp->tcount++;
3173 printk("Huh?: media:%02x\n", lp->media);
3174 lp->media = INIT;
3175 break;
3176 }
3177
3178 return next_tick;
3179 }
3180
3181 static int
srom_autoconf(struct net_device * dev)3182 srom_autoconf(struct net_device *dev)
3183 {
3184 struct de4x5_private *lp = netdev_priv(dev);
3185
3186 return lp->infoleaf_fn(dev);
3187 }
3188
3189 /*
3190 ** This mapping keeps the original media codes and FDX flag unchanged.
3191 ** While it isn't strictly necessary, it helps me for the moment...
3192 ** The early return avoids a media state / SROM media space clash.
3193 */
3194 static int
srom_map_media(struct net_device * dev)3195 srom_map_media(struct net_device *dev)
3196 {
3197 struct de4x5_private *lp = netdev_priv(dev);
3198
3199 lp->fdx = false;
3200 if (lp->infoblock_media == lp->media)
3201 return 0;
3202
3203 switch(lp->infoblock_media) {
3204 case SROM_10BASETF:
3205 if (!lp->params.fdx) return -1;
3206 lp->fdx = true;
3207 case SROM_10BASET:
3208 if (lp->params.fdx && !lp->fdx) return -1;
3209 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3210 lp->media = _10Mb;
3211 } else {
3212 lp->media = TP;
3213 }
3214 break;
3215
3216 case SROM_10BASE2:
3217 lp->media = BNC;
3218 break;
3219
3220 case SROM_10BASE5:
3221 lp->media = AUI;
3222 break;
3223
3224 case SROM_100BASETF:
3225 if (!lp->params.fdx) return -1;
3226 lp->fdx = true;
3227 case SROM_100BASET:
3228 if (lp->params.fdx && !lp->fdx) return -1;
3229 lp->media = _100Mb;
3230 break;
3231
3232 case SROM_100BASET4:
3233 lp->media = _100Mb;
3234 break;
3235
3236 case SROM_100BASEFF:
3237 if (!lp->params.fdx) return -1;
3238 lp->fdx = true;
3239 case SROM_100BASEF:
3240 if (lp->params.fdx && !lp->fdx) return -1;
3241 lp->media = _100Mb;
3242 break;
3243
3244 case ANS:
3245 lp->media = ANS;
3246 lp->fdx = lp->params.fdx;
3247 break;
3248
3249 default:
3250 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3251 lp->infoblock_media);
3252 return -1;
3253 break;
3254 }
3255
3256 return 0;
3257 }
3258
3259 static void
de4x5_init_connection(struct net_device * dev)3260 de4x5_init_connection(struct net_device *dev)
3261 {
3262 struct de4x5_private *lp = netdev_priv(dev);
3263 u_long iobase = dev->base_addr;
3264 u_long flags = 0;
3265
3266 if (lp->media != lp->c_media) {
3267 de4x5_dbg_media(dev);
3268 lp->c_media = lp->media; /* Stop scrolling media messages */
3269 }
3270
3271 spin_lock_irqsave(&lp->lock, flags);
3272 de4x5_rst_desc_ring(dev);
3273 de4x5_setup_intr(dev);
3274 lp->tx_enable = true;
3275 spin_unlock_irqrestore(&lp->lock, flags);
3276 outl(POLL_DEMAND, DE4X5_TPD);
3277
3278 netif_wake_queue(dev);
3279 }
3280
3281 /*
3282 ** General PHY reset function. Some MII devices don't reset correctly
3283 ** since their MII address pins can float at voltages that are dependent
3284 ** on the signal pin use. Do a double reset to ensure a reset.
3285 */
3286 static int
de4x5_reset_phy(struct net_device * dev)3287 de4x5_reset_phy(struct net_device *dev)
3288 {
3289 struct de4x5_private *lp = netdev_priv(dev);
3290 u_long iobase = dev->base_addr;
3291 int next_tick = 0;
3292
3293 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3294 if (lp->timeout < 0) {
3295 if (lp->useSROM) {
3296 if (lp->phy[lp->active].rst) {
3297 srom_exec(dev, lp->phy[lp->active].rst);
3298 srom_exec(dev, lp->phy[lp->active].rst);
3299 } else if (lp->rst) { /* Type 5 infoblock reset */
3300 srom_exec(dev, lp->rst);
3301 srom_exec(dev, lp->rst);
3302 }
3303 } else {
3304 PHY_HARD_RESET;
3305 }
3306 if (lp->useMII) {
3307 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3308 }
3309 }
3310 if (lp->useMII) {
3311 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3312 }
3313 } else if (lp->chipset == DC21140) {
3314 PHY_HARD_RESET;
3315 }
3316
3317 return next_tick;
3318 }
3319
3320 static int
test_media(struct net_device * dev,s32 irqs,s32 irq_mask,s32 csr13,s32 csr14,s32 csr15,s32 msec)3321 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3322 {
3323 struct de4x5_private *lp = netdev_priv(dev);
3324 u_long iobase = dev->base_addr;
3325 s32 sts, csr12;
3326
3327 if (lp->timeout < 0) {
3328 lp->timeout = msec/100;
3329 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3330 reset_init_sia(dev, csr13, csr14, csr15);
3331 }
3332
3333 /* set up the interrupt mask */
3334 outl(irq_mask, DE4X5_IMR);
3335
3336 /* clear all pending interrupts */
3337 sts = inl(DE4X5_STS);
3338 outl(sts, DE4X5_STS);
3339
3340 /* clear csr12 NRA and SRA bits */
3341 if ((lp->chipset == DC21041) || lp->useSROM) {
3342 csr12 = inl(DE4X5_SISR);
3343 outl(csr12, DE4X5_SISR);
3344 }
3345 }
3346
3347 sts = inl(DE4X5_STS) & ~TIMER_CB;
3348
3349 if (!(sts & irqs) && --lp->timeout) {
3350 sts = 100 | TIMER_CB;
3351 } else {
3352 lp->timeout = -1;
3353 }
3354
3355 return sts;
3356 }
3357
3358 static int
test_tp(struct net_device * dev,s32 msec)3359 test_tp(struct net_device *dev, s32 msec)
3360 {
3361 struct de4x5_private *lp = netdev_priv(dev);
3362 u_long iobase = dev->base_addr;
3363 int sisr;
3364
3365 if (lp->timeout < 0) {
3366 lp->timeout = msec/100;
3367 }
3368
3369 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3370
3371 if (sisr && --lp->timeout) {
3372 sisr = 100 | TIMER_CB;
3373 } else {
3374 lp->timeout = -1;
3375 }
3376
3377 return sisr;
3378 }
3379
3380 /*
3381 ** Samples the 100Mb Link State Signal. The sample interval is important
3382 ** because too fast a rate can give erroneous results and confuse the
3383 ** speed sense algorithm.
