1 /*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "dma.h"
27 #include "soc.h"
28
29 /*
30 * dma register field offset calculation
31 */
32 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
33 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
34 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
35
36 /*
37 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
38 * a contiguous 8kB physical address.
39 */
40 #define D64RINGALIGN_BITS 13
41 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
42 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
43
44 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
45
46 /* transmit channel control */
47 #define D64_XC_XE 0x00000001 /* transmit enable */
48 #define D64_XC_SE 0x00000002 /* transmit suspend request */
49 #define D64_XC_LE 0x00000004 /* loopback enable */
50 #define D64_XC_FL 0x00000010 /* flush request */
51 #define D64_XC_PD 0x00000800 /* parity check disable */
52 #define D64_XC_AE 0x00030000 /* address extension bits */
53 #define D64_XC_AE_SHIFT 16
54
55 /* transmit descriptor table pointer */
56 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
57
58 /* transmit channel status */
59 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
60 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
61 #define D64_XS0_XS_SHIFT 28
62 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
63 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */
64 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
65 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
66 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
67
68 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
69 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
70 #define D64_XS1_XE_SHIFT 28
71 #define D64_XS1_XE_NOERR 0x00000000 /* no error */
72 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
73 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
74 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
75 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
76 #define D64_XS1_XE_COREE 0x50000000 /* core error */
77
78 /* receive channel control */
79 /* receive enable */
80 #define D64_RC_RE 0x00000001
81 /* receive frame offset */
82 #define D64_RC_RO_MASK 0x000000fe
83 #define D64_RC_RO_SHIFT 1
84 /* direct fifo receive (pio) mode */
85 #define D64_RC_FM 0x00000100
86 /* separate rx header descriptor enable */
87 #define D64_RC_SH 0x00000200
88 /* overflow continue */
89 #define D64_RC_OC 0x00000400
90 /* parity check disable */
91 #define D64_RC_PD 0x00000800
92 /* address extension bits */
93 #define D64_RC_AE 0x00030000
94 #define D64_RC_AE_SHIFT 16
95
96 /* flags for dma controller */
97 /* partity enable */
98 #define DMA_CTRL_PEN (1 << 0)
99 /* rx overflow continue */
100 #define DMA_CTRL_ROC (1 << 1)
101 /* allow rx scatter to multiple descriptors */
102 #define DMA_CTRL_RXMULTI (1 << 2)
103 /* Unframed Rx/Tx data */
104 #define DMA_CTRL_UNFRAMED (1 << 3)
105
106 /* receive descriptor table pointer */
107 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
108
109 /* receive channel status */
110 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
111 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */
112 #define D64_RS0_RS_SHIFT 28
113 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
114 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */
115 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
116 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
117 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
118
119 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
120 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
121 #define D64_RS1_RE_SHIFT 28
122 #define D64_RS1_RE_NOERR 0x00000000 /* no error */
123 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
124 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
125 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
126 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
127 #define D64_RS1_RE_COREE 0x50000000 /* core error */
128
129 /* fifoaddr */
130 #define D64_FA_OFF_MASK 0xffff /* offset */
131 #define D64_FA_SEL_MASK 0xf0000 /* select */
132 #define D64_FA_SEL_SHIFT 16
133 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
134 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
135 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */
136 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
137 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
138 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
139 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
140 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
141 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
142 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
143
144 /* descriptor control flags 1 */
145 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
146 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
147 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
148 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
149 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
150
151 /* descriptor control flags 2 */
152 /* buffer byte count. real data len must <= 16KB */
153 #define D64_CTRL2_BC_MASK 0x00007fff
154 /* address extension bits */
155 #define D64_CTRL2_AE 0x00030000
156 #define D64_CTRL2_AE_SHIFT 16
157 /* parity bit */
158 #define D64_CTRL2_PARITY 0x00040000
159
160 /* control flags in the range [27:20] are core-specific and not defined here */
161 #define D64_CTRL_CORE_MASK 0x0ff00000
162
163 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
164 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
165 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
166 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
167
168 /*
169 * packet headroom necessary to accommodate the largest header
170 * in the system, (i.e TXOFF). By doing, we avoid the need to
171 * allocate an extra buffer for the header when bridging to WL.
172 * There is a compile time check in wlc.c which ensure that this
173 * value is at least as big as TXOFF. This value is used in
174 * dma_rxfill().
175 */
176
177 #define BCMEXTRAHDROOM 172
178
179 /* debug/trace */
180 #ifdef DEBUG
181 #define DMA_ERROR(fmt, ...) \
182 do { \
183 if (*di->msg_level & 1) \
184 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
185 } while (0)
186 #define DMA_TRACE(fmt, ...) \
187 do { \
188 if (*di->msg_level & 2) \
189 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
190 } while (0)
191 #else
192 #define DMA_ERROR(fmt, ...) \
193 no_printk(fmt, ##__VA_ARGS__)
194 #define DMA_TRACE(fmt, ...) \
195 no_printk(fmt, ##__VA_ARGS__)
196 #endif /* DEBUG */
197
198 #define DMA_NONE(fmt, ...) \
199 no_printk(fmt, ##__VA_ARGS__)
200
201 #define MAXNAMEL 8 /* 8 char names */
202
203 /* macros to convert between byte offsets and indexes */
204 #define B2I(bytes, type) ((bytes) / sizeof(type))
205 #define I2B(index, type) ((index) * sizeof(type))
206
207 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
208 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
209
210 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */
211 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
212
213 /*
214 * DMA Descriptor
215 * Descriptors are only read by the hardware, never written back.
