1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/of_platform.h>
31 #include <linux/slab.h>
32 #include <asm/dcr.h>
33 #include <asm/dcr-regs.h>
34 #include <asm/cacheflush.h>
35 #include <crypto/aes.h>
36 #include <crypto/sha.h>
37 #include "crypto4xx_reg_def.h"
38 #include "crypto4xx_core.h"
39 #include "crypto4xx_sa.h"
40 
41 #define PPC4XX_SEC_VERSION_STR			"0.5"
42 
43 /**
44  * PPC4xx Crypto Engine Initialization Routine
45  */
crypto4xx_hw_init(struct crypto4xx_device * dev)46 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
47 {
48 	union ce_ring_size ring_size;
49 	union ce_ring_contol ring_ctrl;
50 	union ce_part_ring_size part_ring_size;
51 	union ce_io_threshold io_threshold;
52 	u32 rand_num;
53 	union ce_pe_dma_cfg pe_dma_cfg;
54 
55 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
56 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
57 	pe_dma_cfg.w = 0;
58 	pe_dma_cfg.bf.bo_sgpd_en = 1;
59 	pe_dma_cfg.bf.bo_data_en = 0;
60 	pe_dma_cfg.bf.bo_sa_en = 1;
61 	pe_dma_cfg.bf.bo_pd_en = 1;
62 	pe_dma_cfg.bf.dynamic_sa_en = 1;
63 	pe_dma_cfg.bf.reset_sg = 1;
64 	pe_dma_cfg.bf.reset_pdr = 1;
65 	pe_dma_cfg.bf.reset_pe = 1;
66 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
67 	/* un reset pe,sg and pdr */
68 	pe_dma_cfg.bf.pe_mode = 0;
69 	pe_dma_cfg.bf.reset_sg = 0;
70 	pe_dma_cfg.bf.reset_pdr = 0;
71 	pe_dma_cfg.bf.reset_pe = 0;
72 	pe_dma_cfg.bf.bo_td_en = 0;
73 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
74 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
75 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
76 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
77 	get_random_bytes(&rand_num, sizeof(rand_num));
78 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
79 	get_random_bytes(&rand_num, sizeof(rand_num));
80 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
81 	ring_size.w = 0;
82 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
83 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
84 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
85 	ring_ctrl.w = 0;
86 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
87 	writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
88 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
89 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
90 	part_ring_size.w = 0;
91 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
92 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
93 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
94 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
95 	io_threshold.w = 0;
96 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
97 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
98 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
99 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
100 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
101 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
102 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
103 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
104 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
105 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
106 	/* un reset pe,sg and pdr */
107 	pe_dma_cfg.bf.pe_mode = 1;
108 	pe_dma_cfg.bf.reset_sg = 0;
109 	pe_dma_cfg.bf.reset_pdr = 0;
110 	pe_dma_cfg.bf.reset_pe = 0;
111 	pe_dma_cfg.bf.bo_td_en = 0;
112 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
113 	/*clear all pending interrupt*/
114 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
115 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
116 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
117 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
118 	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
119 }
120 
crypto4xx_alloc_sa(struct crypto4xx_ctx * ctx,u32 size)121 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
122 {
123 	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
124 					&ctx->sa_in_dma_addr, GFP_ATOMIC);
125 	if (ctx->sa_in == NULL)
126 		return -ENOMEM;
127 
128 	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
129 					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
130 	if (ctx->sa_out == NULL) {
131 		dma_free_coherent(ctx->dev->core_dev->device,
132 				  ctx->sa_len * 4,
133 				  ctx->sa_in, ctx->sa_in_dma_addr);
134 		return -ENOMEM;
135 	}
136 
137 	memset(ctx->sa_in, 0, size * 4);
138 	memset(ctx->sa_out, 0, size * 4);
139 	ctx->sa_len = size;
140 
141 	return 0;
142 }
143 
crypto4xx_free_sa(struct crypto4xx_ctx * ctx)144 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
145 {
146 	if (ctx->sa_in != NULL)
147 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
148 				  ctx->sa_in, ctx->sa_in_dma_addr);
149 	if (ctx->sa_out != NULL)
150 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
151 				  ctx->sa_out, ctx->sa_out_dma_addr);
152 
153 	ctx->sa_in_dma_addr = 0;
154 	ctx->sa_out_dma_addr = 0;
155 	ctx->sa_len = 0;
156 }
157 
crypto4xx_alloc_state_record(struct crypto4xx_ctx * ctx)158 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
159 {
160 	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
161 				sizeof(struct sa_state_record),
162 				&ctx->state_record_dma_addr, GFP_ATOMIC);
163 	if (!ctx->state_record_dma_addr)
