1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <drm/drmP.h>
25 #include "psb_fb.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "psb_powermgmt.h"
31 
32 
33 struct psb_intel_clock_t {
34 	/* given values */
35 	int n;
36 	int m1, m2;
37 	int p1, p2;
38 	/* derived values */
39 	int dot;
40 	int vco;
41 	int m;
42 	int p;
43 };
44 
45 struct psb_intel_range_t {
46 	int min, max;
47 };
48 
49 struct psb_intel_p2_t {
50 	int dot_limit;
51 	int p2_slow, p2_fast;
52 };
53 
54 #define INTEL_P2_NUM		      2
55 
56 struct psb_intel_limit_t {
57 	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
58 	struct psb_intel_p2_t p2;
59 };
60 
61 #define I8XX_DOT_MIN		  25000
62 #define I8XX_DOT_MAX		 350000
63 #define I8XX_VCO_MIN		 930000
64 #define I8XX_VCO_MAX		1400000
65 #define I8XX_N_MIN		      3
66 #define I8XX_N_MAX		     16
67 #define I8XX_M_MIN		     96
68 #define I8XX_M_MAX		    140
69 #define I8XX_M1_MIN		     18
70 #define I8XX_M1_MAX		     26
71 #define I8XX_M2_MIN		      6
72 #define I8XX_M2_MAX		     16
73 #define I8XX_P_MIN		      4
74 #define I8XX_P_MAX		    128
75 #define I8XX_P1_MIN		      2
76 #define I8XX_P1_MAX		     33
77 #define I8XX_P1_LVDS_MIN	      1
78 #define I8XX_P1_LVDS_MAX	      6
79 #define I8XX_P2_SLOW		      4
80 #define I8XX_P2_FAST		      2
81 #define I8XX_P2_LVDS_SLOW	      14
82 #define I8XX_P2_LVDS_FAST	      14	/* No fast option */
83 #define I8XX_P2_SLOW_LIMIT	 165000
84 
85 #define I9XX_DOT_MIN		  20000
86 #define I9XX_DOT_MAX		 400000
87 #define I9XX_VCO_MIN		1400000
88 #define I9XX_VCO_MAX		2800000
89 #define I9XX_N_MIN		      3
90 #define I9XX_N_MAX		      8
91 #define I9XX_M_MIN		     70
92 #define I9XX_M_MAX		    120
93 #define I9XX_M1_MIN		     10
94 #define I9XX_M1_MAX		     20
95 #define I9XX_M2_MIN		      5
96 #define I9XX_M2_MAX		      9
97 #define I9XX_P_SDVO_DAC_MIN	      5
98 #define I9XX_P_SDVO_DAC_MAX	     80
99 #define I9XX_P_LVDS_MIN		      7
100 #define I9XX_P_LVDS_MAX		     98
101 #define I9XX_P1_MIN		      1
102 #define I9XX_P1_MAX		      8
103 #define I9XX_P2_SDVO_DAC_SLOW		     10
104 #define I9XX_P2_SDVO_DAC_FAST		      5
105 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
106 #define I9XX_P2_LVDS_SLOW		     14
107 #define I9XX_P2_LVDS_FAST		      7
108 #define I9XX_P2_LVDS_SLOW_LIMIT		 112000
109 
110 #define INTEL_LIMIT_I8XX_DVO_DAC    0
111 #define INTEL_LIMIT_I8XX_LVDS	    1
112 #define INTEL_LIMIT_I9XX_SDVO_DAC   2
113 #define INTEL_LIMIT_I9XX_LVDS	    3
114 
115 static const struct psb_intel_limit_t psb_intel_limits[] = {
116 	{			/* INTEL_LIMIT_I8XX_DVO_DAC */
117 	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
118 	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
119 	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
120 	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
121 	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
122 	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
123 	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
124 	 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
125 	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
126 		.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
127 	 },
128 	{			/* INTEL_LIMIT_I8XX_LVDS */
129 	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
130 	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
131 	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
132 	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
133 	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
134 	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
135 	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
136 	 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
137 	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
138 		.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
139 	 },
140 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
141 	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
142 	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
143 	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
144 	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
145 	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
146 	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
147 	 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
148 	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
149 	 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
150 		.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
151 		I9XX_P2_SDVO_DAC_FAST},
152 	 },
153 	{			/* INTEL_LIMIT_I9XX_LVDS */
154 	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
155 	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
156 	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
157 	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
158 	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
159 	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
160 	 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
161 	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
162 	 /* The single-channel range is 25-112Mhz, and dual-channel
163 	  * is 80-224Mhz.  Prefer single channel as much as possible.
164 	  */
165 	 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
166 		.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
167 	 },
168 };
169 
psb_intel_limit(struct drm_crtc * crtc)170 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
171 {
172 	const struct psb_intel_limit_t *limit;
173 
174 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
175 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
176 	else
177 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
178 	return limit;
179 }
180 
181 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
182 
i8xx_clock(int refclk,struct psb_intel_clock_t * clock)183 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
184 {
185 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
186 	clock->p = clock->p1 * clock->p2;
187 	clock->vco = refclk * clock->m / (clock->n + 2);
188 	clock->dot = clock->vco / clock->p;
189 }
190 
191 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
192 
i9xx_clock(int refclk,struct psb_intel_clock_t * clock)193 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
194 {
195 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
196 	clock->p = clock->p1 * clock->p2;
197 	clock->vco = refclk * clock->m / (clock->n + 2);
198 	clock->dot = clock->vco / clock->p;
199 }
200 
psb_intel_clock(struct drm_device * dev,int refclk,struct psb_intel_clock_t * clock)201 static void psb_intel_clock(struct drm_device *dev, int refclk,
202 			struct psb_intel_clock_t *clock)
203 {
204 	return i9xx_clock(refclk, clock);
205 }
206 
207 /**
208  * Returns whether any output on the specified pipe is of the specified type
209  */
psb_intel_pipe_has_type(struct drm_crtc * crtc,int type)210 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
211 {
212 	struct drm_device *dev = crtc->dev;
213 	struct drm_mode_config *mode_config = &dev->mode_config;
214 	struct drm_connector *l_entry;
215 
216 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
217 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
218 			struct psb_intel_output *psb_intel_output =
219 			    to_psb_intel_output(l_entry);
220 			if (psb_intel_output->type == type)
221 				return true;
222 		}
223 	}
224 	return false;
225 }
226 
227 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
228 /**
229  * Returns whether the given set of divisors are valid for a given refclk with
230  * the given connectors.
