1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, the image creating code will do its best to
46 * ensure the image size will not exceed N bytes, but if that is
47 * impossible, it will try to create the smallest image possible.
48 */
49 unsigned long image_size;
50
hibernate_image_size_init(void)51 void __init hibernate_image_size_init(void)
52 {
53 image_size = (totalram_pages / 3) * PAGE_SIZE;
54 }
55
56 /* List of PBEs needed for restoring the pages that were allocated before
57 * the suspend and included in the suspend image, but have also been
58 * allocated by the "resume" kernel, so their contents cannot be written
59 * directly to their "original" page frames.
60 */
61 struct pbe *restore_pblist;
62
63 /* Pointer to an auxiliary buffer (1 page) */
64 static void *buffer;
65
66 /**
67 * @safe_needed - on resume, for storing the PBE list and the image,
68 * we can only use memory pages that do not conflict with the pages
69 * used before suspend. The unsafe pages have PageNosaveFree set
70 * and we count them using unsafe_pages.
71 *
72 * Each allocated image page is marked as PageNosave and PageNosaveFree
73 * so that swsusp_free() can release it.
74 */
75
76 #define PG_ANY 0
77 #define PG_SAFE 1
78 #define PG_UNSAFE_CLEAR 1
79 #define PG_UNSAFE_KEEP 0
80
81 static unsigned int allocated_unsafe_pages;
82
get_image_page(gfp_t gfp_mask,int safe_needed)83 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
84 {
85 void *res;
86
87 res = (void *)get_zeroed_page(gfp_mask);
88 if (safe_needed)
89 while (res && swsusp_page_is_free(virt_to_page(res))) {
90 /* The page is unsafe, mark it for swsusp_free() */
91 swsusp_set_page_forbidden(virt_to_page(res));
92 allocated_unsafe_pages++;
93 res = (void *)get_zeroed_page(gfp_mask);
94 }
95 if (res) {
96 swsusp_set_page_forbidden(virt_to_page(res));
97 swsusp_set_page_free(virt_to_page(res));
98 }
99 return res;
100 }
101
get_safe_page(gfp_t gfp_mask)102 unsigned long get_safe_page(gfp_t gfp_mask)
103 {
104 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
105 }
106
alloc_image_page(gfp_t gfp_mask)107 static struct page *alloc_image_page(gfp_t gfp_mask)
108 {
109 struct page *page;
110
111 page = alloc_page(gfp_mask);
112 if (page) {
113 swsusp_set_page_forbidden(page);
114 swsusp_set_page_free(page);
115 }
116 return page;
117 }
118
119 /**
120 * free_image_page - free page represented by @addr, allocated with
121 * get_image_page (page flags set by it must be cleared)
122 */
123
free_image_page(void * addr,int clear_nosave_free)124 static inline void free_image_page(void *addr, int clear_nosave_free)
125 {
126 struct page *page;
127
128 BUG_ON(!virt_addr_valid(addr));
129
130 page = virt_to_page(addr);
131
132 swsusp_unset_page_forbidden(page);
133 if (clear_nosave_free)
134 swsusp_unset_page_free(page);
135
136 __free_page(page);
137 }
138
139 /* struct linked_page is used to build chains of pages */
140
141 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
142
143 struct linked_page {
144 struct linked_page *next;
145 char data[LINKED_PAGE_DATA_SIZE];
146 } __attribute__((packed));
147
148 static inline void
free_list_of_pages(struct linked_page * list,int clear_page_nosave)149 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
150 {
151 while (list) {
152 struct linked_page *lp = list->next;
153
154 free_image_page(list, clear_page_nosave);
155 list = lp;
156 }
157 }
158
159 /**
160 * struct chain_allocator is used for allocating small objects out of
161 * a linked list of pages called 'the chain'.
162 *
163 * The chain grows each time when there is no room for a new object in
164 * the current page. The allocated objects cannot be freed individually.
165 * It is only possible to free them all at once, by freeing the entire
166 * chain.
167 *
168 * NOTE: The chain allocator may be inefficient if the allocated objects
169 * are not much smaller than PAGE_SIZE.
170 */
171
172 struct chain_allocator {
173 struct linked_page *chain; /* the chain */
174 unsigned int used_space; /* total size of objects allocated out
175 * of the current page
176 */
177 gfp_t gfp_mask; /* mask for allocating pages */
178 int safe_needed; /* if set, only "safe" pages are allocated */
179 };
180
181 static void
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)182 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
183 {
184 ca->chain = NULL;
185 ca->used_space = LINKED_PAGE_DATA_SIZE;
186 ca->gfp_mask = gfp_mask;
187 ca->safe_needed = safe_needed;
188 }
189
chain_alloc(struct chain_allocator * ca,unsigned int size)190 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
191 {
192 void *ret;
193
194 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
195 struct linked_page *lp;
196
197 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
198 if (!lp)
199 return NULL;
200
201 lp->next = ca->chain;
202 ca->chain = lp;
203 ca->used_space = 0;
204 }
205 ret = ca->chain->data + ca->used_space;
206 ca->used_space += size;
207 return ret;
208 }
209
210 /**
211 * Data types related to memory bitmaps.
212 *
213 * Memory bitmap is a structure consiting of many linked lists of
214 * objects. The main list's elements are of type struct zone_bitmap
215 * and each of them corresonds to one zone. For each zone bitmap
216 * object there is a list of objects of type struct bm_block that
217 * represent each blocks of bitmap in which information is stored.
218 *
219 * struct memory_bitmap contains a pointer to the main list of zone
220 * bitmap objects, a struct bm_position used for browsing the bitmap,
221 * and a pointer to the list of pages used for allocating all of the
222 * zone bitmap objects and bitmap block objects.
223 *
224 * NOTE: It has to be possible to lay out the bitmap in memory
225 * using only allocations of order 0. Additionally, the bitmap is
226 * designed to work with arbitrary number of zones (this is over the
227 * top for now, but let's avoid making unnecessary assumptions ;-).
228 *
229 * struct zone_bitmap contains a pointer to a list of bitmap block
230 * objects and a pointer to the bitmap block object that has been
231 * most recently used for setting bits. Additionally, it contains the
232 * pfns that correspond to the start and end of the represented zone.
233 *
234 * struct bm_block contains a pointer to the memory page in which
235 * information is stored (in the form of a block of bitmap)
236 * It also contains the pfns that correspond to the start and end of
237 * the represented memory area.
