1 /******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29 #include <linux/etherdevice.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/sched.h>
34
35 #include "iwl-dev.h"
36 #include "iwl-core.h"
37 #include "iwl-io.h"
38 #include "iwl-agn-hw.h"
39 #include "iwl-agn.h"
40 #include "iwl-trans.h"
41 #include "iwl-shared.h"
42
iwlagn_hw_valid_rtc_data_addr(u32 addr)43 int iwlagn_hw_valid_rtc_data_addr(u32 addr)
44 {
45 return (addr >= IWLAGN_RTC_DATA_LOWER_BOUND) &&
46 (addr < IWLAGN_RTC_DATA_UPPER_BOUND);
47 }
48
iwlagn_send_tx_power(struct iwl_priv * priv)49 int iwlagn_send_tx_power(struct iwl_priv *priv)
50 {
51 struct iwlagn_tx_power_dbm_cmd tx_power_cmd;
52 u8 tx_ant_cfg_cmd;
53
54 if (WARN_ONCE(test_bit(STATUS_SCAN_HW, &priv->status),
55 "TX Power requested while scanning!\n"))
56 return -EAGAIN;
57
58 /* half dBm need to multiply */
59 tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
60
61 if (priv->tx_power_lmt_in_half_dbm &&
62 priv->tx_power_lmt_in_half_dbm < tx_power_cmd.global_lmt) {
63 /*
64 * For the newer devices which using enhanced/extend tx power
65 * table in EEPROM, the format is in half dBm. driver need to
66 * convert to dBm format before report to mac80211.
67 * By doing so, there is a possibility of 1/2 dBm resolution
68 * lost. driver will perform "round-up" operation before
69 * reporting, but it will cause 1/2 dBm tx power over the
70 * regulatory limit. Perform the checking here, if the
71 * "tx_power_user_lmt" is higher than EEPROM value (in
72 * half-dBm format), lower the tx power based on EEPROM
73 */
74 tx_power_cmd.global_lmt = priv->tx_power_lmt_in_half_dbm;
75 }
76 tx_power_cmd.flags = IWLAGN_TX_POWER_NO_CLOSED;
77 tx_power_cmd.srv_chan_lmt = IWLAGN_TX_POWER_AUTO;
78
79 if (IWL_UCODE_API(priv->fw->ucode_ver) == 1)
80 tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD_V1;
81 else
82 tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD;
83
84 return iwl_dvm_send_cmd_pdu(priv, tx_ant_cfg_cmd, CMD_SYNC,
85 sizeof(tx_power_cmd), &tx_power_cmd);
86 }
87
iwlagn_temperature(struct iwl_priv * priv)88 void iwlagn_temperature(struct iwl_priv *priv)
89 {
90 lockdep_assert_held(&priv->statistics.lock);
91
92 /* store temperature from correct statistics (in Celsius) */
93 priv->temperature = le32_to_cpu(priv->statistics.common.temperature);
94 iwl_tt_handler(priv);
95 }
96
iwl_eeprom_calib_version(struct iwl_shared * shrd)97 u16 iwl_eeprom_calib_version(struct iwl_shared *shrd)
98 {
99 struct iwl_eeprom_calib_hdr *hdr;
100
101 hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(shrd,
102 EEPROM_CALIB_ALL);
103 return hdr->version;
104
105 }
106
107 /*
108 * EEPROM
109 */
eeprom_indirect_address(const struct iwl_shared * shrd,u32 address)110 static u32 eeprom_indirect_address(const struct iwl_shared *shrd, u32 address)
111 {
112 u16 offset = 0;
113
114 if ((address & INDIRECT_ADDRESS) == 0)
115 return address;
116
117 switch (address & INDIRECT_TYPE_MSK) {
118 case INDIRECT_HOST:
119 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_HOST);
120 break;
121 case INDIRECT_GENERAL:
122 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_GENERAL);
123 break;
124 case INDIRECT_REGULATORY:
125 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_REGULATORY);
126 break;
127 case INDIRECT_TXP_LIMIT:
128 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_TXP_LIMIT);
129 break;
130 case INDIRECT_TXP_LIMIT_SIZE:
131 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_TXP_LIMIT_SIZE);
132 break;
133 case INDIRECT_CALIBRATION:
134 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_CALIBRATION);
135 break;
136 case INDIRECT_PROCESS_ADJST:
137 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_PROCESS_ADJST);
138 break;
139 case INDIRECT_OTHERS:
140 offset = iwl_eeprom_query16(shrd, EEPROM_LINK_OTHERS);
141 break;
142 default:
143 IWL_ERR(shrd->trans, "illegal indirect type: 0x%X\n",
144 address & INDIRECT_TYPE_MSK);
145 break;
146 }
147
148 /* translate the offset from words to byte */
149 return (address & ADDRESS_MSK) + (offset << 1);
150 }
151
iwl_eeprom_query_addr(const struct iwl_shared * shrd,size_t offset)152 const u8 *iwl_eeprom_query_addr(const struct iwl_shared *shrd, size_t offset)
153 {
154 u32 address = eeprom_indirect_address(shrd, offset);
155 BUG_ON(address >= shrd->cfg->base_params->eeprom_size);
156 return &shrd->eeprom[address];
157 }
158
159 struct iwl_mod_params iwlagn_mod_params = {
160 .amsdu_size_8K = 1,
161 .restart_fw = 1,
162 .plcp_check = true,
163 .bt_coex_active = true,
164 .no_sleep_autoadjust = true,
165 .power_level = IWL_POWER_INDEX_1,
166 .bt_ch_announce = true,
167 .wanted_ucode_alternative = 1,
168 .auto_agg = true,
169 /* the rest are 0 by default */
170 };
171
iwlagn_hwrate_to_mac80211_idx(u32 rate_n_flags,enum ieee80211_band band)172 int iwlagn_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band)
173 {
174 int idx = 0;
175 int band_offset = 0;
176
177 /* HT rate format: mac80211 wants an MCS number, which is just LSB */
178 if (rate_n_flags & RATE_MCS_HT_MSK) {
179 idx = (rate_n_flags & 0xff);
180 return idx;
181 /* Legacy rate format, search for match in table */
182 } else {
183 if (band == IEEE80211_BAND_5GHZ)
184 band_offset = IWL_FIRST_OFDM_RATE;
185 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++)
186 if (iwl_rates[idx].plcp == (rate_n_flags & 0xFF))
187 return idx - band_offset;
188 }
189
190 return -1;
191 }
192
iwlagn_manage_ibss_station(struct iwl_priv * priv,struct ieee80211_vif * vif,bool add)193 int iwlagn_manage_ibss_station(struct iwl_priv *priv,
194 struct ieee80211_vif *vif, bool add)
195 {
196 struct iwl_vif_priv *vif_priv = (void *)vif->drv_priv;
197
198 if (add)
199 return iwlagn_add_bssid_station(priv, vif_priv->ctx,
200 vif->bss_conf.bssid,
201 &vif_priv->ibss_bssid_sta_id);
202 return iwl_remove_station(priv, vif_priv->ibss_bssid_sta_id,
203 vif->bss_conf.bssid);
204 }
205
206 /**
207 * iwlagn_txfifo_flush: send REPLY_TXFIFO_FLUSH command to uCode
208 *
209 * pre-requirements:
210 * 1. acquire mutex before calling
211 * 2. make sure rf is on and not in exit state
212 */
iwlagn_txfifo_flush(struct iwl_priv * priv,u16 flush_control)213 int iwlagn_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
214 {
215 struct iwl_txfifo_flush_cmd flush_cmd;
216 struct iwl_host_cmd cmd = {
217 .id = REPLY_TXFIFO_FLUSH,
218 .len = { sizeof(struct iwl_txfifo_flush_cmd), },
219 .flags = CMD_SYNC,
220 .data = { &flush_cmd, },
221 };
222
223 might_sleep();
224
225 memset(&flush_cmd, 0, sizeof(flush_cmd));
226 if (flush_control & BIT(IWL_RXON_CTX_BSS))
227 flush_cmd.fifo_control = IWL_SCD_VO_MSK | IWL_SCD_VI_MSK |
228 IWL_SCD_BE_MSK | IWL_SCD_BK_MSK |
229 IWL_SCD_MGMT_MSK;
230 if ((flush_control & BIT(IWL_RXON_CTX_PAN)) &&
231 (priv->shrd->valid_contexts != BIT(IWL_RXON_CTX_BSS)))
232 flush_cmd.fifo_control |= IWL_PAN_SCD_VO_MSK |
