1 /*
2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3 * All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 /*
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
37 */
38
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/firmware.h>
42
43 #include "qib.h"
44 #include "qib_7220.h"
45
46 #define SD7220_FW_NAME "qlogic/sd7220.fw"
47 MODULE_FIRMWARE(SD7220_FW_NAME);
48
49 /*
50 * Same as in qib_iba7220.c, but just the registers needed here.
51 * Could move whole set to qib_7220.h, but decided better to keep
52 * local.
53 */
54 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
55 #define kr_hwerrclear KREG_IDX(HwErrClear)
56 #define kr_hwerrmask KREG_IDX(HwErrMask)
57 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
58 #define kr_ibcstatus KREG_IDX(IBCStatus)
59 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
60 #define kr_scratch KREG_IDX(Scratch)
61 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
62 /* these are used only here, not in qib_iba7220.c */
63 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
64 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
65 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
66 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
67 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
68
69 /*
70 * The IBSerDesMappTable is a memory that holds values to be stored in
71 * various SerDes registers by IBC.
72 */
73 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
74
75 /*
76 * Below used for sdnum parameter, selecting one of the two sections
77 * used for PCIe, or the single SerDes used for IB.
78 */
79 #define PCIE_SERDES0 0
80 #define PCIE_SERDES1 1
81
82 /*
83 * The EPB requires addressing in a particular form. EPB_LOC() is intended
84 * to make #definitions a little more readable.
85 */
86 #define EPB_ADDR_SHF 8
87 #define EPB_LOC(chn, elt, reg) \
88 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
89 EPB_ADDR_SHF)
90 #define EPB_IB_QUAD0_CS_SHF (25)
91 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
92 #define EPB_IB_UC_CS_SHF (26)
93 #define EPB_PCIE_UC_CS_SHF (27)
94 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
95
96 /* Forward declarations. */
97 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
98 u32 data, u32 mask);
99 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
100 int mask);
101 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
102 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
103 static int qib_sd_setvals(struct qib_devdata *dd);
104 static int qib_sd_early(struct qib_devdata *dd);
105 static int qib_sd_dactrim(struct qib_devdata *dd);
106 static int qib_internal_presets(struct qib_devdata *dd);
107 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
108 static int qib_sd_trimself(struct qib_devdata *dd, int val);
109 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
110 static int qib_sd7220_ib_load(struct qib_devdata *dd,
111 const struct firmware *fw);
112 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
113 const struct firmware *fw);
114
115 /*
116 * Below keeps track of whether the "once per power-on" initialization has
117 * been done, because uC code Version 1.32.17 or higher allows the uC to
118 * be reset at will, and Automatic Equalization may require it. So the
119 * state of the reset "pin", is no longer valid. Instead, we check for the
120 * actual uC code having been loaded.
121 */
qib_ibsd_ucode_loaded(struct qib_pportdata * ppd,const struct firmware * fw)122 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
123 const struct firmware *fw)
124 {
125 struct qib_devdata *dd = ppd->dd;
126
127 if (!dd->cspec->serdes_first_init_done &&
128 qib_sd7220_ib_vfy(dd, fw) > 0)
129 dd->cspec->serdes_first_init_done = 1;
130 return dd->cspec->serdes_first_init_done;
131 }
132
133 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
134 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
135 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
136 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
137 #define UC_PAR_CLR_D 8
138 #define UC_PAR_CLR_M 0xC
139 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
140 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
141
qib_sd7220_clr_ibpar(struct qib_devdata * dd)142 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
143 {
144 int ret;
145
146 /* clear, then re-enable parity errs */
147 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
148 UC_PAR_CLR_D, UC_PAR_CLR_M);
149 if (ret < 0) {
150 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
151 goto bail;
152 }
153 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
154 UC_PAR_CLR_M);
155
156 qib_read_kreg32(dd, kr_scratch);
157 udelay(4);
158 qib_write_kreg(dd, kr_hwerrclear,
159 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
160 qib_read_kreg32(dd, kr_scratch);
161 bail:
162 return;
163 }
164
165 /*
166 * After a reset or other unusual event, the epb interface may need
167 * to be re-synchronized, between the host and the uC.
168 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
169 */
170 #define IBSD_RESYNC_TRIES 3
171 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
172 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
173
qib_resync_ibepb(struct qib_devdata * dd)174 static int qib_resync_ibepb(struct qib_devdata *dd)
175 {
176 int ret, pat, tries, chn;
177 u32 loc;
178
179 ret = -1;
180 chn = 0;
181 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
182 loc = IB_PGUDP(chn);
183 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
184 if (ret < 0) {
185 qib_dev_err(dd, "Failed read in resync\n");
186 continue;
187 }
188 if (ret != 0xF0 && ret != 0x55 && tries == 0)
189 qib_dev_err(dd, "unexpected pattern in resync\n");
190 pat = ret ^ 0xA5; /* alternate F0 and 55 */
191 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
192 if (ret < 0) {
193 qib_dev_err(dd, "Failed write in resync\n");
194 continue;
195 }
196 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
197 if (ret < 0) {
198 qib_dev_err(dd, "Failed re-read in resync\n");
199 continue;
200 }
201 if (ret != pat) {
202 qib_dev_err(dd, "Failed compare1 in resync\n");
203 continue;
204 }
205 loc = IB_CMUDONE(chn);
206 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
207 if (ret < 0) {
208 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
209 continue;
210 }
211 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
212 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
213 ret, chn);
214 continue;
215 }
216 if (++chn == 4)
217 break; /* Success */
218 }
219 return (ret > 0) ? 0 : ret;
220 }
221
222 /*
223 * Localize the stuff that should be done to change IB uC reset
224 * returns <0 for errors.
