1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2009 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_BITFIELD_H 12 #define EFX_BITFIELD_H 13 14 /* 15 * Efx bitfield access 16 * 17 * Efx NICs make extensive use of bitfields up to 128 bits 18 * wide. Since there is no native 128-bit datatype on most systems, 19 * and since 64-bit datatypes are inefficient on 32-bit systems and 20 * vice versa, we wrap accesses in a way that uses the most efficient 21 * datatype. 22 * 23 * The NICs are PCI devices and therefore little-endian. Since most 24 * of the quantities that we deal with are DMAed to/from host memory, 25 * we define our datatypes (efx_oword_t, efx_qword_t and 26 * efx_dword_t) to be little-endian. 27 */ 28 29 /* Lowest bit numbers and widths */ 30 #define EFX_DUMMY_FIELD_LBN 0 31 #define EFX_DUMMY_FIELD_WIDTH 0 32 #define EFX_DWORD_0_LBN 0 33 #define EFX_DWORD_0_WIDTH 32 34 #define EFX_DWORD_1_LBN 32 35 #define EFX_DWORD_1_WIDTH 32 36 #define EFX_DWORD_2_LBN 64 37 #define EFX_DWORD_2_WIDTH 32 38 #define EFX_DWORD_3_LBN 96 39 #define EFX_DWORD_3_WIDTH 32 40 #define EFX_QWORD_0_LBN 0 41 #define EFX_QWORD_0_WIDTH 64 42 43 /* Specified attribute (e.g. LBN) of the specified field */ 44 #define EFX_VAL(field, attribute) field ## _ ## attribute 45 /* Low bit number of the specified field */ 46 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN) 47 /* Bit width of the specified field */ 48 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH) 49 /* High bit number of the specified field */ 50 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) 51 /* Mask equal in width to the specified field. 52 * 53 * For example, a field with width 5 would have a mask of 0x1f. 54 * 55 * The maximum width mask that can be generated is 64 bits. 56 */ 57 #define EFX_MASK64(width) \ 58 ((width) == 64 ? ~((u64) 0) : \ 59 (((((u64) 1) << (width))) - 1)) 60 61 /* Mask equal in width to the specified field. 62 * 63 * For example, a field with width 5 would have a mask of 0x1f. 64 * 65 * The maximum width mask that can be generated is 32 bits. Use 66 * EFX_MASK64 for higher width fields. 67 */ 68 #define EFX_MASK32(width) \ 69 ((width) == 32 ? ~((u32) 0) : \ 70 (((((u32) 1) << (width))) - 1)) 71 72 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ 73 typedef union efx_dword { 74 __le32 u32[1]; 75 } efx_dword_t; 76 77 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */ 78 typedef union efx_qword { 79 __le64 u64[1]; 80 __le32 u32[2]; 81 efx_dword_t dword[2]; 82 } efx_qword_t; 83 84 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ 85 typedef union efx_oword { 86 __le64 u64[2]; 87 efx_qword_t qword[2]; 88 __le32 u32[4]; 89 efx_dword_t dword[4]; 90 } efx_oword_t; 91 92 /* Format string and value expanders for printk */ 93 #define EFX_DWORD_FMT "%08x" 94 #define EFX_QWORD_FMT "%08x:%08x" 95 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" 96 #define EFX_DWORD_VAL(dword) \ 97 ((unsigned int) le32_to_cpu((dword).u32[0])) 98 #define EFX_QWORD_VAL(qword) \ 99 ((unsigned int) le32_to_cpu((qword).u32[1])), \ 100 ((unsigned int) le32_to_cpu((qword).u32[0])) 101 #define EFX_OWORD_VAL(oword) \ 102 ((unsigned int) le32_to_cpu((oword).u32[3])), \ 103 ((unsigned int) le32_to_cpu((oword).u32[2])), \ 104 ((unsigned int) le32_to_cpu((oword).u32[1])), \ 105 ((unsigned int) le32_to_cpu((oword).u32[0])) 106 107 /* 108 * Extract bit field portion [low,high) from the native-endian element 109 * which contains bits [min,max). 110 * 111 * For example, suppose "element" represents the high 32 bits of a 112 * 64-bit value, and we wish to extract the bits belonging to the bit 113 * field occupying bits 28-45 of this 64-bit value. 114 * 115 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give 116 * 117 * ( element ) << 4 118 * 119 * The result will contain the relevant bits filled in in the range 120 * [0,high-low), with garbage in bits [high-low+1,...). 121 */ 122 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ 123 (((low > max) || (high < min)) ? 0 : \ 124 ((low > min) ? \ 125 ((native_element) >> (low - min)) : \ 126 ((native_element) << (min - low)))) 127 128 /* 129 * Extract bit field portion [low,high) from the 64-bit little-endian 130 * element which contains bits [min,max) 131 */ 132 #define EFX_EXTRACT64(element, min, max, low, high) \ 133 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) 134 135 /* 136 * Extract bit field portion [low,high) from the 32-bit little-endian 137 * element which contains bits [min,max) 138 */ 139 #define EFX_EXTRACT32(element, min, max, low, high) \ 140 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) 141 142 #define EFX_EXTRACT_OWORD64(oword, low, high) \ 143 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ 144 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ 145 EFX_MASK64(high + 1 - low)) 146 147 #define EFX_EXTRACT_QWORD64(qword, low, high) \ 148 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ 149 EFX_MASK64(high + 1 - low)) 150 151 #define EFX_EXTRACT_OWORD32(oword, low, high) \ 152 