238 */
239
240 #define BM_END_OF_MAP (~0UL)
241
242 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
243
244 struct bm_block {
245 struct list_head hook; /* hook into a list of bitmap blocks */
246 unsigned long start_pfn; /* pfn represented by the first bit */
247 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
248 unsigned long *data; /* bitmap representing pages */
249 };
250
bm_block_bits(struct bm_block * bb)251 static inline unsigned long bm_block_bits(struct bm_block *bb)
252 {
253 return bb->end_pfn - bb->start_pfn;
254 }
255
256 /* strcut bm_position is used for browsing memory bitmaps */
257
258 struct bm_position {
259 struct bm_block *block;
260 int bit;
261 };
262
263 struct memory_bitmap {
264 struct list_head blocks; /* list of bitmap blocks */
265 struct linked_page *p_list; /* list of pages used to store zone
266 * bitmap objects and bitmap block
267 * objects
268 */
269 struct bm_position cur; /* most recently used bit position */
270 };
271
272 /* Functions that operate on memory bitmaps */
273
memory_bm_position_reset(struct memory_bitmap * bm)274 static void memory_bm_position_reset(struct memory_bitmap *bm)
275 {
276 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
277 bm->cur.bit = 0;
278 }
279
280 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
281
282 /**
283 * create_bm_block_list - create a list of block bitmap objects
284 * @pages - number of pages to track
285 * @list - list to put the allocated blocks into
286 * @ca - chain allocator to be used for allocating memory
287 */
create_bm_block_list(unsigned long pages,struct list_head * list,struct chain_allocator * ca)288 static int create_bm_block_list(unsigned long pages,
289 struct list_head *list,
290 struct chain_allocator *ca)
291 {
292 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
293
294 while (nr_blocks-- > 0) {
295 struct bm_block *bb;
296
297 bb = chain_alloc(ca, sizeof(struct bm_block));
298 if (!bb)
299 return -ENOMEM;
300 list_add(&bb->hook, list);
301 }
302
303 return 0;
304 }
305
306 struct mem_extent {
307 struct list_head hook;
308 unsigned long start;
309 unsigned long end;
310 };
311
312 /**
313 * free_mem_extents - free a list of memory extents
314 * @list - list of extents to empty
315 */
free_mem_extents(struct list_head * list)316 static void free_mem_extents(struct list_head *list)
317 {
318 struct mem_extent *ext, *aux;
319
320 list_for_each_entry_safe(ext, aux, list, hook) {
321 list_del(&ext->hook);
322 kfree(ext);
323 }
324 }
325
326 /**
327 * create_mem_extents - create a list of memory extents representing
328 * contiguous ranges of PFNs
329 * @list - list to put the extents into
330 * @gfp_mask - mask to use for memory allocations
331 */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)332 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
333 {
334 struct zone *zone;
335
336 INIT_LIST_HEAD(list);
337
338 for_each_populated_zone(zone) {
339 unsigned long zone_start, zone_end;
340 struct mem_extent *ext, *cur, *aux;
341
342 zone_start = zone->zone_start_pfn;
343 zone_end = zone->zone_start_pfn + zone->spanned_pages;
344
345 list_for_each_entry(ext, list, hook)
346 if (zone_start <= ext->end)
347 break;
348
349 if (&ext->hook == list || zone_end < ext->start) {
350 /* New extent is necessary */
351 struct mem_extent *new_ext;
352
353 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
354 if (!new_ext) {
355 free_mem_extents(list);
356 return -ENOMEM;
357 }
358 new_ext->start = zone_start;
359 new_ext->end = zone_end;
360 list_add_tail(&new_ext->hook, &ext->hook);
361 continue;
362 }
363
364 /* Merge this zone's range of PFNs with the existing one */
365 if (zone_start < ext->start)
366 ext->start = zone_start;
367 if (zone_end > ext->end)
368 ext->end = zone_end;
369
370 /* More merging may be possible */
371 cur = ext;
372 list_for_each_entry_safe_continue(cur, aux, list, hook) {
373 if (zone_end < cur->start)
374 break;
375 if (zone_end < cur->end)
376 ext->end = cur->end;
377 list_del(&cur->hook);
378 kfree(cur);
379 }
380 }
381
382 return 0;
383 }
384
385 /**
386 * memory_bm_create - allocate memory for a memory bitmap
387 */
388 static int
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)389 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
390 {
391 struct chain_allocator ca;
392 struct list_head mem_extents;
393 struct mem_extent *ext;
394 int error;
395
396 chain_init(&ca, gfp_mask, safe_needed);
397 INIT_LIST_HEAD(&bm->blocks);
398
399 error = create_mem_extents(&mem_extents, gfp_mask);
400 if (error)
401 return error;
402
403 list_for_each_entry(ext, &mem_extents, hook) {
404 struct bm_block *bb;
405 unsigned long pfn = ext->start;
406 unsigned long pages = ext->end - ext->start;
407
408 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
409
410 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
411 if (error)
412 goto Error;
413
414 list_for_each_entry_continue(bb, &bm->blocks, hook) {
415 bb->data = get_image_page(gfp_mask, safe_needed);
416 if (!bb->data) {
417 error = -ENOMEM;
418 goto Error;
419 }
420
421 bb->start_pfn = pfn;
422 if (pages >= BM_BITS_PER_BLOCK) {
423 pfn += BM_BITS_PER_BLOCK;
424 pages -= BM_BITS_PER_BLOCK;
425 } else {
426 /* This is executed only once in the loop */
427 pfn += pages;
428 }
429 bb->end_pfn = pfn;
430 }
431 }
432
433 bm->p_list = ca.chain;
434 memory_bm_position_reset(bm);
435 Exit:
436 free_mem_extents(&mem_extents);
437 return error;
438
439 Error:
440 bm->p_list = ca.chain;
441 memory_bm_free(bm, PG_UNSAFE_CLEAR);
442 goto Exit;
443 }
444
445 /**
446 * memory_bm_free - free memory occupied by the memory bitmap @bm
447 */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)448 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
449 {
450 struct bm_block *bb;
451
452 list_for_each_entry(bb, &bm->blocks, hook)
453 if (bb->data)
454 free_image_page(bb->data, clear_nosave_free);
455
456 free_list_of_pages(bm->p_list, clear_nosave_free);
457
458 INIT_LIST_HEAD(&bm->blocks);
459 }
460
461 /**
462 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
463 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
464 * of @bm->cur_zone_bm are updated.
465 */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)466 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
467 void **addr, unsigned int *bit_nr)
468 {
469 struct bm_block *bb;
470
471 /*
472 * Check if the pfn corresponds to the current bitmap block and find
473 * the block where it fits if this is not the case.
474 */
475 bb = bm->cur.block;
476 if (pfn < bb->start_pfn)
477 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
478 if (pfn >= bb->start_pfn)
479 break;
480
481 if (pfn >= bb->end_pfn)
482 list_for_each_entry_continue(bb, &bm->blocks, hook)
483 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
484 break;
485
486 if (&bb->hook == &bm->blocks)
487 return -EFAULT;
488
489 /* The block has been found */
490 bm->cur.block = bb;
491 pfn -= bb->start_pfn;
492 bm->cur.bit = pfn + 1;
493 *bit_nr = pfn;
494 *addr = bb->data;
495 return 0;
496 }
497
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)498 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
499 {
500 void *addr;
501 unsigned int bit;
502 int error;
503
504 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
505 BUG_ON(error);
506 set_bit(bit, addr);
507 }
508
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)509 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
510 {
511 void *addr;
512 unsigned int bit;
513 int error;
514
515 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
516 if (!error)
517 set_bit(bit, addr);
518 return error;
519 }
520
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)521 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 BUG_ON(error);
529 clear_bit(bit, addr);
530 }
531
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)532 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
533 {
534 void *addr;
535 unsigned int bit;
536 int error;
537
538 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
539 BUG_ON(error);
540 return test_bit(bit, addr);
541 }
542
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)543 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
544 {
545 void *addr;
546 unsigned int bit;
547
548 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
549 }
550
551 /**
552 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
553 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
554 * returned.
555 *
556 * It is required to run memory_bm_position_reset() before the first call to
557 * this function.
558 */
559
memory_bm_next_pfn(struct memory_bitmap * bm)560 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
561 {
562 struct bm_block *bb;
563 int bit;
564
565 bb = bm->cur.block;
566 do {
567 bit = bm->cur.bit;
568 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
569 if (bit < bm_block_bits(bb))
570 goto Return_pfn;
571
572 bb = list_entry(bb->hook.next, struct bm_block, hook);
573 bm->cur.block = bb;
574 bm->cur.bit = 0;
575 } while (&bb->hook != &bm->blocks);
576
577 memory_bm_position_reset(bm);
578 return BM_END_OF_MAP;
579
580 Return_pfn:
581 bm->cur.bit = bit + 1;
582 return bb->start_pfn + bit;
583 }
584
585 /**
586 * This structure represents a range of page frames the contents of which
587 * should not be saved during the suspend.
588 */
589
590 struct nosave_region {
591 struct list_head list;
592 unsigned long start_pfn;
593 unsigned long end_pfn;
594 };
595
596 static LIST_HEAD(nosave_regions);
597
598 /**
599 * register_nosave_region - register a range of page frames the contents
600 * of which should not be saved during the suspend (to be used in the early
601 * initialization code)
602 */
603
604 void __init
__register_nosave_region(unsigned long start_pfn,unsigned long end_pfn,int use_kmalloc)605 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
606 int use_kmalloc)
607 {
608 struct nosave_region *region;
609
610 if (start_pfn >= end_pfn)
611 return;
612
613 if (!list_empty(&nosave_regions)) {
614 /* Try to extend the previous region (they should be sorted) */
615 region = list_entry(nosave_regions.prev,
616 struct nosave_region, list);
617 if (region->end_pfn == start_pfn) {
618 region->end_pfn = end_pfn;
619 goto Report;
620 }
621 }
622 if (use_kmalloc) {
623 /* during init, this shouldn't fail */
624 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
625 BUG_ON(!region);
626 } else
627 /* This allocation cannot fail */
628 region = alloc_bootmem(sizeof(struct nosave_region));
629 region->start_pfn = start_pfn;
630 region->end_pfn = end_pfn;
631 list_add_tail(®ion->list, &nosave_regions);
632 Report:
633 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
634 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
635 }
636
637 /*
638 * Set bits in this map correspond to the page frames the contents of which
639 * should not be saved during the suspend.