231  */
232 
psb_intel_PLL_is_valid(struct drm_crtc * crtc,struct psb_intel_clock_t * clock)233 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
234 			       struct psb_intel_clock_t *clock)
235 {
236 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
237 
238 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
239 		INTELPllInvalid("p1 out of range\n");
240 	if (clock->p < limit->p.min || limit->p.max < clock->p)
241 		INTELPllInvalid("p out of range\n");
242 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
243 		INTELPllInvalid("m2 out of range\n");
244 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
245 		INTELPllInvalid("m1 out of range\n");
246 	if (clock->m1 <= clock->m2)
247 		INTELPllInvalid("m1 <= m2\n");
248 	if (clock->m < limit->m.min || limit->m.max < clock->m)
249 		INTELPllInvalid("m out of range\n");
250 	if (clock->n < limit->n.min || limit->n.max < clock->n)
251 		INTELPllInvalid("n out of range\n");
252 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
253 		INTELPllInvalid("vco out of range\n");
254 	/* XXX: We may need to be checking "Dot clock"
255 	 * depending on the multiplier, connector, etc.,
256 	 * rather than just a single range.
257 	 */
258 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
259 		INTELPllInvalid("dot out of range\n");
260 
261 	return true;
262 }
263 
264 /**
265  * Returns a set of divisors for the desired target clock with the given
266  * refclk, or FALSE.  The returned values represent the clock equation:
267  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
268  */
psb_intel_find_best_PLL(struct drm_crtc * crtc,int target,int refclk,struct psb_intel_clock_t * best_clock)269 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
270 				int refclk,
271 				struct psb_intel_clock_t *best_clock)
272 {
273 	struct drm_device *dev = crtc->dev;
274 	struct psb_intel_clock_t clock;
275 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
276 	int err = target;
277 
278 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
279 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
280 		/*
281 		 * For LVDS, if the panel is on, just rely on its current
282 		 * settings for dual-channel.  We haven't figured out how to
283 		 * reliably set up different single/dual channel state, if we
284 		 * even can.
285 		 */
286 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
287 		    LVDS_CLKB_POWER_UP)
288 			clock.p2 = limit->p2.p2_fast;
289 		else
290 			clock.p2 = limit->p2.p2_slow;
291 	} else {
292 		if (target < limit->p2.dot_limit)
293 			clock.p2 = limit->p2.p2_slow;
294 		else
295 			clock.p2 = limit->p2.p2_fast;
296 	}
297 
298 	memset(best_clock, 0, sizeof(*best_clock));
299 
300 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
301 	     clock.m1++) {
302 		for (clock.m2 = limit->m2.min;
303 		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
304 		     clock.m2++) {
305 			for (clock.n = limit->n.min;
306 			     clock.n <= limit->n.max; clock.n++) {
307 				for (clock.p1 = limit->p1.min;
308 				     clock.p1 <= limit->p1.max;
309 				     clock.p1++) {
310 					int this_err;
311 
312 					psb_intel_clock(dev, refclk, &clock);
313 
314 					if (!psb_intel_PLL_is_valid
315 					    (crtc, &clock))
316 						continue;
317 
318 					this_err = abs(clock.dot - target);
319 					if (this_err < err) {
320 						*best_clock = clock;
321 						err = this_err;
322 					}
323 				}
324 			}
325 		}
326 	}
327 
328 	return err != target;
329 }
330 
psb_intel_wait_for_vblank(struct drm_device * dev)331 void psb_intel_wait_for_vblank(struct drm_device *dev)
332 {
333 	/* Wait for 20ms, i.e. one cycle at 50hz. */
334 	udelay(20000);
335 }
336 
psb_intel_pipe_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)337 int psb_intel_pipe_set_base(struct drm_crtc *crtc,
338 			    int x, int y, struct drm_framebuffer *old_fb)
339 {
340 	struct drm_device *dev = crtc->dev;
341 	/* struct drm_i915_master_private *master_priv; */
342 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
343 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
344 	struct psb_intel_mode_device *mode_dev = psb_intel_crtc->mode_dev;
345 	int pipe = psb_intel_crtc->pipe;
346 	unsigned long Start, Offset;
347 	int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
348 	int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
349 	int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
350 	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
351 	u32 dspcntr;
352 	int ret = 0;
353 
354 	PSB_DEBUG_ENTRY("\n");
355 
356 	/* no fb bound */
357 	if (!crtc->fb) {
358 		DRM_DEBUG("No FB bound\n");
359 		return 0;
360 	}
361 
362 	if (!ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
363 				       OSPM_UHB_FORCE_POWER_ON))
364 		return 0;
365 
366 	Start = mode_dev->bo_offset(dev, psbfb);
367 	Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
368 
369 	REG_WRITE(dspstride, crtc->fb->pitch);
370 
371 	dspcntr = REG_READ(dspcntr_reg);
372 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
373 
374 	switch (crtc->fb->bits_per_pixel) {
375 	case 8:
376 		dspcntr |= DISPPLANE_8BPP;
377 		break;
378 	case 16:
379 		if (crtc->fb->depth == 15)
380 			dspcntr |= DISPPLANE_15_16BPP;
381 		else
382 			dspcntr |= DISPPLANE_16BPP;
383 		break;
384 	case 24:
385 	case 32:
386 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
387 		break;
388 	default:
389 		DRM_ERROR("Unknown color depth\n");
390 		ret = -EINVAL;
391 		goto psb_intel_pipe_set_base_exit;
392 	}
393 	REG_WRITE(dspcntr_reg, dspcntr);
394 
395 	DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
396 	if (0 /* FIXMEAC - check what PSB needs */) {
397 		REG_WRITE(dspbase, Offset);
398 		REG_READ(dspbase);
399 		REG_WRITE(dspsurf, Start);
400 		REG_READ(dspsurf);
401 	} else {
402 		REG_WRITE(dspbase, Start + Offset);
403 		REG_READ(dspbase);
404 	}
405 
406 psb_intel_pipe_set_base_exit:
407 
408 	ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
409 
410 	return ret;
411 }
412 
413 /**
414  * Sets the power management mode of the pipe and plane.