225 */
qib_ibsd_reset(struct qib_devdata * dd,int assert_rst)226 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
227 {
228 u64 rst_val;
229 int ret = 0;
230 unsigned long flags;
231
232 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
233 if (assert_rst) {
234 /*
235 * Vendor recommends "interrupting" uC before reset, to
236 * minimize possible glitches.
237 */
238 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
239 epb_access(dd, IB_7220_SERDES, 1);
240 rst_val |= 1ULL;
241 /* Squelch possible parity error from _asserting_ reset */
242 qib_write_kreg(dd, kr_hwerrmask,
243 dd->cspec->hwerrmask &
244 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
245 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
246 /* flush write, delay to ensure it took effect */
247 qib_read_kreg32(dd, kr_scratch);
248 udelay(2);
249 /* once it's reset, can remove interrupt */
250 epb_access(dd, IB_7220_SERDES, -1);
251 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
252 } else {
253 /*
254 * Before we de-assert reset, we need to deal with
255 * possible glitch on the Parity-error line.
256 * Suppress it around the reset, both in chip-level
257 * hwerrmask and in IB uC control reg. uC will allow
258 * it again during startup.
259 */
260 u64 val;
261 rst_val &= ~(1ULL);
262 qib_write_kreg(dd, kr_hwerrmask,
263 dd->cspec->hwerrmask &
264 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
265
266 ret = qib_resync_ibepb(dd);
267 if (ret < 0)
268 qib_dev_err(dd, "unable to re-sync IB EPB\n");
269
270 /* set uC control regs to suppress parity errs */
271 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
272 if (ret < 0)
273 goto bail;
274 /* IB uC code past Version 1.32.17 allow suppression of wdog */
275 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
276 0x80);
277 if (ret < 0) {
278 qib_dev_err(dd, "Failed to set WDOG disable\n");
279 goto bail;
280 }
281 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
282 /* flush write, delay for startup */
283 qib_read_kreg32(dd, kr_scratch);
284 udelay(1);
285 /* clear, then re-enable parity errs */
286 qib_sd7220_clr_ibpar(dd);
287 val = qib_read_kreg64(dd, kr_hwerrstatus);
288 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
289 qib_dev_err(dd, "IBUC Parity still set after RST\n");
290 dd->cspec->hwerrmask &=
291 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
292 }
293 qib_write_kreg(dd, kr_hwerrmask,
294 dd->cspec->hwerrmask);
295 }
296
297 bail:
298 return ret;
299 }
300
qib_sd_trimdone_monitor(struct qib_devdata * dd,const char * where)301 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
302 const char *where)
303 {
304 int ret, chn, baduns;
305 u64 val;
306
307 if (!where)
308 where = "?";
309
310 /* give time for reset to settle out in EPB */
311 udelay(2);
312
313 ret = qib_resync_ibepb(dd);
314 if (ret < 0)
315 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
316
317 /* Do "sacrificial read" to get EPB in sane state after reset */
318 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
319 if (ret < 0)
320 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
321
322 /* Check/show "summary" Trim-done bit in IBCStatus */
323 val = qib_read_kreg64(dd, kr_ibcstatus);
324 if (!(val & (1ULL << 11)))
325 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
326 /*
327 * Do "dummy read/mod/wr" to get EPB in sane state after reset
328 * The default value for MPREG6 is 0.
329 */
330 udelay(2);
331
332 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
333 if (ret < 0)
334 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
335 udelay(10);
336
337 baduns = 0;
338
339 for (chn = 3; chn >= 0; --chn) {
340 /* Read CTRL reg for each channel to check TRIMDONE */
341 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
342 IB_CTRL2(chn), 0, 0);
343 if (ret < 0)
344 qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
345 " (%s)\n", chn, where);
346
347 if (!(ret & 0x10)) {
348 int probe;
349
350 baduns |= (1 << chn);
351 qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
352 " (%s)\n", chn, ret, where);
353 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
354 IB_PGUDP(0), 0, 0);
355 qib_dev_err(dd, "probe is %d (%02X)\n",
356 probe, probe);
357 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358 IB_CTRL2(chn), 0, 0);
359 qib_dev_err(dd, "re-read: %d (%02X)\n",
360 probe, probe);
361 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362 IB_CTRL2(chn), 0x10, 0x10);
363 if (ret < 0)
364 qib_dev_err(dd,
365 "Err on TRIMDONE rewrite1\n");
366 }
367 }
368 for (chn = 3; chn >= 0; --chn) {
369 /* Read CTRL reg for each channel to check TRIMDONE */
370 if (baduns & (1 << chn)) {
371 qib_dev_err(dd,
372 "Reseting TRIMDONE on chn %d (%s)\n",
373 chn, where);
374 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
375 IB_CTRL2(chn), 0x10, 0x10);
376 if (ret < 0)
377 qib_dev_err(dd, "Failed re-setting "
378 "TRIMDONE, chn %d (%s)\n",
379 chn, where);
380 }
381 }
382 }
383
384 /*
385 * Below is portion of IBA7220-specific bringup_serdes() that actually
386 * deals with registers and memory within the SerDes itself.
