1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void allow_barrier(conf_t *conf);
56 static void lower_barrier(conf_t *conf);
57 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
r1bio_pool_free(void * r1_bio,void * data)67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	r1bio_t *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < pi->raid_disks )
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
r1buf_pool_free(void * __r1_bio,void * data)144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	r1bio_t *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
put_all_bios(conf_t * conf,r1bio_t * r1_bio)163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (*bio && *bio != IO_BLOCKED)
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
free_r1bio(r1bio_t * r1_bio)175 static void free_r1bio(r1bio_t *r1_bio)
176 {
177 	conf_t *conf = r1_bio->mddev->private;
178 
179 	/*
180 	 * Wake up any possible resync thread that waits for the device
181 	 * to go idle.
182 	 */
183 	allow_barrier(conf);
184 
185 	put_all_bios(conf, r1_bio);
186 	mempool_free(r1_bio, conf->r1bio_pool);
187 }
188 
put_buf(r1bio_t * r1_bio)189 static void put_buf(r1bio_t *r1_bio)
190 {
191 	conf_t *conf = r1_bio->mddev->private;
192 	int i;
193 
194 	for (i=0; i<conf->raid_disks; i++) {
195 		struct bio *bio = r1_bio->bios[i];
196 		if (bio->bi_end_io)
197 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
198 	}
199 
200 	mempool_free(r1_bio, conf->r1buf_pool);
201 
202 	lower_barrier(conf);
203 }
204 
reschedule_retry(r1bio_t * r1_bio)205 static void reschedule_retry(r1bio_t *r1_bio)
206 {
207 	unsigned long flags;
208 	mddev_t *mddev = r1_bio->mddev;
209 	conf_t *conf = mddev->private;
210 
211 	spin_lock_irqsave(&conf->device_lock, flags);
212 	list_add(&r1_bio->retry_list, &conf->retry_list);
213 	conf->nr_queued ++;
214 	spin_unlock_irqrestore(&conf->device_lock, flags);
215 
216 	wake_up(&conf->wait_barrier);
217 	md_wakeup_thread(mddev->thread);
218 }
219 
220 /*
221  * raid_end_bio_io() is called when we have finished servicing a mirrored
222  * operation and are ready to return a success/failure code to the buffer
223  * cache layer.
224  */
raid_end_bio_io(r1bio_t * r1_bio)225 static void raid_end_bio_io(r1bio_t *r1_bio)
226 {
227 	struct bio *bio = r1_bio->master_bio;
228 
229 	/* if nobody has done the final endio yet, do it now */
230 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
233 			(unsigned long long) bio->bi_sector,
234 			(unsigned long long) bio->bi_sector +
235 				(bio->bi_size >> 9) - 1);
236 
237 		bio_endio(bio,
238 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
239 	}
240 	free_r1bio(r1_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
update_head_pos(int disk,r1bio_t * r1_bio)246 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
247 {
248 	conf_t *conf = r1_bio->mddev->private;
249 
250 	conf->mirrors[disk].head_position =
251 		r1_bio->sector + (r1_bio->sectors);
252 }
253 
raid1_end_read_request(struct bio * bio,int error)254 static void raid1_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r1bio_t *r1_bio = bio->bi_private;
258 	int mirror;
259 	conf_t *conf = r1_bio->mddev->private;
260 
261 	mirror = r1_bio->read_disk;
262 	/*
263 	 * this branch is our 'one mirror IO has finished' event handler:
264 	 */
265 	update_head_pos(mirror, r1_bio);
266 
267 	if (uptodate)
268 		set_bit(R1BIO_Uptodate, &r1_bio->state);
269 	else {
270 		/* If all other devices have failed, we want to return
271 		 * the error upwards rather than fail the last device.
272 		 * Here we redefine "uptodate" to mean "Don't want to retry"
273 		 */
274 		unsigned long flags;
275 		spin_lock_irqsave(&conf->device_lock, flags);
276 		if (r1_bio->mddev->degraded == conf->raid_disks ||
277 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
278 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279 			uptodate = 1;
280 		spin_unlock_irqrestore(&conf->device_lock, flags);
281 	}
282 
283 	if (uptodate)
284 		raid_end_bio_io(r1_bio);
285 	else {
286 		/*
287 		 * oops, read error:
288 		 */
289 		char b[BDEVNAME_SIZE];
290 		if (printk_ratelimit())
291 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292 			       mdname(conf->mddev),
293 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294 		reschedule_retry(r1_bio);
295 	}
296 
297 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
298 }
299 
r1_bio_write_done(r1bio_t * r1_bio,int vcnt,struct bio_vec * bv,int behind)300 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
301 			      int behind)
302 {
303 	if (atomic_dec_and_test(&r1_bio->remaining))
304 	{
305 		/* it really is the end of this request */
306 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
307 			/* free extra copy of the data pages */
308 			int i = vcnt;
309 			while (i--)
310 				safe_put_page(bv[i].bv_page);
311 		}
312 		/* clear the bitmap if all writes complete successfully */
313 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
314 				r1_bio->sectors,
315 				!test_bit(R1BIO_Degraded, &r1_bio->state),
316 				behind);
317 		md_write_end(r1_bio->mddev);
318 		raid_end_bio_io(r1_bio);
319 	}
320 }
321 
raid1_end_write_request(struct bio * bio,int error)322 static void raid1_end_write_request(struct bio *bio, int error)
323 {
324 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
325 	r1bio_t *r1_bio = bio->bi_private;
326 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
327 	conf_t *conf = r1_bio->mddev->private;
328 	struct bio *to_put = NULL;
329 
330 
331 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
332 		if (r1_bio->bios[mirror] == bio)
333 			break;
334 
335 	/*
336 	 * 'one mirror IO has finished' event handler:
337 	 */
338 	r1_bio->bios[mirror] = NULL;
339 	to_put = bio;
340 	if (!uptodate) {
341 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
342 		/* an I/O failed, we can't clear the bitmap */
343 		set_bit(R1BIO_Degraded, &r1_bio->state);
344 	} else
345 		/*
346 		 * Set R1BIO_Uptodate in our master bio, so that we
347 		 * will return a good error code for to the higher
348 		 * levels even if IO on some other mirrored buffer
349 		 * fails.
350 		 *
351 		 * The 'master' represents the composite IO operation
352 		 * to user-side. So if something waits for IO, then it
353 		 * will wait for the 'master' bio.
354 		 */
355 		set_bit(R1BIO_Uptodate, &r1_bio->state);
356 
357 	update_head_pos(mirror, r1_bio);
358 
359 	if (behind) {
360 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
361 			atomic_dec(&r1_bio->behind_remaining);
362 
363 		/*
364 		 * In behind mode, we ACK the master bio once the I/O
365 		 * has safely reached all non-writemostly
366 		 * disks. Setting the Returned bit ensures that this
367 		 * gets done only once -- we don't ever want to return
368 		 * -EIO here, instead we'll wait
369 		 */
370 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
371 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
372 			/* Maybe we can return now */
373 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
374 				struct bio *mbio = r1_bio->master_bio;
375 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
376 				       (unsigned long long) mbio->bi_sector,
377 				       (unsigned long long) mbio->bi_sector +
378 				       (mbio->bi_size >> 9) - 1);
379 				bio_endio(mbio, 0);
380 			}
381 		}
382 	}
383 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
384 
385 	/*
386 	 * Let's see if all mirrored write operations have finished
387 	 * already.
388 	 */
389 	r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
390 
391 	if (to_put)
392 		bio_put(to_put);
393 }
394 
395 
396 /*
397  * This routine returns the disk from which the requested read should
398  * be done. There is a per-array 'next expected sequential IO' sector
399  * number - if this matches on the next IO then we use the last disk.
400  * There is also a per-disk 'last know head position' sector that is
401  * maintained from IRQ contexts, both the normal and the resync IO
402  * completion handlers update this position correctly. If there is no
403  * perfect sequential match then we pick the disk whose head is closest.
404  *
405  * If there are 2 mirrors in the same 2 devices, performance degrades
406  * because position is mirror, not device based.
407  *
408  * The rdev for the device selected will have nr_pending incremented.
409  */
read_balance(conf_t * conf,r1bio_t * r1_bio)410 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
411 {
412 	const sector_t this_sector = r1_bio->sector;
413 	const int sectors = r1_bio->sectors;
414 	int new_disk = -1;
415 	int start_disk;
416 	int i;
417 	sector_t new_distance, current_distance;
418 	mdk_rdev_t *rdev;
419 	int choose_first;
420 
421 	rcu_read_lock();
422 	/*
423 	 * Check if we can balance. We can balance on the whole
424 	 * device if no resync is going on, or below the resync window.
425 	 * We take the first readable disk when above the resync window.