415  *
416  * This code should probably grow support for turning the cursor off and back
417  * on appropriately at the same time as we're turning the pipe off/on.
418  */
psb_intel_crtc_dpms(struct drm_crtc * crtc,int mode)419 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
420 {
421 	struct drm_device *dev = crtc->dev;
422 	/* struct drm_i915_master_private *master_priv; */
423 	/* struct drm_i915_private *dev_priv = dev->dev_private; */
424 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
425 	int pipe = psb_intel_crtc->pipe;
426 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
427 	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
428 	int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
429 	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
430 	u32 temp;
431 	bool enabled;
432 
433 	/* XXX: When our outputs are all unaware of DPMS modes other than off
434 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
435 	 */
436 	switch (mode) {
437 	case DRM_MODE_DPMS_ON:
438 	case DRM_MODE_DPMS_STANDBY:
439 	case DRM_MODE_DPMS_SUSPEND:
440 		/* Enable the DPLL */
441 		temp = REG_READ(dpll_reg);
442 		if ((temp & DPLL_VCO_ENABLE) == 0) {
443 			REG_WRITE(dpll_reg, temp);
444 			REG_READ(dpll_reg);
445 			/* Wait for the clocks to stabilize. */
446 			udelay(150);
447 			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
448 			REG_READ(dpll_reg);
449 			/* Wait for the clocks to stabilize. */
450 			udelay(150);
451 			REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
452 			REG_READ(dpll_reg);
453 			/* Wait for the clocks to stabilize. */
454 			udelay(150);
455 		}
456 
457 		/* Enable the pipe */
458 		temp = REG_READ(pipeconf_reg);
459 		if ((temp & PIPEACONF_ENABLE) == 0)
460 			REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
461 
462 		/* Enable the plane */
463 		temp = REG_READ(dspcntr_reg);
464 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
465 			REG_WRITE(dspcntr_reg,
466 				  temp | DISPLAY_PLANE_ENABLE);
467 			/* Flush the plane changes */
468 			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
469 		}
470 
471 		psb_intel_crtc_load_lut(crtc);
472 
473 		/* Give the overlay scaler a chance to enable
474 		 * if it's on this pipe */
475 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
476 		break;
477 	case DRM_MODE_DPMS_OFF:
478 		/* Give the overlay scaler a chance to disable
479 		 * if it's on this pipe */
480 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
481 
482 		/* Disable the VGA plane that we never use */
483 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
484 
485 		/* Disable display plane */
486 		temp = REG_READ(dspcntr_reg);
487 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
488 			REG_WRITE(dspcntr_reg,
489 				  temp & ~DISPLAY_PLANE_ENABLE);
490 			/* Flush the plane changes */
491 			REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
492 			REG_READ(dspbase_reg);
493 		}
494 
495 		/* Next, disable display pipes */
496 		temp = REG_READ(pipeconf_reg);
497 		if ((temp & PIPEACONF_ENABLE) != 0) {
498 			REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
499 			REG_READ(pipeconf_reg);
500 		}
501 
502 		/* Wait for vblank for the disable to take effect. */
503 		psb_intel_wait_for_vblank(dev);
504 
505 		temp = REG_READ(dpll_reg);
506 		if ((temp & DPLL_VCO_ENABLE) != 0) {
507 			REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
508 			REG_READ(dpll_reg);
509 		}
510 
511 		/* Wait for the clocks to turn off. */
512 		udelay(150);
513 		break;
514 	}
515 
516 	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
517 
518 	/*Set FIFO Watermarks*/
519 	REG_WRITE(DSPARB, 0x3F3E);
520 }
521 
psb_intel_crtc_prepare(struct drm_crtc * crtc)522 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
523 {
524 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
525 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
526 }
527 
psb_intel_crtc_commit(struct drm_crtc * crtc)528 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
529 {
530 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
531 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
532 }
533 
psb_intel_encoder_prepare(struct drm_encoder * encoder)534 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
535 {
536 	struct drm_encoder_helper_funcs *encoder_funcs =
537 	    encoder->helper_private;
538 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
539 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
540 }
541 
psb_intel_encoder_commit(struct drm_encoder * encoder)542 void psb_intel_encoder_commit(struct drm_encoder *encoder)
543 {
544 	struct drm_encoder_helper_funcs *encoder_funcs =
545 	    encoder->helper_private;
546 	/* lvds has its own version of commit see psb_intel_lvds_commit */
547 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
548 }
549 
psb_intel_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)550 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
551 				  struct drm_display_mode *mode,
552 				  struct drm_display_mode *adjusted_mode)
553 {
554 	return true;
555 }
556 
557 
558 /**
559  * Return the pipe currently connected to the panel fitter,
560  * or -1 if the panel fitter is not present or not in use
561  */
psb_intel_panel_fitter_pipe(struct drm_device * dev)562 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
563 {
564 	u32 pfit_control;
565 
566 	pfit_control = REG_READ(PFIT_CONTROL);
567 
568 	/* See if the panel fitter is in use */
569 	if ((pfit_control & PFIT_ENABLE) == 0)
570 		return -1;
571 	/* Must be on PIPE 1 for PSB */
572 	return 1;
573 }
574 
psb_intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)575 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
576 			       struct drm_display_mode *mode,
577 			       struct drm_display_mode *adjusted_mode,
578 			       int x, int y,
579 			       struct drm_framebuffer *old_fb)
580 {
581 	struct drm_device *dev = crtc->dev;
582 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