387 * Post IB uC code version 1.32.17, was_reset being 1 is not really
388 * informative, so we double-check.
389 */
qib_sd7220_init(struct qib_devdata * dd)390 int qib_sd7220_init(struct qib_devdata *dd)
391 {
392 const struct firmware *fw;
393 int ret = 1; /* default to failure */
394 int first_reset, was_reset;
395
396 /* SERDES MPU reset recorded in D0 */
397 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
398 if (!was_reset) {
399 /* entered with reset not asserted, we need to do it */
400 qib_ibsd_reset(dd, 1);
401 qib_sd_trimdone_monitor(dd, "Driver-reload");
402 }
403
404 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
405 if (ret) {
406 qib_dev_err(dd, "Failed to load IB SERDES image\n");
407 goto done;
408 }
409
410 /* Substitute our deduced value for was_reset */
411 ret = qib_ibsd_ucode_loaded(dd->pport, fw);
412 if (ret < 0)
413 goto bail;
414
415 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
416 /*
417 * Alter some regs per vendor latest doc, reset-defaults
418 * are not right for IB.
419 */
420 ret = qib_sd_early(dd);
421 if (ret < 0) {
422 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
423 goto bail;
424 }
425 /*
426 * Set DAC manual trim IB.
427 * We only do this once after chip has been reset (usually
428 * same as once per system boot).
429 */
430 if (first_reset) {
431 ret = qib_sd_dactrim(dd);
432 if (ret < 0) {
433 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
434 goto bail;
435 }
436 }
437 /*
438 * Set various registers (DDS and RXEQ) that will be
439 * controlled by IBC (in 1.2 mode) to reasonable preset values
440 * Calling the "internal" version avoids the "check for needed"
441 * and "trimdone monitor" that might be counter-productive.
442 */
443 ret = qib_internal_presets(dd);
444 if (ret < 0) {
445 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
446 goto bail;
447 }
448 ret = qib_sd_trimself(dd, 0x80);
449 if (ret < 0) {
450 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
451 goto bail;
452 }
453
454 /* Load image, then try to verify */
455 ret = 0; /* Assume success */
456 if (first_reset) {
457 int vfy;
458 int trim_done;
459
460 ret = qib_sd7220_ib_load(dd, fw);
461 if (ret < 0) {
462 qib_dev_err(dd, "Failed to load IB SERDES image\n");
463 goto bail;
464 } else {
465 /* Loaded image, try to verify */
466 vfy = qib_sd7220_ib_vfy(dd, fw);
467 if (vfy != ret) {
468 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
469 goto bail;
470 } /* end if verified */
471 } /* end if loaded */
472
473 /*
474 * Loaded and verified. Almost good...
475 * hold "success" in ret
476 */
477 ret = 0;
478 /*
479 * Prev steps all worked, continue bringup
480 * De-assert RESET to uC, only in first reset, to allow
481 * trimming.
482 *
483 * Since our default setup sets START_EQ1 to
484 * PRESET, we need to clear that for this very first run.
485 */
486 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
487 if (ret < 0) {
488 qib_dev_err(dd, "Failed clearing START_EQ1\n");
489 goto bail;
490 }
491
492 qib_ibsd_reset(dd, 0);
493 /*
494 * If this is not the first reset, trimdone should be set
495 * already. We may need to check about this.
496 */
497 trim_done = qib_sd_trimdone_poll(dd);
498 /*
499 * Whether or not trimdone succeeded, we need to put the
500 * uC back into reset to avoid a possible fight with the
501 * IBC state-machine.
502 */
503 qib_ibsd_reset(dd, 1);
504
505 if (!trim_done) {
506 qib_dev_err(dd, "No TRIMDONE seen\n");
507 goto bail;
508 }
509 /*
510 * DEBUG: check each time we reset if trimdone bits have
511 * gotten cleared, and re-set them.
512 */
513 qib_sd_trimdone_monitor(dd, "First-reset");
514 /* Remember so we do not re-do the load, dactrim, etc. */
515 dd->cspec->serdes_first_init_done = 1;
516 }
517 /*
518 * setup for channel training and load values for
519 * RxEq and DDS in tables used by IBC in IB1.2 mode
520 */
521 ret = 0;
522 if (qib_sd_setvals(dd) >= 0)
523 goto done;
524 bail:
525 ret = 1;
526 done:
527 /* start relock timer regardless, but start at 1 second */
528 set_7220_relock_poll(dd, -1);
529
530 release_firmware(fw);
531 return ret;
532 }
533
534 #define EPB_ACC_REQ 1
535 #define EPB_ACC_GNT 0x100
536 #define EPB_DATA_MASK 0xFF
537 #define EPB_RD (1ULL << 24)
538 #define EPB_TRANS_RDY (1ULL << 31)
539 #define EPB_TRANS_ERR (1ULL << 30)
540 #define EPB_TRANS_TRIES 5
541
542 /*
543 * query, claim, release ownership of the EPB (External Parallel Bus)
544 * for a specified SERDES.
545 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
546 * Returns <0 for errors, >0 if we had ownership, else 0.
547 */
epb_access(struct qib_devdata * dd,int sdnum,int claim)548 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
549 {
550 u16 acc;
551 u64 accval;
552 int owned = 0;
553 u64 oct_sel = 0;
554
555 switch (sdnum) {
556 case IB_7220_SERDES:
557 /*
558 * The IB SERDES "ownership" is fairly simple. A single each
559 * request/grant.