164 		return -ENOMEM;
165 	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
166 
167 	return 0;
168 }
169 
crypto4xx_free_state_record(struct crypto4xx_ctx * ctx)170 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
171 {
172 	if (ctx->state_record != NULL)
173 		dma_free_coherent(ctx->dev->core_dev->device,
174 				  sizeof(struct sa_state_record),
175 				  ctx->state_record,
176 				  ctx->state_record_dma_addr);
177 	ctx->state_record_dma_addr = 0;
178 }
179 
180 /**
181  * alloc memory for the gather ring
182  * no need to alloc buf for the ring
183  * gdr_tail, gdr_head and gdr_count are initialized by this function
184  */
crypto4xx_build_pdr(struct crypto4xx_device * dev)185 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
186 {
187 	int i;
188 	struct pd_uinfo *pd_uinfo;
189 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
190 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
191 				      &dev->pdr_pa, GFP_ATOMIC);
192 	if (!dev->pdr)
193 		return -ENOMEM;
194 
195 	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
196 				GFP_KERNEL);
197 	if (!dev->pdr_uinfo) {
198 		dma_free_coherent(dev->core_dev->device,
199 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
200 				  dev->pdr,
201 				  dev->pdr_pa);
202 		return -ENOMEM;
203 	}
204 	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
205 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
206 				   256 * PPC4XX_NUM_PD,
207 				   &dev->shadow_sa_pool_pa,
208 				   GFP_ATOMIC);
209 	if (!dev->shadow_sa_pool)
210 		return -ENOMEM;
211 
212 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
213 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
214 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
215 	if (!dev->shadow_sr_pool)
216 		return -ENOMEM;
217 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
218 		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
219 						sizeof(struct pd_uinfo) * i);
220 
221 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
222 		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
223 		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
224 
225 		/* alloc state record */
226 		pd_uinfo->sr_va = dev->shadow_sr_pool +
227 		    sizeof(struct sa_state_record) * i;
228 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
229 		    sizeof(struct sa_state_record) * i;
230 	}
231 
232 	return 0;
233 }
234 
crypto4xx_destroy_pdr(struct crypto4xx_device * dev)235 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
236 {
237 	if (dev->pdr != NULL)
238 		dma_free_coherent(dev->core_dev->device,
239 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
240 				  dev->pdr, dev->pdr_pa);
241 	if (dev->shadow_sa_pool)
242 		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
243 				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
244 	if (dev->shadow_sr_pool)
245 		dma_free_coherent(dev->core_dev->device,
246 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
247 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
248 
249 	kfree(dev->pdr_uinfo);
250 }
251 
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device * dev)252 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
253 {
254 	u32 retval;
255 	u32 tmp;
256 
257 	retval = dev->pdr_head;
258 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
259 
260 	if (tmp == dev->pdr_tail)
261 		return ERING_WAS_FULL;
262 
263 	dev->pdr_head = tmp;
264 
265 	return retval;
266 }
267 
crypto4xx_put_pd_to_pdr(struct crypto4xx_device * dev,u32 idx)268 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
269 {
270 	struct pd_uinfo *pd_uinfo;
271 	unsigned long flags;
272 
273 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
274 				       sizeof(struct pd_uinfo) * idx);
275 	spin_lock_irqsave(&dev->core_dev->lock, flags);
276 	if (dev->pdr_tail != PPC4XX_LAST_PD)
277 		dev->pdr_tail++;
278 	else
279 		dev->pdr_tail = 0;
280 	pd_uinfo->state = PD_ENTRY_FREE;
281 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
282 
283 	return 0;
284 }
285 
crypto4xx_get_pdp(struct crypto4xx_device * dev,dma_addr_t * pd_dma,u32 idx)286 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
287 				       dma_addr_t *pd_dma, u32 idx)
288 {
289 	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
290 
291 	return dev->pdr + sizeof(struct ce_pd) * idx;
292 }
293 
294 /**
295  * alloc memory for the gather ring
296  * no need to alloc buf for the ring
297  * gdr_tail, gdr_head and gdr_count are initialized by this function
298  */
crypto4xx_build_gdr(struct crypto4xx_device * dev)299 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
300 {
301 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
302 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
303 				      &dev->gdr_pa, GFP_ATOMIC);
304 	if (!dev->gdr)
305 		return -ENOMEM;
306 
307 	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
308 
309 	return 0;
310 }
311 
crypto4xx_destroy_gdr(struct crypto4xx_device * dev)312 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
313 {
314 	dma_free_coherent(dev->core_dev->device,
315 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
316 			  dev->gdr, dev->gdr_pa);
317 }
318 
319 /*
320  * when this function is called.