233 IWL_PAN_SCD_VI_MSK | IWL_PAN_SCD_BE_MSK |
234 IWL_PAN_SCD_BK_MSK | IWL_PAN_SCD_MGMT_MSK |
235 IWL_PAN_SCD_MULTICAST_MSK;
236
237 if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE)
238 flush_cmd.fifo_control |= IWL_AGG_TX_QUEUE_MSK;
239
240 IWL_DEBUG_INFO(priv, "fifo queue control: 0X%x\n",
241 flush_cmd.fifo_control);
242 flush_cmd.flush_control = cpu_to_le16(flush_control);
243
244 return iwl_dvm_send_cmd(priv, &cmd);
245 }
246
iwlagn_dev_txfifo_flush(struct iwl_priv * priv,u16 flush_control)247 void iwlagn_dev_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
248 {
249 mutex_lock(&priv->mutex);
250 ieee80211_stop_queues(priv->hw);
251 if (iwlagn_txfifo_flush(priv, IWL_DROP_ALL)) {
252 IWL_ERR(priv, "flush request fail\n");
253 goto done;
254 }
255 IWL_DEBUG_INFO(priv, "wait transmit/flush all frames\n");
256 iwl_trans_wait_tx_queue_empty(trans(priv));
257 done:
258 ieee80211_wake_queues(priv->hw);
259 mutex_unlock(&priv->mutex);
260 }
261
262 /*
263 * BT coex
264 */
265 /*
266 * Macros to access the lookup table.
267 *
268 * The lookup table has 7 inputs: bt3_prio, bt3_txrx, bt_rf_act, wifi_req,
269 * wifi_prio, wifi_txrx and wifi_sh_ant_req.
270 *
271 * It has three outputs: WLAN_ACTIVE, WLAN_KILL and ANT_SWITCH
272 *
273 * The format is that "registers" 8 through 11 contain the WLAN_ACTIVE bits
274 * one after another in 32-bit registers, and "registers" 0 through 7 contain
275 * the WLAN_KILL and ANT_SWITCH bits interleaved (in that order).
276 *
277 * These macros encode that format.
278 */
279 #define LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, wifi_req, wifi_prio, \
280 wifi_txrx, wifi_sh_ant_req) \
281 (bt3_prio | (bt3_txrx << 1) | (bt_rf_act << 2) | (wifi_req << 3) | \
282 (wifi_prio << 4) | (wifi_txrx << 5) | (wifi_sh_ant_req << 6))
283
284 #define LUT_PTA_WLAN_ACTIVE_OP(lut, op, val) \
285 lut[8 + ((val) >> 5)] op (cpu_to_le32(BIT((val) & 0x1f)))
286 #define LUT_TEST_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
287 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
288 (!!(LUT_PTA_WLAN_ACTIVE_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, \
289 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
290 wifi_sh_ant_req))))
291 #define LUT_SET_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
292 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
293 LUT_PTA_WLAN_ACTIVE_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, \
294 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
295 wifi_sh_ant_req))
296 #define LUT_CLEAR_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, \
297 wifi_req, wifi_prio, wifi_txrx, \
298 wifi_sh_ant_req) \
299 LUT_PTA_WLAN_ACTIVE_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, \
300 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
301 wifi_sh_ant_req))
302
303 #define LUT_WLAN_KILL_OP(lut, op, val) \
304 lut[(val) >> 4] op (cpu_to_le32(BIT(((val) << 1) & 0x1e)))
305 #define LUT_TEST_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
306 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
307 (!!(LUT_WLAN_KILL_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
308 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))))
309 #define LUT_SET_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
310 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
311 LUT_WLAN_KILL_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
312 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
313 #define LUT_CLEAR_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
314 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
315 LUT_WLAN_KILL_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
316 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
317
318 #define LUT_ANT_SWITCH_OP(lut, op, val) \
319 lut[(val) >> 4] op (cpu_to_le32(BIT((((val) << 1) & 0x1e) + 1)))
320 #define LUT_TEST_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
321 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
322 (!!(LUT_ANT_SWITCH_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
323 wifi_req, wifi_prio, wifi_txrx, \
324 wifi_sh_ant_req))))
325 #define LUT_SET_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
326 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
327 LUT_ANT_SWITCH_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
328 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
329 #define LUT_CLEAR_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
330 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
331 LUT_ANT_SWITCH_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
332 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
333
334 static const __le32 iwlagn_def_3w_lookup[12] = {
335 cpu_to_le32(0xaaaaaaaa),
336 cpu_to_le32(0xaaaaaaaa),
337 cpu_to_le32(0xaeaaaaaa),
338 cpu_to_le32(0xaaaaaaaa),
339 cpu_to_le32(0xcc00ff28),
340 cpu_to_le32(0x0000aaaa),
341 cpu_to_le32(0xcc00aaaa),
342 cpu_to_le32(0x0000aaaa),
343 cpu_to_le32(0xc0004000),
344 cpu_to_le32(0x00004000),
345 cpu_to_le32(0xf0005000),
346 cpu_to_le32(0xf0005000),
347 };
348
349 static const __le32 iwlagn_concurrent_lookup[12] = {
350 cpu_to_le32(0xaaaaaaaa),
351 cpu_to_le32(0xaaaaaaaa),
352 cpu_to_le32(0xaaaaaaaa),
353 cpu_to_le32(0xaaaaaaaa),
354 cpu_to_le32(0xaaaaaaaa),
355 cpu_to_le32(0xaaaaaaaa),
356 cpu_to_le32(0xaaaaaaaa),
357 cpu_to_le32(0xaaaaaaaa),
358 cpu_to_le32(0x00000000),
359 cpu_to_le32(0x00000000),
360 cpu_to_le32(0x00000000),
361 cpu_to_le32(0x00000000),
362 };
363
iwlagn_send_advance_bt_config(struct iwl_priv * priv)364 void iwlagn_send_advance_bt_config(struct iwl_priv *priv)
365 {
366 struct iwl_basic_bt_cmd basic = {
367 .max_kill = IWLAGN_BT_MAX_KILL_DEFAULT,
368 .bt3_timer_t7_value = IWLAGN_BT3_T7_DEFAULT,
369 .bt3_prio_sample_time = IWLAGN_BT3_PRIO_SAMPLE_DEFAULT,
370 .bt3_timer_t2_value = IWLAGN_BT3_T2_DEFAULT,
371 };
372 struct iwl6000_bt_cmd bt_cmd_6000;
373 struct iwl2000_bt_cmd bt_cmd_2000;
374 int ret;
375
376 BUILD_BUG_ON(sizeof(iwlagn_def_3w_lookup) !=
377 sizeof(basic.bt3_lookup_table));
378
379 if (cfg(priv)->bt_params) {
380 if (cfg(priv)->bt_params->bt_session_2) {
381 bt_cmd_2000.prio_boost = cpu_to_le32(
382 cfg(priv)->bt_params->bt_prio_boost);
383 bt_cmd_2000.tx_prio_boost = 0;
384 bt_cmd_2000.rx_prio_boost = 0;
385 } else {
386 bt_cmd_6000.prio_boost =
387 cfg(priv)->bt_params->bt_prio_boost;
388 bt_cmd_6000.tx_prio_boost = 0;
389 bt_cmd_6000.rx_prio_boost = 0;
390 }
391 } else {
392 IWL_ERR(priv, "failed to construct BT Coex Config\n");
393 return;
394 }
395
396 basic.kill_ack_mask = priv->kill_ack_mask;
397 basic.kill_cts_mask = priv->kill_cts_mask;
398 basic.valid = priv->bt_valid;
399
400 /*
401 * Configure BT coex mode to "no coexistence" when the
402 * user disabled BT coexistence, we have no interface
403 * (might be in monitor mode), or the interface is in
404 * IBSS mode (no proper uCode support for coex then).
