1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include "common.h"
33 #include "regs.h"
34
35 enum {
36 AEL100X_TX_CONFIG1 = 0xc002,
37 AEL1002_PWR_DOWN_HI = 0xc011,
38 AEL1002_PWR_DOWN_LO = 0xc012,
39 AEL1002_XFI_EQL = 0xc015,
40 AEL1002_LB_EN = 0xc017,
41 AEL_OPT_SETTINGS = 0xc017,
42 AEL_I2C_CTRL = 0xc30a,
43 AEL_I2C_DATA = 0xc30b,
44 AEL_I2C_STAT = 0xc30c,
45 AEL2005_GPIO_CTRL = 0xc214,
46 AEL2005_GPIO_STAT = 0xc215,
47
48 AEL2020_GPIO_INTR = 0xc103, /* Latch High (LH) */
49 AEL2020_GPIO_CTRL = 0xc108, /* Store Clear (SC) */
50 AEL2020_GPIO_STAT = 0xc10c, /* Read Only (RO) */
51 AEL2020_GPIO_CFG = 0xc110, /* Read Write (RW) */
52
53 AEL2020_GPIO_SDA = 0, /* IN: i2c serial data */
54 AEL2020_GPIO_MODDET = 1, /* IN: Module Detect */
55 AEL2020_GPIO_0 = 3, /* IN: unassigned */
56 AEL2020_GPIO_1 = 2, /* OUT: unassigned */
57 AEL2020_GPIO_LSTAT = AEL2020_GPIO_1, /* wired to link status LED */
58 };
59
60 enum { edc_none, edc_sr, edc_twinax };
61
62 /* PHY module I2C device address */
63 enum {
64 MODULE_DEV_ADDR = 0xa0,
65 SFF_DEV_ADDR = 0xa2,
66 };
67
68 /* PHY transceiver type */
69 enum {
70 phy_transtype_unknown = 0,
71 phy_transtype_sfp = 3,
72 phy_transtype_xfp = 6,
73 };
74
75 #define AEL2005_MODDET_IRQ 4
76
77 struct reg_val {
78 unsigned short mmd_addr;
79 unsigned short reg_addr;
80 unsigned short clear_bits;
81 unsigned short set_bits;
82 };
83
set_phy_regs(struct cphy * phy,const struct reg_val * rv)84 static int set_phy_regs(struct cphy *phy, const struct reg_val *rv)
85 {
86 int err;
87
88 for (err = 0; rv->mmd_addr && !err; rv++) {
89 if (rv->clear_bits == 0xffff)
90 err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr,
91 rv->set_bits);
92 else
93 err = t3_mdio_change_bits(phy, rv->mmd_addr,
94 rv->reg_addr, rv->clear_bits,
95 rv->set_bits);
96 }
97 return err;
98 }
99
ael100x_txon(struct cphy * phy)100 static void ael100x_txon(struct cphy *phy)
101 {
102 int tx_on_gpio =
103 phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL;
104
105 msleep(100);
106 t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio);
107 msleep(30);
108 }
109
110 /*
111 * Read an 8-bit word from a device attached to the PHY's i2c bus.