216 */
217 struct dma64desc {
218 __le32 ctrl1; /* misc control bits & bufcount */
219 __le32 ctrl2; /* buffer count and address extension */
220 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
221 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
222 };
223
224 /* dma engine software state */
225 struct dma_info {
226 struct dma_pub dma; /* exported structure */
227 uint *msg_level; /* message level pointer */
228 char name[MAXNAMEL]; /* callers name for diag msgs */
229
230 struct bcma_device *core;
231 struct device *dmadev;
232
233 bool dma64; /* this dma engine is operating in 64-bit mode */
234 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
235
236 /* 64-bit dma tx engine registers */
237 uint d64txregbase;
238 /* 64-bit dma rx engine registers */
239 uint d64rxregbase;
240 /* pointer to dma64 tx descriptor ring */
241 struct dma64desc *txd64;
242 /* pointer to dma64 rx descriptor ring */
243 struct dma64desc *rxd64;
244
245 u16 dmadesc_align; /* alignment requirement for dma descriptors */
246
247 u16 ntxd; /* # tx descriptors tunable */
248 u16 txin; /* index of next descriptor to reclaim */
249 u16 txout; /* index of next descriptor to post */
250 /* pointer to parallel array of pointers to packets */
251 struct sk_buff **txp;
252 /* Aligned physical address of descriptor ring */
253 dma_addr_t txdpa;
254 /* Original physical address of descriptor ring */
255 dma_addr_t txdpaorig;
256 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
257 u32 txdalloc; /* #bytes allocated for the ring */
258 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
259 * is not just an index, it needs all 13 bits to be
260 * an offset from the addr register.
261 */
262
263 u16 nrxd; /* # rx descriptors tunable */
264 u16 rxin; /* index of next descriptor to reclaim */
265 u16 rxout; /* index of next descriptor to post */
266 /* pointer to parallel array of pointers to packets */
267 struct sk_buff **rxp;
268 /* Aligned physical address of descriptor ring */
269 dma_addr_t rxdpa;
270 /* Original physical address of descriptor ring */
271 dma_addr_t rxdpaorig;
272 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
273 u32 rxdalloc; /* #bytes allocated for the ring */
274 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
275
276 /* tunables */
277 unsigned int rxbufsize; /* rx buffer size in bytes, not including
278 * the extra headroom
279 */
280 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
281 * stack, e.g. some rx pkt buffers will be
282 * bridged to tx side without byte copying.
283 * The extra headroom needs to be large enough
284 * to fit txheader needs. Some dongle driver may
285 * not need it.
286 */
287 uint nrxpost; /* # rx buffers to keep posted */
288 unsigned int rxoffset; /* rxcontrol offset */
289 /* add to get dma address of descriptor ring, low 32 bits */
290 uint ddoffsetlow;
291 /* high 32 bits */
292 uint ddoffsethigh;
293 /* add to get dma address of data buffer, low 32 bits */
294 uint dataoffsetlow;
295 /* high 32 bits */
296 uint dataoffsethigh;
297 /* descriptor base need to be aligned or not */
298 bool aligndesc_4k;
299 };
300
301 /*
302 * default dma message level (if input msg_level
303 * pointer is null in dma_attach())
304 */
305 static uint dma_msg_level;
306
307 /* Check for odd number of 1's */
parity32(__le32 data)308 static u32 parity32(__le32 data)
309 {
310 /* no swap needed for counting 1's */
311 u32 par_data = *(u32 *)&data;
312
313 par_data ^= par_data >> 16;
314 par_data ^= par_data >> 8;
315 par_data ^= par_data >> 4;
316 par_data ^= par_data >> 2;
317 par_data ^= par_data >> 1;
318
319 return par_data & 1;
320 }
321
dma64_dd_parity(struct dma64desc * dd)322 static bool dma64_dd_parity(struct dma64desc *dd)
323 {
324 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
325 }
326
327 /* descriptor bumping functions */
328
xxd(uint x,uint n)329 static uint xxd(uint x, uint n)
330 {
331 return x & (n - 1); /* faster than %, but n must be power of 2 */
332 }
333
txd(struct dma_info * di,uint x)334 static uint txd(struct dma_info *di, uint x)
335 {
336 return xxd(x, di->ntxd);
337 }
338
rxd(struct dma_info * di,uint x)339 static uint rxd(struct dma_info *di, uint x)
340 {
341 return xxd(x, di->nrxd);
342 }
343
nexttxd(struct dma_info * di,uint i)344 static uint nexttxd(struct dma_info *di, uint i)
345 {
346 return txd(di, i + 1);
347 }
348
prevtxd(struct dma_info * di,uint i)349 static uint prevtxd(struct dma_info *di, uint i)
350 {
351 return txd(di, i - 1);
352 }
353
nextrxd(struct dma_info * di,uint i)354 static uint nextrxd(struct dma_info *di, uint i)
355 {
356 return txd(di, i + 1);
357 }
358
ntxdactive(struct dma_info * di,uint h,uint t)359 static uint ntxdactive(struct dma_info *di, uint h, uint t)
360 {
361 return txd(di, t-h);
362 }
363
nrxdactive(struct dma_info * di,uint h,uint t)364 static uint nrxdactive(struct dma_info *di, uint h, uint t)
365 {
366 return rxd(di, t-h);
367 }
368
_dma_ctrlflags(struct dma_info * di,uint mask,uint flags)369 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
370 {
371 uint dmactrlflags;
372
373 if (di == NULL) {
374 DMA_ERROR("NULL dma handle\n");
375 return 0;
376 }
377
378 dmactrlflags = di->dma.dmactrlflags;
379 dmactrlflags &= ~mask;
380 dmactrlflags |= flags;
381
382 /* If trying to enable parity, check if parity is actually supported */
383 if (dmactrlflags & DMA_CTRL_PEN) {
384 u32 control;
385
386 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
387 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
388 control | D64_XC_PD);
389 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
390 D64_XC_PD)
391 /* We *can* disable it so it is supported,
392 * restore control register
393 */
394 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
395 control);
396 else
397 /* Not supported, don't allow it to be enabled */
398 dmactrlflags &= ~DMA_CTRL_PEN;
399 }
400
401 di->dma.dmactrlflags = dmactrlflags;
402
403 return dmactrlflags;
404 }
405
_dma64_addrext(struct dma_info * di,uint ctrl_offset)406 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