426 	 */
427  retry:
428 	if (conf->mddev->recovery_cp < MaxSector &&
429 	    (this_sector + sectors >= conf->next_resync)) {
430 		choose_first = 1;
431 		start_disk = 0;
432 	} else {
433 		choose_first = 0;
434 		start_disk = conf->last_used;
435 	}
436 
437 	/* make sure the disk is operational */
438 	for (i = 0 ; i < conf->raid_disks ; i++) {
439 		int disk = start_disk + i;
440 		if (disk >= conf->raid_disks)
441 			disk -= conf->raid_disks;
442 
443 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
444 		if (r1_bio->bios[disk] == IO_BLOCKED
445 		    || rdev == NULL
446 		    || !test_bit(In_sync, &rdev->flags))
447 			continue;
448 
449 		new_disk = disk;
450 		if (!test_bit(WriteMostly, &rdev->flags))
451 			break;
452 	}
453 
454 	if (new_disk < 0 || choose_first)
455 		goto rb_out;
456 
457 	/*
458 	 * Don't change to another disk for sequential reads:
459 	 */
460 	if (conf->next_seq_sect == this_sector)
461 		goto rb_out;
462 	if (this_sector == conf->mirrors[new_disk].head_position)
463 		goto rb_out;
464 
465 	current_distance = abs(this_sector
466 			       - conf->mirrors[new_disk].head_position);
467 
468 	/* look for a better disk - i.e. head is closer */
469 	start_disk = new_disk;
470 	for (i = 1; i < conf->raid_disks; i++) {
471 		int disk = start_disk + 1;
472 		if (disk >= conf->raid_disks)
473 			disk -= conf->raid_disks;
474 
475 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
476 		if (r1_bio->bios[disk] == IO_BLOCKED
477 		    || rdev == NULL
478 		    || !test_bit(In_sync, &rdev->flags)
479 		    || test_bit(WriteMostly, &rdev->flags))
480 			continue;
481 
482 		if (!atomic_read(&rdev->nr_pending)) {
483 			new_disk = disk;
484 			break;
485 		}
486 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
487 		if (new_distance < current_distance) {
488 			current_distance = new_distance;
489 			new_disk = disk;
490 		}
491 	}
492 
493  rb_out:
494 	if (new_disk >= 0) {
495 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
496 		if (!rdev)
497 			goto retry;
498 		atomic_inc(&rdev->nr_pending);
499 		if (!test_bit(In_sync, &rdev->flags)) {
500 			/* cannot risk returning a device that failed
501 			 * before we inc'ed nr_pending
502 			 */
503 			rdev_dec_pending(rdev, conf->mddev);
504 			goto retry;
505 		}
506 		conf->next_seq_sect = this_sector + sectors;
507 		conf->last_used = new_disk;
508 	}
509 	rcu_read_unlock();
510 
511 	return new_disk;
512 }
513 
raid1_congested(void * data,int bits)514 static int raid1_congested(void *data, int bits)
515 {
516 	mddev_t *mddev = data;
517 	conf_t *conf = mddev->private;
518 	int i, ret = 0;
519 
520 	if (mddev_congested(mddev, bits))
521 		return 1;
522 
523 	rcu_read_lock();
524 	for (i = 0; i < mddev->raid_disks; i++) {
525 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
526 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
527 			struct request_queue *q = bdev_get_queue(rdev->bdev);
528 
529 			/* Note the '|| 1' - when read_balance prefers
530 			 * non-congested targets, it can be removed
531 			 */
532 			if ((bits & (1<<BDI_async_congested)) || 1)
533 				ret |= bdi_congested(&q->backing_dev_info, bits);
534 			else
535 				ret &= bdi_congested(&q->backing_dev_info, bits);
536 		}
537 	}
538 	rcu_read_unlock();
539 	return ret;
540 }
541 
542 
flush_pending_writes(conf_t * conf)543 static void flush_pending_writes(conf_t *conf)
544 {
545 	/* Any writes that have been queued but are awaiting
546 	 * bitmap updates get flushed here.
547 	 */
548 	spin_lock_irq(&conf->device_lock);
549 
550 	if (conf->pending_bio_list.head) {
551 		struct bio *bio;
552 		bio = bio_list_get(&conf->pending_bio_list);
553 		spin_unlock_irq(&conf->device_lock);
554 		/* flush any pending bitmap writes to
555 		 * disk before proceeding w/ I/O */
556 		bitmap_unplug(conf->mddev->bitmap);
557 
558 		while (bio) { /* submit pending writes */
559 			struct bio *next = bio->bi_next;
560 			bio->bi_next = NULL;
561 			generic_make_request(bio);
562 			bio = next;
563 		}
564 	} else
565 		spin_unlock_irq(&conf->device_lock);
566 }
567 
568 /* Barriers....
569  * Sometimes we need to suspend IO while we do something else,
570  * either some resync/recovery, or reconfigure the array.
571  * To do this we raise a 'barrier'.
572  * The 'barrier' is a counter that can be raised multiple times
573  * to count how many activities are happening which preclude
574  * normal IO.
575  * We can only raise the barrier if there is no pending IO.
576  * i.e. if nr_pending == 0.
577  * We choose only to raise the barrier if no-one is waiting for the
578  * barrier to go down.  This means that as soon as an IO request
579  * is ready, no other operations which require a barrier will start
580  * until the IO request has had a chance.
581  *
582  * So: regular IO calls 'wait_barrier'.  When that returns there
583  *    is no backgroup IO happening,  It must arrange to call
584  *    allow_barrier when it has finished its IO.
585  * backgroup IO calls must call raise_barrier.  Once that returns
586  *    there is no normal IO happeing.  It must arrange to call
587  *    lower_barrier when the particular background IO completes.
588  */
589 #define RESYNC_DEPTH 32
590 
raise_barrier(conf_t * conf)591 static void raise_barrier(conf_t *conf)
592 {
593 	spin_lock_irq(&conf->resync_lock);
594 
595 	/* Wait until no block IO is waiting */
596 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
597 			    conf->resync_lock, );
598 
599 	/* block any new IO from starting */
600 	conf->barrier++;
601 
602 	/* Now wait for all pending IO to complete */
603 	wait_event_lock_irq(conf->wait_barrier,
604 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
605 			    conf->resync_lock, );
606 
607 	spin_unlock_irq(&conf->resync_lock);
608 }
609 
lower_barrier(conf_t * conf)610 static void lower_barrier(conf_t *conf)
611 {
612 	unsigned long flags;
613 	BUG_ON(conf->barrier <= 0);
614 	spin_lock_irqsave(&conf->resync_lock, flags);
615 	conf->barrier--;
616 	spin_unlock_irqrestore(&conf->resync_lock, flags);
617 	wake_up(&conf->wait_barrier);
618 }
619 
wait_barrier(conf_t * conf)620 static void wait_barrier(conf_t *conf)
621 {
622 	spin_lock_irq(&conf->resync_lock);
623 	if (conf->barrier) {
624 		conf->nr_waiting++;
625 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
626 				    conf->resync_lock,
627 				    );
628 		conf->nr_waiting--;
629 	}
630 	conf->nr_pending++;
631 	spin_unlock_irq(&conf->resync_lock);
632 }
633 
allow_barrier(conf_t * conf)634 static void allow_barrier(conf_t *conf)
635 {
636 	unsigned long flags;
637 	spin_lock_irqsave(&conf->resync_lock, flags);
638 	conf->nr_pending--;
639 	spin_unlock_irqrestore(&conf->resync_lock, flags);
640 	wake_up(&conf->wait_barrier);
641 }
642 
freeze_array(conf_t * conf)643 static void freeze_array(conf_t *conf)
644 {
645 	/* stop syncio and normal IO and wait for everything to
646 	 * go quite.
647 	 * We increment barrier and nr_waiting, and then
648 	 * wait until nr_pending match nr_queued+1
649 	 * This is called in the context of one normal IO request
650 	 * that has failed. Thus any sync request that might be pending
651 	 * will be blocked by nr_pending, and we need to wait for
652 	 * pending IO requests to complete or be queued for re-try.
653 	 * Thus the number queued (nr_queued) plus this request (1)
654 	 * must match the number of pending IOs (nr_pending) before
655 	 * we continue.
656 	 */
657 	spin_lock_irq(&conf->resync_lock);
658 	conf->barrier++;
659 	conf->nr_waiting++;
660 	wait_event_lock_irq(conf->wait_barrier,
661 			    conf->nr_pending == conf->nr_queued+1,
662 			    conf->resync_lock,
663 			    flush_pending_writes(conf));
664 	spin_unlock_irq(&conf->resync_lock);
665 }
unfreeze_array(conf_t * conf)666 static void unfreeze_array(conf_t *conf)
667 {
668 	/* reverse the effect of the freeze */
669 	spin_lock_irq(&conf->resync_lock);
670 	conf->barrier--;
671 	conf->nr_waiting--;
672 	wake_up(&conf->wait_barrier);
673 	spin_unlock_irq(&conf->resync_lock);
674 }
675 
676 
677 /* duplicate the data pages for behind I/O
678  * We return a list of bio_vec rather than just page pointers
679  * as it makes freeing easier
680  */
alloc_behind_pages(struct bio * bio)681 static struct bio_vec *alloc_behind_pages(struct bio *bio)
682 {
683 	int i;
684 	struct bio_vec *bvec;
685 	struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
686 					GFP_NOIO);
687 	if (unlikely(!pages))
688 		goto do_sync_io;
689 
690 	bio_for_each_segment(bvec, bio, i) {
691 		pages[i].bv_page = alloc_page(GFP_NOIO);
692 		if (unlikely(!pages[i].bv_page))
693 			goto do_sync_io;
694 		memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
695 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
696 		kunmap(pages[i].bv_page);
697 		kunmap(bvec->bv_page);
698 	}
699 
700 	return pages;
701 
702 do_sync_io:
703 	if (pages)
704 		for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
705 			put_page(pages[i].bv_page);
706 	kfree(pages);
707 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
708 	return NULL;
709 }
710 
make_request(mddev_t * mddev,struct bio * bio)711 static int make_request(mddev_t *mddev, struct bio * bio)
712 {
713 	conf_t *conf = mddev->private;
714 	mirror_info_t *mirror;
715 	r1bio_t *r1_bio;
716 	struct bio *read_bio;
717 	int i, targets = 0, disks;
718 	struct bitmap *bitmap;
719 	unsigned long flags;
720 	struct bio_vec *behind_pages = NULL;
721 	const int rw = bio_data_dir(bio);
722 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
723 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
724 	mdk_rdev_t *blocked_rdev;
725 	int plugged;
726 
727 	/*
728 	 * Register the new request and wait if the reconstruction
729 	 * thread has put up a bar for new requests.
