Home
last modified time | relevance | path

Searched refs:sgn (Results 1 – 12 of 12) sorted by relevance

/linux-2.6.39/arch/m68k/fpsp040/
Dstanh.S26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and
27 | tanh(X) = sgn*( z/(2+z) ).
36 | sgn := sign(X), y := 2|X|, z := exp(Y),
37 | tanh(X) = sgn - [ sgn*2/(1+z) ].
42 | sgn := sign(X), Tiny := 2**(-126),
43 | tanh(X) := sgn - sgn*Tiny.
Dsatanh.S27 | sgn := sign(X)
30 | atanh(X) := sgn * (1/2) * logp1(z)
37 | sgn := sign(X)
38 | atan(X) := sgn / (+0).
Dssinh.S26 | y = |X|, sgn = sign(X), and z = expm1(Y),
27 | sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
37 | sgn := sign(X)
38 | sgnFact := sgn * 2**(16380)
Dsasin.S32 | 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.
Dsatan.S25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
26 | Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
Dssin.S40 | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
45 | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
/linux-2.6.39/drivers/staging/tidspbridge/dynload/
Dreloc.c49 int offset, unsigned sgn) in dload_unpack() argument
71 if (sgn == ROP_UNS) in dload_unpack()
102 int fieldsz, int offset, unsigned sgn) in dload_repack() argument
136 if (sgn) { in dload_repack()
137 unsigned tmp = (val >> fieldsz) + (sgn & 0x1); in dload_repack()
138 if (tmp > ovf_limit[sgn - 1]) in dload_repack()
Ddload_internal.h321 int fieldsz, int offset, unsigned sgn);
324 int fieldsz, int offset, unsigned sgn);
/linux-2.6.39/drivers/media/common/tuners/
Dtda18271-fe.c445 int sgn, bcal, count, wait, ret; in tda18271_powerscan() local
482 sgn = 1; in tda18271_powerscan()
490 freq = *freq_in + (sgn * count) + 1000000; in tda18271_powerscan()
514 if (sgn <= 0) in tda18271_powerscan()
517 sgn = -1 * sgn; in tda18271_powerscan()
/linux-2.6.39/arch/m68k/ifpsp060/src/
Dilsp.S201 neg.l %d5 # sgn(rem) = sgn(dividend)
641 ori.b &0x1,%d5 # save multiplier sgn
Dfplsp.S4931 # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
4932 # Return sgn*cos(r) where cos(r) is approximated by an #
4937 # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
6515 # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
7701 # y = |X|, sgn = sign(X), and z = expm1(Y), #
7702 # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
7712 # sgn := sign(X) #
7713 # sgnFact := sgn * 2**(16380) #
7819 # sgn := sign(X), y := 2|X|, z := expm1(Y), and #
7820 # tanh(X) = sgn*( z/(2+z) ). #
[all …]
Dfpsp.S6162 # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
6164 # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
11638 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
12280 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
13060 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
13564 mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
14009 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
14056 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
14356 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
14409 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
[all …]