1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4"	/* AdvanSys Driver Version */
3 
4 /*
5  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6  *
7  * Copyright (c) 1995-2000 Advanced System Products, Inc.
8  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10  * All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  */
17 
18 /*
19  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20  * changed its name to ConnectCom Solutions, Inc.
21  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22  */
23 
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42 
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/dma.h>
46 
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
52 
53 /* FIXME:
54  *
55  *  1. Although all of the necessary command mapping places have the
56  *     appropriate dma_map.. APIs, the driver still processes its internal
57  *     queue using bus_to_virt() and virt_to_bus() which are illegal under
58  *     the API.  The entire queue processing structure will need to be
59  *     altered to fix this.
60  *  2. Need to add memory mapping workaround. Test the memory mapping.
61  *     If it doesn't work revert to I/O port access. Can a test be done
62  *     safely?
63  *  3. Handle an interrupt not working. Keep an interrupt counter in
64  *     the interrupt handler. In the timeout function if the interrupt
65  *     has not occurred then print a message and run in polled mode.
66  *  4. Need to add support for target mode commands, cf. CAM XPT.
67  *  5. check DMA mapping functions for failure
68  *  6. Use scsi_transport_spi
69  *  7. advansys_info is not safe against multiple simultaneous callers
70  *  8. Add module_param to override ISA/VLB ioport array
71  */
72 #warning this driver is still not properly converted to the DMA API
73 
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
76 
77 /* Enable driver tracing. */
78 #undef ADVANSYS_DEBUG
79 
80 /*
81  * Portable Data Types
82  *
83  * Any instance where a 32-bit long or pointer type is assumed
84  * for precision or HW defined structures, the following define
85  * types must be used. In Linux the char, short, and int types
86  * are all consistent at 8, 16, and 32 bits respectively. Pointers
87  * and long types are 64 bits on Alpha and UltraSPARC.
88  */
89 #define ASC_PADDR __u32		/* Physical/Bus address data type. */
90 #define ASC_VADDR __u32		/* Virtual address data type. */
91 #define ASC_DCNT  __u32		/* Unsigned Data count type. */
92 #define ASC_SDCNT __s32		/* Signed Data count type. */
93 
94 typedef unsigned char uchar;
95 
96 #ifndef TRUE
97 #define TRUE     (1)
98 #endif
99 #ifndef FALSE
100 #define FALSE    (0)
101 #endif
102 
103 #define ERR      (-1)
104 #define UW_ERR   (uint)(0xFFFF)
105 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
106 
107 #define PCI_VENDOR_ID_ASP		0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A		0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
114 
115 /*
116  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
119  * SRB structure.
120  */
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
123 
124 #define PortAddr                 unsigned int	/* port address size  */
125 #define inp(port)                inb(port)
126 #define outp(port, byte)         outb((byte), (port))
127 
128 #define inpw(port)               inw(port)
129 #define outpw(port, word)        outw((word), (port))
130 
131 #define ASC_MAX_SG_QUEUE    7
132 #define ASC_MAX_SG_LIST     255
133 
134 #define ASC_CS_TYPE  unsigned short
135 
136 #define ASC_IS_ISA          (0x0001)
137 #define ASC_IS_ISAPNP       (0x0081)
138 #define ASC_IS_EISA         (0x0002)
139 #define ASC_IS_PCI          (0x0004)
140 #define ASC_IS_PCI_ULTRA    (0x0104)
141 #define ASC_IS_PCMCIA       (0x0008)
142 #define ASC_IS_MCA          (0x0020)
143 #define ASC_IS_VL           (0x0040)
144 #define ASC_IS_WIDESCSI_16  (0x0100)
145 #define ASC_IS_WIDESCSI_32  (0x0200)
146 #define ASC_IS_BIG_ENDIAN   (0x8000)
147 
148 #define ASC_CHIP_MIN_VER_VL      (0x01)
149 #define ASC_CHIP_MAX_VER_VL      (0x07)
150 #define ASC_CHIP_MIN_VER_PCI     (0x09)
151 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT     (0x08)
153 #define ASC_CHIP_MIN_VER_ISA     (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA     (0x27)
156 #define ASC_CHIP_VER_ISA_BIT     (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
159 #define ASC_CHIP_VER_PCI             0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
169 
170 #define ASC_SCSI_ID_BITS  3
171 #define ASC_SCSI_TIX_TYPE     uchar
172 #define ASC_ALL_DEVICE_BIT_SET  0xFF
173 #define ASC_SCSI_BIT_ID_TYPE  uchar
174 #define ASC_MAX_TID       7
175 #define ASC_MAX_LUN       7
176 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
177 #define ASC_MAX_SENSE_LEN   32
178 #define ASC_MIN_SENSE_LEN   14
179 #define ASC_SCSI_RESET_HOLD_TIME_US  60
180 
181 /*
182  * Narrow boards only support 12-byte commands, while wide boards
183  * extend to 16-byte commands.
184  */
185 #define ASC_MAX_CDB_LEN     12
186 #define ADV_MAX_CDB_LEN     16
187 
188 #define MS_SDTR_LEN    0x03
189 #define MS_WDTR_LEN    0x02
190 
191 #define ASC_SG_LIST_PER_Q   7
192 #define QS_FREE        0x00
193 #define QS_READY       0x01
194 #define QS_DISC1       0x02
195 #define QS_DISC2       0x04
196 #define QS_BUSY        0x08
197 #define QS_ABORTED     0x40
198 #define QS_DONE        0x80
199 #define QC_NO_CALLBACK   0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD       0x04
202 #define QC_DATA_IN       0x08
203 #define QC_DATA_OUT      0x10
204 #define QC_URGENT        0x20
205 #define QC_MSG_OUT       0x40
206 #define QC_REQ_SENSE     0x80
207 #define QCSG_SG_XFER_LIST  0x02
208 #define QCSG_SG_XFER_MORE  0x04
209 #define QCSG_SG_XFER_END   0x08
210 #define QD_IN_PROGRESS       0x00
211 #define QD_NO_ERROR          0x01
212 #define QD_ABORTED_BY_HOST   0x02
213 #define QD_WITH_ERROR        0x04
214 #define QD_INVALID_REQUEST   0x80
215 #define QD_INVALID_HOST_NUM  0x81
216 #define QD_INVALID_DEVICE    0x82
217 #define QD_ERR_INTERNAL      0xFF
218 #define QHSTA_NO_ERROR               0x00
219 #define QHSTA_M_SEL_TIMEOUT          0x11
220 #define QHSTA_M_DATA_OVER_RUN        0x12
221 #define QHSTA_M_DATA_UNDER_RUN       0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
226 #define QHSTA_D_HOST_ABORT_FAILED       0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
230 #define QHSTA_M_WTM_TIMEOUT         0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
235 #define QHSTA_M_BAD_TAG_CODE        0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR        0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ        0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
244 #define ASC_FLAG_WIN16            0x10
245 #define ASC_FLAG_WIN32            0x20
246 #define ASC_FLAG_ISA_OVER_16MB    0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG              4
253 #define ASC_SCSIQ_SGHD_CPY_BEG         2
254 #define ASC_SCSIQ_B_FWD                0
255 #define ASC_SCSIQ_B_BWD                1
256 #define ASC_SCSIQ_B_STATUS             2
257 #define ASC_SCSIQ_B_QNO                3
258 #define ASC_SCSIQ_B_CNTL               4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
260 #define ASC_SCSIQ_D_DATA_ADDR          8
261 #define ASC_SCSIQ_D_DATA_CNT          12
262 #define ASC_SCSIQ_B_SENSE_LEN         20
263 #define ASC_SCSIQ_DONE_INFO_BEG       22
264 #define ASC_SCSIQ_D_SRBPTR            22
265 #define ASC_SCSIQ_B_TARGET_IX         26
266 #define ASC_SCSIQ_B_CDB_LEN           28
267 #define ASC_SCSIQ_B_TAG_CODE          29
268 #define ASC_SCSIQ_W_VM_ID             30
269 #define ASC_SCSIQ_DONE_STATUS         32
270 #define ASC_SCSIQ_HOST_STATUS         33
271 #define ASC_SCSIQ_SCSI_STATUS         34
272 #define ASC_SCSIQ_CDB_BEG             36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
276 #define ASC_SCSIQ_B_SG_WK_QP          49
277 #define ASC_SCSIQ_B_SG_WK_IX          50
278 #define ASC_SCSIQ_W_ALT_DC1           52
279 #define ASC_SCSIQ_B_LIST_CNT          6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
281 #define ASC_SGQ_B_SG_CNTL             4
282 #define ASC_SGQ_B_SG_HEAD_QP          5
283 #define ASC_SGQ_B_SG_LIST_CNT         6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
285 #define ASC_SGQ_LIST_BEG              8
286 #define ASC_DEF_SCSI1_QNG    4
287 #define ASC_MAX_SCSI1_QNG    4
288 #define ASC_DEF_SCSI2_QNG    16
289 #define ASC_MAX_SCSI2_QNG    32
290 #define ASC_TAG_CODE_MASK    0x23
291 #define ASC_STOP_REQ_RISC_STOP      0x01
292 #define ASC_STOP_ACK_RISC_STOP      0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 
304 typedef struct asc_scsiq_1 {
305 	uchar status;
306 	uchar q_no;
307 	uchar cntl;
308 	uchar sg_queue_cnt;
309 	uchar target_id;
310 	uchar target_lun;
311 	ASC_PADDR data_addr;
312 	ASC_DCNT data_cnt;
313 	ASC_PADDR sense_addr;
314 	uchar sense_len;
315 	uchar extra_bytes;
316 } ASC_SCSIQ_1;
317 
318 typedef struct asc_scsiq_2 {
319 	ASC_VADDR srb_ptr;
320 	uchar target_ix;
321 	uchar flag;
322 	uchar cdb_len;
323 	uchar tag_code;
324 	ushort vm_id;
325 } ASC_SCSIQ_2;
326 
327 typedef struct asc_scsiq_3 {
328 	uchar done_stat;
329 	uchar host_stat;
330 	uchar scsi_stat;
331 	uchar scsi_msg;
332 } ASC_SCSIQ_3;
333 
334 typedef struct asc_scsiq_4 {
335 	uchar cdb[ASC_MAX_CDB_LEN];
336 	uchar y_first_sg_list_qp;
337 	uchar y_working_sg_qp;
338 	uchar y_working_sg_ix;
339 	uchar y_res;
340 	ushort x_req_count;
341 	ushort x_reconnect_rtn;
342 	ASC_PADDR x_saved_data_addr;
343 	ASC_DCNT x_saved_data_cnt;
344 } ASC_SCSIQ_4;
345 
346 typedef struct asc_q_done_info {
347 	ASC_SCSIQ_2 d2;
348 	ASC_SCSIQ_3 d3;
349 	uchar q_status;
350 	uchar q_no;
351 	uchar cntl;
352 	uchar sense_len;
353 	uchar extra_bytes;
354 	uchar res;
355 	ASC_DCNT remain_bytes;
356 } ASC_QDONE_INFO;
357 
358 typedef struct asc_sg_list {
359 	ASC_PADDR addr;
360 	ASC_DCNT bytes;
361 } ASC_SG_LIST;
362 
363 typedef struct asc_sg_head {
364 	ushort entry_cnt;
365 	ushort queue_cnt;
366 	ushort entry_to_copy;
367 	ushort res;
368 	ASC_SG_LIST sg_list[0];
369 } ASC_SG_HEAD;
370 
371 typedef struct asc_scsi_q {
372 	ASC_SCSIQ_1 q1;
373 	ASC_SCSIQ_2 q2;
374 	uchar *cdbptr;
375 	ASC_SG_HEAD *sg_head;
376 	ushort remain_sg_entry_cnt;
377 	ushort next_sg_index;
378 } ASC_SCSI_Q;
379 
380 typedef struct asc_scsi_req_q {
381 	ASC_SCSIQ_1 r1;
382 	ASC_SCSIQ_2 r2;
383 	uchar *cdbptr;
384 	ASC_SG_HEAD *sg_head;
385 	uchar *sense_ptr;
386 	ASC_SCSIQ_3 r3;
387 	uchar cdb[ASC_MAX_CDB_LEN];
388 	uchar sense[ASC_MIN_SENSE_LEN];
389 } ASC_SCSI_REQ_Q;
390 
391 typedef struct asc_scsi_bios_req_q {
392 	ASC_SCSIQ_1 r1;
393 	ASC_SCSIQ_2 r2;
394 	uchar *cdbptr;
395 	ASC_SG_HEAD *sg_head;
396 	uchar *sense_ptr;
397 	ASC_SCSIQ_3 r3;
398 	uchar cdb[ASC_MAX_CDB_LEN];
399 	uchar sense[ASC_MIN_SENSE_LEN];
400 } ASC_SCSI_BIOS_REQ_Q;
401 
402 typedef struct asc_risc_q {
403 	uchar fwd;
404 	uchar bwd;
405 	ASC_SCSIQ_1 i1;
406 	ASC_SCSIQ_2 i2;
407 	ASC_SCSIQ_3 i3;
408 	ASC_SCSIQ_4 i4;
409 } ASC_RISC_Q;
410 
411 typedef struct asc_sg_list_q {
412 	uchar seq_no;
413 	uchar q_no;
414 	uchar cntl;
415 	uchar sg_head_qp;
416 	uchar sg_list_cnt;
417 	uchar sg_cur_list_cnt;
418 } ASC_SG_LIST_Q;
419 
420 typedef struct asc_risc_sg_list_q {
421 	uchar fwd;
422 	uchar bwd;
423 	ASC_SG_LIST_Q sg;
424 	ASC_SG_LIST sg_list[7];
425 } ASC_RISC_SG_LIST_Q;
426 
427 #define ASCQ_ERR_Q_STATUS             0x0D
428 #define ASCQ_ERR_CUR_QNG              0x17
429 #define ASCQ_ERR_SG_Q_LINKS           0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
433 
434 /*
435  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
436  */
437 #define ASC_WARN_NO_ERROR             0x0000
438 #define ASC_WARN_IO_PORT_ROTATE       0x0001
439 #define ASC_WARN_EEPROM_CHKSUM        0x0002
440 #define ASC_WARN_IRQ_MODIFIED         0x0004
441 #define ASC_WARN_AUTO_CONFIG          0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
443 #define ASC_WARN_EEPROM_RECOVER       0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
445 
446 /*
447  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
448  */
449 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR		0x0004
452 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE		0x0400
460 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
463 
464 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
466 #define ASC_MIN_FREE_Q        (0x02)
467 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
472 #define ASC_MAX_INRAM_TAG_QNG   16
473 #define ASC_IOADR_GAP   0x10
474 #define ASC_SYN_MAX_OFFSET         0x0F
475 #define ASC_DEF_SDTR_OFFSET        0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 
479 /* The narrow chip only supports a limited selection of transfer rates.
480  * These are encoded in the range 0..7 or 0..15 depending whether the chip
481  * is Ultra-capable or not.  These tables let us convert from one to the other.
482  */
483 static const unsigned char asc_syn_xfer_period[8] = {
484 	25, 30, 35, 40, 50, 60, 70, 85
485 };
486 
487 static const unsigned char asc_syn_ultra_xfer_period[16] = {
488 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
489 };
490 
491 typedef struct ext_msg {
492 	uchar msg_type;
493 	uchar msg_len;
494 	uchar msg_req;
495 	union {
496 		struct {
497 			uchar sdtr_xfer_period;
498 			uchar sdtr_req_ack_offset;
499 		} sdtr;
500 		struct {
501 			uchar wdtr_width;
502 		} wdtr;
503 		struct {
504 			uchar mdp_b3;
505 			uchar mdp_b2;
506 			uchar mdp_b1;
507 			uchar mdp_b0;
508 		} mdp;
509 	} u_ext_msg;
510 	uchar res;
511 } EXT_MSG;
512 
513 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3          u_ext_msg.mdp_b3
517 #define mdp_b2          u_ext_msg.mdp_b2
518 #define mdp_b1          u_ext_msg.mdp_b1
519 #define mdp_b0          u_ext_msg.mdp_b0
520 
521 typedef struct asc_dvc_cfg {
522 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
523 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
524 	ASC_SCSI_BIT_ID_TYPE disc_enable;
525 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
526 	uchar chip_scsi_id;
527 	uchar isa_dma_speed;
528 	uchar isa_dma_channel;
529 	uchar chip_version;
530 	ushort mcode_date;
531 	ushort mcode_version;
532 	uchar max_tag_qng[ASC_MAX_TID + 1];
533 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
534 	uchar adapter_info[6];
535 } ASC_DVC_CFG;
536 
537 #define ASC_DEF_DVC_CNTL       0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID   7
539 #define ASC_DEF_ISA_DMA_SPEED  4
540 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
541 #define ASC_INIT_STATE_END_GET_CFG   0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
543 #define ASC_INIT_STATE_END_SET_CFG   0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
547 #define ASC_INIT_STATE_END_INQUIRY   0x0080
548 #define ASC_INIT_RESET_SCSI_DONE     0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
552 #define ASC_MIN_TAGGED_CMD  7
553 #define ASC_MAX_SCSI_RESET_WAIT      30
554 #define ASC_OVERRUN_BSIZE		64
555 
556 struct asc_dvc_var;		/* Forward Declaration. */
557 
558 typedef struct asc_dvc_var {
559 	PortAddr iop_base;
560 	ushort err_code;
561 	ushort dvc_cntl;
562 	ushort bug_fix_cntl;
563 	ushort bus_type;
564 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
565 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
566 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
567 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
568 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
569 	ASC_SCSI_BIT_ID_TYPE start_motor;
570 	uchar *overrun_buf;
571 	dma_addr_t overrun_dma;
572 	uchar scsi_reset_wait;
573 	uchar chip_no;
574 	char is_in_int;
575 	uchar max_total_qng;
576 	uchar cur_total_qng;
577 	uchar in_critical_cnt;
578 	uchar last_q_shortage;
579 	ushort init_state;
580 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
581 	uchar max_dvc_qng[ASC_MAX_TID + 1];
582 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
583 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
584 	const uchar *sdtr_period_tbl;
585 	ASC_DVC_CFG *cfg;
586 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
587 	char redo_scam;
588 	ushort res2;
589 	uchar dos_int13_table[ASC_MAX_TID + 1];
590 	ASC_DCNT max_dma_count;
591 	ASC_SCSI_BIT_ID_TYPE no_scam;
592 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
593 	uchar min_sdtr_index;
594 	uchar max_sdtr_index;
595 	struct asc_board *drv_ptr;
596 	int ptr_map_count;
597 	void **ptr_map;
598 	ASC_DCNT uc_break;
599 } ASC_DVC_VAR;
600 
601 typedef struct asc_dvc_inq_info {
602 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
603 } ASC_DVC_INQ_INFO;
604 
605 typedef struct asc_cap_info {
606 	ASC_DCNT lba;
607 	ASC_DCNT blk_size;
608 } ASC_CAP_INFO;
609 
610 typedef struct asc_cap_info_array {
611 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
612 } ASC_CAP_INFO_ARRAY;
613 
614 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
616 #define ASC_CNTL_INITIATOR         (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL    2
631 #define ASC_EEP_MAX_DVC_ADDR_VL   15
632 #define ASC_EEP_DVC_CFG_BEG      32
633 #define ASC_EEP_MAX_DVC_ADDR     45
634 #define ASC_EEP_MAX_RETRY        20
635 
636 /*
637  * These macros keep the chip SCSI id and ISA DMA speed
638  * bitfields in board order. C bitfields aren't portable
639  * between big and little-endian platforms so they are
640  * not used.