560 */
561 acc = kr_ibsd_epb_access_ctrl;
562 break;
563
564 case PCIE_SERDES0:
565 case PCIE_SERDES1:
566 /* PCIe SERDES has two "octants", need to select which */
567 acc = kr_pciesd_epb_access_ctrl;
568 oct_sel = (2 << (sdnum - PCIE_SERDES0));
569 break;
570
571 default:
572 return 0;
573 }
574
575 /* Make sure any outstanding transaction was seen */
576 qib_read_kreg32(dd, kr_scratch);
577 udelay(15);
578
579 accval = qib_read_kreg32(dd, acc);
580
581 owned = !!(accval & EPB_ACC_GNT);
582 if (claim < 0) {
583 /* Need to release */
584 u64 pollval;
585 /*
586 * The only writeable bits are the request and CS.
587 * Both should be clear
588 */
589 u64 newval = 0;
590 qib_write_kreg(dd, acc, newval);
591 /* First read after write is not trustworthy */
592 pollval = qib_read_kreg32(dd, acc);
593 udelay(5);
594 pollval = qib_read_kreg32(dd, acc);
595 if (pollval & EPB_ACC_GNT)
596 owned = -1;
597 } else if (claim > 0) {
598 /* Need to claim */
599 u64 pollval;
600 u64 newval = EPB_ACC_REQ | oct_sel;
601 qib_write_kreg(dd, acc, newval);
602 /* First read after write is not trustworthy */
603 pollval = qib_read_kreg32(dd, acc);
604 udelay(5);
605 pollval = qib_read_kreg32(dd, acc);
606 if (!(pollval & EPB_ACC_GNT))
607 owned = -1;
608 }
609 return owned;
610 }
611
612 /*
613 * Lemma to deal with race condition of write..read to epb regs
614 */
epb_trans(struct qib_devdata * dd,u16 reg,u64 i_val,u64 * o_vp)615 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
616 {
617 int tries;
618 u64 transval;
619
620 qib_write_kreg(dd, reg, i_val);
621 /* Throw away first read, as RDY bit may be stale */
622 transval = qib_read_kreg64(dd, reg);
623
624 for (tries = EPB_TRANS_TRIES; tries; --tries) {
625 transval = qib_read_kreg32(dd, reg);
626 if (transval & EPB_TRANS_RDY)
627 break;
628 udelay(5);
629 }
630 if (transval & EPB_TRANS_ERR)
631 return -1;
632 if (tries > 0 && o_vp)
633 *o_vp = transval;
634 return tries;
635 }
636
637 /**
638 * qib_sd7220_reg_mod - modify SERDES register
639 * @dd: the qlogic_ib device
640 * @sdnum: which SERDES to access
641 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
642 * @wd: Write Data - value to set in register
643 * @mask: ones where data should be spliced into reg.
644 *
645 * Basic register read/modify/write, with un-needed acesses elided. That is,
646 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
647 * returns current (presumed, if a write was done) contents of selected
648 * register, or <0 if errors.
649 */
qib_sd7220_reg_mod(struct qib_devdata * dd,int sdnum,u32 loc,u32 wd,u32 mask)650 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
651 u32 wd, u32 mask)
652 {
653 u16 trans;
654 u64 transval;
655 int owned;
656 int tries, ret;
657 unsigned long flags;
658
659 switch (sdnum) {
660 case IB_7220_SERDES:
661 trans = kr_ibsd_epb_transaction_reg;
662 break;
663
664 case PCIE_SERDES0:
665 case PCIE_SERDES1:
666 trans = kr_pciesd_epb_transaction_reg;
667 break;
668
669 default:
670 return -1;
671 }
672
673 /*
674 * All access is locked in software (vs other host threads) and
675 * hardware (vs uC access).
676 */
677 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
678
679 owned = epb_access(dd, sdnum, 1);
680 if (owned < 0) {
681 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
682 return -1;
683 }
684 ret = 0;
685 for (tries = EPB_TRANS_TRIES; tries; --tries) {
686 transval = qib_read_kreg32(dd, trans);
687 if (transval & EPB_TRANS_RDY)
688 break;
689 udelay(5);
690 }
691
692 if (tries > 0) {
693 tries = 1; /* to make read-skip work */
694 if (mask != 0xFF) {
695 /*
696 * Not a pure write, so need to read.
697 * loc encodes chip-select as well as address
698 */
699 transval = loc | EPB_RD;
700 tries = epb_trans(dd, trans, transval, &transval);
701 }
702 if (tries > 0 && mask != 0) {
703 /*
704 * Not a pure read, so need to write.
705 */
706 wd = (wd & mask) | (transval & ~mask);
707 transval = loc | (wd & EPB_DATA_MASK);
708 tries = epb_trans(dd, trans, transval, &transval);
709 }
710 }
711 /* else, failed to see ready, what error-handling? */
712
713 /*
714 * Release bus. Failure is an error.
715 */
716 if (epb_access(dd, sdnum, -1) < 0)
717 ret = -1;
718 else
719 ret = transval & EPB_DATA_MASK;
720
721 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
722 if (tries <= 0)
723 ret = -1;
724 return ret;
725 }
726
727 #define EPB_ROM_R (2)
728 #define EPB_ROM_W (1)
729 /*
730 * Below, all uC-related, use appropriate UC_CS, depending
731 * on which SerDes is used.