640 */
641 static struct memory_bitmap *forbidden_pages_map;
642
643 /* Set bits in this map correspond to free page frames. */
644 static struct memory_bitmap *free_pages_map;
645
646 /*
647 * Each page frame allocated for creating the image is marked by setting the
648 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
649 */
650
swsusp_set_page_free(struct page * page)651 void swsusp_set_page_free(struct page *page)
652 {
653 if (free_pages_map)
654 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
655 }
656
swsusp_page_is_free(struct page * page)657 static int swsusp_page_is_free(struct page *page)
658 {
659 return free_pages_map ?
660 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
661 }
662
swsusp_unset_page_free(struct page * page)663 void swsusp_unset_page_free(struct page *page)
664 {
665 if (free_pages_map)
666 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
667 }
668
swsusp_set_page_forbidden(struct page * page)669 static void swsusp_set_page_forbidden(struct page *page)
670 {
671 if (forbidden_pages_map)
672 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
673 }
674
swsusp_page_is_forbidden(struct page * page)675 int swsusp_page_is_forbidden(struct page *page)
676 {
677 return forbidden_pages_map ?
678 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
679 }
680
swsusp_unset_page_forbidden(struct page * page)681 static void swsusp_unset_page_forbidden(struct page *page)
682 {
683 if (forbidden_pages_map)
684 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 /**
688 * mark_nosave_pages - set bits corresponding to the page frames the
689 * contents of which should not be saved in a given bitmap.
690 */
691
mark_nosave_pages(struct memory_bitmap * bm)692 static void mark_nosave_pages(struct memory_bitmap *bm)
693 {
694 struct nosave_region *region;
695
696 if (list_empty(&nosave_regions))
697 return;
698
699 list_for_each_entry(region, &nosave_regions, list) {
700 unsigned long pfn;
701
702 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
703 region->start_pfn << PAGE_SHIFT,
704 region->end_pfn << PAGE_SHIFT);
705
706 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
707 if (pfn_valid(pfn)) {
708 /*
709 * It is safe to ignore the result of
710 * mem_bm_set_bit_check() here, since we won't
711 * touch the PFNs for which the error is
712 * returned anyway.
713 */
714 mem_bm_set_bit_check(bm, pfn);
715 }
716 }
717 }
718
719 /**
720 * create_basic_memory_bitmaps - create bitmaps needed for marking page
721 * frames that should not be saved and free page frames. The pointers
722 * forbidden_pages_map and free_pages_map are only modified if everything
723 * goes well, because we don't want the bits to be used before both bitmaps
724 * are set up.
725 */
726
create_basic_memory_bitmaps(void)727 int create_basic_memory_bitmaps(void)
728 {
729 struct memory_bitmap *bm1, *bm2;
730 int error = 0;
731
732 BUG_ON(forbidden_pages_map || free_pages_map);
733
734 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
735 if (!bm1)
736 return -ENOMEM;
737
738 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
739 if (error)
740 goto Free_first_object;
741
742 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
743 if (!bm2)
744 goto Free_first_bitmap;
745
746 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
747 if (error)
748 goto Free_second_object;
749
750 forbidden_pages_map = bm1;
751 free_pages_map = bm2;
752 mark_nosave_pages(forbidden_pages_map);
753
754 pr_debug("PM: Basic memory bitmaps created\n");
755
756 return 0;
757
758 Free_second_object:
759 kfree(bm2);
760 Free_first_bitmap:
761 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
762 Free_first_object:
763 kfree(bm1);
764 return -ENOMEM;
765 }
766
767 /**
768 * free_basic_memory_bitmaps - free memory bitmaps allocated by
769 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
770 * so that the bitmaps themselves are not referred to while they are being
771 * freed.
772 */
773
free_basic_memory_bitmaps(void)774 void free_basic_memory_bitmaps(void)
775 {
776 struct memory_bitmap *bm1, *bm2;
777
778 BUG_ON(!(forbidden_pages_map && free_pages_map));
779
780 bm1 = forbidden_pages_map;
781 bm2 = free_pages_map;
782 forbidden_pages_map = NULL;
783 free_pages_map = NULL;
784 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
785 kfree(bm1);
786 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
787 kfree(bm2);
788
789 pr_debug("PM: Basic memory bitmaps freed\n");
790 }
791
792 /**
793 * snapshot_additional_pages - estimate the number of additional pages
794 * be needed for setting up the suspend image data structures for given
795 * zone (usually the returned value is greater than the exact number)
796 */
797
snapshot_additional_pages(struct zone * zone)798 unsigned int snapshot_additional_pages(struct zone *zone)
799 {
800 unsigned int res;
801
802 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
803 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
804 return 2 * res;
805 }
806
807 #ifdef CONFIG_HIGHMEM
808 /**
809 * count_free_highmem_pages - compute the total number of free highmem
810 * pages, system-wide.
811 */
812
count_free_highmem_pages(void)813 static unsigned int count_free_highmem_pages(void)
814 {
815 struct zone *zone;
816 unsigned int cnt = 0;
817
818 for_each_populated_zone(zone)
819 if (is_highmem(zone))
820 cnt += zone_page_state(zone, NR_FREE_PAGES);
821
822 return cnt;
823 }
824
825 /**
826 * saveable_highmem_page - Determine whether a highmem page should be
827 * included in the suspend image.
828 *
829 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
830 * and it isn't a part of a free chunk of pages.
831 */
saveable_highmem_page(struct zone * zone,unsigned long pfn)832 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
833 {
834 struct page *page;
835
836 if (!pfn_valid(pfn))
837 return NULL;
838
839 page = pfn_to_page(pfn);
840 if (page_zone(page) != zone)
841 return NULL;
842
843 BUG_ON(!PageHighMem(page));
844
845 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
846 PageReserved(page))
847 return NULL;
848
849 return page;
850 }
851
852 /**
853 * count_highmem_pages - compute the total number of saveable highmem
854 * pages.
855 */
856
count_highmem_pages(void)857 static unsigned int count_highmem_pages(void)
858 {
859 struct zone *zone;
860 unsigned int n = 0;
861
862 for_each_populated_zone(zone) {
863 unsigned long pfn, max_zone_pfn;
864
865 if (!is_highmem(zone))
866 continue;
867
868 mark_free_pages(zone);
869 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
870 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
871 if (saveable_highmem_page(zone, pfn))
872 n++;
873 }
874 return n;
875 }
876 #else
saveable_highmem_page(struct zone * z,unsigned long p)877 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
878 {
879 return NULL;
880 }
881 #endif /* CONFIG_HIGHMEM */
882
883 /**
884 * saveable_page - Determine whether a non-highmem page should be included
885 * in the suspend image.
886 *
887 * We should save the page if it isn't Nosave, and is not in the range
888 * of pages statically defined as 'unsaveable', and it isn't a part of
889 * a free chunk of pages.
890 */
saveable_page(struct zone * zone,unsigned long pfn)891 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
892 {
893 struct page *page;
894
895 if (!pfn_valid(pfn))
896 return NULL;
897
898 page = pfn_to_page(pfn);
899 if (page_zone(page) != zone)
900 return NULL;
901
902 BUG_ON(PageHighMem(page));
903
904 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
905 return NULL;
906
907 if (PageReserved(page)
908 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
909 return NULL;
910
911 return page;
912 }
913
914 /**
915 * count_data_pages - compute the total number of saveable non-highmem
916 * pages.
917 */
918
count_data_pages(void)919 static unsigned int count_data_pages(void)
920 {
921 struct zone *zone;
922 unsigned long pfn, max_zone_pfn;
923 unsigned int n = 0;
924
925 for_each_populated_zone(zone) {
926 if (is_highmem(zone))
927 continue;
928
929 mark_free_pages(zone);
930 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
931 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
932 if (saveable_page(zone, pfn))
933 n++;
934 }
935 return n;
936 }
937
938 /* This is needed, because copy_page and memcpy are not usable for copying
939 * task structs.
940 */
do_copy_page(long * dst,long * src)941 static inline void do_copy_page(long *dst, long *src)
942 {
943 int n;
944
945 for (n = PAGE_SIZE / sizeof(long); n; n--)
946 *dst++ = *src++;
947 }
948
949
950 /**
951 * safe_copy_page - check if the page we are going to copy is marked as
952 * present in the kernel page tables (this always is the case if
953 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
954 * kernel_page_present() always returns 'true').
955 */
safe_copy_page(void * dst,struct page * s_page)956 static void safe_copy_page(void *dst, struct page *s_page)
957 {
958 if (kernel_page_present(s_page)) {
959 do_copy_page(dst, page_address(s_page));
960 } else {
961 kernel_map_pages(s_page, 1, 1);
962 do_copy_page(dst, page_address(s_page));
963 kernel_map_pages(s_page, 1, 0);
964 }
965 }
966
967
968 #ifdef CONFIG_HIGHMEM
969 static inline struct page *
page_is_saveable(struct zone * zone,unsigned long pfn)970 page_is_saveable(struct zone *zone, unsigned long pfn)
971 {
972 return is_highmem(zone) ?
