1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43
44 #include "aacraid.h"
45
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56
57 /*
58 * Sense codes
59 */
60
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
66 #define SENCODE_INVALID_COMMAND 0x20
67 #define SENCODE_LBA_OUT_OF_RANGE 0x21
68 #define SENCODE_INVALID_CDB_FIELD 0x24
69 #define SENCODE_LUN_NOT_SUPPORTED 0x25
70 #define SENCODE_INVALID_PARAM_FIELD 0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
72 #define SENCODE_PARAM_VALUE_INVALID 0x26
73 #define SENCODE_RESET_OCCURRED 0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
81 #define SENCODE_OVERLAPPED_COMMAND 0x4E
82
83 /*
84 * Additional sense codes
85 */
86
87 #define ASENCODE_NO_SENSE 0x00
88 #define ASENCODE_END_OF_DATA 0x05
89 #define ASENCODE_BECOMING_READY 0x01
90 #define ASENCODE_INIT_CMD_REQUIRED 0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
92 #define ASENCODE_INVALID_COMMAND 0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
94 #define ASENCODE_INVALID_CDB_FIELD 0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
96 #define ASENCODE_INVALID_PARAM_FIELD 0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
98 #define ASENCODE_PARAM_VALUE_INVALID 0x02
99 #define ASENCODE_RESET_OCCURRED 0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
107 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113
114 /*------------------------------------------------------------------------------
115 * S T R U C T S / T Y P E D E F S
116 *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
120 u8 inqd_dtq; /* RMB | Device Type Qualifier */
121 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
122 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
123 u8 inqd_len; /* Additional length (n-4) */
124 u8 inqd_pad1[2];/* Reserved - must be zero */
125 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
126 u8 inqd_vid[8]; /* Vendor ID */
127 u8 inqd_pid[16];/* Product ID */
128 u8 inqd_prl[4]; /* Product Revision Level */
129 };
130
131 /*
132 * M O D U L E G L O B A L S
133 */
134
135 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
136 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
137 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
138 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
139 #ifdef AAC_DETAILED_STATUS_INFO
140 static char *aac_get_status_string(u32 status);
141 #endif
142
143 /*
144 * Non dasd selection is handled entirely in aachba now
145 */
146
147 static int nondasd = -1;
148 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
149 static int dacmode = -1;
150 int aac_msi;
151 int aac_commit = -1;
152 int startup_timeout = 180;
153 int aif_timeout = 120;
154 int aac_sync_mode; /* Only Sync. transfer - disabled */
155
156 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
158 " 0=off, 1=on");
159 module_param(nondasd, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
161 " 0=off, 1=on");
162 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
164 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
165 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
166 "\tbit 2 - Disable only if Battery is protecting Cache");
167 module_param(dacmode, int, S_IRUGO|S_IWUSR);
168 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
169 " 0=off, 1=on");
170 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
172 " adapter for foreign arrays.\n"
173 "This is typically needed in systems that do not have a BIOS."
174 " 0=off, 1=on");
175 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
176 MODULE_PARM_DESC(msi, "IRQ handling."
177 " 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
178 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
179 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
180 " adapter to have it's kernel up and\n"
181 "running. This is typically adjusted for large systems that do not"
182 " have a BIOS.");
183 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
184 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
185 " applications to pick up AIFs before\n"
186 "deregistering them. This is typically adjusted for heavily burdened"
187 " systems.");
188
189 int numacb = -1;
190 module_param(numacb, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
192 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
193 " to use suggestion from Firmware.");
194
195 int acbsize = -1;
196 module_param(acbsize, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
198 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
199 " suggestion from Firmware.");
200
201 int update_interval = 30 * 60;
202 module_param(update_interval, int, S_IRUGO|S_IWUSR);
203 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
204 " updates issued to adapter.");
205
206 int check_interval = 24 * 60 * 60;
207 module_param(check_interval, int, S_IRUGO|S_IWUSR);
208 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
209 " checks.");
210
211 int aac_check_reset = 1;
212 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
214 " adapter. a value of -1 forces the reset to adapters programmed to"
215 " ignore it.");
216
217 int expose_physicals = -1;
218 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
219 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
220 " -1=protect 0=off, 1=on");
221
222 int aac_reset_devices;
223 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
224 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
225
226 int aac_wwn = 1;
227 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
228 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
229 "\t0 - Disable\n"
230 "\t1 - Array Meta Data Signature (default)\n"
231 "\t2 - Adapter Serial Number");
232
233
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)234 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
235 struct fib *fibptr) {
236 struct scsi_device *device;
237
238 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
239 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
240 aac_fib_complete(fibptr);
241 aac_fib_free(fibptr);
242 return 0;
243 }
244 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
245 device = scsicmd->device;
246 if (unlikely(!device || !scsi_device_online(device))) {
247 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
248 aac_fib_complete(fibptr);
249 aac_fib_free(fibptr);
250 return 0;
251 }
252 return 1;
253 }
254
255 /**
256 * aac_get_config_status - check the adapter configuration
257 * @common: adapter to query
258 *
259 * Query config status, and commit the configuration if needed.
260 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)261 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
262 {
263 int status = 0;
264 struct fib * fibptr;
265
266 if (!(fibptr = aac_fib_alloc(dev)))
267 return -ENOMEM;
268
269 aac_fib_init(fibptr);
270 {
271 struct aac_get_config_status *dinfo;
272 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
273
274 dinfo->command = cpu_to_le32(VM_ContainerConfig);
275 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
276 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
277 }
278
279 status = aac_fib_send(ContainerCommand,
280 fibptr,
281 sizeof (struct aac_get_config_status),
282 FsaNormal,
283 1, 1,
284 NULL, NULL);
285 if (status < 0) {
286 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
287 } else {
288 struct aac_get_config_status_resp *reply
289 = (struct aac_get_config_status_resp *) fib_data(fibptr);
290 dprintk((KERN_WARNING
291 "aac_get_config_status: response=%d status=%d action=%d\n",
292 le32_to_cpu(reply->response),
293 le32_to_cpu(reply->status),
294 le32_to_cpu(reply->data.action)));
295 if ((le32_to_cpu(reply->response) != ST_OK) ||
296 (le32_to_cpu(reply->status) != CT_OK) ||
297 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
298 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
299 status = -EINVAL;
300 }
301 }
302 /* Do not set XferState to zero unless receives a response from F/W */
303 if (status >= 0)
304 aac_fib_complete(fibptr);
305
306 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
307 if (status >= 0) {
308 if ((aac_commit == 1) || commit_flag) {
309 struct aac_commit_config * dinfo;
310 aac_fib_init(fibptr);
311 dinfo = (struct aac_commit_config *) fib_data(fibptr);
312
313 dinfo->command = cpu_to_le32(VM_ContainerConfig);
314 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
315
316 status = aac_fib_send(ContainerCommand,
317 fibptr,
318 sizeof (struct aac_commit_config),
319 FsaNormal,
320 1, 1,
321 NULL, NULL);
322 /* Do not set XferState to zero unless
323 * receives a response from F/W */
324 if (status >= 0)
325 aac_fib_complete(fibptr);
326 } else if (aac_commit == 0) {
327 printk(KERN_WARNING
328 "aac_get_config_status: Foreign device configurations are being ignored\n");
329 }
330 }
331 /* FIB should be freed only after getting the response from the F/W */
332 if (status != -ERESTARTSYS)
333 aac_fib_free(fibptr);
334 return status;
335 }
336
aac_expose_phy_device(struct scsi_cmnd * scsicmd)337 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
338 {
339 char inq_data;
340 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
341 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
342 inq_data &= 0xdf;
343 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
344 }
345 }
346
347 /**
348 * aac_get_containers - list containers
349 * @common: adapter to probe
350 *
351 * Make a list of all containers on this controller
352 */
aac_get_containers(struct aac_dev * dev)353 int aac_get_containers(struct aac_dev *dev)
354 {
355 struct fsa_dev_info *fsa_dev_ptr;
356 u32 index;
357 int status = 0;
358 struct fib * fibptr;
359 struct aac_get_container_count *dinfo;
360 struct aac_get_container_count_resp *dresp;
361 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
362
363 if (!(fibptr = aac_fib_alloc(dev)))
364 return -ENOMEM;
365
366 aac_fib_init(fibptr);
367 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
368 dinfo->command = cpu_to_le32(VM_ContainerConfig);
369 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
370
371 status = aac_fib_send(ContainerCommand,
372 fibptr,
373 sizeof (struct aac_get_container_count),
374 FsaNormal,
375 1, 1,
376 NULL, NULL);
377 if (status >= 0) {
378 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
379 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
380 aac_fib_complete(fibptr);
381 }
382 /* FIB should be freed only after getting the response from the F/W */
383 if (status != -ERESTARTSYS)
384 aac_fib_free(fibptr);
385
386 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
387 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
388 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
389 GFP_KERNEL);
390 if (!fsa_dev_ptr)
391 return -ENOMEM;
392
393 dev->fsa_dev = fsa_dev_ptr;
394 dev->maximum_num_containers = maximum_num_containers;
395
396 for (index = 0; index < dev->maximum_num_containers; ) {
397 fsa_dev_ptr[index].devname[0] = '\0';
398
399 status = aac_probe_container(dev, index);
400
401 if (status < 0) {
402 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
403 break;
404 }
405
406 /*
407 * If there are no more containers, then stop asking.
408 */
409 if (++index >= status)
410 break;
411 }
412 return status;
413 }
414
get_container_name_callback(void * context,struct fib * fibptr)415 static void get_container_name_callback(void *context, struct fib * fibptr)
416 {
417 struct aac_get_name_resp * get_name_reply;
418 struct scsi_cmnd * scsicmd;
419
420 scsicmd = (struct scsi_cmnd *) context;
421
422 if (!aac_valid_context(scsicmd, fibptr))
423 return;
424
425 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
426 BUG_ON(fibptr == NULL);
427
428 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
429 /* Failure is irrelevant, using default value instead */
430 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
431 && (get_name_reply->data[0] != '\0')) {
432 char *sp = get_name_reply->data;
433 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
434 while (*sp == ' ')
435 ++sp;
436 if (*sp) {
437 struct inquiry_data inq;
438 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
439 int count = sizeof(d);
440 char *dp = d;
441 do {
442 *dp++ = (*sp) ? *sp++ : ' ';
443 } while (--count > 0);
444
445 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
446 memcpy(inq.inqd_pid, d, sizeof(d));
447 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
448 }
449 }
450
451 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
452
453 aac_fib_complete(fibptr);
454 aac_fib_free(fibptr);
455 scsicmd->scsi_done(scsicmd);
456 }
457
458 /**
459 * aac_get_container_name - get container name, none blocking.