732 */
733 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
734 #define EPB_MADDRL EPB_LOC(6, 0, 2)
735 #define EPB_MADDRH EPB_LOC(6, 0, 3)
736 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
737 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
738
739 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
qib_sd7220_ram_xfer(struct qib_devdata * dd,int sdnum,u32 loc,u8 * buf,int cnt,int rd_notwr)740 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
741 u8 *buf, int cnt, int rd_notwr)
742 {
743 u16 trans;
744 u64 transval;
745 u64 csbit;
746 int owned;
747 int tries;
748 int sofar;
749 int addr;
750 int ret;
751 unsigned long flags;
752 const char *op;
753
754 /* Pick appropriate transaction reg and "Chip select" for this serdes */
755 switch (sdnum) {
756 case IB_7220_SERDES:
757 csbit = 1ULL << EPB_IB_UC_CS_SHF;
758 trans = kr_ibsd_epb_transaction_reg;
759 break;
760
761 case PCIE_SERDES0:
762 case PCIE_SERDES1:
763 /* PCIe SERDES has uC "chip select" in different bit, too */
764 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
765 trans = kr_pciesd_epb_transaction_reg;
766 break;
767
768 default:
769 return -1;
770 }
771
772 op = rd_notwr ? "Rd" : "Wr";
773 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
774
775 owned = epb_access(dd, sdnum, 1);
776 if (owned < 0) {
777 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
778 return -1;
779 }
780
781 /*
782 * In future code, we may need to distinguish several address ranges,
783 * and select various memories based on this. For now, just trim
784 * "loc" (location including address and memory select) to
785 * "addr" (address within memory). we will only support PRAM
786 * The memory is 8KB.
787 */
788 addr = loc & 0x1FFF;
789 for (tries = EPB_TRANS_TRIES; tries; --tries) {
790 transval = qib_read_kreg32(dd, trans);
791 if (transval & EPB_TRANS_RDY)
792 break;
793 udelay(5);
794 }
795
796 sofar = 0;
797 if (tries > 0) {
798 /*
799 * Every "memory" access is doubly-indirect.
800 * We set two bytes of address, then read/write
801 * one or mores bytes of data.
802 */
803
804 /* First, we set control to "Read" or "Write" */
805 transval = csbit | EPB_UC_CTL |
806 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
807 tries = epb_trans(dd, trans, transval, &transval);
808 while (tries > 0 && sofar < cnt) {
809 if (!sofar) {
810 /* Only set address at start of chunk */
811 int addrbyte = (addr + sofar) >> 8;
812 transval = csbit | EPB_MADDRH | addrbyte;
813 tries = epb_trans(dd, trans, transval,
814 &transval);
815 if (tries <= 0)
816 break;
817 addrbyte = (addr + sofar) & 0xFF;
818 transval = csbit | EPB_MADDRL | addrbyte;
819 tries = epb_trans(dd, trans, transval,
820 &transval);
821 if (tries <= 0)
822 break;
823 }
824
825 if (rd_notwr)
826 transval = csbit | EPB_ROMDATA | EPB_RD;
827 else
828 transval = csbit | EPB_ROMDATA | buf[sofar];
829 tries = epb_trans(dd, trans, transval, &transval);
830 if (tries <= 0)
831 break;
832 if (rd_notwr)
833 buf[sofar] = transval & EPB_DATA_MASK;
834 ++sofar;
835 }
836 /* Finally, clear control-bit for Read or Write */
837 transval = csbit | EPB_UC_CTL;
838 tries = epb_trans(dd, trans, transval, &transval);
839 }
840
841 ret = sofar;
842 /* Release bus. Failure is an error */
843 if (epb_access(dd, sdnum, -1) < 0)
844 ret = -1;
845
846 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
847 if (tries <= 0)
848 ret = -1;
849 return ret;
850 }
851
852 #define PROG_CHUNK 64
853
qib_sd7220_prog_ld(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)854 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
855 const u8 *img, int len, int offset)
856 {
857 int cnt, sofar, req;
858
859 sofar = 0;
860 while (sofar < len) {
861 req = len - sofar;
862 if (req > PROG_CHUNK)
863 req = PROG_CHUNK;
864 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
865 (u8 *)img + sofar, req, 0);
866 if (cnt < req) {
867 sofar = -1;
868 break;
869 }
870 sofar += req;
871 }
872 return sofar;
873 }
874
875 #define VFY_CHUNK 64
876 #define SD_PRAM_ERROR_LIMIT 42
877
qib_sd7220_prog_vfy(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)878 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
879 const u8 *img, int len, int offset)
880 {
881 int cnt, sofar, req, idx, errors;
882 unsigned char readback[VFY_CHUNK];
883
884 errors = 0;
885 sofar = 0;
886 while (sofar < len) {
887 req = len - sofar;
888 if (req > VFY_CHUNK)
889 req = VFY_CHUNK;
890 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
891 readback, req, 1);
892 if (cnt < req) {
893 /* failed in read itself */
894 sofar = -1;
895 break;
896 }
897 for (idx = 0; idx < cnt; ++idx) {
898 if (readback[idx] != img[idx+sofar])
899 ++errors;
900 }
901 sofar += cnt;
902 }
903 return errors ? -errors : sofar;
904 }
905
906 static int
qib_sd7220_ib_load(struct qib_devdata * dd,const struct firmware * fw)907 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
908 {
909 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
910 }
911
912 static int
qib_sd7220_ib_vfy(struct qib_devdata * dd,const struct firmware * fw)913 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
914 {
915 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
916 }
917
918 /*
919 * IRQ not set up at this point in init, so we poll.