3384 */
3385 #define SAMPLE_INTERVAL 500 /* ms */
3386 #define SAMPLE_DELAY 2000 /* ms */
3387 static int
test_for_100Mb(struct net_device * dev,int msec)3388 test_for_100Mb(struct net_device *dev, int msec)
3389 {
3390 struct de4x5_private *lp = netdev_priv(dev);
3391 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3392
3393 if (lp->timeout < 0) {
3394 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3395 if (msec > SAMPLE_DELAY) {
3396 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3397 gep = SAMPLE_DELAY | TIMER_CB;
3398 return gep;
3399 } else {
3400 lp->timeout = msec/SAMPLE_INTERVAL;
3401 }
3402 }
3403
3404 if (lp->phy[lp->active].id || lp->useSROM) {
3405 gep = is_100_up(dev) | is_spd_100(dev);
3406 } else {
3407 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3408 }
3409 if (!(gep & ret) && --lp->timeout) {
3410 gep = SAMPLE_INTERVAL | TIMER_CB;
3411 } else {
3412 lp->timeout = -1;
3413 }
3414
3415 return gep;
3416 }
3417
3418 static int
wait_for_link(struct net_device * dev)3419 wait_for_link(struct net_device *dev)
3420 {
3421 struct de4x5_private *lp = netdev_priv(dev);
3422
3423 if (lp->timeout < 0) {
3424 lp->timeout = 1;
3425 }
3426
3427 if (lp->timeout--) {
3428 return TIMER_CB;
3429 } else {
3430 lp->timeout = -1;
3431 }
3432
3433 return 0;
3434 }
3435
3436 /*
3437 **
3438 **
3439 */
3440 static int
test_mii_reg(struct net_device * dev,int reg,int mask,bool pol,long msec)3441 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3442 {
3443 struct de4x5_private *lp = netdev_priv(dev);
3444 int test;
3445 u_long iobase = dev->base_addr;
3446
3447 if (lp->timeout < 0) {
3448 lp->timeout = msec/100;
3449 }
3450
3451 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3452 test = (reg ^ (pol ? ~0 : 0)) & mask;
3453
3454 if (test && --lp->timeout) {
3455 reg = 100 | TIMER_CB;
3456 } else {
3457 lp->timeout = -1;
3458 }
3459
3460 return reg;
3461 }
3462
3463 static int
is_spd_100(struct net_device * dev)3464 is_spd_100(struct net_device *dev)
3465 {
3466 struct de4x5_private *lp = netdev_priv(dev);
3467 u_long iobase = dev->base_addr;
3468 int spd;
3469
3470 if (lp->useMII) {
3471 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3472 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3473 spd &= lp->phy[lp->active].spd.mask;
3474 } else if (!lp->useSROM) { /* de500-xa */
3475 spd = ((~gep_rd(dev)) & GEP_SLNK);
3476 } else {
3477 if ((lp->ibn == 2) || !lp->asBitValid)
3478 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3479
3480 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3481 (lp->linkOK & ~lp->asBitValid);
3482 }
3483
3484 return spd;
3485 }
3486
3487 static int
is_100_up(struct net_device * dev)3488 is_100_up(struct net_device *dev)
3489 {
3490 struct de4x5_private *lp = netdev_priv(dev);
3491 u_long iobase = dev->base_addr;
3492
3493 if (lp->useMII) {
3494 /* Double read for sticky bits & temporary drops */
3495 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3496 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3497 } else if (!lp->useSROM) { /* de500-xa */
3498 return (~gep_rd(dev)) & GEP_SLNK;
3499 } else {
3500 if ((lp->ibn == 2) || !lp->asBitValid)
3501 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3502
3503 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3504 (lp->linkOK & ~lp->asBitValid);
3505 }
3506 }
3507
3508 static int
is_10_up(struct net_device * dev)3509 is_10_up(struct net_device *dev)
3510 {
3511 struct de4x5_private *lp = netdev_priv(dev);
3512 u_long iobase = dev->base_addr;
3513
3514 if (lp->useMII) {
3515 /* Double read for sticky bits & temporary drops */
3516 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3517 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3518 } else if (!lp->useSROM) { /* de500-xa */
3519 return (~gep_rd(dev)) & GEP_LNP;
3520 } else {
3521 if ((lp->ibn == 2) || !lp->asBitValid)
3522 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3523 (~inl(DE4X5_SISR)&SISR_LS10):
3524 0;
3525
3526 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3527 (lp->linkOK & ~lp->asBitValid);
3528 }
3529 }
3530
3531 static int
is_anc_capable(struct net_device * dev)3532 is_anc_capable(struct net_device *dev)
3533 {
3534 struct de4x5_private *lp = netdev_priv(dev);
3535 u_long iobase = dev->base_addr;
3536
3537 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3538 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3539 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3540 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3541 } else {
3542 return 0;
3543 }
3544 }
3545
3546 /*
3547 ** Send a packet onto the media and watch for send errors that indicate the
3548 ** media is bad or unconnected.
3549 */
3550 static int
ping_media(struct net_device * dev,int msec)3551 ping_media(struct net_device *dev, int msec)
3552 {
3553 struct de4x5_private *lp = netdev_priv(dev);
3554 u_long iobase = dev->base_addr;
3555 int sisr;
3556
3557 if (lp->timeout < 0) {
3558 lp->timeout = msec/100;
3559
3560 lp->tmp = lp->tx_new; /* Remember the ring position */
3561 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3562 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3563 outl(POLL_DEMAND, DE4X5_TPD);
3564 }
3565
3566 sisr = inl(DE4X5_SISR);
3567
3568 if ((!(sisr & SISR_NCR)) &&
3569 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3570 (--lp->timeout)) {
3571 sisr = 100 | TIMER_CB;
3572 } else {
3573 if ((!(sisr & SISR_NCR)) &&
3574 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3575 lp->timeout) {
3576 sisr = 0;
3577 } else {
3578 sisr = 1;
3579 }
3580 lp->timeout = -1;
3581 }
3582
3583 return sisr;
3584 }
3585
3586 /*
3587 ** This function does 2 things: on Intels it kmalloc's another buffer to
3588 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3589 ** into which the packet is copied.
3590 */
3591 static struct sk_buff *
de4x5_alloc_rx_buff(struct net_device * dev,int index,int len)3592 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3593 {
3594 struct de4x5_private *lp = netdev_priv(dev);
3595 struct sk_buff *p;
3596
3597 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3598 struct sk_buff *ret;
3599 u_long i=0, tmp;
3600
3601 p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3602 if (!p) return NULL;
3603
3604 tmp = virt_to_bus(p->data);
3605 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3606 skb_reserve(p, i);
3607 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3608
3609 ret = lp->rx_skb[index];
3610 lp->rx_skb[index] = p;
3611
3612 if ((u_long) ret > 1) {
3613 skb_put(ret, len);
3614 }
3615
3616 return ret;
3617
3618 #else
3619 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3620
3621 p = netdev_alloc_skb(dev, len + 2);
3622 if (!p) return NULL;
3623
3624 skb_reserve(p, 2); /* Align */
3625 if (index < lp->rx_old) { /* Wrapped buffer */
3626 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3627 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3628 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3629 } else { /* Linear buffer */
3630 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3631 }
3632
3633 return p;
3634 #endif
3635 }
3636
3637 static void
de4x5_free_rx_buffs(struct net_device * dev)3638 de4x5_free_rx_buffs(struct net_device *dev)
3639 {
3640 struct de4x5_private *lp = netdev_priv(dev);
3641 int i;
3642
3643 for (i=0; i<lp->rxRingSize; i++) {
3644 if ((u_long) lp->rx_skb[i] > 1) {
3645 dev_kfree_skb(lp->rx_skb[i]);
3646 }
3647 lp->rx_ring[i].status = 0;
3648 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3649 }
3650 }
3651
3652 static void
de4x5_free_tx_buffs(struct net_device * dev)3653 de4x5_free_tx_buffs(struct net_device *dev)
3654 {
3655 struct de4x5_private *lp = netdev_priv(dev);
3656 int i;
3657
3658 for (i=0; i<lp->txRingSize; i++) {
3659 if (lp->tx_skb[i])
3660 de4x5_free_tx_buff(lp, i);
3661 lp->tx_ring[i].status = 0;
3662 }
3663
3664 /* Unload the locally queued packets */
3665 __skb_queue_purge(&lp->cache.queue);
3666 }
3667
3668 /*
3669 ** When a user pulls a connection, the DECchip can end up in a
3670 ** 'running - waiting for end of transmission' state. This means that we
3671 ** have to perform a chip soft reset to ensure that we can synchronize
3672 ** the hardware and software and make any media probes using a loopback
3673 ** packet meaningful.
3674 */
3675 static void
de4x5_save_skbs(struct net_device * dev)3676 de4x5_save_skbs(struct net_device *dev)
3677 {
3678 struct de4x5_private *lp = netdev_priv(dev);
3679 u_long iobase = dev->base_addr;
3680 s32 omr;
3681
3682 if (!lp->cache.save_cnt) {
3683 STOP_DE4X5;
3684 de4x5_tx(dev); /* Flush any sent skb's */
3685 de4x5_free_tx_buffs(dev);
3686 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3687 de4x5_sw_reset(dev);
3688 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3689 lp->cache.save_cnt++;
3690 START_DE4X5;
3691 }
3692 }
3693
3694 static void
de4x5_rst_desc_ring(struct net_device * dev)3695 de4x5_rst_desc_ring(struct net_device *dev)
3696 {
3697 struct de4x5_private *lp = netdev_priv(dev);
3698 u_long iobase = dev->base_addr;
3699 int i;
3700 s32 omr;
3701
3702 if (lp->cache.save_cnt) {
3703 STOP_DE4X5;
3704 outl(lp->dma_rings, DE4X5_RRBA);
3705 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3706 DE4X5_TRBA);
3707
3708 lp->rx_new = lp->rx_old = 0;
3709 lp->tx_new = lp->tx_old = 0;
3710
3711 for (i = 0; i < lp->rxRingSize; i++) {
3712 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3713 }
3714
3715 for (i = 0; i < lp->txRingSize; i++) {
3716 lp->tx_ring[i].status = cpu_to_le32(0);
3717 }
3718
3719 barrier();
3720 lp->cache.save_cnt--;
3721 START_DE4X5;
3722 }
3723 }
3724
3725 static void
de4x5_cache_state(struct net_device * dev,int flag)3726 de4x5_cache_state(struct net_device *dev, int flag)
3727 {
3728 struct de4x5_private *lp = netdev_priv(dev);
3729 u_long iobase = dev->base_addr;
3730
3731 switch(flag) {
3732 case DE4X5_SAVE_STATE:
3733 lp->cache.csr0 = inl(DE4X5_BMR);
3734 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3735 lp->cache.csr7 = inl(DE4X5_IMR);
3736 break;
3737
3738 case DE4X5_RESTORE_STATE:
3739 outl(lp->cache.csr0, DE4X5_BMR);
3740 outl(lp->cache.csr6, DE4X5_OMR);
3741 outl(lp->cache.csr7, DE4X5_IMR);
3742 if (lp->chipset == DC21140) {
3743 gep_wr(lp->cache.gepc, dev);
3744 gep_wr(lp->cache.gep, dev);
3745 } else {
3746 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3747 lp->cache.csr15);
3748 }
3749 break;
3750 }
3751 }
3752
3753 static void
de4x5_put_cache(struct net_device * dev,struct sk_buff * skb)3754 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3755 {
3756 struct de4x5_private *lp = netdev_priv(dev);
3757
3758 __skb_queue_tail(&lp->cache.queue, skb);
3759 }
3760
3761 static void
de4x5_putb_cache(struct net_device * dev,struct sk_buff * skb)3762 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3763 {
3764 struct de4x5_private *lp = netdev_priv(dev);
3765
3766 __skb_queue_head(&lp->cache.queue, skb);
3767 }
3768
3769 static struct sk_buff *
de4x5_get_cache(struct net_device * dev)3770 de4x5_get_cache(struct net_device *dev)
3771 {
3772 struct de4x5_private *lp = netdev_priv(dev);
3773
3774 return __skb_dequeue(&lp->cache.queue);
3775 }
3776
3777 /*
3778 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3779 ** is received and the auto-negotiation status is NWAY OK.