460 */
aac_get_container_name(struct scsi_cmnd * scsicmd)461 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
462 {
463 int status;
464 struct aac_get_name *dinfo;
465 struct fib * cmd_fibcontext;
466 struct aac_dev * dev;
467
468 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
469
470 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
471 return -ENOMEM;
472
473 aac_fib_init(cmd_fibcontext);
474 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
475
476 dinfo->command = cpu_to_le32(VM_ContainerConfig);
477 dinfo->type = cpu_to_le32(CT_READ_NAME);
478 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
479 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
480
481 status = aac_fib_send(ContainerCommand,
482 cmd_fibcontext,
483 sizeof (struct aac_get_name),
484 FsaNormal,
485 0, 1,
486 (fib_callback)get_container_name_callback,
487 (void *) scsicmd);
488
489 /*
490 * Check that the command queued to the controller
491 */
492 if (status == -EINPROGRESS) {
493 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
494 return 0;
495 }
496
497 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
498 aac_fib_complete(cmd_fibcontext);
499 aac_fib_free(cmd_fibcontext);
500 return -1;
501 }
502
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)503 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
504 {
505 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
506
507 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
508 return aac_scsi_cmd(scsicmd);
509
510 scsicmd->result = DID_NO_CONNECT << 16;
511 scsicmd->scsi_done(scsicmd);
512 return 0;
513 }
514
_aac_probe_container2(void * context,struct fib * fibptr)515 static void _aac_probe_container2(void * context, struct fib * fibptr)
516 {
517 struct fsa_dev_info *fsa_dev_ptr;
518 int (*callback)(struct scsi_cmnd *);
519 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
520
521
522 if (!aac_valid_context(scsicmd, fibptr))
523 return;
524
525 scsicmd->SCp.Status = 0;
526 fsa_dev_ptr = fibptr->dev->fsa_dev;
527 if (fsa_dev_ptr) {
528 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
529 fsa_dev_ptr += scmd_id(scsicmd);
530
531 if ((le32_to_cpu(dresp->status) == ST_OK) &&
532 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
533 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
534 fsa_dev_ptr->valid = 1;
535 /* sense_key holds the current state of the spin-up */
536 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
537 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
538 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
539 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
540 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
541 fsa_dev_ptr->size
542 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
543 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
544 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
545 }
546 if ((fsa_dev_ptr->valid & 1) == 0)
547 fsa_dev_ptr->valid = 0;
548 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
549 }
550 aac_fib_complete(fibptr);
551 aac_fib_free(fibptr);
552 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
553 scsicmd->SCp.ptr = NULL;
554 (*callback)(scsicmd);
555 return;
556 }
557
_aac_probe_container1(void * context,struct fib * fibptr)558 static void _aac_probe_container1(void * context, struct fib * fibptr)
559 {
560 struct scsi_cmnd * scsicmd;
561 struct aac_mount * dresp;
562 struct aac_query_mount *dinfo;
563 int status;
564
565 dresp = (struct aac_mount *) fib_data(fibptr);
566 dresp->mnt[0].capacityhigh = 0;
567 if ((le32_to_cpu(dresp->status) != ST_OK) ||
568 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
569 _aac_probe_container2(context, fibptr);
570 return;
571 }
572 scsicmd = (struct scsi_cmnd *) context;
573
574 if (!aac_valid_context(scsicmd, fibptr))
575 return;
576
577 aac_fib_init(fibptr);
578
579 dinfo = (struct aac_query_mount *)fib_data(fibptr);
580
581 dinfo->command = cpu_to_le32(VM_NameServe64);
582 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
583 dinfo->type = cpu_to_le32(FT_FILESYS);
584
585 status = aac_fib_send(ContainerCommand,
586 fibptr,
587 sizeof(struct aac_query_mount),
588 FsaNormal,
589 0, 1,
590 _aac_probe_container2,
591 (void *) scsicmd);
592 /*
593 * Check that the command queued to the controller
594 */
595 if (status == -EINPROGRESS)
596 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
597 else if (status < 0) {
598 /* Inherit results from VM_NameServe, if any */
599 dresp->status = cpu_to_le32(ST_OK);
600 _aac_probe_container2(context, fibptr);
601 }
602 }
603
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))604 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
605 {
606 struct fib * fibptr;
607 int status = -ENOMEM;
608
609 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
610 struct aac_query_mount *dinfo;
611
612 aac_fib_init(fibptr);
613
614 dinfo = (struct aac_query_mount *)fib_data(fibptr);
615
616 dinfo->command = cpu_to_le32(VM_NameServe);
617 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
618 dinfo->type = cpu_to_le32(FT_FILESYS);
619 scsicmd->SCp.ptr = (char *)callback;
620
621 status = aac_fib_send(ContainerCommand,
622 fibptr,
623 sizeof(struct aac_query_mount),
624 FsaNormal,
625 0, 1,
626 _aac_probe_container1,
627 (void *) scsicmd);
628 /*
629 * Check that the command queued to the controller
630 */
631 if (status == -EINPROGRESS) {
632 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
633 return 0;
634 }
635 if (status < 0) {
636 scsicmd->SCp.ptr = NULL;
637 aac_fib_complete(fibptr);
638 aac_fib_free(fibptr);
639 }
640 }
641 if (status < 0) {
642 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
643 if (fsa_dev_ptr) {
644 fsa_dev_ptr += scmd_id(scsicmd);
645 if ((fsa_dev_ptr->valid & 1) == 0) {
646 fsa_dev_ptr->valid = 0;
647 return (*callback)(scsicmd);
648 }
649 }
650 }
651 return status;
652 }
653
654 /**
655 * aac_probe_container - query a logical volume
656 * @dev: device to query
657 * @cid: container identifier
658 *
659 * Queries the controller about the given volume. The volume information
660 * is updated in the struct fsa_dev_info structure rather than returned.
661 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)662 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
663 {
664 scsicmd->device = NULL;
665 return 0;
666 }
667
aac_probe_container(struct aac_dev * dev,int cid)668 int aac_probe_container(struct aac_dev *dev, int cid)
669 {
670 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
671 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
672 int status;
673
674 if (!scsicmd || !scsidev) {
675 kfree(scsicmd);
676 kfree(scsidev);
677 return -ENOMEM;
678 }
679 scsicmd->list.next = NULL;
680 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
681
682 scsicmd->device = scsidev;
683 scsidev->sdev_state = 0;
684 scsidev->id = cid;
685 scsidev->host = dev->scsi_host_ptr;
686
687 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
688 while (scsicmd->device == scsidev)
689 schedule();
690 kfree(scsidev);
691 status = scsicmd->SCp.Status;
692 kfree(scsicmd);
693 return status;
694 }
695
696 /* Local Structure to set SCSI inquiry data strings */
697 struct scsi_inq {
698 char vid[8]; /* Vendor ID */
699 char pid[16]; /* Product ID */
700 char prl[4]; /* Product Revision Level */
701 };
702
703 /**
704 * InqStrCopy - string merge
705 * @a: string to copy from
706 * @b: string to copy to
707 *
708 * Copy a String from one location to another
709 * without copying \0
710 */
711
inqstrcpy(char * a,char * b)712 static void inqstrcpy(char *a, char *b)
713 {
714
715 while (*a != (char)0)
716 *b++ = *a++;
717 }
718
719 static char *container_types[] = {
720 "None",
721 "Volume",
722 "Mirror",
723 "Stripe",
724 "RAID5",
725 "SSRW",
726 "SSRO",
727 "Morph",
728 "Legacy",
729 "RAID4",
730 "RAID10",
731 "RAID00",
732 "V-MIRRORS",
733 "PSEUDO R4",
734 "RAID50",
735 "RAID5D",
736 "RAID5D0",
737 "RAID1E",
738 "RAID6",
739 "RAID60",
740 "Unknown"
741 };
742
get_container_type(unsigned tindex)743 char * get_container_type(unsigned tindex)
744 {
745 if (tindex >= ARRAY_SIZE(container_types))
746 tindex = ARRAY_SIZE(container_types) - 1;
747 return container_types[tindex];
748 }
749
750 /* Function: setinqstr
751 *
752 * Arguments: [1] pointer to void [1] int
753 *
754 * Purpose: Sets SCSI inquiry data strings for vendor, product
755 * and revision level. Allows strings to be set in platform dependent
756 * files instead of in OS dependent driver source.
757 */
758
setinqstr(struct aac_dev * dev,void * data,int tindex)759 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
760 {
761 struct scsi_inq *str;
762
763 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
764 memset(str, ' ', sizeof(*str));
765
766 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
767 char * cp = dev->supplement_adapter_info.AdapterTypeText;
768 int c;
769 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
770 inqstrcpy("SMC", str->vid);
771 else {
772 c = sizeof(str->vid);
773 while (*cp && *cp != ' ' && --c)
774 ++cp;
775 c = *cp;
776 *cp = '\0';
777 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
778 str->vid);
779 *cp = c;
780 while (*cp && *cp != ' ')
781 ++cp;
782 }
783 while (*cp == ' ')
784 ++cp;
785 /* last six chars reserved for vol type */
786 c = 0;
787 if (strlen(cp) > sizeof(str->pid)) {
788 c = cp[sizeof(str->pid)];
789 cp[sizeof(str->pid)] = '\0';
790 }
791 inqstrcpy (cp, str->pid);
792 if (c)
793 cp[sizeof(str->pid)] = c;
794 } else {
795 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
796
797 inqstrcpy (mp->vname, str->vid);
798 /* last six chars reserved for vol type */
799 inqstrcpy (mp->model, str->pid);
800 }
801
802 if (tindex < ARRAY_SIZE(container_types)){
803 char *findit = str->pid;
804
805 for ( ; *findit != ' '; findit++); /* walk till we find a space */
806 /* RAID is superfluous in the context of a RAID device */
807 if (memcmp(findit-4, "RAID", 4) == 0)
808 *(findit -= 4) = ' ';
809 if (((findit - str->pid) + strlen(container_types[tindex]))
810 < (sizeof(str->pid) + sizeof(str->prl)))
811 inqstrcpy (container_types[tindex], findit + 1);
812 }
813 inqstrcpy ("V1.0", str->prl);
814 }
815
get_container_serial_callback(void * context,struct fib * fibptr)816 static void get_container_serial_callback(void *context, struct fib * fibptr)
817 {
818 struct aac_get_serial_resp * get_serial_reply;
819 struct scsi_cmnd * scsicmd;
820
821 BUG_ON(fibptr == NULL);
822
823 scsicmd = (struct scsi_cmnd *) context;
824 if (!aac_valid_context(scsicmd, fibptr))
825 return;
826
827 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
828 /* Failure is irrelevant, using default value instead */
829 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
830 char sp[13];
831 /* EVPD bit set */
832 sp[0] = INQD_PDT_DA;
833 sp[1] = scsicmd->cmnd[2];
834 sp[2] = 0;
835 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
836 le32_to_cpu(get_serial_reply->uid));
837 scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
838 }
839
840 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
841
842 aac_fib_complete(fibptr);
843 aac_fib_free(fibptr);
844 scsicmd->scsi_done(scsicmd);
845 }
846
847 /**
848 * aac_get_container_serial - get container serial, none blocking.