112 */
ael_i2c_rd(struct cphy * phy,int dev_addr,int word_addr)113 static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr)
114 {
115 int i, err;
116 unsigned int stat, data;
117
118 err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL,
119 (dev_addr << 8) | (1 << 8) | word_addr);
120 if (err)
121 return err;
122
123 for (i = 0; i < 200; i++) {
124 msleep(1);
125 err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat);
126 if (err)
127 return err;
128 if ((stat & 3) == 1) {
129 err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA,
130 &data);
131 if (err)
132 return err;
133 return data >> 8;
134 }
135 }
136 CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n",
137 phy->mdio.prtad, dev_addr, word_addr);
138 return -ETIMEDOUT;
139 }
140
ael1002_power_down(struct cphy * phy,int enable)141 static int ael1002_power_down(struct cphy *phy, int enable)
142 {
143 int err;
144
145 err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable);
146 if (!err)
147 err = mdio_set_flag(&phy->mdio, phy->mdio.prtad,
148 MDIO_MMD_PMAPMD, MDIO_CTRL1,
149 MDIO_CTRL1_LPOWER, enable);
150 return err;
151 }
152
ael1002_reset(struct cphy * phy,int wait)153 static int ael1002_reset(struct cphy *phy, int wait)
154 {
155 int err;
156
157 if ((err = ael1002_power_down(phy, 0)) ||
158 (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) ||
159 (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) ||
160 (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) ||
161 (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) ||
162 (err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN,
163 0, 1 << 5)))
164 return err;
165 return 0;
166 }
167
ael1002_intr_noop(struct cphy * phy)168 static int ael1002_intr_noop(struct cphy *phy)
169 {
170 return 0;
171 }
172
173 /*
174 * Get link status for a 10GBASE-R device.
175 */
get_link_status_r(struct cphy * phy,int * link_ok,int * speed,int * duplex,int * fc)176 static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed,
177 int *duplex, int *fc)
178 {
179 if (link_ok) {
180 unsigned int stat0, stat1, stat2;
181 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
182 MDIO_PMA_RXDET, &stat0);
183
184 if (!err)
185 err = t3_mdio_read(phy, MDIO_MMD_PCS,
186 MDIO_PCS_10GBRT_STAT1, &stat1);
187 if (!err)
188 err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
189 MDIO_PHYXS_LNSTAT, &stat2);
190 if (err)
191 return err;
192 *link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1;
193 }
194 if (speed)
195 *speed = SPEED_10000;
196 if (duplex)
197 *duplex = DUPLEX_FULL;
198 return 0;
199 }
200
201 static struct cphy_ops ael1002_ops = {
202 .reset = ael1002_reset,
203 .intr_enable = ael1002_intr_noop,
204 .intr_disable = ael1002_intr_noop,
205 .intr_clear = ael1002_intr_noop,
206 .intr_handler = ael1002_intr_noop,
207 .get_link_status = get_link_status_r,
208 .power_down = ael1002_power_down,
209 .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
210 };
211
t3_ael1002_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)212 int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter,
213 int phy_addr, const struct mdio_ops *mdio_ops)
214 {
215 cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops,
216 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
217 "10GBASE-R");
218 ael100x_txon(phy);
219 return 0;
220 }
221
ael1006_reset(struct cphy * phy,int wait)222 static int ael1006_reset(struct cphy *phy, int wait)
223 {
224 return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait);
225 }
226
227 static struct cphy_ops ael1006_ops = {
228 .reset = ael1006_reset,
229 .intr_enable = t3_phy_lasi_intr_enable,
230 .intr_disable = t3_phy_lasi_intr_disable,
231 .intr_clear = t3_phy_lasi_intr_clear,
232 .intr_handler = t3_phy_lasi_intr_handler,
233 .get_link_status = get_link_status_r,
234 .power_down = ael1002_power_down,
235 .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
236 };
237
t3_ael1006_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)238 int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter,
239 int phy_addr, const struct mdio_ops *mdio_ops)
240 {
241 cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops,
242 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
243 "10GBASE-SR");
244 ael100x_txon(phy);
245 return 0;
246 }
247
248 /*
249 * Decode our module type.
250 */
ael2xxx_get_module_type(struct cphy * phy,int delay_ms)251 static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms)
252 {
253 int v;
254
255 if (delay_ms)
256 msleep(delay_ms);
257
258 /* see SFF-8472 for below */
259 v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3);
260 if (v < 0)
261 return v;
262
263 if (v == 0x10)
264 return phy_modtype_sr;
265 if (v == 0x20)
266 return phy_modtype_lr;
267 if (v == 0x40)
268 return phy_modtype_lrm;
269
270 v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6);
271 if (v < 0)
272 return v;
273 if (v != 4)
274 goto unknown;
275
276 v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10);
277 if (v < 0)
278 return v;
279
280 if (v & 0x80) {
281 v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12);
282 if (v < 0)
283 return v;
284 return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax;
285 }
286 unknown:
287 return phy_modtype_unknown;
288 }
289
290 /*
291 * Code to support the Aeluros/NetLogic 2005 10Gb PHY.