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ 153 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ 154 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ 155 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ 156 EFX_MASK32(high + 1 - low)) 157 158 #define EFX_EXTRACT_QWORD32(qword, low, high) \ 159 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ 160 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ 161 EFX_MASK32(high + 1 - low)) 162 163 #define EFX_EXTRACT_DWORD(dword, low, high) \ 164 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ 165 EFX_MASK32(high + 1 - low)) 166 167 #define EFX_OWORD_FIELD64(oword, field) \ 168 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ 169 EFX_HIGH_BIT(field)) 170 171 #define EFX_QWORD_FIELD64(qword, field) \ 172 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ 173 EFX_HIGH_BIT(field)) 174 175 #define EFX_OWORD_FIELD32(oword, field) \ 176 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ 177 EFX_HIGH_BIT(field)) 178 179 #define EFX_QWORD_FIELD32(qword, field) \ 180 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ 181 EFX_HIGH_BIT(field)) 182 183 #define EFX_DWORD_FIELD(dword, field) \ 184 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ 185 EFX_HIGH_BIT(field)) 186 187 #define EFX_OWORD_IS_ZERO64(oword) \ 188 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) 189 190 #define EFX_QWORD_IS_ZERO64(qword) \ 191 (((qword).u64[0]) == (__force __le64) 0) 192 193 #define EFX_OWORD_IS_ZERO32(oword) \ 194 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ 195 == (__force __le32) 0) 196 197 #define EFX_QWORD_IS_ZERO32(qword) \ 198 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) 199 200 #define EFX_DWORD_IS_ZERO(dword) \ 201 (((dword).u32[0]) == (__force __le32) 0) 202 203 #define EFX_OWORD_IS_ALL_ONES64(oword) \ 204 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) 205 206 #define EFX_QWORD_IS_ALL_ONES64(qword) \ 207 ((qword).u64[0] == ~((__force __le64) 0)) 208 209 #define EFX_OWORD_IS_ALL_ONES32(oword) \ 210 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ 211 == ~((__force __le32) 0)) 212 213 #define EFX_QWORD_IS_ALL_ONES32(qword) \ 214 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) 215 216 #define EFX_DWORD_IS_ALL_ONES(dword) \ 217 ((dword).u32[0] == ~((__force __le32) 0)) 218 219 #if BITS_PER_LONG == 64 220 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64 221 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64 222 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 223 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 224 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 225 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 226 #else 227 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32 228 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32 229 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 230 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 231 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 232 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 233 #endif 234 235 /* 236 * Construct bit field portion 237 * 238 * Creates the portion of the bit field [low,high) that lies within 239 * the range [min,max). 240 */ 241 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \ 242 (((low > max) || (high < min)) ? 0 : \ 243 ((low > min) ? \ 244 (((u64) (value)) << (low - min)) : \ 245 (((u64) (value)) >> (min - low)))) 246 247 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \ 248 (((low > max) || (high < min)) ? 0 : \ 249 ((low > min) ? \ 250 (((u32) (value)) << (low - min)) : \ 251 (((u32) (value)) >> (min - low)))) 252 253 #define EFX_INSERT_NATIVE(min, max, low, high, value) \ 254 ((((max - min) >= 32) || ((high - low) >= 32)) ? \ 255 EFX_INSERT_NATIVE64(min, max, low, high, value) : \ 256 EFX_INSERT_NATIVE32(min, max, low, high, value)) 257 258 /* 259 * Construct bit field portion 260 * 261 * Creates the portion of the named bit field that lies within the 262 * range [min,max). 263 */ 264 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ 265 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ 266 EFX_HIGH_BIT(field), value) 267 268 /* 269 * Construct bit field 270 * 271 * Creates the portion of the named bit fields that lie within the 272 * range [min,max). 