407 {
408 u32 w;
409 bcma_set32(di->core, ctrl_offset, D64_XC_AE);
410 w = bcma_read32(di->core, ctrl_offset);
411 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
412 return (w & D64_XC_AE) == D64_XC_AE;
413 }
414
415 /*
416 * return true if this dma engine supports DmaExtendedAddrChanges,
417 * otherwise false
418 */
_dma_isaddrext(struct dma_info * di)419 static bool _dma_isaddrext(struct dma_info *di)
420 {
421 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
422
423 /* not all tx or rx channel are available */
424 if (di->d64txregbase != 0) {
425 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
426 DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
427 di->name);
428 return true;
429 } else if (di->d64rxregbase != 0) {
430 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
431 DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
432 di->name);
433 return true;
434 }
435
436 return false;
437 }
438
_dma_descriptor_align(struct dma_info * di)439 static bool _dma_descriptor_align(struct dma_info *di)
440 {
441 u32 addrl;
442
443 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
444 if (di->d64txregbase != 0) {
445 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
446 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
447 if (addrl != 0)
448 return false;
449 } else if (di->d64rxregbase != 0) {
450 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
451 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
452 if (addrl != 0)
453 return false;
454 }
455 return true;
456 }
457
458 /*
459 * Descriptor table must start at the DMA hardware dictated alignment, so
460 * allocated memory must be large enough to support this requirement.
461 */
dma_alloc_consistent(struct dma_info * di,uint size,u16 align_bits,uint * alloced,dma_addr_t * pap)462 static void *dma_alloc_consistent(struct dma_info *di, uint size,
463 u16 align_bits, uint *alloced,
464 dma_addr_t *pap)
465 {
466 if (align_bits) {
467 u16 align = (1 << align_bits);
468 if (!IS_ALIGNED(PAGE_SIZE, align))
469 size += align;
470 *alloced = size;
471 }
472 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
473 }
474
475 static
dma_align_sizetobits(uint size)476 u8 dma_align_sizetobits(uint size)
477 {
478 u8 bitpos = 0;
479 while (size >>= 1)
480 bitpos++;
481 return bitpos;
482 }
483
484 /* This function ensures that the DMA descriptor ring will not get allocated
485 * across Page boundary. If the allocation is done across the page boundary
486 * at the first time, then it is freed and the allocation is done at
487 * descriptor ring size aligned location. This will ensure that the ring will
488 * not cross page boundary
489 */
dma_ringalloc(struct dma_info * di,u32 boundary,uint size,u16 * alignbits,uint * alloced,dma_addr_t * descpa)490 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
491 u16 *alignbits, uint *alloced,
492 dma_addr_t *descpa)
493 {
494 void *va;
495 u32 desc_strtaddr;
496 u32 alignbytes = 1 << *alignbits;
497
498 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
499
500 if (NULL == va)
501 return NULL;
502
503 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
504 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
505 & boundary)) {
506 *alignbits = dma_align_sizetobits(size);
507 dma_free_coherent(di->dmadev, size, va, *descpa);
508 va = dma_alloc_consistent(di, size, *alignbits,
509 alloced, descpa);
510 }
511 return va;
512 }
513
dma64_alloc(struct dma_info * di,uint direction)514 static bool dma64_alloc(struct dma_info *di, uint direction)
515 {
516 u16 size;
517 uint ddlen;
518 void *va;
519 uint alloced = 0;
520 u16 align;
521 u16 align_bits;
522
523 ddlen = sizeof(struct dma64desc);
524
525 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
526 align_bits = di->dmadesc_align;
527 align = (1 << align_bits);
528
529 if (direction == DMA_TX) {
530 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
531 &alloced, &di->txdpaorig);
532 if (va == NULL) {
533 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
534 di->name);
535 return false;
536 }
537 align = (1 << align_bits);
538 di->txd64 = (struct dma64desc *)
539 roundup((unsigned long)va, align);
540 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
541 di->txdpa = di->txdpaorig + di->txdalign;
542 di->txdalloc = alloced;
543 } else {
544 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
545 &alloced, &di->rxdpaorig);
546 if (va == NULL) {
547 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
548 di->name);
549 return false;
550 }
551 align = (1 << align_bits);
552 di->rxd64 = (struct dma64desc *)
553 roundup((unsigned long)va, align);
554 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
555 di->rxdpa = di->rxdpaorig + di->rxdalign;
556 di->rxdalloc = alloced;
557 }
558
559 return true;
560 }
561
_dma_alloc(struct dma_info * di,uint direction)562 static bool _dma_alloc(struct dma_info *di, uint direction)
563 {
564 return dma64_alloc(di, direction);
565 }
566
dma_attach(char * name,struct si_pub * sih,struct bcma_device * core,uint txregbase,uint rxregbase,uint ntxd,uint nrxd,uint rxbufsize,int rxextheadroom,uint nrxpost,uint rxoffset,uint * msg_level)567 struct dma_pub *dma_attach(char *name, struct si_pub *sih,
568 struct bcma_device *core,
569 uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
570 uint rxbufsize, int rxextheadroom,
571 uint nrxpost, uint rxoffset, uint *msg_level)
572 {
573 struct dma_info *di;
574 u8 rev = core->id.rev;
575 uint size;
576
577 /* allocate private info structure */
578 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
579 if (di == NULL)
580 return NULL;
581
582 di->msg_level = msg_level ? msg_level : &dma_msg_level;
583
584
585 di->dma64 =
586 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
587
588 /* init dma reg info */
589 di->core = core;
590 di->d64txregbase = txregbase;
591 di->d64rxregbase = rxregbase;
592
593 /*
594 * Default flags (which can be changed by the driver calling
595 * dma_ctrlflags before enable): For backwards compatibility
596 * both Rx Overflow Continue and Parity are DISABLED.
