Home
last modified time | relevance | path

Searched refs:log2 (Results 1 – 16 of 16) sorted by relevance

/linux-2.6.39/arch/m68k/fpsp040/
Dsetox.S34 | argument X whose magnitude is less than 16380 log2, which
79 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
81 | 2.2 N := round-to-nearest-integer( X * 64/log2 ).
99 | Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
103 | Step 3. Calculate X - N*log2/64.
104 | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
105 | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
107 | the value -log2/64 to 88 bits of accuracy.
115 | N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116 | X*64/log2 (1+eps) = N + f, |f| <= 0.5
[all …]
Dscosh.S23 | 1. If |X| > 16380 log2, go to 3.
25 | 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae
30 | 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.
32 | 4. (16380 log2 < |X| <= 16480 log2)
42 | 5. (|X| > 16480 log2) sinh(X) must overflow. Return
Dstanh.S23 | 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
25 | 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
30 | 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
33 | 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
35 | 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
40 | 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we
Dssinh.S23 | 1. If |X| > 16380 log2, go to 3.
25 | 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
30 | 3. If |X| > 16480 log2, go to 5.
32 | 4. (16380 log2 < |X| <= 16480 log2)
43 | 5. (|X| > 16480 log2) sinh(X) must overflow. Return
Dstwotox.S325 cmpil #0x400B9B07,%d0 | ...|X| <= 16480*log2/log10 ?
/linux-2.6.39/arch/m68k/ifpsp060/src/
Dfplsp.S6733 # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
6736 # 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
6753 # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
6757 # Step 3. Calculate X - N*log2/64. #
6759 # where L1 := single-precision(-log2/64). #
6761 # L2 := extended-precision(-log2/64 - L1).#
6763 # approximate the value -log2/64 to 88 bits of accuracy. #
6772 # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
6773 # X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
6774 # X*64/log2 - N = f - eps*X 64/log2 #
[all …]
Dfpsp.S6998 # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
6999 # 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
7009 # Step 3. Calculate X - N*log2/64. #
7011 # where L1 := single-precision(-log2/64). #
7013 # L2 := extended-precision(-log2/64 - L1).#
7015 # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
7705 # Y' := Y - 16381 log2 #
7820 # Y' := Y - 16381 log2 #
8945 # 4. Overwrite r := r * log2. Then #
9490 long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e)
[all …]
/linux-2.6.39/arch/cris/arch-v10/
DREADME.mm185 PGDIR_SHIFT is the log2 of the amount of memory an entry in the PGD can map; in our
206 PAGE_SHIFT is the log2 of the size of a page; 13 in our case. PTRS_PER_PTE is
/linux-2.6.39/fs/xfs/
Dxfs_rtalloc.c2297 int log2; /* log of sequence number */ in xfs_rtpick_extent() local
2310 if ((log2 = xfs_highbit64(seq)) == -1) in xfs_rtpick_extent()
2313 resid = seq - (1ULL << log2); in xfs_rtpick_extent()
2315 (log2 + 1); in xfs_rtpick_extent()
/linux-2.6.39/arch/powerpc/platforms/ps3/
DKconfig45 expressed as the log2 of the page table size. Valid values are
/linux-2.6.39/drivers/net/cxgb4/
Dt4_hw.c1783 unsigned int log2 = fls(mtu); in t4_load_mtus() local
1785 if (!(mtu & ((1 << log2) >> 2))) /* round */ in t4_load_mtus()
1786 log2--; in t4_load_mtus()
1788 MTUWIDTH(log2) | MTUVALUE(mtu)); in t4_load_mtus()
/linux-2.6.39/arch/m68k/math-emu/
Dfp_scan.S368 .long 0x00003fff,0xb8aa3b29,0x5c17f0bc | log2(e)
/linux-2.6.39/drivers/net/ixp2000/
Dixp2400_rx.uc50 #define CHANNEL_STATE_SHIFT 5 // ceil(log2(state size))
/linux-2.6.39/drivers/net/cxgb3/
Dt3_hw.c2876 unsigned int log2 = fls(mtu); in t3_load_mtus() local
2878 if (!(mtu & ((1 << log2) >> 2))) /* round */ in t3_load_mtus()
2879 log2--; in t3_load_mtus()
2881 (i << 24) | (log2 << 16) | mtu); in t3_load_mtus()
/linux-2.6.39/arch/x86/math-emu/
DREADME244 about 64 + log2(cos(x)) = 31 bits.
/linux-2.6.39/Documentation/crypto/
Ddescore-readme.txt257 all index scaling is done explicitly - no hidden shifts by log2(sizeof).