292 */
ael2005_setup_sr_edc(struct cphy * phy)293 static int ael2005_setup_sr_edc(struct cphy *phy)
294 {
295 static const struct reg_val regs[] = {
296 { MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 },
297 { MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a },
298 { MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 },
299 { 0, 0, 0, 0 }
300 };
301
302 int i, err;
303
304 err = set_phy_regs(phy, regs);
305 if (err)
306 return err;
307
308 msleep(50);
309
310 if (phy->priv != edc_sr)
311 err = t3_get_edc_fw(phy, EDC_OPT_AEL2005,
312 EDC_OPT_AEL2005_SIZE);
313 if (err)
314 return err;
315
316 for (i = 0; i < EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
317 err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
318 phy->phy_cache[i],
319 phy->phy_cache[i + 1]);
320 if (!err)
321 phy->priv = edc_sr;
322 return err;
323 }
324
ael2005_setup_twinax_edc(struct cphy * phy,int modtype)325 static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype)
326 {
327 static const struct reg_val regs[] = {
328 { MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 },
329 { 0, 0, 0, 0 }
330 };
331 static const struct reg_val preemphasis[] = {
332 { MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 },
333 { MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 },
334 { 0, 0, 0, 0 }
335 };
336 int i, err;
337
338 err = set_phy_regs(phy, regs);
339 if (!err && modtype == phy_modtype_twinax_long)
340 err = set_phy_regs(phy, preemphasis);
341 if (err)
342 return err;
343
344 msleep(50);
345
346 if (phy->priv != edc_twinax)
347 err = t3_get_edc_fw(phy, EDC_TWX_AEL2005,
348 EDC_TWX_AEL2005_SIZE);
349 if (err)
350 return err;
351
352 for (i = 0; i < EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
353 err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
354 phy->phy_cache[i],
355 phy->phy_cache[i + 1]);
356 if (!err)
357 phy->priv = edc_twinax;
358 return err;
359 }
360
ael2005_get_module_type(struct cphy * phy,int delay_ms)361 static int ael2005_get_module_type(struct cphy *phy, int delay_ms)
362 {
363 int v;
364 unsigned int stat;
365
366 v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat);
367 if (v)
368 return v;
369
370 if (stat & (1 << 8)) /* module absent */
371 return phy_modtype_none;
372
373 return ael2xxx_get_module_type(phy, delay_ms);
374 }
375
ael2005_intr_enable(struct cphy * phy)376 static int ael2005_intr_enable(struct cphy *phy)
377 {
378 int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200);
379 return err ? err : t3_phy_lasi_intr_enable(phy);
380 }
381
ael2005_intr_disable(struct cphy * phy)382 static int ael2005_intr_disable(struct cphy *phy)
383 {
384 int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100);
385 return err ? err : t3_phy_lasi_intr_disable(phy);
386 }
387
ael2005_intr_clear(struct cphy * phy)388 static int ael2005_intr_clear(struct cphy *phy)
389 {
390 int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00);
391 return err ? err : t3_phy_lasi_intr_clear(phy);
392 }
393
ael2005_reset(struct cphy * phy,int wait)394 static int ael2005_reset(struct cphy *phy, int wait)
395 {
396 static const struct reg_val regs0[] = {
397 { MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 },
398 { MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 },
399 { MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 },
400 { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
401 { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 },
402 { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
403 { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 },
404 { 0, 0, 0, 0 }
405 };
406 static const struct reg_val regs1[] = {
407 { MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 },