597 */
598 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
599
600 DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d "
601 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
602 "txregbase %u rxregbase %u\n", name, "DMA64",
603 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
604 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
605
606 /* make a private copy of our callers name */
607 strncpy(di->name, name, MAXNAMEL);
608 di->name[MAXNAMEL - 1] = '\0';
609
610 di->dmadev = core->dma_dev;
611
612 /* save tunables */
613 di->ntxd = (u16) ntxd;
614 di->nrxd = (u16) nrxd;
615
616 /* the actual dma size doesn't include the extra headroom */
617 di->rxextrahdrroom =
618 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
619 if (rxbufsize > BCMEXTRAHDROOM)
620 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
621 else
622 di->rxbufsize = (u16) rxbufsize;
623
624 di->nrxpost = (u16) nrxpost;
625 di->rxoffset = (u8) rxoffset;
626
627 /*
628 * figure out the DMA physical address offset for dd and data
629 * PCI/PCIE: they map silicon backplace address to zero
630 * based memory, need offset
631 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
632 * swapped region for data buffer, not descriptor
633 */
634 di->ddoffsetlow = 0;
635 di->dataoffsetlow = 0;
636 /* add offset for pcie with DMA64 bus */
637 di->ddoffsetlow = 0;
638 di->ddoffsethigh = SI_PCIE_DMA_H32;
639 di->dataoffsetlow = di->ddoffsetlow;
640 di->dataoffsethigh = di->ddoffsethigh;
641 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
642 if ((core->id.id == SDIOD_CORE_ID)
643 && ((rev > 0) && (rev <= 2)))
644 di->addrext = false;
645 else if ((core->id.id == I2S_CORE_ID) &&
646 ((rev == 0) || (rev == 1)))
647 di->addrext = false;
648 else
649 di->addrext = _dma_isaddrext(di);
650
651 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
652 di->aligndesc_4k = _dma_descriptor_align(di);
653 if (di->aligndesc_4k) {
654 di->dmadesc_align = D64RINGALIGN_BITS;
655 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
656 /* for smaller dd table, HW relax alignment reqmnt */
657 di->dmadesc_align = D64RINGALIGN_BITS - 1;
658 } else {
659 di->dmadesc_align = 4; /* 16 byte alignment */
660 }
661
662 DMA_NONE("DMA descriptor align_needed %d, align %d\n",
663 di->aligndesc_4k, di->dmadesc_align);
664
665 /* allocate tx packet pointer vector */
666 if (ntxd) {
667 size = ntxd * sizeof(void *);
668 di->txp = kzalloc(size, GFP_ATOMIC);
669 if (di->txp == NULL)
670 goto fail;
671 }
672
673 /* allocate rx packet pointer vector */
674 if (nrxd) {
675 size = nrxd * sizeof(void *);
676 di->rxp = kzalloc(size, GFP_ATOMIC);
677 if (di->rxp == NULL)
678 goto fail;
679 }
680
681 /*
682 * allocate transmit descriptor ring, only need ntxd descriptors
683 * but it must be aligned
684 */
685 if (ntxd) {
686 if (!_dma_alloc(di, DMA_TX))
687 goto fail;
688 }
689
690 /*
691 * allocate receive descriptor ring, only need nrxd descriptors
692 * but it must be aligned
693 */
694 if (nrxd) {
695 if (!_dma_alloc(di, DMA_RX))
696 goto fail;
697 }
698
699 if ((di->ddoffsetlow != 0) && !di->addrext) {
700 if (di->txdpa > SI_PCI_DMA_SZ) {
701 DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
702 di->name, (u32)di->txdpa);
703 goto fail;
704 }
705 if (di->rxdpa > SI_PCI_DMA_SZ) {
706 DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
707 di->name, (u32)di->rxdpa);
708 goto fail;
709 }
710 }
711
712 DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
713 di->ddoffsetlow, di->ddoffsethigh,
714 di->dataoffsetlow, di->dataoffsethigh,
715 di->addrext);
716
717 return (struct dma_pub *) di;
718
719 fail:
720 dma_detach((struct dma_pub *)di);
721 return NULL;
722 }
723
724 static inline void
dma64_dd_upd(struct dma_info * di,struct dma64desc * ddring,dma_addr_t pa,uint outidx,u32 * flags,u32 bufcount)725 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
726 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
727 {
728 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
729
730 /* PCI bus with big(>1G) physical address, use address extension */
731 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
732 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
733 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
734 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
735 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
736 } else {
737 /* address extension for 32-bit PCI */
738 u32 ae;
739
740 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
741 pa &= ~PCI32ADDR_HIGH;
742
743 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
744 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
745 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
746 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
747 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
748 }
749 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
750 if (dma64_dd_parity(&ddring[outidx]))
751 ddring[outidx].ctrl2 =
752 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
753 }