3780 */
3781 static int
test_ans(struct net_device * dev,s32 irqs,s32 irq_mask,s32 msec)3782 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3783 {
3784 struct de4x5_private *lp = netdev_priv(dev);
3785 u_long iobase = dev->base_addr;
3786 s32 sts, ans;
3787
3788 if (lp->timeout < 0) {
3789 lp->timeout = msec/100;
3790 outl(irq_mask, DE4X5_IMR);
3791
3792 /* clear all pending interrupts */
3793 sts = inl(DE4X5_STS);
3794 outl(sts, DE4X5_STS);
3795 }
3796
3797 ans = inl(DE4X5_SISR) & SISR_ANS;
3798 sts = inl(DE4X5_STS) & ~TIMER_CB;
3799
3800 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3801 sts = 100 | TIMER_CB;
3802 } else {
3803 lp->timeout = -1;
3804 }
3805
3806 return sts;
3807 }
3808
3809 static void
de4x5_setup_intr(struct net_device * dev)3810 de4x5_setup_intr(struct net_device *dev)
3811 {
3812 struct de4x5_private *lp = netdev_priv(dev);
3813 u_long iobase = dev->base_addr;
3814 s32 imr, sts;
3815
3816 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3817 imr = 0;
3818 UNMASK_IRQs;
3819 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3820 outl(sts, DE4X5_STS);
3821 ENABLE_IRQs;
3822 }
3823 }
3824
3825 /*
3826 **
3827 */
3828 static void
reset_init_sia(struct net_device * dev,s32 csr13,s32 csr14,s32 csr15)3829 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3830 {
3831 struct de4x5_private *lp = netdev_priv(dev);
3832 u_long iobase = dev->base_addr;
3833
3834 RESET_SIA;
3835 if (lp->useSROM) {
3836 if (lp->ibn == 3) {
3837 srom_exec(dev, lp->phy[lp->active].rst);
3838 srom_exec(dev, lp->phy[lp->active].gep);
3839 outl(1, DE4X5_SICR);
3840 return;
3841 } else {
3842 csr15 = lp->cache.csr15;
3843 csr14 = lp->cache.csr14;
3844 csr13 = lp->cache.csr13;
3845 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3846 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3847 }
3848 } else {
3849 outl(csr15, DE4X5_SIGR);
3850 }
3851 outl(csr14, DE4X5_STRR);
3852 outl(csr13, DE4X5_SICR);
3853
3854 mdelay(10);
3855 }
3856
3857 /*
3858 ** Create a loopback ethernet packet
3859 */
3860 static void
create_packet(struct net_device * dev,char * frame,int len)3861 create_packet(struct net_device *dev, char *frame, int len)
3862 {
3863 int i;
3864 char *buf = frame;
3865
3866 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3867 *buf++ = dev->dev_addr[i];
3868 }
3869 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3870 *buf++ = dev->dev_addr[i];
3871 }
3872
3873 *buf++ = 0; /* Packet length (2 bytes) */
3874 *buf++ = 1;
3875 }
3876
3877 /*
3878 ** Look for a particular board name in the EISA configuration space
3879 */
3880 static int
EISA_signature(char * name,struct device * device)3881 EISA_signature(char *name, struct device *device)
3882 {
3883 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3884 struct eisa_device *edev;
3885
3886 *name = '\0';
3887 edev = to_eisa_device (device);
3888 i = edev->id.driver_data;
3889
3890 if (i >= 0 && i < siglen) {
3891 strcpy (name, de4x5_signatures[i]);
3892 status = 1;
3893 }
3894
3895 return status; /* return the device name string */
3896 }
3897
3898 /*
3899 ** Look for a particular board name in the PCI configuration space
3900 */
3901 static int
PCI_signature(char * name,struct de4x5_private * lp)3902 PCI_signature(char *name, struct de4x5_private *lp)
3903 {
3904 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3905
3906 if (lp->chipset == DC21040) {
3907 strcpy(name, "DE434/5");
3908 return status;
3909 } else { /* Search for a DEC name in the SROM */
3910 int tmp = *((char *)&lp->srom + 19) * 3;
3911 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3912 }
3913 name[8] = '\0';
3914 for (i=0; i<siglen; i++) {
3915 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3916 }
3917 if (i == siglen) {
3918 if (dec_only) {
3919 *name = '\0';
3920 } else { /* Use chip name to avoid confusion */
3921 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3922 ((lp->chipset == DC21041) ? "DC21041" :
3923 ((lp->chipset == DC21140) ? "DC21140" :
3924 ((lp->chipset == DC21142) ? "DC21142" :
3925 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3926 )))))));
3927 }
3928 if (lp->chipset != DC21041) {
3929 lp->useSROM = true; /* card is not recognisably DEC */
3930 }
3931 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3932 lp->useSROM = true;
3933 }
3934
3935 return status;
3936 }
3937
3938 /*
3939 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3940 ** the DC21040, else read the SROM for the other chips.
3941 ** The SROM may not be present in a multi-MAC card, so first read the
3942 ** MAC address and check for a bad address. If there is a bad one then exit
3943 ** immediately with the prior srom contents intact (the h/w address will
3944 ** be fixed up later).
3945 */
3946 static void
DevicePresent(struct net_device * dev,u_long aprom_addr)3947 DevicePresent(struct net_device *dev, u_long aprom_addr)
3948 {
3949 int i, j=0;
3950 struct de4x5_private *lp = netdev_priv(dev);
3951
3952 if (lp->chipset == DC21040) {
3953 if (lp->bus == EISA) {
3954 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3955 } else {
3956 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3957 }
3958 } else { /* Read new srom */
3959 u_short tmp;
3960 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3961 for (i=0; i<(ETH_ALEN>>1); i++) {
3962 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3963 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3964 *p = cpu_to_le16(tmp);
3965 }
3966 if (j == 0 || j == 3 * 0xffff) {
3967 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3968 return;
3969 }
3970
3971 p = (__le16 *)&lp->srom;
3972 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3973 tmp = srom_rd(aprom_addr, i);
3974 *p++ = cpu_to_le16(tmp);
3975 }
3976 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
3977 }
3978 }
3979
3980 /*
3981 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3982 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3983 ** it...from depca.c.
3984 */
3985 static void
enet_addr_rst(u_long aprom_addr)3986 enet_addr_rst(u_long aprom_addr)
3987 {
3988 union {
3989 struct {
3990 u32 a;
3991 u32 b;
3992 } llsig;
3993 char Sig[sizeof(u32) << 1];
3994 } dev;
3995 short sigLength=0;
3996 s8 data;
3997 int i, j;
3998
3999 dev.llsig.a = ETH_PROM_SIG;
4000 dev.llsig.b = ETH_PROM_SIG;
4001 sigLength = sizeof(u32) << 1;
4002
4003 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4004 data = inb(aprom_addr);
4005 if (dev.Sig[j] == data) { /* track signature */
4006 j++;
4007 } else { /* lost signature; begin search again */
4008 if (data == dev.Sig[0]) { /* rare case.... */
4009 j=1;
4010 } else {
4011 j=0;
4012 }
4013 }
4014 }
4015 }
4016
4017 /*
4018 ** For the bad status case and no SROM, then add one to the previous
4019 ** address. However, need to add one backwards in case we have 0xff
4020 ** as one or more of the bytes. Only the last 3 bytes should be checked
4021 ** as the first three are invariant - assigned to an organisation.