405 */
406 if (!iwlagn_mod_params.bt_coex_active ||
407 priv->iw_mode == NL80211_IFTYPE_ADHOC) {
408 basic.flags = IWLAGN_BT_FLAG_COEX_MODE_DISABLED;
409 } else {
410 basic.flags = IWLAGN_BT_FLAG_COEX_MODE_3W <<
411 IWLAGN_BT_FLAG_COEX_MODE_SHIFT;
412
413 if (!priv->bt_enable_pspoll)
414 basic.flags |= IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
415 else
416 basic.flags &= ~IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
417
418 if (priv->bt_ch_announce)
419 basic.flags |= IWLAGN_BT_FLAG_CHANNEL_INHIBITION;
420 IWL_DEBUG_COEX(priv, "BT coex flag: 0X%x\n", basic.flags);
421 }
422 priv->bt_enable_flag = basic.flags;
423 if (priv->bt_full_concurrent)
424 memcpy(basic.bt3_lookup_table, iwlagn_concurrent_lookup,
425 sizeof(iwlagn_concurrent_lookup));
426 else
427 memcpy(basic.bt3_lookup_table, iwlagn_def_3w_lookup,
428 sizeof(iwlagn_def_3w_lookup));
429
430 IWL_DEBUG_COEX(priv, "BT coex %s in %s mode\n",
431 basic.flags ? "active" : "disabled",
432 priv->bt_full_concurrent ?
433 "full concurrency" : "3-wire");
434
435 if (cfg(priv)->bt_params->bt_session_2) {
436 memcpy(&bt_cmd_2000.basic, &basic,
437 sizeof(basic));
438 ret = iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
439 CMD_SYNC, sizeof(bt_cmd_2000), &bt_cmd_2000);
440 } else {
441 memcpy(&bt_cmd_6000.basic, &basic,
442 sizeof(basic));
443 ret = iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
444 CMD_SYNC, sizeof(bt_cmd_6000), &bt_cmd_6000);
445 }
446 if (ret)
447 IWL_ERR(priv, "failed to send BT Coex Config\n");
448
449 }
450
iwlagn_bt_adjust_rssi_monitor(struct iwl_priv * priv,bool rssi_ena)451 void iwlagn_bt_adjust_rssi_monitor(struct iwl_priv *priv, bool rssi_ena)
452 {
453 struct iwl_rxon_context *ctx, *found_ctx = NULL;
454 bool found_ap = false;
455
456 lockdep_assert_held(&priv->mutex);
457
458 /* Check whether AP or GO mode is active. */
459 if (rssi_ena) {
460 for_each_context(priv, ctx) {
461 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_AP &&
462 iwl_is_associated_ctx(ctx)) {
463 found_ap = true;
464 break;
465 }
466 }
467 }
468
469 /*
470 * If disable was received or If GO/AP mode, disable RSSI
471 * measurements.
472 */
473 if (!rssi_ena || found_ap) {
474 if (priv->cur_rssi_ctx) {
475 ctx = priv->cur_rssi_ctx;
476 ieee80211_disable_rssi_reports(ctx->vif);
477 priv->cur_rssi_ctx = NULL;
478 }
479 return;
480 }
481
482 /*
483 * If rssi measurements need to be enabled, consider all cases now.
484 * Figure out how many contexts are active.
485 */
486 for_each_context(priv, ctx) {
487 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION &&
488 iwl_is_associated_ctx(ctx)) {
489 found_ctx = ctx;
490 break;
491 }
492 }
493
494 /*
495 * rssi monitor already enabled for the correct interface...nothing
496 * to do.
497 */
498 if (found_ctx == priv->cur_rssi_ctx)
499 return;
500
501 /*
502 * Figure out if rssi monitor is currently enabled, and needs
503 * to be changed. If rssi monitor is already enabled, disable
504 * it first else just enable rssi measurements on the
505 * interface found above.
506 */
507 if (priv->cur_rssi_ctx) {
508 ctx = priv->cur_rssi_ctx;
509 if (ctx->vif)
510 ieee80211_disable_rssi_reports(ctx->vif);
511 }
512
513 priv->cur_rssi_ctx = found_ctx;
514
515 if (!found_ctx)
516 return;
517
518 ieee80211_enable_rssi_reports(found_ctx->vif,
519 IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD,
520 IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD);
521 }
522
iwlagn_bt_traffic_is_sco(struct iwl_bt_uart_msg * uart_msg)523 static bool iwlagn_bt_traffic_is_sco(struct iwl_bt_uart_msg *uart_msg)
524 {
525 return BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3 >>
526 BT_UART_MSG_FRAME3SCOESCO_POS;
527 }
528
iwlagn_bt_traffic_change_work(struct work_struct * work)529 static void iwlagn_bt_traffic_change_work(struct work_struct *work)
530 {
531 struct iwl_priv *priv =
532 container_of(work, struct iwl_priv, bt_traffic_change_work);
533 struct iwl_rxon_context *ctx;
534 int smps_request = -1;
535
536 if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
537 /* bt coex disabled */
538 return;
539 }
540
541 /*
542 * Note: bt_traffic_load can be overridden by scan complete and
543 * coex profile notifications. Ignore that since only bad consequence
544 * can be not matching debug print with actual state.