973 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
974 }
975
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)976 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
977 {
978 struct page *s_page, *d_page;
979 void *src, *dst;
980
981 s_page = pfn_to_page(src_pfn);
982 d_page = pfn_to_page(dst_pfn);
983 if (PageHighMem(s_page)) {
984 src = kmap_atomic(s_page, KM_USER0);
985 dst = kmap_atomic(d_page, KM_USER1);
986 do_copy_page(dst, src);
987 kunmap_atomic(dst, KM_USER1);
988 kunmap_atomic(src, KM_USER0);
989 } else {
990 if (PageHighMem(d_page)) {
991 /* Page pointed to by src may contain some kernel
992 * data modified by kmap_atomic()
993 */
994 safe_copy_page(buffer, s_page);
995 dst = kmap_atomic(d_page, KM_USER0);
996 copy_page(dst, buffer);
997 kunmap_atomic(dst, KM_USER0);
998 } else {
999 safe_copy_page(page_address(d_page), s_page);
1000 }
1001 }
1002 }
1003 #else
1004 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1005
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1006 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1007 {
1008 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1009 pfn_to_page(src_pfn));
1010 }
1011 #endif /* CONFIG_HIGHMEM */
1012
1013 static void
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1014 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1015 {
1016 struct zone *zone;
1017 unsigned long pfn;
1018
1019 for_each_populated_zone(zone) {
1020 unsigned long max_zone_pfn;
1021
1022 mark_free_pages(zone);
1023 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1024 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1025 if (page_is_saveable(zone, pfn))
1026 memory_bm_set_bit(orig_bm, pfn);
1027 }
1028 memory_bm_position_reset(orig_bm);
1029 memory_bm_position_reset(copy_bm);
1030 for(;;) {
1031 pfn = memory_bm_next_pfn(orig_bm);
1032 if (unlikely(pfn == BM_END_OF_MAP))
1033 break;
1034 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1035 }
1036 }
1037
1038 /* Total number of image pages */
1039 static unsigned int nr_copy_pages;
1040 /* Number of pages needed for saving the original pfns of the image pages */
1041 static unsigned int nr_meta_pages;
1042 /*
1043 * Numbers of normal and highmem page frames allocated for hibernation image
1044 * before suspending devices.
1045 */
1046 unsigned int alloc_normal, alloc_highmem;
1047 /*
1048 * Memory bitmap used for marking saveable pages (during hibernation) or
1049 * hibernation image pages (during restore)
1050 */
1051 static struct memory_bitmap orig_bm;
1052 /*
1053 * Memory bitmap used during hibernation for marking allocated page frames that
1054 * will contain copies of saveable pages. During restore it is initially used
1055 * for marking hibernation image pages, but then the set bits from it are
1056 * duplicated in @orig_bm and it is released. On highmem systems it is next
1057 * used for marking "safe" highmem pages, but it has to be reinitialized for
1058 * this purpose.
1059 */
1060 static struct memory_bitmap copy_bm;
1061
1062 /**
1063 * swsusp_free - free pages allocated for the suspend.
1064 *
1065 * Suspend pages are alocated before the atomic copy is made, so we
1066 * need to release them after the resume.
1067 */
1068
swsusp_free(void)1069 void swsusp_free(void)
1070 {
1071 struct zone *zone;
1072 unsigned long pfn, max_zone_pfn;
1073
1074 for_each_populated_zone(zone) {
1075 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1076 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1077 if (pfn_valid(pfn)) {
1078 struct page *page = pfn_to_page(pfn);
1079
1080 if (swsusp_page_is_forbidden(page) &&
1081 swsusp_page_is_free(page)) {
1082 swsusp_unset_page_forbidden(page);
1083 swsusp_unset_page_free(page);
1084 __free_page(page);
1085 }
1086 }
1087 }
1088 nr_copy_pages = 0;
1089 nr_meta_pages = 0;
1090 restore_pblist = NULL;
1091 buffer = NULL;
1092 alloc_normal = 0;
1093 alloc_highmem = 0;
1094 }
1095
1096 /* Helper functions used for the shrinking of memory. */
1097
1098 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1099
1100 /**
1101 * preallocate_image_pages - Allocate a number of pages for hibernation image
1102 * @nr_pages: Number of page frames to allocate.
1103 * @mask: GFP flags to use for the allocation.
1104 *
1105 * Return value: Number of page frames actually allocated
1106 */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1107 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1108 {
1109 unsigned long nr_alloc = 0;
1110
1111 while (nr_pages > 0) {
1112 struct page *page;
1113
1114 page = alloc_image_page(mask);
1115 if (!page)
1116 break;
1117 memory_bm_set_bit(©_bm, page_to_pfn(page));
1118 if (PageHighMem(page))
1119 alloc_highmem++;
1120 else
1121 alloc_normal++;
1122 nr_pages--;
1123 nr_alloc++;
1124 }
1125
1126 return nr_alloc;
1127 }
1128
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1129 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1130 unsigned long avail_normal)
1131 {
1132 unsigned long alloc;
1133
1134 if (avail_normal <= alloc_normal)
1135 return 0;
1136
1137 alloc = avail_normal - alloc_normal;
1138 if (nr_pages < alloc)
1139 alloc = nr_pages;
1140
1141 return preallocate_image_pages(alloc, GFP_IMAGE);
1142 }
1143
1144 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1145 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1146 {
1147 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1148 }
1149
1150 /**
1151 * __fraction - Compute (an approximation of) x * (multiplier / base)
1152 */
__fraction(u64 x,u64 multiplier,u64 base)1153 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1154 {
1155 x *= multiplier;
1156 do_div(x, base);
1157 return (unsigned long)x;
1158 }
1159
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1160 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1161 unsigned long highmem,
1162 unsigned long total)
1163 {
1164 unsigned long alloc = __fraction(nr_pages, highmem, total);
1165
1166 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1167 }
1168 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1169 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170 {
1171 return 0;
1172 }
1173
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1174 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1175 unsigned long highmem,
1176 unsigned long total)
1177 {
1178 return 0;
1179 }
1180 #endif /* CONFIG_HIGHMEM */
1181
1182 /**
1183 * free_unnecessary_pages - Release preallocated pages not needed for the image
1184 */
free_unnecessary_pages(void)1185 static void free_unnecessary_pages(void)
1186 {
1187 unsigned long save, to_free_normal, to_free_highmem;
1188
1189 save = count_data_pages();
1190 if (alloc_normal >= save) {
1191 to_free_normal = alloc_normal - save;
1192 save = 0;
1193 } else {
1194 to_free_normal = 0;
1195 save -= alloc_normal;
1196 }
1197 save += count_highmem_pages();
1198 if (alloc_highmem >= save) {
1199 to_free_highmem = alloc_highmem - save;
1200 } else {
1201 to_free_highmem = 0;
1202 to_free_normal -= save - alloc_highmem;
1203 }
1204
1205 memory_bm_position_reset(©_bm);
1206
1207 while (to_free_normal > 0 || to_free_highmem > 0) {
1208 unsigned long pfn = memory_bm_next_pfn(©_bm);
1209 struct page *page = pfn_to_page(pfn);
1210
1211 if (PageHighMem(page)) {
1212 if (!to_free_highmem)
1213 continue;
1214 to_free_highmem--;
1215 alloc_highmem--;
1216 } else {
1217 if (!to_free_normal)
1218 continue;
1219 to_free_normal--;
1220 alloc_normal--;
1221 }
1222 memory_bm_clear_bit(©_bm, pfn);
1223 swsusp_unset_page_forbidden(page);
1224 swsusp_unset_page_free(page);
1225 __free_page(page);
1226 }
1227 }
1228
1229 /**
1230 * minimum_image_size - Estimate the minimum acceptable size of an image
1231 * @saveable: Number of saveable pages in the system.
1232 *
1233 * We want to avoid attempting to free too much memory too hard, so estimate the
1234 * minimum acceptable size of a hibernation image to use as the lower limit for
1235 * preallocating memory.
1236 *
1237 * We assume that the minimum image size should be proportional to
1238 *
1239 * [number of saveable pages] - [number of pages that can be freed in theory]
1240 *
1241 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1242 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1243 * minus mapped file pages.