321  * preemption or interrupt must be disabled
322  */
crypto4xx_get_n_gd(struct crypto4xx_device * dev,int n)323 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
324 {
325 	u32 retval;
326 	u32 tmp;
327 	if (n >= PPC4XX_NUM_GD)
328 		return ERING_WAS_FULL;
329 
330 	retval = dev->gdr_head;
331 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
332 	if (dev->gdr_head > dev->gdr_tail) {
333 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
334 			return ERING_WAS_FULL;
335 	} else if (dev->gdr_head < dev->gdr_tail) {
336 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
337 			return ERING_WAS_FULL;
338 	}
339 	dev->gdr_head = tmp;
340 
341 	return retval;
342 }
343 
crypto4xx_put_gd_to_gdr(struct crypto4xx_device * dev)344 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
345 {
346 	unsigned long flags;
347 
348 	spin_lock_irqsave(&dev->core_dev->lock, flags);
349 	if (dev->gdr_tail == dev->gdr_head) {
350 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
351 		return 0;
352 	}
353 
354 	if (dev->gdr_tail != PPC4XX_LAST_GD)
355 		dev->gdr_tail++;
356 	else
357 		dev->gdr_tail = 0;
358 
359 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
360 
361 	return 0;
362 }
363 
crypto4xx_get_gdp(struct crypto4xx_device * dev,dma_addr_t * gd_dma,u32 idx)364 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
365 					      dma_addr_t *gd_dma, u32 idx)
366 {
367 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
368 
369 	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
370 }
371 
372 /**
373  * alloc memory for the scatter ring
374  * need to alloc buf for the ring
375  * sdr_tail, sdr_head and sdr_count are initialized by this function
376  */
crypto4xx_build_sdr(struct crypto4xx_device * dev)377 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
378 {
379 	int i;
380 	struct ce_sd *sd_array;
381 
382 	/* alloc memory for scatter descriptor ring */
383 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
384 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 				      &dev->sdr_pa, GFP_ATOMIC);
386 	if (!dev->sdr)
387 		return -ENOMEM;
388 
389 	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
390 	dev->scatter_buffer_va =
391 		dma_alloc_coherent(dev->core_dev->device,
392 			dev->scatter_buffer_size * PPC4XX_NUM_SD,
393 			&dev->scatter_buffer_pa, GFP_ATOMIC);
394 	if (!dev->scatter_buffer_va) {
395 		dma_free_coherent(dev->core_dev->device,
396 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
397 				  dev->sdr, dev->sdr_pa);
398 		return -ENOMEM;
399 	}
400 
401 	sd_array = dev->sdr;
402 
403 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
404 		sd_array[i].ptr = dev->scatter_buffer_pa +
405 				  dev->scatter_buffer_size * i;
406 	}
407 
408 	return 0;
409 }
410 
crypto4xx_destroy_sdr(struct crypto4xx_device * dev)411 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
412 {
413 	if (dev->sdr != NULL)
414 		dma_free_coherent(dev->core_dev->device,
415 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
416 				  dev->sdr, dev->sdr_pa);
417 
418 	if (dev->scatter_buffer_va != NULL)
419 		dma_free_coherent(dev->core_dev->device,
420 				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
421 				  dev->scatter_buffer_va,
422 				  dev->scatter_buffer_pa);
423 }
424 
425 /*
426  * when this function is called.
427  * preemption or interrupt must be disabled
428  */
crypto4xx_get_n_sd(struct crypto4xx_device * dev,int n)429 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
430 {
431 	u32 retval;
432 	u32 tmp;
433 
434 	if (n >= PPC4XX_NUM_SD)
435 		return ERING_WAS_FULL;
436 
437 	retval = dev->sdr_head;
438 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
439 	if (dev->sdr_head > dev->gdr_tail) {
440 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
441 			return ERING_WAS_FULL;
442 	} else if (dev->sdr_head < dev->sdr_tail) {
443 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
444 			return ERING_WAS_FULL;
445 	} /* the head = tail, or empty case is already take cared */
446 	dev->sdr_head = tmp;
447 
448 	return retval;
449 }
450 
crypto4xx_put_sd_to_sdr(struct crypto4xx_device * dev)451 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
452 {
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&dev->core_dev->lock, flags);
456 	if (dev->sdr_tail == dev->sdr_head) {
457 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
458 		return 0;
459 	}
460 	if (dev->sdr_tail != PPC4XX_LAST_SD)
461 		dev->sdr_tail++;
462 	else
463 		dev->sdr_tail = 0;
464 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
465 
466 	return 0;
467 }
468 
crypto4xx_get_sdp(struct crypto4xx_device * dev,dma_addr_t * sd_dma,u32 idx)469 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
470 					      dma_addr_t *sd_dma, u32 idx)
471 {
472 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
473 
474 	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
475 }
476 
crypto4xx_fill_one_page(struct crypto4xx_device * dev,dma_addr_t * addr,u32 * length,u32 * idx,u32 * offset,u32 * nbytes)477 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
478 				   dma_addr_t *addr, u32 *length,
479 				   u32 *idx, u32 *offset, u32 *nbytes)
480 {
481 	u32 len;
482 
483 	if (*length > dev->scatter_buffer_size) {
484 		memcpy(phys_to_virt(*addr),
485 			dev->scatter_buffer_va +
486 			*idx * dev->scatter_buffer_size + *offset,
487 			dev->scatter_buffer_size);
488 		*offset = 0;
489 		*length -= dev->scatter_buffer_size;
490 		*nbytes -= dev->scatter_buffer_size;
491 		if (*idx == PPC4XX_LAST_SD)
492 			*idx = 0;
493 		else
494 			(*idx)++;
495 		*addr = *addr +  dev->scatter_buffer_size;
496 		return 1;
497 	} else if (*length < dev->scatter_buffer_size) {
498 		memcpy(phys_to_virt(*addr),
499 			dev->scatter_buffer_va +
500 			*idx * dev->scatter_buffer_size + *offset, *length);
501 		if ((*offset + *length) == dev->scatter_buffer_size) {
502 			if (*idx == PPC4XX_LAST_SD)
503 				*idx = 0;
504 			else
505 				(*idx)++;
506 			*nbytes -= *length;
507 			*offset = 0;
508 		} else {
509 			*nbytes -= *length;
510 			*offset += *length;
511 		}
512 
513 		return 0;
514 	} else {
515 		len = (*nbytes <= dev->scatter_buffer_size) ?