408 { MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 },
409 { 0, 0, 0, 0 }
410 };
411
412 int err;
413 unsigned int lasi_ctrl;
414
415 err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
416 &lasi_ctrl);
417 if (err)
418 return err;
419
420 err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0);
421 if (err)
422 return err;
423
424 msleep(125);
425 phy->priv = edc_none;
426 err = set_phy_regs(phy, regs0);
427 if (err)
428 return err;
429
430 msleep(50);
431
432 err = ael2005_get_module_type(phy, 0);
433 if (err < 0)
434 return err;
435 phy->modtype = err;
436
437 if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
438 err = ael2005_setup_twinax_edc(phy, err);
439 else
440 err = ael2005_setup_sr_edc(phy);
441 if (err)
442 return err;
443
444 err = set_phy_regs(phy, regs1);
445 if (err)
446 return err;
447
448 /* reset wipes out interrupts, reenable them if they were on */
449 if (lasi_ctrl & 1)
450 err = ael2005_intr_enable(phy);
451 return err;
452 }
453
ael2005_intr_handler(struct cphy * phy)454 static int ael2005_intr_handler(struct cphy *phy)
455 {
456 unsigned int stat;
457 int ret, edc_needed, cause = 0;
458
459 ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat);
460 if (ret)
461 return ret;
462
463 if (stat & AEL2005_MODDET_IRQ) {
464 ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL,
465 0xd00);
466 if (ret)
467 return ret;
468
469 /* modules have max 300 ms init time after hot plug */
470 ret = ael2005_get_module_type(phy, 300);
471 if (ret < 0)
472 return ret;
473
474 phy->modtype = ret;
475 if (ret == phy_modtype_none)
476 edc_needed = phy->priv; /* on unplug retain EDC */
477 else if (ret == phy_modtype_twinax ||
478 ret == phy_modtype_twinax_long)
479 edc_needed = edc_twinax;
480 else
481 edc_needed = edc_sr;
482
483 if (edc_needed != phy->priv) {
484 ret = ael2005_reset(phy, 0);
485 return ret ? ret : cphy_cause_module_change;
486 }
487 cause = cphy_cause_module_change;
488 }
489
490 ret = t3_phy_lasi_intr_handler(phy);
491 if (ret < 0)
492 return ret;
493
494 ret |= cause;
495 return ret ? ret : cphy_cause_link_change;
496 }
497
498 static struct cphy_ops ael2005_ops = {
499 .reset = ael2005_reset,
500 .intr_enable = ael2005_intr_enable,
501 .intr_disable = ael2005_intr_disable,
502 .intr_clear = ael2005_intr_clear,
503 .intr_handler = ael2005_intr_handler,
504 .get_link_status = get_link_status_r,
505 .power_down = ael1002_power_down,
506 .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
507 };
508
t3_ael2005_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)509 int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter,
510 int phy_addr, const struct mdio_ops *mdio_ops)
511 {
512 cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops,
513 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
514 SUPPORTED_IRQ, "10GBASE-R");
515 msleep(125);
516 return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0,
517 1 << 5);
518 }
519
520 /*
521 * Setup EDC and other parameters for operation with an optical module.
522 */
ael2020_setup_sr_edc(struct cphy * phy)523 static int ael2020_setup_sr_edc(struct cphy *phy)
524 {
525 static const struct reg_val regs[] = {
526 /* set CDR offset to 10 */
527 { MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a },
528
529 /* adjust 10G RX bias current */
530 { MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 },
531 { MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 },
532 { MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 },
533
534 /* end */
535 { 0, 0, 0, 0 }
536 };
537 int err;
538
539 err = set_phy_regs(phy, regs);
540 msleep(50);
541 if (err)
542 return err;
543
544 phy->priv = edc_sr;
545 return 0;
546 }
547
548 /*
549 * Setup EDC and other parameters for operation with an TWINAX module.