641  */
642 
643 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 
650 typedef struct asceep_config {
651 	ushort cfg_lsw;
652 	ushort cfg_msw;
653 	uchar init_sdtr;
654 	uchar disc_enable;
655 	uchar use_cmd_qng;
656 	uchar start_motor;
657 	uchar max_total_qng;
658 	uchar max_tag_qng;
659 	uchar bios_scan;
660 	uchar power_up_wait;
661 	uchar no_scam;
662 	uchar id_speed;		/* low order 4 bits is chip scsi id */
663 	/* high order 4 bits is isa dma speed */
664 	uchar dos_int13_table[ASC_MAX_TID + 1];
665 	uchar adapter_info[6];
666 	ushort cntl;
667 	ushort chksum;
668 } ASCEEP_CONFIG;
669 
670 #define ASC_EEP_CMD_READ          0x80
671 #define ASC_EEP_CMD_WRITE         0x40
672 #define ASC_EEP_CMD_WRITE_ABLE    0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG         0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
678 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
684 #define ASCV_BREAK_ADDR           (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
686 #define ASCV_BREAK_CONTROL        (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
688 
689 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
692 #define ASCV_STOP_CODE_B      (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
696 #define ASCV_HALTCODE_W       (ushort)0x0040
697 #define ASCV_CHKSUM_W         (ushort)0x0042
698 #define ASCV_MC_DATE_W        (ushort)0x0044
699 #define ASCV_MC_VER_W         (ushort)0x0046
700 #define ASCV_NEXTRDY_B        (ushort)0x0048
701 #define ASCV_DONENEXT_B       (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B       (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
705 #define ASCV_CURCDB_B         (ushort)0x004D
706 #define ASCV_RCLUN_B          (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
713 #define ASCV_NULL_TARGET_B    (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B      (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
720 #define ASCV_VER_SERIAL_B     (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B       (ushort)0x0068
723 #define ASCV_RISC_FLAG_B      (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR        0x01
726 #define ASC_HOST_FLAG_ACK_INT       0x02
727 #define ASC_RISC_FLAG_GEN_INT      0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
729 #define IOP_CTRL         (0x0F)
730 #define IOP_STATUS       (0x0E)
731 #define IOP_INT_ACK      IOP_STATUS
732 #define IOP_REG_IFC      (0x0D)
733 #define IOP_SYN_OFFSET    (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC        (0x0C)
736 #define IOP_RAM_ADDR      (0x0A)
737 #define IOP_RAM_DATA      (0x08)
738 #define IOP_EEP_DATA      (0x06)
739 #define IOP_EEP_CMD       (0x07)
740 #define IOP_VERSION       (0x03)
741 #define IOP_CONFIG_HIGH   (0x04)
742 #define IOP_CONFIG_LOW    (0x02)
743 #define IOP_SIG_BYTE      (0x01)
744 #define IOP_SIG_WORD      (0x00)
745 #define IOP_REG_DC1      (0x0E)
746 #define IOP_REG_DC0      (0x0C)
747 #define IOP_REG_SB       (0x0B)
748 #define IOP_REG_DA1      (0x0A)
749 #define IOP_REG_DA0      (0x08)
750 #define IOP_REG_SC       (0x09)
751 #define IOP_DMA_SPEED    (0x07)
752 #define IOP_REG_FLAG     (0x07)
753 #define IOP_FIFO_H       (0x06)
754 #define IOP_FIFO_L       (0x04)
755 #define IOP_REG_ID       (0x05)
756 #define IOP_REG_QP       (0x03)
757 #define IOP_REG_IH       (0x02)
758 #define IOP_REG_IX       (0x01)
759 #define IOP_REG_AX       (0x00)
760 #define IFC_REG_LOCK      (0x00)
761 #define IFC_REG_UNLOCK    (0x09)
762 #define IFC_WR_EN_FILTER  (0x10)
763 #define IFC_RD_NO_EEPROM  (0x10)
764 #define IFC_SLEW_RATE     (0x20)
765 #define IFC_ACT_NEG       (0x40)
766 #define IFC_INP_FILTER    (0x80)
767 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL   (uchar)(0x80)
769 #define SC_BSY   (uchar)(0x40)
770 #define SC_ACK   (uchar)(0x20)
771 #define SC_REQ   (uchar)(0x10)
772 #define SC_ATN   (uchar)(0x08)
773 #define SC_IO    (uchar)(0x04)
774 #define SC_CD    (uchar)(0x02)
775 #define SC_MSG   (uchar)(0x01)
776 #define SEC_SCSI_CTL         (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
778 #define SEC_SLEW_RATE        (uchar)(0x20)
779 #define SEC_ENABLE_FILTER    (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO        0xF8
788 #define ASC_DATA_SEC_BEG   (ushort)0x0080
789 #define ASC_DATA_SEC_END   (ushort)0x0080
790 #define ASC_CODE_SEC_BEG   (ushort)0x0080
791 #define ASC_CODE_SEC_END   (ushort)0x0080
792 #define ASC_QADR_BEG       (0x4000)
793 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END       (ushort)0x7FFF
795 #define ASC_QLAST_ADR      (ushort)0x7FC0
796 #define ASC_QBLK_SIZE      0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END      0xFF
800 #define ASC_EEPROM_WORDS   0x10
801 #define ASC_MAX_MGS_LEN    0x10
802 #define ASC_BIOS_ADDR_DEF  0xDC00
803 #define ASC_BIOS_SIZE      0x3800
804 #define ASC_BIOS_RAM_OFF   0x3800
805 #define ASC_BIOS_RAM_SIZE  0x800
806 #define ASC_BIOS_MIN_ADDR  0xC000
807 #define ASC_BIOS_MAX_ADDR  0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR  0x0080
810 #define ASC_CFG0_HOST_INT_ON    0x0020
811 #define ASC_CFG0_BIOS_ON        0x0040
812 #define ASC_CFG0_VERA_BURST_ON  0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
816 #define ASC_CFG_MSW_CLR_MASK    0x3080
817 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET   (uchar)0x80
840 #define CC_SCSI_RESET   (uchar)0x40
841 #define CC_HALT         (uchar)0x20
842 #define CC_SINGLE_STEP  (uchar)0x10
843 #define CC_DMA_ABLE     (uchar)0x08
844 #define CC_TEST         (uchar)0x04
845 #define CC_BANK_ONE     (uchar)0x02
846 #define CC_DIAG         (uchar)0x01
847 #define ASC_1000_ID0W      0x04C1
848 #define ASC_1000_ID0W_FIX  0x00C1
849 #define ASC_1000_ID1B      0x25
850 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT        (ushort)0x6281
854 #define INS_HALT           (ushort)0x6280
855 #define INS_SINT           (ushort)0x6200
856 #define INS_RFLAG_WTM      (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE  0x500
858 #define ASC_MC_SAVE_DATA_WSIZE  0x40
859 
860 typedef struct asc_mc_saved {
861 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
862 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
863 } ASC_MC_SAVED;
864 
865 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
932 
933 /*
934  * Portable Data Types
935  *
936  * Any instance where a 32-bit long or pointer type is assumed
937  * for precision or HW defined structures, the following define
938  * types must be used. In Linux the char, short, and int types
939  * are all consistent at 8, 16, and 32 bits respectively. Pointers
940  * and long types are 64 bits on Alpha and UltraSPARC.
941  */
942 #define ADV_PADDR __u32		/* Physical address data type. */
943 #define ADV_VADDR __u32		/* Virtual address data type. */
944 #define ADV_DCNT  __u32		/* Unsigned Data count type. */
945 #define ADV_SDCNT __s32		/* Signed Data count type. */
946 
947 /*
948  * These macros are used to convert a virtual address to a
949  * 32-bit value. This currently can be used on Linux Alpha
950  * which uses 64-bit virtual address but a 32-bit bus address.
951  * This is likely to break in the future, but doing this now
952  * will give us time to change the HW and FW to handle 64-bit
953  * addresses.
954  */
955 #define ADV_VADDR_TO_U32   virt_to_bus
956 #define ADV_U32_TO_VADDR   bus_to_virt
957 
958 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
959 
960 /*
961  * Define Adv Library required memory access macros.
962  */
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
970 
971 /*
972  * Define total number of simultaneous maximum element scatter-gather
973  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974  * maximum number of outstanding commands per wide host adapter. Each
975  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978  * structures or 255 scatter-gather elements.
979  */
980 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
981 
982 /*
983  * Define maximum number of scatter-gather elements per request.
984  */
985 #define ADV_MAX_SG_LIST         255
986 #define NO_OF_SG_PER_BLOCK              15
987 
988 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
989 #define ADV_EEP_DVC_CFG_END             (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
992 
993 #define ADV_EEP_DELAY_MS                100
994 
995 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
997 /*
998  * For the ASC3550 Bit 13 is Termination Polarity control bit.
999  * For later ICs Bit 13 controls whether the CIS (Card Information
1000  * Service Section) is loaded from EEPROM.
1001  */
1002 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
1004 /*
1005  * ASC38C1600 Bit 11
1006  *
1007  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009  * Function 0 will specify INT B.
1010  *
1011  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013  * Function 1 will specify INT A.
1014  */
1015 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
1016 
1017 typedef struct adveep_3550_config {
1018 	/* Word Offset, Description */
1019 
1020 	ushort cfg_lsw;		/* 00 power up initialization */
1021 	/*  bit 13 set - Term Polarity Control */
1022 	/*  bit 14 set - BIOS Enable */
1023 	/*  bit 15 set - Big Endian Mode */
1024 	ushort cfg_msw;		/* 01 unused      */
1025 	ushort disc_enable;	/* 02 disconnect enable */
1026 	ushort wdtr_able;	/* 03 Wide DTR able */
1027 	ushort sdtr_able;	/* 04 Synchronous DTR able */
1028 	ushort start_motor;	/* 05 send start up motor */
1029 	ushort tagqng_able;	/* 06 tag queuing able */
1030 	ushort bios_scan;	/* 07 BIOS device control */
1031 	ushort scam_tolerant;	/* 08 no scam */
1032 
1033 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1034 	uchar bios_boot_delay;	/*    power up wait */
1035 
1036 	uchar scsi_reset_delay;	/* 10 reset delay */
1037 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1038 	/*    high nibble is lun */
1039 	/*    low nibble is scsi id */
1040 
1041 	uchar termination;	/* 11 0 - automatic */
1042 	/*    1 - low off / high off */
1043 	/*    2 - low off / high on */
1044 	/*    3 - low on  / high on */
1045 	/*    There is no low on  / high off */
1046 
1047 	uchar reserved1;	/*    reserved byte (not used) */
1048 
1049 	ushort bios_ctrl;	/* 12 BIOS control bits */
1050 	/*  bit 0  BIOS don't act as initiator. */
1051 	/*  bit 1  BIOS > 1 GB support */
1052 	/*  bit 2  BIOS > 2 Disk Support */
1053 	/*  bit 3  BIOS don't support removables */
1054 	/*  bit 4  BIOS support bootable CD */
1055 	/*  bit 5  BIOS scan enabled */
1056 	/*  bit 6  BIOS support multiple LUNs */
1057 	/*  bit 7  BIOS display of message */
1058 	/*  bit 8  SCAM disabled */
1059 	/*  bit 9  Reset SCSI bus during init. */
1060 	/*  bit 10 */
1061 	/*  bit 11 No verbose initialization. */
1062 	/*  bit 12 SCSI parity enabled */
1063 	/*  bit 13 */
1064 	/*  bit 14 */
1065 	/*  bit 15 */
1066 	ushort ultra_able;	/* 13 ULTRA speed able */
1067 	ushort reserved2;	/* 14 reserved */
1068 	uchar max_host_qng;	/* 15 maximum host queuing */
1069 	uchar max_dvc_qng;	/*    maximum per device queuing */
1070 	ushort dvc_cntl;	/* 16 control bit for driver */
1071 	ushort bug_fix;		/* 17 control bit for bug fix */
1072 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1073 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1074 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1075 	ushort check_sum;	/* 21 EEP check sum */
1076 	uchar oem_name[16];	/* 22 OEM name */
1077 	ushort dvc_err_code;	/* 30 last device driver error code */
1078 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1079 	ushort adv_err_addr;	/* 32 last uc error address */
1080 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1081 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1082 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1083 	ushort num_of_err;	/* 36 number of error */
1084 } ADVEEP_3550_CONFIG;
1085 
1086 typedef struct adveep_38C0800_config {
1087 	/* Word Offset, Description */
1088 
1089 	ushort cfg_lsw;		/* 00 power up initialization */
1090 	/*  bit 13 set - Load CIS */
1091 	/*  bit 14 set - BIOS Enable */
1092 	/*  bit 15 set - Big Endian Mode */
1093 	ushort cfg_msw;		/* 01 unused      */
1094 	ushort disc_enable;	/* 02 disconnect enable */
1095 	ushort wdtr_able;	/* 03 Wide DTR able */
1096 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097 	ushort start_motor;	/* 05 send start up motor */
1098 	ushort tagqng_able;	/* 06 tag queuing able */
1099 	ushort bios_scan;	/* 07 BIOS device control */
1100 	ushort scam_tolerant;	/* 08 no scam */
1101 
1102 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103 	uchar bios_boot_delay;	/*    power up wait */
1104 
1105 	uchar scsi_reset_delay;	/* 10 reset delay */
1106 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107 	/*    high nibble is lun */
1108 	/*    low nibble is scsi id */
1109 
1110 	uchar termination_se;	/* 11 0 - automatic */
1111 	/*    1 - low off / high off */
1112 	/*    2 - low off / high on */
1113 	/*    3 - low on  / high on */
1114 	/*    There is no low on  / high off */
1115 
1116 	uchar termination_lvd;	/* 11 0 - automatic */
1117 	/*    1 - low off / high off */
1118 	/*    2 - low off / high on */
1119 	/*    3 - low on  / high on */
1120 	/*    There is no low on  / high off */
1121 
1122 	ushort bios_ctrl;	/* 12 BIOS control bits */
1123 	/*  bit 0  BIOS don't act as initiator. */
1124 	/*  bit 1  BIOS > 1 GB support */
1125 	/*  bit 2  BIOS > 2 Disk Support */
1126 	/*  bit 3  BIOS don't support removables */
1127 	/*  bit 4  BIOS support bootable CD */
1128 	/*  bit 5  BIOS scan enabled */
1129 	/*  bit 6  BIOS support multiple LUNs */
1130 	/*  bit 7  BIOS display of message */
1131 	/*  bit 8  SCAM disabled */
1132 	/*  bit 9  Reset SCSI bus during init. */
1133 	/*  bit 10 */
1134 	/*  bit 11 No verbose initialization. */
1135 	/*  bit 12 SCSI parity enabled */
1136 	/*  bit 13 */
1137 	/*  bit 14 */
1138 	/*  bit 15 */
1139 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141 	uchar max_host_qng;	/* 15 maximum host queueing */
1142 	uchar max_dvc_qng;	/*    maximum per device queuing */
1143 	ushort dvc_cntl;	/* 16 control bit for driver */
1144 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148 	ushort check_sum;	/* 21 EEP check sum */
1149 	uchar oem_name[16];	/* 22 OEM name */
1150 	ushort dvc_err_code;	/* 30 last device driver error code */
1151 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152 	ushort adv_err_addr;	/* 32 last uc error address */
1153 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156 	ushort reserved36;	/* 36 reserved */
1157 	ushort reserved37;	/* 37 reserved */
1158 	ushort reserved38;	/* 38 reserved */
1159 	ushort reserved39;	/* 39 reserved */
1160 	ushort reserved40;	/* 40 reserved */
1161 	ushort reserved41;	/* 41 reserved */
1162 	ushort reserved42;	/* 42 reserved */
1163 	ushort reserved43;	/* 43 reserved */
1164 	ushort reserved44;	/* 44 reserved */
1165 	ushort reserved45;	/* 45 reserved */
1166 	ushort reserved46;	/* 46 reserved */
1167 	ushort reserved47;	/* 47 reserved */
1168 	ushort reserved48;	/* 48 reserved */
1169 	ushort reserved49;	/* 49 reserved */
1170 	ushort reserved50;	/* 50 reserved */
1171 	ushort reserved51;	/* 51 reserved */
1172 	ushort reserved52;	/* 52 reserved */
1173 	ushort reserved53;	/* 53 reserved */
1174 	ushort reserved54;	/* 54 reserved */
1175 	ushort reserved55;	/* 55 reserved */
1176 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179 	ushort subsysid;	/* 59 SubSystem ID */
1180 	ushort reserved60;	/* 60 reserved */
1181 	ushort reserved61;	/* 61 reserved */
1182 	ushort reserved62;	/* 62 reserved */
1183 	ushort reserved63;	/* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG;
1185 
1186 typedef struct adveep_38C1600_config {
1187 	/* Word Offset, Description */
1188 
1189 	ushort cfg_lsw;		/* 00 power up initialization */
1190 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1192 	/*  bit 13 set - Load CIS */
1193 	/*  bit 14 set - BIOS Enable */
1194 	/*  bit 15 set - Big Endian Mode */
1195 	ushort cfg_msw;		/* 01 unused */
1196 	ushort disc_enable;	/* 02 disconnect enable */
1197 	ushort wdtr_able;	/* 03 Wide DTR able */
1198 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1199 	ushort start_motor;	/* 05 send start up motor */
1200 	ushort tagqng_able;	/* 06 tag queuing able */
1201 	ushort bios_scan;	/* 07 BIOS device control */
1202 	ushort scam_tolerant;	/* 08 no scam */
1203 
1204 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1205 	uchar bios_boot_delay;	/*    power up wait */
1206 
1207 	uchar scsi_reset_delay;	/* 10 reset delay */
1208 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1209 	/*    high nibble is lun */
1210 	/*    low nibble is scsi id */
1211 
1212 	uchar termination_se;	/* 11 0 - automatic */
1213 	/*    1 - low off / high off */
1214 	/*    2 - low off / high on */
1215 	/*    3 - low on  / high on */