545 */
546 IWL_DEBUG_COEX(priv, "BT traffic load changes: %d\n",
547 priv->bt_traffic_load);
548
549 switch (priv->bt_traffic_load) {
550 case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
551 if (priv->bt_status)
552 smps_request = IEEE80211_SMPS_DYNAMIC;
553 else
554 smps_request = IEEE80211_SMPS_AUTOMATIC;
555 break;
556 case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
557 smps_request = IEEE80211_SMPS_DYNAMIC;
558 break;
559 case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
560 case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
561 smps_request = IEEE80211_SMPS_STATIC;
562 break;
563 default:
564 IWL_ERR(priv, "Invalid BT traffic load: %d\n",
565 priv->bt_traffic_load);
566 break;
567 }
568
569 mutex_lock(&priv->mutex);
570
571 /*
572 * We can not send command to firmware while scanning. When the scan
573 * complete we will schedule this work again. We do check with mutex
574 * locked to prevent new scan request to arrive. We do not check
575 * STATUS_SCANNING to avoid race when queue_work two times from
576 * different notifications, but quit and not perform any work at all.
577 */
578 if (test_bit(STATUS_SCAN_HW, &priv->status))
579 goto out;
580
581 iwl_update_chain_flags(priv);
582
583 if (smps_request != -1) {
584 priv->current_ht_config.smps = smps_request;
585 for_each_context(priv, ctx) {
586 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION)
587 ieee80211_request_smps(ctx->vif, smps_request);
588 }
589 }
590
591 /*
592 * Dynamic PS poll related functionality. Adjust RSSI measurements if
593 * necessary.
594 */
595 iwlagn_bt_coex_rssi_monitor(priv);
596 out:
597 mutex_unlock(&priv->mutex);
598 }
599
600 /*
601 * If BT sco traffic, and RSSI monitor is enabled, move measurements to the
602 * correct interface or disable it if this is the last interface to be
603 * removed.
604 */
iwlagn_bt_coex_rssi_monitor(struct iwl_priv * priv)605 void iwlagn_bt_coex_rssi_monitor(struct iwl_priv *priv)
606 {
607 if (priv->bt_is_sco &&
608 priv->bt_traffic_load == IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS)
609 iwlagn_bt_adjust_rssi_monitor(priv, true);
610 else
611 iwlagn_bt_adjust_rssi_monitor(priv, false);
612 }
613
iwlagn_print_uartmsg(struct iwl_priv * priv,struct iwl_bt_uart_msg * uart_msg)614 static void iwlagn_print_uartmsg(struct iwl_priv *priv,
615 struct iwl_bt_uart_msg *uart_msg)
616 {
617 IWL_DEBUG_COEX(priv, "Message Type = 0x%X, SSN = 0x%X, "
618 "Update Req = 0x%X",
619 (BT_UART_MSG_FRAME1MSGTYPE_MSK & uart_msg->frame1) >>
620 BT_UART_MSG_FRAME1MSGTYPE_POS,
621 (BT_UART_MSG_FRAME1SSN_MSK & uart_msg->frame1) >>
622 BT_UART_MSG_FRAME1SSN_POS,
623 (BT_UART_MSG_FRAME1UPDATEREQ_MSK & uart_msg->frame1) >>
624 BT_UART_MSG_FRAME1UPDATEREQ_POS);
625
626 IWL_DEBUG_COEX(priv, "Open connections = 0x%X, Traffic load = 0x%X, "
627 "Chl_SeqN = 0x%X, In band = 0x%X",
628 (BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK & uart_msg->frame2) >>
629 BT_UART_MSG_FRAME2OPENCONNECTIONS_POS,
630 (BT_UART_MSG_FRAME2TRAFFICLOAD_MSK & uart_msg->frame2) >>
631 BT_UART_MSG_FRAME2TRAFFICLOAD_POS,
632 (BT_UART_MSG_FRAME2CHLSEQN_MSK & uart_msg->frame2) >>
633 BT_UART_MSG_FRAME2CHLSEQN_POS,
634 (BT_UART_MSG_FRAME2INBAND_MSK & uart_msg->frame2) >>
635 BT_UART_MSG_FRAME2INBAND_POS);
636
637 IWL_DEBUG_COEX(priv, "SCO/eSCO = 0x%X, Sniff = 0x%X, A2DP = 0x%X, "
638 "ACL = 0x%X, Master = 0x%X, OBEX = 0x%X",
639 (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3) >>
640 BT_UART_MSG_FRAME3SCOESCO_POS,
641 (BT_UART_MSG_FRAME3SNIFF_MSK & uart_msg->frame3) >>
642 BT_UART_MSG_FRAME3SNIFF_POS,
643 (BT_UART_MSG_FRAME3A2DP_MSK & uart_msg->frame3) >>
644 BT_UART_MSG_FRAME3A2DP_POS,
645 (BT_UART_MSG_FRAME3ACL_MSK & uart_msg->frame3) >>
646 BT_UART_MSG_FRAME3ACL_POS,
647 (BT_UART_MSG_FRAME3MASTER_MSK & uart_msg->frame3) >>
648 BT_UART_MSG_FRAME3MASTER_POS,
649 (BT_UART_MSG_FRAME3OBEX_MSK & uart_msg->frame3) >>
650 BT_UART_MSG_FRAME3OBEX_POS);
651
652 IWL_DEBUG_COEX(priv, "Idle duration = 0x%X",
653 (BT_UART_MSG_FRAME4IDLEDURATION_MSK & uart_msg->frame4) >>
654 BT_UART_MSG_FRAME4IDLEDURATION_POS);
655
656 IWL_DEBUG_COEX(priv, "Tx Activity = 0x%X, Rx Activity = 0x%X, "
657 "eSCO Retransmissions = 0x%X",
658 (BT_UART_MSG_FRAME5TXACTIVITY_MSK & uart_msg->frame5) >>
659 BT_UART_MSG_FRAME5TXACTIVITY_POS,
660 (BT_UART_MSG_FRAME5RXACTIVITY_MSK & uart_msg->frame5) >>
661 BT_UART_MSG_FRAME5RXACTIVITY_POS,
662 (BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK & uart_msg->frame5) >>
663 BT_UART_MSG_FRAME5ESCORETRANSMIT_POS);
664
665 IWL_DEBUG_COEX(priv, "Sniff Interval = 0x%X, Discoverable = 0x%X",
666 (BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK & uart_msg->frame6) >>
667 BT_UART_MSG_FRAME6SNIFFINTERVAL_POS,
668 (BT_UART_MSG_FRAME6DISCOVERABLE_MSK & uart_msg->frame6) >>
669 BT_UART_MSG_FRAME6DISCOVERABLE_POS);
670
671 IWL_DEBUG_COEX(priv, "Sniff Activity = 0x%X, Page = "
672 "0x%X, Inquiry = 0x%X, Connectable = 0x%X",
673 (BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK & uart_msg->frame7) >>
674 BT_UART_MSG_FRAME7SNIFFACTIVITY_POS,
675 (BT_UART_MSG_FRAME7PAGE_MSK & uart_msg->frame7) >>
676 BT_UART_MSG_FRAME7PAGE_POS,
677 (BT_UART_MSG_FRAME7INQUIRY_MSK & uart_msg->frame7) >>
678 BT_UART_MSG_FRAME7INQUIRY_POS,
679 (BT_UART_MSG_FRAME7CONNECTABLE_MSK & uart_msg->frame7) >>
680 BT_UART_MSG_FRAME7CONNECTABLE_POS);
681 }
682
iwlagn_set_kill_msk(struct iwl_priv * priv,struct iwl_bt_uart_msg * uart_msg)683 static void iwlagn_set_kill_msk(struct iwl_priv *priv,
684 struct iwl_bt_uart_msg *uart_msg)
685 {
686 u8 kill_msk;
687 static const __le32 bt_kill_ack_msg[2] = {
688 IWLAGN_BT_KILL_ACK_MASK_DEFAULT,