550 */
ael2020_setup_twinax_edc(struct cphy * phy,int modtype)551 static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype)
552 {
553 /* set uC to 40MHz */
554 static const struct reg_val uCclock40MHz[] = {
555 { MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 },
556 { MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 },
557 { 0, 0, 0, 0 }
558 };
559
560 /* activate uC clock */
561 static const struct reg_val uCclockActivate[] = {
562 { MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 },
563 { 0, 0, 0, 0 }
564 };
565
566 /* set PC to start of SRAM and activate uC */
567 static const struct reg_val uCactivate[] = {
568 { MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 },
569 { MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 },
570 { 0, 0, 0, 0 }
571 };
572 int i, err;
573
574 /* set uC clock and activate it */
575 err = set_phy_regs(phy, uCclock40MHz);
576 msleep(500);
577 if (err)
578 return err;
579 err = set_phy_regs(phy, uCclockActivate);
580 msleep(500);
581 if (err)
582 return err;
583
584 if (phy->priv != edc_twinax)
585 err = t3_get_edc_fw(phy, EDC_TWX_AEL2020,
586 EDC_TWX_AEL2020_SIZE);
587 if (err)
588 return err;
589
590 for (i = 0; i < EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2)
591 err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
592 phy->phy_cache[i],
593 phy->phy_cache[i + 1]);
594 /* activate uC */
595 err = set_phy_regs(phy, uCactivate);
596 if (!err)
597 phy->priv = edc_twinax;
598 return err;
599 }
600
601 /*
602 * Return Module Type.
603 */
ael2020_get_module_type(struct cphy * phy,int delay_ms)604 static int ael2020_get_module_type(struct cphy *phy, int delay_ms)
605 {
606 int v;
607 unsigned int stat;
608
609 v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat);
610 if (v)
611 return v;
612
613 if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) {
614 /* module absent */
615 return phy_modtype_none;
616 }
617
618 return ael2xxx_get_module_type(phy, delay_ms);
619 }
620
621 /*
622 * Enable PHY interrupts. We enable "Module Detection" interrupts (on any
623 * state transition) and then generic Link Alarm Status Interrupt (LASI).
624 */
ael2020_intr_enable(struct cphy * phy)625 static int ael2020_intr_enable(struct cphy *phy)
626 {
627 static const struct reg_val regs[] = {
628 /* output Module's Loss Of Signal (LOS) to LED */
629 { MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT,
630 0xffff, 0x4 },
631 { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
632 0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) },
633
634 /* enable module detect status change interrupts */
635 { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
636 0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) },
637
638 /* end */
639 { 0, 0, 0, 0 }
640 };
641 int err, link_ok = 0;
642
643 /* set up "link status" LED and enable module change interrupts */
644 err = set_phy_regs(phy, regs);
645 if (err)
646 return err;
647
648 err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL);
649 if (err)
650 return err;
651 if (link_ok)
652 t3_link_changed(phy->adapter,
653 phy2portid(phy));
654
655 err = t3_phy_lasi_intr_enable(phy);
656 if (err)
657 return err;
658
659 return 0;
660 }
661
662 /*
663 * Disable PHY interrupts. The mirror of the above ...
664 */
ael2020_intr_disable(struct cphy * phy)665 static int ael2020_intr_disable(struct cphy *phy)
666 {
667 static const struct reg_val regs[] = {
668 /* reset "link status" LED to "off" */
669 { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
670 0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) },
671
672 /* disable module detect status change interrupts */
673 { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
674 0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) },
675
676 /* end */
677 { 0, 0, 0, 0 }
678 };
679 int err;
680
681 /* turn off "link status" LED and disable module change interrupts */
682 err = set_phy_regs(phy, regs);
683 if (err)
684 return err;
685
686 return t3_phy_lasi_intr_disable(phy);
687 }
688
689 /*
690 * Clear PHY interrupt state.
691 */
ael2020_intr_clear(struct cphy * phy)692 static int ael2020_intr_clear(struct cphy *phy)
693 {
694 /*
695 * The GPIO Interrupt register on the AEL2020 is a "Latching High"
696 * (LH) register which is cleared to the current state when it's read.
697 * Thus, we simply read the register and discard the result.