1216 	/*    There is no low on  / high off */
1217 
1218 	uchar termination_lvd;	/* 11 0 - automatic */
1219 	/*    1 - low off / high off */
1220 	/*    2 - low off / high on */
1221 	/*    3 - low on  / high on */
1222 	/*    There is no low on  / high off */
1223 
1224 	ushort bios_ctrl;	/* 12 BIOS control bits */
1225 	/*  bit 0  BIOS don't act as initiator. */
1226 	/*  bit 1  BIOS > 1 GB support */
1227 	/*  bit 2  BIOS > 2 Disk Support */
1228 	/*  bit 3  BIOS don't support removables */
1229 	/*  bit 4  BIOS support bootable CD */
1230 	/*  bit 5  BIOS scan enabled */
1231 	/*  bit 6  BIOS support multiple LUNs */
1232 	/*  bit 7  BIOS display of message */
1233 	/*  bit 8  SCAM disabled */
1234 	/*  bit 9  Reset SCSI bus during init. */
1235 	/*  bit 10 Basic Integrity Checking disabled */
1236 	/*  bit 11 No verbose initialization. */
1237 	/*  bit 12 SCSI parity enabled */
1238 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239 	/*  bit 14 */
1240 	/*  bit 15 */
1241 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1242 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1243 	uchar max_host_qng;	/* 15 maximum host queueing */
1244 	uchar max_dvc_qng;	/*    maximum per device queuing */
1245 	ushort dvc_cntl;	/* 16 control bit for driver */
1246 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1247 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1248 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1249 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1250 	ushort check_sum;	/* 21 EEP check sum */
1251 	uchar oem_name[16];	/* 22 OEM name */
1252 	ushort dvc_err_code;	/* 30 last device driver error code */
1253 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1254 	ushort adv_err_addr;	/* 32 last uc error address */
1255 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1256 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1257 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1258 	ushort reserved36;	/* 36 reserved */
1259 	ushort reserved37;	/* 37 reserved */
1260 	ushort reserved38;	/* 38 reserved */
1261 	ushort reserved39;	/* 39 reserved */
1262 	ushort reserved40;	/* 40 reserved */
1263 	ushort reserved41;	/* 41 reserved */
1264 	ushort reserved42;	/* 42 reserved */
1265 	ushort reserved43;	/* 43 reserved */
1266 	ushort reserved44;	/* 44 reserved */
1267 	ushort reserved45;	/* 45 reserved */
1268 	ushort reserved46;	/* 46 reserved */
1269 	ushort reserved47;	/* 47 reserved */
1270 	ushort reserved48;	/* 48 reserved */
1271 	ushort reserved49;	/* 49 reserved */
1272 	ushort reserved50;	/* 50 reserved */
1273 	ushort reserved51;	/* 51 reserved */
1274 	ushort reserved52;	/* 52 reserved */
1275 	ushort reserved53;	/* 53 reserved */
1276 	ushort reserved54;	/* 54 reserved */
1277 	ushort reserved55;	/* 55 reserved */
1278 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1279 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1280 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1281 	ushort subsysid;	/* 59 SubSystem ID */
1282 	ushort reserved60;	/* 60 reserved */
1283 	ushort reserved61;	/* 61 reserved */
1284 	ushort reserved62;	/* 62 reserved */
1285 	ushort reserved63;	/* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG;
1287 
1288 /*
1289  * EEPROM Commands
1290  */
1291 #define ASC_EEP_CMD_DONE             0x0200
1292 
1293 /* bios_ctrl */
1294 #define BIOS_CTRL_BIOS               0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1296 #define BIOS_CTRL_GT_2_DISK          0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1301 #define BIOS_CTRL_NO_SCAM            0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1304 #define BIOS_CTRL_SCSI_PARITY        0x1000
1305 #define BIOS_CTRL_AIPP_DIS           0x2000
1306 
1307 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1308 
1309 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1310 
1311 /*
1312  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313  * a special 16K Adv Library and Microcode version. After the issue is
1314  * resolved, should restore 32K support.
1315  *
1316  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1317  */
1318 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1319 
1320 /*
1321  * Byte I/O register address from base of 'iop_base'.
1322  */
1323 #define IOPB_INTR_STATUS_REG    0x00
1324 #define IOPB_CHIP_ID_1          0x01
1325 #define IOPB_INTR_ENABLES       0x02
1326 #define IOPB_CHIP_TYPE_REV      0x03
1327 #define IOPB_RES_ADDR_4         0x04
1328 #define IOPB_RES_ADDR_5         0x05
1329 #define IOPB_RAM_DATA           0x06
1330 #define IOPB_RES_ADDR_7         0x07
1331 #define IOPB_FLAG_REG           0x08
1332 #define IOPB_RES_ADDR_9         0x09
1333 #define IOPB_RISC_CSR           0x0A
1334 #define IOPB_RES_ADDR_B         0x0B
1335 #define IOPB_RES_ADDR_C         0x0C
1336 #define IOPB_RES_ADDR_D         0x0D
1337 #define IOPB_SOFT_OVER_WR       0x0E
1338 #define IOPB_RES_ADDR_F         0x0F
1339 #define IOPB_MEM_CFG            0x10
1340 #define IOPB_RES_ADDR_11        0x11
1341 #define IOPB_GPIO_DATA          0x12
1342 #define IOPB_RES_ADDR_13        0x13
1343 #define IOPB_FLASH_PAGE         0x14
1344 #define IOPB_RES_ADDR_15        0x15
1345 #define IOPB_GPIO_CNTL          0x16
1346 #define IOPB_RES_ADDR_17        0x17
1347 #define IOPB_FLASH_DATA         0x18
1348 #define IOPB_RES_ADDR_19        0x19
1349 #define IOPB_RES_ADDR_1A        0x1A
1350 #define IOPB_RES_ADDR_1B        0x1B
1351 #define IOPB_RES_ADDR_1C        0x1C
1352 #define IOPB_RES_ADDR_1D        0x1D
1353 #define IOPB_RES_ADDR_1E        0x1E
1354 #define IOPB_RES_ADDR_1F        0x1F
1355 #define IOPB_DMA_CFG0           0x20
1356 #define IOPB_DMA_CFG1           0x21
1357 #define IOPB_TICKLE             0x22
1358 #define IOPB_DMA_REG_WR         0x23
1359 #define IOPB_SDMA_STATUS        0x24
1360 #define IOPB_SCSI_BYTE_CNT      0x25
1361 #define IOPB_HOST_BYTE_CNT      0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1363 #define IOPB_BYTE_TO_XFER_0     0x28
1364 #define IOPB_BYTE_TO_XFER_1     0x29
1365 #define IOPB_BYTE_TO_XFER_2     0x2A
1366 #define IOPB_BYTE_TO_XFER_3     0x2B
1367 #define IOPB_ACC_GRP            0x2C
1368 #define IOPB_RES_ADDR_2D        0x2D
1369 #define IOPB_DEV_ID             0x2E
1370 #define IOPB_RES_ADDR_2F        0x2F
1371 #define IOPB_SCSI_DATA          0x30
1372 #define IOPB_RES_ADDR_31        0x31
1373 #define IOPB_RES_ADDR_32        0x32
1374 #define IOPB_SCSI_DATA_HSHK     0x33
1375 #define IOPB_SCSI_CTRL          0x34
1376 #define IOPB_RES_ADDR_35        0x35
1377 #define IOPB_RES_ADDR_36        0x36
1378 #define IOPB_RES_ADDR_37        0x37
1379 #define IOPB_RAM_BIST           0x38
1380 #define IOPB_PLL_TEST           0x39
1381 #define IOPB_PCI_INT_CFG        0x3A
1382 #define IOPB_RES_ADDR_3B        0x3B
1383 #define IOPB_RFIFO_CNT          0x3C
1384 #define IOPB_RES_ADDR_3D        0x3D
1385 #define IOPB_RES_ADDR_3E        0x3E
1386 #define IOPB_RES_ADDR_3F        0x3F
1387 
1388 /*
1389  * Word I/O register address from base of 'iop_base'.
1390  */
1391 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1392 #define IOPW_CTRL_REG           0x02	/* CC    */
1393 #define IOPW_RAM_ADDR           0x04	/* LA    */
1394 #define IOPW_RAM_DATA           0x06	/* LD    */
1395 #define IOPW_RES_ADDR_08        0x08
1396 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1397 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1398 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1399 #define IOPW_RES_ADDR_10        0x10
1400 #define IOPW_SEL_MASK           0x12	/* SM    */
1401 #define IOPW_RES_ADDR_14        0x14
1402 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1403 #define IOPW_RES_ADDR_18        0x18
1404 #define IOPW_EE_CMD             0x1A	/* EC    */
1405 #define IOPW_EE_DATA            0x1C	/* ED    */
1406 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1407 #define IOPW_RES_ADDR_20        0x20
1408 #define IOPW_Q_BASE             0x22	/* QB    */
1409 #define IOPW_QP                 0x24	/* QP    */
1410 #define IOPW_IX                 0x26	/* IX    */
1411 #define IOPW_SP                 0x28	/* SP    */
1412 #define IOPW_PC                 0x2A	/* PC    */
1413 #define IOPW_RES_ADDR_2C        0x2C
1414 #define IOPW_RES_ADDR_2E        0x2E
1415 #define IOPW_SCSI_DATA          0x30	/* SD    */
1416 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1417 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1418 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1419 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1420 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1421 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1422 #define IOPW_RES_ADDR_3C        0x3C
1423 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1424 
1425 /*
1426  * Doubleword I/O register address from base of 'iop_base'.
1427  */
1428 #define IOPDW_RES_ADDR_0         0x00
1429 #define IOPDW_RAM_DATA           0x04
1430 #define IOPDW_RES_ADDR_8         0x08
1431 #define IOPDW_RES_ADDR_C         0x0C
1432 #define IOPDW_RES_ADDR_10        0x10
1433 #define IOPDW_COMMA              0x14
1434 #define IOPDW_COMMB              0x18
1435 #define IOPDW_RES_ADDR_1C        0x1C
1436 #define IOPDW_SDMA_ADDR0         0x20
1437 #define IOPDW_SDMA_ADDR1         0x24
1438 #define IOPDW_SDMA_COUNT         0x28
1439 #define IOPDW_SDMA_ERROR         0x2C
1440 #define IOPDW_RDMA_ADDR0         0x30
1441 #define IOPDW_RDMA_ADDR1         0x34
1442 #define IOPDW_RDMA_COUNT         0x38
1443 #define IOPDW_RDMA_ERROR         0x3C
1444 
1445 #define ADV_CHIP_ID_BYTE         0x25
1446 #define ADV_CHIP_ID_WORD         0x04C1
1447 
1448 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1453 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1456 
1457 #define ADV_INTR_STATUS_INTRA            0x01
1458 #define ADV_INTR_STATUS_INTRB            0x02
1459 #define ADV_INTR_STATUS_INTRC            0x04
1460 
1461 #define ADV_RISC_CSR_STOP           (0x0000)
1462 #define ADV_RISC_TEST_COND          (0x2000)
1463 #define ADV_RISC_CSR_RUN            (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1465 
1466 #define ADV_CTRL_REG_HOST_INTR      0x0100
1467 #define ADV_CTRL_REG_SEL_INTR       0x0200
1468 #define ADV_CTRL_REG_DPR_INTR       0x0400
1469 #define ADV_CTRL_REG_RTA_INTR       0x0800
1470 #define ADV_CTRL_REG_RMA_INTR       0x1000
1471 #define ADV_CTRL_REG_RES_BIT14      0x2000
1472 #define ADV_CTRL_REG_DPE_INTR       0x4000
1473 #define ADV_CTRL_REG_POWER_DONE     0x8000
1474 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1475 
1476 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1481 
1482 #define ADV_TICKLE_NOP                      0x00
1483 #define ADV_TICKLE_A                        0x01
1484 #define ADV_TICKLE_B                        0x02
1485 #define ADV_TICKLE_C                        0x03
1486 
1487 #define AdvIsIntPending(port) \
1488     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1489 
1490 /*
1491  * SCSI_CFG0 Register bit definitions
1492  */
1493 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1496 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1499 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1500 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1503 #define OUR_ID          0x000F	/* SCSI ID */
1504 
1505 /*
1506  * SCSI_CFG1 Register bit definitions
1507  */
1508 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1511 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1512 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1513 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1514 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1516 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1520 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1521 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1523 
1524 /*
1525  * Addendum for ASC-38C0800 Chip
1526  *
1527  * The ASC-38C1600 Chip uses the same definitions except that the
1528  * bus mode override bits [12:10] have been moved to byte register
1529  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534  */
1535 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1537 #define  HVD             0x1000	/* HVD Device Detect */
1538 #define  LVD             0x0800	/* LVD Device Detect */
1539 #define  SE              0x0400	/* SE Device Detect */
1540 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1541 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1542 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1543 #define TERM_SE         0x0030	/* SE Termination Bits */
1544 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1545 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1546 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1547 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1548 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1550 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1551 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1552 
1553 #define CABLE_ILLEGAL_A 0x7
1554     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1555 
1556 #define CABLE_ILLEGAL_B 0xB
1557     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1558 
1559 /*
1560  * MEM_CFG Register bit definitions
1561  */
1562 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1564 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1565 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1566 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1567 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1568 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1569 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1570 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1571 
1572 /*
1573  * DMA_CFG0 Register bit definitions
1574  *
1575  * This register is only accessible to the host.
1576  */
1577 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1578 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1579 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1580 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1581 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1582 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1583 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1584 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1585 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1586 #define START_CTL       0x0C	/* DMA start conditions */
1587 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1588 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1589 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1590 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1591 #define READ_CMD        0x03	/* Memory Read Method */
1592 #define  READ_CMD_MR     0x00	/* Memory Read */
1593 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1594 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1595 
1596 /*
1597  * ASC-38C0800 RAM BIST Register bit definitions
1598  */
1599 #define RAM_TEST_MODE         0x80
1600 #define PRE_TEST_MODE         0x40
1601 #define NORMAL_MODE           0x00
1602 #define RAM_TEST_DONE         0x10
1603 #define RAM_TEST_STATUS       0x0F
1604 #define  RAM_TEST_HOST_ERROR   0x08
1605 #define  RAM_TEST_INTRAM_ERROR 0x04
1606 #define  RAM_TEST_RISC_ERROR   0x02
1607 #define  RAM_TEST_SCSI_ERROR   0x01
1608 #define  RAM_TEST_SUCCESS      0x00
1609 #define PRE_TEST_VALUE        0x05
1610 #define NORMAL_VALUE          0x00
1611 
1612 /*
1613  * ASC38C1600 Definitions
1614  *
1615  * IOPB_PCI_INT_CFG Bit Field Definitions
1616  */
1617 
1618 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1619 
1620 /*
1621  * Bit 1 can be set to change the interrupt for the Function to operate in
1622  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624  * mode, otherwise the operating mode is undefined.
1625  */
1626 #define TOTEMPOLE       0x02
1627 
1628 /*
1629  * Bit 0 can be used to change the Int Pin for the Function. The value is
1630  * 0 by default for both Functions with Function 0 using INT A and Function
1631  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632  * INT A is used.
1633  *
1634  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635  * value specified in the PCI Configuration Space.
1636  */
1637 #define INTAB           0x01
1638 
1639 /*
1640  * Adv Library Status Definitions
1641  */
1642 #define ADV_TRUE        1
1643 #define ADV_FALSE       0
1644 #define ADV_SUCCESS     1
1645 #define ADV_BUSY        0
1646 #define ADV_ERROR       (-1)
1647 
1648 /*
1649  * ADV_DVC_VAR 'warn_code' values
1650  */
1651 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1654 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1655 
1656 #define ADV_MAX_TID                     15	/* max. target identifier */
1657 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1658 
1659 /*
1660  * Fixed locations of microcode operating variables.