583 	int pipe = psb_intel_crtc->pipe;
584 	int fp_reg = (pipe == 0) ? FPA0 : FPB0;
585 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
586 	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
587 	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
588 	int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
589 	int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
590 	int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
591 	int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
592 	int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
593 	int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
594 	int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
595 	int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
596 	int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
597 	int refclk;
598 	struct psb_intel_clock_t clock;
599 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
600 	bool ok, is_sdvo = false, is_dvo = false;
601 	bool is_crt = false, is_lvds = false, is_tv = false;
602 	struct drm_mode_config *mode_config = &dev->mode_config;
603 	struct drm_connector *connector;
604 
605 	list_for_each_entry(connector, &mode_config->connector_list, head) {
606 		struct psb_intel_output *psb_intel_output =
607 		    to_psb_intel_output(connector);
608 
609 		if (!connector->encoder
610 		    || connector->encoder->crtc != crtc)
611 			continue;
612 
613 		switch (psb_intel_output->type) {
614 		case INTEL_OUTPUT_LVDS:
615 			is_lvds = true;
616 			break;
617 		case INTEL_OUTPUT_SDVO:
618 			is_sdvo = true;
619 			break;
620 		case INTEL_OUTPUT_DVO:
621 			is_dvo = true;
622 			break;
623 		case INTEL_OUTPUT_TVOUT:
624 			is_tv = true;
625 			break;
626 		case INTEL_OUTPUT_ANALOG:
627 			is_crt = true;
628 			break;
629 		}
630 	}
631 
632 	refclk = 96000;
633 
634 	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
635 				 &clock);
636 	if (!ok) {
637 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
638 		return 0;
639 	}
640 
641 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
642 
643 	dpll = DPLL_VGA_MODE_DIS;
644 	if (is_lvds) {
645 		dpll |= DPLLB_MODE_LVDS;
646 		dpll |= DPLL_DVO_HIGH_SPEED;
647 	} else
648 		dpll |= DPLLB_MODE_DAC_SERIAL;
649 	if (is_sdvo) {
650 		int sdvo_pixel_multiply =
651 			    adjusted_mode->clock / mode->clock;
652 		dpll |= DPLL_DVO_HIGH_SPEED;
653 		dpll |=
654 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
655 	}
656 
657 	/* compute bitmask from p1 value */
658 	dpll |= (1 << (clock.p1 - 1)) << 16;
659 	switch (clock.p2) {
660 	case 5:
661 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
662 		break;
663 	case 7:
664 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
665 		break;
666 	case 10:
667 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
668 		break;
669 	case 14:
670 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
671 		break;
672 	}
673 
674 	if (is_tv) {
675 		/* XXX: just matching BIOS for now */
676 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
677 		dpll |= 3;
678 	}
679 	dpll |= PLL_REF_INPUT_DREFCLK;
680 
681 	/* setup pipeconf */
682 	pipeconf = REG_READ(pipeconf_reg);
683 
684 	/* Set up the display plane register */
685 	dspcntr = DISPPLANE_GAMMA_ENABLE;
686 
687 	if (pipe == 0)
688 		dspcntr |= DISPPLANE_SEL_PIPE_A;
689 	else
690 		dspcntr |= DISPPLANE_SEL_PIPE_B;
691 
692 	dspcntr |= DISPLAY_PLANE_ENABLE;
693 	pipeconf |= PIPEACONF_ENABLE;
694 	dpll |= DPLL_VCO_ENABLE;
695 
696 
697 	/* Disable the panel fitter if it was on our pipe */
698 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
699 		REG_WRITE(PFIT_CONTROL, 0);
700 
701 	DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
702 	drm_mode_debug_printmodeline(mode);
703 
704 	if (dpll & DPLL_VCO_ENABLE) {
705 		REG_WRITE(fp_reg, fp);
706 		REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
707 		REG_READ(dpll_reg);
708 		udelay(150);
709 	}
710 
711 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
712 	 * This is an exception to the general rule that mode_set doesn't turn
713 	 * things on.
714 	 */
715 	if (is_lvds) {
716 		u32 lvds = REG_READ(LVDS);
717 
718 		lvds |=
719 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
720 		    LVDS_PIPEB_SELECT;
721 		/* Set the B0-B3 data pairs corresponding to
722 		 * whether we're going to
723 		 * set the DPLLs for dual-channel mode or not.
724 		 */
725 		if (clock.p2 == 7)
726 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
727 		else
728 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
729 
730 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
731 		 * appropriately here, but we need to look more
732 		 * thoroughly into how panels behave in the two modes.
733 		 */
734 
735 		REG_WRITE(LVDS, lvds);
736 		REG_READ(LVDS);
737 	}
738 
739 	REG_WRITE(fp_reg, fp);
740 	REG_WRITE(dpll_reg, dpll);
741 	REG_READ(dpll_reg);
742 	/* Wait for the clocks to stabilize. */
743 	udelay(150);
744 
745 	/* write it again -- the BIOS does, after all */
746 	REG_WRITE(dpll_reg, dpll);
747 
748 	REG_READ(dpll_reg);
749 	/* Wait for the clocks to stabilize. */
750 	udelay(150);
751 
752 	REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
753 		  ((adjusted_mode->crtc_htotal - 1) << 16));
754 	REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
755 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
756 	REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
757 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
758 	REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
759 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
760 	REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
761 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
762 	REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
763 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
764 	/* pipesrc and dspsize control the size that is scaled from,
765 	 * which should always be the user's requested size.