849 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)850 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
851 {
852 int status;
853 struct aac_get_serial *dinfo;
854 struct fib * cmd_fibcontext;
855 struct aac_dev * dev;
856
857 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
858
859 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
860 return -ENOMEM;
861
862 aac_fib_init(cmd_fibcontext);
863 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
864
865 dinfo->command = cpu_to_le32(VM_ContainerConfig);
866 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
867 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
868
869 status = aac_fib_send(ContainerCommand,
870 cmd_fibcontext,
871 sizeof (struct aac_get_serial),
872 FsaNormal,
873 0, 1,
874 (fib_callback) get_container_serial_callback,
875 (void *) scsicmd);
876
877 /*
878 * Check that the command queued to the controller
879 */
880 if (status == -EINPROGRESS) {
881 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
882 return 0;
883 }
884
885 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
886 aac_fib_complete(cmd_fibcontext);
887 aac_fib_free(cmd_fibcontext);
888 return -1;
889 }
890
891 /* Function: setinqserial
892 *
893 * Arguments: [1] pointer to void [1] int
894 *
895 * Purpose: Sets SCSI Unit Serial number.
896 * This is a fake. We should read a proper
897 * serial number from the container. <SuSE>But
898 * without docs it's quite hard to do it :-)
899 * So this will have to do in the meantime.</SuSE>
900 */
901
setinqserial(struct aac_dev * dev,void * data,int cid)902 static int setinqserial(struct aac_dev *dev, void *data, int cid)
903 {
904 /*
905 * This breaks array migration.
906 */
907 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
908 le32_to_cpu(dev->adapter_info.serial[0]), cid);
909 }
910
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)911 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
912 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
913 {
914 u8 *sense_buf = (u8 *)sense_data;
915 /* Sense data valid, err code 70h */
916 sense_buf[0] = 0x70; /* No info field */
917 sense_buf[1] = 0; /* Segment number, always zero */
918
919 sense_buf[2] = sense_key; /* Sense key */
920
921 sense_buf[12] = sense_code; /* Additional sense code */
922 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
923
924 if (sense_key == ILLEGAL_REQUEST) {
925 sense_buf[7] = 10; /* Additional sense length */
926
927 sense_buf[15] = bit_pointer;
928 /* Illegal parameter is in the parameter block */
929 if (sense_code == SENCODE_INVALID_CDB_FIELD)
930 sense_buf[15] |= 0xc0;/* Std sense key specific field */
931 /* Illegal parameter is in the CDB block */
932 sense_buf[16] = field_pointer >> 8; /* MSB */
933 sense_buf[17] = field_pointer; /* LSB */
934 } else
935 sense_buf[7] = 6; /* Additional sense length */
936 }
937
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)938 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
939 {
940 if (lba & 0xffffffff00000000LL) {
941 int cid = scmd_id(cmd);
942 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
943 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
944 SAM_STAT_CHECK_CONDITION;
945 set_sense(&dev->fsa_dev[cid].sense_data,
946 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
947 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
948 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
949 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
950 SCSI_SENSE_BUFFERSIZE));
951 cmd->scsi_done(cmd);
952 return 1;
953 }
954 return 0;
955 }
956
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)957 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
958 {
959 return 0;
960 }
961
962 static void io_callback(void *context, struct fib * fibptr);
963
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)964 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
965 {
966 u16 fibsize;
967 struct aac_raw_io *readcmd;
968 aac_fib_init(fib);
969 readcmd = (struct aac_raw_io *) fib_data(fib);
970 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
971 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
972 readcmd->count = cpu_to_le32(count<<9);
973 readcmd->cid = cpu_to_le16(scmd_id(cmd));
974 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
975 readcmd->bpTotal = 0;
976 readcmd->bpComplete = 0;
977
978 aac_build_sgraw(cmd, &readcmd->sg);
979 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
980 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
981 /*
982 * Now send the Fib to the adapter
983 */
984 return aac_fib_send(ContainerRawIo,
985 fib,
986 fibsize,
987 FsaNormal,
988 0, 1,
989 (fib_callback) io_callback,
990 (void *) cmd);
991 }
992
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)993 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
994 {
995 u16 fibsize;
996 struct aac_read64 *readcmd;
997 aac_fib_init(fib);
998 readcmd = (struct aac_read64 *) fib_data(fib);
999 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1000 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1001 readcmd->sector_count = cpu_to_le16(count);
1002 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1003 readcmd->pad = 0;
1004 readcmd->flags = 0;
1005
1006 aac_build_sg64(cmd, &readcmd->sg);
1007 fibsize = sizeof(struct aac_read64) +
1008 ((le32_to_cpu(readcmd->sg.count) - 1) *
1009 sizeof (struct sgentry64));
1010 BUG_ON (fibsize > (fib->dev->max_fib_size -
1011 sizeof(struct aac_fibhdr)));
1012 /*
1013 * Now send the Fib to the adapter
1014 */
1015 return aac_fib_send(ContainerCommand64,
1016 fib,
1017 fibsize,
1018 FsaNormal,
1019 0, 1,
1020 (fib_callback) io_callback,
1021 (void *) cmd);
1022 }
1023
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1024 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1025 {
1026 u16 fibsize;
1027 struct aac_read *readcmd;
1028 aac_fib_init(fib);
1029 readcmd = (struct aac_read *) fib_data(fib);
1030 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1031 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1032 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1033 readcmd->count = cpu_to_le32(count * 512);
1034
1035 aac_build_sg(cmd, &readcmd->sg);
1036 fibsize = sizeof(struct aac_read) +
1037 ((le32_to_cpu(readcmd->sg.count) - 1) *
1038 sizeof (struct sgentry));
1039 BUG_ON (fibsize > (fib->dev->max_fib_size -
1040 sizeof(struct aac_fibhdr)));
1041 /*
1042 * Now send the Fib to the adapter
1043 */
1044 return aac_fib_send(ContainerCommand,
1045 fib,
1046 fibsize,
1047 FsaNormal,
1048 0, 1,
1049 (fib_callback) io_callback,
1050 (void *) cmd);
1051 }
1052
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1053 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1054 {
1055 u16 fibsize;
1056 struct aac_raw_io *writecmd;
1057 aac_fib_init(fib);
1058 writecmd = (struct aac_raw_io *) fib_data(fib);
1059 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1060 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1061 writecmd->count = cpu_to_le32(count<<9);
1062 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1063 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1064 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1065 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1066 cpu_to_le16(IO_TYPE_WRITE);
1067 writecmd->bpTotal = 0;
1068 writecmd->bpComplete = 0;
1069
1070 aac_build_sgraw(cmd, &writecmd->sg);
1071 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1072 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1073 /*
1074 * Now send the Fib to the adapter
1075 */
1076 return aac_fib_send(ContainerRawIo,
1077 fib,
1078 fibsize,
1079 FsaNormal,
1080 0, 1,
1081 (fib_callback) io_callback,
1082 (void *) cmd);
1083 }
1084
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1085 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1086 {
1087 u16 fibsize;
1088 struct aac_write64 *writecmd;
1089 aac_fib_init(fib);
1090 writecmd = (struct aac_write64 *) fib_data(fib);
1091 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1092 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1093 writecmd->sector_count = cpu_to_le16(count);
1094 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1095 writecmd->pad = 0;
1096 writecmd->flags = 0;
1097
1098 aac_build_sg64(cmd, &writecmd->sg);
1099 fibsize = sizeof(struct aac_write64) +
1100 ((le32_to_cpu(writecmd->sg.count) - 1) *
1101 sizeof (struct sgentry64));
1102 BUG_ON (fibsize > (fib->dev->max_fib_size -
1103 sizeof(struct aac_fibhdr)));
1104 /*
1105 * Now send the Fib to the adapter
1106 */
1107 return aac_fib_send(ContainerCommand64,
1108 fib,
1109 fibsize,
1110 FsaNormal,
1111 0, 1,
1112 (fib_callback) io_callback,
1113 (void *) cmd);
1114 }
1115
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1116 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1117 {
1118 u16 fibsize;
1119 struct aac_write *writecmd;
1120 aac_fib_init(fib);
1121 writecmd = (struct aac_write *) fib_data(fib);
1122 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1123 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1124 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1125 writecmd->count = cpu_to_le32(count * 512);
1126 writecmd->sg.count = cpu_to_le32(1);
1127 /* ->stable is not used - it did mean which type of write */
1128
1129 aac_build_sg(cmd, &writecmd->sg);
1130 fibsize = sizeof(struct aac_write) +
1131 ((le32_to_cpu(writecmd->sg.count) - 1) *
1132 sizeof (struct sgentry));
1133 BUG_ON (fibsize > (fib->dev->max_fib_size -
1134 sizeof(struct aac_fibhdr)));
1135 /*
1136 * Now send the Fib to the adapter
1137 */
1138 return aac_fib_send(ContainerCommand,
1139 fib,
1140 fibsize,
1141 FsaNormal,
1142 0, 1,
1143 (fib_callback) io_callback,
1144 (void *) cmd);
1145 }
1146
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1147 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1148 {
1149 struct aac_srb * srbcmd;
1150 u32 flag;
1151 u32 timeout;
1152
1153 aac_fib_init(fib);
1154 switch(cmd->sc_data_direction){
1155 case DMA_TO_DEVICE:
1156 flag = SRB_DataOut;
1157 break;
1158 case DMA_BIDIRECTIONAL:
1159 flag = SRB_DataIn | SRB_DataOut;
1160 break;
1161 case DMA_FROM_DEVICE:
1162 flag = SRB_DataIn;
1163 break;
1164 case DMA_NONE:
1165 default: /* shuts up some versions of gcc */
1166 flag = SRB_NoDataXfer;
1167 break;
1168 }
1169
1170 srbcmd = (struct aac_srb*) fib_data(fib);
1171 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1172 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1173 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1174 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1175 srbcmd->flags = cpu_to_le32(flag);
1176 timeout = cmd->request->timeout/HZ;
1177 if (timeout == 0)
1178 timeout = 1;