754 }
755
756 /* !! may be called with core in reset */
dma_detach(struct dma_pub * pub)757 void dma_detach(struct dma_pub *pub)
758 {
759 struct dma_info *di = (struct dma_info *)pub;
760
761 DMA_TRACE("%s:\n", di->name);
762
763 /* free dma descriptor rings */
764 if (di->txd64)
765 dma_free_coherent(di->dmadev, di->txdalloc,
766 ((s8 *)di->txd64 - di->txdalign),
767 (di->txdpaorig));
768 if (di->rxd64)
769 dma_free_coherent(di->dmadev, di->rxdalloc,
770 ((s8 *)di->rxd64 - di->rxdalign),
771 (di->rxdpaorig));
772
773 /* free packet pointer vectors */
774 kfree(di->txp);
775 kfree(di->rxp);
776
777 /* free our private info structure */
778 kfree(di);
779
780 }
781
782 /* initialize descriptor table base address */
783 static void
_dma_ddtable_init(struct dma_info * di,uint direction,dma_addr_t pa)784 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
785 {
786 if (!di->aligndesc_4k) {
787 if (direction == DMA_TX)
788 di->xmtptrbase = pa;
789 else
790 di->rcvptrbase = pa;
791 }
792
793 if ((di->ddoffsetlow == 0)
794 || !(pa & PCI32ADDR_HIGH)) {
795 if (direction == DMA_TX) {
796 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
797 pa + di->ddoffsetlow);
798 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
799 di->ddoffsethigh);
800 } else {
801 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
802 pa + di->ddoffsetlow);
803 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
804 di->ddoffsethigh);
805 }
806 } else {
807 /* DMA64 32bits address extension */
808 u32 ae;
809
810 /* shift the high bit(s) from pa to ae */
811 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
812 pa &= ~PCI32ADDR_HIGH;
813
814 if (direction == DMA_TX) {
815 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
816 pa + di->ddoffsetlow);
817 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
818 di->ddoffsethigh);
819 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
820 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
821 } else {
822 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
823 pa + di->ddoffsetlow);
824 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
825 di->ddoffsethigh);
826 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
827 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
828 }
829 }
830 }
831
_dma_rxenable(struct dma_info * di)832 static void _dma_rxenable(struct dma_info *di)
833 {
834 uint dmactrlflags = di->dma.dmactrlflags;
835 u32 control;
836
837 DMA_TRACE("%s:\n", di->name);
838
839 control = D64_RC_RE | (bcma_read32(di->core,
840 DMA64RXREGOFFS(di, control)) &
841 D64_RC_AE);
842
843 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
844 control |= D64_RC_PD;
845
846 if (dmactrlflags & DMA_CTRL_ROC)
847 control |= D64_RC_OC;
848
849 bcma_write32(di->core, DMA64RXREGOFFS(di, control),
850 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
851 }
852
dma_rxinit(struct dma_pub * pub)853 void dma_rxinit(struct dma_pub *pub)
854 {
855 struct dma_info *di = (struct dma_info *)pub;
856
857 DMA_TRACE("%s:\n", di->name);
858
859 if (di->nrxd == 0)
860 return;
861
862 di->rxin = di->rxout = 0;
863
864 /* clear rx descriptor ring */
865 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
866
867 /* DMA engine with out alignment requirement requires table to be inited
868 * before enabling the engine
869 */
870 if (!di->aligndesc_4k)
871 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
872
873 _dma_rxenable(di);
874
875 if (di->aligndesc_4k)
876 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
877 }
878
dma64_getnextrxp(struct dma_info * di,bool forceall)879 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
880 {
881 uint i, curr;
882 struct sk_buff *rxp;
883 dma_addr_t pa;
884
885 i = di->rxin;
886
887 /* return if no packets posted */
888 if (i == di->rxout)
889 return NULL;
890
891 curr =
892 B2I(((bcma_read32(di->core,
893 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
894 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
895
896 /* ignore curr if forceall */
897 if (!forceall && (i == curr))
898 return NULL;
899
900 /* get the packet pointer that corresponds to the rx descriptor */
901 rxp = di->rxp[i];
902 di->rxp[i] = NULL;
903
904 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
905
906 /* clear this packet from the descriptor ring */
907 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
908
909 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
910 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
911
912 di->rxin = nextrxd(di, i);
913
914 return rxp;
915 }
916
_dma_getnextrxp(struct dma_info * di,bool forceall)917 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
918 {
919 if (di->nrxd == 0)
920 return NULL;
921
922 return dma64_getnextrxp(di, forceall);
923 }
924
925 /*
926 * !! rx entry routine
927 * returns the number packages in the next frame, or 0 if there are no more
928 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
929 * supported with pkts chain
930 * otherwise, it's treated as giant pkt and will be tossed.