766 	 */
767 	REG_WRITE(dspsize_reg,
768 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
769 	REG_WRITE(dsppos_reg, 0);
770 	REG_WRITE(pipesrc_reg,
771 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
772 	REG_WRITE(pipeconf_reg, pipeconf);
773 	REG_READ(pipeconf_reg);
774 
775 	psb_intel_wait_for_vblank(dev);
776 
777 	REG_WRITE(dspcntr_reg, dspcntr);
778 
779 	/* Flush the plane changes */
780 	{
781 		struct drm_crtc_helper_funcs *crtc_funcs =
782 		    crtc->helper_private;
783 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
784 	}
785 
786 	psb_intel_wait_for_vblank(dev);
787 
788 	return 0;
789 }
790 
791 /** Loads the palette/gamma unit for the CRTC with the prepared values */
psb_intel_crtc_load_lut(struct drm_crtc * crtc)792 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
793 {
794 	struct drm_device *dev = crtc->dev;
795 	struct drm_psb_private *dev_priv =
796 				(struct drm_psb_private *)dev->dev_private;
797 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
798 	int palreg = PALETTE_A;
799 	int i;
800 
801 	/* The clocks have to be on to load the palette. */
802 	if (!crtc->enabled)
803 		return;
804 
805 	switch (psb_intel_crtc->pipe) {
806 	case 0:
807 		break;
808 	case 1:
809 		palreg = PALETTE_B;
810 		break;
811 	case 2:
812 		palreg = PALETTE_C;
813 		break;
814 	default:
815 		DRM_ERROR("Illegal Pipe Number.\n");
816 		return;
817 	}
818 
819 	if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
820 				      OSPM_UHB_ONLY_IF_ON)) {
821 		for (i = 0; i < 256; i++) {
822 			REG_WRITE(palreg + 4 * i,
823 				  ((psb_intel_crtc->lut_r[i] +
824 				  psb_intel_crtc->lut_adj[i]) << 16) |
825 				  ((psb_intel_crtc->lut_g[i] +
826 				  psb_intel_crtc->lut_adj[i]) << 8) |
827 				  (psb_intel_crtc->lut_b[i] +
828 				  psb_intel_crtc->lut_adj[i]));
829 		}
830 		ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
831 	} else {
832 		for (i = 0; i < 256; i++) {
833 			dev_priv->save_palette_a[i] =
834 				  ((psb_intel_crtc->lut_r[i] +
835 				  psb_intel_crtc->lut_adj[i]) << 16) |
836 				  ((psb_intel_crtc->lut_g[i] +
837 				  psb_intel_crtc->lut_adj[i]) << 8) |
838 				  (psb_intel_crtc->lut_b[i] +
839 				  psb_intel_crtc->lut_adj[i]);
840 		}
841 
842 	}
843 }
844 
845 /**
846  * Save HW states of giving crtc
847  */
psb_intel_crtc_save(struct drm_crtc * crtc)848 static void psb_intel_crtc_save(struct drm_crtc *crtc)
849 {
850 	struct drm_device *dev = crtc->dev;
851 	/* struct drm_psb_private *dev_priv =
852 			(struct drm_psb_private *)dev->dev_private; */
853 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
854 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
855 	int pipeA = (psb_intel_crtc->pipe == 0);
856 	uint32_t paletteReg;
857 	int i;
858 
859 	DRM_DEBUG("\n");
860 
861 	if (!crtc_state) {
862 		DRM_DEBUG("No CRTC state found\n");
863 		return;
864 	}
865 
866 	crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
867 	crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
868 	crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
869 	crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
870 	crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
871 	crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
872 	crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
873 	crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
874 	crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
875 	crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
876 	crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
877 	crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
878 	crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
879 
880 	/*NOTE: DSPSIZE DSPPOS only for psb*/
881 	crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
882 	crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
883 
884 	crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
885 
886 	DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
887 			crtc_state->saveDSPCNTR,
888 			crtc_state->savePIPECONF,
889 			crtc_state->savePIPESRC,
890 			crtc_state->saveFP0,
891 			crtc_state->saveFP1,
892 			crtc_state->saveDPLL,
893 			crtc_state->saveHTOTAL,
894 			crtc_state->saveHBLANK,
895 			crtc_state->saveHSYNC,
896 			crtc_state->saveVTOTAL,
897 			crtc_state->saveVBLANK,
898 			crtc_state->saveVSYNC,
899 			crtc_state->saveDSPSTRIDE,
900 			crtc_state->saveDSPSIZE,
901 			crtc_state->saveDSPPOS,
902 			crtc_state->saveDSPBASE
903 		);
904 
905 	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
906 	for (i = 0; i < 256; ++i)
907 		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
908 }
909 
910 /**
911  * Restore HW states of giving crtc
912  */
psb_intel_crtc_restore(struct drm_crtc * crtc)913 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
914 {
915 	struct drm_device *dev = crtc->dev;
916 	/* struct drm_psb_private * dev_priv =
917 				(struct drm_psb_private *)dev->dev_private; */
918 	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
919 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
920 	/* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
921 	int pipeA = (psb_intel_crtc->pipe == 0);
922 	uint32_t paletteReg;
923 	int i;
924 
925 	DRM_DEBUG("\n");
926 
927 	if (!crtc_state) {
928 		DRM_DEBUG("No crtc state\n");
929 		return;
930 	}
931 
932 	DRM_DEBUG(
933 		"current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
934 		REG_READ(pipeA ? DSPACNTR : DSPBCNTR),
935 		REG_READ(pipeA ? PIPEACONF : PIPEBCONF),
936 		REG_READ(pipeA ? PIPEASRC : PIPEBSRC),
937 		REG_READ(pipeA ? FPA0 : FPB0),
938 		REG_READ(pipeA ? FPA1 : FPB1),
939 		REG_READ(pipeA ? DPLL_A : DPLL_B),
940 		REG_READ(pipeA ? HTOTAL_A : HTOTAL_B),
941 		REG_READ(pipeA ? HBLANK_A : HBLANK_B),
942 		REG_READ(pipeA ? HSYNC_A : HSYNC_B),
943 		REG_READ(pipeA ? VTOTAL_A : VTOTAL_B),
944 		REG_READ(pipeA ? VBLANK_A : VBLANK_B),
945 		REG_READ(pipeA ? VSYNC_A : VSYNC_B),