1179 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1180 srbcmd->retry_limit = 0; /* Obsolete parameter */
1181 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1182 return srbcmd;
1183 }
1184
1185 static void aac_srb_callback(void *context, struct fib * fibptr);
1186
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1187 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1188 {
1189 u16 fibsize;
1190 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1191
1192 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1193 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1194
1195 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1196 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1197 /*
1198 * Build Scatter/Gather list
1199 */
1200 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1201 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1202 sizeof (struct sgentry64));
1203 BUG_ON (fibsize > (fib->dev->max_fib_size -
1204 sizeof(struct aac_fibhdr)));
1205
1206 /*
1207 * Now send the Fib to the adapter
1208 */
1209 return aac_fib_send(ScsiPortCommand64, fib,
1210 fibsize, FsaNormal, 0, 1,
1211 (fib_callback) aac_srb_callback,
1212 (void *) cmd);
1213 }
1214
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1215 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1216 {
1217 u16 fibsize;
1218 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1219
1220 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1221 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1222
1223 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1224 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1225 /*
1226 * Build Scatter/Gather list
1227 */
1228 fibsize = sizeof (struct aac_srb) +
1229 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1230 sizeof (struct sgentry));
1231 BUG_ON (fibsize > (fib->dev->max_fib_size -
1232 sizeof(struct aac_fibhdr)));
1233
1234 /*
1235 * Now send the Fib to the adapter
1236 */
1237 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1238 (fib_callback) aac_srb_callback, (void *) cmd);
1239 }
1240
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1241 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1242 {
1243 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1244 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1245 return FAILED;
1246 return aac_scsi_32(fib, cmd);
1247 }
1248
aac_get_adapter_info(struct aac_dev * dev)1249 int aac_get_adapter_info(struct aac_dev* dev)
1250 {
1251 struct fib* fibptr;
1252 int rcode;
1253 u32 tmp;
1254 struct aac_adapter_info *info;
1255 struct aac_bus_info *command;
1256 struct aac_bus_info_response *bus_info;
1257
1258 if (!(fibptr = aac_fib_alloc(dev)))
1259 return -ENOMEM;
1260
1261 aac_fib_init(fibptr);
1262 info = (struct aac_adapter_info *) fib_data(fibptr);
1263 memset(info,0,sizeof(*info));
1264
1265 rcode = aac_fib_send(RequestAdapterInfo,
1266 fibptr,
1267 sizeof(*info),
1268 FsaNormal,
1269 -1, 1, /* First `interrupt' command uses special wait */
1270 NULL,
1271 NULL);
1272
1273 if (rcode < 0) {
1274 /* FIB should be freed only after
1275 * getting the response from the F/W */
1276 if (rcode != -ERESTARTSYS) {
1277 aac_fib_complete(fibptr);
1278 aac_fib_free(fibptr);
1279 }
1280 return rcode;
1281 }
1282 memcpy(&dev->adapter_info, info, sizeof(*info));
1283
1284 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1285 struct aac_supplement_adapter_info * sinfo;
1286
1287 aac_fib_init(fibptr);
1288
1289 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1290
1291 memset(sinfo,0,sizeof(*sinfo));
1292
1293 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1294 fibptr,
1295 sizeof(*sinfo),
1296 FsaNormal,
1297 1, 1,
1298 NULL,
1299 NULL);
1300
1301 if (rcode >= 0)
1302 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1303 if (rcode == -ERESTARTSYS) {
1304 fibptr = aac_fib_alloc(dev);
1305 if (!fibptr)
1306 return -ENOMEM;
1307 }
1308
1309 }
1310
1311
1312 /*
1313 * GetBusInfo
1314 */
1315
1316 aac_fib_init(fibptr);
1317
1318 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1319
1320 memset(bus_info, 0, sizeof(*bus_info));
1321
1322 command = (struct aac_bus_info *)bus_info;
1323
1324 command->Command = cpu_to_le32(VM_Ioctl);
1325 command->ObjType = cpu_to_le32(FT_DRIVE);
1326 command->MethodId = cpu_to_le32(1);
1327 command->CtlCmd = cpu_to_le32(GetBusInfo);
1328
1329 rcode = aac_fib_send(ContainerCommand,
1330 fibptr,
1331 sizeof (*bus_info),
1332 FsaNormal,
1333 1, 1,
1334 NULL, NULL);
1335
1336 /* reasoned default */
1337 dev->maximum_num_physicals = 16;
1338 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1339 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1340 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1341 }
1342
1343 if (!dev->in_reset) {
1344 char buffer[16];
1345 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1346 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1347 dev->name,
1348 dev->id,
1349 tmp>>24,
1350 (tmp>>16)&0xff,
1351 tmp&0xff,
1352 le32_to_cpu(dev->adapter_info.kernelbuild),
1353 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1354 dev->supplement_adapter_info.BuildDate);
1355 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1356 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1357 dev->name, dev->id,
1358 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1359 le32_to_cpu(dev->adapter_info.monitorbuild));
1360 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1361 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1362 dev->name, dev->id,
1363 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1364 le32_to_cpu(dev->adapter_info.biosbuild));
1365 buffer[0] = '\0';
1366 if (aac_get_serial_number(
1367 shost_to_class(dev->scsi_host_ptr), buffer))
1368 printk(KERN_INFO "%s%d: serial %s",
1369 dev->name, dev->id, buffer);
1370 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1371 printk(KERN_INFO "%s%d: TSID %.*s\n",
1372 dev->name, dev->id,
1373 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1374 dev->supplement_adapter_info.VpdInfo.Tsid);
1375 }
1376 if (!aac_check_reset || ((aac_check_reset == 1) &&
1377 (dev->supplement_adapter_info.SupportedOptions2 &
1378 AAC_OPTION_IGNORE_RESET))) {
1379 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1380 dev->name, dev->id);
1381 }
1382 }
1383
1384 dev->cache_protected = 0;
1385 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1386 AAC_FEATURE_JBOD) != 0);
1387 dev->nondasd_support = 0;
1388 dev->raid_scsi_mode = 0;
1389 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1390 dev->nondasd_support = 1;
1391
1392 /*
1393 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1394 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1395 * force nondasd support on. If we decide to allow the non-dasd flag
1396 * additional changes changes will have to be made to support
1397 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1398 * changed to support the new dev->raid_scsi_mode flag instead of
1399 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1400 * function aac_detect will have to be modified where it sets up the
1401 * max number of channels based on the aac->nondasd_support flag only.
1402 */
1403 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1404 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1405 dev->nondasd_support = 1;
1406 dev->raid_scsi_mode = 1;
1407 }
1408 if (dev->raid_scsi_mode != 0)
1409 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1410 dev->name, dev->id);
1411
1412 if (nondasd != -1)
1413 dev->nondasd_support = (nondasd!=0);
1414 if (dev->nondasd_support && !dev->in_reset)
1415 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1416
1417 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1418 dev->needs_dac = 1;
1419 dev->dac_support = 0;
1420 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1421 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1422 if (!dev->in_reset)
1423 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1424 dev->name, dev->id);
1425 dev->dac_support = 1;
1426 }
1427
1428 if(dacmode != -1) {
1429 dev->dac_support = (dacmode!=0);
1430 }
1431
1432 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1433 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
1434 & AAC_QUIRK_SCSI_32)) {
1435 dev->nondasd_support = 0;
1436 dev->jbod = 0;
1437 expose_physicals = 0;
1438 }
1439
1440 if(dev->dac_support != 0) {
1441 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1442 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1443 if (!dev->in_reset)
1444 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1445 dev->name, dev->id);
1446 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1447 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1448 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1449 dev->name, dev->id);
1450 dev->dac_support = 0;
1451 } else {
1452 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1453 dev->name, dev->id);
1454 rcode = -ENOMEM;
1455 }
1456 }
1457 /*
1458 * Deal with configuring for the individualized limits of each packet
1459 * interface.
1460 */
1461 dev->a_ops.adapter_scsi = (dev->dac_support)
1462 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1463 ? aac_scsi_32_64
1464 : aac_scsi_64)
1465 : aac_scsi_32;
1466 if (dev->raw_io_interface) {
1467 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1468 ? aac_bounds_64
1469 : aac_bounds_32;
1470 dev->a_ops.adapter_read = aac_read_raw_io;
1471 dev->a_ops.adapter_write = aac_write_raw_io;
1472 } else {
1473 dev->a_ops.adapter_bounds = aac_bounds_32;
1474 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1475 sizeof(struct aac_fibhdr) -
1476 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1477 sizeof(struct sgentry);
1478 if (dev->dac_support) {
1479 dev->a_ops.adapter_read = aac_read_block64;
1480 dev->a_ops.adapter_write = aac_write_block64;
1481 /*
1482 * 38 scatter gather elements
1483 */
1484 dev->scsi_host_ptr->sg_tablesize =
1485 (dev->max_fib_size -
1486 sizeof(struct aac_fibhdr) -
1487 sizeof(struct aac_write64) +
1488 sizeof(struct sgentry64)) /
1489 sizeof(struct sgentry64);
1490 } else {
1491 dev->a_ops.adapter_read = aac_read_block;
1492 dev->a_ops.adapter_write = aac_write_block;
1493 }
1494 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1495 if (dev->adapter_info.options & AAC_OPT_NEW_COMM_TYPE1)
1496 dev->adapter_info.options |= AAC_OPT_NEW_COMM;
1497 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1498 /*
1499 * Worst case size that could cause sg overflow when
1500 * we break up SG elements that are larger than 64KB.
1501 * Would be nice if we could tell the SCSI layer what
1502 * the maximum SG element size can be. Worst case is
1503 * (sg_tablesize-1) 4KB elements with one 64KB
1504 * element.