4022 */
4023 static int
get_hw_addr(struct net_device * dev)4024 get_hw_addr(struct net_device *dev)
4025 {
4026 u_long iobase = dev->base_addr;
4027 int broken, i, k, tmp, status = 0;
4028 u_short j,chksum;
4029 struct de4x5_private *lp = netdev_priv(dev);
4030
4031 broken = de4x5_bad_srom(lp);
4032
4033 for (i=0,k=0,j=0;j<3;j++) {
4034 k <<= 1;
4035 if (k > 0xffff) k-=0xffff;
4036
4037 if (lp->bus == PCI) {
4038 if (lp->chipset == DC21040) {
4039 while ((tmp = inl(DE4X5_APROM)) < 0);
4040 k += (u_char) tmp;
4041 dev->dev_addr[i++] = (u_char) tmp;
4042 while ((tmp = inl(DE4X5_APROM)) < 0);
4043 k += (u_short) (tmp << 8);
4044 dev->dev_addr[i++] = (u_char) tmp;
4045 } else if (!broken) {
4046 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4047 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4048 } else if ((broken == SMC) || (broken == ACCTON)) {
4049 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4050 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4051 }
4052 } else {
4053 k += (u_char) (tmp = inb(EISA_APROM));
4054 dev->dev_addr[i++] = (u_char) tmp;
4055 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4056 dev->dev_addr[i++] = (u_char) tmp;
4057 }
4058
4059 if (k > 0xffff) k-=0xffff;
4060 }
4061 if (k == 0xffff) k=0;
4062
4063 if (lp->bus == PCI) {
4064 if (lp->chipset == DC21040) {
4065 while ((tmp = inl(DE4X5_APROM)) < 0);
4066 chksum = (u_char) tmp;
4067 while ((tmp = inl(DE4X5_APROM)) < 0);
4068 chksum |= (u_short) (tmp << 8);
4069 if ((k != chksum) && (dec_only)) status = -1;
4070 }
4071 } else {
4072 chksum = (u_char) inb(EISA_APROM);
4073 chksum |= (u_short) (inb(EISA_APROM) << 8);
4074 if ((k != chksum) && (dec_only)) status = -1;
4075 }
4076
4077 /* If possible, try to fix a broken card - SMC only so far */
4078 srom_repair(dev, broken);
4079
4080 #ifdef CONFIG_PPC_PMAC
4081 /*
4082 ** If the address starts with 00 a0, we have to bit-reverse
4083 ** each byte of the address.
4084 */
4085 if ( machine_is(powermac) &&
4086 (dev->dev_addr[0] == 0) &&
4087 (dev->dev_addr[1] == 0xa0) )
4088 {
4089 for (i = 0; i < ETH_ALEN; ++i)
4090 {
4091 int x = dev->dev_addr[i];
4092 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4093 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4094 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4095 }
4096 }
4097 #endif /* CONFIG_PPC_PMAC */
4098
4099 /* Test for a bad enet address */
4100 status = test_bad_enet(dev, status);
4101
4102 return status;
4103 }
4104
4105 /*
4106 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4107 ** didn't seem to work here...?
4108 */
4109 static int
de4x5_bad_srom(struct de4x5_private * lp)4110 de4x5_bad_srom(struct de4x5_private *lp)
4111 {
4112 int i, status = 0;
4113
4114 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4115 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4116 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4117 if (i == 0) {
4118 status = SMC;
4119 } else if (i == 1) {
4120 status = ACCTON;
4121 }
4122 break;
4123 }
4124 }
4125
4126 return status;
4127 }
4128
4129 static int
de4x5_strncmp(char * a,char * b,int n)4130 de4x5_strncmp(char *a, char *b, int n)
4131 {
4132 int ret=0;
4133
4134 for (;n && !ret; n--) {
4135 ret = *a++ - *b++;
4136 }
4137
4138 return ret;
4139 }
4140
4141 static void
srom_repair(struct net_device * dev,int card)4142 srom_repair(struct net_device *dev, int card)
4143 {
4144 struct de4x5_private *lp = netdev_priv(dev);
4145
4146 switch(card) {
4147 case SMC:
4148 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4149 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4150 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4151 lp->useSROM = true;
4152 break;
4153 }
4154 }
4155
4156 /*
4157 ** Assume that the irq's do not follow the PCI spec - this is seems
4158 ** to be true so far (2 for 2).
4159 */
4160 static int
test_bad_enet(struct net_device * dev,int status)4161 test_bad_enet(struct net_device *dev, int status)
4162 {
4163 struct de4x5_private *lp = netdev_priv(dev);
4164 int i, tmp;
4165
4166 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4167 if ((tmp == 0) || (tmp == 0x5fa)) {
4168 if ((lp->chipset == last.chipset) &&
4169 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4170 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4171 for (i=ETH_ALEN-1; i>2; --i) {
4172 dev->dev_addr[i] += 1;
4173 if (dev->dev_addr[i] != 0) break;
4174 }
4175 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4176 if (!an_exception(lp)) {
4177 dev->irq = last.irq;
4178 }
4179
4180 status = 0;
4181 }
4182 } else if (!status) {
4183 last.chipset = lp->chipset;
4184 last.bus = lp->bus_num;
4185 last.irq = dev->irq;
4186 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4187 }
4188
4189 return status;
4190 }
4191
4192 /*
4193 ** List of board exceptions with correctly wired IRQs
4194 */
4195 static int
an_exception(struct de4x5_private * lp)4196 an_exception(struct de4x5_private *lp)
4197 {
4198 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4199 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4200 return -1;
4201 }
4202
4203 return 0;
4204 }
4205
4206 /*
4207 ** SROM Read
4208 */
4209 static short
srom_rd(u_long addr,u_char offset)4210 srom_rd(u_long addr, u_char offset)
4211 {
4212 sendto_srom(SROM_RD | SROM_SR, addr);
4213
4214 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4215 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4216 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4217
4218 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4219 }
4220
4221 static void
srom_latch(u_int command,u_long addr)4222 srom_latch(u_int command, u_long addr)
4223 {
4224 sendto_srom(command, addr);
4225 sendto_srom(command | DT_CLK, addr);
4226 sendto_srom(command, addr);
4227 }
4228
4229 static void
srom_command(u_int command,u_long addr)4230 srom_command(u_int command, u_long addr)
4231 {
4232 srom_latch(command, addr);
4233 srom_latch(command, addr);
4234 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4235 }
4236
4237 static void
srom_address(u_int command,u_long addr,u_char offset)4238 srom_address(u_int command, u_long addr, u_char offset)
4239 {
4240 int i, a;
4241
4242 a = offset << 2;
4243 for (i=0; i<6; i++, a <<= 1) {
4244 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4245 }
4246 udelay(1);
4247
4248 i = (getfrom_srom(addr) >> 3) & 0x01;
4249 }
4250
4251 static short
srom_data(u_int command,u_long addr)4252 srom_data(u_int command, u_long addr)
4253 {
4254 int i;
4255 short word = 0;
4256 s32 tmp;
4257
4258 for (i=0; i<16; i++) {
4259 sendto_srom(command | DT_CLK, addr);
4260 tmp = getfrom_srom(addr);
4261 sendto_srom(command, addr);
4262
4263 word = (word << 1) | ((tmp >> 3) & 0x01);
4264 }
4265
4266 sendto_srom(command & 0x0000ff00, addr);
4267
4268 return word;
4269 }
4270
4271 /*
4272 static void
4273 srom_busy(u_int command, u_long addr)
4274 {
4275 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4276
4277 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4278 mdelay(1);
4279 }
4280
4281 sendto_srom(command & 0x0000ff00, addr);
4282 }
4283 */
4284
4285 static void
sendto_srom(u_int command,u_long addr)4286 sendto_srom(u_int command, u_long addr)
4287 {
4288 outl(command, addr);
4289 udelay(1);
4290 }
4291
4292 static int
getfrom_srom(u_long addr)4293 getfrom_srom(u_long addr)
4294 {
4295 s32 tmp;
4296
4297 tmp = inl(addr);
4298 udelay(1);
4299
4300 return tmp;
4301 }
4302
4303 static int
srom_infoleaf_info(struct net_device * dev)4304 srom_infoleaf_info(struct net_device *dev)
4305 {
4306 struct de4x5_private *lp = netdev_priv(dev);
4307 int i, count;
4308 u_char *p;
4309
4310 /* Find the infoleaf decoder function that matches this chipset */
4311 for (i=0; i<INFOLEAF_SIZE; i++) {
4312 if (lp->chipset == infoleaf_array[i].chipset) break;
4313 }
4314 if (i == INFOLEAF_SIZE) {
4315 lp->useSROM = false;
4316 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4317 dev->name);
4318 return -ENXIO;
4319 }
4320
4321 lp->infoleaf_fn = infoleaf_array[i].fn;
4322
4323 /* Find the information offset that this function should use */
4324 count = *((u_char *)&lp->srom + 19);
4325 p = (u_char *)&lp->srom + 26;
4326
4327 if (count > 1) {
4328 for (i=count; i; --i, p+=3) {
4329 if (lp->device == *p) break;
4330 }
4331 if (i == 0) {
4332 lp->useSROM = false;
4333 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4334 dev->name, lp->device);
4335 return -ENXIO;
4336 }
4337 }
4338
4339 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4340
4341 return 0;
4342 }
4343
4344 /*
4345 ** This routine loads any type 1 or 3 MII info into the mii device
4346 ** struct and executes any type 5 code to reset PHY devices for this
4347 ** controller.
4348 ** The info for the MII devices will be valid since the index used
4349 ** will follow the discovery process from MII address 1-31 then 0.