1661  */
1662 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1666 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1667 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE                0x009A
1676 #define ASC_MC_INTRB_CODE               0x009B
1677 #define ASC_MC_WDTR_ABLE                0x009C
1678 #define ASC_MC_SDTR_ABLE                0x009E
1679 #define ASC_MC_TAGQNG_ABLE              0x00A0
1680 #define ASC_MC_DISC_ENABLE              0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1682 #define ASC_MC_IDLE_CMD                 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1688 #define ASC_MC_SDTR_DONE                0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1692 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE                0x0124
1694 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ                      0x0160
1696 #define ASC_MC_IRQ                      0x0164
1697 #define ASC_MC_PPR_ABLE                 0x017A
1698 
1699 /*
1700  * BIOS LRAM variable absolute offsets.
1701  */
1702 #define BIOS_CODESEG    0x54
1703 #define BIOS_CODELEN    0x56
1704 #define BIOS_SIGNATURE  0x58
1705 #define BIOS_VERSION    0x5A
1706 
1707 /*
1708  * Microcode Control Flags
1709  *
1710  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711  * and handled by the microcode.
1712  */
1713 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1715 
1716 /*
1717  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718  */
1719 #define HSHK_CFG_WIDE_XFR       0x8000
1720 #define HSHK_CFG_RATE           0x0F00
1721 #define HSHK_CFG_OFFSET         0x001F
1722 
1723 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1727 
1728 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1733 
1734 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1739 /*
1740  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742  */
1743 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1745 
1746 /*
1747  * All fields here are accessed by the board microcode and need to be
1748  * little-endian.
1749  */
1750 typedef struct adv_carr_t {
1751 	ADV_VADDR carr_va;	/* Carrier Virtual Address */
1752 	ADV_PADDR carr_pa;	/* Carrier Physical Address */
1753 	ADV_VADDR areq_vpa;	/* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 	/*
1755 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1756 	 *
1757 	 * next_vpa [3:1]             Reserved Bits
1758 	 * next_vpa [0]               Done Flag set in Response Queue.
1759 	 */
1760 	ADV_VADDR next_vpa;
1761 } ADV_CARR_T;
1762 
1763 /*
1764  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765  */
1766 #define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1767 
1768 #define ASC_RQ_DONE             0x00000001
1769 #define ASC_RQ_GOOD             0x00000002
1770 #define ASC_CQ_STOPPER          0x00000000
1771 
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775     (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 
1777 #define ADV_CARRIER_BUFSIZE \
1778     ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1779 
1780 /*
1781  * ASC_SCSI_REQ_Q 'a_flag' definitions
1782  *
1783  * The Adv Library should limit use to the lower nibble (4 bits) of
1784  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785  */
1786 #define ADV_POLL_REQUEST                0x01	/* poll for request completion */
1787 #define ADV_SCSIQ_DONE                  0x02	/* request done */
1788 #define ADV_DONT_RETRY                  0x08	/* don't do retry */
1789 
1790 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1793 
1794 /*
1795  * Adapter temporary configuration structure
1796  *
1797  * This structure can be discarded after initialization. Don't add
1798  * fields here needed after initialization.
1799  *
1800  * Field naming convention:
1801  *
1802  *  *_enable indicates the field enables or disables a feature. The
1803  *  value of the field is never reset.
1804  */
1805 typedef struct adv_dvc_cfg {
1806 	ushort disc_enable;	/* enable disconnection */
1807 	uchar chip_version;	/* chip version */
1808 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 	ushort control_flag;	/* Microcode Control Flag */
1810 	ushort mcode_date;	/* Microcode date */
1811 	ushort mcode_version;	/* Microcode version */
1812 	ushort serial1;		/* EEPROM serial number word 1 */
1813 	ushort serial2;		/* EEPROM serial number word 2 */
1814 	ushort serial3;		/* EEPROM serial number word 3 */
1815 } ADV_DVC_CFG;
1816 
1817 struct adv_dvc_var;
1818 struct adv_scsi_req_q;
1819 
1820 typedef struct asc_sg_block {
1821 	uchar reserved1;
1822 	uchar reserved2;
1823 	uchar reserved3;
1824 	uchar sg_cnt;		/* Valid entries in block. */
1825 	ADV_PADDR sg_ptr;	/* Pointer to next sg block. */
1826 	struct {
1827 		ADV_PADDR sg_addr;	/* SG element address. */
1828 		ADV_DCNT sg_count;	/* SG element count. */
1829 	} sg_list[NO_OF_SG_PER_BLOCK];
1830 } ADV_SG_BLOCK;
1831 
1832 /*
1833  * ADV_SCSI_REQ_Q - microcode request structure
1834  *
1835  * All fields in this structure up to byte 60 are used by the microcode.
1836  * The microcode makes assumptions about the size and ordering of fields
1837  * in this structure. Do not change the structure definition here without
1838  * coordinating the change with the microcode.
1839  *
1840  * All fields accessed by microcode must be maintained in little_endian
1841  * order.
1842  */
1843 typedef struct adv_scsi_req_q {
1844 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1845 	uchar target_cmd;
1846 	uchar target_id;	/* Device target identifier. */
1847 	uchar target_lun;	/* Device target logical unit number. */
1848 	ADV_PADDR data_addr;	/* Data buffer physical address. */
1849 	ADV_DCNT data_cnt;	/* Data count. Ucode sets to residual. */
1850 	ADV_PADDR sense_addr;
1851 	ADV_PADDR carr_pa;
1852 	uchar mflag;
1853 	uchar sense_len;
1854 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1855 	uchar scsi_cntl;
1856 	uchar done_status;	/* Completion status. */
1857 	uchar scsi_status;	/* SCSI status byte. */
1858 	uchar host_status;	/* Ucode host status. */
1859 	uchar sg_working_ix;
1860 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1861 	ADV_PADDR sg_real_addr;	/* SG list physical address. */
1862 	ADV_PADDR scsiq_rptr;
1863 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1864 	ADV_VADDR scsiq_ptr;
1865 	ADV_VADDR carr_va;
1866 	/*
1867 	 * End of microcode structure - 60 bytes. The rest of the structure
1868 	 * is used by the Adv Library and ignored by the microcode.
1869 	 */
1870 	ADV_VADDR srb_ptr;
1871 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1872 	char *vdata_addr;	/* Data buffer virtual address. */
1873 	uchar a_flag;
1874 	uchar pad[2];		/* Pad out to a word boundary. */
1875 } ADV_SCSI_REQ_Q;
1876 
1877 /*
1878  * The following two structures are used to process Wide Board requests.
1879  *
1880  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883  * Mid-Level SCSI request structure.
1884  *
1885  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887  * up to 255 scatter-gather elements may be used per request or
1888  * ADV_SCSI_REQ_Q.
1889  *
1890  * Both structures must be 32 byte aligned.
1891  */
1892 typedef struct adv_sgblk {
1893 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1894 	uchar align[32];	/* Sgblock structure padding. */
1895 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1896 } adv_sgblk_t;
1897 
1898 typedef struct adv_req {
1899 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1900 	uchar align[32];	/* Request structure padding. */
1901 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1902 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1903 	struct adv_req *next_reqp;	/* Next Request Structure. */
1904 } adv_req_t;
1905 
1906 /*
1907  * Adapter operation variable structure.
1908  *
1909  * One structure is required per host adapter.
1910  *
1911  * Field naming convention:
1912  *
1913  *  *_able indicates both whether a feature should be enabled or disabled
1914  *  and whether a device isi capable of the feature. At initialization
1915  *  this field may be set, but later if a device is found to be incapable
1916  *  of the feature, the field is cleared.
1917  */
1918 typedef struct adv_dvc_var {
1919 	AdvPortAddr iop_base;	/* I/O port address */
1920 	ushort err_code;	/* fatal error code */
1921 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1922 	ushort wdtr_able;	/* try WDTR for a device */
1923 	ushort sdtr_able;	/* try SDTR for a device */
1924 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1925 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1926 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1927 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1928 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1929 	ushort tagqng_able;	/* try tagged queuing with a device */
1930 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1931 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1932 	ushort start_motor;	/* start motor command allowed */
1933 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1934 	uchar chip_no;		/* should be assigned by caller */
1935 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1936 	ushort no_scam;		/* scam_tolerant of EEPROM */
1937 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1938 	uchar chip_scsi_id;	/* chip SCSI target ID */
1939 	uchar chip_type;
1940 	uchar bist_err_code;
1941 	ADV_CARR_T *carrier_buf;
1942 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1943 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1944 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1945 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1946 	struct adv_req *orig_reqp;	/* adv_req_t memory block. */
1947 	/*
1948 	 * Note: The following fields will not be used after initialization. The
1949 	 * driver may discard the buffer after initialization is done.
1950 	 */
1951 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1952 } ADV_DVC_VAR;
1953 
1954 /*
1955  * Microcode idle loop commands
1956  */
1957 #define IDLE_CMD_COMPLETED           0
1958 #define IDLE_CMD_STOP_CHIP           0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1960 #define IDLE_CMD_SEND_INT            0x0004
1961 #define IDLE_CMD_ABORT               0x0008
1962 #define IDLE_CMD_DEVICE_RESET        0x0010
1963 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ             0x0080
1966 
1967 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1968 #define IDLE_CMD_STATUS_FAILURE      0x0002
1969 
1970 /*
1971  * AdvSendIdleCmd() flag definitions.
1972  */
1973 #define ADV_NOWAIT     0x01
1974 
1975 /*
1976  * Wait loop time out values.
1977  */
1978 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY               10	/* retry count */
1981 
1982 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1986 
1987 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1988 
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991      (ADV_MEM_READB((iop_base) + (reg_off)))
1992 
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999      (ADV_MEM_READW((iop_base) + (reg_off)))
2000 
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2011 do { \
2012     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014 } while (0)
2015 
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2023 do { \
2024     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026 } while (0)
2027 
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2050 
2051 /*
2052  * Define macro to check for Condor signature.
2053  *
2054  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056  */
2057 #define AdvFindSignature(iop_base) \
2058     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059     ADV_CHIP_ID_BYTE) && \
2060      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2062 
2063 /*
2064  * Define macro to Return the version number of the chip at 'iop_base'.
2065  *
2066  * The second parameter 'bus_type' is currently unused.
2067  */
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2070 
2071 /*
2072  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073  * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074  *
2075  * If the request has not yet been sent to the device it will simply be
2076  * aborted from RISC memory. If the request is disconnected it will be
2077  * aborted on reselection by sending an Abort Message to the target ID.
2078  *
2079  * Return value:
2080  *      ADV_TRUE(1) - Queue was successfully aborted.
2081  *      ADV_FALSE(0) - Queue was not found on the active queue list.
2082  */
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085                        (ADV_DCNT) (scsiq))
2086 
2087 /*
2088  * Send a Bus Device Reset Message to the specified target ID.
2089  *
2090  * All outstanding commands will be purged if sending the
2091  * Bus Device Reset Message is successful.
2092  *
2093  * Return Value:
2094  *      ADV_TRUE(1) - All requests on the target are purged.
2095  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096  *                     are not purged.
2097  */
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100                     (ADV_DCNT) (target_id))
2101 
2102 /*
2103  * SCSI Wide Type definition.
2104  */
2105 #define ADV_SCSI_BIT_ID_TYPE   ushort
2106 
2107 /*
2108  * AdvInitScsiTarget() 'cntl_flag' options.
2109  */
2110 #define ADV_SCAN_LUN           0x01
2111 #define ADV_CAPINFO_NOLUN      0x02
2112 
2113 /*
2114  * Convert target id to target id bit mask.
2115  */
2116 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2117 
2118 /*
2119  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2120  */
2121 
2122 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2123 #define QD_NO_ERROR          0x01
2124 #define QD_ABORTED_BY_HOST   0x02
2125 #define QD_WITH_ERROR        0x04
2126 
2127 #define QHSTA_NO_ERROR              0x00
2128 #define QHSTA_M_SEL_TIMEOUT         0x11
2129 #define QHSTA_M_DATA_OVER_RUN       0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED       0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT         0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2155 
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2160 
2161 /*
2162  * Total contiguous memory needed for driver SG blocks.
2163  *
2164  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165  * number of scatter-gather elements the driver supports in a
2166  * single request.
2167  */
2168 
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170          (sizeof(ADV_SG_BLOCK) * \
2171           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2175 
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 
2178 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2179 
2180 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2181 
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE         2048
2185 #define ASC_PRTLINE_SIZE        160
2186 
2187 #define ASC_PRT_NEXT() \
2188     if (cp) { \
2189         totlen += len; \
2190         leftlen -= len; \
2191         if (leftlen == 0) { \
2192             return totlen; \
2193         } \
2194         cp += len; \
2195     }
2196 #endif /* CONFIG_PROC_FS */
2197 
2198 /* Asc Library return codes */
2199 #define ASC_TRUE        1
2200 #define ASC_FALSE       0
2201 #define ASC_NOERROR     1
2202 #define ASC_BUSY        0
2203 #define ASC_ERROR       (-1)
2204 
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte)   (byte)
2207 #define MSG_BYTE(byte)      ((byte) << 8)
2208 #define HOST_BYTE(byte)     ((byte) << 16)
2209 #define DRIVER_BYTE(byte)   ((byte) << 24)
2210 
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2218 
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2223 
2224 /*
2225  * Display a message to the console.
2226  */
2227 #define ASC_PRINT(s) \
2228     { \
2229         printk("advansys: "); \
2230         printk(s); \
2231     }
2232 
2233 #define ASC_PRINT1(s, a1) \
2234     { \
2235         printk("advansys: "); \
2236         printk((s), (a1)); \
2237     }
2238 
2239 #define ASC_PRINT2(s, a1, a2) \
2240     { \
2241         printk("advansys: "); \
2242         printk((s), (a1), (a2)); \
2243     }
2244 
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2246     { \
2247         printk("advansys: "); \
2248         printk((s), (a1), (a2), (a3)); \
2249     }
2250 
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2252     { \
2253         printk("advansys: "); \
2254         printk((s), (a1), (a2), (a3), (a4)); \
2255     }
2256 
2257 #ifndef ADVANSYS_DEBUG
2258 
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2269 
2270 #else /* ADVANSYS_DEBUG */
2271 
2272 /*
2273  * Debugging Message Levels:
2274  * 0: Errors Only
2275  * 1: High-Level Tracing
2276  * 2-N: Verbose Tracing
2277  */
2278 
2279 #define ASC_DBG(lvl, format, arg...) {					\
2280 	if (asc_dbglvl >= (lvl))					\
2281 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2282 			__func__ , ## arg);				\
2283 }
2284 
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2286     { \
2287         if (asc_dbglvl >= (lvl)) { \
2288             asc_prt_scsi_host(s); \
2289         } \
2290     }
2291 
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2293     { \
2294         if (asc_dbglvl >= (lvl)) { \
2295             asc_prt_asc_scsi_q(scsiqp); \
2296         } \
2297     }
2298 
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2300     { \
2301         if (asc_dbglvl >= (lvl)) { \
2302             asc_prt_asc_qdone_info(qdone); \
2303         } \
2304     }
2305 
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2307     { \
2308         if (asc_dbglvl >= (lvl)) { \
2309             asc_prt_adv_scsi_req_q(scsiqp); \
2310         } \
2311     }
2312 
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2314     { \
2315         if (asc_dbglvl >= (lvl)) { \
2316             asc_prt_hex((name), (start), (length)); \
2317         } \
2318     }
2319 
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2322 
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2325 
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2329 
2330 #ifdef ADVANSYS_STATS
2331 
2332 /* Per board statistics structure */
2333 struct asc_stats {
2334 	/* Driver Entrypoint Statistics */
2335 	ADV_DCNT queuecommand;	/* # calls to advansys_queuecommand() */
2336 	ADV_DCNT reset;		/* # calls to advansys_eh_bus_reset() */
2337 	ADV_DCNT biosparam;	/* # calls to advansys_biosparam() */
2338 	ADV_DCNT interrupt;	/* # advansys_interrupt() calls */
2339 	ADV_DCNT callback;	/* # calls to asc/adv_isr_callback() */
2340 	ADV_DCNT done;		/* # calls to request's scsi_done function */
2341 	ADV_DCNT build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2342 	ADV_DCNT adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2343 	ADV_DCNT adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 	ADV_DCNT exe_noerror;	/* # ASC_NOERROR returns. */
2346 	ADV_DCNT exe_busy;	/* # ASC_BUSY returns. */
2347 	ADV_DCNT exe_error;	/* # ASC_ERROR returns. */
2348 	ADV_DCNT exe_unknown;	/* # unknown returns. */
2349 	/* Data Transfer Statistics */
2350 	ADV_DCNT xfer_cnt;	/* # I/O requests received */
2351 	ADV_DCNT xfer_elem;	/* # scatter-gather elements */
2352 	ADV_DCNT xfer_sect;	/* # 512-byte blocks */
2353 };
2354 #endif /* ADVANSYS_STATS */
2355 
2356 /*
2357  * Structure allocated for each board.
2358  *
2359  * This structure is allocated by scsi_host_alloc() at the end
2360  * of the 'Scsi_Host' structure starting at the 'hostdata'
2361  * field. It is guaranteed to be allocated from DMA-able memory.
2362  */
2363 struct asc_board {
2364 	struct device *dev;
2365 	uint flags;		/* Board flags */
2366 	unsigned int irq;
2367 	union {
2368 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2369 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2370 	} dvc_var;
2371 	union {
2372 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2373 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2374 	} dvc_cfg;
2375 	ushort asc_n_io_port;	/* Number I/O ports. */
2376 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2377 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2378 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2379 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2380 	union {
2381 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2382 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2383 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2384 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2385 	} eep_config;
2386 	ulong last_reset;	/* Saved last reset time */
2387 	/* /proc/scsi/advansys/[0...] */
2388 	char *prtbuf;		/* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 	struct asc_stats asc_stats;	/* Board statistics */
2391 #endif				/* ADVANSYS_STATS */
2392 	/*
2393 	 * The following fields are used only for Narrow Boards.