1505 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1506 */
1507 dev->scsi_host_ptr->max_sectors =
1508 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1509 }
1510 }
1511 /* FIB should be freed only after getting the response from the F/W */
1512 if (rcode != -ERESTARTSYS) {
1513 aac_fib_complete(fibptr);
1514 aac_fib_free(fibptr);
1515 }
1516
1517 return rcode;
1518 }
1519
1520
io_callback(void * context,struct fib * fibptr)1521 static void io_callback(void *context, struct fib * fibptr)
1522 {
1523 struct aac_dev *dev;
1524 struct aac_read_reply *readreply;
1525 struct scsi_cmnd *scsicmd;
1526 u32 cid;
1527
1528 scsicmd = (struct scsi_cmnd *) context;
1529
1530 if (!aac_valid_context(scsicmd, fibptr))
1531 return;
1532
1533 dev = fibptr->dev;
1534 cid = scmd_id(scsicmd);
1535
1536 if (nblank(dprintk(x))) {
1537 u64 lba;
1538 switch (scsicmd->cmnd[0]) {
1539 case WRITE_6:
1540 case READ_6:
1541 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1542 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1543 break;
1544 case WRITE_16:
1545 case READ_16:
1546 lba = ((u64)scsicmd->cmnd[2] << 56) |
1547 ((u64)scsicmd->cmnd[3] << 48) |
1548 ((u64)scsicmd->cmnd[4] << 40) |
1549 ((u64)scsicmd->cmnd[5] << 32) |
1550 ((u64)scsicmd->cmnd[6] << 24) |
1551 (scsicmd->cmnd[7] << 16) |
1552 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1553 break;
1554 case WRITE_12:
1555 case READ_12:
1556 lba = ((u64)scsicmd->cmnd[2] << 24) |
1557 (scsicmd->cmnd[3] << 16) |
1558 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1559 break;
1560 default:
1561 lba = ((u64)scsicmd->cmnd[2] << 24) |
1562 (scsicmd->cmnd[3] << 16) |
1563 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1564 break;
1565 }
1566 printk(KERN_DEBUG
1567 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1568 smp_processor_id(), (unsigned long long)lba, jiffies);
1569 }
1570
1571 BUG_ON(fibptr == NULL);
1572
1573 scsi_dma_unmap(scsicmd);
1574
1575 readreply = (struct aac_read_reply *)fib_data(fibptr);
1576 switch (le32_to_cpu(readreply->status)) {
1577 case ST_OK:
1578 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1579 SAM_STAT_GOOD;
1580 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1581 break;
1582 case ST_NOT_READY:
1583 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1584 SAM_STAT_CHECK_CONDITION;
1585 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1586 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1587 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1588 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1589 SCSI_SENSE_BUFFERSIZE));
1590 break;
1591 default:
1592 #ifdef AAC_DETAILED_STATUS_INFO
1593 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1594 le32_to_cpu(readreply->status));
1595 #endif
1596 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1597 SAM_STAT_CHECK_CONDITION;
1598 set_sense(&dev->fsa_dev[cid].sense_data,
1599 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1600 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1601 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1602 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1603 SCSI_SENSE_BUFFERSIZE));
1604 break;
1605 }
1606 aac_fib_complete(fibptr);
1607 aac_fib_free(fibptr);
1608
1609 scsicmd->scsi_done(scsicmd);
1610 }
1611
aac_read(struct scsi_cmnd * scsicmd)1612 static int aac_read(struct scsi_cmnd * scsicmd)
1613 {
1614 u64 lba;
1615 u32 count;
1616 int status;
1617 struct aac_dev *dev;
1618 struct fib * cmd_fibcontext;
1619 int cid;
1620
1621 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1622 /*
1623 * Get block address and transfer length
1624 */
1625 switch (scsicmd->cmnd[0]) {
1626 case READ_6:
1627 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1628
1629 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1630 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1631 count = scsicmd->cmnd[4];
1632
1633 if (count == 0)
1634 count = 256;
1635 break;
1636 case READ_16:
1637 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1638
1639 lba = ((u64)scsicmd->cmnd[2] << 56) |
1640 ((u64)scsicmd->cmnd[3] << 48) |
1641 ((u64)scsicmd->cmnd[4] << 40) |
1642 ((u64)scsicmd->cmnd[5] << 32) |
1643 ((u64)scsicmd->cmnd[6] << 24) |
1644 (scsicmd->cmnd[7] << 16) |
1645 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1646 count = (scsicmd->cmnd[10] << 24) |
1647 (scsicmd->cmnd[11] << 16) |
1648 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1649 break;
1650 case READ_12:
1651 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1652
1653 lba = ((u64)scsicmd->cmnd[2] << 24) |
1654 (scsicmd->cmnd[3] << 16) |
1655 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1656 count = (scsicmd->cmnd[6] << 24) |
1657 (scsicmd->cmnd[7] << 16) |
1658 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1659 break;
1660 default:
1661 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1662
1663 lba = ((u64)scsicmd->cmnd[2] << 24) |
1664 (scsicmd->cmnd[3] << 16) |
1665 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1666 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1667 break;
1668 }
1669
1670 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1671 cid = scmd_id(scsicmd);
1672 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1673 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1674 SAM_STAT_CHECK_CONDITION;
1675 set_sense(&dev->fsa_dev[cid].sense_data,
1676 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1677 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1678 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1679 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1680 SCSI_SENSE_BUFFERSIZE));
1681 scsicmd->scsi_done(scsicmd);
1682 return 1;
1683 }
1684
1685 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1686 smp_processor_id(), (unsigned long long)lba, jiffies));
1687 if (aac_adapter_bounds(dev,scsicmd,lba))
1688 return 0;
1689 /*
1690 * Alocate and initialize a Fib
1691 */
1692 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1693 printk(KERN_WARNING "aac_read: fib allocation failed\n");
1694 return -1;
1695 }
1696
1697 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1698
1699 /*
1700 * Check that the command queued to the controller
1701 */
1702 if (status == -EINPROGRESS) {
1703 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1704 return 0;
1705 }
1706
1707 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1708 /*
1709 * For some reason, the Fib didn't queue, return QUEUE_FULL
1710 */
1711 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1712 scsicmd->scsi_done(scsicmd);
1713 aac_fib_complete(cmd_fibcontext);
1714 aac_fib_free(cmd_fibcontext);
1715 return 0;
1716 }
1717
aac_write(struct scsi_cmnd * scsicmd)1718 static int aac_write(struct scsi_cmnd * scsicmd)
1719 {
1720 u64 lba;
1721 u32 count;
1722 int fua;
1723 int status;
1724 struct aac_dev *dev;
1725 struct fib * cmd_fibcontext;
1726 int cid;
1727
1728 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1729 /*
1730 * Get block address and transfer length
1731 */
1732 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1733 {
1734 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1735 count = scsicmd->cmnd[4];
1736 if (count == 0)
1737 count = 256;
1738 fua = 0;
1739 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1740 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1741
1742 lba = ((u64)scsicmd->cmnd[2] << 56) |
1743 ((u64)scsicmd->cmnd[3] << 48) |
1744 ((u64)scsicmd->cmnd[4] << 40) |
1745 ((u64)scsicmd->cmnd[5] << 32) |
1746 ((u64)scsicmd->cmnd[6] << 24) |
1747 (scsicmd->cmnd[7] << 16) |
1748 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1749 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1750 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1751 fua = scsicmd->cmnd[1] & 0x8;
1752 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1753 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1754
1755 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1756 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1757 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1758 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1759 fua = scsicmd->cmnd[1] & 0x8;
1760 } else {
1761 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1762 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1763 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1764 fua = scsicmd->cmnd[1] & 0x8;
1765 }
1766
1767 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1768 cid = scmd_id(scsicmd);
1769 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1770 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1771 SAM_STAT_CHECK_CONDITION;
1772 set_sense(&dev->fsa_dev[cid].sense_data,
1773 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1774 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1775 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1776 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1777 SCSI_SENSE_BUFFERSIZE));
1778 scsicmd->scsi_done(scsicmd);
1779 return 1;
1780 }
1781
1782 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1783 smp_processor_id(), (unsigned long long)lba, jiffies));
1784 if (aac_adapter_bounds(dev,scsicmd,lba))
1785 return 0;
1786 /*
1787 * Allocate and initialize a Fib then setup a BlockWrite command
1788 */
1789 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1790 /* FIB temporarily unavailable,not catastrophic failure */
1791
1792 /* scsicmd->result = DID_ERROR << 16;
1793 * scsicmd->scsi_done(scsicmd);
1794 * return 0;
1795 */
1796 printk(KERN_WARNING "aac_write: fib allocation failed\n");
1797 return -1;
1798 }
1799
1800 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1801
1802 /*
1803 * Check that the command queued to the controller
1804 */
1805 if (status == -EINPROGRESS) {
1806 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1807 return 0;
1808 }
1809
1810 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1811 /*
1812 * For some reason, the Fib didn't queue, return QUEUE_FULL
1813 */
1814 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1815 scsicmd->scsi_done(scsicmd);
1816
1817 aac_fib_complete(cmd_fibcontext);
1818 aac_fib_free(cmd_fibcontext);
1819 return 0;
1820 }
1821
synchronize_callback(void * context,struct fib * fibptr)1822 static void synchronize_callback(void *context, struct fib *fibptr)
1823 {
1824 struct aac_synchronize_reply *synchronizereply;
1825 struct scsi_cmnd *cmd;
1826
1827 cmd = context;
1828
1829 if (!aac_valid_context(cmd, fibptr))
1830 return;
1831
1832 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1833 smp_processor_id(), jiffies));
1834 BUG_ON(fibptr == NULL);
1835
1836
1837 synchronizereply = fib_data(fibptr);
1838 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1839 cmd->result = DID_OK << 16 |
1840 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1841 else {
1842 struct scsi_device *sdev = cmd->device;
1843 struct aac_dev *dev = fibptr->dev;
1844 u32 cid = sdev_id(sdev);
1845 printk(KERN_WARNING
1846 "synchronize_callback: synchronize failed, status = %d\n",
1847 le32_to_cpu(synchronizereply->status));
1848 cmd->result = DID_OK << 16 |
1849 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1850 set_sense(&dev->fsa_dev[cid].sense_data,
1851 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1852 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1853 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1854 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1855 SCSI_SENSE_BUFFERSIZE));
1856 }
1857
1858 aac_fib_complete(fibptr);
1859 aac_fib_free(fibptr);
1860 cmd->scsi_done(cmd);
1861 }
1862
aac_synchronize(struct scsi_cmnd * scsicmd)1863 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1864 {
1865 int status;
1866 struct fib *cmd_fibcontext;
1867 struct aac_synchronize *synchronizecmd;
1868 struct scsi_cmnd *cmd;
1869 struct scsi_device *sdev = scsicmd->device;
1870 int active = 0;
1871 struct aac_dev *aac;
1872 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1873 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1874 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1875 unsigned long flags;
1876
1877 /*
1878 * Wait for all outstanding queued commands to complete to this
1879 * specific target (block).