730 	 * Continue immediately if no resync is active currently.
731 	 */
732 
733 	md_write_start(mddev, bio); /* wait on superblock update early */
734 
735 	if (bio_data_dir(bio) == WRITE &&
736 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
737 	    bio->bi_sector < mddev->suspend_hi) {
738 		/* As the suspend_* range is controlled by
739 		 * userspace, we want an interruptible
740 		 * wait.
741 		 */
742 		DEFINE_WAIT(w);
743 		for (;;) {
744 			flush_signals(current);
745 			prepare_to_wait(&conf->wait_barrier,
746 					&w, TASK_INTERRUPTIBLE);
747 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
748 			    bio->bi_sector >= mddev->suspend_hi)
749 				break;
750 			schedule();
751 		}
752 		finish_wait(&conf->wait_barrier, &w);
753 	}
754 
755 	wait_barrier(conf);
756 
757 	bitmap = mddev->bitmap;
758 
759 	/*
760 	 * make_request() can abort the operation when READA is being
761 	 * used and no empty request is available.
762 	 *
763 	 */
764 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
765 
766 	r1_bio->master_bio = bio;
767 	r1_bio->sectors = bio->bi_size >> 9;
768 	r1_bio->state = 0;
769 	r1_bio->mddev = mddev;
770 	r1_bio->sector = bio->bi_sector;
771 
772 	if (rw == READ) {
773 		/*
774 		 * read balancing logic:
775 		 */
776 		int rdisk = read_balance(conf, r1_bio);
777 
778 		if (rdisk < 0) {
779 			/* couldn't find anywhere to read from */
780 			raid_end_bio_io(r1_bio);
781 			return 0;
782 		}
783 		mirror = conf->mirrors + rdisk;
784 
785 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
786 		    bitmap) {
787 			/* Reading from a write-mostly device must
788 			 * take care not to over-take any writes
789 			 * that are 'behind'
790 			 */
791 			wait_event(bitmap->behind_wait,
792 				   atomic_read(&bitmap->behind_writes) == 0);
793 		}
794 		r1_bio->read_disk = rdisk;
795 
796 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
797 
798 		r1_bio->bios[rdisk] = read_bio;
799 
800 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
801 		read_bio->bi_bdev = mirror->rdev->bdev;
802 		read_bio->bi_end_io = raid1_end_read_request;
803 		read_bio->bi_rw = READ | do_sync;
804 		read_bio->bi_private = r1_bio;
805 
806 		generic_make_request(read_bio);
807 		return 0;
808 	}
809 
810 	/*
811 	 * WRITE:
812 	 */
813 	/* first select target devices under spinlock and
814 	 * inc refcount on their rdev.  Record them by setting
815 	 * bios[x] to bio
816 	 */
817 	plugged = mddev_check_plugged(mddev);
818 
819 	disks = conf->raid_disks;
820  retry_write:
821 	blocked_rdev = NULL;
822 	rcu_read_lock();
823 	for (i = 0;  i < disks; i++) {
824 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
825 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
826 			atomic_inc(&rdev->nr_pending);
827 			blocked_rdev = rdev;
828 			break;
829 		}
830 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
831 			atomic_inc(&rdev->nr_pending);
832 			if (test_bit(Faulty, &rdev->flags)) {
833 				rdev_dec_pending(rdev, mddev);
834 				r1_bio->bios[i] = NULL;
835 			} else {
836 				r1_bio->bios[i] = bio;
837 				targets++;
838 			}
839 		} else
840 			r1_bio->bios[i] = NULL;
841 	}
842 	rcu_read_unlock();
843 
844 	if (unlikely(blocked_rdev)) {
845 		/* Wait for this device to become unblocked */
846 		int j;
847 
848 		for (j = 0; j < i; j++)
849 			if (r1_bio->bios[j])
850 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
851 
852 		allow_barrier(conf);
853 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
854 		wait_barrier(conf);
855 		goto retry_write;
856 	}
857 
858 	BUG_ON(targets == 0); /* we never fail the last device */
859 
860 	if (targets < conf->raid_disks) {
861 		/* array is degraded, we will not clear the bitmap
862 		 * on I/O completion (see raid1_end_write_request) */
863 		set_bit(R1BIO_Degraded, &r1_bio->state);
864 	}
865 
866 	/* do behind I/O ?
867 	 * Not if there are too many, or cannot allocate memory,
868 	 * or a reader on WriteMostly is waiting for behind writes
869 	 * to flush */
870 	if (bitmap &&
871 	    (atomic_read(&bitmap->behind_writes)
872 	     < mddev->bitmap_info.max_write_behind) &&
873 	    !waitqueue_active(&bitmap->behind_wait) &&
874 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
875 		set_bit(R1BIO_BehindIO, &r1_bio->state);
876 
877 	atomic_set(&r1_bio->remaining, 1);
878 	atomic_set(&r1_bio->behind_remaining, 0);
879 
880 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
881 				test_bit(R1BIO_BehindIO, &r1_bio->state));
882 	for (i = 0; i < disks; i++) {
883 		struct bio *mbio;
884 		if (!r1_bio->bios[i])
885 			continue;
886 
887 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
888 		r1_bio->bios[i] = mbio;
889 
890 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
891 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
892 		mbio->bi_end_io	= raid1_end_write_request;
893 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
894 		mbio->bi_private = r1_bio;
895 
896 		if (behind_pages) {
897 			struct bio_vec *bvec;
898 			int j;
899 
900 			/* Yes, I really want the '__' version so that
901 			 * we clear any unused pointer in the io_vec, rather
902 			 * than leave them unchanged.  This is important
903 			 * because when we come to free the pages, we won't
904 			 * know the original bi_idx, so we just free
905 			 * them all
906 			 */
907 			__bio_for_each_segment(bvec, mbio, j, 0)
908 				bvec->bv_page = behind_pages[j].bv_page;
909 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
910 				atomic_inc(&r1_bio->behind_remaining);
911 		}
912 
913 		atomic_inc(&r1_bio->remaining);
914 		spin_lock_irqsave(&conf->device_lock, flags);
915 		bio_list_add(&conf->pending_bio_list, mbio);
916 		spin_unlock_irqrestore(&conf->device_lock, flags);
917 	}
918 	r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
919 	kfree(behind_pages); /* the behind pages are attached to the bios now */
920 
921 	/* In case raid1d snuck in to freeze_array */
922 	wake_up(&conf->wait_barrier);
923 
924 	if (do_sync || !bitmap || !plugged)
925 		md_wakeup_thread(mddev->thread);
926 
927 	return 0;
928 }
929 
status(struct seq_file * seq,mddev_t * mddev)930 static void status(struct seq_file *seq, mddev_t *mddev)
931 {
932 	conf_t *conf = mddev->private;
933 	int i;
934 
935 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
936 		   conf->raid_disks - mddev->degraded);
937 	rcu_read_lock();
938 	for (i = 0; i < conf->raid_disks; i++) {
939 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
940 		seq_printf(seq, "%s",
941 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
942 	}
943 	rcu_read_unlock();
944 	seq_printf(seq, "]");
945 }
946 
947 
error(mddev_t * mddev,mdk_rdev_t * rdev)948 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
949 {
950 	char b[BDEVNAME_SIZE];
951 	conf_t *conf = mddev->private;
952 
953 	/*
954 	 * If it is not operational, then we have already marked it as dead
955 	 * else if it is the last working disks, ignore the error, let the
956 	 * next level up know.
957 	 * else mark the drive as failed
958 	 */
959 	if (test_bit(In_sync, &rdev->flags)
960 	    && (conf->raid_disks - mddev->degraded) == 1) {
961 		/*
962 		 * Don't fail the drive, act as though we were just a
963 		 * normal single drive.
964 		 * However don't try a recovery from this drive as
965 		 * it is very likely to fail.