516 				(*nbytes) : dev->scatter_buffer_size;
517 		memcpy(phys_to_virt(*addr),
518 			dev->scatter_buffer_va +
519 			*idx * dev->scatter_buffer_size + *offset,
520 			len);
521 		*offset = 0;
522 		*nbytes -= len;
523 
524 		if (*idx == PPC4XX_LAST_SD)
525 			*idx = 0;
526 		else
527 			(*idx)++;
528 
529 		return 0;
530     }
531 }
532 
crypto4xx_copy_pkt_to_dst(struct crypto4xx_device * dev,struct ce_pd * pd,struct pd_uinfo * pd_uinfo,u32 nbytes,struct scatterlist * dst)533 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
534 				      struct ce_pd *pd,
535 				      struct pd_uinfo *pd_uinfo,
536 				      u32 nbytes,
537 				      struct scatterlist *dst)
538 {
539 	dma_addr_t addr;
540 	u32 this_sd;
541 	u32 offset;
542 	u32 len;
543 	u32 i;
544 	u32 sg_len;
545 	struct scatterlist *sg;
546 
547 	this_sd = pd_uinfo->first_sd;
548 	offset = 0;
549 	i = 0;
550 
551 	while (nbytes) {
552 		sg = &dst[i];
553 		sg_len = sg->length;
554 		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
555 				sg->offset, sg->length, DMA_TO_DEVICE);
556 
557 		if (offset == 0) {
558 			len = (nbytes <= sg->length) ? nbytes : sg->length;
559 			while (crypto4xx_fill_one_page(dev, &addr, &len,
560 				&this_sd, &offset, &nbytes))
561 				;
562 			if (!nbytes)
563 				return;
564 			i++;
565 		} else {
566 			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
567 				nbytes : (dev->scatter_buffer_size - offset);
568 			len = (sg->length < len) ? sg->length : len;
569 			while (crypto4xx_fill_one_page(dev, &addr, &len,
570 					       &this_sd, &offset, &nbytes))
571 				;
572 			if (!nbytes)
573 				return;
574 			sg_len -= len;
575 			if (sg_len) {
576 				addr += len;
577 				while (crypto4xx_fill_one_page(dev, &addr,
578 					&sg_len, &this_sd, &offset, &nbytes))
579 					;
580 			}
581 			i++;
582 		}
583 	}
584 }
585 
crypto4xx_copy_digest_to_dst(struct pd_uinfo * pd_uinfo,struct crypto4xx_ctx * ctx)586 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
587 					struct crypto4xx_ctx *ctx)
588 {
589 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
590 	struct sa_state_record *state_record =
591 				(struct sa_state_record *) pd_uinfo->sr_va;
592 
593 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
594 		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
595 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
596 	}
597 
598 	return 0;
599 }
600 
crypto4xx_ret_sg_desc(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)601 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
602 				  struct pd_uinfo *pd_uinfo)
603 {
604 	int i;
605 	if (pd_uinfo->num_gd) {
606 		for (i = 0; i < pd_uinfo->num_gd; i++)
607 			crypto4xx_put_gd_to_gdr(dev);
608 		pd_uinfo->first_gd = 0xffffffff;
609 		pd_uinfo->num_gd = 0;
610 	}
611 	if (pd_uinfo->num_sd) {
612 		for (i = 0; i < pd_uinfo->num_sd; i++)
613 			crypto4xx_put_sd_to_sdr(dev);
614 
615 		pd_uinfo->first_sd = 0xffffffff;
616 		pd_uinfo->num_sd = 0;
617 	}
618 }
619 
crypto4xx_ablkcipher_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo,struct ce_pd * pd)620 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
621 				     struct pd_uinfo *pd_uinfo,
622 				     struct ce_pd *pd)
623 {
624 	struct crypto4xx_ctx *ctx;
625 	struct ablkcipher_request *ablk_req;
626 	struct scatterlist *dst;
627 	dma_addr_t addr;
628 
629 	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
630 	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
631 
632 	if (pd_uinfo->using_sd) {
633 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
634 					  ablk_req->dst);
635 	} else {
636 		dst = pd_uinfo->dest_va;
637 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
638 				    dst->offset, dst->length, DMA_FROM_DEVICE);
639 	}
640 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
641 	if (ablk_req->base.complete != NULL)
642 		ablk_req->base.complete(&ablk_req->base, 0);
643 
644 	return 0;
645 }
646 
crypto4xx_ahash_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)647 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
648 				struct pd_uinfo *pd_uinfo)
649 {
650 	struct crypto4xx_ctx *ctx;
651 	struct ahash_request *ahash_req;
652 
653 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
654 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
655 
656 	crypto4xx_copy_digest_to_dst(pd_uinfo,
657 				     crypto_tfm_ctx(ahash_req->base.tfm));
658 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
659 	/* call user provided callback function x */
660 	if (ahash_req->base.complete != NULL)
661 		ahash_req->base.complete(&ahash_req->base, 0);
662 
663 	return 0;
664 }
665 
crypto4xx_pd_done(struct crypto4xx_device * dev,u32 idx)666 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
667 {
668 	struct ce_pd *pd;
669 	struct pd_uinfo *pd_uinfo;
670 
671 	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
672 	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
673 	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
674 			CRYPTO_ALG_TYPE_ABLKCIPHER)
675 		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
676 	else
677 		return crypto4xx_ahash_done(dev, pd_uinfo);
678 }
679 
680 /**
681  * Note: Only use this function to copy items that is word aligned.