689 IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
690 static const __le32 bt_kill_cts_msg[2] = {
691 IWLAGN_BT_KILL_CTS_MASK_DEFAULT,
692 IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
693
694 kill_msk = (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3)
695 ? 1 : 0;
696 if (priv->kill_ack_mask != bt_kill_ack_msg[kill_msk] ||
697 priv->kill_cts_mask != bt_kill_cts_msg[kill_msk]) {
698 priv->bt_valid |= IWLAGN_BT_VALID_KILL_ACK_MASK;
699 priv->kill_ack_mask = bt_kill_ack_msg[kill_msk];
700 priv->bt_valid |= IWLAGN_BT_VALID_KILL_CTS_MASK;
701 priv->kill_cts_mask = bt_kill_cts_msg[kill_msk];
702
703 /* schedule to send runtime bt_config */
704 queue_work(priv->workqueue, &priv->bt_runtime_config);
705 }
706 }
707
iwlagn_bt_coex_profile_notif(struct iwl_priv * priv,struct iwl_rx_cmd_buffer * rxb,struct iwl_device_cmd * cmd)708 int iwlagn_bt_coex_profile_notif(struct iwl_priv *priv,
709 struct iwl_rx_cmd_buffer *rxb,
710 struct iwl_device_cmd *cmd)
711 {
712 struct iwl_rx_packet *pkt = rxb_addr(rxb);
713 struct iwl_bt_coex_profile_notif *coex = (void *)pkt->data;
714 struct iwl_bt_uart_msg *uart_msg = &coex->last_bt_uart_msg;
715
716 if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
717 /* bt coex disabled */
718 return 0;
719 }
720
721 IWL_DEBUG_COEX(priv, "BT Coex notification:\n");
722 IWL_DEBUG_COEX(priv, " status: %d\n", coex->bt_status);
723 IWL_DEBUG_COEX(priv, " traffic load: %d\n", coex->bt_traffic_load);
724 IWL_DEBUG_COEX(priv, " CI compliance: %d\n",
725 coex->bt_ci_compliance);
726 iwlagn_print_uartmsg(priv, uart_msg);
727
728 priv->last_bt_traffic_load = priv->bt_traffic_load;
729 priv->bt_is_sco = iwlagn_bt_traffic_is_sco(uart_msg);
730
731 if (priv->iw_mode != NL80211_IFTYPE_ADHOC) {
732 if (priv->bt_status != coex->bt_status ||
733 priv->last_bt_traffic_load != coex->bt_traffic_load) {
734 if (coex->bt_status) {
735 /* BT on */
736 if (!priv->bt_ch_announce)
737 priv->bt_traffic_load =
738 IWL_BT_COEX_TRAFFIC_LOAD_HIGH;
739 else
740 priv->bt_traffic_load =
741 coex->bt_traffic_load;
742 } else {
743 /* BT off */
744 priv->bt_traffic_load =
745 IWL_BT_COEX_TRAFFIC_LOAD_NONE;
746 }
747 priv->bt_status = coex->bt_status;
748 queue_work(priv->workqueue,
749 &priv->bt_traffic_change_work);
750 }
751 }
752
753 iwlagn_set_kill_msk(priv, uart_msg);
754
755 /* FIXME: based on notification, adjust the prio_boost */
756
757 priv->bt_ci_compliance = coex->bt_ci_compliance;
758 return 0;
759 }
760
iwlagn_bt_rx_handler_setup(struct iwl_priv * priv)761 void iwlagn_bt_rx_handler_setup(struct iwl_priv *priv)
762 {
763 priv->rx_handlers[REPLY_BT_COEX_PROFILE_NOTIF] =
764 iwlagn_bt_coex_profile_notif;
765 }
766
iwlagn_bt_setup_deferred_work(struct iwl_priv * priv)767 void iwlagn_bt_setup_deferred_work(struct iwl_priv *priv)
768 {
769 INIT_WORK(&priv->bt_traffic_change_work,
770 iwlagn_bt_traffic_change_work);
771 }
772
iwlagn_bt_cancel_deferred_work(struct iwl_priv * priv)773 void iwlagn_bt_cancel_deferred_work(struct iwl_priv *priv)
774 {
775 cancel_work_sync(&priv->bt_traffic_change_work);
776 }
777
is_single_rx_stream(struct iwl_priv * priv)778 static bool is_single_rx_stream(struct iwl_priv *priv)
779 {
780 return priv->current_ht_config.smps == IEEE80211_SMPS_STATIC ||
781 priv->current_ht_config.single_chain_sufficient;
782 }
783
784 #define IWL_NUM_RX_CHAINS_MULTIPLE 3
785 #define IWL_NUM_RX_CHAINS_SINGLE 2
786 #define IWL_NUM_IDLE_CHAINS_DUAL 2
787 #define IWL_NUM_IDLE_CHAINS_SINGLE 1
788
789 /*
790 * Determine how many receiver/antenna chains to use.
791 *
792 * More provides better reception via diversity. Fewer saves power
793 * at the expense of throughput, but only when not in powersave to
794 * start with.
795 *
796 * MIMO (dual stream) requires at least 2, but works better with 3.
797 * This does not determine *which* chains to use, just how many.
798 */
iwl_get_active_rx_chain_count(struct iwl_priv * priv)799 static int iwl_get_active_rx_chain_count(struct iwl_priv *priv)
800 {
801 if (cfg(priv)->bt_params &&
802 cfg(priv)->bt_params->advanced_bt_coexist &&
803 (priv->bt_full_concurrent ||
804 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
805 /*
806 * only use chain 'A' in bt high traffic load or
807 * full concurrency mode
808 */
809 return IWL_NUM_RX_CHAINS_SINGLE;
810 }
811 /* # of Rx chains to use when expecting MIMO. */
812 if (is_single_rx_stream(priv))
813 return IWL_NUM_RX_CHAINS_SINGLE;
814 else
815 return IWL_NUM_RX_CHAINS_MULTIPLE;
816 }
817
818 /*
819 * When we are in power saving mode, unless device support spatial
820 * multiplexing power save, use the active count for rx chain count.
821 */
iwl_get_idle_rx_chain_count(struct iwl_priv * priv,int active_cnt)822 static int iwl_get_idle_rx_chain_count(struct iwl_priv *priv, int active_cnt)
823 {
824 /* # Rx chains when idling, depending on SMPS mode */
825 switch (priv->current_ht_config.smps) {
826 case IEEE80211_SMPS_STATIC:
827 case IEEE80211_SMPS_DYNAMIC:
828 return IWL_NUM_IDLE_CHAINS_SINGLE;
829 case IEEE80211_SMPS_AUTOMATIC:
830 case IEEE80211_SMPS_OFF:
831 return active_cnt;
832 default:
833 WARN(1, "invalid SMPS mode %d",
834 priv->current_ht_config.smps);
835 return active_cnt;
836 }
837 }
838
839 /* up to 4 chains */
iwl_count_chain_bitmap(u32 chain_bitmap)840 static u8 iwl_count_chain_bitmap(u32 chain_bitmap)
841 {
842 u8 res;
843 res = (chain_bitmap & BIT(0)) >> 0;
844 res += (chain_bitmap & BIT(1)) >> 1;
845 res += (chain_bitmap & BIT(2)) >> 2;
846 res += (chain_bitmap & BIT(3)) >> 3;
847 return res;
848 }
849
850 /**
851 * iwlagn_set_rxon_chain - Set up Rx chain usage in "staging" RXON image
852 *
853 * Selects how many and which Rx receivers/antennas/chains to use.