1244 */
minimum_image_size(unsigned long saveable)1245 static unsigned long minimum_image_size(unsigned long saveable)
1246 {
1247 unsigned long size;
1248
1249 size = global_page_state(NR_SLAB_RECLAIMABLE)
1250 + global_page_state(NR_ACTIVE_ANON)
1251 + global_page_state(NR_INACTIVE_ANON)
1252 + global_page_state(NR_ACTIVE_FILE)
1253 + global_page_state(NR_INACTIVE_FILE)
1254 - global_page_state(NR_FILE_MAPPED);
1255
1256 return saveable <= size ? 0 : saveable - size;
1257 }
1258
1259 /**
1260 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1261 *
1262 * To create a hibernation image it is necessary to make a copy of every page
1263 * frame in use. We also need a number of page frames to be free during
1264 * hibernation for allocations made while saving the image and for device
1265 * drivers, in case they need to allocate memory from their hibernation
1266 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1267 * respectively, both of which are rough estimates). To make this happen, we
1268 * compute the total number of available page frames and allocate at least
1269 *
1270 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1271 *
1272 * of them, which corresponds to the maximum size of a hibernation image.
1273 *
1274 * If image_size is set below the number following from the above formula,
1275 * the preallocation of memory is continued until the total number of saveable
1276 * pages in the system is below the requested image size or the minimum
1277 * acceptable image size returned by minimum_image_size(), whichever is greater.
1278 */
hibernate_preallocate_memory(void)1279 int hibernate_preallocate_memory(void)
1280 {
1281 struct zone *zone;
1282 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1283 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1284 struct timeval start, stop;
1285 int error;
1286
1287 printk(KERN_INFO "PM: Preallocating image memory... ");
1288 do_gettimeofday(&start);
1289
1290 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1291 if (error)
1292 goto err_out;
1293
1294 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1295 if (error)
1296 goto err_out;
1297
1298 alloc_normal = 0;
1299 alloc_highmem = 0;
1300
1301 /* Count the number of saveable data pages. */
1302 save_highmem = count_highmem_pages();
1303 saveable = count_data_pages();
1304
1305 /*
1306 * Compute the total number of page frames we can use (count) and the
1307 * number of pages needed for image metadata (size).
1308 */
1309 count = saveable;
1310 saveable += save_highmem;
1311 highmem = save_highmem;
1312 size = 0;
1313 for_each_populated_zone(zone) {
1314 size += snapshot_additional_pages(zone);
1315 if (is_highmem(zone))
1316 highmem += zone_page_state(zone, NR_FREE_PAGES);
1317 else
1318 count += zone_page_state(zone, NR_FREE_PAGES);
1319 }
1320 avail_normal = count;
1321 count += highmem;
1322 count -= totalreserve_pages;
1323
1324 /* Compute the maximum number of saveable pages to leave in memory. */
1325 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1326 /* Compute the desired number of image pages specified by image_size. */
1327 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1328 if (size > max_size)
1329 size = max_size;
1330 /*
1331 * If the desired number of image pages is at least as large as the
1332 * current number of saveable pages in memory, allocate page frames for
1333 * the image and we're done.
1334 */
1335 if (size >= saveable) {
1336 pages = preallocate_image_highmem(save_highmem);
1337 pages += preallocate_image_memory(saveable - pages, avail_normal);
1338 goto out;
1339 }
1340
1341 /* Estimate the minimum size of the image. */
1342 pages = minimum_image_size(saveable);
1343 /*
1344 * To avoid excessive pressure on the normal zone, leave room in it to
1345 * accommodate an image of the minimum size (unless it's already too
1346 * small, in which case don't preallocate pages from it at all).
1347 */
1348 if (avail_normal > pages)
1349 avail_normal -= pages;
1350 else
1351 avail_normal = 0;
1352 if (size < pages)
1353 size = min_t(unsigned long, pages, max_size);
1354
1355 /*
1356 * Let the memory management subsystem know that we're going to need a
1357 * large number of page frames to allocate and make it free some memory.
1358 * NOTE: If this is not done, performance will be hurt badly in some
1359 * test cases.
1360 */
1361 shrink_all_memory(saveable - size);
1362
1363 /*
1364 * The number of saveable pages in memory was too high, so apply some
1365 * pressure to decrease it. First, make room for the largest possible
1366 * image and fail if that doesn't work. Next, try to decrease the size
1367 * of the image as much as indicated by 'size' using allocations from
1368 * highmem and non-highmem zones separately.
1369 */
1370 pages_highmem = preallocate_image_highmem(highmem / 2);
1371 alloc = (count - max_size) - pages_highmem;
1372 pages = preallocate_image_memory(alloc, avail_normal);
1373 if (pages < alloc) {
1374 /* We have exhausted non-highmem pages, try highmem. */
1375 alloc -= pages;
1376 pages += pages_highmem;
1377 pages_highmem = preallocate_image_highmem(alloc);
1378 if (pages_highmem < alloc)
1379 goto err_out;
1380 pages += pages_highmem;
1381 /*
1382 * size is the desired number of saveable pages to leave in
1383 * memory, so try to preallocate (all memory - size) pages.
1384 */
1385 alloc = (count - pages) - size;
1386 pages += preallocate_image_highmem(alloc);
1387 } else {
1388 /*
1389 * There are approximately max_size saveable pages at this point
1390 * and we want to reduce this number down to size.
1391 */
1392 alloc = max_size - size;
1393 size = preallocate_highmem_fraction(alloc, highmem, count);
1394 pages_highmem += size;
1395 alloc -= size;
1396 size = preallocate_image_memory(alloc, avail_normal);
1397 pages_highmem += preallocate_image_highmem(alloc - size);
1398 pages += pages_highmem + size;
1399 }
1400
1401 /*
1402 * We only need as many page frames for the image as there are saveable
1403 * pages in memory, but we have allocated more. Release the excessive
1404 * ones now.
1405 */
1406 free_unnecessary_pages();
1407
1408 out:
1409 do_gettimeofday(&stop);
1410 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1411 swsusp_show_speed(&start, &stop, pages, "Allocated");
1412
1413 return 0;
1414
1415 err_out:
1416 printk(KERN_CONT "\n");
1417 swsusp_free();
1418 return -ENOMEM;
1419 }
1420
1421 #ifdef CONFIG_HIGHMEM
1422 /**
1423 * count_pages_for_highmem - compute the number of non-highmem pages
1424 * that will be necessary for creating copies of highmem pages.
1425 */
1426
count_pages_for_highmem(unsigned int nr_highmem)1427 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1428 {
1429 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1430
1431 if (free_highmem >= nr_highmem)
1432 nr_highmem = 0;
1433 else
1434 nr_highmem -= free_highmem;
1435
1436 return nr_highmem;
1437 }
1438 #else
1439 static unsigned int
count_pages_for_highmem(unsigned int nr_highmem)1440 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1441 #endif /* CONFIG_HIGHMEM */
1442
1443 /**
1444 * enough_free_mem - Make sure we have enough free memory for the
1445 * snapshot image.
1446 */
1447
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1448 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1449 {
1450 struct zone *zone;
1451 unsigned int free = alloc_normal;
1452
1453 for_each_populated_zone(zone)
1454 if (!is_highmem(zone))
1455 free += zone_page_state(zone, NR_FREE_PAGES);
1456
1457 nr_pages += count_pages_for_highmem(nr_highmem);
1458 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1459 nr_pages, PAGES_FOR_IO, free);
1460
1461 return free > nr_pages + PAGES_FOR_IO;
1462 }
1463
1464 #ifdef CONFIG_HIGHMEM
1465 /**
1466 * get_highmem_buffer - if there are some highmem pages in the suspend
1467 * image, we may need the buffer to copy them and/or load their data.
1468 */
1469
get_highmem_buffer(int safe_needed)1470 static inline int get_highmem_buffer(int safe_needed)
1471 {
1472 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1473 return buffer ? 0 : -ENOMEM;
1474 }
1475
1476 /**
1477 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1478 * Try to allocate as many pages as needed, but if the number of free
1479 * highmem pages is lesser than that, allocate them all.
1480 */
1481
1482 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1483 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1484 {
1485 unsigned int to_alloc = count_free_highmem_pages();
1486
1487 if (to_alloc > nr_highmem)
1488 to_alloc = nr_highmem;
1489
1490 nr_highmem -= to_alloc;
1491 while (to_alloc-- > 0) {
1492 struct page *page;
1493
1494 page = alloc_image_page(__GFP_HIGHMEM);
1495 memory_bm_set_bit(bm, page_to_pfn(page));
1496 }
1497 return nr_highmem;
1498 }
1499 #else
get_highmem_buffer(int safe_needed)1500 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1501
1502 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1503 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1504 #endif /* CONFIG_HIGHMEM */
1505
1506 /**
1507 * swsusp_alloc - allocate memory for the suspend image
1508 *
1509 * We first try to allocate as many highmem pages as there are
1510 * saveable highmem pages in the system. If that fails, we allocate
1511 * non-highmem pages for the copies of the remaining highmem ones.