920 */
921 #define IB_SERDES_TRIM_DONE (1ULL << 11)
922 #define TRIM_TMO (30)
923
qib_sd_trimdone_poll(struct qib_devdata * dd)924 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
925 {
926 int trim_tmo, ret;
927 uint64_t val;
928
929 /*
930 * Default to failure, so IBC will not start
931 * without IB_SERDES_TRIM_DONE.
932 */
933 ret = 0;
934 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
935 val = qib_read_kreg64(dd, kr_ibcstatus);
936 if (val & IB_SERDES_TRIM_DONE) {
937 ret = 1;
938 break;
939 }
940 msleep(10);
941 }
942 if (trim_tmo >= TRIM_TMO) {
943 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
944 ret = 0;
945 }
946 return ret;
947 }
948
949 #define TX_FAST_ELT (9)
950
951 /*
952 * Set the "negotiation" values for SERDES. These are used by the IB1.2
953 * link negotiation. Macros below are attempt to keep the values a
954 * little more human-editable.
955 * First, values related to Drive De-emphasis Settings.
956 */
957
958 #define NUM_DDS_REGS 6
959 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
960
961 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
962 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
963 (main_d << 3) | 4 | (ipre_d >> 2), \
964 (main_s << 3) | 4 | (ipre_s >> 2), \
965 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
966 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
967
968 static struct dds_init {
969 uint8_t reg_vals[NUM_DDS_REGS];
970 } dds_init_vals[] = {
971 /* DDR(FDR) SDR(HDR) */
972 /* Vendor recommends below for 3m cable */
973 #define DDS_3M 0
974 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
975 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
976 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
977 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
978 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
979 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
980 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
981 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
982 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
983 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
984 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
985 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
986 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
987 /* Vendor recommends below for 1m cable */
988 #define DDS_1M 13
989 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
990 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
991 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
992 };
993
994 /*
995 * Now the RXEQ section of the table.
996 */
997 /* Hardware packs an element number and register address thus: */
998 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
999 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1000 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1001
1002 #define RXEQ_VAL_ALL(elt, adr, val) \
1003 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1004
1005 #define RXEQ_SDR_DFELTH 0
1006 #define RXEQ_SDR_TLTH 0
1007 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1008 #define RXEQ_SDR_ZCNT 23
1009
1010 static struct rxeq_init {
1011 u16 rdesc; /* in form used in SerDesDDSRXEQ */
1012 u8 rdata[4];
1013 } rxeq_init_vals[] = {
1014 /* Set Rcv Eq. to Preset node */
1015 RXEQ_VAL_ALL(7, 0x27, 0x10),
1016 /* Set DFELTHFDR/HDR thresholds */
1017 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1018 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1019 /* Set TLTHFDR/HDR theshold */
1020 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1021 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1022 /* Set Preamp setting 2 (ZFR/ZCNT) */
1023 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1024 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1025 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1026 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1027 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1028 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1029 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1030 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1031 };
1032
1033 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1034 #define DDS_ROWS (16)
1035 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1036
qib_sd_setvals(struct qib_devdata * dd)1037 static int qib_sd_setvals(struct qib_devdata *dd)
1038 {
1039 int idx, midx;
1040 int min_idx; /* Minimum index for this portion of table */
1041 uint32_t dds_reg_map;
1042 u64 __iomem *taddr, *iaddr;
1043 uint64_t data;
1044 uint64_t sdctl;
1045
1046 taddr = dd->kregbase + kr_serdes_maptable;
1047 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1048
1049 /*
1050 * Init the DDS section of the table.
1051 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1052 * registers indicated in DDS_REG_MAP.
1053 */
1054 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1055 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1056 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1057 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1058
1059 /*
1060 * Iterate down table within loop for each register to store.
1061 */
1062 dds_reg_map = DDS_REG_MAP;
1063 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1064 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1065 writeq(data, iaddr + idx);
1066 mmiowb();
1067 qib_read_kreg32(dd, kr_scratch);
1068 dds_reg_map >>= 4;
1069 for (midx = 0; midx < DDS_ROWS; ++midx) {
1070 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1071 data = dds_init_vals[midx].reg_vals[idx];
1072 writeq(data, daddr);
1073 mmiowb();
1074 qib_read_kreg32(dd, kr_scratch);
1075 } /* End inner for (vals for this reg, each row) */
1076 } /* end outer for (regs to be stored) */
1077
1078 /*
1079 * Init the RXEQ section of the table.
1080 * This runs in a different order, as the pattern of
1081 * register references is more complex, but there are only
1082 * four "data" values per register.
1083 */
1084 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1085 taddr += 0x100; /* RXEQ data is in second half of table */
1086 /* Iterate through RXEQ register addresses */
1087 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1088 int didx; /* "destination" */
1089 int vidx;
1090
1091 /* didx is offset by min_idx to address RXEQ range of regs */
1092 didx = idx + min_idx;
1093 /* Store the next RXEQ register address */
1094 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1095 mmiowb();
1096 qib_read_kreg32(dd, kr_scratch);
1097 /* Iterate through RXEQ values */
1098 for (vidx = 0; vidx < 4; vidx++) {
1099 data = rxeq_init_vals[idx].rdata[vidx];
1100 writeq(data, taddr + (vidx << 6) + idx);
1101 mmiowb();
1102 qib_read_kreg32(dd, kr_scratch);
1103 }
1104 } /* end outer for (Reg-writes for RXEQ) */
1105 return 0;
1106 }
1107
1108 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1109 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1110 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1111 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1112 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1113 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1114
1115 /*
1116 * Repeat a "store" across all channels of the IB SerDes.