854 * This should not be used for scan command ... it puts data in wrong place.
855 */
iwlagn_set_rxon_chain(struct iwl_priv * priv,struct iwl_rxon_context * ctx)856 void iwlagn_set_rxon_chain(struct iwl_priv *priv, struct iwl_rxon_context *ctx)
857 {
858 bool is_single = is_single_rx_stream(priv);
859 bool is_cam = !test_bit(STATUS_POWER_PMI, &priv->shrd->status);
860 u8 idle_rx_cnt, active_rx_cnt, valid_rx_cnt;
861 u32 active_chains;
862 u16 rx_chain;
863
864 /* Tell uCode which antennas are actually connected.
865 * Before first association, we assume all antennas are connected.
866 * Just after first association, iwl_chain_noise_calibration()
867 * checks which antennas actually *are* connected. */
868 if (priv->chain_noise_data.active_chains)
869 active_chains = priv->chain_noise_data.active_chains;
870 else
871 active_chains = hw_params(priv).valid_rx_ant;
872
873 if (cfg(priv)->bt_params &&
874 cfg(priv)->bt_params->advanced_bt_coexist &&
875 (priv->bt_full_concurrent ||
876 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
877 /*
878 * only use chain 'A' in bt high traffic load or
879 * full concurrency mode
880 */
881 active_chains = first_antenna(active_chains);
882 }
883
884 rx_chain = active_chains << RXON_RX_CHAIN_VALID_POS;
885
886 /* How many receivers should we use? */
887 active_rx_cnt = iwl_get_active_rx_chain_count(priv);
888 idle_rx_cnt = iwl_get_idle_rx_chain_count(priv, active_rx_cnt);
889
890
891 /* correct rx chain count according hw settings
892 * and chain noise calibration
893 */
894 valid_rx_cnt = iwl_count_chain_bitmap(active_chains);
895 if (valid_rx_cnt < active_rx_cnt)
896 active_rx_cnt = valid_rx_cnt;
897
898 if (valid_rx_cnt < idle_rx_cnt)
899 idle_rx_cnt = valid_rx_cnt;
900
901 rx_chain |= active_rx_cnt << RXON_RX_CHAIN_MIMO_CNT_POS;
902 rx_chain |= idle_rx_cnt << RXON_RX_CHAIN_CNT_POS;
903
904 ctx->staging.rx_chain = cpu_to_le16(rx_chain);
905
906 if (!is_single && (active_rx_cnt >= IWL_NUM_RX_CHAINS_SINGLE) && is_cam)
907 ctx->staging.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK;
908 else
909 ctx->staging.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK;
910
911 IWL_DEBUG_ASSOC(priv, "rx_chain=0x%X active=%d idle=%d\n",
912 ctx->staging.rx_chain,
913 active_rx_cnt, idle_rx_cnt);
914
915 WARN_ON(active_rx_cnt == 0 || idle_rx_cnt == 0 ||
916 active_rx_cnt < idle_rx_cnt);
917 }
918
iwl_toggle_tx_ant(struct iwl_priv * priv,u8 ant,u8 valid)919 u8 iwl_toggle_tx_ant(struct iwl_priv *priv, u8 ant, u8 valid)
920 {
921 int i;
922 u8 ind = ant;
923
924 if (priv->band == IEEE80211_BAND_2GHZ &&
925 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)
926 return 0;
927
928 for (i = 0; i < RATE_ANT_NUM - 1; i++) {
929 ind = (ind + 1) < RATE_ANT_NUM ? ind + 1 : 0;
930 if (valid & BIT(ind))
931 return ind;
932 }
933 return ant;
934 }
935
936 #ifdef CONFIG_PM_SLEEP
iwlagn_convert_p1k(u16 * p1k,__le16 * out)937 static void iwlagn_convert_p1k(u16 *p1k, __le16 *out)
938 {
939 int i;
940
941 for (i = 0; i < IWLAGN_P1K_SIZE; i++)
942 out[i] = cpu_to_le16(p1k[i]);
943 }
944
945 struct wowlan_key_data {
946 struct iwl_rxon_context *ctx;
947 struct iwlagn_wowlan_rsc_tsc_params_cmd *rsc_tsc;
948 struct iwlagn_wowlan_tkip_params_cmd *tkip;
949 const u8 *bssid;
950 bool error, use_rsc_tsc, use_tkip;
951 };
952
953
iwlagn_wowlan_program_keys(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * _data)954 static void iwlagn_wowlan_program_keys(struct ieee80211_hw *hw,
955 struct ieee80211_vif *vif,
956 struct ieee80211_sta *sta,
957 struct ieee80211_key_conf *key,
958 void *_data)
959 {
960 struct iwl_priv *priv = IWL_MAC80211_GET_DVM(hw);
961 struct wowlan_key_data *data = _data;
962 struct iwl_rxon_context *ctx = data->ctx;
963 struct aes_sc *aes_sc, *aes_tx_sc = NULL;
964 struct tkip_sc *tkip_sc, *tkip_tx_sc = NULL;
965 struct iwlagn_p1k_cache *rx_p1ks;
966 u8 *rx_mic_key;
967 struct ieee80211_key_seq seq;
968 u32 cur_rx_iv32 = 0;
969 u16 p1k[IWLAGN_P1K_SIZE];
970 int ret, i;
971
972 mutex_lock(&priv->mutex);
973
974 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
975 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
976 !sta && !ctx->key_mapping_keys)
977 ret = iwl_set_default_wep_key(priv, ctx, key);
978 else
979 ret = iwl_set_dynamic_key(priv, ctx, key, sta);
980
981 if (ret) {
982 IWL_ERR(priv, "Error setting key during suspend!\n");
983 data->error = true;
984 }
985
986 switch (key->cipher) {
987 case WLAN_CIPHER_SUITE_TKIP:
988 if (sta) {
989 tkip_sc = data->rsc_tsc->all_tsc_rsc.tkip.unicast_rsc;
990 tkip_tx_sc = &data->rsc_tsc->all_tsc_rsc.tkip.tsc;
991
992 rx_p1ks = data->tkip->rx_uni;
993
994 ieee80211_get_key_tx_seq(key, &seq);
995 tkip_tx_sc->iv16 = cpu_to_le16(seq.tkip.iv16);
996 tkip_tx_sc->iv32 = cpu_to_le32(seq.tkip.iv32);
997
998 ieee80211_get_tkip_p1k_iv(key, seq.tkip.iv32, p1k);
999 iwlagn_convert_p1k(p1k, data->tkip->tx.p1k);
1000
1001 memcpy(data->tkip->mic_keys.tx,
1002 &key->key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY],
1003 IWLAGN_MIC_KEY_SIZE);
1004
1005 rx_mic_key = data->tkip->mic_keys.rx_unicast;
1006 } else {
1007 tkip_sc =
1008 data->rsc_tsc->all_tsc_rsc.tkip.multicast_rsc;
1009 rx_p1ks = data->tkip->rx_multi;
1010 rx_mic_key = data->tkip->mic_keys.rx_mcast;
1011 }
1012
1013 /*
1014 * For non-QoS this relies on the fact that both the uCode and
1015 * mac80211 use TID 0 (as they need to to avoid replay attacks)
1016 * for checking the IV in the frames.