1512 *
1513 * In this approach it is likely that the copies of highmem pages will
1514 * also be located in the high memory, because of the way in which
1515 * copy_data_pages() works.
1516 */
1517
1518 static int
swsusp_alloc(struct memory_bitmap * orig_bm,struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1519 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1520 unsigned int nr_pages, unsigned int nr_highmem)
1521 {
1522 if (nr_highmem > 0) {
1523 if (get_highmem_buffer(PG_ANY))
1524 goto err_out;
1525 if (nr_highmem > alloc_highmem) {
1526 nr_highmem -= alloc_highmem;
1527 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1528 }
1529 }
1530 if (nr_pages > alloc_normal) {
1531 nr_pages -= alloc_normal;
1532 while (nr_pages-- > 0) {
1533 struct page *page;
1534
1535 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1536 if (!page)
1537 goto err_out;
1538 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1539 }
1540 }
1541
1542 return 0;
1543
1544 err_out:
1545 swsusp_free();
1546 return -ENOMEM;
1547 }
1548
swsusp_save(void)1549 asmlinkage int swsusp_save(void)
1550 {
1551 unsigned int nr_pages, nr_highmem;
1552
1553 printk(KERN_INFO "PM: Creating hibernation image:\n");
1554
1555 drain_local_pages(NULL);
1556 nr_pages = count_data_pages();
1557 nr_highmem = count_highmem_pages();
1558 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1559
1560 if (!enough_free_mem(nr_pages, nr_highmem)) {
1561 printk(KERN_ERR "PM: Not enough free memory\n");
1562 return -ENOMEM;
1563 }
1564
1565 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
1566 printk(KERN_ERR "PM: Memory allocation failed\n");
1567 return -ENOMEM;
1568 }
1569
1570 /* During allocating of suspend pagedir, new cold pages may appear.
1571 * Kill them.
1572 */
1573 drain_local_pages(NULL);
1574 copy_data_pages(©_bm, &orig_bm);
1575
1576 /*
1577 * End of critical section. From now on, we can write to memory,
1578 * but we should not touch disk. This specially means we must _not_
1579 * touch swap space! Except we must write out our image of course.
1580 */
1581
1582 nr_pages += nr_highmem;
1583 nr_copy_pages = nr_pages;
1584 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1585
1586 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1587 nr_pages);
1588
1589 return 0;
1590 }
1591
1592 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)1593 static int init_header_complete(struct swsusp_info *info)
1594 {
1595 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1596 info->version_code = LINUX_VERSION_CODE;
1597 return 0;
1598 }
1599
check_image_kernel(struct swsusp_info * info)1600 static char *check_image_kernel(struct swsusp_info *info)
1601 {
1602 if (info->version_code != LINUX_VERSION_CODE)
1603 return "kernel version";
1604 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1605 return "system type";
1606 if (strcmp(info->uts.release,init_utsname()->release))
1607 return "kernel release";
1608 if (strcmp(info->uts.version,init_utsname()->version))
1609 return "version";
1610 if (strcmp(info->uts.machine,init_utsname()->machine))
1611 return "machine";
1612 return NULL;
1613 }
1614 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1615
snapshot_get_image_size(void)1616 unsigned long snapshot_get_image_size(void)
1617 {
1618 return nr_copy_pages + nr_meta_pages + 1;
1619 }
1620
init_header(struct swsusp_info * info)1621 static int init_header(struct swsusp_info *info)
1622 {
1623 memset(info, 0, sizeof(struct swsusp_info));
1624 info->num_physpages = num_physpages;
1625 info->image_pages = nr_copy_pages;
1626 info->pages = snapshot_get_image_size();
1627 info->size = info->pages;
1628 info->size <<= PAGE_SHIFT;
1629 return init_header_complete(info);
1630 }
1631
1632 /**
1633 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1634 * are stored in the array @buf[] (1 page at a time)
1635 */
1636
1637 static inline void
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)1638 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1639 {
1640 int j;
1641
1642 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1643 buf[j] = memory_bm_next_pfn(bm);
1644 if (unlikely(buf[j] == BM_END_OF_MAP))
1645 break;
1646 }
1647 }
1648
1649 /**
1650 * snapshot_read_next - used for reading the system memory snapshot.
1651 *
1652 * On the first call to it @handle should point to a zeroed
1653 * snapshot_handle structure. The structure gets updated and a pointer
1654 * to it should be passed to this function every next time.
1655 *
1656 * On success the function returns a positive number. Then, the caller
1657 * is allowed to read up to the returned number of bytes from the memory
1658 * location computed by the data_of() macro.
1659 *
1660 * The function returns 0 to indicate the end of data stream condition,
1661 * and a negative number is returned on error. In such cases the
1662 * structure pointed to by @handle is not updated and should not be used
1663 * any more.
1664 */
1665
snapshot_read_next(struct snapshot_handle * handle)1666 int snapshot_read_next(struct snapshot_handle *handle)
1667 {
1668 if (handle->cur > nr_meta_pages + nr_copy_pages)
1669 return 0;
1670
1671 if (!buffer) {
1672 /* This makes the buffer be freed by swsusp_free() */
1673 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1674 if (!buffer)
1675 return -ENOMEM;
1676 }
1677 if (!handle->cur) {
1678 int error;
1679
1680 error = init_header((struct swsusp_info *)buffer);
1681 if (error)
1682 return error;
1683 handle->buffer = buffer;
1684 memory_bm_position_reset(&orig_bm);
1685 memory_bm_position_reset(©_bm);
1686 } else if (handle->cur <= nr_meta_pages) {
1687 clear_page(buffer);
1688 pack_pfns(buffer, &orig_bm);
1689 } else {
1690 struct page *page;
1691
1692 page = pfn_to_page(memory_bm_next_pfn(©_bm));
1693 if (PageHighMem(page)) {
1694 /* Highmem pages are copied to the buffer,
1695 * because we can't return with a kmapped
1696 * highmem page (we may not be called again).
1697 */
1698 void *kaddr;
1699
1700 kaddr = kmap_atomic(page, KM_USER0);
1701 copy_page(buffer, kaddr);
1702 kunmap_atomic(kaddr, KM_USER0);
1703 handle->buffer = buffer;
1704 } else {
1705 handle->buffer = page_address(page);
1706 }
1707 }
1708 handle->cur++;
1709 return PAGE_SIZE;
1710 }
1711
1712 /**
1713 * mark_unsafe_pages - mark the pages that cannot be used for storing
1714 * the image during resume, because they conflict with the pages that
1715 * had been used before suspend
1716 */
1717
mark_unsafe_pages(struct memory_bitmap * bm)1718 static int mark_unsafe_pages(struct memory_bitmap *bm)
1719 {
1720 struct zone *zone;
1721 unsigned long pfn, max_zone_pfn;
1722
1723 /* Clear page flags */
1724 for_each_populated_zone(zone) {
1725 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1726 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1727 if (pfn_valid(pfn))
1728 swsusp_unset_page_free(pfn_to_page(pfn));
1729 }
1730
1731 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1732 memory_bm_position_reset(bm);
1733 do {
1734 pfn = memory_bm_next_pfn(bm);
1735 if (likely(pfn != BM_END_OF_MAP)) {
1736 if (likely(pfn_valid(pfn)))
1737 swsusp_set_page_free(pfn_to_page(pfn));
1738 else
1739 return -EFAULT;
1740 }
1741 } while (pfn != BM_END_OF_MAP);
1742
1743 allocated_unsafe_pages = 0;
1744
1745 return 0;
1746 }
1747
1748 static void
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)1749 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1750 {
1751 unsigned long pfn;
1752
1753 memory_bm_position_reset(src);
1754 pfn = memory_bm_next_pfn(src);
1755 while (pfn != BM_END_OF_MAP) {
1756 memory_bm_set_bit(dst, pfn);
1757 pfn = memory_bm_next_pfn(src);
1758 }
1759 }
1760
check_header(struct swsusp_info * info)1761 static int check_header(struct swsusp_info *info)
1762 {
1763 char *reason;
1764
1765 reason = check_image_kernel(info);
1766 if (!reason && info->num_physpages != num_physpages)
1767 reason = "memory size";
1768 if (reason) {
1769 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1770 return -EPERM;
1771 }
1772 return 0;
1773 }
1774
1775 /**
1776 * load header - check the image header and copy data from it
1777 */
1778
1779 static int
load_header(struct swsusp_info * info)1780 load_header(struct swsusp_info *info)
1781 {
1782 int error;
1783
1784 restore_pblist = NULL;
1785 error = check_header(info);
1786 if (!error) {
1787 nr_copy_pages = info->image_pages;
1788 nr_meta_pages = info->pages - info->image_pages - 1;
1789 }
1790 return error;
1791 }
1792
1793 /**
1794 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1795 * the corresponding bit in the memory bitmap @bm
1796 */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)1797 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1798 {
1799 int j;
1800
1801 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1802 if (unlikely(buf[j] == BM_END_OF_MAP))
1803 break;
1804
1805 if (memory_bm_pfn_present(bm, buf[j]))
1806 memory_bm_set_bit(bm, buf[j]);
1807 else
1808 return -EFAULT;
1809 }
1810
1811 return 0;
1812 }
1813
1814 /* List of "safe" pages that may be used to store data loaded from the suspend
1815 * image
1816 */
1817 static struct linked_page *safe_pages_list;
1818
1819 #ifdef CONFIG_HIGHMEM
1820 /* struct highmem_pbe is used for creating the list of highmem pages that
1821 * should be restored atomically during the resume from disk, because the page
1822 * frames they have occupied before the suspend are in use.