1880 */
1881 spin_lock_irqsave(&sdev->list_lock, flags);
1882 list_for_each_entry(cmd, &sdev->cmd_list, list)
1883 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1884 u64 cmnd_lba;
1885 u32 cmnd_count;
1886
1887 if (cmd->cmnd[0] == WRITE_6) {
1888 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1889 (cmd->cmnd[2] << 8) |
1890 cmd->cmnd[3];
1891 cmnd_count = cmd->cmnd[4];
1892 if (cmnd_count == 0)
1893 cmnd_count = 256;
1894 } else if (cmd->cmnd[0] == WRITE_16) {
1895 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1896 ((u64)cmd->cmnd[3] << 48) |
1897 ((u64)cmd->cmnd[4] << 40) |
1898 ((u64)cmd->cmnd[5] << 32) |
1899 ((u64)cmd->cmnd[6] << 24) |
1900 (cmd->cmnd[7] << 16) |
1901 (cmd->cmnd[8] << 8) |
1902 cmd->cmnd[9];
1903 cmnd_count = (cmd->cmnd[10] << 24) |
1904 (cmd->cmnd[11] << 16) |
1905 (cmd->cmnd[12] << 8) |
1906 cmd->cmnd[13];
1907 } else if (cmd->cmnd[0] == WRITE_12) {
1908 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1909 (cmd->cmnd[3] << 16) |
1910 (cmd->cmnd[4] << 8) |
1911 cmd->cmnd[5];
1912 cmnd_count = (cmd->cmnd[6] << 24) |
1913 (cmd->cmnd[7] << 16) |
1914 (cmd->cmnd[8] << 8) |
1915 cmd->cmnd[9];
1916 } else if (cmd->cmnd[0] == WRITE_10) {
1917 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1918 (cmd->cmnd[3] << 16) |
1919 (cmd->cmnd[4] << 8) |
1920 cmd->cmnd[5];
1921 cmnd_count = (cmd->cmnd[7] << 8) |
1922 cmd->cmnd[8];
1923 } else
1924 continue;
1925 if (((cmnd_lba + cmnd_count) < lba) ||
1926 (count && ((lba + count) < cmnd_lba)))
1927 continue;
1928 ++active;
1929 break;
1930 }
1931
1932 spin_unlock_irqrestore(&sdev->list_lock, flags);
1933
1934 /*
1935 * Yield the processor (requeue for later)
1936 */
1937 if (active)
1938 return SCSI_MLQUEUE_DEVICE_BUSY;
1939
1940 aac = (struct aac_dev *)sdev->host->hostdata;
1941 if (aac->in_reset)
1942 return SCSI_MLQUEUE_HOST_BUSY;
1943
1944 /*
1945 * Allocate and initialize a Fib
1946 */
1947 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1948 return SCSI_MLQUEUE_HOST_BUSY;
1949
1950 aac_fib_init(cmd_fibcontext);
1951
1952 synchronizecmd = fib_data(cmd_fibcontext);
1953 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1954 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1955 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1956 synchronizecmd->count =
1957 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1958
1959 /*
1960 * Now send the Fib to the adapter
1961 */
1962 status = aac_fib_send(ContainerCommand,
1963 cmd_fibcontext,
1964 sizeof(struct aac_synchronize),
1965 FsaNormal,
1966 0, 1,
1967 (fib_callback)synchronize_callback,
1968 (void *)scsicmd);
1969
1970 /*
1971 * Check that the command queued to the controller
1972 */
1973 if (status == -EINPROGRESS) {
1974 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1975 return 0;
1976 }
1977
1978 printk(KERN_WARNING
1979 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1980 aac_fib_complete(cmd_fibcontext);
1981 aac_fib_free(cmd_fibcontext);
1982 return SCSI_MLQUEUE_HOST_BUSY;
1983 }
1984
aac_start_stop_callback(void * context,struct fib * fibptr)1985 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1986 {
1987 struct scsi_cmnd *scsicmd = context;
1988
1989 if (!aac_valid_context(scsicmd, fibptr))
1990 return;
1991
1992 BUG_ON(fibptr == NULL);
1993
1994 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1995
1996 aac_fib_complete(fibptr);
1997 aac_fib_free(fibptr);
1998 scsicmd->scsi_done(scsicmd);
1999 }
2000
aac_start_stop(struct scsi_cmnd * scsicmd)2001 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2002 {
2003 int status;
2004 struct fib *cmd_fibcontext;
2005 struct aac_power_management *pmcmd;
2006 struct scsi_device *sdev = scsicmd->device;
2007 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2008
2009 if (!(aac->supplement_adapter_info.SupportedOptions2 &
2010 AAC_OPTION_POWER_MANAGEMENT)) {
2011 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2012 SAM_STAT_GOOD;
2013 scsicmd->scsi_done(scsicmd);
2014 return 0;
2015 }
2016
2017 if (aac->in_reset)
2018 return SCSI_MLQUEUE_HOST_BUSY;
2019
2020 /*
2021 * Allocate and initialize a Fib
2022 */
2023 cmd_fibcontext = aac_fib_alloc(aac);
2024 if (!cmd_fibcontext)
2025 return SCSI_MLQUEUE_HOST_BUSY;
2026
2027 aac_fib_init(cmd_fibcontext);
2028
2029 pmcmd = fib_data(cmd_fibcontext);
2030 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2031 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2032 /* Eject bit ignored, not relevant */
2033 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2034 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2035 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2036 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2037 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2038
2039 /*
2040 * Now send the Fib to the adapter
2041 */
2042 status = aac_fib_send(ContainerCommand,
2043 cmd_fibcontext,
2044 sizeof(struct aac_power_management),
2045 FsaNormal,
2046 0, 1,
2047 (fib_callback)aac_start_stop_callback,
2048 (void *)scsicmd);
2049
2050 /*
2051 * Check that the command queued to the controller
2052 */
2053 if (status == -EINPROGRESS) {
2054 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2055 return 0;
2056 }
2057
2058 aac_fib_complete(cmd_fibcontext);
2059 aac_fib_free(cmd_fibcontext);
2060 return SCSI_MLQUEUE_HOST_BUSY;
2061 }
2062
2063 /**
2064 * aac_scsi_cmd() - Process SCSI command
2065 * @scsicmd: SCSI command block
2066 *
2067 * Emulate a SCSI command and queue the required request for the
2068 * aacraid firmware.
2069 */
2070
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2071 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2072 {
2073 u32 cid;
2074 struct Scsi_Host *host = scsicmd->device->host;
2075 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2076 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2077
2078 if (fsa_dev_ptr == NULL)
2079 return -1;
2080 /*
2081 * If the bus, id or lun is out of range, return fail
2082 * Test does not apply to ID 16, the pseudo id for the controller
2083 * itself.
2084 */
2085 cid = scmd_id(scsicmd);
2086 if (cid != host->this_id) {
2087 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2088 if((cid >= dev->maximum_num_containers) ||
2089 (scsicmd->device->lun != 0)) {
2090 scsicmd->result = DID_NO_CONNECT << 16;
2091 scsicmd->scsi_done(scsicmd);
2092 return 0;
2093 }
2094
2095 /*
2096 * If the target container doesn't exist, it may have
2097 * been newly created
2098 */
2099 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2100 (fsa_dev_ptr[cid].sense_data.sense_key ==
2101 NOT_READY)) {
2102 switch (scsicmd->cmnd[0]) {
2103 case SERVICE_ACTION_IN:
2104 if (!(dev->raw_io_interface) ||
2105 !(dev->raw_io_64) ||
2106 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2107 break;
2108 case INQUIRY:
2109 case READ_CAPACITY:
2110 case TEST_UNIT_READY:
2111 if (dev->in_reset)
2112 return -1;
2113 return _aac_probe_container(scsicmd,
2114 aac_probe_container_callback2);
2115 default:
2116 break;
2117 }
2118 }
2119 } else { /* check for physical non-dasd devices */
2120 if (dev->nondasd_support || expose_physicals ||
2121 dev->jbod) {
2122 if (dev->in_reset)
2123 return -1;
2124 return aac_send_srb_fib(scsicmd);
2125 } else {
2126 scsicmd->result = DID_NO_CONNECT << 16;
2127 scsicmd->scsi_done(scsicmd);
2128 return 0;
2129 }
2130 }
2131 }
2132 /*
2133 * else Command for the controller itself
2134 */
2135 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2136 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2137 {
2138 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2139 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2140 set_sense(&dev->fsa_dev[cid].sense_data,
2141 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2142 ASENCODE_INVALID_COMMAND, 0, 0);
2143 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2144 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2145 SCSI_SENSE_BUFFERSIZE));
2146 scsicmd->scsi_done(scsicmd);
2147 return 0;
2148 }
2149
2150
2151 /* Handle commands here that don't really require going out to the adapter */
2152 switch (scsicmd->cmnd[0]) {
2153 case INQUIRY:
2154 {
2155 struct inquiry_data inq_data;
2156
2157 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2158 memset(&inq_data, 0, sizeof (struct inquiry_data));
2159
2160 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2161 char *arr = (char *)&inq_data;
2162
2163 /* EVPD bit set */
2164 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2165 INQD_PDT_PROC : INQD_PDT_DA;
2166 if (scsicmd->cmnd[2] == 0) {
2167 /* supported vital product data pages */
2168 arr[3] = 2;
2169 arr[4] = 0x0;
2170 arr[5] = 0x80;
2171 arr[1] = scsicmd->cmnd[2];
2172 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2173 sizeof(inq_data));
2174 scsicmd->result = DID_OK << 16 |
2175 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2176 } else if (scsicmd->cmnd[2] == 0x80) {
2177 /* unit serial number page */
2178 arr[3] = setinqserial(dev, &arr[4],
2179 scmd_id(scsicmd));
2180 arr[1] = scsicmd->cmnd[2];
2181 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2182 sizeof(inq_data));
2183 if (aac_wwn != 2)
2184 return aac_get_container_serial(
2185 scsicmd);
2186 /* SLES 10 SP1 special */
2187 scsicmd->result = DID_OK << 16 |
2188 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2189 } else {
2190 /* vpd page not implemented */
2191 scsicmd->result = DID_OK << 16 |
2192 COMMAND_COMPLETE << 8 |
2193 SAM_STAT_CHECK_CONDITION;
2194 set_sense(&dev->fsa_dev[cid].sense_data,
2195 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2196 ASENCODE_NO_SENSE, 7, 2);
2197 memcpy(scsicmd->sense_buffer,
2198 &dev->fsa_dev[cid].sense_data,
2199 min_t(size_t,
2200 sizeof(dev->fsa_dev[cid].sense_data),
2201 SCSI_SENSE_BUFFERSIZE));
2202 }
2203 scsicmd->scsi_done(scsicmd);
2204 return 0;
2205 }
2206 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2207 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2208 inq_data.inqd_len = 31;
2209 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2210 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2211 /*
2212 * Set the Vendor, Product, and Revision Level
2213 * see: <vendor>.c i.e. aac.c
2214 */
2215 if (cid == host->this_id) {
2216 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2217 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2218 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2219 sizeof(inq_data));