2394 	 */
2395 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2396 	/*
2397 	 * The following fields are used only for Wide Boards.
2398 	 */
2399 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2400 	ushort ioport;		/* I/O Port address. */
2401 	adv_req_t *adv_reqp;	/* Request structures. */
2402 	adv_sgblk_t *adv_sgblkp;	/* Scatter-gather structures. */
2403 	ushort bios_signature;	/* BIOS Signature. */
2404 	ushort bios_version;	/* BIOS Version. */
2405 	ushort bios_codeseg;	/* BIOS Code Segment. */
2406 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2407 };
2408 
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 							dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 							dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2414 
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl = 3;
2417 
2418 /*
2419  * asc_prt_asc_dvc_var()
2420  */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2422 {
2423 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2424 
2425 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2427 
2428 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429 		(unsigned)h->init_sdtr);
2430 
2431 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434 	       (unsigned)h->chip_no);
2435 
2436 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2438 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2439 
2440 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443 	       (unsigned)h->in_critical_cnt);
2444 
2445 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2448 	       (unsigned)h->pci_fix_asyn_xfer);
2449 
2450 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2451 }
2452 
2453 /*
2454  * asc_prt_asc_dvc_cfg()
2455  */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2457 {
2458 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2459 
2460 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 	       h->can_tagged_qng, h->cmd_qng_enabled);
2462 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 	       h->disc_enable, h->sdtr_enable);
2464 
2465 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467 		h->isa_dma_channel, h->chip_version);
2468 
2469 	printk(" mcode_date 0x%x, mcode_version %d\n",
2470 		h->mcode_date, h->mcode_version);
2471 }
2472 
2473 /*
2474  * asc_prt_adv_dvc_var()
2475  *
2476  * Display an ADV_DVC_VAR structure.
2477  */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2479 {
2480 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2481 
2482 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2484 
2485 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2487 
2488 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2490 
2491 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493 	       (ulong)h->carr_freelist);
2494 
2495 	printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 	       (ulong)h->icq_sp, (ulong)h->irq_sp);
2497 
2498 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2499 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2500 
2501 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2503 }
2504 
2505 /*
2506  * asc_prt_adv_dvc_cfg()
2507  *
2508  * Display an ADV_DVC_CFG structure.
2509  */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2511 {
2512 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2513 
2514 	printk("  disc_enable 0x%x, termination 0x%x\n",
2515 	       h->disc_enable, h->termination);
2516 
2517 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2518 	       h->chip_version, h->mcode_date);
2519 
2520 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2521 	       h->mcode_version, h->control_flag);
2522 }
2523 
2524 /*
2525  * asc_prt_scsi_host()
2526  */
asc_prt_scsi_host(struct Scsi_Host * s)2527 static void asc_prt_scsi_host(struct Scsi_Host *s)
2528 {
2529 	struct asc_board *boardp = shost_priv(s);
2530 
2531 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532 	printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 	       s->host_busy, s->host_no, (unsigned)s->last_reset);
2534 
2535 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2537 
2538 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 	       s->dma_channel, s->this_id, s->can_queue);
2540 
2541 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2543 
2544 	if (ASC_NARROW_BOARD(boardp)) {
2545 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547 	} else {
2548 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2550 	}
2551 }
2552 
2553 /*
2554  * asc_prt_hex()
2555  *
2556  * Print hexadecimal output in 4 byte groupings 32 bytes
2557  * or 8 double-words per line.
2558  */
asc_prt_hex(char * f,uchar * s,int l)2559 static void asc_prt_hex(char *f, uchar *s, int l)
2560 {
2561 	int i;
2562 	int j;
2563 	int k;
2564 	int m;
2565 
2566 	printk("%s: (%d bytes)\n", f, l);
2567 
2568 	for (i = 0; i < l; i += 32) {
2569 
2570 		/* Display a maximum of 8 double-words per line. */
2571 		if ((k = (l - i) / 4) >= 8) {
2572 			k = 8;
2573 			m = 0;
2574 		} else {
2575 			m = (l - i) % 4;
2576 		}
2577 
2578 		for (j = 0; j < k; j++) {
2579 			printk(" %2.2X%2.2X%2.2X%2.2X",
2580 			       (unsigned)s[i + (j * 4)],
2581 			       (unsigned)s[i + (j * 4) + 1],
2582 			       (unsigned)s[i + (j * 4) + 2],
2583 			       (unsigned)s[i + (j * 4) + 3]);
2584 		}
2585 
2586 		switch (m) {
2587 		case 0:
2588 		default:
2589 			break;
2590 		case 1:
2591 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592 			break;
2593 		case 2:
2594 			printk(" %2.2X%2.2X",
2595 			       (unsigned)s[i + (j * 4)],
2596 			       (unsigned)s[i + (j * 4) + 1]);
2597 			break;
2598 		case 3:
2599 			printk(" %2.2X%2.2X%2.2X",
2600 			       (unsigned)s[i + (j * 4) + 1],
2601 			       (unsigned)s[i + (j * 4) + 2],
2602 			       (unsigned)s[i + (j * 4) + 3]);
2603 			break;
2604 		}
2605 
2606 		printk("\n");
2607 	}
2608 }
2609 
2610 /*
2611  * asc_prt_asc_scsi_q()
2612  */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2614 {
2615 	ASC_SG_HEAD *sgp;
2616 	int i;
2617 
2618 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2619 
2620 	printk
2621 	    (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 	     q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623 	     q->q2.tag_code);
2624 
2625 	printk
2626 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 	     (ulong)le32_to_cpu(q->q1.data_addr),
2628 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2629 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2630 
2631 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 	       (ulong)q->cdbptr, q->q2.cdb_len,
2633 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2634 
2635 	if (q->sg_head) {
2636 		sgp = q->sg_head;
2637 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639 		       sgp->queue_cnt);
2640 		for (i = 0; i < sgp->entry_cnt; i++) {
2641 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2644 		}
2645 
2646 	}
2647 }
2648 
2649 /*
2650  * asc_prt_asc_qdone_info()
2651  */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2653 {
2654 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655 	printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 	       (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657 	       q->d2.tag_code);
2658 	printk
2659 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2661 }
2662 
2663 /*
2664  * asc_prt_adv_sgblock()
2665  *
2666  * Display an ADV_SG_BLOCK structure.
2667  */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2668 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2669 {
2670 	int i;
2671 
2672 	printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 	       (ulong)b, sgblockno);
2674 	printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2675 	       b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677 	if (b->sg_ptr != 0)
2678 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679 	for (i = 0; i < b->sg_cnt; i++) {
2680 		printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 		       i, (ulong)b->sg_list[i].sg_addr,
2682 		       (ulong)b->sg_list[i].sg_count);
2683 	}
2684 }
2685 
2686 /*
2687  * asc_prt_adv_scsi_req_q()
2688  *
2689  * Display an ADV_SCSI_REQ_Q structure.
2690  */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2692 {
2693 	int sg_blk_cnt;
2694 	struct asc_sg_block *sg_ptr;
2695 
2696 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2697 
2698 	printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 	       q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2700 
2701 	printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 	       q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2703 
2704 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 	       (ulong)le32_to_cpu(q->data_cnt),
2706 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2707 
2708 	printk
2709 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2711 
2712 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2713 	       q->sg_working_ix, q->target_cmd);
2714 
2715 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2717 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2718 
2719 	/* Display the request's ADV_SG_BLOCK structures. */
2720 	if (q->sg_list_ptr != NULL) {
2721 		sg_blk_cnt = 0;
2722 		while (1) {
2723 			/*
2724 			 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 			 * address by indexing 'sg_blk_cnt' into the virtual address
2726 			 * array 'sg_list_ptr'.
2727 			 *
2728 			 * XXX - Assumes all SG physical blocks are virtually contiguous.
2729 			 */
2730 			sg_ptr =
2731 			    &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733 			if (sg_ptr->sg_ptr == 0) {
2734 				break;
2735 			}
2736 			sg_blk_cnt++;
2737 		}
2738 	}
2739 }
2740 #endif /* ADVANSYS_DEBUG */
2741 
2742 /*
2743  * The advansys chip/microcode contains a 32-bit identifier for each command
2744  * known as the 'srb'.  I don't know what it stands for.  The driver used
2745  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746  * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2747  * pointers.  It auto-expands when full, unless it can't allocate memory.
2748  * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749  * the return of i+1 in this routine, and the corresponding subtraction in
2750  * the inverse routine.
2751  */
2752 #define BAD_SRB 0
advansys_ptr_to_srb(struct asc_dvc_var * asc_dvc,void * ptr)2753 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2754 {
2755 	int i;
2756 	void **new_ptr;
2757 
2758 	for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759 		if (!asc_dvc->ptr_map[i])
2760 			goto out;
2761 	}
2762 
2763 	if (asc_dvc->ptr_map_count == 0)
2764 		asc_dvc->ptr_map_count = 1;
2765 	else
2766 		asc_dvc->ptr_map_count *= 2;
2767 
2768 	new_ptr = krealloc(asc_dvc->ptr_map,
2769 			asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770 	if (!new_ptr)
2771 		return BAD_SRB;
2772 	asc_dvc->ptr_map = new_ptr;
2773  out:
2774 	ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775 	asc_dvc->ptr_map[i] = ptr;
2776 	return i + 1;
2777 }
2778 
advansys_srb_to_ptr(struct asc_dvc_var * asc_dvc,u32 srb)2779 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2780 {
2781 	void *ptr;
2782 
2783 	srb--;
2784 	if (srb >= asc_dvc->ptr_map_count) {
2785 		printk("advansys: bad SRB %u, max %u\n", srb,
2786 							asc_dvc->ptr_map_count);
2787 		return NULL;
2788 	}
2789 	ptr = asc_dvc->ptr_map[srb];
2790 	asc_dvc->ptr_map[srb] = NULL;
2791 	ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792 	return ptr;
2793 }
2794 
2795 /*
2796  * advansys_info()
2797  *
2798  * Return suitable for printing on the console with the argument
2799  * adapter's configuration information.
2800  *
2801  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802  * otherwise the static 'info' array will be overrun.
2803  */
advansys_info(struct Scsi_Host * shost)2804 static const char *advansys_info(struct Scsi_Host *shost)
2805 {
2806 	static char info[ASC_INFO_SIZE];
2807 	struct asc_board *boardp = shost_priv(shost);
2808 	ASC_DVC_VAR *asc_dvc_varp;
2809 	ADV_DVC_VAR *adv_dvc_varp;
2810 	char *busname;
2811 	char *widename = NULL;
2812 
2813 	if (ASC_NARROW_BOARD(boardp)) {
2814 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815 		ASC_DBG(1, "begin\n");
2816 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818 			    ASC_IS_ISAPNP) {
2819 				busname = "ISA PnP";
2820 			} else {
2821 				busname = "ISA";
2822 			}
2823 			sprintf(info,
2824 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 				ASC_VERSION, busname,
2826 				(ulong)shost->io_port,
2827 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828 				boardp->irq, shost->dma_channel);
2829 		} else {
2830 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831 				busname = "VL";
2832 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833 				busname = "EISA";
2834 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836 				    == ASC_IS_PCI_ULTRA) {
2837 					busname = "PCI Ultra";
2838 				} else {
2839 					busname = "PCI";
2840 				}
2841 			} else {
2842 				busname = "?";
2843 				shost_printk(KERN_ERR, shost, "unknown bus "
2844 					"type %d\n", asc_dvc_varp->bus_type);
2845 			}
2846 			sprintf(info,
2847 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 				ASC_VERSION, busname, (ulong)shost->io_port,
2849 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850 				boardp->irq);
2851 		}
2852 	} else {
2853 		/*
2854 		 * Wide Adapter Information
2855 		 *
2856 		 * Memory-mapped I/O is used instead of I/O space to access
2857 		 * the adapter, but display the I/O Port range. The Memory
2858 		 * I/O address is displayed through the driver /proc file.
2859 		 */
2860 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862 			widename = "Ultra-Wide";
2863 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864 			widename = "Ultra2-Wide";
2865 		} else {
2866 			widename = "Ultra3-Wide";
2867 		}
2868 		sprintf(info,
2869 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2872 	}
2873 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874 	ASC_DBG(1, "end\n");
2875 	return info;
2876 }
2877 
2878 #ifdef CONFIG_PROC_FS
2879 /*
2880  * asc_prt_line()
2881  *
2882  * If 'cp' is NULL print to the console, otherwise print to a buffer.
2883  *
2884  * Return 0 if printing to the console, otherwise return the number of
2885  * bytes written to the buffer.
2886  *
2887  * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888  * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2889  */
asc_prt_line(char * buf,int buflen,char * fmt,...)2890 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2891 {
2892 	va_list args;
2893 	int ret;
2894 	char s[ASC_PRTLINE_SIZE];
2895 
2896 	va_start(args, fmt);
2897 	ret = vsprintf(s, fmt, args);
2898 	BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899 	if (buf == NULL) {
2900 		(void)printk(s);
2901 		ret = 0;
2902 	} else {
2903 		ret = min(buflen, ret);
2904 		memcpy(buf, s, ret);
2905 	}
2906 	va_end(args);
2907 	return ret;
2908 }
2909 
2910 /*
2911  * asc_prt_board_devices()
2912  *
2913  * Print driver information for devices attached to the board.
2914  *
2915  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916  * cf. asc_prt_line().
2917  *
2918  * Return the number of characters copied into 'cp'. No more than
2919  * 'cplen' characters will be copied to 'cp'.
2920  */
asc_prt_board_devices(struct Scsi_Host * shost,char * cp,int cplen)2921 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2922 {
2923 	struct asc_board *boardp = shost_priv(shost);
2924 	int leftlen;
2925 	int totlen;
2926 	int len;
2927 	int chip_scsi_id;
2928 	int i;
2929 
2930 	leftlen = cplen;
2931 	totlen = len = 0;
2932 
2933 	len = asc_prt_line(cp, leftlen,
2934 			   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935 			   shost->host_no);
2936 	ASC_PRT_NEXT();
2937 
2938 	if (ASC_NARROW_BOARD(boardp)) {
2939 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940 	} else {
2941 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2942 	}
2943 
2944 	len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945 	ASC_PRT_NEXT();
2946 	for (i = 0; i <= ADV_MAX_TID; i++) {
2947 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948 			len = asc_prt_line(cp, leftlen, " %X,", i);
2949 			ASC_PRT_NEXT();
2950 		}
2951 	}
2952 	len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953 	ASC_PRT_NEXT();
2954 
2955 	return totlen;
2956 }
2957 
2958 /*
2959  * Display Wide Board BIOS Information.
2960  */
asc_prt_adv_bios(struct Scsi_Host * shost,char * cp,int cplen)2961 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2962 {
2963 	struct asc_board *boardp = shost_priv(shost);
2964 	int leftlen;
2965 	int totlen;
2966 	int len;
2967 	ushort major, minor, letter;
2968 
2969 	leftlen = cplen;
2970 	totlen = len = 0;
2971 
2972 	len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973 	ASC_PRT_NEXT();
2974 
2975 	/*
2976 	 * If the BIOS saved a valid signature, then fill in
2977 	 * the BIOS code segment base address.
2978 	 */
2979 	if (boardp->bios_signature != 0x55AA) {
2980 		len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981 		ASC_PRT_NEXT();
2982 		len = asc_prt_line(cp, leftlen,
2983 				   "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984 		ASC_PRT_NEXT();
2985 		len = asc_prt_line(cp, leftlen,
2986 				   "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987 		ASC_PRT_NEXT();
2988 	} else {
2989 		major = (boardp->bios_version >> 12) & 0xF;
2990 		minor = (boardp->bios_version >> 8) & 0xF;
2991 		letter = (boardp->bios_version & 0xFF);
2992 
2993 		len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994 				   major, minor,
2995 				   letter >= 26 ? '?' : letter + 'A');
2996 		ASC_PRT_NEXT();
2997 
2998 		/*
2999 		 * Current available ROM BIOS release is 3.1I for UW
3000 		 * and 3.2I for U2W. This code doesn't differentiate
3001 		 * UW and U2W boards.
3002 		 */
3003 		if (major < 3 || (major <= 3 && minor < 1) ||
3004 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005 			len = asc_prt_line(cp, leftlen,
3006 					   "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007 			ASC_PRT_NEXT();
3008 			len = asc_prt_line(cp, leftlen,
3009 					   "ftp://ftp.connectcom.net/pub\n");
3010 			ASC_PRT_NEXT();
3011 		}
3012 	}
3013 
3014 	return totlen;
3015 }
3016 
3017 /*
3018  * Add serial number to information bar if signature AAh
3019  * is found in at bit 15-9 (7 bits) of word 1.
3020  *
3021  * Serial Number consists fo 12 alpha-numeric digits.
3022  *
3023  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
3024  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
3025  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
3026  *       5 - Product revision (A-J)    Word0:  "         "
3027  *
3028  *           Signature                 Word1: 15-9 (7 bits)
3029  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
3031  *
3032  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3033  *
3034  * Note 1: Only production cards will have a serial number.
3035  *
3036  * Note 2: Signature is most significant 7 bits (0xFE).
3037  *
3038  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3039  */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)3040 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3041 {
3042 	ushort w, num;
3043 
3044 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045 		return ASC_FALSE;
3046 	} else {
3047 		/*
3048 		 * First word - 6 digits.
3049 		 */
3050 		w = serialnum[0];
3051 
3052 		/* Product type - 1st digit. */
3053 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054 			/* Product type is P=Prototype */
3055 			*cp += 0x8;
3056 		}
3057 		cp++;
3058 
3059 		/* Manufacturing location - 2nd digit. */
3060 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
3061 
3062 		/* Product ID - 3rd, 4th digits. */
3063 		num = w & 0x3FF;
3064 		*cp++ = '0' + (num / 100);
3065 		num %= 100;
3066 		*cp++ = '0' + (num / 10);
3067 
3068 		/* Product revision - 5th digit. */
3069 		*cp++ = 'A' + (num % 10);
3070 
3071 		/*
3072 		 * Second word
3073 		 */
3074 		w = serialnum[1];
3075 
3076 		/*
3077 		 * Year - 6th digit.
