1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
32 #include <linux/fs.h>
33 #include <linux/slab.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
41 #include <asm/mmu.h>
42 #include <asm/irq.h>
43 #include <asm/atomic.h>
44 #include <asm/asm-offsets.h>
45 #include <asm/regs.h>
46 
47 extern void ret_from_fork(void);
48 
49 struct task_struct *current_set[NR_CPUS] = {&init_task, };
50 
51 void (*pm_power_off)(void) = NULL;
52 EXPORT_SYMBOL(pm_power_off);
53 
54 
55 #if XTENSA_HAVE_COPROCESSORS
56 
coprocessor_release_all(struct thread_info * ti)57 void coprocessor_release_all(struct thread_info *ti)
58 {
59 	unsigned long cpenable;
60 	int i;
61 
62 	/* Make sure we don't switch tasks during this operation. */
63 
64 	preempt_disable();
65 
66 	/* Walk through all cp owners and release it for the requested one. */
67 
68 	cpenable = ti->cpenable;
69 
70 	for (i = 0; i < XCHAL_CP_MAX; i++) {
71 		if (coprocessor_owner[i] == ti) {
72 			coprocessor_owner[i] = 0;
73 			cpenable &= ~(1 << i);
74 		}
75 	}
76 
77 	ti->cpenable = cpenable;
78 	coprocessor_clear_cpenable();
79 
80 	preempt_enable();
81 }
82 
coprocessor_flush_all(struct thread_info * ti)83 void coprocessor_flush_all(struct thread_info *ti)
84 {
85 	unsigned long cpenable;
86 	int i;
87 
88 	preempt_disable();
89 
90 	cpenable = ti->cpenable;
91 
92 	for (i = 0; i < XCHAL_CP_MAX; i++) {
93 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
94 			coprocessor_flush(ti, i);
95 		cpenable >>= 1;
96 	}
97 
98 	preempt_enable();
99 }
100 
101 #endif
102 
103 
104 /*
105  * Powermanagement idle function, if any is provided by the platform.
106  */
107 
cpu_idle(void)108 void cpu_idle(void)
109 {
110   	local_irq_enable();
111 
112 	/* endless idle loop with no priority at all */
113 	while (1) {
114 		while (!need_resched())
115 			platform_idle();
116 		preempt_enable_no_resched();
117 		schedule();
118 		preempt_disable();
119 	}
120 }
121 
122 /*
123  * This is called when the thread calls exit().
124  */
exit_thread(void)125 void exit_thread(void)
126 {
127 #if XTENSA_HAVE_COPROCESSORS
128 	coprocessor_release_all(current_thread_info());
129 #endif
130 }
131 
132 /*
133  * Flush thread state. This is called when a thread does an execve()
134  * Note that we flush coprocessor registers for the case execve fails.
135  */
flush_thread(void)136 void flush_thread(void)
137 {
138 #if XTENSA_HAVE_COPROCESSORS
139 	struct thread_info *ti = current_thread_info();
140 	coprocessor_flush_all(ti);
141 	coprocessor_release_all(ti);
142 #endif
143 }
144 
145 /*
146  * This is called before the thread is copied.
147  */
prepare_to_copy(struct task_struct * tsk)148 void prepare_to_copy(struct task_struct *tsk)
149 {
150 #if XTENSA_HAVE_COPROCESSORS
151 	coprocessor_flush_all(task_thread_info(tsk));
152 #endif
153 }
154 
155 /*
156  * Copy thread.
157  *
158  * The stack layout for the new thread looks like this:
159  *
160  *	+------------------------+ <- sp in childregs (= tos)
161  *	|       childregs        |
162  *	+------------------------+ <- thread.sp = sp in dummy-frame
163  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
164  *	+------------------------+
165  *
166  * We create a dummy frame to return to ret_from_fork:
167  *   a0 points to ret_from_fork (simulating a call4)
168  *   sp points to itself (thread.sp)
169  *   a2, a3 are unused.
170  *
171  * Note: This is a pristine frame, so we don't need any spill region on top of
172  *       childregs.