273 */ 274 #define EFX_INSERT_FIELDS_NATIVE(min, max, \ 275 field1, value1, \ 276 field2, value2, \ 277 field3, value3, \ 278 field4, value4, \ 279 field5, value5, \ 280 field6, value6, \ 281 field7, value7, \ 282 field8, value8, \ 283 field9, value9, \ 284 field10, value10) \ 285 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ 286 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ 287 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ 288 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ 289 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ 290 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ 291 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ 292 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ 293 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ 294 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) 295 296 #define EFX_INSERT_FIELDS64(...) \ 297 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 298 299 #define EFX_INSERT_FIELDS32(...) \ 300 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 301 302 #define EFX_POPULATE_OWORD64(oword, ...) do { \ 303 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 304 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ 305 } while (0) 306 307 #define EFX_POPULATE_QWORD64(qword, ...) do { \ 308 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 309 } while (0) 310 311 #define EFX_POPULATE_OWORD32(oword, ...) do { \ 312 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 313 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 314 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ 315 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ 316 } while (0) 317 318 #define EFX_POPULATE_QWORD32(qword, ...) do { \ 319 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 320 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 321 } while (0) 322 323 #define EFX_POPULATE_DWORD(dword, ...) do { \ 324 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 325 } while (0) 326 327 #if BITS_PER_LONG == 64 328 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 329 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 330 #else 331 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 332 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 333 #endif 334 335 /* Populate an octword field with various numbers of arguments */ 336 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD 337 #define EFX_POPULATE_OWORD_9(oword, ...) \ 338 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 339 #define EFX_POPULATE_OWORD_8(oword, ...) \ 340 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 341 #define EFX_POPULATE_OWORD_7(oword, ...) \ 342 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 343 #define EFX_POPULATE_OWORD_6(oword, ...) \ 344 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 345 #define EFX_POPULATE_OWORD_5(oword, ...) \ 346 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 347 #define EFX_POPULATE_OWORD_4(oword, ...) \ 348 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 349 #define EFX_POPULATE_OWORD_3(oword, ...) \ 350 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 351 #define EFX_POPULATE_OWORD_2(oword, ...) \ 352 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 353 #define EFX_POPULATE_OWORD_1(oword, ...) \ 354 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 355 #define EFX_ZERO_OWORD(oword) \ 356 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) 357 #define EFX_SET_OWORD(oword) \ 358 EFX_POPULATE_OWORD_4(oword, \ 359 EFX_DWORD_0, 0xffffffff, \ 360 EFX_DWORD_1, 0xffffffff, \ 361 EFX_DWORD_2, 0xffffffff, \ 362 EFX_DWORD_3, 0xffffffff) 363 364 /* Populate a quadword field with various numbers of arguments */ 365 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD 366 #define EFX_POPULATE_QWORD_9(qword, ...) \ 367 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 368 #define EFX_POPULATE_QWORD_8(qword, ...) \ 369 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 370 #define EFX_POPULATE_QWORD_7(qword, ...) \ 371 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 372 #define EFX_POPULATE_QWORD_6(qword, ...) \ 373 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 374 #define EFX_POPULATE_QWORD_5(qword, ...) \ 375 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 376 #define EFX_POPULATE_QWORD_4(qword, ...) \ 377 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 378 #define EFX_POPULATE_QWORD_3(qword, ...) \ 379 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 380 #define EFX_POPULATE_QWORD_2(qword, ...) \ 381 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 382 #define EFX_POPULATE_QWORD_1(qword, ...) \ 383 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 384 #define EFX_ZERO_QWORD(qword) \ 385 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) 386 #define EFX_SET_QWORD(qword) \ 387 EFX_POPULATE_QWORD_2(qword, \ 388 EFX_DWORD_0, 0xffffffff, \ 389 EFX_DWORD_1, 0xffffffff) 390 391 /* Populate a dword field with various numbers of arguments */ 392 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD 393 #define EFX_POPULATE_DWORD_9(dword, ...) \ 394 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 395 #define EFX_POPULATE_DWORD_8(dword, ...) \ 396 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 397 #define EFX_POPULATE_DWORD_7(dword, ...) \ 398 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 399 #define EFX_POPULATE_DWORD_6(dword, ...) \ 400 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 401 #define EFX_POPULATE_DWORD_5(dword, ...) \ 402 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 403 #define EFX_POPULATE_DWORD_4(dword, ...) \ 404 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 405 #define EFX_POPULATE_DWORD_3(dword, ...) \ 406 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 407 #define EFX_POPULATE_DWORD_2(dword, ...) \ 408 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 409 #define EFX_POPULATE_DWORD_1(dword, ...) \ 410 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 411 #define EFX_ZERO_DWORD(dword) \ 412 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) 413 #define EFX_SET_DWORD(dword) \ 414 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) 415 416 /* 417 * Modify a named field within an already-populated structure. Used 418 * for read-modify-write operations. 