966 		 */
967 		mddev->recovery_disabled = 1;
968 		return;
969 	}
970 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
971 		unsigned long flags;
972 		spin_lock_irqsave(&conf->device_lock, flags);
973 		mddev->degraded++;
974 		set_bit(Faulty, &rdev->flags);
975 		spin_unlock_irqrestore(&conf->device_lock, flags);
976 		/*
977 		 * if recovery is running, make sure it aborts.
978 		 */
979 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
980 	} else
981 		set_bit(Faulty, &rdev->flags);
982 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
983 	printk(KERN_ALERT
984 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
985 	       "md/raid1:%s: Operation continuing on %d devices.\n",
986 	       mdname(mddev), bdevname(rdev->bdev, b),
987 	       mdname(mddev), conf->raid_disks - mddev->degraded);
988 }
989 
print_conf(conf_t * conf)990 static void print_conf(conf_t *conf)
991 {
992 	int i;
993 
994 	printk(KERN_DEBUG "RAID1 conf printout:\n");
995 	if (!conf) {
996 		printk(KERN_DEBUG "(!conf)\n");
997 		return;
998 	}
999 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1000 		conf->raid_disks);
1001 
1002 	rcu_read_lock();
1003 	for (i = 0; i < conf->raid_disks; i++) {
1004 		char b[BDEVNAME_SIZE];
1005 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1006 		if (rdev)
1007 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1008 			       i, !test_bit(In_sync, &rdev->flags),
1009 			       !test_bit(Faulty, &rdev->flags),
1010 			       bdevname(rdev->bdev,b));
1011 	}
1012 	rcu_read_unlock();
1013 }
1014 
close_sync(conf_t * conf)1015 static void close_sync(conf_t *conf)
1016 {
1017 	wait_barrier(conf);
1018 	allow_barrier(conf);
1019 
1020 	mempool_destroy(conf->r1buf_pool);
1021 	conf->r1buf_pool = NULL;
1022 }
1023 
raid1_spare_active(mddev_t * mddev)1024 static int raid1_spare_active(mddev_t *mddev)
1025 {
1026 	int i;
1027 	conf_t *conf = mddev->private;
1028 	int count = 0;
1029 	unsigned long flags;
1030 
1031 	/*
1032 	 * Find all failed disks within the RAID1 configuration
1033 	 * and mark them readable.
1034 	 * Called under mddev lock, so rcu protection not needed.
1035 	 */
1036 	for (i = 0; i < conf->raid_disks; i++) {
1037 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1038 		if (rdev
1039 		    && !test_bit(Faulty, &rdev->flags)
1040 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1041 			count++;
1042 			sysfs_notify_dirent(rdev->sysfs_state);
1043 		}
1044 	}
1045 	spin_lock_irqsave(&conf->device_lock, flags);
1046 	mddev->degraded -= count;
1047 	spin_unlock_irqrestore(&conf->device_lock, flags);
1048 
1049 	print_conf(conf);
1050 	return count;
1051 }
1052 
1053 
raid1_add_disk(mddev_t * mddev,mdk_rdev_t * rdev)1054 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1055 {
1056 	conf_t *conf = mddev->private;
1057 	int err = -EEXIST;
1058 	int mirror = 0;
1059 	mirror_info_t *p;
1060 	int first = 0;
1061 	int last = mddev->raid_disks - 1;
1062 
1063 	if (rdev->raid_disk >= 0)
1064 		first = last = rdev->raid_disk;
1065 
1066 	for (mirror = first; mirror <= last; mirror++)
1067 		if ( !(p=conf->mirrors+mirror)->rdev) {
1068 
1069 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1070 					  rdev->data_offset << 9);
1071 			/* as we don't honour merge_bvec_fn, we must
1072 			 * never risk violating it, so limit
1073 			 * ->max_segments to one lying with a single
1074 			 * page, as a one page request is never in
1075 			 * violation.
1076 			 */
1077 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1078 				blk_queue_max_segments(mddev->queue, 1);
1079 				blk_queue_segment_boundary(mddev->queue,
1080 							   PAGE_CACHE_SIZE - 1);
1081 			}
1082 
1083 			p->head_position = 0;
1084 			rdev->raid_disk = mirror;
1085 			err = 0;
1086 			/* As all devices are equivalent, we don't need a full recovery
1087 			 * if this was recently any drive of the array
1088 			 */
1089 			if (rdev->saved_raid_disk < 0)
1090 				conf->fullsync = 1;
1091 			rcu_assign_pointer(p->rdev, rdev);
1092 			break;
1093 		}
1094 	md_integrity_add_rdev(rdev, mddev);
1095 	print_conf(conf);
1096 	return err;
1097 }
1098 
raid1_remove_disk(mddev_t * mddev,int number)1099 static int raid1_remove_disk(mddev_t *mddev, int number)
1100 {
1101 	conf_t *conf = mddev->private;
1102 	int err = 0;
1103 	mdk_rdev_t *rdev;
1104 	mirror_info_t *p = conf->mirrors+ number;
1105 
1106 	print_conf(conf);
1107 	rdev = p->rdev;
1108 	if (rdev) {
1109 		if (test_bit(In_sync, &rdev->flags) ||
1110 		    atomic_read(&rdev->nr_pending)) {
1111 			err = -EBUSY;
1112 			goto abort;
1113 		}
1114 		/* Only remove non-faulty devices if recovery
1115 		 * is not possible.
1116 		 */
1117 		if (!test_bit(Faulty, &rdev->flags) &&
1118 		    !mddev->recovery_disabled &&
1119 		    mddev->degraded < conf->raid_disks) {
1120 			err = -EBUSY;
1121 			goto abort;
1122 		}
1123 		p->rdev = NULL;
1124 		synchronize_rcu();
1125 		if (atomic_read(&rdev->nr_pending)) {
1126 			/* lost the race, try later */
1127 			err = -EBUSY;
1128 			p->rdev = rdev;
1129 			goto abort;
1130 		}
1131 		err = md_integrity_register(mddev);
1132 	}
1133 abort:
1134 
1135 	print_conf(conf);
1136 	return err;
1137 }
1138 
1139 
end_sync_read(struct bio * bio,int error)1140 static void end_sync_read(struct bio *bio, int error)
1141 {
1142 	r1bio_t *r1_bio = bio->bi_private;
1143 	int i;
1144 
1145 	for (i=r1_bio->mddev->raid_disks; i--; )
1146 		if (r1_bio->bios[i] == bio)
1147 			break;
1148 	BUG_ON(i < 0);
1149 	update_head_pos(i, r1_bio);
1150 	/*
1151 	 * we have read a block, now it needs to be re-written,
1152 	 * or re-read if the read failed.
1153 	 * We don't do much here, just schedule handling by raid1d
1154 	 */
1155 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1156 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1157 
1158 	if (atomic_dec_and_test(&r1_bio->remaining))
1159 		reschedule_retry(r1_bio);
1160 }
1161 
end_sync_write(struct bio * bio,int error)1162 static void end_sync_write(struct bio *bio, int error)
1163 {
1164 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1165 	r1bio_t *r1_bio = bio->bi_private;
1166 	mddev_t *mddev = r1_bio->mddev;
1167 	conf_t *conf = mddev->private;
1168 	int i;
1169 	int mirror=0;
1170 
1171 	for (i = 0; i < conf->raid_disks; i++)
1172 		if (r1_bio->bios[i] == bio) {
1173 			mirror = i;
1174 			break;
1175 		}
1176 	if (!uptodate) {
1177 		sector_t sync_blocks = 0;
1178 		sector_t s = r1_bio->sector;
1179 		long sectors_to_go = r1_bio->sectors;
1180 		/* make sure these bits doesn't get cleared. */
1181 		do {
1182 			bitmap_end_sync(mddev->bitmap, s,
1183 					&sync_blocks, 1);
1184 			s += sync_blocks;
1185 			sectors_to_go -= sync_blocks;
1186 		} while (sectors_to_go > 0);
1187 		md_error(mddev, conf->mirrors[mirror].rdev);
1188 	}
1189 
1190 	update_head_pos(mirror, r1_bio);
1191 
1192 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1193 		sector_t s = r1_bio->sectors;
1194 		put_buf(r1_bio);
1195 		md_done_sync(mddev, s, uptodate);
1196 	}
1197 }
1198 
sync_request_write(mddev_t * mddev,r1bio_t * r1_bio)1199 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1200 {
1201 	conf_t *conf = mddev->private;
1202 	int i;
1203 	int disks = conf->raid_disks;
1204 	struct bio *bio, *wbio;
1205 
1206 	bio = r1_bio->bios[r1_bio->read_disk];
1207 
1208 
1209 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1210 		/* We have read all readable devices.  If we haven't
1211 		 * got the block, then there is no hope left.
1212 		 * If we have, then we want to do a comparison
1213 		 * and skip the write if everything is the same.