1823 */
1824 struct highmem_pbe {
1825 struct page *copy_page; /* data is here now */
1826 struct page *orig_page; /* data was here before the suspend */
1827 struct highmem_pbe *next;
1828 };
1829
1830 /* List of highmem PBEs needed for restoring the highmem pages that were
1831 * allocated before the suspend and included in the suspend image, but have
1832 * also been allocated by the "resume" kernel, so their contents cannot be
1833 * written directly to their "original" page frames.
1834 */
1835 static struct highmem_pbe *highmem_pblist;
1836
1837 /**
1838 * count_highmem_image_pages - compute the number of highmem pages in the
1839 * suspend image. The bits in the memory bitmap @bm that correspond to the
1840 * image pages are assumed to be set.
1841 */
1842
count_highmem_image_pages(struct memory_bitmap * bm)1843 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1844 {
1845 unsigned long pfn;
1846 unsigned int cnt = 0;
1847
1848 memory_bm_position_reset(bm);
1849 pfn = memory_bm_next_pfn(bm);
1850 while (pfn != BM_END_OF_MAP) {
1851 if (PageHighMem(pfn_to_page(pfn)))
1852 cnt++;
1853
1854 pfn = memory_bm_next_pfn(bm);
1855 }
1856 return cnt;
1857 }
1858
1859 /**
1860 * prepare_highmem_image - try to allocate as many highmem pages as
1861 * there are highmem image pages (@nr_highmem_p points to the variable
1862 * containing the number of highmem image pages). The pages that are
1863 * "safe" (ie. will not be overwritten when the suspend image is
1864 * restored) have the corresponding bits set in @bm (it must be
1865 * unitialized).
1866 *
1867 * NOTE: This function should not be called if there are no highmem
1868 * image pages.
1869 */
1870
1871 static unsigned int safe_highmem_pages;
1872
1873 static struct memory_bitmap *safe_highmem_bm;
1874
1875 static int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)1876 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1877 {
1878 unsigned int to_alloc;
1879
1880 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1881 return -ENOMEM;
1882
1883 if (get_highmem_buffer(PG_SAFE))
1884 return -ENOMEM;
1885
1886 to_alloc = count_free_highmem_pages();
1887 if (to_alloc > *nr_highmem_p)
1888 to_alloc = *nr_highmem_p;
1889 else
1890 *nr_highmem_p = to_alloc;
1891
1892 safe_highmem_pages = 0;
1893 while (to_alloc-- > 0) {
1894 struct page *page;
1895
1896 page = alloc_page(__GFP_HIGHMEM);
1897 if (!swsusp_page_is_free(page)) {
1898 /* The page is "safe", set its bit the bitmap */
1899 memory_bm_set_bit(bm, page_to_pfn(page));
1900 safe_highmem_pages++;
1901 }
1902 /* Mark the page as allocated */
1903 swsusp_set_page_forbidden(page);
1904 swsusp_set_page_free(page);
1905 }
1906 memory_bm_position_reset(bm);
1907 safe_highmem_bm = bm;
1908 return 0;
1909 }
1910
1911 /**
1912 * get_highmem_page_buffer - for given highmem image page find the buffer
1913 * that suspend_write_next() should set for its caller to write to.
1914 *
1915 * If the page is to be saved to its "original" page frame or a copy of
1916 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1917 * the copy of the page is to be made in normal memory, so the address of
1918 * the copy is returned.
1919 *
1920 * If @buffer is returned, the caller of suspend_write_next() will write
1921 * the page's contents to @buffer, so they will have to be copied to the
1922 * right location on the next call to suspend_write_next() and it is done
1923 * with the help of copy_last_highmem_page(). For this purpose, if
1924 * @buffer is returned, @last_highmem page is set to the page to which
1925 * the data will have to be copied from @buffer.
1926 */
1927
1928 static struct page *last_highmem_page;
1929
1930 static void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)1931 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1932 {
1933 struct highmem_pbe *pbe;
1934 void *kaddr;
1935
1936 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1937 /* We have allocated the "original" page frame and we can
1938 * use it directly to store the loaded page.
1939 */
1940 last_highmem_page = page;
1941 return buffer;
1942 }
1943 /* The "original" page frame has not been allocated and we have to
1944 * use a "safe" page frame to store the loaded page.
1945 */
1946 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1947 if (!pbe) {
1948 swsusp_free();
1949 return ERR_PTR(-ENOMEM);
1950 }
1951 pbe->orig_page = page;
1952 if (safe_highmem_pages > 0) {
1953 struct page *tmp;
1954
1955 /* Copy of the page will be stored in high memory */
1956 kaddr = buffer;
1957 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1958 safe_highmem_pages--;
1959 last_highmem_page = tmp;
1960 pbe->copy_page = tmp;
1961 } else {
1962 /* Copy of the page will be stored in normal memory */
1963 kaddr = safe_pages_list;
1964 safe_pages_list = safe_pages_list->next;
1965 pbe->copy_page = virt_to_page(kaddr);
1966 }
1967 pbe->next = highmem_pblist;
1968 highmem_pblist = pbe;
1969 return kaddr;
1970 }
1971
1972 /**
1973 * copy_last_highmem_page - copy the contents of a highmem image from
1974 * @buffer, where the caller of snapshot_write_next() has place them,
1975 * to the right location represented by @last_highmem_page .
1976 */
1977
copy_last_highmem_page(void)1978 static void copy_last_highmem_page(void)
1979 {
1980 if (last_highmem_page) {
1981 void *dst;
1982
1983 dst = kmap_atomic(last_highmem_page, KM_USER0);
1984 copy_page(dst, buffer);
1985 kunmap_atomic(dst, KM_USER0);
1986 last_highmem_page = NULL;
1987 }
1988 }
1989
last_highmem_page_copied(void)1990 static inline int last_highmem_page_copied(void)
1991 {
1992 return !last_highmem_page;
1993 }
1994
free_highmem_data(void)1995 static inline void free_highmem_data(void)
1996 {
1997 if (safe_highmem_bm)
1998 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1999
2000 if (buffer)
2001 free_image_page(buffer, PG_UNSAFE_CLEAR);
2002 }
2003 #else
get_safe_write_buffer(void)2004 static inline int get_safe_write_buffer(void) { return 0; }
2005
2006 static unsigned int
count_highmem_image_pages(struct memory_bitmap * bm)2007 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2008
2009 static inline int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2010 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2011 {
2012 return 0;
2013 }
2014
2015 static inline void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2016 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2017 {
2018 return ERR_PTR(-EINVAL);
2019 }
2020
copy_last_highmem_page(void)2021 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2022 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2023 static inline void free_highmem_data(void) {}
2024 #endif /* CONFIG_HIGHMEM */
2025
2026 /**
2027 * prepare_image - use the memory bitmap @bm to mark the pages that will
2028 * be overwritten in the process of restoring the system memory state
2029 * from the suspend image ("unsafe" pages) and allocate memory for the
2030 * image.
2031 *
2032 * The idea is to allocate a new memory bitmap first and then allocate
2033 * as many pages as needed for the image data, but not to assign these
2034 * pages to specific tasks initially. Instead, we just mark them as
2035 * allocated and create a lists of "safe" pages that will be used
2036 * later. On systems with high memory a list of "safe" highmem pages is
2037 * also created.