931 * The DMA scattering starts with normal DMA header, followed by first
932 * buffer data. After it reaches the max size of buffer, the data continues
933 * in next DMA descriptor buffer WITHOUT DMA header
934 */
dma_rx(struct dma_pub * pub,struct sk_buff_head * skb_list)935 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
936 {
937 struct dma_info *di = (struct dma_info *)pub;
938 struct sk_buff_head dma_frames;
939 struct sk_buff *p, *next;
940 uint len;
941 uint pkt_len;
942 int resid = 0;
943 int pktcnt = 1;
944
945 skb_queue_head_init(&dma_frames);
946 next_frame:
947 p = _dma_getnextrxp(di, false);
948 if (p == NULL)
949 return 0;
950
951 len = le16_to_cpu(*(__le16 *) (p->data));
952 DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
953 dma_spin_for_len(len, p);
954
955 /* set actual length */
956 pkt_len = min((di->rxoffset + len), di->rxbufsize);
957 __skb_trim(p, pkt_len);
958 skb_queue_tail(&dma_frames, p);
959 resid = len - (di->rxbufsize - di->rxoffset);
960
961 /* check for single or multi-buffer rx */
962 if (resid > 0) {
963 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
964 pkt_len = min_t(uint, resid, di->rxbufsize);
965 __skb_trim(p, pkt_len);
966 skb_queue_tail(&dma_frames, p);
967 resid -= di->rxbufsize;
968 pktcnt++;
969 }
970
971 #ifdef DEBUG
972 if (resid > 0) {
973 uint cur;
974 cur =
975 B2I(((bcma_read32(di->core,
976 DMA64RXREGOFFS(di, status0)) &
977 D64_RS0_CD_MASK) - di->rcvptrbase) &
978 D64_RS0_CD_MASK, struct dma64desc);
979 DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
980 di->rxin, di->rxout, cur);
981 }
982 #endif /* DEBUG */
983
984 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
985 DMA_ERROR("%s: bad frame length (%d)\n",
986 di->name, len);
987 skb_queue_walk_safe(&dma_frames, p, next) {
988 skb_unlink(p, &dma_frames);
989 brcmu_pkt_buf_free_skb(p);
990 }
991 di->dma.rxgiants++;
992 pktcnt = 1;
993 goto next_frame;
994 }
995 }
996
997 skb_queue_splice_tail(&dma_frames, skb_list);
998 return pktcnt;
999 }
1000
dma64_rxidle(struct dma_info * di)1001 static bool dma64_rxidle(struct dma_info *di)
1002 {
1003 DMA_TRACE("%s:\n", di->name);
1004
1005 if (di->nrxd == 0)
1006 return true;
1007
1008 return ((bcma_read32(di->core,
1009 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1010 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1011 D64_RS0_CD_MASK));
1012 }
1013
1014 /*
1015 * post receive buffers
1016 * Return false if refill failed completely or dma mapping failed. The ring
1017 * is empty, which will stall the rx dma and user might want to call rxfill
1018 * again asap. This is unlikely to happen on a memory-rich NIC, but often on
1019 * memory-constrained dongle.
1020 */
dma_rxfill(struct dma_pub * pub)1021 bool dma_rxfill(struct dma_pub *pub)
1022 {
1023 struct dma_info *di = (struct dma_info *)pub;
1024 struct sk_buff *p;
1025 u16 rxin, rxout;
1026 u32 flags = 0;
1027 uint n;
1028 uint i;
1029 dma_addr_t pa;
1030 uint extra_offset = 0;
1031 bool ring_empty;
1032
1033 ring_empty = false;
1034
1035 /*
1036 * Determine how many receive buffers we're lacking
1037 * from the full complement, allocate, initialize,
1038 * and post them, then update the chip rx lastdscr.
1039 */
1040
1041 rxin = di->rxin;
1042 rxout = di->rxout;
1043
1044 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1045
1046 DMA_TRACE("%s: post %d\n", di->name, n);
1047
1048 if (di->rxbufsize > BCMEXTRAHDROOM)
1049 extra_offset = di->rxextrahdrroom;
1050
1051 for (i = 0; i < n; i++) {
1052 /*
1053 * the di->rxbufsize doesn't include the extra headroom,
1054 * we need to add it to the size to be allocated
1055 */
1056 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1057
1058 if (p == NULL) {
1059 DMA_ERROR("%s: out of rxbufs\n", di->name);
1060 if (i == 0 && dma64_rxidle(di)) {
1061 DMA_ERROR("%s: ring is empty !\n", di->name);
1062 ring_empty = true;
1063 }
1064 di->dma.rxnobuf++;
1065 break;
1066 }
1067 /* reserve an extra headroom, if applicable */
1068 if (extra_offset)
1069 skb_pull(p, extra_offset);
1070
1071 /* Do a cached write instead of uncached write since DMA_MAP
1072 * will flush the cache.