173  */
174 
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)175 int copy_thread(unsigned long clone_flags, unsigned long usp,
176 		unsigned long unused,
177                 struct task_struct * p, struct pt_regs * regs)
178 {
179 	struct pt_regs *childregs;
180 	struct thread_info *ti;
181 	unsigned long tos;
182 	int user_mode = user_mode(regs);
183 
184 	/* Set up new TSS. */
185 	tos = (unsigned long)task_stack_page(p) + THREAD_SIZE;
186 	if (user_mode)
187 		childregs = (struct pt_regs*)(tos - PT_USER_SIZE);
188 	else
189 		childregs = (struct pt_regs*)tos - 1;
190 
191 	*childregs = *regs;
192 
193 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
194 	*((int*)childregs - 3) = (unsigned long)childregs;
195 	*((int*)childregs - 4) = 0;
196 
197 	childregs->areg[1] = tos;
198 	childregs->areg[2] = 0;
199 	p->set_child_tid = p->clear_child_tid = NULL;
200 	p->thread.ra = MAKE_RA_FOR_CALL((unsigned long)ret_from_fork, 0x1);
201 	p->thread.sp = (unsigned long)childregs;
202 
203 	if (user_mode(regs)) {
204 
205 		int len = childregs->wmask & ~0xf;
206 		childregs->areg[1] = usp;
207 		memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
208 		       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
209 // FIXME: we need to set THREADPTR in thread_info...
210 		if (clone_flags & CLONE_SETTLS)
211 			childregs->areg[2] = childregs->areg[6];
212 
213 	} else {
214 		/* In kernel space, we start a new thread with a new stack. */
215 		childregs->wmask = 1;
216 	}
217 
218 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
219 	ti = task_thread_info(p);
220 	ti->cpenable = 0;
221 #endif
222 
223 	return 0;
224 }
225 
226 
227 /*
228  * These bracket the sleeping functions..
229  */
230 
get_wchan(struct task_struct * p)231 unsigned long get_wchan(struct task_struct *p)
232 {
233 	unsigned long sp, pc;
234 	unsigned long stack_page = (unsigned long) task_stack_page(p);
235 	int count = 0;
236 
237 	if (!p || p == current || p->state == TASK_RUNNING)
238 		return 0;
239 
240 	sp = p->thread.sp;
241 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
242 
243 	do {
244 		if (sp < stack_page + sizeof(struct task_struct) ||
245 		    sp >= (stack_page + THREAD_SIZE) ||
246 		    pc == 0)
247 			return 0;
248 		if (!in_sched_functions(pc))
249 			return pc;
250 
251 		/* Stack layout: sp-4: ra, sp-3: sp' */
252 
253 		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
254 		sp = *(unsigned long *)sp - 3;
255 	} while (count++ < 16);
256 	return 0;
257 }
258 
259 /*
260  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
261  * of processor registers.  Besides different ordering,
262  * xtensa_gregset_t contains non-live register information that
263  * 'struct pt_regs' does not.  Exception handling (primarily) uses
264  * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
265  *
266  */
267 
xtensa_elf_core_copy_regs(xtensa_gregset_t * elfregs,struct pt_regs * regs)268 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
269 {
270 	unsigned long wb, ws, wm;
271 	int live, last;
272 
273 	wb = regs->windowbase;
274 	ws = regs->windowstart;
275 	wm = regs->wmask;
276 	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
277 
278 	/* Don't leak any random bits. */
279 
280 	memset(elfregs, 0, sizeof (elfregs));
281 
282 	/* Note:  PS.EXCM is not set while user task is running; its
283 	 * being set in regs->ps is for exception handling convenience.
284 	 */
285 
286 	elfregs->pc		= regs->pc;
287 	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
288 	elfregs->lbeg		= regs->lbeg;
289 	elfregs->lend		= regs->lend;
290 	elfregs->lcount		= regs->lcount;
291 	elfregs->sar		= regs->sar;
292 	elfregs->windowstart	= ws;
293 
294 	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
295 	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
296 	memcpy(elfregs->a, regs->areg, live * 4);
297 	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
298 }
299 
dump_fpu(void)300 int dump_fpu(void)
301 {
302 	return 0;
303 }
304 
305 asmlinkage
xtensa_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void * child_tls,void __user * child_tid,long a5,struct pt_regs * regs)306 long xtensa_clone(unsigned long clone_flags, unsigned long newsp,
307                   void __user *parent_tid, void *child_tls,
308                   void __user *child_tid, long a5,
309                   struct pt_regs *regs)
310 {
311         if (!newsp)
312                 newsp = regs->areg[1];
313         return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
314 }
315 
316 /*
317  * xtensa_execve() executes a new program.
318  */
319 
320 asmlinkage
xtensa_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,long a3,long a4,long a5,struct pt_regs * regs)321 long xtensa_execve(const char __user *name,
322 		   const char __user *const __user *argv,
323                    const char __user *const __user *envp,
324                    long a3, long a4, long a5,
325                    struct pt_regs *regs)
326 {
327 	long error;
328 	char * filename;
329 
330 	filename = getname(name);
331 	error = PTR_ERR(filename);
332 	if (IS_ERR(filename))
333 		goto out;
334 	error = do_execve(filename, argv, envp, regs);
335 	putname(filename);
336 out:
337 	return error;
338 }
339 
340