682  */
crypto4xx_memcpy_le(unsigned int * dst,const unsigned char * buf,int len)683 void crypto4xx_memcpy_le(unsigned int *dst,
684 			 const unsigned char *buf,
685 			 int len)
686 {
687 	u8 *tmp;
688 	for (; len >= 4; buf += 4, len -= 4)
689 		*dst++ = cpu_to_le32(*(unsigned int *) buf);
690 
691 	tmp = (u8 *)dst;
692 	switch (len) {
693 	case 3:
694 		*tmp++ = 0;
695 		*tmp++ = *(buf+2);
696 		*tmp++ = *(buf+1);
697 		*tmp++ = *buf;
698 		break;
699 	case 2:
700 		*tmp++ = 0;
701 		*tmp++ = 0;
702 		*tmp++ = *(buf+1);
703 		*tmp++ = *buf;
704 		break;
705 	case 1:
706 		*tmp++ = 0;
707 		*tmp++ = 0;
708 		*tmp++ = 0;
709 		*tmp++ = *buf;
710 		break;
711 	default:
712 		break;
713 	}
714 }
715 
crypto4xx_stop_all(struct crypto4xx_core_device * core_dev)716 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
717 {
718 	crypto4xx_destroy_pdr(core_dev->dev);
719 	crypto4xx_destroy_gdr(core_dev->dev);
720 	crypto4xx_destroy_sdr(core_dev->dev);
721 	dev_set_drvdata(core_dev->device, NULL);
722 	iounmap(core_dev->dev->ce_base);
723 	kfree(core_dev->dev);
724 	kfree(core_dev);
725 }
726 
crypto4xx_return_pd(struct crypto4xx_device * dev,u32 pd_entry,struct ce_pd * pd,struct pd_uinfo * pd_uinfo)727 void crypto4xx_return_pd(struct crypto4xx_device *dev,
728 			 u32 pd_entry, struct ce_pd *pd,
729 			 struct pd_uinfo *pd_uinfo)
730 {
731 	/* irq should be already disabled */
732 	dev->pdr_head = pd_entry;
733 	pd->pd_ctl.w = 0;
734 	pd->pd_ctl_len.w = 0;
735 	pd_uinfo->state = PD_ENTRY_FREE;
736 }
737 
738 /*
739  * derive number of elements in scatterlist
740  * Shamlessly copy from talitos.c
741  */
get_sg_count(struct scatterlist * sg_list,int nbytes)742 static int get_sg_count(struct scatterlist *sg_list, int nbytes)
743 {
744 	struct scatterlist *sg = sg_list;
745 	int sg_nents = 0;
746 
747 	while (nbytes) {
748 		sg_nents++;
749 		if (sg->length > nbytes)
750 			break;
751 		nbytes -= sg->length;
752 		sg = sg_next(sg);
753 	}
754 
755 	return sg_nents;
756 }
757 
get_next_gd(u32 current)758 static u32 get_next_gd(u32 current)
759 {
760 	if (current != PPC4XX_LAST_GD)
761 		return current + 1;
762 	else
763 		return 0;
764 }
765 
get_next_sd(u32 current)766 static u32 get_next_sd(u32 current)
767 {
768 	if (current != PPC4XX_LAST_SD)
769 		return current + 1;
770 	else
771 		return 0;
772 }
773 
crypto4xx_build_pd(struct crypto_async_request * req,struct crypto4xx_ctx * ctx,struct scatterlist * src,struct scatterlist * dst,unsigned int datalen,void * iv,u32 iv_len)774 u32 crypto4xx_build_pd(struct crypto_async_request *req,
775 		       struct crypto4xx_ctx *ctx,
776 		       struct scatterlist *src,
777 		       struct scatterlist *dst,
778 		       unsigned int datalen,
779 		       void *iv, u32 iv_len)
780 {
781 	struct crypto4xx_device *dev = ctx->dev;
782 	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
783 	struct dynamic_sa_ctl *sa;
784 	struct scatterlist *sg;
785 	struct ce_gd *gd;
786 	struct ce_pd *pd;
787 	u32 num_gd, num_sd;
788 	u32 fst_gd = 0xffffffff;
789 	u32 fst_sd = 0xffffffff;
790 	u32 pd_entry;
791 	unsigned long flags;
792 	struct pd_uinfo *pd_uinfo = NULL;
793 	unsigned int nbytes = datalen, idx;
794 	unsigned int ivlen = 0;
795 	u32 gd_idx = 0;
796 
797 	/* figure how many gd is needed */
798 	num_gd = get_sg_count(src, datalen);
799 	if (num_gd == 1)
800 		num_gd = 0;
801 
802 	/* figure how many sd is needed */
803 	if (sg_is_last(dst) || ctx->is_hash) {
804 		num_sd = 0;
805 	} else {
806 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
807 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
808 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
809 				num_sd++;
810 		} else {
811 			num_sd = 1;
812 		}
813 	}
814 
815 	/*
816 	 * The follow section of code needs to be protected
817 	 * The gather ring and scatter ring needs to be consecutive
818 	 * In case of run out of any kind of descriptor, the descriptor
819 	 * already got must be return the original place.