2220 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2221 scsicmd->scsi_done(scsicmd);
2222 return 0;
2223 }
2224 if (dev->in_reset)
2225 return -1;
2226 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2227 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2228 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2229 return aac_get_container_name(scsicmd);
2230 }
2231 case SERVICE_ACTION_IN:
2232 if (!(dev->raw_io_interface) ||
2233 !(dev->raw_io_64) ||
2234 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2235 break;
2236 {
2237 u64 capacity;
2238 char cp[13];
2239 unsigned int alloc_len;
2240
2241 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2242 capacity = fsa_dev_ptr[cid].size - 1;
2243 cp[0] = (capacity >> 56) & 0xff;
2244 cp[1] = (capacity >> 48) & 0xff;
2245 cp[2] = (capacity >> 40) & 0xff;
2246 cp[3] = (capacity >> 32) & 0xff;
2247 cp[4] = (capacity >> 24) & 0xff;
2248 cp[5] = (capacity >> 16) & 0xff;
2249 cp[6] = (capacity >> 8) & 0xff;
2250 cp[7] = (capacity >> 0) & 0xff;
2251 cp[8] = 0;
2252 cp[9] = 0;
2253 cp[10] = 2;
2254 cp[11] = 0;
2255 cp[12] = 0;
2256
2257 alloc_len = ((scsicmd->cmnd[10] << 24)
2258 + (scsicmd->cmnd[11] << 16)
2259 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2260
2261 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2262 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2263 if (alloc_len < scsi_bufflen(scsicmd))
2264 scsi_set_resid(scsicmd,
2265 scsi_bufflen(scsicmd) - alloc_len);
2266
2267 /* Do not cache partition table for arrays */
2268 scsicmd->device->removable = 1;
2269
2270 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2271 scsicmd->scsi_done(scsicmd);
2272
2273 return 0;
2274 }
2275
2276 case READ_CAPACITY:
2277 {
2278 u32 capacity;
2279 char cp[8];
2280
2281 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2282 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2283 capacity = fsa_dev_ptr[cid].size - 1;
2284 else
2285 capacity = (u32)-1;
2286
2287 cp[0] = (capacity >> 24) & 0xff;
2288 cp[1] = (capacity >> 16) & 0xff;
2289 cp[2] = (capacity >> 8) & 0xff;
2290 cp[3] = (capacity >> 0) & 0xff;
2291 cp[4] = 0;
2292 cp[5] = 0;
2293 cp[6] = 2;
2294 cp[7] = 0;
2295 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2296 /* Do not cache partition table for arrays */
2297 scsicmd->device->removable = 1;
2298 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2299 SAM_STAT_GOOD;
2300 scsicmd->scsi_done(scsicmd);
2301
2302 return 0;
2303 }
2304
2305 case MODE_SENSE:
2306 {
2307 char mode_buf[7];
2308 int mode_buf_length = 4;
2309
2310 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2311 mode_buf[0] = 3; /* Mode data length */
2312 mode_buf[1] = 0; /* Medium type - default */
2313 mode_buf[2] = 0; /* Device-specific param,
2314 bit 8: 0/1 = write enabled/protected
2315 bit 4: 0/1 = FUA enabled */
2316 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2317 mode_buf[2] = 0x10;
2318 mode_buf[3] = 0; /* Block descriptor length */
2319 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2320 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2321 mode_buf[0] = 6;
2322 mode_buf[4] = 8;
2323 mode_buf[5] = 1;
2324 mode_buf[6] = ((aac_cache & 6) == 2)
2325 ? 0 : 0x04; /* WCE */
2326 mode_buf_length = 7;
2327 if (mode_buf_length > scsicmd->cmnd[4])
2328 mode_buf_length = scsicmd->cmnd[4];
2329 }
2330 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2331 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2332 scsicmd->scsi_done(scsicmd);
2333
2334 return 0;
2335 }
2336 case MODE_SENSE_10:
2337 {
2338 char mode_buf[11];
2339 int mode_buf_length = 8;
2340
2341 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2342 mode_buf[0] = 0; /* Mode data length (MSB) */
2343 mode_buf[1] = 6; /* Mode data length (LSB) */
2344 mode_buf[2] = 0; /* Medium type - default */
2345 mode_buf[3] = 0; /* Device-specific param,
2346 bit 8: 0/1 = write enabled/protected
2347 bit 4: 0/1 = FUA enabled */
2348 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2349 mode_buf[3] = 0x10;
2350 mode_buf[4] = 0; /* reserved */
2351 mode_buf[5] = 0; /* reserved */
2352 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2353 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2354 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2355 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2356 mode_buf[1] = 9;
2357 mode_buf[8] = 8;
2358 mode_buf[9] = 1;
2359 mode_buf[10] = ((aac_cache & 6) == 2)
2360 ? 0 : 0x04; /* WCE */
2361 mode_buf_length = 11;
2362 if (mode_buf_length > scsicmd->cmnd[8])
2363 mode_buf_length = scsicmd->cmnd[8];
2364 }
2365 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2366
2367 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2368 scsicmd->scsi_done(scsicmd);
2369
2370 return 0;
2371 }
2372 case REQUEST_SENSE:
2373 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2374 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2375 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2376 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2377 scsicmd->scsi_done(scsicmd);
2378 return 0;
2379
2380 case ALLOW_MEDIUM_REMOVAL:
2381 dprintk((KERN_DEBUG "LOCK command.\n"));
2382 if (scsicmd->cmnd[4])
2383 fsa_dev_ptr[cid].locked = 1;
2384 else
2385 fsa_dev_ptr[cid].locked = 0;
2386
2387 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2388 scsicmd->scsi_done(scsicmd);
2389 return 0;
2390 /*
2391 * These commands are all No-Ops
2392 */
2393 case TEST_UNIT_READY:
2394 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2395 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2396 SAM_STAT_CHECK_CONDITION;
2397 set_sense(&dev->fsa_dev[cid].sense_data,
2398 NOT_READY, SENCODE_BECOMING_READY,
2399 ASENCODE_BECOMING_READY, 0, 0);
2400 memcpy(scsicmd->sense_buffer,
2401 &dev->fsa_dev[cid].sense_data,
2402 min_t(size_t,
2403 sizeof(dev->fsa_dev[cid].sense_data),
2404 SCSI_SENSE_BUFFERSIZE));
2405 scsicmd->scsi_done(scsicmd);
2406 return 0;
2407 }
2408 /* FALLTHRU */
2409 case RESERVE:
2410 case RELEASE:
2411 case REZERO_UNIT:
2412 case REASSIGN_BLOCKS:
2413 case SEEK_10:
2414 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2415 scsicmd->scsi_done(scsicmd);
2416 return 0;
2417
2418 case START_STOP:
2419 return aac_start_stop(scsicmd);
2420 }
2421
2422 switch (scsicmd->cmnd[0])
2423 {
2424 case READ_6:
2425 case READ_10:
2426 case READ_12:
2427 case READ_16:
2428 if (dev->in_reset)
2429 return -1;
2430 /*
2431 * Hack to keep track of ordinal number of the device that
2432 * corresponds to a container. Needed to convert
2433 * containers to /dev/sd device names
2434 */
2435
2436 if (scsicmd->request->rq_disk)
2437 strlcpy(fsa_dev_ptr[cid].devname,
2438 scsicmd->request->rq_disk->disk_name,
2439 min(sizeof(fsa_dev_ptr[cid].devname),
2440 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2441
2442 return aac_read(scsicmd);
2443
2444 case WRITE_6:
2445 case WRITE_10:
2446 case WRITE_12:
2447 case WRITE_16:
2448 if (dev->in_reset)
2449 return -1;
2450 return aac_write(scsicmd);
2451
2452 case SYNCHRONIZE_CACHE:
2453 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2454 scsicmd->result = DID_OK << 16 |
2455 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2456 scsicmd->scsi_done(scsicmd);
2457 return 0;
2458 }
2459 /* Issue FIB to tell Firmware to flush it's cache */
2460 if ((aac_cache & 6) != 2)
2461 return aac_synchronize(scsicmd);
2462 /* FALLTHRU */
2463 default:
2464 /*
2465 * Unhandled commands
2466 */
2467 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2468 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2469 set_sense(&dev->fsa_dev[cid].sense_data,
2470 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2471 ASENCODE_INVALID_COMMAND, 0, 0);
2472 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2473 min_t(size_t,
2474 sizeof(dev->fsa_dev[cid].sense_data),
2475 SCSI_SENSE_BUFFERSIZE));
2476 scsicmd->scsi_done(scsicmd);
2477 return 0;
2478 }
2479 }
2480
query_disk(struct aac_dev * dev,void __user * arg)2481 static int query_disk(struct aac_dev *dev, void __user *arg)
2482 {
2483 struct aac_query_disk qd;
2484 struct fsa_dev_info *fsa_dev_ptr;
2485
2486 fsa_dev_ptr = dev->fsa_dev;
2487 if (!fsa_dev_ptr)
2488 return -EBUSY;
2489 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2490 return -EFAULT;
2491 if (qd.cnum == -1)
2492 qd.cnum = qd.id;
2493 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2494 {
2495 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2496 return -EINVAL;
2497 qd.instance = dev->scsi_host_ptr->host_no;
2498 qd.bus = 0;
2499 qd.id = CONTAINER_TO_ID(qd.cnum);
2500 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2501 }
2502 else return -EINVAL;
2503
2504 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2505 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2506 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2507
2508 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2509 qd.unmapped = 1;
2510 else
2511 qd.unmapped = 0;
2512
2513 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2514 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2515
2516 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2517 return -EFAULT;
2518 return 0;
2519 }
2520
force_delete_disk(struct aac_dev * dev,void __user * arg)2521 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2522 {
2523 struct aac_delete_disk dd;
2524 struct fsa_dev_info *fsa_dev_ptr;
2525
2526 fsa_dev_ptr = dev->fsa_dev;
2527 if (!fsa_dev_ptr)
2528 return -EBUSY;
2529
2530 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2531 return -EFAULT;
2532
2533 if (dd.cnum >= dev->maximum_num_containers)
2534 return -EINVAL;
2535 /*
2536 * Mark this container as being deleted.
2537 */
2538 fsa_dev_ptr[dd.cnum].deleted = 1;
2539 /*
2540 * Mark the container as no longer valid
2541 */
2542 fsa_dev_ptr[dd.cnum].valid = 0;
2543 return 0;
2544 }
2545
delete_disk(struct aac_dev * dev,void __user * arg)2546 static int delete_disk(struct aac_dev *dev, void __user *arg)
2547 {
2548 struct aac_delete_disk dd;
2549 struct fsa_dev_info *fsa_dev_ptr;
2550
2551 fsa_dev_ptr = dev->fsa_dev;
2552 if (!fsa_dev_ptr)
2553 return -EBUSY;
2554
2555 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2556 return -EFAULT;
2557
2558 if (dd.cnum >= dev->maximum_num_containers)
2559 return -EINVAL;
2560 /*
2561 * If the container is locked, it can not be deleted by the API.
2562 */
2563 if (fsa_dev_ptr[dd.cnum].locked)
2564 return -EBUSY;
2565 else {
2566 /*
2567 * Mark the container as no longer being valid.