4350 */
4351 static void
srom_init(struct net_device * dev)4352 srom_init(struct net_device *dev)
4353 {
4354 struct de4x5_private *lp = netdev_priv(dev);
4355 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4356 u_char count;
4357
4358 p+=2;
4359 if (lp->chipset == DC21140) {
4360 lp->cache.gepc = (*p++ | GEP_CTRL);
4361 gep_wr(lp->cache.gepc, dev);
4362 }
4363
4364 /* Block count */
4365 count = *p++;
4366
4367 /* Jump the infoblocks to find types */
4368 for (;count; --count) {
4369 if (*p < 128) {
4370 p += COMPACT_LEN;
4371 } else if (*(p+1) == 5) {
4372 type5_infoblock(dev, 1, p);
4373 p += ((*p & BLOCK_LEN) + 1);
4374 } else if (*(p+1) == 4) {
4375 p += ((*p & BLOCK_LEN) + 1);
4376 } else if (*(p+1) == 3) {
4377 type3_infoblock(dev, 1, p);
4378 p += ((*p & BLOCK_LEN) + 1);
4379 } else if (*(p+1) == 2) {
4380 p += ((*p & BLOCK_LEN) + 1);
4381 } else if (*(p+1) == 1) {
4382 type1_infoblock(dev, 1, p);
4383 p += ((*p & BLOCK_LEN) + 1);
4384 } else {
4385 p += ((*p & BLOCK_LEN) + 1);
4386 }
4387 }
4388 }
4389
4390 /*
4391 ** A generic routine that writes GEP control, data and reset information
4392 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4393 */
4394 static void
srom_exec(struct net_device * dev,u_char * p)4395 srom_exec(struct net_device *dev, u_char *p)
4396 {
4397 struct de4x5_private *lp = netdev_priv(dev);
4398 u_long iobase = dev->base_addr;
4399 u_char count = (p ? *p++ : 0);
4400 u_short *w = (u_short *)p;
4401
4402 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4403
4404 if (lp->chipset != DC21140) RESET_SIA;
4405
4406 while (count--) {
4407 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4408 *p++ : get_unaligned_le16(w++)), dev);
4409 mdelay(2); /* 2ms per action */
4410 }
4411
4412 if (lp->chipset != DC21140) {
4413 outl(lp->cache.csr14, DE4X5_STRR);
4414 outl(lp->cache.csr13, DE4X5_SICR);
4415 }
4416 }
4417
4418 /*
4419 ** Basically this function is a NOP since it will never be called,
4420 ** unless I implement the DC21041 SROM functions. There's no need
4421 ** since the existing code will be satisfactory for all boards.
4422 */
4423 static int
dc21041_infoleaf(struct net_device * dev)4424 dc21041_infoleaf(struct net_device *dev)
4425 {
4426 return DE4X5_AUTOSENSE_MS;
4427 }
4428
4429 static int
dc21140_infoleaf(struct net_device * dev)4430 dc21140_infoleaf(struct net_device *dev)
4431 {
4432 struct de4x5_private *lp = netdev_priv(dev);
4433 u_char count = 0;
4434 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4435 int next_tick = DE4X5_AUTOSENSE_MS;
4436
4437 /* Read the connection type */
4438 p+=2;
4439
4440 /* GEP control */
4441 lp->cache.gepc = (*p++ | GEP_CTRL);
4442
4443 /* Block count */
4444 count = *p++;
4445
4446 /* Recursively figure out the info blocks */
4447 if (*p < 128) {
4448 next_tick = dc_infoblock[COMPACT](dev, count, p);
4449 } else {
4450 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4451 }
4452
4453 if (lp->tcount == count) {
4454 lp->media = NC;
4455 if (lp->media != lp->c_media) {
4456 de4x5_dbg_media(dev);
4457 lp->c_media = lp->media;
4458 }
4459 lp->media = INIT;
4460 lp->tcount = 0;
4461 lp->tx_enable = false;
4462 }
4463
4464 return next_tick & ~TIMER_CB;
4465 }
4466
4467 static int
dc21142_infoleaf(struct net_device * dev)4468 dc21142_infoleaf(struct net_device *dev)
4469 {
4470 struct de4x5_private *lp = netdev_priv(dev);
4471 u_char count = 0;
4472 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4473 int next_tick = DE4X5_AUTOSENSE_MS;
4474
4475 /* Read the connection type */
4476 p+=2;
4477
4478 /* Block count */
4479 count = *p++;
4480
4481 /* Recursively figure out the info blocks */
4482 if (*p < 128) {
4483 next_tick = dc_infoblock[COMPACT](dev, count, p);
4484 } else {
4485 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4486 }
4487
4488 if (lp->tcount == count) {
4489 lp->media = NC;
4490 if (lp->media != lp->c_media) {
4491 de4x5_dbg_media(dev);
4492 lp->c_media = lp->media;
4493 }
4494 lp->media = INIT;
4495 lp->tcount = 0;
4496 lp->tx_enable = false;
4497 }
4498
4499 return next_tick & ~TIMER_CB;
4500 }
4501
4502 static int
dc21143_infoleaf(struct net_device * dev)4503 dc21143_infoleaf(struct net_device *dev)
4504 {
4505 struct de4x5_private *lp = netdev_priv(dev);
4506 u_char count = 0;
4507 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4508 int next_tick = DE4X5_AUTOSENSE_MS;
4509
4510 /* Read the connection type */
4511 p+=2;
4512
4513 /* Block count */
4514 count = *p++;
4515
4516 /* Recursively figure out the info blocks */
4517 if (*p < 128) {
4518 next_tick = dc_infoblock[COMPACT](dev, count, p);
4519 } else {
4520 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4521 }
4522 if (lp->tcount == count) {
4523 lp->media = NC;
4524 if (lp->media != lp->c_media) {
4525 de4x5_dbg_media(dev);
4526 lp->c_media = lp->media;
4527 }
4528 lp->media = INIT;
4529 lp->tcount = 0;
4530 lp->tx_enable = false;
4531 }
4532
4533 return next_tick & ~TIMER_CB;
4534 }
4535
4536 /*
4537 ** The compact infoblock is only designed for DC21140[A] chips, so
4538 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4539 */
4540 static int
compact_infoblock(struct net_device * dev,u_char count,u_char * p)4541 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4542 {
4543 struct de4x5_private *lp = netdev_priv(dev);
4544 u_char flags, csr6;
4545
4546 /* Recursively figure out the info blocks */
4547 if (--count > lp->tcount) {
4548 if (*(p+COMPACT_LEN) < 128) {
4549 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4550 } else {
4551 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4552 }
4553 }
4554
4555 if ((lp->media == INIT) && (lp->timeout < 0)) {
4556 lp->ibn = COMPACT;
4557 lp->active = 0;
4558 gep_wr(lp->cache.gepc, dev);
4559 lp->infoblock_media = (*p++) & COMPACT_MC;
4560 lp->cache.gep = *p++;
4561 csr6 = *p++;
4562 flags = *p++;
4563
4564 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4565 lp->defMedium = (flags & 0x40) ? -1 : 0;
4566 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4567 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4568 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4569 lp->useMII = false;
4570
4571 de4x5_switch_mac_port(dev);
4572 }
4573
4574 return dc21140m_autoconf(dev);
4575 }
4576
4577 /*
4578 ** This block describes non MII media for the DC21140[A] only.