820 	 */
821 	spin_lock_irqsave(&dev->core_dev->lock, flags);
822 	if (num_gd) {
823 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
824 		if (fst_gd == ERING_WAS_FULL) {
825 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
826 			return -EAGAIN;
827 		}
828 	}
829 	if (num_sd) {
830 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
831 		if (fst_sd == ERING_WAS_FULL) {
832 			if (num_gd)
833 				dev->gdr_head = fst_gd;
834 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
835 			return -EAGAIN;
836 		}
837 	}
838 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
839 	if (pd_entry == ERING_WAS_FULL) {
840 		if (num_gd)
841 			dev->gdr_head = fst_gd;
842 		if (num_sd)
843 			dev->sdr_head = fst_sd;
844 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
845 		return -EAGAIN;
846 	}
847 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
848 
849 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
850 				       sizeof(struct pd_uinfo) * pd_entry);
851 	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
852 	pd_uinfo->async_req = req;
853 	pd_uinfo->num_gd = num_gd;
854 	pd_uinfo->num_sd = num_sd;
855 
856 	if (iv_len || ctx->is_hash) {
857 		ivlen = iv_len;
858 		pd->sa = pd_uinfo->sa_pa;
859 		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
860 		if (ctx->direction == DIR_INBOUND)
861 			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
862 		else
863 			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
864 
865 		memcpy((void *) sa + ctx->offset_to_sr_ptr,
866 			&pd_uinfo->sr_pa, 4);
867 
868 		if (iv_len)
869 			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
870 	} else {
871 		if (ctx->direction == DIR_INBOUND) {
872 			pd->sa = ctx->sa_in_dma_addr;
873 			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
874 		} else {
875 			pd->sa = ctx->sa_out_dma_addr;
876 			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
877 		}
878 	}
879 	pd->sa_len = ctx->sa_len;
880 	if (num_gd) {
881 		/* get first gd we are going to use */
882 		gd_idx = fst_gd;
883 		pd_uinfo->first_gd = fst_gd;
884 		pd_uinfo->num_gd = num_gd;
885 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
886 		pd->src = gd_dma;
887 		/* enable gather */
888 		sa->sa_command_0.bf.gather = 1;
889 		idx = 0;
890 		src = &src[0];
891 		/* walk the sg, and setup gather array */
892 		while (nbytes) {
893 			sg = &src[idx];
894 			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
895 				    sg->offset, sg->length, DMA_TO_DEVICE);
896 			gd->ptr = addr;
897 			gd->ctl_len.len = sg->length;
898 			gd->ctl_len.done = 0;
899 			gd->ctl_len.ready = 1;
900 			if (sg->length >= nbytes)
901 				break;
902 			nbytes -= sg->length;
903 			gd_idx = get_next_gd(gd_idx);
904 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
905 			idx++;
906 		}
907 	} else {
908 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
909 				src->offset, src->length, DMA_TO_DEVICE);
910 		/*
911 		 * Disable gather in sa command
912 		 */
913 		sa->sa_command_0.bf.gather = 0;
914 		/*
915 		 * Indicate gather array is not used
916 		 */
917 		pd_uinfo->first_gd = 0xffffffff;
918 		pd_uinfo->num_gd = 0;
919 	}
920 	if (ctx->is_hash || sg_is_last(dst)) {
921 		/*
922 		 * we know application give us dst a whole piece of memory
923 		 * no need to use scatter ring.
924 		 * In case of is_hash, the icv is always at end of src data.
925 		 */
926 		pd_uinfo->using_sd = 0;
927 		pd_uinfo->first_sd = 0xffffffff;
928 		pd_uinfo->num_sd = 0;
929 		pd_uinfo->dest_va = dst;
930 		sa->sa_command_0.bf.scatter = 0;
931 		if (ctx->is_hash)
932 			pd->dest = virt_to_phys((void *)dst);
933 		else
934 			pd->dest = (u32)dma_map_page(dev->core_dev->device,
935 					sg_page(dst), dst->offset,
936 					dst->length, DMA_TO_DEVICE);
937 	} else {
938 		struct ce_sd *sd = NULL;
939 		u32 sd_idx = fst_sd;
940 		nbytes = datalen;
941 		sa->sa_command_0.bf.scatter = 1;
942 		pd_uinfo->using_sd = 1;
943 		pd_uinfo->dest_va = dst;
944 		pd_uinfo->first_sd = fst_sd;
945 		pd_uinfo->num_sd = num_sd;
946 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
947 		pd->dest = sd_dma;
948 		/* setup scatter descriptor */
949 		sd->ctl.done = 0;
950 		sd->ctl.rdy = 1;
951 		/* sd->ptr should be setup by sd_init routine*/
952 		idx = 0;
953 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
954 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
955 		else
956 			nbytes = 0;
957 		while (nbytes) {
958 			sd_idx = get_next_sd(sd_idx);
959 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
960 			/* setup scatter descriptor */
961 			sd->ctl.done = 0;
962 			sd->ctl.rdy = 1;
963 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
964 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
965 			else
966 				/*
967 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
968 				 * which is more than nbytes, so done.