1017 */
1018 for (i = 0; i < IWLAGN_NUM_RSC; i++) {
1019 ieee80211_get_key_rx_seq(key, i, &seq);
1020 tkip_sc[i].iv16 = cpu_to_le16(seq.tkip.iv16);
1021 tkip_sc[i].iv32 = cpu_to_le32(seq.tkip.iv32);
1022 /* wrapping isn't allowed, AP must rekey */
1023 if (seq.tkip.iv32 > cur_rx_iv32)
1024 cur_rx_iv32 = seq.tkip.iv32;
1025 }
1026
1027 ieee80211_get_tkip_rx_p1k(key, data->bssid, cur_rx_iv32, p1k);
1028 iwlagn_convert_p1k(p1k, rx_p1ks[0].p1k);
1029 ieee80211_get_tkip_rx_p1k(key, data->bssid,
1030 cur_rx_iv32 + 1, p1k);
1031 iwlagn_convert_p1k(p1k, rx_p1ks[1].p1k);
1032
1033 memcpy(rx_mic_key,
1034 &key->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY],
1035 IWLAGN_MIC_KEY_SIZE);
1036
1037 data->use_tkip = true;
1038 data->use_rsc_tsc = true;
1039 break;
1040 case WLAN_CIPHER_SUITE_CCMP:
1041 if (sta) {
1042 u8 *pn = seq.ccmp.pn;
1043
1044 aes_sc = data->rsc_tsc->all_tsc_rsc.aes.unicast_rsc;
1045 aes_tx_sc = &data->rsc_tsc->all_tsc_rsc.aes.tsc;
1046
1047 ieee80211_get_key_tx_seq(key, &seq);
1048 aes_tx_sc->pn = cpu_to_le64(
1049 (u64)pn[5] |
1050 ((u64)pn[4] << 8) |
1051 ((u64)pn[3] << 16) |
1052 ((u64)pn[2] << 24) |
1053 ((u64)pn[1] << 32) |
1054 ((u64)pn[0] << 40));
1055 } else
1056 aes_sc = data->rsc_tsc->all_tsc_rsc.aes.multicast_rsc;
1057
1058 /*
1059 * For non-QoS this relies on the fact that both the uCode and
1060 * mac80211 use TID 0 for checking the IV in the frames.
1061 */
1062 for (i = 0; i < IWLAGN_NUM_RSC; i++) {
1063 u8 *pn = seq.ccmp.pn;
1064
1065 ieee80211_get_key_rx_seq(key, i, &seq);
1066 aes_sc->pn = cpu_to_le64(
1067 (u64)pn[5] |
1068 ((u64)pn[4] << 8) |
1069 ((u64)pn[3] << 16) |
1070 ((u64)pn[2] << 24) |
1071 ((u64)pn[1] << 32) |
1072 ((u64)pn[0] << 40));
1073 }
1074 data->use_rsc_tsc = true;
1075 break;
1076 }
1077
1078 mutex_unlock(&priv->mutex);
1079 }
1080
iwlagn_send_patterns(struct iwl_priv * priv,struct cfg80211_wowlan * wowlan)1081 int iwlagn_send_patterns(struct iwl_priv *priv,
1082 struct cfg80211_wowlan *wowlan)
1083 {
1084 struct iwlagn_wowlan_patterns_cmd *pattern_cmd;
1085 struct iwl_host_cmd cmd = {
1086 .id = REPLY_WOWLAN_PATTERNS,
1087 .dataflags[0] = IWL_HCMD_DFL_NOCOPY,
1088 .flags = CMD_SYNC,
1089 };
1090 int i, err;
1091
1092 if (!wowlan->n_patterns)
1093 return 0;
1094
1095 cmd.len[0] = sizeof(*pattern_cmd) +
1096 wowlan->n_patterns * sizeof(struct iwlagn_wowlan_pattern);
1097
1098 pattern_cmd = kmalloc(cmd.len[0], GFP_KERNEL);
1099 if (!pattern_cmd)
1100 return -ENOMEM;
1101
1102 pattern_cmd->n_patterns = cpu_to_le32(wowlan->n_patterns);
1103
1104 for (i = 0; i < wowlan->n_patterns; i++) {
1105 int mask_len = DIV_ROUND_UP(wowlan->patterns[i].pattern_len, 8);
1106
1107 memcpy(&pattern_cmd->patterns[i].mask,
1108 wowlan->patterns[i].mask, mask_len);
1109 memcpy(&pattern_cmd->patterns[i].pattern,
1110 wowlan->patterns[i].pattern,
1111 wowlan->patterns[i].pattern_len);
1112 pattern_cmd->patterns[i].mask_size = mask_len;
1113 pattern_cmd->patterns[i].pattern_size =
1114 wowlan->patterns[i].pattern_len;
1115 }
1116
1117 cmd.data[0] = pattern_cmd;
1118 err = iwl_dvm_send_cmd(priv, &cmd);
1119 kfree(pattern_cmd);
1120 return err;
1121 }
1122
iwlagn_suspend(struct iwl_priv * priv,struct cfg80211_wowlan * wowlan)1123 int iwlagn_suspend(struct iwl_priv *priv, struct cfg80211_wowlan *wowlan)
1124 {
1125 struct iwlagn_wowlan_wakeup_filter_cmd wakeup_filter_cmd;
1126 struct iwl_rxon_cmd rxon;
1127 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
1128 struct iwlagn_wowlan_kek_kck_material_cmd kek_kck_cmd;
1129 struct iwlagn_wowlan_tkip_params_cmd tkip_cmd = {};
1130 struct iwlagn_d3_config_cmd d3_cfg_cmd = {};
1131 struct wowlan_key_data key_data = {
1132 .ctx = ctx,
1133 .bssid = ctx->active.bssid_addr,
1134 .use_rsc_tsc = false,
1135 .tkip = &tkip_cmd,
1136 .use_tkip = false,
1137 };
1138 int ret, i;
1139 u16 seq;
1140
1141 key_data.rsc_tsc = kzalloc(sizeof(*key_data.rsc_tsc), GFP_KERNEL);
1142 if (!key_data.rsc_tsc)
1143 return -ENOMEM;
1144
1145 memset(&wakeup_filter_cmd, 0, sizeof(wakeup_filter_cmd));
1146
1147 /*
1148 * We know the last used seqno, and the uCode expects to know that
1149 * one, it will increment before TX.
1150 */
1151 seq = le16_to_cpu(priv->last_seq_ctl) & IEEE80211_SCTL_SEQ;
1152 wakeup_filter_cmd.non_qos_seq = cpu_to_le16(seq);
1153
1154 /*
1155 * For QoS counters, we store the one to use next, so subtract 0x10
1156 * since the uCode will add 0x10 before using the value.