1117 * Although nominally it inherits the "read value" of the last
1118 * channel it modified, the only really useful return is <0 for
1119 * failure, >= 0 for success. The parameter 'loc' is assumed to
1120 * be the location in some channel of the register to be modified
1121 * The caller can specify use of the "gang write" option of EPB,
1122 * in which case we use the specified channel data for any fields
1123 * not explicitely written.
1124 */
ibsd_mod_allchnls(struct qib_devdata * dd,int loc,int val,int mask)1125 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1126 int mask)
1127 {
1128 int ret = -1;
1129 int chnl;
1130
1131 if (loc & EPB_GLOBAL_WR) {
1132 /*
1133 * Our caller has assured us that we can set all four
1134 * channels at once. Trust that. If mask is not 0xFF,
1135 * we will read the _specified_ channel for our starting
1136 * value.
1137 */
1138 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1139 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1140 if (mask != 0xFF) {
1141 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1142 loc & ~EPB_GLOBAL_WR, 0, 0);
1143 if (ret < 0) {
1144 int sloc = loc >> EPB_ADDR_SHF;
1145
1146 qib_dev_err(dd, "pre-read failed: elt %d,"
1147 " addr 0x%X, chnl %d\n",
1148 (sloc & 0xF),
1149 (sloc >> 9) & 0x3f, chnl);
1150 return ret;
1151 }
1152 val = (ret & ~mask) | (val & mask);
1153 }
1154 loc &= ~(7 << (4+EPB_ADDR_SHF));
1155 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1156 if (ret < 0) {
1157 int sloc = loc >> EPB_ADDR_SHF;
1158
1159 qib_dev_err(dd, "Global WR failed: elt %d,"
1160 " addr 0x%X, val %02X\n",
1161 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1162 }
1163 return ret;
1164 }
1165 /* Clear "channel" and set CS so we can simply iterate */
1166 loc &= ~(7 << (4+EPB_ADDR_SHF));
1167 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1168 for (chnl = 0; chnl < 4; ++chnl) {
1169 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1170
1171 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1172 if (ret < 0) {
1173 int sloc = loc >> EPB_ADDR_SHF;
1174
1175 qib_dev_err(dd, "Write failed: elt %d,"
1176 " addr 0x%X, chnl %d, val 0x%02X,"
1177 " mask 0x%02X\n",
1178 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1179 val & 0xFF, mask & 0xFF);
1180 break;
1181 }
1182 }
1183 return ret;
1184 }
1185
1186 /*
1187 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1188 * values, as gotten from first row of init table.
1189 */
set_dds_vals(struct qib_devdata * dd,struct dds_init * ddi)1190 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1191 {
1192 int ret;
1193 int idx, reg, data;
1194 uint32_t regmap;
1195
1196 regmap = DDS_REG_MAP;
1197 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1198 reg = (regmap & 0xF);
1199 regmap >>= 4;
1200 data = ddi->reg_vals[idx];
1201 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1202 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1203 if (ret < 0)
1204 break;
1205 }
1206 return ret;
1207 }
1208
1209 /*
1210 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1211 * values, as gotten from selected column of init table.
1212 */
set_rxeq_vals(struct qib_devdata * dd,int vsel)1213 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1214 {
1215 int ret;
1216 int ridx;
1217 int cnt = ARRAY_SIZE(rxeq_init_vals);
1218
1219 for (ridx = 0; ridx < cnt; ++ridx) {
1220 int elt, reg, val, loc;
1221
1222 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1223 reg = rxeq_init_vals[ridx].rdesc >> 4;
1224 loc = EPB_LOC(0, elt, reg);
1225 val = rxeq_init_vals[ridx].rdata[vsel];
1226 /* mask of 0xFF, because hardware does full-byte store. */
1227 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1228 if (ret < 0)
1229 break;
1230 }
1231 return ret;
1232 }
1233
1234 /*
1235 * Set the default values (row 0) for DDR Driver Demphasis.
1236 * we do this initially and whenever we turn off IB-1.2
1237 *
1238 * The "default" values for Rx equalization are also stored to
1239 * SerDes registers. Formerly (and still default), we used set 2.
1240 * For experimenting with cables and link-partners, we allow changing
1241 * that via a module parameter.