969 				 */
970 				nbytes = 0;
971 		}
972 	}
973 
974 	sa->sa_command_1.bf.hash_crypto_offset = 0;
975 	pd->pd_ctl.w = ctx->pd_ctl;
976 	pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
977 	pd_uinfo->state = PD_ENTRY_INUSE;
978 	wmb();
979 	/* write any value to push engine to read a pd */
980 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
981 	return -EINPROGRESS;
982 }
983 
984 /**
985  * Algorithm Registration Functions
986  */
crypto4xx_alg_init(struct crypto_tfm * tfm)987 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
988 {
989 	struct crypto_alg *alg = tfm->__crt_alg;
990 	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
991 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
992 
993 	ctx->dev = amcc_alg->dev;
994 	ctx->sa_in = NULL;
995 	ctx->sa_out = NULL;
996 	ctx->sa_in_dma_addr = 0;
997 	ctx->sa_out_dma_addr = 0;
998 	ctx->sa_len = 0;
999 
1000 	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1001 	default:
1002 		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1003 		break;
1004 	case CRYPTO_ALG_TYPE_AHASH:
1005 		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1006 					 sizeof(struct crypto4xx_ctx));
1007 		break;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
crypto4xx_alg_exit(struct crypto_tfm * tfm)1013 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1014 {
1015 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1016 
1017 	crypto4xx_free_sa(ctx);
1018 	crypto4xx_free_state_record(ctx);
1019 }
1020 
crypto4xx_register_alg(struct crypto4xx_device * sec_dev,struct crypto4xx_alg_common * crypto_alg,int array_size)1021 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1022 			   struct crypto4xx_alg_common *crypto_alg,
1023 			   int array_size)
1024 {
1025 	struct crypto4xx_alg *alg;
1026 	int i;
1027 	int rc = 0;
1028 
1029 	for (i = 0; i < array_size; i++) {
1030 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1031 		if (!alg)
1032 			return -ENOMEM;
1033 
1034 		alg->alg = crypto_alg[i];
1035 		alg->dev = sec_dev;
1036 
1037 		switch (alg->alg.type) {
1038 		case CRYPTO_ALG_TYPE_AHASH:
1039 			rc = crypto_register_ahash(&alg->alg.u.hash);
1040 			break;
1041 
1042 		default:
1043 			rc = crypto_register_alg(&alg->alg.u.cipher);
1044 			break;
1045 		}
1046 
1047 		if (rc) {
1048 			list_del(&alg->entry);
1049 			kfree(alg);
1050 		} else {
1051 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1052 		}
1053 	}
1054 
1055 	return 0;
1056 }
1057 
crypto4xx_unregister_alg(struct crypto4xx_device * sec_dev)1058 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1059 {
1060 	struct crypto4xx_alg *alg, *tmp;
1061 
1062 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1063 		list_del(&alg->entry);
1064 		switch (alg->alg.type) {
1065 		case CRYPTO_ALG_TYPE_AHASH:
1066 			crypto_unregister_ahash(&alg->alg.u.hash);
1067 			break;
1068 
1069 		default:
1070 			crypto_unregister_alg(&alg->alg.u.cipher);
1071 		}
1072 		kfree(alg);
1073 	}
1074 }
1075 
crypto4xx_bh_tasklet_cb(unsigned long data)1076 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1077 {
1078 	struct device *dev = (struct device *)data;
1079 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1080 	struct pd_uinfo *pd_uinfo;
1081 	struct ce_pd *pd;
1082 	u32 tail;
1083 
1084 	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1085 		tail = core_dev->dev->pdr_tail;
1086 		pd_uinfo = core_dev->dev->pdr_uinfo +
1087 			sizeof(struct pd_uinfo)*tail;
1088 		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1089 		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1090 				   pd->pd_ctl.bf.pe_done &&
1091 				   !pd->pd_ctl.bf.host_ready) {
1092 			pd->pd_ctl.bf.pe_done = 0;
1093 			crypto4xx_pd_done(core_dev->dev, tail);
1094 			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1095 			pd_uinfo->state = PD_ENTRY_FREE;
1096 		} else {
1097 			/* if tail not done, break */
1098 			break;
1099 		}
1100 	}
1101 }
1102 
1103 /**
1104  * Top Half of isr.
1105  */
crypto4xx_ce_interrupt_handler(int irq,void * data)1106 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1107 {
1108 	struct device *dev = (struct device *)data;
1109 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1110 
1111 	if (core_dev->dev->ce_base == 0)
1112 		return 0;
1113 
1114 	writel(PPC4XX_INTERRUPT_CLR,
1115 	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1116 	tasklet_schedule(&core_dev->tasklet);
1117 
1118 	return IRQ_HANDLED;
1119 }
1120 
1121 /**
1122  * Supported Crypto Algorithms
1123  */
1124 struct crypto4xx_alg_common crypto4xx_alg[] = {
1125 	/* Crypto AES modes */
1126 	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1127 		.cra_name 	= "cbc(aes)",
1128 		.cra_driver_name = "cbc-aes-ppc4xx",
1129 		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1130 		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1131 		.cra_blocksize 	= AES_BLOCK_SIZE,
1132 		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1133 		.cra_type 	= &crypto_ablkcipher_type,
1134 		.cra_init	= crypto4xx_alg_init,
1135 		.cra_exit	= crypto4xx_alg_exit,
1136 		.cra_module 	= THIS_MODULE,
1137 		.cra_u 		= {
1138 			.ablkcipher = {
1139 				.min_keysize 	= AES_MIN_KEY_SIZE,
1140 				.max_keysize 	= AES_MAX_KEY_SIZE,
1141 				.ivsize		= AES_IV_SIZE,