4579 */
4580 static int
type0_infoblock(struct net_device * dev,u_char count,u_char * p)4581 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4582 {
4583 struct de4x5_private *lp = netdev_priv(dev);
4584 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4585
4586 /* Recursively figure out the info blocks */
4587 if (--count > lp->tcount) {
4588 if (*(p+len) < 128) {
4589 return dc_infoblock[COMPACT](dev, count, p+len);
4590 } else {
4591 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4592 }
4593 }
4594
4595 if ((lp->media == INIT) && (lp->timeout < 0)) {
4596 lp->ibn = 0;
4597 lp->active = 0;
4598 gep_wr(lp->cache.gepc, dev);
4599 p+=2;
4600 lp->infoblock_media = (*p++) & BLOCK0_MC;
4601 lp->cache.gep = *p++;
4602 csr6 = *p++;
4603 flags = *p++;
4604
4605 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4606 lp->defMedium = (flags & 0x40) ? -1 : 0;
4607 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4608 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4609 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4610 lp->useMII = false;
4611
4612 de4x5_switch_mac_port(dev);
4613 }
4614
4615 return dc21140m_autoconf(dev);
4616 }
4617
4618 /* These functions are under construction! */
4619
4620 static int
type1_infoblock(struct net_device * dev,u_char count,u_char * p)4621 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4622 {
4623 struct de4x5_private *lp = netdev_priv(dev);
4624 u_char len = (*p & BLOCK_LEN)+1;
4625
4626 /* Recursively figure out the info blocks */
4627 if (--count > lp->tcount) {
4628 if (*(p+len) < 128) {
4629 return dc_infoblock[COMPACT](dev, count, p+len);
4630 } else {
4631 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4632 }
4633 }
4634
4635 p += 2;
4636 if (lp->state == INITIALISED) {
4637 lp->ibn = 1;
4638 lp->active = *p++;
4639 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4640 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4641 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4642 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4643 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4644 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4645 return 0;
4646 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4647 lp->ibn = 1;
4648 lp->active = *p;
4649 lp->infoblock_csr6 = OMR_MII_100;
4650 lp->useMII = true;
4651 lp->infoblock_media = ANS;
4652
4653 de4x5_switch_mac_port(dev);
4654 }
4655
4656 return dc21140m_autoconf(dev);
4657 }
4658
4659 static int
type2_infoblock(struct net_device * dev,u_char count,u_char * p)4660 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4661 {
4662 struct de4x5_private *lp = netdev_priv(dev);
4663 u_char len = (*p & BLOCK_LEN)+1;
4664
4665 /* Recursively figure out the info blocks */
4666 if (--count > lp->tcount) {
4667 if (*(p+len) < 128) {
4668 return dc_infoblock[COMPACT](dev, count, p+len);
4669 } else {
4670 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4671 }
4672 }
4673
4674 if ((lp->media == INIT) && (lp->timeout < 0)) {
4675 lp->ibn = 2;
4676 lp->active = 0;
4677 p += 2;
4678 lp->infoblock_media = (*p) & MEDIA_CODE;
4679
4680 if ((*p++) & EXT_FIELD) {
4681 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4682 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4683 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4684 } else {
4685 lp->cache.csr13 = CSR13;
4686 lp->cache.csr14 = CSR14;
4687 lp->cache.csr15 = CSR15;
4688 }
4689 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4690 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4691 lp->infoblock_csr6 = OMR_SIA;
4692 lp->useMII = false;
4693
4694 de4x5_switch_mac_port(dev);
4695 }
4696
4697 return dc2114x_autoconf(dev);
4698 }
4699
4700 static int
type3_infoblock(struct net_device * dev,u_char count,u_char * p)4701 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4702 {
4703 struct de4x5_private *lp = netdev_priv(dev);
4704 u_char len = (*p & BLOCK_LEN)+1;
4705
4706 /* Recursively figure out the info blocks */
4707 if (--count > lp->tcount) {
4708 if (*(p+len) < 128) {
4709 return dc_infoblock[COMPACT](dev, count, p+len);
4710 } else {
4711 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4712 }
4713 }
4714
4715 p += 2;
4716 if (lp->state == INITIALISED) {
4717 lp->ibn = 3;
4718 lp->active = *p++;
4719 if (MOTO_SROM_BUG) lp->active = 0;
4720 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4721 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4722 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4723 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4724 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4725 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4726 lp->phy[lp->active].mci = *p;
4727 return 0;
4728 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4729 lp->ibn = 3;
4730 lp->active = *p;
4731 if (MOTO_SROM_BUG) lp->active = 0;
4732 lp->infoblock_csr6 = OMR_MII_100;
4733 lp->useMII = true;
4734 lp->infoblock_media = ANS;
4735
4736 de4x5_switch_mac_port(dev);
4737 }
4738
4739 return dc2114x_autoconf(dev);
4740 }
4741
4742 static int
type4_infoblock(struct net_device * dev,u_char count,u_char * p)4743 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4744 {
4745 struct de4x5_private *lp = netdev_priv(dev);
4746 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4747
4748 /* Recursively figure out the info blocks */
4749 if (--count > lp->tcount) {
4750 if (*(p+len) < 128) {
4751 return dc_infoblock[COMPACT](dev, count, p+len);
4752 } else {
4753 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4754 }
4755 }
4756
4757 if ((lp->media == INIT) && (lp->timeout < 0)) {
4758 lp->ibn = 4;
4759 lp->active = 0;
4760 p+=2;
4761 lp->infoblock_media = (*p++) & MEDIA_CODE;
4762 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4763 lp->cache.csr14 = CSR14;
4764 lp->cache.csr15 = CSR15;
4765 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4766 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4767 csr6 = *p++;
4768 flags = *p++;
4769
4770 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4771 lp->defMedium = (flags & 0x40) ? -1 : 0;
4772 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4773 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4774 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4775 lp->useMII = false;
4776
4777 de4x5_switch_mac_port(dev);
4778 }
4779
4780 return dc2114x_autoconf(dev);
4781 }
4782
4783 /*
4784 ** This block type provides information for resetting external devices
4785 ** (chips) through the General Purpose Register.
4786 */
4787 static int
type5_infoblock(struct net_device * dev,u_char count,u_char * p)4788 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4789 {
4790 struct de4x5_private *lp = netdev_priv(dev);
4791 u_char len = (*p & BLOCK_LEN)+1;
4792
4793 /* Recursively figure out the info blocks */
4794 if (--count > lp->tcount) {
4795 if (*(p+len) < 128) {
4796 return dc_infoblock[COMPACT](dev, count, p+len);
4797 } else {
4798 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4799 }
4800 }
4801
4802 /* Must be initializing to run this code */
4803 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4804 p+=2;
4805 lp->rst = p;
4806 srom_exec(dev, lp->rst);
4807 }
4808
4809 return DE4X5_AUTOSENSE_MS;
4810 }
4811
4812 /*
4813 ** MII Read/Write
4814 */
4815
4816 static int
mii_rd(u_char phyreg,u_char phyaddr,u_long ioaddr)4817 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4818 {
4819 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4820 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4821 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4822 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4823 mii_address(phyreg, ioaddr); /* PHY Register to read */
4824 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4825
4826 return mii_rdata(ioaddr); /* Read data */
4827 }
4828
4829 static void
mii_wr(int data,u_char phyreg,u_char phyaddr,u_long ioaddr)4830 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4831 {
4832 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4833 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4834 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4835 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4836 mii_address(phyreg, ioaddr); /* PHY Register to write */
4837 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4838 data = mii_swap(data, 16); /* Swap data bit ordering */
4839 mii_wdata(data, 16, ioaddr); /* Write data */
4840 }
4841
4842 static int
mii_rdata(u_long ioaddr)4843 mii_rdata(u_long ioaddr)
4844 {
4845 int i;
4846 s32 tmp = 0;
4847
4848 for (i=0; i<16; i++) {
4849 tmp <<= 1;
4850 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4851 }
4852
4853 return tmp;
4854 }
4855
4856 static void
mii_wdata(int data,int len,u_long ioaddr)4857 mii_wdata(int data, int len, u_long ioaddr)
4858 {
4859 int i;
4860
4861 for (i=0; i<len; i++) {
4862 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4863 data >>= 1;
4864 }
4865 }
4866
4867 static void
mii_address(u_char addr,u_long ioaddr)4868 mii_address(u_char addr, u_long ioaddr)
4869 {
4870 int i;
4871
4872 addr = mii_swap(addr, 5);
4873 for (i=0; i<5; i++) {
4874 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4875 addr >>= 1;
4876 }
4877 }
4878
4879 static void
mii_ta(u_long rw,u_long ioaddr)4880 mii_ta(u_long rw, u_long ioaddr)
4881 {
4882 if (rw == MII_STWR) {
4883 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4884 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4885 } else {
4886 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4887 }
4888 }
4889
4890 static int
mii_swap(int data,int len)4891 mii_swap(int data, int len)
4892 {
4893 int i, tmp = 0;
4894
4895 for (i=0; i<len; i++) {
4896 tmp <<= 1;
4897 tmp |= (data & 1);
4898 data >>= 1;
4899 }
4900
4901 return tmp;
4902 }
4903
4904 static void
sendto_mii(u32 command,int data,u_long ioaddr)4905 sendto_mii(u32 command, int data, u_long ioaddr)
4906 {
4907 u32 j;
4908
4909 j = (data & 1) << 17;
4910 outl(command | j, ioaddr);
4911 udelay(1);
4912 outl(command | MII_MDC | j, ioaddr);
4913 udelay(1);
4914 }
4915
4916 static int
getfrom_mii(u32 command,u_long ioaddr)4917 getfrom_mii(u32 command, u_long ioaddr)
4918 {
4919 outl(command, ioaddr);
4920 udelay(1);
4921 outl(command | MII_MDC, ioaddr);
4922 udelay(1);
4923
4924 return (inl(ioaddr) >> 19) & 1;
4925 }
4926
4927 /*
4928 ** Here's 3 ways to calculate the OUI from the ID registers.