946 		REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE),
947 		REG_READ(pipeA ? DSPASIZE : DSPBSIZE),
948 		REG_READ(pipeA ? DSPAPOS : DSPBPOS),
949 		REG_READ(pipeA ? DSPABASE : DSPBBASE)
950 		);
951 
952 	DRM_DEBUG(
953 		"saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
954 		crtc_state->saveDSPCNTR,
955 		crtc_state->savePIPECONF,
956 		crtc_state->savePIPESRC,
957 		crtc_state->saveFP0,
958 		crtc_state->saveFP1,
959 		crtc_state->saveDPLL,
960 		crtc_state->saveHTOTAL,
961 		crtc_state->saveHBLANK,
962 		crtc_state->saveHSYNC,
963 		crtc_state->saveVTOTAL,
964 		crtc_state->saveVBLANK,
965 		crtc_state->saveVSYNC,
966 		crtc_state->saveDSPSTRIDE,
967 		crtc_state->saveDSPSIZE,
968 		crtc_state->saveDSPPOS,
969 		crtc_state->saveDSPBASE
970 		);
971 
972 
973 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
974 		REG_WRITE(pipeA ? DPLL_A : DPLL_B,
975 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
976 		REG_READ(pipeA ? DPLL_A : DPLL_B);
977 		DRM_DEBUG("write dpll: %x\n",
978 				REG_READ(pipeA ? DPLL_A : DPLL_B));
979 		udelay(150);
980 	}
981 
982 	REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
983 	REG_READ(pipeA ? FPA0 : FPB0);
984 
985 	REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
986 	REG_READ(pipeA ? FPA1 : FPB1);
987 
988 	REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
989 	REG_READ(pipeA ? DPLL_A : DPLL_B);
990 	udelay(150);
991 
992 	REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
993 	REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
994 	REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
995 	REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
996 	REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
997 	REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
998 	REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
999 
1000 	REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
1001 	REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
1002 
1003 	REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
1004 	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1005 	REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
1006 
1007 	psb_intel_wait_for_vblank(dev);
1008 
1009 	REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
1010 	REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1011 
1012 	psb_intel_wait_for_vblank(dev);
1013 
1014 	paletteReg = pipeA ? PALETTE_A : PALETTE_B;
1015 	for (i = 0; i < 256; ++i)
1016 		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1017 }
1018 
psb_intel_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file_priv,uint32_t handle,uint32_t width,uint32_t height)1019 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
1020 				 struct drm_file *file_priv,
1021 				 uint32_t handle,
1022 				 uint32_t width, uint32_t height)
1023 {
1024 	struct drm_device *dev = crtc->dev;
1025 	struct drm_psb_private *dev_priv =
1026 				(struct drm_psb_private *)dev->dev_private;
1027 	struct psb_gtt *pg = dev_priv->pg;
1028 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1029 	struct psb_intel_mode_device *mode_dev = psb_intel_crtc->mode_dev;
1030 	int pipe = psb_intel_crtc->pipe;
1031 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1032 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1033 	uint32_t temp;
1034 	size_t addr = 0;
1035 	uint32_t page_offset;
1036 	size_t size;
1037 	void *bo;
1038 	int ret;
1039 
1040 	DRM_DEBUG("\n");
1041 
1042 	/* if we want to turn of the cursor ignore width and height */
1043 	if (!handle) {
1044 		DRM_DEBUG("cursor off\n");
1045 		/* turn off the cursor */
1046 		temp = 0;
1047 		temp |= CURSOR_MODE_DISABLE;
1048 
1049 		if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
1050 					      OSPM_UHB_ONLY_IF_ON)) {
1051 			REG_WRITE(control, temp);
1052 			REG_WRITE(base, 0);
1053 			ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
1054 		}
1055 
1056 		/* unpin the old bo */
1057 		if (psb_intel_crtc->cursor_bo) {
1058 			mode_dev->bo_unpin_for_scanout(dev,
1059 						       psb_intel_crtc->
1060 						       cursor_bo);
1061 			psb_intel_crtc->cursor_bo = NULL;
1062 		}
1063 
1064 		return 0;
1065 	}
1066 
1067 	/* Currently we only support 64x64 cursors */
1068 	if (width != 64 || height != 64) {
1069 		DRM_ERROR("we currently only support 64x64 cursors\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	bo = mode_dev->bo_from_handle(dev, file_priv, handle);
1074 	if (!bo)
1075 		return -ENOENT;
1076 
1077 	ret = mode_dev->bo_pin_for_scanout(dev, bo);
1078 	if (ret)
1079 		return ret;
1080 	size = mode_dev->bo_size(dev, bo);
1081 	if (size < width * height * 4) {
1082 		DRM_ERROR("buffer is to small\n");
1083 		return -ENOMEM;
1084 	}
1085 
1086 	/*insert this bo into gtt*/
1087 	DRM_DEBUG("%s: map meminfo for hw cursor. handle %x\n",
1088 						__func__, handle);
1089 
1090 	ret = psb_gtt_map_meminfo(dev, (void *)handle, &page_offset);
1091 	if (ret) {
1092 		DRM_ERROR("Can not map meminfo to GTT. handle 0x%x\n", handle);
1093 		return ret;
1094 	}
1095 
1096 	addr = page_offset << PAGE_SHIFT;
1097 
1098 	addr += pg->stolen_base;
1099 
1100 	psb_intel_crtc->cursor_addr = addr;
1101 
1102 	temp = 0;
1103 	/* set the pipe for the cursor */
1104 	temp |= (pipe << 28);
1105 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1106 
1107 	if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
1108 				      OSPM_UHB_ONLY_IF_ON)) {
1109 		REG_WRITE(control, temp);
1110 		REG_WRITE(base, addr);
1111 		ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
1112 	}
1113 
1114 	/* unpin the old bo */
1115 	if (psb_intel_crtc->cursor_bo && psb_intel_crtc->cursor_bo != bo) {
1116 		mode_dev->bo_unpin_for_scanout(dev, psb_intel_crtc->cursor_bo);
1117 		psb_intel_crtc->cursor_bo = bo;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
psb_intel_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)1123 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1124 {