2568 */
2569 fsa_dev_ptr[dd.cnum].valid = 0;
2570 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2571 return 0;
2572 }
2573 }
2574
aac_dev_ioctl(struct aac_dev * dev,int cmd,void __user * arg)2575 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2576 {
2577 switch (cmd) {
2578 case FSACTL_QUERY_DISK:
2579 return query_disk(dev, arg);
2580 case FSACTL_DELETE_DISK:
2581 return delete_disk(dev, arg);
2582 case FSACTL_FORCE_DELETE_DISK:
2583 return force_delete_disk(dev, arg);
2584 case FSACTL_GET_CONTAINERS:
2585 return aac_get_containers(dev);
2586 default:
2587 return -ENOTTY;
2588 }
2589 }
2590
2591 /**
2592 *
2593 * aac_srb_callback
2594 * @context: the context set in the fib - here it is scsi cmd
2595 * @fibptr: pointer to the fib
2596 *
2597 * Handles the completion of a scsi command to a non dasd device
2598 *
2599 */
2600
aac_srb_callback(void * context,struct fib * fibptr)2601 static void aac_srb_callback(void *context, struct fib * fibptr)
2602 {
2603 struct aac_dev *dev;
2604 struct aac_srb_reply *srbreply;
2605 struct scsi_cmnd *scsicmd;
2606
2607 scsicmd = (struct scsi_cmnd *) context;
2608
2609 if (!aac_valid_context(scsicmd, fibptr))
2610 return;
2611
2612 BUG_ON(fibptr == NULL);
2613
2614 dev = fibptr->dev;
2615
2616 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2617
2618 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2619 /*
2620 * Calculate resid for sg
2621 */
2622
2623 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2624 - le32_to_cpu(srbreply->data_xfer_length));
2625
2626 scsi_dma_unmap(scsicmd);
2627
2628 /* expose physical device if expose_physicald flag is on */
2629 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2630 && expose_physicals > 0)
2631 aac_expose_phy_device(scsicmd);
2632
2633 /*
2634 * First check the fib status
2635 */
2636
2637 if (le32_to_cpu(srbreply->status) != ST_OK){
2638 int len;
2639 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2640 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2641 SCSI_SENSE_BUFFERSIZE);
2642 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2643 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2644 }
2645
2646 /*
2647 * Next check the srb status
2648 */
2649 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2650 case SRB_STATUS_ERROR_RECOVERY:
2651 case SRB_STATUS_PENDING:
2652 case SRB_STATUS_SUCCESS:
2653 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2654 break;
2655 case SRB_STATUS_DATA_OVERRUN:
2656 switch(scsicmd->cmnd[0]){
2657 case READ_6:
2658 case WRITE_6:
2659 case READ_10:
2660 case WRITE_10:
2661 case READ_12:
2662 case WRITE_12:
2663 case READ_16:
2664 case WRITE_16:
2665 if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2666 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2667 } else {
2668 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2669 }
2670 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2671 break;
2672 case INQUIRY: {
2673 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2674 break;
2675 }
2676 default:
2677 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2678 break;
2679 }
2680 break;
2681 case SRB_STATUS_ABORTED:
2682 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2683 break;
2684 case SRB_STATUS_ABORT_FAILED:
2685 // Not sure about this one - but assuming the hba was trying to abort for some reason
2686 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2687 break;
2688 case SRB_STATUS_PARITY_ERROR:
2689 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2690 break;
2691 case SRB_STATUS_NO_DEVICE:
2692 case SRB_STATUS_INVALID_PATH_ID:
2693 case SRB_STATUS_INVALID_TARGET_ID:
2694 case SRB_STATUS_INVALID_LUN:
2695 case SRB_STATUS_SELECTION_TIMEOUT:
2696 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2697 break;
2698
2699 case SRB_STATUS_COMMAND_TIMEOUT:
2700 case SRB_STATUS_TIMEOUT:
2701 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2702 break;
2703
2704 case SRB_STATUS_BUSY:
2705 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2706 break;
2707
2708 case SRB_STATUS_BUS_RESET:
2709 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2710 break;
2711
2712 case SRB_STATUS_MESSAGE_REJECTED:
2713 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2714 break;
2715 case SRB_STATUS_REQUEST_FLUSHED:
2716 case SRB_STATUS_ERROR:
2717 case SRB_STATUS_INVALID_REQUEST:
2718 case SRB_STATUS_REQUEST_SENSE_FAILED:
2719 case SRB_STATUS_NO_HBA:
2720 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2721 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2722 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2723 case SRB_STATUS_DELAYED_RETRY:
2724 case SRB_STATUS_BAD_FUNCTION:
2725 case SRB_STATUS_NOT_STARTED:
2726 case SRB_STATUS_NOT_IN_USE:
2727 case SRB_STATUS_FORCE_ABORT:
2728 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2729 default:
2730 #ifdef AAC_DETAILED_STATUS_INFO
2731 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2732 le32_to_cpu(srbreply->srb_status) & 0x3F,
2733 aac_get_status_string(
2734 le32_to_cpu(srbreply->srb_status) & 0x3F),
2735 scsicmd->cmnd[0],
2736 le32_to_cpu(srbreply->scsi_status));
2737 #endif
2738 if ((scsicmd->cmnd[0] == ATA_12)
2739 || (scsicmd->cmnd[0] == ATA_16)) {
2740 if (scsicmd->cmnd[2] & (0x01 << 5)) {
2741 scsicmd->result = DID_OK << 16
2742 | COMMAND_COMPLETE << 8;
2743 break;
2744 } else {
2745 scsicmd->result = DID_ERROR << 16
2746 | COMMAND_COMPLETE << 8;
2747 break;
2748 }
2749 } else {
2750 scsicmd->result = DID_ERROR << 16
2751 | COMMAND_COMPLETE << 8;
2752 break;
2753 }
2754 }
2755 if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2756 int len;
2757 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2758 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2759 SCSI_SENSE_BUFFERSIZE);
2760 #ifdef AAC_DETAILED_STATUS_INFO
2761 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2762 le32_to_cpu(srbreply->status), len);
2763 #endif
2764 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2765 }
2766 /*
2767 * OR in the scsi status (already shifted up a bit)
2768 */
2769 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2770
2771 aac_fib_complete(fibptr);
2772 aac_fib_free(fibptr);
2773 scsicmd->scsi_done(scsicmd);
2774 }
2775
2776 /**
2777 *
2778 * aac_send_scb_fib
2779 * @scsicmd: the scsi command block
2780 *
2781 * This routine will form a FIB and fill in the aac_srb from the
2782 * scsicmd passed in.
2783 */
2784
aac_send_srb_fib(struct scsi_cmnd * scsicmd)2785 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2786 {
2787 struct fib* cmd_fibcontext;
2788 struct aac_dev* dev;
2789 int status;
2790
2791 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2792 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2793 scsicmd->device->lun > 7) {
2794 scsicmd->result = DID_NO_CONNECT << 16;
2795 scsicmd->scsi_done(scsicmd);
2796 return 0;
2797 }
2798
2799 /*
2800 * Allocate and initialize a Fib then setup a BlockWrite command
2801 */
2802 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2803 return -1;
2804 }
2805 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2806
2807 /*
2808 * Check that the command queued to the controller
2809 */
2810 if (status == -EINPROGRESS) {
2811 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2812 return 0;
2813 }
2814
2815 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2816 aac_fib_complete(cmd_fibcontext);
2817 aac_fib_free(cmd_fibcontext);
2818
2819 return -1;
2820 }
2821
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)2822 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2823 {
2824 struct aac_dev *dev;
2825 unsigned long byte_count = 0;
2826 int nseg;
2827
2828 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2829 // Get rid of old data
2830 psg->count = 0;
2831 psg->sg[0].addr = 0;
2832 psg->sg[0].count = 0;
2833
2834 nseg = scsi_dma_map(scsicmd);
2835 BUG_ON(nseg < 0);
2836 if (nseg) {
2837 struct scatterlist *sg;
2838 int i;
2839
2840 psg->count = cpu_to_le32(nseg);
2841
2842 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2843 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2844 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2845 byte_count += sg_dma_len(sg);
2846 }
2847 /* hba wants the size to be exact */
2848 if (byte_count > scsi_bufflen(scsicmd)) {
2849 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2850 (byte_count - scsi_bufflen(scsicmd));
2851 psg->sg[i-1].count = cpu_to_le32(temp);
2852 byte_count = scsi_bufflen(scsicmd);
2853 }
2854 /* Check for command underflow */
2855 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2856 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2857 byte_count, scsicmd->underflow);
2858 }
2859 }
2860 return byte_count;
2861 }
2862
2863
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)2864 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2865 {
2866 struct aac_dev *dev;
2867 unsigned long byte_count = 0;
2868 u64 addr;
2869 int nseg;
2870
2871 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2872 // Get rid of old data
2873 psg->count = 0;
2874 psg->sg[0].addr[0] = 0;
2875 psg->sg[0].addr[1] = 0;
2876 psg->sg[0].count = 0;
2877
2878 nseg = scsi_dma_map(scsicmd);
2879 BUG_ON(nseg < 0);
2880 if (nseg) {
2881 struct scatterlist *sg;
2882 int i;
2883
2884 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2885 int count = sg_dma_len(sg);
2886 addr = sg_dma_address(sg);
2887 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2888 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2889 psg->sg[i].count = cpu_to_le32(count);
2890 byte_count += count;
2891 }
2892 psg->count = cpu_to_le32(nseg);
2893 /* hba wants the size to be exact */
2894 if (byte_count > scsi_bufflen(scsicmd)) {
2895 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2896 (byte_count - scsi_bufflen(scsicmd));
2897 psg->sg[i-1].count = cpu_to_le32(temp);
2898 byte_count = scsi_bufflen(scsicmd);
2899 }
2900 /* Check for command underflow */
2901 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2902 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2903 byte_count, scsicmd->underflow);
2904 }
2905 }
2906 return byte_count;
2907 }
2908
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)2909 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2910 {
2911 unsigned long byte_count = 0;
2912 int nseg;
2913
2914 // Get rid of old data
2915 psg->count = 0;
2916 psg->sg[0].next = 0;
2917 psg->sg[0].prev = 0;
2918 psg->sg[0].addr[0] = 0;
2919 psg->sg[0].addr[1] = 0;
2920 psg->sg[0].count = 0;
2921 psg->sg[0].flags = 0;
2922
2923 nseg = scsi_dma_map(scsicmd);
2924 BUG_ON(nseg < 0);
2925 if (nseg) {
2926 struct scatterlist *sg;
2927 int i;
2928
2929 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2930 int count = sg_dma_len(sg);
2931 u64 addr = sg_dma_address(sg);
2932 psg->sg[i].next = 0;
2933 psg->sg[i].prev = 0;
2934 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2935 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2936 psg->sg[i].count = cpu_to_le32(count);
2937 psg->sg[i].flags = 0;
2938 byte_count += count;
2939 }
2940 psg->count = cpu_to_le32(nseg);
2941 /* hba wants the size to be exact */
2942 if (byte_count > scsi_bufflen(scsicmd)) {
2943 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2944 (byte_count - scsi_bufflen(scsicmd));
2945 psg->sg[i-1].count = cpu_to_le32(temp);
2946 byte_count = scsi_bufflen(scsicmd);
2947 }
2948 /* Check for command underflow */
2949 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2950 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2951 byte_count, scsicmd->underflow);
2952 }
2953 }
2954 return byte_count;
2955 }
2956
2957 #ifdef AAC_DETAILED_STATUS_INFO
2958
2959 struct aac_srb_status_info {
2960 u32 status;
2961 char *str;
2962 };
2963
2964
2965 static struct aac_srb_status_info srb_status_info[] = {
2966 { SRB_STATUS_PENDING, "Pending Status"},
2967 { SRB_STATUS_SUCCESS, "Success"},
2968 { SRB_STATUS_ABORTED, "Aborted Command"},
2969 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2970 { SRB_STATUS_ERROR, "Error Event"},
2971 { SRB_STATUS_BUSY, "Device Busy"},
2972 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2973 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2974 { SRB_STATUS_NO_DEVICE, "No Device"},
2975 { SRB_STATUS_TIMEOUT, "Timeout"},
2976 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2977 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2978 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2979 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2980 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2981 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2982 { SRB_STATUS_NO_HBA, "No HBA"},
2983 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2984 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2985 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2986 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2987 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2988 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2989 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2990 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2991 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2992 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2993 { SRB_STATUS_NOT_STARTED, "Not Started"},
2994 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2995 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2996 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2997 { 0xff, "Unknown Error"}
2998 };
2999
aac_get_status_string(u32 status)3000 char *aac_get_status_string(u32 status)
3001 {
3002 int i;
3003
3004 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3005 if (srb_status_info[i].status == status)
3006 return srb_status_info[i].str;
3007
3008 return "Bad Status Code";
3009 }
3010
3011 #endif
3012