4929 */
4930 static int
mii_get_oui(u_char phyaddr,u_long ioaddr)4931 mii_get_oui(u_char phyaddr, u_long ioaddr)
4932 {
4933 /*
4934 union {
4935 u_short reg;
4936 u_char breg[2];
4937 } a;
4938 int i, r2, r3, ret=0;*/
4939 int r2, r3;
4940
4941 /* Read r2 and r3 */
4942 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4943 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4944 /* SEEQ and Cypress way * /
4945 / * Shuffle r2 and r3 * /
4946 a.reg=0;
4947 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4948 r2 = ((r2>>2)&0x3fff);
4949
4950 / * Bit reverse r3 * /
4951 for (i=0;i<8;i++) {
4952 ret<<=1;
4953 ret |= (r3&1);
4954 r3>>=1;
4955 }
4956
4957 / * Bit reverse r2 * /
4958 for (i=0;i<16;i++) {
4959 a.reg<<=1;
4960 a.reg |= (r2&1);
4961 r2>>=1;
4962 }
4963
4964 / * Swap r2 bytes * /
4965 i=a.breg[0];
4966 a.breg[0]=a.breg[1];
4967 a.breg[1]=i;
4968
4969 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4970 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4971 return r2; /* (I did it) My way */
4972 }
4973
4974 /*
4975 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4976 */
4977 static int
mii_get_phy(struct net_device * dev)4978 mii_get_phy(struct net_device *dev)
4979 {
4980 struct de4x5_private *lp = netdev_priv(dev);
4981 u_long iobase = dev->base_addr;
4982 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4983 int id;
4984
4985 lp->active = 0;
4986 lp->useMII = true;
4987
4988 /* Search the MII address space for possible PHY devices */
4989 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4990 lp->phy[lp->active].addr = i;
4991 if (i==0) n++; /* Count cycles */
4992 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4993 id = mii_get_oui(i, DE4X5_MII);
4994 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
4995 for (j=0; j<limit; j++) { /* Search PHY table */
4996 if (id != phy_info[j].id) continue; /* ID match? */
4997 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4998 if (k < DE4X5_MAX_PHY) {
4999 memcpy((char *)&lp->phy[k],
5000 (char *)&phy_info[j], sizeof(struct phy_table));
5001 lp->phy[k].addr = i;
5002 lp->mii_cnt++;
5003 lp->active++;
5004 } else {
5005 goto purgatory; /* Stop the search */
5006 }
5007 break;
5008 }
5009 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5010 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5011 lp->phy[k].addr = i;
5012 lp->phy[k].id = id;
5013 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5014 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5015 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5016 lp->mii_cnt++;
5017 lp->active++;
5018 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5019 j = de4x5_debug;
5020 de4x5_debug |= DEBUG_MII;
5021 de4x5_dbg_mii(dev, k);
5022 de4x5_debug = j;
5023 printk("\n");
5024 }
5025 }
5026 purgatory:
5027 lp->active = 0;
5028 if (lp->phy[0].id) { /* Reset the PHY devices */
5029 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5030 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5031 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5032
5033 de4x5_dbg_mii(dev, k);
5034 }
5035 }
5036 if (!lp->mii_cnt) lp->useMII = false;
5037
5038 return lp->mii_cnt;
5039 }
5040
5041 static char *
build_setup_frame(struct net_device * dev,int mode)5042 build_setup_frame(struct net_device *dev, int mode)
5043 {
5044 struct de4x5_private *lp = netdev_priv(dev);
5045 int i;
5046 char *pa = lp->setup_frame;
5047
5048 /* Initialise the setup frame */
5049 if (mode == ALL) {
5050 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5051 }
5052
5053 if (lp->setup_f == HASH_PERF) {
5054 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5055 *(pa + i) = dev->dev_addr[i]; /* Host address */
5056 if (i & 0x01) pa += 2;
5057 }
5058 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5059 } else {
5060 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5061 *(pa + (i&1)) = dev->dev_addr[i];
5062 if (i & 0x01) pa += 4;
5063 }
5064 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5065 *(pa + (i&1)) = (char) 0xff;
5066 if (i & 0x01) pa += 4;
5067 }
5068 }
5069
5070 return pa; /* Points to the next entry */
5071 }
5072
5073 static void
disable_ast(struct net_device * dev)5074 disable_ast(struct net_device *dev)
5075 {
5076 struct de4x5_private *lp = netdev_priv(dev);
5077 del_timer_sync(&lp->timer);
5078 }
5079
5080 static long
de4x5_switch_mac_port(struct net_device * dev)5081 de4x5_switch_mac_port(struct net_device *dev)
5082 {
5083 struct de4x5_private *lp = netdev_priv(dev);
5084 u_long iobase = dev->base_addr;
5085 s32 omr;
5086
5087 STOP_DE4X5;
5088
5089 /* Assert the OMR_PS bit in CSR6 */
5090 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5091 OMR_FDX));
5092 omr |= lp->infoblock_csr6;
5093 if (omr & OMR_PS) omr |= OMR_HBD;
5094 outl(omr, DE4X5_OMR);
5095
5096 /* Soft Reset */
5097 RESET_DE4X5;
5098
5099 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5100 if (lp->chipset == DC21140) {
5101 gep_wr(lp->cache.gepc, dev);
5102 gep_wr(lp->cache.gep, dev);
5103 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5104 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5105 }
5106
5107 /* Restore CSR6 */
5108 outl(omr, DE4X5_OMR);
5109
5110 /* Reset CSR8 */
5111 inl(DE4X5_MFC);
5112
5113 return omr;
5114 }
5115
5116 static void
gep_wr(s32 data,struct net_device * dev)5117 gep_wr(s32 data, struct net_device *dev)
5118 {
5119 struct de4x5_private *lp = netdev_priv(dev);
5120 u_long iobase = dev->base_addr;
5121
5122 if (lp->chipset == DC21140) {
5123 outl(data, DE4X5_GEP);
5124 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5125 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5126 }
5127 }
5128
5129 static int
gep_rd(struct net_device * dev)5130 gep_rd(struct net_device *dev)
5131 {
5132 struct de4x5_private *lp = netdev_priv(dev);
5133 u_long iobase = dev->base_addr;
5134
5135 if (lp->chipset == DC21140) {
5136 return inl(DE4X5_GEP);
5137 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5138 return inl(DE4X5_SIGR) & 0x000fffff;
5139 }
5140
5141 return 0;
5142 }
5143
5144 static void
yawn(struct net_device * dev,int state)5145 yawn(struct net_device *dev, int state)
5146 {
5147 struct de4x5_private *lp = netdev_priv(dev);
5148 u_long iobase = dev->base_addr;
5149
5150 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5151
5152 if(lp->bus == EISA) {
5153 switch(state) {
5154 case WAKEUP:
5155 outb(WAKEUP, PCI_CFPM);
5156 mdelay(10);
5157 break;
5158
5159 case SNOOZE:
5160 outb(SNOOZE, PCI_CFPM);
5161 break;
5162
5163 case SLEEP:
5164 outl(0, DE4X5_SICR);
5165 outb(SLEEP, PCI_CFPM);
5166 break;
5167 }
5168 } else {
5169 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5170 switch(state) {
5171 case WAKEUP:
5172 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5173 mdelay(10);
5174 break;
5175
5176 case SNOOZE:
5177 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5178 break;
5179
5180 case SLEEP:
5181 outl(0, DE4X5_SICR);
5182 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5183 break;
5184 }
5185 }
5186 }
5187
5188 static void
de4x5_parse_params(struct net_device * dev)5189 de4x5_parse_params(struct net_device *dev)
5190 {
5191 struct de4x5_private *lp = netdev_priv(dev);
5192 char *p, *q, t;
5193
5194 lp->params.fdx = false;
5195 lp->params.autosense = AUTO;
5196
5197 if (args == NULL) return;
5198
5199 if ((p = strstr(args, dev->name))) {
5200 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5201 t = *q;
5202 *q = '\0';
5203
5204 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5205
5206 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5207 if (strstr(p, "TP")) {
5208 lp->params.autosense = TP;
5209 } else if (strstr(p, "TP_NW")) {
5210 lp->params.autosense = TP_NW;
5211 } else if (strstr(p, "BNC")) {
5212 lp->params.autosense = BNC;
5213 } else if (strstr(p, "AUI")) {
5214 lp->params.autosense = AUI;
5215 } else if (strstr(p, "BNC_AUI")) {
5216 lp->params.autosense = BNC;
5217 } else if (strstr(p, "10Mb")) {
5218 lp->params.autosense = _10Mb;
5219 } else if (strstr(p, "100Mb")) {
5220 lp->params.autosense = _100Mb;
5221 } else if (strstr(p, "AUTO")) {
5222 lp->params.autosense = AUTO;
5223 }
5224 }
5225 *q = t;
5226 }
5227 }
5228
5229 static void
de4x5_dbg_open(struct net_device * dev)5230 de4x5_dbg_open(struct net_device *dev)
5231 {
5232 struct de4x5_private *lp = netdev_priv(dev);
5233 int i;
5234
5235 if (de4x5_debug & DEBUG_OPEN) {
5236 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5237 printk("\tphysical address: %pM\n", dev->dev_addr);
5238 printk("Descriptor head addresses:\n");
5239 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5240 printk("Descriptor addresses:\nRX: ");
5241 for (i=0;i<lp->rxRingSize-1;i++){
5242 if (i < 3) {
5243 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5244 }
5245 }
5246 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5247 printk("TX: ");
5248 for (i=0;i<lp->txRingSize-1;i++){
5249 if (i < 3) {
5250 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5251 }
5252 }
5253 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5254 printk("Descriptor buffers:\nRX: ");
5255 for (i=0;i<lp->rxRingSize-1;i++){
5256 if (i < 3) {
5257 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5258 }
5259 }
5260 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5261 printk("TX: ");
5262 for (i=0;i<lp->txRingSize-1;i++){
5263 if (i < 3) {
5264 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5265 }
5266 }
5267 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5268 printk("Ring size:\nRX: %d\nTX: %d\n",
5269 (short)lp->rxRingSize,
5270 (short)lp->txRingSize);
5271 }
5272 }
5273
5274 static void
de4x5_dbg_mii(struct net_device * dev,int k)5275 de4x5_dbg_mii(struct net_device *dev, int k)
5276 {
5277 struct de4x5_private *lp = netdev_priv(dev);
5278 u_long iobase = dev->base_addr;
5279
5280 if (de4x5_debug & DEBUG_MII) {
5281 printk("\nMII device address: %d\n", lp->phy[k].addr);
5282 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5283 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5284 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5285 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5286 if (lp->phy[k].id != BROADCOM_T4) {
5287 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5288 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5289 }
5290 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5291 if (lp->phy[k].id != BROADCOM_T4) {
5292 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5293 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5294 } else {
5295 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5296 }
5297 }
5298 }
5299
5300 static void
de4x5_dbg_media(struct net_device * dev)5301 de4x5_dbg_media(struct net_device *dev)
5302 {
5303 struct de4x5_private *lp = netdev_priv(dev);
5304
5305 if (lp->media != lp->c_media) {
5306 if (de4x5_debug & DEBUG_MEDIA) {
5307 printk("%s: media is %s%s\n", dev->name,
5308 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5309 (lp->media == TP ? "TP" :
5310 (lp->media == ANS ? "TP/Nway" :
5311 (lp->media == BNC ? "BNC" :
5312 (lp->media == AUI ? "AUI" :
5313 (lp->media == BNC_AUI ? "BNC/AUI" :
5314 (lp->media == EXT_SIA ? "EXT SIA" :
5315 (lp->media == _100Mb ? "100Mb/s" :
5316 (lp->media == _10Mb ? "10Mb/s" :
5317 "???"