1073 */
1074 *(u32 *) (p->data) = 0;
1075
1076 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1077 DMA_FROM_DEVICE);
1078 if (dma_mapping_error(di->dmadev, pa))
1079 return false;
1080
1081 /* save the free packet pointer */
1082 di->rxp[rxout] = p;
1083
1084 /* reset flags for each descriptor */
1085 flags = 0;
1086 if (rxout == (di->nrxd - 1))
1087 flags = D64_CTRL1_EOT;
1088
1089 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1090 di->rxbufsize);
1091 rxout = nextrxd(di, rxout);
1092 }
1093
1094 di->rxout = rxout;
1095
1096 /* update the chip lastdscr pointer */
1097 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1098 di->rcvptrbase + I2B(rxout, struct dma64desc));
1099
1100 return ring_empty;
1101 }
1102
dma_rxreclaim(struct dma_pub * pub)1103 void dma_rxreclaim(struct dma_pub *pub)
1104 {
1105 struct dma_info *di = (struct dma_info *)pub;
1106 struct sk_buff *p;
1107
1108 DMA_TRACE("%s:\n", di->name);
1109
1110 while ((p = _dma_getnextrxp(di, true)))
1111 brcmu_pkt_buf_free_skb(p);
1112 }
1113
dma_counterreset(struct dma_pub * pub)1114 void dma_counterreset(struct dma_pub *pub)
1115 {
1116 /* reset all software counters */
1117 pub->rxgiants = 0;
1118 pub->rxnobuf = 0;
1119 pub->txnobuf = 0;
1120 }
1121
1122 /* get the address of the var in order to change later */
dma_getvar(struct dma_pub * pub,const char * name)1123 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1124 {
1125 struct dma_info *di = (struct dma_info *)pub;
1126
1127 if (!strcmp(name, "&txavail"))
1128 return (unsigned long)&(di->dma.txavail);
1129 return 0;
1130 }
1131
1132 /* 64-bit DMA functions */
1133
dma_txinit(struct dma_pub * pub)1134 void dma_txinit(struct dma_pub *pub)
1135 {
1136 struct dma_info *di = (struct dma_info *)pub;
1137 u32 control = D64_XC_XE;
1138
1139 DMA_TRACE("%s:\n", di->name);
1140
1141 if (di->ntxd == 0)
1142 return;
1143
1144 di->txin = di->txout = 0;
1145 di->dma.txavail = di->ntxd - 1;
1146
1147 /* clear tx descriptor ring */
1148 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1149
1150 /* DMA engine with out alignment requirement requires table to be inited
1151 * before enabling the engine
1152 */
1153 if (!di->aligndesc_4k)
1154 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1155
1156 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1157 control |= D64_XC_PD;
1158 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1159
1160 /* DMA engine with alignment requirement requires table to be inited
1161 * before enabling the engine
1162 */
1163 if (di->aligndesc_4k)
1164 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1165 }
1166
dma_txsuspend(struct dma_pub * pub)1167 void dma_txsuspend(struct dma_pub *pub)
1168 {
1169 struct dma_info *di = (struct dma_info *)pub;
1170
1171 DMA_TRACE("%s:\n", di->name);
1172
1173 if (di->ntxd == 0)
1174 return;
1175
1176 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1177 }
1178
dma_txresume(struct dma_pub * pub)1179 void dma_txresume(struct dma_pub *pub)
1180 {
1181 struct dma_info *di = (struct dma_info *)pub;
1182
1183 DMA_TRACE("%s:\n", di->name);
1184
1185 if (di->ntxd == 0)
1186 return;
1187
1188 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1189 }
1190
dma_txsuspended(struct dma_pub * pub)1191 bool dma_txsuspended(struct dma_pub *pub)
1192 {
1193 struct dma_info *di = (struct dma_info *)pub;
1194
1195 return (di->ntxd == 0) ||
1196 ((bcma_read32(di->core,
1197 DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1198 D64_XC_SE);
1199 }
1200
dma_txreclaim(struct dma_pub * pub,enum txd_range range)1201 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1202 {
1203 struct dma_info *di = (struct dma_info *)pub;
1204 struct sk_buff *p;
1205
1206 DMA_TRACE("%s: %s\n",
1207 di->name,
1208 range == DMA_RANGE_ALL ? "all" :
1209 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1210 "transferred");
1211
1212 if (di->txin == di->txout)
1213 return;
1214
1215 while ((p = dma_getnexttxp(pub, range))) {
1216 /* For unframed data, we don't have any packets to free */
1217 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1218 brcmu_pkt_buf_free_skb(p);
1219 }
1220 }
1221
dma_txreset(struct dma_pub * pub)1222 bool dma_txreset(struct dma_pub *pub)
1223 {
1224 struct dma_info *di = (struct dma_info *)pub;
1225 u32 status;
1226
1227 if (di->ntxd == 0)
1228 return true;
1229
1230 /* suspend tx DMA first */
1231 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1232 SPINWAIT(((status =
1233 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1234 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1235 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1236 10000);
1237
1238 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1239 SPINWAIT(((status =
1240 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1241 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1242
1243 /* wait for the last transaction to complete */
1244 udelay(300);
1245
1246 return status == D64_XS0_XS_DISABLED;
1247 }
1248
dma_rxreset(struct dma_pub * pub)1249 bool dma_rxreset(struct dma_pub *pub)
1250 {
1251 struct dma_info *di = (struct dma_info *)pub;
1252 u32 status;
1253
1254 if (di->nrxd == 0)
1255 return true;
1256
1257 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1258 SPINWAIT(((status =
1259 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1260 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1261
1262 return status == D64_RS0_RS_DISABLED;
1263 }
1264
1265 /*
1266 * !! tx entry routine
1267 * WARNING: call must check the return value for error.