3078 		 *
3079 		 * If bit 15 of third word is set, then the
3080 		 * last digit of the year is greater than 7.
3081 		 */
3082 		if (serialnum[2] & 0x8000) {
3083 			*cp++ = '8' + ((w & 0x1C0) >> 6);
3084 		} else {
3085 			*cp++ = '0' + ((w & 0x1C0) >> 6);
3086 		}
3087 
3088 		/* Week of year - 7th, 8th digits. */
3089 		num = w & 0x003F;
3090 		*cp++ = '0' + num / 10;
3091 		num %= 10;
3092 		*cp++ = '0' + num;
3093 
3094 		/*
3095 		 * Third word
3096 		 */
3097 		w = serialnum[2] & 0x7FFF;
3098 
3099 		/* Serial number - 9th digit. */
3100 		*cp++ = 'A' + (w / 1000);
3101 
3102 		/* 10th, 11th, 12th digits. */
3103 		num = w % 1000;
3104 		*cp++ = '0' + num / 100;
3105 		num %= 100;
3106 		*cp++ = '0' + num / 10;
3107 		num %= 10;
3108 		*cp++ = '0' + num;
3109 
3110 		*cp = '\0';	/* Null Terminate the string. */
3111 		return ASC_TRUE;
3112 	}
3113 }
3114 
3115 /*
3116  * asc_prt_asc_board_eeprom()
3117  *
3118  * Print board EEPROM configuration.
3119  *
3120  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121  * cf. asc_prt_line().
3122  *
3123  * Return the number of characters copied into 'cp'. No more than
3124  * 'cplen' characters will be copied to 'cp'.
3125  */
asc_prt_asc_board_eeprom(struct Scsi_Host * shost,char * cp,int cplen)3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3127 {
3128 	struct asc_board *boardp = shost_priv(shost);
3129 	ASC_DVC_VAR *asc_dvc_varp;
3130 	int leftlen;
3131 	int totlen;
3132 	int len;
3133 	ASCEEP_CONFIG *ep;
3134 	int i;
3135 #ifdef CONFIG_ISA
3136 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 	uchar serialstr[13];
3139 
3140 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141 	ep = &boardp->eep_config.asc_eep;
3142 
3143 	leftlen = cplen;
3144 	totlen = len = 0;
3145 
3146 	len = asc_prt_line(cp, leftlen,
3147 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148 			   shost->host_no);
3149 	ASC_PRT_NEXT();
3150 
3151 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152 	    == ASC_TRUE) {
3153 		len =
3154 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155 				 serialstr);
3156 		ASC_PRT_NEXT();
3157 	} else {
3158 		if (ep->adapter_info[5] == 0xBB) {
3159 			len = asc_prt_line(cp, leftlen,
3160 					   " Default Settings Used for EEPROM-less Adapter.\n");
3161 			ASC_PRT_NEXT();
3162 		} else {
3163 			len = asc_prt_line(cp, leftlen,
3164 					   " Serial Number Signature Not Present.\n");
3165 			ASC_PRT_NEXT();
3166 		}
3167 	}
3168 
3169 	len = asc_prt_line(cp, leftlen,
3170 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 			   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172 			   ep->max_tag_qng);
3173 	ASC_PRT_NEXT();
3174 
3175 	len = asc_prt_line(cp, leftlen,
3176 			   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177 	ASC_PRT_NEXT();
3178 
3179 	len = asc_prt_line(cp, leftlen, " Target ID:           ");
3180 	ASC_PRT_NEXT();
3181 	for (i = 0; i <= ASC_MAX_TID; i++) {
3182 		len = asc_prt_line(cp, leftlen, " %d", i);
3183 		ASC_PRT_NEXT();
3184 	}
3185 	len = asc_prt_line(cp, leftlen, "\n");
3186 	ASC_PRT_NEXT();
3187 
3188 	len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3189 	ASC_PRT_NEXT();
3190 	for (i = 0; i <= ASC_MAX_TID; i++) {
3191 		len = asc_prt_line(cp, leftlen, " %c",
3192 				   (ep->
3193 				    disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194 				   'N');
3195 		ASC_PRT_NEXT();
3196 	}
3197 	len = asc_prt_line(cp, leftlen, "\n");
3198 	ASC_PRT_NEXT();
3199 
3200 	len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3201 	ASC_PRT_NEXT();
3202 	for (i = 0; i <= ASC_MAX_TID; i++) {
3203 		len = asc_prt_line(cp, leftlen, " %c",
3204 				   (ep->
3205 				    use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206 				   'N');
3207 		ASC_PRT_NEXT();
3208 	}
3209 	len = asc_prt_line(cp, leftlen, "\n");
3210 	ASC_PRT_NEXT();
3211 
3212 	len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3213 	ASC_PRT_NEXT();
3214 	for (i = 0; i <= ASC_MAX_TID; i++) {
3215 		len = asc_prt_line(cp, leftlen, " %c",
3216 				   (ep->
3217 				    start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218 				   'N');
3219 		ASC_PRT_NEXT();
3220 	}
3221 	len = asc_prt_line(cp, leftlen, "\n");
3222 	ASC_PRT_NEXT();
3223 
3224 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225 	ASC_PRT_NEXT();
3226 	for (i = 0; i <= ASC_MAX_TID; i++) {
3227 		len = asc_prt_line(cp, leftlen, " %c",
3228 				   (ep->
3229 				    init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230 				   'N');
3231 		ASC_PRT_NEXT();
3232 	}
3233 	len = asc_prt_line(cp, leftlen, "\n");
3234 	ASC_PRT_NEXT();
3235 
3236 #ifdef CONFIG_ISA
3237 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238 		len = asc_prt_line(cp, leftlen,
3239 				   " Host ISA DMA speed:   %d MB/S\n",
3240 				   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241 		ASC_PRT_NEXT();
3242 	}
3243 #endif /* CONFIG_ISA */
3244 
3245 	return totlen;
3246 }
3247 
3248 /*
3249  * asc_prt_adv_board_eeprom()
3250  *
3251  * Print board EEPROM configuration.
3252  *
3253  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254  * cf. asc_prt_line().
3255  *
3256  * Return the number of characters copied into 'cp'. No more than
3257  * 'cplen' characters will be copied to 'cp'.
3258  */
asc_prt_adv_board_eeprom(struct Scsi_Host * shost,char * cp,int cplen)3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3260 {
3261 	struct asc_board *boardp = shost_priv(shost);
3262 	ADV_DVC_VAR *adv_dvc_varp;
3263 	int leftlen;
3264 	int totlen;
3265 	int len;
3266 	int i;
3267 	char *termstr;
3268 	uchar serialstr[13];
3269 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272 	ushort word;
3273 	ushort *wordp;
3274 	ushort sdtr_speed = 0;
3275 
3276 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278 		ep_3550 = &boardp->eep_config.adv_3550_eep;
3279 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281 	} else {
3282 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3283 	}
3284 
3285 	leftlen = cplen;
3286 	totlen = len = 0;
3287 
3288 	len = asc_prt_line(cp, leftlen,
3289 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290 			   shost->host_no);
3291 	ASC_PRT_NEXT();
3292 
3293 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294 		wordp = &ep_3550->serial_number_word1;
3295 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296 		wordp = &ep_38C0800->serial_number_word1;
3297 	} else {
3298 		wordp = &ep_38C1600->serial_number_word1;
3299 	}
3300 
3301 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302 		len =
3303 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304 				 serialstr);
3305 		ASC_PRT_NEXT();
3306 	} else {
3307 		len = asc_prt_line(cp, leftlen,
3308 				   " Serial Number Signature Not Present.\n");
3309 		ASC_PRT_NEXT();
3310 	}
3311 
3312 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313 		len = asc_prt_line(cp, leftlen,
3314 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 				   ep_3550->adapter_scsi_id,
3316 				   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317 		ASC_PRT_NEXT();
3318 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319 		len = asc_prt_line(cp, leftlen,
3320 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 				   ep_38C0800->adapter_scsi_id,
3322 				   ep_38C0800->max_host_qng,
3323 				   ep_38C0800->max_dvc_qng);
3324 		ASC_PRT_NEXT();
3325 	} else {
3326 		len = asc_prt_line(cp, leftlen,
3327 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 				   ep_38C1600->adapter_scsi_id,
3329 				   ep_38C1600->max_host_qng,
3330 				   ep_38C1600->max_dvc_qng);
3331 		ASC_PRT_NEXT();
3332 	}
3333 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334 		word = ep_3550->termination;
3335 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336 		word = ep_38C0800->termination_lvd;
3337 	} else {
3338 		word = ep_38C1600->termination_lvd;
3339 	}
3340 	switch (word) {
3341 	case 1:
3342 		termstr = "Low Off/High Off";
3343 		break;
3344 	case 2:
3345 		termstr = "Low Off/High On";
3346 		break;
3347 	case 3:
3348 		termstr = "Low On/High On";
3349 		break;
3350 	default:
3351 	case 0:
3352 		termstr = "Automatic";
3353 		break;
3354 	}
3355 
3356 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357 		len = asc_prt_line(cp, leftlen,
3358 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 				   ep_3550->termination, termstr,
3360 				   ep_3550->bios_ctrl);
3361 		ASC_PRT_NEXT();
3362 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363 		len = asc_prt_line(cp, leftlen,
3364 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 				   ep_38C0800->termination_lvd, termstr,
3366 				   ep_38C0800->bios_ctrl);
3367 		ASC_PRT_NEXT();
3368 	} else {
3369 		len = asc_prt_line(cp, leftlen,
3370 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 				   ep_38C1600->termination_lvd, termstr,
3372 				   ep_38C1600->bios_ctrl);
3373 		ASC_PRT_NEXT();
3374 	}
3375 
3376 	len = asc_prt_line(cp, leftlen, " Target ID:           ");
3377 	ASC_PRT_NEXT();
3378 	for (i = 0; i <= ADV_MAX_TID; i++) {
3379 		len = asc_prt_line(cp, leftlen, " %X", i);
3380 		ASC_PRT_NEXT();
3381 	}
3382 	len = asc_prt_line(cp, leftlen, "\n");
3383 	ASC_PRT_NEXT();
3384 
3385 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386 		word = ep_3550->disc_enable;
3387 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388 		word = ep_38C0800->disc_enable;
3389 	} else {
3390 		word = ep_38C1600->disc_enable;
3391 	}
3392 	len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3393 	ASC_PRT_NEXT();
3394 	for (i = 0; i <= ADV_MAX_TID; i++) {
3395 		len = asc_prt_line(cp, leftlen, " %c",
3396 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397 		ASC_PRT_NEXT();
3398 	}
3399 	len = asc_prt_line(cp, leftlen, "\n");
3400 	ASC_PRT_NEXT();
3401 
3402 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403 		word = ep_3550->tagqng_able;
3404 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405 		word = ep_38C0800->tagqng_able;
3406 	} else {
3407 		word = ep_38C1600->tagqng_able;
3408 	}
3409 	len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3410 	ASC_PRT_NEXT();
3411 	for (i = 0; i <= ADV_MAX_TID; i++) {
3412 		len = asc_prt_line(cp, leftlen, " %c",
3413 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414 		ASC_PRT_NEXT();
3415 	}
3416 	len = asc_prt_line(cp, leftlen, "\n");
3417 	ASC_PRT_NEXT();
3418 
3419 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420 		word = ep_3550->start_motor;
3421 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422 		word = ep_38C0800->start_motor;
3423 	} else {
3424 		word = ep_38C1600->start_motor;
3425 	}
3426 	len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3427 	ASC_PRT_NEXT();
3428 	for (i = 0; i <= ADV_MAX_TID; i++) {
3429 		len = asc_prt_line(cp, leftlen, " %c",
3430 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431 		ASC_PRT_NEXT();
3432 	}
3433 	len = asc_prt_line(cp, leftlen, "\n");
3434 	ASC_PRT_NEXT();
3435 
3436 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437 		len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438 		ASC_PRT_NEXT();
3439 		for (i = 0; i <= ADV_MAX_TID; i++) {
3440 			len = asc_prt_line(cp, leftlen, " %c",
3441 					   (ep_3550->
3442 					    sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443 					   'Y' : 'N');
3444 			ASC_PRT_NEXT();
3445 		}
3446 		len = asc_prt_line(cp, leftlen, "\n");
3447 		ASC_PRT_NEXT();
3448 	}
3449 
3450 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451 		len = asc_prt_line(cp, leftlen, " Ultra Transfer:      ");
3452 		ASC_PRT_NEXT();
3453 		for (i = 0; i <= ADV_MAX_TID; i++) {
3454 			len = asc_prt_line(cp, leftlen, " %c",
3455 					   (ep_3550->
3456 					    ultra_able & ADV_TID_TO_TIDMASK(i))
3457 					   ? 'Y' : 'N');
3458 			ASC_PRT_NEXT();
3459 		}
3460 		len = asc_prt_line(cp, leftlen, "\n");
3461 		ASC_PRT_NEXT();
3462 	}
3463 
3464 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465 		word = ep_3550->wdtr_able;
3466 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467 		word = ep_38C0800->wdtr_able;
3468 	} else {
3469 		word = ep_38C1600->wdtr_able;
3470 	}
3471 	len = asc_prt_line(cp, leftlen, " Wide Transfer:       ");
3472 	ASC_PRT_NEXT();
3473 	for (i = 0; i <= ADV_MAX_TID; i++) {
3474 		len = asc_prt_line(cp, leftlen, " %c",
3475 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476 		ASC_PRT_NEXT();
3477 	}
3478 	len = asc_prt_line(cp, leftlen, "\n");
3479 	ASC_PRT_NEXT();
3480 
3481 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483 		len = asc_prt_line(cp, leftlen,
3484 				   " Synchronous Transfer Speed (Mhz):\n  ");
3485 		ASC_PRT_NEXT();
3486 		for (i = 0; i <= ADV_MAX_TID; i++) {
3487 			char *speed_str;
3488 
3489 			if (i == 0) {
3490 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491 			} else if (i == 4) {
3492 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493 			} else if (i == 8) {
3494 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495 			} else if (i == 12) {
3496 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3497 			}
3498 			switch (sdtr_speed & ADV_MAX_TID) {
3499 			case 0:
3500 				speed_str = "Off";
3501 				break;
3502 			case 1:
3503 				speed_str = "  5";
3504 				break;
3505 			case 2:
3506 				speed_str = " 10";
3507 				break;
3508 			case 3:
3509 				speed_str = " 20";
3510 				break;
3511 			case 4:
3512 				speed_str = " 40";
3513 				break;
3514 			case 5:
3515 				speed_str = " 80";
3516 				break;
3517 			default:
3518 				speed_str = "Unk";
3519 				break;
3520 			}
3521 			len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522 			ASC_PRT_NEXT();
3523 			if (i == 7) {
3524 				len = asc_prt_line(cp, leftlen, "\n  ");
3525 				ASC_PRT_NEXT();
3526 			}
3527 			sdtr_speed >>= 4;
3528 		}
3529 		len = asc_prt_line(cp, leftlen, "\n");
3530 		ASC_PRT_NEXT();
3531 	}
3532 
3533 	return totlen;
3534 }
3535 
3536 /*
3537  * asc_prt_driver_conf()
3538  *
3539  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540  * cf. asc_prt_line().
3541  *
3542  * Return the number of characters copied into 'cp'. No more than
3543  * 'cplen' characters will be copied to 'cp'.
3544  */
asc_prt_driver_conf(struct Scsi_Host * shost,char * cp,int cplen)3545 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3546 {
3547 	struct asc_board *boardp = shost_priv(shost);
3548 	int leftlen;
3549 	int totlen;
3550 	int len;
3551 	int chip_scsi_id;
3552 
3553 	leftlen = cplen;
3554 	totlen = len = 0;
3555 
3556 	len = asc_prt_line(cp, leftlen,
3557 			   "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558 			   shost->host_no);
3559 	ASC_PRT_NEXT();
3560 
3561 	len = asc_prt_line(cp, leftlen,
3562 			   " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 			   shost->host_busy, shost->last_reset, shost->max_id,
3564 			   shost->max_lun, shost->max_channel);
3565 	ASC_PRT_NEXT();
3566 
3567 	len = asc_prt_line(cp, leftlen,
3568 			   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 			   shost->unique_id, shost->can_queue, shost->this_id,
3570 			   shost->sg_tablesize, shost->cmd_per_lun);
3571 	ASC_PRT_NEXT();
3572 
3573 	len = asc_prt_line(cp, leftlen,
3574 			   " unchecked_isa_dma %d, use_clustering %d\n",
3575 			   shost->unchecked_isa_dma, shost->use_clustering);
3576 	ASC_PRT_NEXT();
3577 
3578 	len = asc_prt_line(cp, leftlen,
3579 			   " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 			   boardp->flags, boardp->last_reset, jiffies,
3581 			   boardp->asc_n_io_port);
3582 	ASC_PRT_NEXT();
3583 
3584 	len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585 	ASC_PRT_NEXT();
3586 
3587 	if (ASC_NARROW_BOARD(boardp)) {
3588 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589 	} else {
3590 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3591 	}
3592 
3593 	return totlen;
3594 }
3595 
3596 /*
3597  * asc_prt_asc_board_info()
3598  *
3599  * Print dynamic board configuration information.
3600  *
3601  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602  * cf. asc_prt_line().
3603  *
3604  * Return the number of characters copied into 'cp'. No more than
3605  * 'cplen' characters will be copied to 'cp'.