1125 	struct drm_device *dev = crtc->dev;
1126 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1127 	int pipe = psb_intel_crtc->pipe;
1128 	uint32_t temp = 0;
1129 	uint32_t adder;
1130 
1131 
1132 	if (x < 0) {
1133 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1134 		x = -x;
1135 	}
1136 	if (y < 0) {
1137 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1138 		y = -y;
1139 	}
1140 
1141 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1142 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1143 
1144 	adder = psb_intel_crtc->cursor_addr;
1145 
1146 	if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
1147 				      OSPM_UHB_ONLY_IF_ON)) {
1148 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1149 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1150 		ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
1151 	}
1152 	return 0;
1153 }
1154 
psb_intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t type,uint32_t size)1155 static void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1156 			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1157 {
1158 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1159 	int i;
1160 
1161 	if (size != 256)
1162 		return;
1163 
1164 	for (i = 0; i < 256; i++) {
1165 		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1166 		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1167 		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1168 	}
1169 
1170 	psb_intel_crtc_load_lut(crtc);
1171 }
1172 
psb_crtc_set_config(struct drm_mode_set * set)1173 static int psb_crtc_set_config(struct drm_mode_set *set)
1174 {
1175 	int ret;
1176 	struct drm_device *dev = set->crtc->dev;
1177 	struct drm_psb_private *dev_priv = dev->dev_private;
1178 
1179 	if (!dev_priv->rpm_enabled)
1180 		return drm_crtc_helper_set_config(set);
1181 
1182 	pm_runtime_forbid(&dev->pdev->dev);
1183 	ret = drm_crtc_helper_set_config(set);
1184 	pm_runtime_allow(&dev->pdev->dev);
1185 	return ret;
1186 }
1187 
1188 /* Returns the clock of the currently programmed mode of the given pipe. */
psb_intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)1189 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1190 				struct drm_crtc *crtc)
1191 {
1192 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1193 	int pipe = psb_intel_crtc->pipe;
1194 	u32 dpll;
1195 	u32 fp;
1196 	struct psb_intel_clock_t clock;
1197 	bool is_lvds;
1198 	struct drm_psb_private *dev_priv = dev->dev_private;
1199 
1200 	if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
1201 				      OSPM_UHB_ONLY_IF_ON)) {
1202 		dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1203 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1204 			fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1205 		else
1206 			fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1207 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1208 		ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
1209 	} else {
1210 		dpll = (pipe == 0) ?
1211 			dev_priv->saveDPLL_A : dev_priv->saveDPLL_B;
1212 
1213 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1214 			fp = (pipe == 0) ?
1215 				dev_priv->saveFPA0 :
1216 				dev_priv->saveFPB0;
1217 		else
1218 			fp = (pipe == 0) ?
1219 				dev_priv->saveFPA1 :
1220 				dev_priv->saveFPB1;
1221 
1222 		is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN);
1223 	}
1224 
1225 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1226 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1227 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1228 
1229 	if (is_lvds) {
1230 		clock.p1 =
1231 		    ffs((dpll &
1232 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1233 			DPLL_FPA01_P1_POST_DIV_SHIFT);
1234 		clock.p2 = 14;
1235 
1236 		if ((dpll & PLL_REF_INPUT_MASK) ==
1237 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1238 			/* XXX: might not be 66MHz */
1239 			i8xx_clock(66000, &clock);
1240 		} else
1241 			i8xx_clock(48000, &clock);
1242 	} else {
1243 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1244 			clock.p1 = 2;
1245 		else {
1246 			clock.p1 =
1247 			    ((dpll &
1248 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1249 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1250 		}
1251 		if (dpll & PLL_P2_DIVIDE_BY_4)
1252 			clock.p2 = 4;
1253 		else
1254 			clock.p2 = 2;
1255 
1256 		i8xx_clock(48000, &clock);
1257 	}
1258 
1259 	/* XXX: It would be nice to validate the clocks, but we can't reuse
1260 	 * i830PllIsValid() because it relies on the xf86_config connector
1261 	 * configuration being accurate, which it isn't necessarily.
1262 	 */
1263 
1264 	return clock.dot;
1265 }
1266 
1267 /** Returns the currently programmed mode of the given pipe. */
psb_intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)1268 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1269 					     struct drm_crtc *crtc)
1270 {
1271 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1272 	int pipe = psb_intel_crtc->pipe;
1273 	struct drm_display_mode *mode;
1274 	int htot;
1275 	int hsync;
1276 	int vtot;
1277 	int vsync;
1278 	struct drm_psb_private *dev_priv = dev->dev_private;
1279 
1280 	if (ospm_power_using_hw_begin(OSPM_DISPLAY_ISLAND,
1281 				      OSPM_UHB_ONLY_IF_ON)) {
1282 		htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1283 		hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1284 		vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1285 		vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1286 		ospm_power_using_hw_end(OSPM_DISPLAY_ISLAND);
1287 	} else {
1288 		htot = (pipe == 0) ?
1289 			dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B;
1290 		hsync = (pipe == 0) ?
1291 			dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B;
1292 		vtot = (pipe == 0) ?
1293 			dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B;
1294 		vsync = (pipe == 0) ?