1214 		 * If any blocks failed to read, then we need to
1215 		 * attempt an over-write
1216 		 */
1217 		int primary;
1218 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1219 			for (i=0; i<mddev->raid_disks; i++)
1220 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1221 					md_error(mddev, conf->mirrors[i].rdev);
1222 
1223 			md_done_sync(mddev, r1_bio->sectors, 1);
1224 			put_buf(r1_bio);
1225 			return;
1226 		}
1227 		for (primary=0; primary<mddev->raid_disks; primary++)
1228 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1229 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1230 				r1_bio->bios[primary]->bi_end_io = NULL;
1231 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1232 				break;
1233 			}
1234 		r1_bio->read_disk = primary;
1235 		for (i=0; i<mddev->raid_disks; i++)
1236 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1237 				int j;
1238 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1239 				struct bio *pbio = r1_bio->bios[primary];
1240 				struct bio *sbio = r1_bio->bios[i];
1241 
1242 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1243 					for (j = vcnt; j-- ; ) {
1244 						struct page *p, *s;
1245 						p = pbio->bi_io_vec[j].bv_page;
1246 						s = sbio->bi_io_vec[j].bv_page;
1247 						if (memcmp(page_address(p),
1248 							   page_address(s),
1249 							   PAGE_SIZE))
1250 							break;
1251 					}
1252 				} else
1253 					j = 0;
1254 				if (j >= 0)
1255 					mddev->resync_mismatches += r1_bio->sectors;
1256 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1257 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1258 					sbio->bi_end_io = NULL;
1259 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1260 				} else {
1261 					/* fixup the bio for reuse */
1262 					int size;
1263 					sbio->bi_vcnt = vcnt;
1264 					sbio->bi_size = r1_bio->sectors << 9;
1265 					sbio->bi_idx = 0;
1266 					sbio->bi_phys_segments = 0;
1267 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1268 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1269 					sbio->bi_next = NULL;
1270 					sbio->bi_sector = r1_bio->sector +
1271 						conf->mirrors[i].rdev->data_offset;
1272 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1273 					size = sbio->bi_size;
1274 					for (j = 0; j < vcnt ; j++) {
1275 						struct bio_vec *bi;
1276 						bi = &sbio->bi_io_vec[j];
1277 						bi->bv_offset = 0;
1278 						if (size > PAGE_SIZE)
1279 							bi->bv_len = PAGE_SIZE;
1280 						else
1281 							bi->bv_len = size;
1282 						size -= PAGE_SIZE;
1283 						memcpy(page_address(bi->bv_page),
1284 						       page_address(pbio->bi_io_vec[j].bv_page),
1285 						       PAGE_SIZE);
1286 					}
1287 
1288 				}
1289 			}
1290 	}
1291 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1292 		/* ouch - failed to read all of that.
1293 		 * Try some synchronous reads of other devices to get
1294 		 * good data, much like with normal read errors.  Only
1295 		 * read into the pages we already have so we don't
1296 		 * need to re-issue the read request.
1297 		 * We don't need to freeze the array, because being in an
1298 		 * active sync request, there is no normal IO, and
1299 		 * no overlapping syncs.
1300 		 */
1301 		sector_t sect = r1_bio->sector;
1302 		int sectors = r1_bio->sectors;
1303 		int idx = 0;
1304 
1305 		while(sectors) {
1306 			int s = sectors;
1307 			int d = r1_bio->read_disk;
1308 			int success = 0;
1309 			mdk_rdev_t *rdev;
1310 
1311 			if (s > (PAGE_SIZE>>9))
1312 				s = PAGE_SIZE >> 9;
1313 			do {
1314 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1315 					/* No rcu protection needed here devices
1316 					 * can only be removed when no resync is
1317 					 * active, and resync is currently active
1318 					 */
1319 					rdev = conf->mirrors[d].rdev;
1320 					if (sync_page_io(rdev,
1321 							 sect,
1322 							 s<<9,
1323 							 bio->bi_io_vec[idx].bv_page,
1324 							 READ, false)) {
1325 						success = 1;
1326 						break;
1327 					}
1328 				}
1329 				d++;
1330 				if (d == conf->raid_disks)
1331 					d = 0;
1332 			} while (!success && d != r1_bio->read_disk);
1333 
1334 			if (success) {
1335 				int start = d;
1336 				/* write it back and re-read */
1337 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1338 				while (d != r1_bio->read_disk) {
1339 					if (d == 0)
1340 						d = conf->raid_disks;
1341 					d--;
1342 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1343 						continue;
1344 					rdev = conf->mirrors[d].rdev;
1345 					atomic_add(s, &rdev->corrected_errors);
1346 					if (sync_page_io(rdev,
1347 							 sect,
1348 							 s<<9,
1349 							 bio->bi_io_vec[idx].bv_page,
1350 							 WRITE, false) == 0)
1351 						md_error(mddev, rdev);
1352 				}
1353 				d = start;
1354 				while (d != r1_bio->read_disk) {
1355 					if (d == 0)
1356 						d = conf->raid_disks;
1357 					d--;
1358 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1359 						continue;
1360 					rdev = conf->mirrors[d].rdev;
1361 					if (sync_page_io(rdev,
1362 							 sect,
1363 							 s<<9,
1364 							 bio->bi_io_vec[idx].bv_page,
1365 							 READ, false) == 0)
1366 						md_error(mddev, rdev);
1367 				}
1368 			} else {
1369 				char b[BDEVNAME_SIZE];
1370 				/* Cannot read from anywhere, array is toast */
1371 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1372 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1373 				       " for block %llu\n",
1374 				       mdname(mddev),
1375 				       bdevname(bio->bi_bdev, b),
1376 				       (unsigned long long)r1_bio->sector);
1377 				md_done_sync(mddev, r1_bio->sectors, 0);
1378 				put_buf(r1_bio);
1379 				return;
1380 			}
1381 			sectors -= s;
1382 			sect += s;
1383 			idx ++;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * schedule writes
1389 	 */
1390 	atomic_set(&r1_bio->remaining, 1);
1391 	for (i = 0; i < disks ; i++) {
1392 		wbio = r1_bio->bios[i];
1393 		if (wbio->bi_end_io == NULL ||
1394 		    (wbio->bi_end_io == end_sync_read &&
1395 		     (i == r1_bio->read_disk ||
1396 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1397 			continue;
1398 
1399 		wbio->bi_rw = WRITE;
1400 		wbio->bi_end_io = end_sync_write;
1401 		atomic_inc(&r1_bio->remaining);
1402 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1403 
1404 		generic_make_request(wbio);
1405 	}
1406 
1407 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1408 		/* if we're here, all write(s) have completed, so clean up */
1409 		md_done_sync(mddev, r1_bio->sectors, 1);
1410 		put_buf(r1_bio);
1411 	}
1412 }
1413 
1414 /*
1415  * This is a kernel thread which:
1416  *
1417  *	1.	Retries failed read operations on working mirrors.
1418  *	2.	Updates the raid superblock when problems encounter.
1419  *	3.	Performs writes following reads for array syncronising.
1420  */
1421 
fix_read_error(conf_t * conf,int read_disk,sector_t sect,int sectors)1422 static void fix_read_error(conf_t *conf, int read_disk,
1423 			   sector_t sect, int sectors)
1424 {
1425 	mddev_t *mddev = conf->mddev;
1426 	while(sectors) {
1427 		int s = sectors;
1428 		int d = read_disk;
1429 		int success = 0;
1430 		int start;
1431 		mdk_rdev_t *rdev;
1432 
1433 		if (s > (PAGE_SIZE>>9))
1434 			s = PAGE_SIZE >> 9;
1435 
1436 		do {
1437 			/* Note: no rcu protection needed here
1438 			 * as this is synchronous in the raid1d thread
1439 			 * which is the thread that might remove
1440 			 * a device.  If raid1d ever becomes multi-threaded....