1242 */
1243 static unsigned qib_rxeq_set = 2;
1244 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1245 S_IWUSR | S_IRUGO);
1246 MODULE_PARM_DESC(rxeq_default_set,
1247 "Which set [0..3] of Rx Equalization values is default");
1248
qib_internal_presets(struct qib_devdata * dd)1249 static int qib_internal_presets(struct qib_devdata *dd)
1250 {
1251 int ret = 0;
1252
1253 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1254
1255 if (ret < 0)
1256 qib_dev_err(dd, "Failed to set default DDS values\n");
1257 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1258 if (ret < 0)
1259 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1260 return ret;
1261 }
1262
qib_sd7220_presets(struct qib_devdata * dd)1263 int qib_sd7220_presets(struct qib_devdata *dd)
1264 {
1265 int ret = 0;
1266
1267 if (!dd->cspec->presets_needed)
1268 return ret;
1269 dd->cspec->presets_needed = 0;
1270 /* Assert uC reset, so we don't clash with it. */
1271 qib_ibsd_reset(dd, 1);
1272 udelay(2);
1273 qib_sd_trimdone_monitor(dd, "link-down");
1274
1275 ret = qib_internal_presets(dd);
1276 return ret;
1277 }
1278
qib_sd_trimself(struct qib_devdata * dd,int val)1279 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1280 {
1281 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1282
1283 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1284 }
1285
qib_sd_early(struct qib_devdata * dd)1286 static int qib_sd_early(struct qib_devdata *dd)
1287 {
1288 int ret;
1289
1290 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1291 if (ret < 0)
1292 goto bail;
1293 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1294 if (ret < 0)
1295 goto bail;
1296 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1297 bail:
1298 return ret;
1299 }
1300
1301 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304
qib_sd_dactrim(struct qib_devdata * dd)1305 static int qib_sd_dactrim(struct qib_devdata *dd)
1306 {
1307 int ret;
1308
1309 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1310 if (ret < 0)
1311 goto bail;
1312
1313 /* more fine-tuning of what will be default */
1314 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1315 if (ret < 0)
1316 goto bail;
1317
1318 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1319 if (ret < 0)
1320 goto bail;
1321
1322 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1323 if (ret < 0)
1324 goto bail;
1325
1326 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1327 if (ret < 0)
1328 goto bail;
1329
1330 /*
1331 * Delay for max possible number of steps, with slop.
1332 * Each step is about 4usec.
1333 */
1334 udelay(415);
1335
1336 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1337
1338 bail:
1339 return ret;
1340 }
1341
1342 #define RELOCK_FIRST_MS 3
1343 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
toggle_7220_rclkrls(struct qib_devdata * dd)1344 void toggle_7220_rclkrls(struct qib_devdata *dd)
1345 {
1346 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1347 int ret;
1348
1349 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1350 if (ret < 0)
1351 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1352 else {
1353 udelay(1);
1354 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1355 }
1356 /* And again for good measure */
1357 udelay(1);
1358 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1359 if (ret < 0)
1360 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1361 else {
1362 udelay(1);
1363 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1364 }
1365 /* Now reset xgxs and IBC to complete the recovery */
1366 dd->f_xgxs_reset(dd->pport);
1367 }
1368
1369 /*
1370 * Shut down the timer that polls for relock occasions, if needed
1371 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1372 * just before qib_shutdown_device() in qib_driver.c shuts down all
1373 * the other timers
1374 */
shutdown_7220_relock_poll(struct qib_devdata * dd)1375 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1376 {
1377 if (dd->cspec->relock_timer_active)
1378 del_timer_sync(&dd->cspec->relock_timer);
1379 }
1380
1381 static unsigned qib_relock_by_timer = 1;
1382 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1383 S_IWUSR | S_IRUGO);
1384 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385
qib_run_relock(unsigned long opaque)1386 static void qib_run_relock(unsigned long opaque)
1387 {
1388 struct qib_devdata *dd = (struct qib_devdata *)opaque;
1389 struct qib_pportdata *ppd = dd->pport;
1390 struct qib_chip_specific *cs = dd->cspec;
1391 int timeoff;
1392
1393 /*
1394 * Check link-training state for "stuck" state, when down.
1395 * if found, try relock and schedule another try at
1396 * exponentially growing delay, maxed at one second.
1397 * if not stuck, our work is done.
1398 */
1399 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1400 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1401 QIBL_LINKACTIVE))) {
1402 if (qib_relock_by_timer) {
1403 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1404 toggle_7220_rclkrls(dd);
1405 }
1406 /* re-set timer for next check */
1407 timeoff = cs->relock_interval << 1;
1408 if (timeoff > HZ)
1409 timeoff = HZ;
1410 cs->relock_interval = timeoff;
1411 } else
1412 timeoff = HZ;
1413 mod_timer(&cs->relock_timer, jiffies + timeoff);
1414 }
1415
set_7220_relock_poll(struct qib_devdata * dd,int ibup)1416 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1417 {
1418 struct qib_chip_specific *cs = dd->cspec;
1419
1420 if (ibup) {
1421 /* We are now up, relax timer to 1 second interval */
1422 if (cs->relock_timer_active) {
1423 cs->relock_interval = HZ;
1424 mod_timer(&cs->relock_timer, jiffies + HZ);
1425 }
1426 } else {
1427 /* Transition to down, (re-)set timer to short interval. */
1428 unsigned int timeout;
1429
1430 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1431 if (timeout == 0)
1432 timeout = 1;
1433 /* If timer has not yet been started, do so. */
1434 if (!cs->relock_timer_active) {
1435 cs->relock_timer_active = 1;
1436 init_timer(&cs->relock_timer);
1437 cs->relock_timer.function = qib_run_relock;
1438 cs->relock_timer.data = (unsigned long) dd;
1439 cs->relock_interval = timeout;
1440 cs->relock_timer.expires = jiffies + timeout;
1441 add_timer(&cs->relock_timer);
1442 } else {
1443 cs->relock_interval = timeout;
1444 mod_timer(&cs->relock_timer, jiffies + timeout);
1445 }
1446 }
1447 }
1448