1157 */
1158 for (i = 0; i < IWL_MAX_TID_COUNT; i++) {
1159 seq = priv->tid_data[IWL_AP_ID][i].seq_number;
1160 seq -= 0x10;
1161 wakeup_filter_cmd.qos_seq[i] = cpu_to_le16(seq);
1162 }
1163
1164 if (wowlan->disconnect)
1165 wakeup_filter_cmd.enabled |=
1166 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_BEACON_MISS |
1167 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE);
1168 if (wowlan->magic_pkt)
1169 wakeup_filter_cmd.enabled |=
1170 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET);
1171 if (wowlan->gtk_rekey_failure)
1172 wakeup_filter_cmd.enabled |=
1173 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL);
1174 if (wowlan->eap_identity_req)
1175 wakeup_filter_cmd.enabled |=
1176 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ);
1177 if (wowlan->four_way_handshake)
1178 wakeup_filter_cmd.enabled |=
1179 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE);
1180 if (wowlan->n_patterns)
1181 wakeup_filter_cmd.enabled |=
1182 cpu_to_le32(IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH);
1183
1184 if (wowlan->rfkill_release)
1185 d3_cfg_cmd.wakeup_flags |=
1186 cpu_to_le32(IWLAGN_D3_WAKEUP_RFKILL);
1187
1188 iwl_scan_cancel_timeout(priv, 200);
1189
1190 memcpy(&rxon, &ctx->active, sizeof(rxon));
1191
1192 priv->ucode_loaded = false;
1193 iwl_trans_stop_device(trans(priv));
1194
1195 priv->wowlan = true;
1196
1197 ret = iwl_load_ucode_wait_alive(priv, IWL_UCODE_WOWLAN);
1198 if (ret)
1199 goto out;
1200
1201 /* now configure WoWLAN ucode */
1202 ret = iwl_alive_start(priv);
1203 if (ret)
1204 goto out;
1205
1206 memcpy(&ctx->staging, &rxon, sizeof(rxon));
1207 ret = iwlagn_commit_rxon(priv, ctx);
1208 if (ret)
1209 goto out;
1210
1211 ret = iwl_power_update_mode(priv, true);
1212 if (ret)
1213 goto out;
1214
1215 if (!iwlagn_mod_params.sw_crypto) {
1216 /* mark all keys clear */
1217 priv->ucode_key_table = 0;
1218 ctx->key_mapping_keys = 0;
1219
1220 /*
1221 * This needs to be unlocked due to lock ordering
1222 * constraints. Since we're in the suspend path
1223 * that isn't really a problem though.
1224 */
1225 mutex_unlock(&priv->mutex);
1226 ieee80211_iter_keys(priv->hw, ctx->vif,
1227 iwlagn_wowlan_program_keys,
1228 &key_data);
1229 mutex_lock(&priv->mutex);
1230 if (key_data.error) {
1231 ret = -EIO;
1232 goto out;
1233 }
1234
1235 if (key_data.use_rsc_tsc) {
1236 struct iwl_host_cmd rsc_tsc_cmd = {
1237 .id = REPLY_WOWLAN_TSC_RSC_PARAMS,
1238 .flags = CMD_SYNC,
1239 .data[0] = key_data.rsc_tsc,
1240 .dataflags[0] = IWL_HCMD_DFL_NOCOPY,
1241 .len[0] = sizeof(*key_data.rsc_tsc),
1242 };
1243
1244 ret = iwl_dvm_send_cmd(priv, &rsc_tsc_cmd);
1245 if (ret)
1246 goto out;
1247 }
1248
1249 if (key_data.use_tkip) {
1250 ret = iwl_dvm_send_cmd_pdu(priv,
1251 REPLY_WOWLAN_TKIP_PARAMS,
1252 CMD_SYNC, sizeof(tkip_cmd),
1253 &tkip_cmd);
1254 if (ret)
1255 goto out;
1256 }
1257
1258 if (priv->have_rekey_data) {
1259 memset(&kek_kck_cmd, 0, sizeof(kek_kck_cmd));
1260 memcpy(kek_kck_cmd.kck, priv->kck, NL80211_KCK_LEN);
1261 kek_kck_cmd.kck_len = cpu_to_le16(NL80211_KCK_LEN);
1262 memcpy(kek_kck_cmd.kek, priv->kek, NL80211_KEK_LEN);
1263 kek_kck_cmd.kek_len = cpu_to_le16(NL80211_KEK_LEN);
1264 kek_kck_cmd.replay_ctr = priv->replay_ctr;
1265
1266 ret = iwl_dvm_send_cmd_pdu(priv,
1267 REPLY_WOWLAN_KEK_KCK_MATERIAL,
1268 CMD_SYNC, sizeof(kek_kck_cmd),
1269 &kek_kck_cmd);
1270 if (ret)
1271 goto out;
1272 }
1273 }
1274
1275 ret = iwl_dvm_send_cmd_pdu(priv, REPLY_D3_CONFIG, CMD_SYNC,
1276 sizeof(d3_cfg_cmd), &d3_cfg_cmd);
1277 if (ret)
1278 goto out;
1279
1280 ret = iwl_dvm_send_cmd_pdu(priv, REPLY_WOWLAN_WAKEUP_FILTER,
1281 CMD_SYNC, sizeof(wakeup_filter_cmd),
1282 &wakeup_filter_cmd);
1283 if (ret)
1284 goto out;
1285
1286 ret = iwlagn_send_patterns(priv, wowlan);
1287 out:
1288 kfree(key_data.rsc_tsc);
1289 return ret;
1290 }
1291 #endif
1292
iwl_dvm_send_cmd(struct iwl_priv * priv,struct iwl_host_cmd * cmd)1293 int iwl_dvm_send_cmd(struct iwl_priv *priv, struct iwl_host_cmd *cmd)
1294 {
1295 if (iwl_is_rfkill(priv) || iwl_is_ctkill(priv)) {
1296 IWL_WARN(priv, "Not sending command - %s KILL\n",
1297 iwl_is_rfkill(priv) ? "RF" : "CT");
1298 return -EIO;
1299 }
1300
1301 /*
1302 * Synchronous commands from this op-mode must hold
1303 * the mutex, this ensures we don't try to send two
1304 * (or more) synchronous commands at a time.
1305 */
1306 if (cmd->flags & CMD_SYNC)
1307 lockdep_assert_held(&priv->mutex);
1308
1309 if (priv->ucode_owner == IWL_OWNERSHIP_TM &&
1310 !(cmd->flags & CMD_ON_DEMAND)) {
1311 IWL_DEBUG_HC(priv, "tm own the uCode, no regular hcmd send\n");
1312 return -EIO;
1313 }
1314
1315 return iwl_trans_send_cmd(trans(priv), cmd);
1316 }
1317
iwl_dvm_send_cmd_pdu(struct iwl_priv * priv,u8 id,u32 flags,u16 len,const void * data)1318 int iwl_dvm_send_cmd_pdu(struct iwl_priv *priv, u8 id,
1319 u32 flags, u16 len, const void *data)
1320 {
1321 struct iwl_host_cmd cmd = {
1322 .id = id,
1323 .len = { len, },
1324 .data = { data, },
1325 .flags = flags,
1326 };
1327
1328 return iwl_dvm_send_cmd(priv, &cmd);
1329 }
1330