3606  */
asc_prt_asc_board_info(struct Scsi_Host * shost,char * cp,int cplen)3607 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3608 {
3609 	struct asc_board *boardp = shost_priv(shost);
3610 	int chip_scsi_id;
3611 	int leftlen;
3612 	int totlen;
3613 	int len;
3614 	ASC_DVC_VAR *v;
3615 	ASC_DVC_CFG *c;
3616 	int i;
3617 	int renegotiate = 0;
3618 
3619 	v = &boardp->dvc_var.asc_dvc_var;
3620 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3621 	chip_scsi_id = c->chip_scsi_id;
3622 
3623 	leftlen = cplen;
3624 	totlen = len = 0;
3625 
3626 	len = asc_prt_line(cp, leftlen,
3627 			   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628 			   shost->host_no);
3629 	ASC_PRT_NEXT();
3630 
3631 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632 			   "mcode_version 0x%x, err_code %u\n",
3633 			   c->chip_version, c->mcode_date, c->mcode_version,
3634 			   v->err_code);
3635 	ASC_PRT_NEXT();
3636 
3637 	/* Current number of commands waiting for the host. */
3638 	len = asc_prt_line(cp, leftlen,
3639 			   " Total Command Pending: %d\n", v->cur_total_qng);
3640 	ASC_PRT_NEXT();
3641 
3642 	len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643 	ASC_PRT_NEXT();
3644 	for (i = 0; i <= ASC_MAX_TID; i++) {
3645 		if ((chip_scsi_id == i) ||
3646 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647 			continue;
3648 		}
3649 		len = asc_prt_line(cp, leftlen, " %X:%c",
3650 				   i,
3651 				   (v->
3652 				    use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653 				   'Y' : 'N');
3654 		ASC_PRT_NEXT();
3655 	}
3656 	len = asc_prt_line(cp, leftlen, "\n");
3657 	ASC_PRT_NEXT();
3658 
3659 	/* Current number of commands waiting for a device. */
3660 	len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661 	ASC_PRT_NEXT();
3662 	for (i = 0; i <= ASC_MAX_TID; i++) {
3663 		if ((chip_scsi_id == i) ||
3664 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665 			continue;
3666 		}
3667 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668 		ASC_PRT_NEXT();
3669 	}
3670 	len = asc_prt_line(cp, leftlen, "\n");
3671 	ASC_PRT_NEXT();
3672 
3673 	/* Current limit on number of commands that can be sent to a device. */
3674 	len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675 	ASC_PRT_NEXT();
3676 	for (i = 0; i <= ASC_MAX_TID; i++) {
3677 		if ((chip_scsi_id == i) ||
3678 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679 			continue;
3680 		}
3681 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682 		ASC_PRT_NEXT();
3683 	}
3684 	len = asc_prt_line(cp, leftlen, "\n");
3685 	ASC_PRT_NEXT();
3686 
3687 	/* Indicate whether the device has returned queue full status. */
3688 	len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689 	ASC_PRT_NEXT();
3690 	for (i = 0; i <= ASC_MAX_TID; i++) {
3691 		if ((chip_scsi_id == i) ||
3692 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693 			continue;
3694 		}
3695 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696 			len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697 					   i, boardp->queue_full_cnt[i]);
3698 		} else {
3699 			len = asc_prt_line(cp, leftlen, " %X:N", i);
3700 		}
3701 		ASC_PRT_NEXT();
3702 	}
3703 	len = asc_prt_line(cp, leftlen, "\n");
3704 	ASC_PRT_NEXT();
3705 
3706 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707 	ASC_PRT_NEXT();
3708 	for (i = 0; i <= ASC_MAX_TID; i++) {
3709 		if ((chip_scsi_id == i) ||
3710 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711 			continue;
3712 		}
3713 		len = asc_prt_line(cp, leftlen, " %X:%c",
3714 				   i,
3715 				   (v->
3716 				    sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717 				   'N');
3718 		ASC_PRT_NEXT();
3719 	}
3720 	len = asc_prt_line(cp, leftlen, "\n");
3721 	ASC_PRT_NEXT();
3722 
3723 	for (i = 0; i <= ASC_MAX_TID; i++) {
3724 		uchar syn_period_ix;
3725 
3726 		if ((chip_scsi_id == i) ||
3727 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729 			continue;
3730 		}
3731 
3732 		len = asc_prt_line(cp, leftlen, "  %X:", i);
3733 		ASC_PRT_NEXT();
3734 
3735 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736 			len = asc_prt_line(cp, leftlen, " Asynchronous");
3737 			ASC_PRT_NEXT();
3738 		} else {
3739 			syn_period_ix =
3740 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3741 							   1);
3742 
3743 			len = asc_prt_line(cp, leftlen,
3744 					   " Transfer Period Factor: %d (%d.%d Mhz),",
3745 					   v->sdtr_period_tbl[syn_period_ix],
3746 					   250 /
3747 					   v->sdtr_period_tbl[syn_period_ix],
3748 					   ASC_TENTHS(250,
3749 						      v->
3750 						      sdtr_period_tbl
3751 						      [syn_period_ix]));
3752 			ASC_PRT_NEXT();
3753 
3754 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755 					   boardp->
3756 					   sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757 			ASC_PRT_NEXT();
3758 		}
3759 
3760 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761 			len = asc_prt_line(cp, leftlen, "*\n");
3762 			renegotiate = 1;
3763 		} else {
3764 			len = asc_prt_line(cp, leftlen, "\n");
3765 		}
3766 		ASC_PRT_NEXT();
3767 	}
3768 
3769 	if (renegotiate) {
3770 		len = asc_prt_line(cp, leftlen,
3771 				   " * = Re-negotiation pending before next command.\n");
3772 		ASC_PRT_NEXT();
3773 	}
3774 
3775 	return totlen;
3776 }
3777 
3778 /*
3779  * asc_prt_adv_board_info()
3780  *
3781  * Print dynamic board configuration information.
3782  *
3783  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784  * cf. asc_prt_line().
3785  *
3786  * Return the number of characters copied into 'cp'. No more than
3787  * 'cplen' characters will be copied to 'cp'.
3788  */
asc_prt_adv_board_info(struct Scsi_Host * shost,char * cp,int cplen)3789 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3790 {
3791 	struct asc_board *boardp = shost_priv(shost);
3792 	int leftlen;
3793 	int totlen;
3794 	int len;
3795 	int i;
3796 	ADV_DVC_VAR *v;
3797 	ADV_DVC_CFG *c;
3798 	AdvPortAddr iop_base;
3799 	ushort chip_scsi_id;
3800 	ushort lramword;
3801 	uchar lrambyte;
3802 	ushort tagqng_able;
3803 	ushort sdtr_able, wdtr_able;
3804 	ushort wdtr_done, sdtr_done;
3805 	ushort period = 0;
3806 	int renegotiate = 0;
3807 
3808 	v = &boardp->dvc_var.adv_dvc_var;
3809 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3810 	iop_base = v->iop_base;
3811 	chip_scsi_id = v->chip_scsi_id;
3812 
3813 	leftlen = cplen;
3814 	totlen = len = 0;
3815 
3816 	len = asc_prt_line(cp, leftlen,
3817 			   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818 			   shost->host_no);
3819 	ASC_PRT_NEXT();
3820 
3821 	len = asc_prt_line(cp, leftlen,
3822 			   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823 			   v->iop_base,
3824 			   AdvReadWordRegister(iop_base,
3825 					       IOPW_SCSI_CFG1) & CABLE_DETECT,
3826 			   v->err_code);
3827 	ASC_PRT_NEXT();
3828 
3829 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830 			   "mcode_version 0x%x\n", c->chip_version,
3831 			   c->mcode_date, c->mcode_version);
3832 	ASC_PRT_NEXT();
3833 
3834 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835 	len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836 	ASC_PRT_NEXT();
3837 	for (i = 0; i <= ADV_MAX_TID; i++) {
3838 		if ((chip_scsi_id == i) ||
3839 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840 			continue;
3841 		}
3842 
3843 		len = asc_prt_line(cp, leftlen, " %X:%c",
3844 				   i,
3845 				   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846 				   'N');
3847 		ASC_PRT_NEXT();
3848 	}
3849 	len = asc_prt_line(cp, leftlen, "\n");
3850 	ASC_PRT_NEXT();
3851 
3852 	len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853 	ASC_PRT_NEXT();
3854 	for (i = 0; i <= ADV_MAX_TID; i++) {
3855 		if ((chip_scsi_id == i) ||
3856 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857 			continue;
3858 		}
3859 
3860 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861 				lrambyte);
3862 
3863 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864 		ASC_PRT_NEXT();
3865 	}
3866 	len = asc_prt_line(cp, leftlen, "\n");
3867 	ASC_PRT_NEXT();
3868 
3869 	len = asc_prt_line(cp, leftlen, " Command Pending:");
3870 	ASC_PRT_NEXT();
3871 	for (i = 0; i <= ADV_MAX_TID; i++) {
3872 		if ((chip_scsi_id == i) ||
3873 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874 			continue;
3875 		}
3876 
3877 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878 				lrambyte);
3879 
3880 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881 		ASC_PRT_NEXT();
3882 	}
3883 	len = asc_prt_line(cp, leftlen, "\n");
3884 	ASC_PRT_NEXT();
3885 
3886 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887 	len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888 	ASC_PRT_NEXT();
3889 	for (i = 0; i <= ADV_MAX_TID; i++) {
3890 		if ((chip_scsi_id == i) ||
3891 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892 			continue;
3893 		}
3894 
3895 		len = asc_prt_line(cp, leftlen, " %X:%c",
3896 				   i,
3897 				   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898 				   'N');
3899 		ASC_PRT_NEXT();
3900 	}
3901 	len = asc_prt_line(cp, leftlen, "\n");
3902 	ASC_PRT_NEXT();
3903 
3904 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905 	len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906 	ASC_PRT_NEXT();
3907 	for (i = 0; i <= ADV_MAX_TID; i++) {
3908 		if ((chip_scsi_id == i) ||
3909 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910 			continue;
3911 		}
3912 
3913 		AdvReadWordLram(iop_base,
3914 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915 				lramword);
3916 
3917 		len = asc_prt_line(cp, leftlen, " %X:%d",
3918 				   i, (lramword & 0x8000) ? 16 : 8);
3919 		ASC_PRT_NEXT();
3920 
3921 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923 			len = asc_prt_line(cp, leftlen, "*");
3924 			ASC_PRT_NEXT();
3925 			renegotiate = 1;
3926 		}
3927 	}
3928 	len = asc_prt_line(cp, leftlen, "\n");
3929 	ASC_PRT_NEXT();
3930 
3931 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932 	len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933 	ASC_PRT_NEXT();
3934 	for (i = 0; i <= ADV_MAX_TID; i++) {
3935 		if ((chip_scsi_id == i) ||
3936 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937 			continue;
3938 		}
3939 
3940 		len = asc_prt_line(cp, leftlen, " %X:%c",
3941 				   i,
3942 				   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943 				   'N');
3944 		ASC_PRT_NEXT();
3945 	}
3946 	len = asc_prt_line(cp, leftlen, "\n");
3947 	ASC_PRT_NEXT();
3948 
3949 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950 	for (i = 0; i <= ADV_MAX_TID; i++) {
3951 
3952 		AdvReadWordLram(iop_base,
3953 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954 				lramword);
3955 		lramword &= ~0x8000;
3956 
3957 		if ((chip_scsi_id == i) ||
3958 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960 			continue;
3961 		}
3962 
3963 		len = asc_prt_line(cp, leftlen, "  %X:", i);
3964 		ASC_PRT_NEXT();
3965 
3966 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3967 			len = asc_prt_line(cp, leftlen, " Asynchronous");
3968 			ASC_PRT_NEXT();
3969 		} else {
3970 			len =
3971 			    asc_prt_line(cp, leftlen,
3972 					 " Transfer Period Factor: ");
3973 			ASC_PRT_NEXT();
3974 
3975 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3976 				len =
3977 				    asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978 				ASC_PRT_NEXT();
3979 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3980 				len =
3981 				    asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982 				ASC_PRT_NEXT();
3983 			} else {	/* 20 Mhz or below. */
3984 
3985 				period = (((lramword >> 8) * 25) + 50) / 4;
3986 
3987 				if (period == 0) {	/* Should never happen. */
3988 					len =
3989 					    asc_prt_line(cp, leftlen,
3990 							 "%d (? Mhz), ");
3991 					ASC_PRT_NEXT();
3992 				} else {
3993 					len = asc_prt_line(cp, leftlen,
3994 							   "%d (%d.%d Mhz),",
3995 							   period, 250 / period,
3996 							   ASC_TENTHS(250,
3997 								      period));
3998 					ASC_PRT_NEXT();
3999 				}
4000 			}
4001 
4002 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003 					   lramword & 0x1F);
4004 			ASC_PRT_NEXT();
4005 		}
4006 
4007 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008 			len = asc_prt_line(cp, leftlen, "*\n");
4009 			renegotiate = 1;
4010 		} else {
4011 			len = asc_prt_line(cp, leftlen, "\n");
4012 		}
4013 		ASC_PRT_NEXT();
4014 	}
4015 
4016 	if (renegotiate) {
4017 		len = asc_prt_line(cp, leftlen,
4018 				   " * = Re-negotiation pending before next command.\n");
4019 		ASC_PRT_NEXT();
4020 	}
4021 
4022 	return totlen;
4023 }
4024 
4025 /*
4026  * asc_proc_copy()
4027  *
4028  * Copy proc information to a read buffer taking into account the current
4029  * read offset in the file and the remaining space in the read buffer.
4030  */
4031 static int
asc_proc_copy(off_t advoffset,off_t offset,char * curbuf,int leftlen,char * cp,int cplen)4032 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033 	      char *cp, int cplen)
4034 {
4035 	int cnt = 0;
4036 
4037 	ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 		 (unsigned)offset, (unsigned)advoffset, cplen);
4039 	if (offset <= advoffset) {
4040 		/* Read offset below current offset, copy everything. */
4041 		cnt = min(cplen, leftlen);
4042 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 			 (ulong)curbuf, (ulong)cp, cnt);
4044 		memcpy(curbuf, cp, cnt);
4045 	} else if (offset < advoffset + cplen) {
4046 		/* Read offset within current range, partial copy. */
4047 		cnt = (advoffset + cplen) - offset;
4048 		cp = (cp + cplen) - cnt;
4049 		cnt = min(cnt, leftlen);
4050 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 			 (ulong)curbuf, (ulong)cp, cnt);
4052 		memcpy(curbuf, cp, cnt);
4053 	}
4054 	return cnt;
4055 }
4056 
4057 #ifdef ADVANSYS_STATS
4058 /*
4059  * asc_prt_board_stats()
4060  *
4061  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062  * cf. asc_prt_line().
4063  *
4064  * Return the number of characters copied into 'cp'. No more than
4065  * 'cplen' characters will be copied to 'cp'.
4066  */
asc_prt_board_stats(struct Scsi_Host * shost,char * cp,int cplen)4067 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4068 {
4069 	struct asc_board *boardp = shost_priv(shost);
4070 	struct asc_stats *s = &boardp->asc_stats;
4071 
4072 	int leftlen = cplen;
4073 	int len, totlen = 0;
4074 
4075 	len = asc_prt_line(cp, leftlen,
4076 			   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077 			   shost->host_no);
4078 	ASC_PRT_NEXT();
4079 
4080 	len = asc_prt_line(cp, leftlen,
4081 			   " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 			   s->queuecommand, s->reset, s->biosparam,
4083 			   s->interrupt);
4084 	ASC_PRT_NEXT();
4085 
4086 	len = asc_prt_line(cp, leftlen,
4087 			   " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 			   s->callback, s->done, s->build_error,
4089 			   s->adv_build_noreq, s->adv_build_nosg);
4090 	ASC_PRT_NEXT();
4091 
4092 	len = asc_prt_line(cp, leftlen,
4093 			   " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 			   s->exe_noerror, s->exe_busy, s->exe_error,
4095 			   s->exe_unknown);
4096 	ASC_PRT_NEXT();
4097 
4098 	/*
4099 	 * Display data transfer statistics.
4100 	 */
4101 	if (s->xfer_cnt > 0) {
4102 		len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103 				   s->xfer_cnt, s->xfer_elem);
4104 		ASC_PRT_NEXT();
4105 
4106 		len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107 				   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108 		ASC_PRT_NEXT();
4109 
4110 		/* Scatter gather transfer statistics */
4111 		len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112 				   s->xfer_elem / s->xfer_cnt,
4113 				   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114 		ASC_PRT_NEXT();
4115 
4116 		len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117 				   (s->xfer_sect / 2) / s->xfer_elem,
4118 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119 		ASC_PRT_NEXT();
4120 
4121 		len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122 				   (s->xfer_sect / 2) / s->xfer_cnt,
4123 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124 		ASC_PRT_NEXT();
4125 	}
4126 
4127 	return totlen;
4128 }
4129 #endif /* ADVANSYS_STATS */
4130 
4131 /*
4132  * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4133  *
4134  * *buffer: I/O buffer
4135  * **start: if inout == FALSE pointer into buffer where user read should start
4136  * offset: current offset into a /proc/scsi/advansys/[0...] file
4137  * length: length of buffer
4138  * hostno: Scsi_Host host_no
4139  * inout: TRUE - user is writing; FALSE - user is reading
4140  *
4141  * Return the number of bytes read from or written to a
4142  * /proc/scsi/advansys/[0...] file.
4143  *
4144  * Note: This function uses the per board buffer 'prtbuf' which is
4145  * allocated when the board is initialized in advansys_detect(). The
4146  * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147  * used to write to the buffer. The way asc_proc_copy() is written
4148  * if 'prtbuf' is too small it will not be overwritten. Instead the
4149  * user just won't get all the available statistics.