419 * 420 */ 421 #define EFX_INVERT_OWORD(oword) do { \ 422 (oword).u64[0] = ~((oword).u64[0]); \ 423 (oword).u64[1] = ~((oword).u64[1]); \ 424 } while (0) 425 426 #define EFX_AND_OWORD(oword, from, mask) \ 427 do { \ 428 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ 429 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ 430 } while (0) 431 432 #define EFX_OR_OWORD(oword, from, mask) \ 433 do { \ 434 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ 435 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ 436 } while (0) 437 438 #define EFX_INSERT64(min, max, low, high, value) \ 439 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) 440 441 #define EFX_INSERT32(min, max, low, high, value) \ 442 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) 443 444 #define EFX_INPLACE_MASK64(min, max, low, high) \ 445 EFX_INSERT64(min, max, low, high, EFX_MASK64(high + 1 - low)) 446 447 #define EFX_INPLACE_MASK32(min, max, low, high) \ 448 EFX_INSERT32(min, max, low, high, EFX_MASK32(high + 1 - low)) 449 450 #define EFX_SET_OWORD64(oword, low, high, value) do { \ 451 (oword).u64[0] = (((oword).u64[0] \ 452 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 453 | EFX_INSERT64(0, 63, low, high, value)); \ 454 (oword).u64[1] = (((oword).u64[1] \ 455 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ 456 | EFX_INSERT64(64, 127, low, high, value)); \ 457 } while (0) 458 459 #define EFX_SET_QWORD64(qword, low, high, value) do { \ 460 (qword).u64[0] = (((qword).u64[0] \ 461 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 462 | EFX_INSERT64(0, 63, low, high, value)); \ 463 } while (0) 464 465 #define EFX_SET_OWORD32(oword, low, high, value) do { \ 466 (oword).u32[0] = (((oword).u32[0] \ 467 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 468 | EFX_INSERT32(0, 31, low, high, value)); \ 469 (oword).u32[1] = (((oword).u32[1] \ 470 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 471 | EFX_INSERT32(32, 63, low, high, value)); \ 472 (oword).u32[2] = (((oword).u32[2] \ 473 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ 474 | EFX_INSERT32(64, 95, low, high, value)); \ 475 (oword).u32[3] = (((oword).u32[3] \ 476 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ 477 | EFX_INSERT32(96, 127, low, high, value)); \ 478 } while (0) 479 480 #define EFX_SET_QWORD32(qword, low, high, value) do { \ 481 (qword).u32[0] = (((qword).u32[0] \ 482 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 483 | EFX_INSERT32(0, 31, low, high, value)); \ 484 (qword).u32[1] = (((qword).u32[1] \ 485 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 486 | EFX_INSERT32(32, 63, low, high, value)); \ 487 } while (0) 488 489 #define EFX_SET_DWORD32(dword, low, high, value) do { \ 490 (dword).u32[0] = (((dword).u32[0] \ 491 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 492 | EFX_INSERT32(0, 31, low, high, value)); \ 493 } while (0) 494 495 #define EFX_SET_OWORD_FIELD64(oword, field, value) \ 496 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ 497 EFX_HIGH_BIT(field), value) 498 499 #define EFX_SET_QWORD_FIELD64(qword, field, value) \ 500 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ 501 EFX_HIGH_BIT(field), value) 502 503 #define EFX_SET_OWORD_FIELD32(oword, field, value) \ 504 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ 505 EFX_HIGH_BIT(field), value) 506 507 #define EFX_SET_QWORD_FIELD32(qword, field, value) \ 508 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ 509 EFX_HIGH_BIT(field), value) 510 511 #define EFX_SET_DWORD_FIELD(dword, field, value) \ 512 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ 513 EFX_HIGH_BIT(field), value) 514 515 516 517 #if BITS_PER_LONG == 64 518 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 519 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 520 #else 521 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 522 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 523 #endif 524 525 /* Used to avoid compiler warnings about shift range exceeding width 526 * of the data types when dma_addr_t is only 32 bits wide. 527 */ 528 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) 529 #define EFX_DMA_TYPE_WIDTH(width) \ 530 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) 531 532 533 /* Static initialiser */ 534 #define EFX_OWORD32(a, b, c, d) \ 535 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \ 536 cpu_to_le32(c), cpu_to_le32(d) } } 537 538 #endif /* EFX_BITFIELD_H */ 539