698 */
699 unsigned int stat;
700 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
701 return err ? err : t3_phy_lasi_intr_clear(phy);
702 }
703
704 static const struct reg_val ael2020_reset_regs[] = {
705 /* Erratum #2: CDRLOL asserted, causing PMA link down status */
706 { MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 },
707
708 /* force XAUI to send LF when RX_LOS is asserted */
709 { MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 },
710
711 /* allow writes to transceiver module EEPROM on i2c bus */
712 { MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 },
713 { MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 },
714 { MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 },
715
716 /* end */
717 { 0, 0, 0, 0 }
718 };
719 /*
720 * Reset the PHY and put it into a canonical operating state.
721 */
ael2020_reset(struct cphy * phy,int wait)722 static int ael2020_reset(struct cphy *phy, int wait)
723 {
724 int err;
725 unsigned int lasi_ctrl;
726
727 /* grab current interrupt state */
728 err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
729 &lasi_ctrl);
730 if (err)
731 return err;
732
733 err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125);
734 if (err)
735 return err;
736 msleep(100);
737
738 /* basic initialization for all module types */
739 phy->priv = edc_none;
740 err = set_phy_regs(phy, ael2020_reset_regs);
741 if (err)
742 return err;
743
744 /* determine module type and perform appropriate initialization */
745 err = ael2020_get_module_type(phy, 0);
746 if (err < 0)
747 return err;
748 phy->modtype = (u8)err;
749 if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
750 err = ael2020_setup_twinax_edc(phy, err);
751 else
752 err = ael2020_setup_sr_edc(phy);
753 if (err)
754 return err;
755
756 /* reset wipes out interrupts, reenable them if they were on */
757 if (lasi_ctrl & 1)
758 err = ael2005_intr_enable(phy);
759 return err;
760 }
761
762 /*
763 * Handle a PHY interrupt.
764 */
ael2020_intr_handler(struct cphy * phy)765 static int ael2020_intr_handler(struct cphy *phy)
766 {
767 unsigned int stat;
768 int ret, edc_needed, cause = 0;
769
770 ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
771 if (ret)
772 return ret;
773
774 if (stat & (0x1 << AEL2020_GPIO_MODDET)) {
775 /* modules have max 300 ms init time after hot plug */
776 ret = ael2020_get_module_type(phy, 300);
777 if (ret < 0)
778 return ret;
779
780 phy->modtype = (u8)ret;
781 if (ret == phy_modtype_none)
782 edc_needed = phy->priv; /* on unplug retain EDC */
783 else if (ret == phy_modtype_twinax ||
784 ret == phy_modtype_twinax_long)
785 edc_needed = edc_twinax;
786 else
787 edc_needed = edc_sr;
788
789 if (edc_needed != phy->priv) {
790 ret = ael2020_reset(phy, 0);
791 return ret ? ret : cphy_cause_module_change;
792 }
793 cause = cphy_cause_module_change;
794 }
795
796 ret = t3_phy_lasi_intr_handler(phy);
797 if (ret < 0)
798 return ret;
799
800 ret |= cause;
801 return ret ? ret : cphy_cause_link_change;
802 }
803
804 static struct cphy_ops ael2020_ops = {
805 .reset = ael2020_reset,
806 .intr_enable = ael2020_intr_enable,
807 .intr_disable = ael2020_intr_disable,
808 .intr_clear = ael2020_intr_clear,
809 .intr_handler = ael2020_intr_handler,
810 .get_link_status = get_link_status_r,
811 .power_down = ael1002_power_down,
812 .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
813 };
814
t3_ael2020_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)815 int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr,
816 const struct mdio_ops *mdio_ops)
817 {
818 int err;
819
820 cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops,
821 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
822 SUPPORTED_IRQ, "10GBASE-R");
823 msleep(125);
824
825 err = set_phy_regs(phy, ael2020_reset_regs);
826 if (err)
827 return err;
828 return 0;
829 }
830
831 /*
832 * Get link status for a 10GBASE-X device.