5318 ))))))))), (lp->fdx?" full duplex.":"."));
5319 }
5320 lp->c_media = lp->media;
5321 }
5322 }
5323
5324 static void
de4x5_dbg_srom(struct de4x5_srom * p)5325 de4x5_dbg_srom(struct de4x5_srom *p)
5326 {
5327 int i;
5328
5329 if (de4x5_debug & DEBUG_SROM) {
5330 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5331 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5332 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5333 printk("SROM version: %02x\n", (u_char)(p->version));
5334 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5335
5336 printk("Hardware Address: %pM\n", p->ieee_addr);
5337 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5338 for (i=0; i<64; i++) {
5339 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5340 }
5341 }
5342 }
5343
5344 static void
de4x5_dbg_rx(struct sk_buff * skb,int len)5345 de4x5_dbg_rx(struct sk_buff *skb, int len)
5346 {
5347 int i, j;
5348
5349 if (de4x5_debug & DEBUG_RX) {
5350 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5351 skb->data, &skb->data[6],
5352 (u_char)skb->data[12],
5353 (u_char)skb->data[13],
5354 len);
5355 for (j=0; len>0;j+=16, len-=16) {
5356 printk(" %03x: ",j);
5357 for (i=0; i<16 && i<len; i++) {
5358 printk("%02x ",(u_char)skb->data[i+j]);
5359 }
5360 printk("\n");
5361 }
5362 }
5363 }
5364
5365 /*
5366 ** Perform IOCTL call functions here. Some are privileged operations and the
5367 ** effective uid is checked in those cases. In the normal course of events
5368 ** this function is only used for my testing.
5369 */
5370 static int
de4x5_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5371 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5372 {
5373 struct de4x5_private *lp = netdev_priv(dev);
5374 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5375 u_long iobase = dev->base_addr;
5376 int i, j, status = 0;
5377 s32 omr;
5378 union {
5379 u8 addr[144];
5380 u16 sval[72];
5381 u32 lval[36];
5382 } tmp;
5383 u_long flags = 0;
5384
5385 switch(ioc->cmd) {
5386 case DE4X5_GET_HWADDR: /* Get the hardware address */
5387 ioc->len = ETH_ALEN;
5388 for (i=0; i<ETH_ALEN; i++) {
5389 tmp.addr[i] = dev->dev_addr[i];
5390 }
5391 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5392 break;
5393
5394 case DE4X5_SET_HWADDR: /* Set the hardware address */
5395 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5396 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5397 if (netif_queue_stopped(dev))
5398 return -EBUSY;
5399 netif_stop_queue(dev);
5400 for (i=0; i<ETH_ALEN; i++) {
5401 dev->dev_addr[i] = tmp.addr[i];
5402 }
5403 build_setup_frame(dev, PHYS_ADDR_ONLY);
5404 /* Set up the descriptor and give ownership to the card */
5405 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5406 SETUP_FRAME_LEN, (struct sk_buff *)1);
5407 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5408 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5409 netif_wake_queue(dev); /* Unlock the TX ring */
5410 break;
5411
5412 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5413 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5414 printk("%s: Boo!\n", dev->name);
5415 break;
5416
5417 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5418 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5419 omr = inl(DE4X5_OMR);
5420 omr |= OMR_PM;
5421 outl(omr, DE4X5_OMR);
5422 break;
5423
5424 case DE4X5_GET_STATS: /* Get the driver statistics */
5425 {
5426 struct pkt_stats statbuf;
5427 ioc->len = sizeof(statbuf);
5428 spin_lock_irqsave(&lp->lock, flags);
5429 memcpy(&statbuf, &lp->pktStats, ioc->len);
5430 spin_unlock_irqrestore(&lp->lock, flags);
5431 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5432 return -EFAULT;
5433 break;
5434 }
5435 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5436 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5437 spin_lock_irqsave(&lp->lock, flags);
5438 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5439 spin_unlock_irqrestore(&lp->lock, flags);
5440 break;
5441
5442 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5443 tmp.addr[0] = inl(DE4X5_OMR);
5444 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5445 break;
5446
5447 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5448 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5449 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5450 outl(tmp.addr[0], DE4X5_OMR);
5451 break;
5452
5453 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5454 j = 0;
5455 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5456 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5457 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5458 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5459 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5460 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5461 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5462 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5463 ioc->len = j;
5464 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5465 return -EFAULT;
5466 break;
5467
5468 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5469 /*
5470 case DE4X5_DUMP:
5471 j = 0;
5472 tmp.addr[j++] = dev->irq;
5473 for (i=0; i<ETH_ALEN; i++) {
5474 tmp.addr[j++] = dev->dev_addr[i];
5475 }
5476 tmp.addr[j++] = lp->rxRingSize;
5477 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5478 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5479
5480 for (i=0;i<lp->rxRingSize-1;i++){
5481 if (i < 3) {
5482 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5483 }
5484 }
5485 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5486 for (i=0;i<lp->txRingSize-1;i++){
5487 if (i < 3) {
5488 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5489 }
5490 }
5491 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5492
5493 for (i=0;i<lp->rxRingSize-1;i++){
5494 if (i < 3) {
5495 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5496 }
5497 }
5498 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5499 for (i=0;i<lp->txRingSize-1;i++){
5500 if (i < 3) {
5501 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5502 }
5503 }
5504 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5505
5506 for (i=0;i<lp->rxRingSize;i++){
5507 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5508 }
5509 for (i=0;i<lp->txRingSize;i++){
5510 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5511 }
5512
5513 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5514 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5515 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5516 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5517 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5518 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5519 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5520 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5521 tmp.lval[j>>2] = lp->chipset; j+=4;
5522 if (lp->chipset == DC21140) {
5523 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5524 } else {
5525 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5526 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5527 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5528 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5529 }
5530 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5531 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5532 tmp.lval[j>>2] = lp->active; j+=4;
5533 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5534 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5535 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5537 if (lp->phy[lp->active].id != BROADCOM_T4) {
5538 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5539 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5540 }
5541 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5542 if (lp->phy[lp->active].id != BROADCOM_T4) {
5543 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5544 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5545 } else {
5546 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5547 }
5548 }
5549
5550 tmp.addr[j++] = lp->txRingSize;
5551 tmp.addr[j++] = netif_queue_stopped(dev);
5552
5553 ioc->len = j;
5554 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5555 break;
5556
5557 */
5558 default:
5559 return -EOPNOTSUPP;
5560 }
5561
5562 return status;
5563 }
5564
de4x5_module_init(void)5565 static int __init de4x5_module_init (void)
5566 {
5567 int err = 0;
5568
5569 #ifdef CONFIG_PCI
5570 err = pci_register_driver(&de4x5_pci_driver);
5571 #endif
5572 #ifdef CONFIG_EISA
5573 err |= eisa_driver_register (&de4x5_eisa_driver);
5574 #endif
5575
5576 return err;
5577 }
5578
de4x5_module_exit(void)5579 static void __exit de4x5_module_exit (void)
5580 {
5581 #ifdef CONFIG_PCI
5582 pci_unregister_driver (&de4x5_pci_driver);
5583 #endif
5584 #ifdef CONFIG_EISA
5585 eisa_driver_unregister (&de4x5_eisa_driver);
5586 #endif
5587 }
5588
5589 module_init (de4x5_module_init);
5590 module_exit (de4x5_module_exit);
5591