1441 			 */
1442 			rdev = conf->mirrors[d].rdev;
1443 			if (rdev &&
1444 			    test_bit(In_sync, &rdev->flags) &&
1445 			    sync_page_io(rdev, sect, s<<9,
1446 					 conf->tmppage, READ, false))
1447 				success = 1;
1448 			else {
1449 				d++;
1450 				if (d == conf->raid_disks)
1451 					d = 0;
1452 			}
1453 		} while (!success && d != read_disk);
1454 
1455 		if (!success) {
1456 			/* Cannot read from anywhere -- bye bye array */
1457 			md_error(mddev, conf->mirrors[read_disk].rdev);
1458 			break;
1459 		}
1460 		/* write it back and re-read */
1461 		start = d;
1462 		while (d != read_disk) {
1463 			if (d==0)
1464 				d = conf->raid_disks;
1465 			d--;
1466 			rdev = conf->mirrors[d].rdev;
1467 			if (rdev &&
1468 			    test_bit(In_sync, &rdev->flags)) {
1469 				if (sync_page_io(rdev, sect, s<<9,
1470 						 conf->tmppage, WRITE, false)
1471 				    == 0)
1472 					/* Well, this device is dead */
1473 					md_error(mddev, rdev);
1474 			}
1475 		}
1476 		d = start;
1477 		while (d != read_disk) {
1478 			char b[BDEVNAME_SIZE];
1479 			if (d==0)
1480 				d = conf->raid_disks;
1481 			d--;
1482 			rdev = conf->mirrors[d].rdev;
1483 			if (rdev &&
1484 			    test_bit(In_sync, &rdev->flags)) {
1485 				if (sync_page_io(rdev, sect, s<<9,
1486 						 conf->tmppage, READ, false)
1487 				    == 0)
1488 					/* Well, this device is dead */
1489 					md_error(mddev, rdev);
1490 				else {
1491 					atomic_add(s, &rdev->corrected_errors);
1492 					printk(KERN_INFO
1493 					       "md/raid1:%s: read error corrected "
1494 					       "(%d sectors at %llu on %s)\n",
1495 					       mdname(mddev), s,
1496 					       (unsigned long long)(sect +
1497 					           rdev->data_offset),
1498 					       bdevname(rdev->bdev, b));
1499 				}
1500 			}
1501 		}
1502 		sectors -= s;
1503 		sect += s;
1504 	}
1505 }
1506 
raid1d(mddev_t * mddev)1507 static void raid1d(mddev_t *mddev)
1508 {
1509 	r1bio_t *r1_bio;
1510 	struct bio *bio;
1511 	unsigned long flags;
1512 	conf_t *conf = mddev->private;
1513 	struct list_head *head = &conf->retry_list;
1514 	mdk_rdev_t *rdev;
1515 	struct blk_plug plug;
1516 
1517 	md_check_recovery(mddev);
1518 
1519 	blk_start_plug(&plug);
1520 	for (;;) {
1521 		char b[BDEVNAME_SIZE];
1522 
1523 		if (atomic_read(&mddev->plug_cnt) == 0)
1524 			flush_pending_writes(conf);
1525 
1526 		spin_lock_irqsave(&conf->device_lock, flags);
1527 		if (list_empty(head)) {
1528 			spin_unlock_irqrestore(&conf->device_lock, flags);
1529 			break;
1530 		}
1531 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1532 		list_del(head->prev);
1533 		conf->nr_queued--;
1534 		spin_unlock_irqrestore(&conf->device_lock, flags);
1535 
1536 		mddev = r1_bio->mddev;
1537 		conf = mddev->private;
1538 		if (test_bit(R1BIO_IsSync, &r1_bio->state))
1539 			sync_request_write(mddev, r1_bio);
1540 		else {
1541 			int disk;
1542 
1543 			/* we got a read error. Maybe the drive is bad.  Maybe just
1544 			 * the block and we can fix it.
1545 			 * We freeze all other IO, and try reading the block from
1546 			 * other devices.  When we find one, we re-write
1547 			 * and check it that fixes the read error.
1548 			 * This is all done synchronously while the array is
1549 			 * frozen
1550 			 */
1551 			if (mddev->ro == 0) {
1552 				freeze_array(conf);
1553 				fix_read_error(conf, r1_bio->read_disk,
1554 					       r1_bio->sector,
1555 					       r1_bio->sectors);
1556 				unfreeze_array(conf);
1557 			} else
1558 				md_error(mddev,
1559 					 conf->mirrors[r1_bio->read_disk].rdev);
1560 
1561 			bio = r1_bio->bios[r1_bio->read_disk];
1562 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1563 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1564 				       " read error for block %llu\n",
1565 				       mdname(mddev),
1566 				       bdevname(bio->bi_bdev,b),
1567 				       (unsigned long long)r1_bio->sector);
1568 				raid_end_bio_io(r1_bio);
1569 			} else {
1570 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1571 				r1_bio->bios[r1_bio->read_disk] =
1572 					mddev->ro ? IO_BLOCKED : NULL;
1573 				r1_bio->read_disk = disk;
1574 				bio_put(bio);
1575 				bio = bio_clone_mddev(r1_bio->master_bio,
1576 						      GFP_NOIO, mddev);
1577 				r1_bio->bios[r1_bio->read_disk] = bio;
1578 				rdev = conf->mirrors[disk].rdev;
1579 				if (printk_ratelimit())
1580 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1581 					       " other mirror: %s\n",
1582 					       mdname(mddev),
1583 					       (unsigned long long)r1_bio->sector,
1584 					       bdevname(rdev->bdev,b));
1585 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1586 				bio->bi_bdev = rdev->bdev;
1587 				bio->bi_end_io = raid1_end_read_request;
1588 				bio->bi_rw = READ | do_sync;
1589 				bio->bi_private = r1_bio;
1590 				generic_make_request(bio);
1591 			}
1592 		}
1593 		cond_resched();
1594 	}
1595 	blk_finish_plug(&plug);
1596 }
1597 
1598 
init_resync(conf_t * conf)1599 static int init_resync(conf_t *conf)
1600 {
1601 	int buffs;
1602 
1603 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1604 	BUG_ON(conf->r1buf_pool);
1605 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1606 					  conf->poolinfo);
1607 	if (!conf->r1buf_pool)
1608 		return -ENOMEM;
1609 	conf->next_resync = 0;
1610 	return 0;
1611 }
1612 
1613 /*
1614  * perform a "sync" on one "block"
1615  *
1616  * We need to make sure that no normal I/O request - particularly write
1617  * requests - conflict with active sync requests.
1618  *
1619  * This is achieved by tracking pending requests and a 'barrier' concept
1620  * that can be installed to exclude normal IO requests.
1621  */
1622 
sync_request(mddev_t * mddev,sector_t sector_nr,int * skipped,int go_faster)1623 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1624 {
1625 	conf_t *conf = mddev->private;
1626 	r1bio_t *r1_bio;
1627 	struct bio *bio;
1628 	sector_t max_sector, nr_sectors;
1629 	int disk = -1;
1630 	int i;
1631 	int wonly = -1;
1632 	int write_targets = 0, read_targets = 0;
1633 	sector_t sync_blocks;
1634 	int still_degraded = 0;
1635 
1636 	if (!conf->r1buf_pool)
1637 		if (init_resync(conf))
1638 			return 0;
1639 
1640 	max_sector = mddev->dev_sectors;
1641 	if (sector_nr >= max_sector) {
1642 		/* If we aborted, we need to abort the
1643 		 * sync on the 'current' bitmap chunk (there will
1644 		 * only be one in raid1 resync.
1645 		 * We can find the current addess in mddev->curr_resync
1646 		 */
1647 		if (mddev->curr_resync < max_sector) /* aborted */
1648 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1649 						&sync_blocks, 1);
1650 		else /* completed sync */
1651 			conf->fullsync = 0;
1652 
1653 		bitmap_close_sync(mddev->bitmap);
1654 		close_sync(conf);
1655 		return 0;
1656 	}
1657 
1658 	if (mddev->bitmap == NULL &&
1659 	    mddev->recovery_cp == MaxSector &&
1660 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1661 	    conf->fullsync == 0) {
1662 		*skipped = 1;
1663 		return max_sector - sector_nr;
1664 	}
1665 	/* before building a request, check if we can skip these blocks..
1666 	 * This call the bitmap_start_sync doesn't actually record anything
1667 	 */
1668 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1669 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1670 		/* We can skip this block, and probably several more */
1671 		*skipped = 1;
1672 		return sync_blocks;
1673 	}
1674 	/*
1675 	 * If there is non-resync activity waiting for a turn,
1676 	 * and resync is going fast enough,
1677 	 * then let it though before starting on this new sync request.
1678 	 */
1679 	if (!go_faster && conf->nr_waiting)
1680 		msleep_interruptible(1000);
1681 
1682 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1683 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1684 	raise_barrier(conf);
1685 
1686 	conf->next_resync = sector_nr;
1687 
1688 	rcu_read_lock();
1689 	/*
1690 	 * If we get a correctably read error during resync or recovery,
1691 	 * we might want to read from a different device.  So we
1692 	 * flag all drives that could conceivably be read from for READ,
1693 	 * and any others (which will be non-In_sync devices) for WRITE.
1694 	 * If a read fails, we try reading from something else for which READ
1695 	 * is OK.