833 */
get_link_status_x(struct cphy * phy,int * link_ok,int * speed,int * duplex,int * fc)834 static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed,
835 int *duplex, int *fc)
836 {
837 if (link_ok) {
838 unsigned int stat0, stat1, stat2;
839 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
840 MDIO_PMA_RXDET, &stat0);
841
842 if (!err)
843 err = t3_mdio_read(phy, MDIO_MMD_PCS,
844 MDIO_PCS_10GBX_STAT1, &stat1);
845 if (!err)
846 err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
847 MDIO_PHYXS_LNSTAT, &stat2);
848 if (err)
849 return err;
850 *link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1;
851 }
852 if (speed)
853 *speed = SPEED_10000;
854 if (duplex)
855 *duplex = DUPLEX_FULL;
856 return 0;
857 }
858
859 static struct cphy_ops qt2045_ops = {
860 .reset = ael1006_reset,
861 .intr_enable = t3_phy_lasi_intr_enable,
862 .intr_disable = t3_phy_lasi_intr_disable,
863 .intr_clear = t3_phy_lasi_intr_clear,
864 .intr_handler = t3_phy_lasi_intr_handler,
865 .get_link_status = get_link_status_x,
866 .power_down = ael1002_power_down,
867 .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
868 };
869
t3_qt2045_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)870 int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter,
871 int phy_addr, const struct mdio_ops *mdio_ops)
872 {
873 unsigned int stat;
874
875 cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops,
876 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
877 "10GBASE-CX4");
878
879 /*
880 * Some cards where the PHY is supposed to be at address 0 actually
881 * have it at 1.
882 */
883 if (!phy_addr &&
884 !t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) &&
885 stat == 0xffff)
886 phy->mdio.prtad = 1;
887 return 0;
888 }
889
xaui_direct_reset(struct cphy * phy,int wait)890 static int xaui_direct_reset(struct cphy *phy, int wait)
891 {
892 return 0;
893 }
894
xaui_direct_get_link_status(struct cphy * phy,int * link_ok,int * speed,int * duplex,int * fc)895 static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok,
896 int *speed, int *duplex, int *fc)
897 {
898 if (link_ok) {
899 unsigned int status;
900 int prtad = phy->mdio.prtad;
901
902 status = t3_read_reg(phy->adapter,
903 XGM_REG(A_XGM_SERDES_STAT0, prtad)) |
904 t3_read_reg(phy->adapter,
905 XGM_REG(A_XGM_SERDES_STAT1, prtad)) |
906 t3_read_reg(phy->adapter,
907 XGM_REG(A_XGM_SERDES_STAT2, prtad)) |
908 t3_read_reg(phy->adapter,
909 XGM_REG(A_XGM_SERDES_STAT3, prtad));
910 *link_ok = !(status & F_LOWSIG0);
911 }
912 if (speed)
913 *speed = SPEED_10000;
914 if (duplex)
915 *duplex = DUPLEX_FULL;
916 return 0;
917 }
918
xaui_direct_power_down(struct cphy * phy,int enable)919 static int xaui_direct_power_down(struct cphy *phy, int enable)
920 {
921 return 0;
922 }
923
924 static struct cphy_ops xaui_direct_ops = {
925 .reset = xaui_direct_reset,
926 .intr_enable = ael1002_intr_noop,
927 .intr_disable = ael1002_intr_noop,
928 .intr_clear = ael1002_intr_noop,
929 .intr_handler = ael1002_intr_noop,
930 .get_link_status = xaui_direct_get_link_status,
931 .power_down = xaui_direct_power_down,
932 };
933
t3_xaui_direct_phy_prep(struct cphy * phy,struct adapter * adapter,int phy_addr,const struct mdio_ops * mdio_ops)934 int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter,
935 int phy_addr, const struct mdio_ops *mdio_ops)
936 {
937 cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops,
938 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
939 "10GBASE-CX4");
940 return 0;
941 }
942