2038 */
2039
2040 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2041
2042 static int
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2043 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2044 {
2045 unsigned int nr_pages, nr_highmem;
2046 struct linked_page *sp_list, *lp;
2047 int error;
2048
2049 /* If there is no highmem, the buffer will not be necessary */
2050 free_image_page(buffer, PG_UNSAFE_CLEAR);
2051 buffer = NULL;
2052
2053 nr_highmem = count_highmem_image_pages(bm);
2054 error = mark_unsafe_pages(bm);
2055 if (error)
2056 goto Free;
2057
2058 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2059 if (error)
2060 goto Free;
2061
2062 duplicate_memory_bitmap(new_bm, bm);
2063 memory_bm_free(bm, PG_UNSAFE_KEEP);
2064 if (nr_highmem > 0) {
2065 error = prepare_highmem_image(bm, &nr_highmem);
2066 if (error)
2067 goto Free;
2068 }
2069 /* Reserve some safe pages for potential later use.
2070 *
2071 * NOTE: This way we make sure there will be enough safe pages for the
2072 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2073 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2074 */
2075 sp_list = NULL;
2076 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2077 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2078 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2079 while (nr_pages > 0) {
2080 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2081 if (!lp) {
2082 error = -ENOMEM;
2083 goto Free;
2084 }
2085 lp->next = sp_list;
2086 sp_list = lp;
2087 nr_pages--;
2088 }
2089 /* Preallocate memory for the image */
2090 safe_pages_list = NULL;
2091 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2092 while (nr_pages > 0) {
2093 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2094 if (!lp) {
2095 error = -ENOMEM;
2096 goto Free;
2097 }
2098 if (!swsusp_page_is_free(virt_to_page(lp))) {
2099 /* The page is "safe", add it to the list */
2100 lp->next = safe_pages_list;
2101 safe_pages_list = lp;
2102 }
2103 /* Mark the page as allocated */
2104 swsusp_set_page_forbidden(virt_to_page(lp));
2105 swsusp_set_page_free(virt_to_page(lp));
2106 nr_pages--;
2107 }
2108 /* Free the reserved safe pages so that chain_alloc() can use them */
2109 while (sp_list) {
2110 lp = sp_list->next;
2111 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2112 sp_list = lp;
2113 }
2114 return 0;
2115
2116 Free:
2117 swsusp_free();
2118 return error;
2119 }
2120
2121 /**
2122 * get_buffer - compute the address that snapshot_write_next() should
2123 * set for its caller to write to.
2124 */
2125
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2126 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2127 {
2128 struct pbe *pbe;
2129 struct page *page;
2130 unsigned long pfn = memory_bm_next_pfn(bm);
2131
2132 if (pfn == BM_END_OF_MAP)
2133 return ERR_PTR(-EFAULT);
2134
2135 page = pfn_to_page(pfn);
2136 if (PageHighMem(page))
2137 return get_highmem_page_buffer(page, ca);
2138
2139 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2140 /* We have allocated the "original" page frame and we can
2141 * use it directly to store the loaded page.
2142 */
2143 return page_address(page);
2144
2145 /* The "original" page frame has not been allocated and we have to
2146 * use a "safe" page frame to store the loaded page.
2147 */
2148 pbe = chain_alloc(ca, sizeof(struct pbe));
2149 if (!pbe) {
2150 swsusp_free();
2151 return ERR_PTR(-ENOMEM);
2152 }
2153 pbe->orig_address = page_address(page);
2154 pbe->address = safe_pages_list;
2155 safe_pages_list = safe_pages_list->next;
2156 pbe->next = restore_pblist;
2157 restore_pblist = pbe;
2158 return pbe->address;
2159 }
2160
2161 /**
2162 * snapshot_write_next - used for writing the system memory snapshot.
2163 *
2164 * On the first call to it @handle should point to a zeroed
2165 * snapshot_handle structure. The structure gets updated and a pointer
2166 * to it should be passed to this function every next time.
2167 *
2168 * On success the function returns a positive number. Then, the caller
2169 * is allowed to write up to the returned number of bytes to the memory
2170 * location computed by the data_of() macro.
2171 *
2172 * The function returns 0 to indicate the "end of file" condition,
2173 * and a negative number is returned on error. In such cases the
2174 * structure pointed to by @handle is not updated and should not be used
2175 * any more.
2176 */
2177
snapshot_write_next(struct snapshot_handle * handle)2178 int snapshot_write_next(struct snapshot_handle *handle)
2179 {
2180 static struct chain_allocator ca;
2181 int error = 0;
2182
2183 /* Check if we have already loaded the entire image */
2184 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2185 return 0;
2186
2187 handle->sync_read = 1;
2188
2189 if (!handle->cur) {
2190 if (!buffer)
2191 /* This makes the buffer be freed by swsusp_free() */
2192 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2193
2194 if (!buffer)
2195 return -ENOMEM;
2196
2197 handle->buffer = buffer;
2198 } else if (handle->cur == 1) {
2199 error = load_header(buffer);
2200 if (error)
2201 return error;
2202
2203 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2204 if (error)
2205 return error;
2206
2207 } else if (handle->cur <= nr_meta_pages + 1) {
2208 error = unpack_orig_pfns(buffer, ©_bm);
2209 if (error)
2210 return error;
2211
2212 if (handle->cur == nr_meta_pages + 1) {
2213 error = prepare_image(&orig_bm, ©_bm);
2214 if (error)
2215 return error;
2216
2217 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2218 memory_bm_position_reset(&orig_bm);
2219 restore_pblist = NULL;
2220 handle->buffer = get_buffer(&orig_bm, &ca);
2221 handle->sync_read = 0;
2222 if (IS_ERR(handle->buffer))
2223 return PTR_ERR(handle->buffer);
2224 }
2225 } else {
2226 copy_last_highmem_page();
2227 handle->buffer = get_buffer(&orig_bm, &ca);
2228 if (IS_ERR(handle->buffer))
2229 return PTR_ERR(handle->buffer);
2230 if (handle->buffer != buffer)
2231 handle->sync_read = 0;
2232 }
2233 handle->cur++;
2234 return PAGE_SIZE;
2235 }
2236
2237 /**
2238 * snapshot_write_finalize - must be called after the last call to
2239 * snapshot_write_next() in case the last page in the image happens
2240 * to be a highmem page and its contents should be stored in the
2241 * highmem. Additionally, it releases the memory that will not be
2242 * used any more.
2243 */
2244
snapshot_write_finalize(struct snapshot_handle * handle)2245 void snapshot_write_finalize(struct snapshot_handle *handle)
2246 {
2247 copy_last_highmem_page();
2248 /* Free only if we have loaded the image entirely */
2249 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2250 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2251 free_highmem_data();
2252 }
2253 }
2254
snapshot_image_loaded(struct snapshot_handle * handle)2255 int snapshot_image_loaded(struct snapshot_handle *handle)
2256 {
2257 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2258 handle->cur <= nr_meta_pages + nr_copy_pages);
2259 }
2260
2261 #ifdef CONFIG_HIGHMEM
2262 /* Assumes that @buf is ready and points to a "safe" page */
2263 static inline void
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2264 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2265 {
2266 void *kaddr1, *kaddr2;
2267
2268 kaddr1 = kmap_atomic(p1, KM_USER0);
2269 kaddr2 = kmap_atomic(p2, KM_USER1);
2270 copy_page(buf, kaddr1);
2271 copy_page(kaddr1, kaddr2);
2272 copy_page(kaddr2, buf);
2273 kunmap_atomic(kaddr2, KM_USER1);
2274 kunmap_atomic(kaddr1, KM_USER0);
2275 }
2276
2277 /**
2278 * restore_highmem - for each highmem page that was allocated before
2279 * the suspend and included in the suspend image, and also has been
2280 * allocated by the "resume" kernel swap its current (ie. "before
2281 * resume") contents with the previous (ie. "before suspend") one.
2282 *
2283 * If the resume eventually fails, we can call this function once
2284 * again and restore the "before resume" highmem state.
2285 */
2286
restore_highmem(void)2287 int restore_highmem(void)
2288 {
2289 struct highmem_pbe *pbe = highmem_pblist;
2290 void *buf;
2291
2292 if (!pbe)
2293 return 0;
2294
2295 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2296 if (!buf)
2297 return -ENOMEM;
2298
2299 while (pbe) {
2300 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2301 pbe = pbe->next;
2302 }
2303 free_image_page(buf, PG_UNSAFE_CLEAR);
2304 return 0;
2305 }
2306 #endif /* CONFIG_HIGHMEM */
2307