1696 	 */
1697 
1698 	r1_bio->mddev = mddev;
1699 	r1_bio->sector = sector_nr;
1700 	r1_bio->state = 0;
1701 	set_bit(R1BIO_IsSync, &r1_bio->state);
1702 
1703 	for (i=0; i < conf->raid_disks; i++) {
1704 		mdk_rdev_t *rdev;
1705 		bio = r1_bio->bios[i];
1706 
1707 		/* take from bio_init */
1708 		bio->bi_next = NULL;
1709 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1710 		bio->bi_flags |= 1 << BIO_UPTODATE;
1711 		bio->bi_comp_cpu = -1;
1712 		bio->bi_rw = READ;
1713 		bio->bi_vcnt = 0;
1714 		bio->bi_idx = 0;
1715 		bio->bi_phys_segments = 0;
1716 		bio->bi_size = 0;
1717 		bio->bi_end_io = NULL;
1718 		bio->bi_private = NULL;
1719 
1720 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1721 		if (rdev == NULL ||
1722 			   test_bit(Faulty, &rdev->flags)) {
1723 			still_degraded = 1;
1724 			continue;
1725 		} else if (!test_bit(In_sync, &rdev->flags)) {
1726 			bio->bi_rw = WRITE;
1727 			bio->bi_end_io = end_sync_write;
1728 			write_targets ++;
1729 		} else {
1730 			/* may need to read from here */
1731 			bio->bi_rw = READ;
1732 			bio->bi_end_io = end_sync_read;
1733 			if (test_bit(WriteMostly, &rdev->flags)) {
1734 				if (wonly < 0)
1735 					wonly = i;
1736 			} else {
1737 				if (disk < 0)
1738 					disk = i;
1739 			}
1740 			read_targets++;
1741 		}
1742 		atomic_inc(&rdev->nr_pending);
1743 		bio->bi_sector = sector_nr + rdev->data_offset;
1744 		bio->bi_bdev = rdev->bdev;
1745 		bio->bi_private = r1_bio;
1746 	}
1747 	rcu_read_unlock();
1748 	if (disk < 0)
1749 		disk = wonly;
1750 	r1_bio->read_disk = disk;
1751 
1752 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1753 		/* extra read targets are also write targets */
1754 		write_targets += read_targets-1;
1755 
1756 	if (write_targets == 0 || read_targets == 0) {
1757 		/* There is nowhere to write, so all non-sync
1758 		 * drives must be failed - so we are finished
1759 		 */
1760 		sector_t rv = max_sector - sector_nr;
1761 		*skipped = 1;
1762 		put_buf(r1_bio);
1763 		return rv;
1764 	}
1765 
1766 	if (max_sector > mddev->resync_max)
1767 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1768 	nr_sectors = 0;
1769 	sync_blocks = 0;
1770 	do {
1771 		struct page *page;
1772 		int len = PAGE_SIZE;
1773 		if (sector_nr + (len>>9) > max_sector)
1774 			len = (max_sector - sector_nr) << 9;
1775 		if (len == 0)
1776 			break;
1777 		if (sync_blocks == 0) {
1778 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1779 					       &sync_blocks, still_degraded) &&
1780 			    !conf->fullsync &&
1781 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1782 				break;
1783 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1784 			if ((len >> 9) > sync_blocks)
1785 				len = sync_blocks<<9;
1786 		}
1787 
1788 		for (i=0 ; i < conf->raid_disks; i++) {
1789 			bio = r1_bio->bios[i];
1790 			if (bio->bi_end_io) {
1791 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1792 				if (bio_add_page(bio, page, len, 0) == 0) {
1793 					/* stop here */
1794 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1795 					while (i > 0) {
1796 						i--;
1797 						bio = r1_bio->bios[i];
1798 						if (bio->bi_end_io==NULL)
1799 							continue;
1800 						/* remove last page from this bio */
1801 						bio->bi_vcnt--;
1802 						bio->bi_size -= len;
1803 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1804 					}
1805 					goto bio_full;
1806 				}
1807 			}
1808 		}
1809 		nr_sectors += len>>9;
1810 		sector_nr += len>>9;
1811 		sync_blocks -= (len>>9);
1812 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1813  bio_full:
1814 	r1_bio->sectors = nr_sectors;
1815 
1816 	/* For a user-requested sync, we read all readable devices and do a
1817 	 * compare
1818 	 */
1819 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1820 		atomic_set(&r1_bio->remaining, read_targets);
1821 		for (i=0; i<conf->raid_disks; i++) {
1822 			bio = r1_bio->bios[i];
1823 			if (bio->bi_end_io == end_sync_read) {
1824 				md_sync_acct(bio->bi_bdev, nr_sectors);
1825 				generic_make_request(bio);
1826 			}
1827 		}
1828 	} else {
1829 		atomic_set(&r1_bio->remaining, 1);
1830 		bio = r1_bio->bios[r1_bio->read_disk];
1831 		md_sync_acct(bio->bi_bdev, nr_sectors);
1832 		generic_make_request(bio);
1833 
1834 	}
1835 	return nr_sectors;
1836 }
1837 
raid1_size(mddev_t * mddev,sector_t sectors,int raid_disks)1838 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1839 {
1840 	if (sectors)
1841 		return sectors;
1842 
1843 	return mddev->dev_sectors;
1844 }
1845 
setup_conf(mddev_t * mddev)1846 static conf_t *setup_conf(mddev_t *mddev)
1847 {
1848 	conf_t *conf;
1849 	int i;
1850 	mirror_info_t *disk;
1851 	mdk_rdev_t *rdev;
1852 	int err = -ENOMEM;
1853 
1854 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1855 	if (!conf)
1856 		goto abort;
1857 
1858 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1859 				 GFP_KERNEL);
1860 	if (!conf->mirrors)
1861 		goto abort;
1862 
1863 	conf->tmppage = alloc_page(GFP_KERNEL);
1864 	if (!conf->tmppage)
1865 		goto abort;
1866 
1867 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1868 	if (!conf->poolinfo)
1869 		goto abort;
1870 	conf->poolinfo->raid_disks = mddev->raid_disks;
1871 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1872 					  r1bio_pool_free,
1873 					  conf->poolinfo);
1874 	if (!conf->r1bio_pool)
1875 		goto abort;
1876 
1877 	conf->poolinfo->mddev = mddev;
1878 
1879 	spin_lock_init(&conf->device_lock);
1880 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1881 		int disk_idx = rdev->raid_disk;
1882 		if (disk_idx >= mddev->raid_disks
1883 		    || disk_idx < 0)
1884 			continue;
1885 		disk = conf->mirrors + disk_idx;
1886 
1887 		disk->rdev = rdev;
1888 
1889 		disk->head_position = 0;
1890 	}
1891 	conf->raid_disks = mddev->raid_disks;
1892 	conf->mddev = mddev;
1893 	INIT_LIST_HEAD(&conf->retry_list);
1894 
1895 	spin_lock_init(&conf->resync_lock);
1896 	init_waitqueue_head(&conf->wait_barrier);
1897 
1898 	bio_list_init(&conf->pending_bio_list);
1899 
1900 	conf->last_used = -1;
1901 	for (i = 0; i < conf->raid_disks; i++) {
1902 
1903 		disk = conf->mirrors + i;
1904 
1905 		if (!disk->rdev ||
1906 		    !test_bit(In_sync, &disk->rdev->flags)) {
1907 			disk->head_position = 0;
1908 			if (disk->rdev)
1909 				conf->fullsync = 1;
1910 		} else if (conf->last_used < 0)
1911 			/*
1912 			 * The first working device is used as a
1913 			 * starting point to read balancing.
1914 			 */
1915 			conf->last_used = i;
1916 	}
1917 
1918 	err = -EIO;
1919 	if (conf->last_used < 0) {
1920 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1921 		       mdname(mddev));
1922 		goto abort;
1923 	}
1924 	err = -ENOMEM;
1925 	conf->thread = md_register_thread(raid1d, mddev, NULL);
1926 	if (!conf->thread) {
1927 		printk(KERN_ERR
1928 		       "md/raid1:%s: couldn't allocate thread\n",
1929 		       mdname(mddev));
1930 		goto abort;
1931 	}
1932 
1933 	return conf;
1934 
1935  abort:
1936 	if (conf) {
1937 		if (conf->r1bio_pool)
1938 			mempool_destroy(conf->r1bio_pool);
1939 		kfree(conf->mirrors);
1940 		safe_put_page(conf->tmppage);
1941 		kfree(conf->poolinfo);
1942 		kfree(conf);
1943 	}
1944 	return ERR_PTR(err);
1945 }
1946 
run(mddev_t * mddev)1947 static int run(mddev_t *mddev)
1948 {
1949 	conf_t *conf;
1950 	int i;
1951 	mdk_rdev_t *rdev;
1952 
1953 	if (mddev->level != 1) {
1954 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1955 		       mdname(mddev), mddev->level);
1956 		return -EIO;
1957 	}
1958 	if (mddev->reshape_position != MaxSector) {
1959 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1960 		       mdname(mddev));
1961 		return -EIO;
1962 	}
1963 	/*
1964 	 * copy the already verified devices into our private RAID1
1965 	 * bookkeeping area. [whatever we allocate in run(),
1966 	 * should be freed in stop()]
1967 	 */
1968 	if (mddev->private == NULL)
1969 		conf = setup_conf(mddev);
1970 	else
1971 		conf = mddev->private;
1972 
1973 	if (IS_ERR(conf))
1974 		return PTR_ERR(conf);
1975 
1976 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1977 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1978 				  rdev->data_offset << 9);
1979 		/* as we don't honour merge_bvec_fn, we must never risk
1980 		 * violating it, so limit ->max_segments to 1 lying within
1981 		 * a single page, as a one page request is never in violation.