1295 			dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B;
1296 	}
1297 
1298 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1299 	if (!mode)
1300 		return NULL;
1301 
1302 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1303 	mode->hdisplay = (htot & 0xffff) + 1;
1304 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1305 	mode->hsync_start = (hsync & 0xffff) + 1;
1306 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1307 	mode->vdisplay = (vtot & 0xffff) + 1;
1308 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1309 	mode->vsync_start = (vsync & 0xffff) + 1;
1310 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1311 
1312 	drm_mode_set_name(mode);
1313 	drm_mode_set_crtcinfo(mode, 0);
1314 
1315 	return mode;
1316 }
1317 
psb_intel_crtc_destroy(struct drm_crtc * crtc)1318 static void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1319 {
1320 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1321 
1322 	kfree(psb_intel_crtc->crtc_state);
1323 	drm_crtc_cleanup(crtc);
1324 	kfree(psb_intel_crtc);
1325 }
1326 
1327 static const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1328 	.dpms = psb_intel_crtc_dpms,
1329 	.mode_fixup = psb_intel_crtc_mode_fixup,
1330 	.mode_set = psb_intel_crtc_mode_set,
1331 	.mode_set_base = psb_intel_pipe_set_base,
1332 	.prepare = psb_intel_crtc_prepare,
1333 	.commit = psb_intel_crtc_commit,
1334 };
1335 
1336 static const struct drm_crtc_helper_funcs mrst_helper_funcs;
1337 static const struct drm_crtc_helper_funcs mdfld_helper_funcs;
1338 const struct drm_crtc_funcs mdfld_intel_crtc_funcs;
1339 
1340 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1341 	.save = psb_intel_crtc_save,
1342 	.restore = psb_intel_crtc_restore,
1343 	.cursor_set = psb_intel_crtc_cursor_set,
1344 	.cursor_move = psb_intel_crtc_cursor_move,
1345 	.gamma_set = psb_intel_crtc_gamma_set,
1346 	.set_config = psb_crtc_set_config,
1347 	.destroy = psb_intel_crtc_destroy,
1348 };
1349 
psb_intel_crtc_init(struct drm_device * dev,int pipe,struct psb_intel_mode_device * mode_dev)1350 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1351 		     struct psb_intel_mode_device *mode_dev)
1352 {
1353 	struct drm_psb_private *dev_priv = dev->dev_private;
1354 	struct psb_intel_crtc *psb_intel_crtc;
1355 	int i;
1356 	uint16_t *r_base, *g_base, *b_base;
1357 
1358 	PSB_DEBUG_ENTRY("\n");
1359 
1360 	/* We allocate a extra array of drm_connector pointers
1361 	 * for fbdev after the crtc */
1362 	psb_intel_crtc =
1363 	    kzalloc(sizeof(struct psb_intel_crtc) +
1364 		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1365 		    GFP_KERNEL);
1366 	if (psb_intel_crtc == NULL)
1367 		return;
1368 
1369 	psb_intel_crtc->crtc_state =
1370 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1371 	if (!psb_intel_crtc->crtc_state) {
1372 		DRM_INFO("Crtc state error: No memory\n");
1373 		kfree(psb_intel_crtc);
1374 		return;
1375 	}
1376 
1377 	drm_crtc_init(dev, &psb_intel_crtc->base, &psb_intel_crtc_funcs);
1378 
1379 	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1380 	psb_intel_crtc->pipe = pipe;
1381 	psb_intel_crtc->plane = pipe;
1382 
1383 	r_base = psb_intel_crtc->base.gamma_store;
1384 	g_base = r_base + 256;
1385 	b_base = g_base + 256;
1386 	for (i = 0; i < 256; i++) {
1387 		psb_intel_crtc->lut_r[i] = i;
1388 		psb_intel_crtc->lut_g[i] = i;
1389 		psb_intel_crtc->lut_b[i] = i;
1390 		r_base[i] = i << 8;
1391 		g_base[i] = i << 8;
1392 		b_base[i] = i << 8;
1393 
1394 		psb_intel_crtc->lut_adj[i] = 0;
1395 	}
1396 
1397 	psb_intel_crtc->mode_dev = mode_dev;
1398 	psb_intel_crtc->cursor_addr = 0;
1399 
1400 	drm_crtc_helper_add(&psb_intel_crtc->base,
1401 				    &psb_intel_helper_funcs);
1402 
1403 	/* Setup the array of drm_connector pointer array */
1404 	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1405 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1406 	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1407 	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1408 							&psb_intel_crtc->base;
1409 	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1410 							&psb_intel_crtc->base;
1411 	psb_intel_crtc->mode_set.connectors =
1412 	    (struct drm_connector **) (psb_intel_crtc + 1);
1413 	psb_intel_crtc->mode_set.num_connectors = 0;
1414 }
1415 
psb_intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file_priv)1416 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1417 				struct drm_file *file_priv)
1418 {
1419 	struct drm_psb_private *dev_priv = dev->dev_private;
1420 	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1421 	struct drm_mode_object *drmmode_obj;
1422 	struct psb_intel_crtc *crtc;
1423 
1424 	if (!dev_priv) {
1425 		DRM_ERROR("called with no initialization\n");
1426 		return -EINVAL;
1427 	}
1428 
1429 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1430 			DRM_MODE_OBJECT_CRTC);
1431 
1432 	if (!drmmode_obj) {
1433 		DRM_ERROR("no such CRTC id\n");
1434 		return -EINVAL;
1435 	}
1436 
1437 	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1438 	pipe_from_crtc_id->pipe = crtc->pipe;
1439 
1440 	return 0;
1441 }
1442 
psb_intel_get_crtc_from_pipe(struct drm_device * dev,int pipe)1443 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1444 {
1445 	struct drm_crtc *crtc = NULL;
1446 
1447 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1448 		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1449 		if (psb_intel_crtc->pipe == pipe)
1450 			break;
1451 	}
1452 	return crtc;
1453 }
1454 
psb_intel_connector_clones(struct drm_device * dev,int type_mask)1455 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1456 {
1457 	int index_mask = 0;
1458 	struct drm_connector *connector;
1459 	int entry = 0;
1460 
1461 	list_for_each_entry(connector, &dev->mode_config.connector_list,
1462 			    head) {
1463 		struct psb_intel_output *psb_intel_output =
1464 		    to_psb_intel_output(connector);
1465 		if (type_mask & (1 << psb_intel_output->type))
1466 			index_mask |= (1 << entry);
1467 		entry++;
1468 	}
1469 	return index_mask;
1470 }
1471 
1472 
psb_intel_modeset_cleanup(struct drm_device * dev)1473 void psb_intel_modeset_cleanup(struct drm_device *dev)
1474 {
1475 	drm_mode_config_cleanup(dev);
1476 }
1477 
1478 
1479 /* current intel driver doesn't take advantage of encoders
1480    always give back the encoder for the connector
1481 */
psb_intel_best_encoder(struct drm_connector * connector)1482 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1483 {
1484 	struct psb_intel_output *psb_intel_output =
1485 					to_psb_intel_output(connector);
1486 
1487 	return &psb_intel_output->enc;
1488 }
1489 
1490