1142 				.setkey 	= crypto4xx_setkey_aes_cbc,
1143 				.encrypt 	= crypto4xx_encrypt,
1144 				.decrypt 	= crypto4xx_decrypt,
1145 			}
1146 		}
1147 	}},
1148 };
1149 
1150 /**
1151  * Module Initialization Routine
1152  */
crypto4xx_probe(struct platform_device * ofdev)1153 static int __init crypto4xx_probe(struct platform_device *ofdev)
1154 {
1155 	int rc;
1156 	struct resource res;
1157 	struct device *dev = &ofdev->dev;
1158 	struct crypto4xx_core_device *core_dev;
1159 
1160 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1161 	if (rc)
1162 		return -ENODEV;
1163 
1164 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1165 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1166 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1167 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1168 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1169 	} else if (of_find_compatible_node(NULL, NULL,
1170 			"amcc,ppc405ex-crypto")) {
1171 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1172 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1173 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1174 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1175 	} else if (of_find_compatible_node(NULL, NULL,
1176 			"amcc,ppc460sx-crypto")) {
1177 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1178 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1179 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1180 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1181 	} else {
1182 		printk(KERN_ERR "Crypto Function Not supported!\n");
1183 		return -EINVAL;
1184 	}
1185 
1186 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1187 	if (!core_dev)
1188 		return -ENOMEM;
1189 
1190 	dev_set_drvdata(dev, core_dev);
1191 	core_dev->ofdev = ofdev;
1192 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1193 	if (!core_dev->dev)
1194 		goto err_alloc_dev;
1195 
1196 	core_dev->dev->core_dev = core_dev;
1197 	core_dev->device = dev;
1198 	spin_lock_init(&core_dev->lock);
1199 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1200 	rc = crypto4xx_build_pdr(core_dev->dev);
1201 	if (rc)
1202 		goto err_build_pdr;
1203 
1204 	rc = crypto4xx_build_gdr(core_dev->dev);
1205 	if (rc)
1206 		goto err_build_gdr;
1207 
1208 	rc = crypto4xx_build_sdr(core_dev->dev);
1209 	if (rc)
1210 		goto err_build_sdr;
1211 
1212 	/* Init tasklet for bottom half processing */
1213 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1214 		     (unsigned long) dev);
1215 
1216 	/* Register for Crypto isr, Crypto Engine IRQ */
1217 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1218 	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1219 			 core_dev->dev->name, dev);
1220 	if (rc)
1221 		goto err_request_irq;
1222 
1223 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1224 	if (!core_dev->dev->ce_base) {
1225 		dev_err(dev, "failed to of_iomap\n");
1226 		goto err_iomap;
1227 	}
1228 
1229 	/* need to setup pdr, rdr, gdr and sdr before this */
1230 	crypto4xx_hw_init(core_dev->dev);
1231 
1232 	/* Register security algorithms with Linux CryptoAPI */
1233 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1234 			       ARRAY_SIZE(crypto4xx_alg));
1235 	if (rc)
1236 		goto err_start_dev;
1237 
1238 	return 0;
1239 
1240 err_start_dev:
1241 	iounmap(core_dev->dev->ce_base);
1242 err_iomap:
1243 	free_irq(core_dev->irq, dev);
1244 	irq_dispose_mapping(core_dev->irq);
1245 	tasklet_kill(&core_dev->tasklet);
1246 err_request_irq:
1247 	crypto4xx_destroy_sdr(core_dev->dev);
1248 err_build_sdr:
1249 	crypto4xx_destroy_gdr(core_dev->dev);
1250 err_build_gdr:
1251 	crypto4xx_destroy_pdr(core_dev->dev);
1252 err_build_pdr:
1253 	kfree(core_dev->dev);
1254 err_alloc_dev:
1255 	kfree(core_dev);
1256 
1257 	return rc;
1258 }
1259 
crypto4xx_remove(struct platform_device * ofdev)1260 static int __exit crypto4xx_remove(struct platform_device *ofdev)
1261 {
1262 	struct device *dev = &ofdev->dev;
1263 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1264 
1265 	free_irq(core_dev->irq, dev);
1266 	irq_dispose_mapping(core_dev->irq);
1267 
1268 	tasklet_kill(&core_dev->tasklet);
1269 	/* Un-register with Linux CryptoAPI */
1270 	crypto4xx_unregister_alg(core_dev->dev);
1271 	/* Free all allocated memory */
1272 	crypto4xx_stop_all(core_dev);
1273 
1274 	return 0;
1275 }
1276 
1277 static const struct of_device_id crypto4xx_match[] = {
1278 	{ .compatible      = "amcc,ppc4xx-crypto",},
1279 	{ },
1280 };
1281 
1282 static struct platform_driver crypto4xx_driver = {
1283 	.driver = {
1284 		.name = "crypto4xx",
1285 		.owner = THIS_MODULE,
1286 		.of_match_table = crypto4xx_match,
1287 	},
1288 	.probe		= crypto4xx_probe,
1289 	.remove		= crypto4xx_remove,
1290 };
1291 
crypto4xx_init(void)1292 static int __init crypto4xx_init(void)
1293 {
1294 	return platform_driver_register(&crypto4xx_driver);
1295 }
1296 
crypto4xx_exit(void)1297 static void __exit crypto4xx_exit(void)
1298 {
1299 	platform_driver_unregister(&crypto4xx_driver);
1300 }
1301 
1302 module_init(crypto4xx_init);
1303 module_exit(crypto4xx_exit);
1304 
1305 MODULE_LICENSE("GPL");
1306 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1307 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1308 
1309