1982 		 */
1983 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1984 			blk_queue_max_segments(mddev->queue, 1);
1985 			blk_queue_segment_boundary(mddev->queue,
1986 						   PAGE_CACHE_SIZE - 1);
1987 		}
1988 	}
1989 
1990 	mddev->degraded = 0;
1991 	for (i=0; i < conf->raid_disks; i++)
1992 		if (conf->mirrors[i].rdev == NULL ||
1993 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
1994 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
1995 			mddev->degraded++;
1996 
1997 	if (conf->raid_disks - mddev->degraded == 1)
1998 		mddev->recovery_cp = MaxSector;
1999 
2000 	if (mddev->recovery_cp != MaxSector)
2001 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2002 		       " -- starting background reconstruction\n",
2003 		       mdname(mddev));
2004 	printk(KERN_INFO
2005 		"md/raid1:%s: active with %d out of %d mirrors\n",
2006 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2007 		mddev->raid_disks);
2008 
2009 	/*
2010 	 * Ok, everything is just fine now
2011 	 */
2012 	mddev->thread = conf->thread;
2013 	conf->thread = NULL;
2014 	mddev->private = conf;
2015 
2016 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2017 
2018 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2019 	mddev->queue->backing_dev_info.congested_data = mddev;
2020 	return md_integrity_register(mddev);
2021 }
2022 
stop(mddev_t * mddev)2023 static int stop(mddev_t *mddev)
2024 {
2025 	conf_t *conf = mddev->private;
2026 	struct bitmap *bitmap = mddev->bitmap;
2027 
2028 	/* wait for behind writes to complete */
2029 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2030 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2031 		       mdname(mddev));
2032 		/* need to kick something here to make sure I/O goes? */
2033 		wait_event(bitmap->behind_wait,
2034 			   atomic_read(&bitmap->behind_writes) == 0);
2035 	}
2036 
2037 	raise_barrier(conf);
2038 	lower_barrier(conf);
2039 
2040 	md_unregister_thread(mddev->thread);
2041 	mddev->thread = NULL;
2042 	if (conf->r1bio_pool)
2043 		mempool_destroy(conf->r1bio_pool);
2044 	kfree(conf->mirrors);
2045 	kfree(conf->poolinfo);
2046 	kfree(conf);
2047 	mddev->private = NULL;
2048 	return 0;
2049 }
2050 
raid1_resize(mddev_t * mddev,sector_t sectors)2051 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2052 {
2053 	/* no resync is happening, and there is enough space
2054 	 * on all devices, so we can resize.
2055 	 * We need to make sure resync covers any new space.
2056 	 * If the array is shrinking we should possibly wait until
2057 	 * any io in the removed space completes, but it hardly seems
2058 	 * worth it.
2059 	 */
2060 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2061 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2062 		return -EINVAL;
2063 	set_capacity(mddev->gendisk, mddev->array_sectors);
2064 	revalidate_disk(mddev->gendisk);
2065 	if (sectors > mddev->dev_sectors &&
2066 	    mddev->recovery_cp == MaxSector) {
2067 		mddev->recovery_cp = mddev->dev_sectors;
2068 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2069 	}
2070 	mddev->dev_sectors = sectors;
2071 	mddev->resync_max_sectors = sectors;
2072 	return 0;
2073 }
2074 
raid1_reshape(mddev_t * mddev)2075 static int raid1_reshape(mddev_t *mddev)
2076 {
2077 	/* We need to:
2078 	 * 1/ resize the r1bio_pool
2079 	 * 2/ resize conf->mirrors
2080 	 *
2081 	 * We allocate a new r1bio_pool if we can.
2082 	 * Then raise a device barrier and wait until all IO stops.
2083 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2084 	 *
2085 	 * At the same time, we "pack" the devices so that all the missing
2086 	 * devices have the higher raid_disk numbers.
2087 	 */
2088 	mempool_t *newpool, *oldpool;
2089 	struct pool_info *newpoolinfo;
2090 	mirror_info_t *newmirrors;
2091 	conf_t *conf = mddev->private;
2092 	int cnt, raid_disks;
2093 	unsigned long flags;
2094 	int d, d2, err;
2095 
2096 	/* Cannot change chunk_size, layout, or level */
2097 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2098 	    mddev->layout != mddev->new_layout ||
2099 	    mddev->level != mddev->new_level) {
2100 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2101 		mddev->new_layout = mddev->layout;
2102 		mddev->new_level = mddev->level;
2103 		return -EINVAL;
2104 	}
2105 
2106 	err = md_allow_write(mddev);
2107 	if (err)
2108 		return err;
2109 
2110 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2111 
2112 	if (raid_disks < conf->raid_disks) {
2113 		cnt=0;
2114 		for (d= 0; d < conf->raid_disks; d++)
2115 			if (conf->mirrors[d].rdev)
2116 				cnt++;
2117 		if (cnt > raid_disks)
2118 			return -EBUSY;
2119 	}
2120 
2121 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2122 	if (!newpoolinfo)
2123 		return -ENOMEM;
2124 	newpoolinfo->mddev = mddev;
2125 	newpoolinfo->raid_disks = raid_disks;
2126 
2127 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2128 				 r1bio_pool_free, newpoolinfo);
2129 	if (!newpool) {
2130 		kfree(newpoolinfo);
2131 		return -ENOMEM;
2132 	}
2133 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2134 	if (!newmirrors) {
2135 		kfree(newpoolinfo);
2136 		mempool_destroy(newpool);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	raise_barrier(conf);
2141 
2142 	/* ok, everything is stopped */
2143 	oldpool = conf->r1bio_pool;
2144 	conf->r1bio_pool = newpool;
2145 
2146 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2147 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2148 		if (rdev && rdev->raid_disk != d2) {
2149 			char nm[20];
2150 			sprintf(nm, "rd%d", rdev->raid_disk);
2151 			sysfs_remove_link(&mddev->kobj, nm);
2152 			rdev->raid_disk = d2;
2153 			sprintf(nm, "rd%d", rdev->raid_disk);
2154 			sysfs_remove_link(&mddev->kobj, nm);
2155 			if (sysfs_create_link(&mddev->kobj,
2156 					      &rdev->kobj, nm))
2157 				printk(KERN_WARNING
2158 				       "md/raid1:%s: cannot register "
2159 				       "%s\n",
2160 				       mdname(mddev), nm);
2161 		}
2162 		if (rdev)
2163 			newmirrors[d2++].rdev = rdev;
2164 	}
2165 	kfree(conf->mirrors);
2166 	conf->mirrors = newmirrors;
2167 	kfree(conf->poolinfo);
2168 	conf->poolinfo = newpoolinfo;
2169 
2170 	spin_lock_irqsave(&conf->device_lock, flags);
2171 	mddev->degraded += (raid_disks - conf->raid_disks);
2172 	spin_unlock_irqrestore(&conf->device_lock, flags);
2173 	conf->raid_disks = mddev->raid_disks = raid_disks;
2174 	mddev->delta_disks = 0;
2175 
2176 	conf->last_used = 0; /* just make sure it is in-range */
2177 	lower_barrier(conf);
2178 
2179 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2180 	md_wakeup_thread(mddev->thread);
2181 
2182 	mempool_destroy(oldpool);
2183 	return 0;
2184 }
2185 
raid1_quiesce(mddev_t * mddev,int state)2186 static void raid1_quiesce(mddev_t *mddev, int state)
2187 {
2188 	conf_t *conf = mddev->private;
2189 
2190 	switch(state) {
2191 	case 2: /* wake for suspend */
2192 		wake_up(&conf->wait_barrier);
2193 		break;
2194 	case 1:
2195 		raise_barrier(conf);
2196 		break;
2197 	case 0:
2198 		lower_barrier(conf);
2199 		break;
2200 	}
2201 }
2202 
raid1_takeover(mddev_t * mddev)2203 static void *raid1_takeover(mddev_t *mddev)
2204 {
2205 	/* raid1 can take over:
2206 	 *  raid5 with 2 devices, any layout or chunk size
2207 	 */
2208 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2209 		conf_t *conf;
2210 		mddev->new_level = 1;
2211 		mddev->new_layout = 0;
2212 		mddev->new_chunk_sectors = 0;
2213 		conf = setup_conf(mddev);
2214 		if (!IS_ERR(conf))
2215 			conf->barrier = 1;
2216 		return conf;
2217 	}
2218 	return ERR_PTR(-EINVAL);
2219 }
2220 
2221 static struct mdk_personality raid1_personality =
2222 {
2223 	.name		= "raid1",
2224 	.level		= 1,
2225 	.owner		= THIS_MODULE,
2226 	.make_request	= make_request,
2227 	.run		= run,
2228 	.stop		= stop,
2229 	.status		= status,
2230 	.error_handler	= error,
2231 	.hot_add_disk	= raid1_add_disk,
2232 	.hot_remove_disk= raid1_remove_disk,
2233 	.spare_active	= raid1_spare_active,
2234 	.sync_request	= sync_request,
2235 	.resize		= raid1_resize,
2236 	.size		= raid1_size,
2237 	.check_reshape	= raid1_reshape,
2238 	.quiesce	= raid1_quiesce,
2239 	.takeover	= raid1_takeover,
2240 };
2241 
raid_init(void)2242 static int __init raid_init(void)
2243 {
2244 	return register_md_personality(&raid1_personality);
2245 }
2246 
raid_exit(void)2247 static void raid_exit(void)
2248 {
2249 	unregister_md_personality(&raid1_personality);
2250 }
2251 
2252 module_init(raid_init);
2253 module_exit(raid_exit);
2254 MODULE_LICENSE("GPL");
2255 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2256 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2257 MODULE_ALIAS("md-raid1");
2258 MODULE_ALIAS("md-level-1");
2259