1268 * the error(toss frames) could be fatal and cause many subsequent hard
1269 * to debug problems
1270 */
dma_txfast(struct dma_pub * pub,struct sk_buff * p,bool commit)1271 int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
1272 {
1273 struct dma_info *di = (struct dma_info *)pub;
1274 unsigned char *data;
1275 uint len;
1276 u16 txout;
1277 u32 flags = 0;
1278 dma_addr_t pa;
1279
1280 DMA_TRACE("%s:\n", di->name);
1281
1282 txout = di->txout;
1283
1284 /*
1285 * obtain and initialize transmit descriptor entry.
1286 */
1287 data = p->data;
1288 len = p->len;
1289
1290 /* no use to transmit a zero length packet */
1291 if (len == 0)
1292 return 0;
1293
1294 /* return nonzero if out of tx descriptors */
1295 if (nexttxd(di, txout) == di->txin)
1296 goto outoftxd;
1297
1298 /* get physical address of buffer start */
1299 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1300 /* if mapping failed, free skb */
1301 if (dma_mapping_error(di->dmadev, pa)) {
1302 brcmu_pkt_buf_free_skb(p);
1303 return;
1304 }
1305 /* With a DMA segment list, Descriptor table is filled
1306 * using the segment list instead of looping over
1307 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1308 * is when end of segment list is reached.
1309 */
1310 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1311 if (txout == (di->ntxd - 1))
1312 flags |= D64_CTRL1_EOT;
1313
1314 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1315
1316 txout = nexttxd(di, txout);
1317
1318 /* save the packet */
1319 di->txp[prevtxd(di, txout)] = p;
1320
1321 /* bump the tx descriptor index */
1322 di->txout = txout;
1323
1324 /* kick the chip */
1325 if (commit)
1326 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1327 di->xmtptrbase + I2B(txout, struct dma64desc));
1328
1329 /* tx flow control */
1330 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1331
1332 return 0;
1333
1334 outoftxd:
1335 DMA_ERROR("%s: out of txds !!!\n", di->name);
1336 brcmu_pkt_buf_free_skb(p);
1337 di->dma.txavail = 0;
1338 di->dma.txnobuf++;
1339 return -1;
1340 }
1341
1342 /*
1343 * Reclaim next completed txd (txds if using chained buffers) in the range
1344 * specified and return associated packet.
1345 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1346 * transmitted as noted by the hardware "CurrDescr" pointer.
1347 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1348 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1349 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1350 * return associated packet regardless of the value of hardware pointers.
1351 */
dma_getnexttxp(struct dma_pub * pub,enum txd_range range)1352 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1353 {
1354 struct dma_info *di = (struct dma_info *)pub;
1355 u16 start, end, i;
1356 u16 active_desc;
1357 struct sk_buff *txp;
1358
1359 DMA_TRACE("%s: %s\n",
1360 di->name,
1361 range == DMA_RANGE_ALL ? "all" :
1362 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1363 "transferred");
1364
1365 if (di->ntxd == 0)
1366 return NULL;
1367
1368 txp = NULL;
1369
1370 start = di->txin;
1371 if (range == DMA_RANGE_ALL)
1372 end = di->txout;
1373 else {
1374 end = (u16) (B2I(((bcma_read32(di->core,
1375 DMA64TXREGOFFS(di, status0)) &
1376 D64_XS0_CD_MASK) - di->xmtptrbase) &
1377 D64_XS0_CD_MASK, struct dma64desc));
1378
1379 if (range == DMA_RANGE_TRANSFERED) {
1380 active_desc =
1381 (u16)(bcma_read32(di->core,
1382 DMA64TXREGOFFS(di, status1)) &
1383 D64_XS1_AD_MASK);
1384 active_desc =
1385 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1386 active_desc = B2I(active_desc, struct dma64desc);
1387 if (end != active_desc)
1388 end = prevtxd(di, active_desc);
1389 }
1390 }
1391
1392 if ((start == 0) && (end > di->txout))
1393 goto bogus;
1394
1395 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1396 dma_addr_t pa;
1397 uint size;
1398
1399 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1400
1401 size =
1402 (le32_to_cpu(di->txd64[i].ctrl2) &
1403 D64_CTRL2_BC_MASK);
1404
1405 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1406 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1407
1408 txp = di->txp[i];
1409 di->txp[i] = NULL;
1410
1411 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1412 }
1413
1414 di->txin = i;
1415
1416 /* tx flow control */
1417 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1418
1419 return txp;
1420
1421 bogus:
1422 DMA_NONE("bogus curr: start %d end %d txout %d\n",
1423 start, end, di->txout);
1424 return NULL;
1425 }
1426
1427 /*
1428 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1429 * modified. The modified portion of the packet is not under control of the DMA
1430 * engine. This function calls a caller-supplied function for each packet in
1431 * the caller specified dma chain.
1432 */
dma_walk_packets(struct dma_pub * dmah,void (* callback_fnc)(void * pkt,void * arg_a),void * arg_a)1433 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1434 (void *pkt, void *arg_a), void *arg_a)
1435 {
1436 struct dma_info *di = (struct dma_info *) dmah;
1437 uint i = di->txin;
1438 uint end = di->txout;
1439 struct sk_buff *skb;
1440 struct ieee80211_tx_info *tx_info;
1441
1442 while (i != end) {
1443 skb = (struct sk_buff *)di->txp[i];
1444 if (skb != NULL) {
1445 tx_info = (struct ieee80211_tx_info *)skb->cb;
1446 (callback_fnc)(tx_info, arg_a);
1447 }
1448 i = nexttxd(di, i);
1449 }
1450 }
1451