4150  */
4151 static int
advansys_proc_info(struct Scsi_Host * shost,char * buffer,char ** start,off_t offset,int length,int inout)4152 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153 		   off_t offset, int length, int inout)
4154 {
4155 	struct asc_board *boardp = shost_priv(shost);
4156 	char *cp;
4157 	int cplen;
4158 	int cnt;
4159 	int totcnt;
4160 	int leftlen;
4161 	char *curbuf;
4162 	off_t advoffset;
4163 
4164 	ASC_DBG(1, "begin\n");
4165 
4166 	/*
4167 	 * User write not supported.
4168 	 */
4169 	if (inout == TRUE)
4170 		return -ENOSYS;
4171 
4172 	/*
4173 	 * User read of /proc/scsi/advansys/[0...] file.
4174 	 */
4175 
4176 	/* Copy read data starting at the beginning of the buffer. */
4177 	*start = buffer;
4178 	curbuf = buffer;
4179 	advoffset = 0;
4180 	totcnt = 0;
4181 	leftlen = length;
4182 
4183 	/*
4184 	 * Get board configuration information.
4185 	 *
4186 	 * advansys_info() returns the board string from its own static buffer.
4187 	 */
4188 	cp = (char *)advansys_info(shost);
4189 	strcat(cp, "\n");
4190 	cplen = strlen(cp);
4191 	/* Copy board information. */
4192 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193 	totcnt += cnt;
4194 	leftlen -= cnt;
4195 	if (leftlen == 0) {
4196 		ASC_DBG(1, "totcnt %d\n", totcnt);
4197 		return totcnt;
4198 	}
4199 	advoffset += cplen;
4200 	curbuf += cnt;
4201 
4202 	/*
4203 	 * Display Wide Board BIOS Information.
4204 	 */
4205 	if (!ASC_NARROW_BOARD(boardp)) {
4206 		cp = boardp->prtbuf;
4207 		cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208 		BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209 		cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210 				  cplen);
4211 		totcnt += cnt;
4212 		leftlen -= cnt;
4213 		if (leftlen == 0) {
4214 			ASC_DBG(1, "totcnt %d\n", totcnt);
4215 			return totcnt;
4216 		}
4217 		advoffset += cplen;
4218 		curbuf += cnt;
4219 	}
4220 
4221 	/*
4222 	 * Display driver information for each device attached to the board.
4223 	 */
4224 	cp = boardp->prtbuf;
4225 	cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228 	totcnt += cnt;
4229 	leftlen -= cnt;
4230 	if (leftlen == 0) {
4231 		ASC_DBG(1, "totcnt %d\n", totcnt);
4232 		return totcnt;
4233 	}
4234 	advoffset += cplen;
4235 	curbuf += cnt;
4236 
4237 	/*
4238 	 * Display EEPROM configuration for the board.
4239 	 */
4240 	cp = boardp->prtbuf;
4241 	if (ASC_NARROW_BOARD(boardp)) {
4242 		cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243 	} else {
4244 		cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4245 	}
4246 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248 	totcnt += cnt;
4249 	leftlen -= cnt;
4250 	if (leftlen == 0) {
4251 		ASC_DBG(1, "totcnt %d\n", totcnt);
4252 		return totcnt;
4253 	}
4254 	advoffset += cplen;
4255 	curbuf += cnt;
4256 
4257 	/*
4258 	 * Display driver configuration and information for the board.
4259 	 */
4260 	cp = boardp->prtbuf;
4261 	cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264 	totcnt += cnt;
4265 	leftlen -= cnt;
4266 	if (leftlen == 0) {
4267 		ASC_DBG(1, "totcnt %d\n", totcnt);
4268 		return totcnt;
4269 	}
4270 	advoffset += cplen;
4271 	curbuf += cnt;
4272 
4273 #ifdef ADVANSYS_STATS
4274 	/*
4275 	 * Display driver statistics for the board.
4276 	 */
4277 	cp = boardp->prtbuf;
4278 	cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281 	totcnt += cnt;
4282 	leftlen -= cnt;
4283 	if (leftlen == 0) {
4284 		ASC_DBG(1, "totcnt %d\n", totcnt);
4285 		return totcnt;
4286 	}
4287 	advoffset += cplen;
4288 	curbuf += cnt;
4289 #endif /* ADVANSYS_STATS */
4290 
4291 	/*
4292 	 * Display Asc Library dynamic configuration information
4293 	 * for the board.
4294 	 */
4295 	cp = boardp->prtbuf;
4296 	if (ASC_NARROW_BOARD(boardp)) {
4297 		cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298 	} else {
4299 		cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4300 	}
4301 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303 	totcnt += cnt;
4304 	leftlen -= cnt;
4305 	if (leftlen == 0) {
4306 		ASC_DBG(1, "totcnt %d\n", totcnt);
4307 		return totcnt;
4308 	}
4309 	advoffset += cplen;
4310 	curbuf += cnt;
4311 
4312 	ASC_DBG(1, "totcnt %d\n", totcnt);
4313 
4314 	return totcnt;
4315 }
4316 #endif /* CONFIG_PROC_FS */
4317 
asc_scsi_done(struct scsi_cmnd * scp)4318 static void asc_scsi_done(struct scsi_cmnd *scp)
4319 {
4320 	scsi_dma_unmap(scp);
4321 	ASC_STATS(scp->device->host, done);
4322 	scp->scsi_done(scp);
4323 }
4324 
AscSetBank(PortAddr iop_base,uchar bank)4325 static void AscSetBank(PortAddr iop_base, uchar bank)
4326 {
4327 	uchar val;
4328 
4329 	val = AscGetChipControl(iop_base) &
4330 	    (~
4331 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332 	      CC_CHIP_RESET));
4333 	if (bank == 1) {
4334 		val |= CC_BANK_ONE;
4335 	} else if (bank == 2) {
4336 		val |= CC_DIAG | CC_BANK_ONE;
4337 	} else {
4338 		val &= ~CC_BANK_ONE;
4339 	}
4340 	AscSetChipControl(iop_base, val);
4341 }
4342 
AscSetChipIH(PortAddr iop_base,ushort ins_code)4343 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4344 {
4345 	AscSetBank(iop_base, 1);
4346 	AscWriteChipIH(iop_base, ins_code);
4347 	AscSetBank(iop_base, 0);
4348 }
4349 
AscStartChip(PortAddr iop_base)4350 static int AscStartChip(PortAddr iop_base)
4351 {
4352 	AscSetChipControl(iop_base, 0);
4353 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354 		return (0);
4355 	}
4356 	return (1);
4357 }
4358 
AscStopChip(PortAddr iop_base)4359 static int AscStopChip(PortAddr iop_base)
4360 {
4361 	uchar cc_val;
4362 
4363 	cc_val =
4364 	    AscGetChipControl(iop_base) &
4365 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367 	AscSetChipIH(iop_base, INS_HALT);
4368 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370 		return (0);
4371 	}
4372 	return (1);
4373 }
4374 
AscIsChipHalted(PortAddr iop_base)4375 static int AscIsChipHalted(PortAddr iop_base)
4376 {
4377 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379 			return (1);
4380 		}
4381 	}
4382 	return (0);
4383 }
4384 
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4386 {
4387 	PortAddr iop_base;
4388 	int i = 10;
4389 
4390 	iop_base = asc_dvc->iop_base;
4391 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392 	       && (i-- > 0)) {
4393 		mdelay(100);
4394 	}
4395 	AscStopChip(iop_base);
4396 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397 	udelay(60);
4398 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399 	AscSetChipIH(iop_base, INS_HALT);
4400 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401 	AscSetChipControl(iop_base, CC_HALT);
4402 	mdelay(200);
4403 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404 	AscSetChipStatus(iop_base, 0);
4405 	return (AscIsChipHalted(iop_base));
4406 }
4407 
AscFindSignature(PortAddr iop_base)4408 static int AscFindSignature(PortAddr iop_base)
4409 {
4410 	ushort sig_word;
4411 
4412 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 		 iop_base, AscGetChipSignatureByte(iop_base));
4414 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 			 iop_base, AscGetChipSignatureWord(iop_base));
4417 		sig_word = AscGetChipSignatureWord(iop_base);
4418 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420 			return (1);
4421 		}
4422 	}
4423 	return (0);
4424 }
4425 
AscEnableInterrupt(PortAddr iop_base)4426 static void AscEnableInterrupt(PortAddr iop_base)
4427 {
4428 	ushort cfg;
4429 
4430 	cfg = AscGetChipCfgLsw(iop_base);
4431 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4432 }
4433 
AscDisableInterrupt(PortAddr iop_base)4434 static void AscDisableInterrupt(PortAddr iop_base)
4435 {
4436 	ushort cfg;
4437 
4438 	cfg = AscGetChipCfgLsw(iop_base);
4439 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4440 }
4441 
AscReadLramByte(PortAddr iop_base,ushort addr)4442 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4443 {
4444 	unsigned char byte_data;
4445 	unsigned short word_data;
4446 
4447 	if (isodd_word(addr)) {
4448 		AscSetChipLramAddr(iop_base, addr - 1);
4449 		word_data = AscGetChipLramData(iop_base);
4450 		byte_data = (word_data >> 8) & 0xFF;
4451 	} else {
4452 		AscSetChipLramAddr(iop_base, addr);
4453 		word_data = AscGetChipLramData(iop_base);
4454 		byte_data = word_data & 0xFF;
4455 	}
4456 	return byte_data;
4457 }
4458 
AscReadLramWord(PortAddr iop_base,ushort addr)4459 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4460 {
4461 	ushort word_data;
4462 
4463 	AscSetChipLramAddr(iop_base, addr);
4464 	word_data = AscGetChipLramData(iop_base);
4465 	return (word_data);
4466 }
4467 
4468 #if CC_VERY_LONG_SG_LIST
AscReadLramDWord(PortAddr iop_base,ushort addr)4469 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4470 {
4471 	ushort val_low, val_high;
4472 	ASC_DCNT dword_data;
4473 
4474 	AscSetChipLramAddr(iop_base, addr);
4475 	val_low = AscGetChipLramData(iop_base);
4476 	val_high = AscGetChipLramData(iop_base);
4477 	dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478 	return (dword_data);
4479 }
4480 #endif /* CC_VERY_LONG_SG_LIST */
4481 
4482 static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)4483 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4484 {
4485 	int i;
4486 
4487 	AscSetChipLramAddr(iop_base, s_addr);
4488 	for (i = 0; i < words; i++) {
4489 		AscSetChipLramData(iop_base, set_wval);
4490 	}
4491 }
4492 
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)4493 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4494 {
4495 	AscSetChipLramAddr(iop_base, addr);
4496 	AscSetChipLramData(iop_base, word_val);
4497 }
4498 
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)4499 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4500 {
4501 	ushort word_data;
4502 
4503 	if (isodd_word(addr)) {
4504 		addr--;
4505 		word_data = AscReadLramWord(iop_base, addr);
4506 		word_data &= 0x00FF;
4507 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508 	} else {
4509 		word_data = AscReadLramWord(iop_base, addr);
4510 		word_data &= 0xFF00;
4511 		word_data |= ((ushort)byte_val & 0x00FF);
4512 	}
4513 	AscWriteLramWord(iop_base, addr, word_data);
4514 }
4515 
4516 /*
4517  * Copy 2 bytes to LRAM.
4518  *
4519  * The source data is assumed to be in little-endian order in memory
4520  * and is maintained in little-endian order when written to LRAM.
4521  */
4522 static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)4523 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524 			const uchar *s_buffer, int words)
4525 {
4526 	int i;
4527 
4528 	AscSetChipLramAddr(iop_base, s_addr);
4529 	for (i = 0; i < 2 * words; i += 2) {
4530 		/*
4531 		 * On a little-endian system the second argument below
4532 		 * produces a little-endian ushort which is written to
4533 		 * LRAM in little-endian order. On a big-endian system
4534 		 * the second argument produces a big-endian ushort which
4535 		 * is "transparently" byte-swapped by outpw() and written
4536 		 * in little-endian order to LRAM.
4537 		 */
4538 		outpw(iop_base + IOP_RAM_DATA,
4539 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4540 	}
4541 }
4542 
4543 /*
4544  * Copy 4 bytes to LRAM.
4545  *
4546  * The source data is assumed to be in little-endian order in memory
4547  * and is maintained in little-endian order when written to LRAM.
4548  */
4549 static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)4550 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551 			 ushort s_addr, uchar *s_buffer, int dwords)
4552 {
4553 	int i;
4554 
4555 	AscSetChipLramAddr(iop_base, s_addr);
4556 	for (i = 0; i < 4 * dwords; i += 4) {
4557 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
4558 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
4559 	}
4560 }
4561 
4562 /*
4563  * Copy 2 bytes from LRAM.
4564  *
4565  * The source data is assumed to be in little-endian order in LRAM
4566  * and is maintained in little-endian order when written to memory.
4567  */
4568 static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)4569 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570 			  ushort s_addr, uchar *d_buffer, int words)
4571 {
4572 	int i;
4573 	ushort word;
4574 
4575 	AscSetChipLramAddr(iop_base, s_addr);
4576 	for (i = 0; i < 2 * words; i += 2) {
4577 		word = inpw(iop_base + IOP_RAM_DATA);
4578 		d_buffer[i] = word & 0xff;
4579 		d_buffer[i + 1] = (word >> 8) & 0xff;
4580 	}
4581 }
4582 
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)4583 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4584 {
4585 	ASC_DCNT sum;
4586 	int i;
4587 
4588 	sum = 0L;
4589 	for (i = 0; i < words; i++, s_addr += 2) {
4590 		sum += AscReadLramWord(iop_base, s_addr);
4591 	}
4592 	return (sum);
4593 }
4594 
AscInitLram(ASC_DVC_VAR * asc_dvc)4595 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4596 {
4597 	uchar i;
4598 	ushort s_addr;
4599 	PortAddr iop_base;
4600 	ushort warn_code;
4601 
4602 	iop_base = asc_dvc->iop_base;
4603 	warn_code = 0;
4604 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606 				    64) >> 1));
4607 	i = ASC_MIN_ACTIVE_QNO;
4608 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610 			 (uchar)(i + 1));
4611 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612 			 (uchar)(asc_dvc->max_total_qng));
4613 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614 			 (uchar)i);
4615 	i++;
4616 	s_addr += ASC_QBLK_SIZE;
4617 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619 				 (uchar)(i + 1));
4620 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621 				 (uchar)(i - 1));
4622 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623 				 (uchar)i);
4624 	}
4625 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626 			 (uchar)ASC_QLINK_END);
4627 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628 			 (uchar)(asc_dvc->max_total_qng - 1));
4629 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630 			 (uchar)asc_dvc->max_total_qng);
4631 	i++;
4632 	s_addr += ASC_QBLK_SIZE;
4633 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634 	     i++, s_addr += ASC_QBLK_SIZE) {
4635 		AscWriteLramByte(iop_base,
4636 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637 		AscWriteLramByte(iop_base,
4638 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639 		AscWriteLramByte(iop_base,
4640 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4641 	}
4642 	return warn_code;
4643 }
4644 
4645 static ASC_DCNT
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)4646 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647 		 const uchar *mcode_buf, ushort mcode_size)
4648 {
4649 	ASC_DCNT chksum;
4650 	ushort mcode_word_size;
4651 	ushort mcode_chksum;
4652 
4653 	/* Write the microcode buffer starting at LRAM address 0. */
4654 	mcode_word_size = (ushort)(mcode_size >> 1);
4655 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4657 
4658 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661 						 (ushort)ASC_CODE_SEC_BEG,
4662 						 (ushort)((mcode_size -
4663 							   s_addr - (ushort)
4664 							   ASC_CODE_SEC_BEG) /
4665 							  2));
4666 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669 	return chksum;
4670 }
4671 
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)4672 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4673 {
4674 	PortAddr iop_base;
4675 	int i;
4676 	ushort lram_addr;
4677 
4678 	iop_base = asc_dvc->iop_base;
4679 	AscPutRiscVarFreeQHead(iop_base, 1);
4680 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681 	AscPutVarFreeQHead(iop_base, 1);
4682 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684 			 (uchar)((int)asc_dvc->max_total_qng + 1));
4685 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686 			 (uchar)((int)asc_dvc->max_total_qng + 2));
4687 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688 			 asc_dvc->max_total_qng);
4689 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694 	AscPutQDoneInProgress(iop_base, 0);
4695 	lram_addr = ASC_QADR_BEG;
4696 	for (i = 0; i < 32; i++, lram_addr += 2) {
4697 		AscWriteLramWord(iop_base, lram_addr, 0);
4698 	}
4699 }
4700 
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)4701 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4702 {
4703 	int i;
4704 	ushort warn_code;
4705 	PortAddr iop_base;
4706 	ASC_PADDR phy_addr;
4707 	ASC_DCNT phy_size;
4708 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4709 
4710 	iop_base = asc_dvc->iop_base;
4711 	warn_code = 0;
4712 	for (i = 0; i <= ASC_MAX_TID; i++) {
4713 		AscPutMCodeInitSDTRAtID(iop_base, i,
4714 					asc_dvc->cfg->sdtr_period_offset[i]);
4715 	}
4716 
4717 	AscInitQLinkVar(asc_dvc);
4718 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719 			 asc_dvc->cfg->disc_enable);
4720 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4722 
4723 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4728 		warn_code = -ENOMEM;
4729 		goto err_dma_map;
4730 	}
4731 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4732 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4733 				 (uchar *)&phy_addr, 1);
4734 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4735 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4736 				 (uchar *)&phy_size, 1);
4737 
4738 	asc_dvc->cfg->mcode_date =
4739 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4740 	asc_dvc->cfg->mcode_version =
4741 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4742 
4743 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4744 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4745 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4746 		warn_code = UW_ERR;
4747 		goto err_mcode_start;
4748 	}
4749 	if (AscStartChip(iop_base) != 1) {
4750 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4751 		warn_code = UW_ERR;
4752 		goto err_mcode_start;
4753 	}
4754 
4755 	return warn_code;
4756 
4757 err_mcode_start:
4758 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4759 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4760 err_dma_map:
4761 	asc_dvc->overrun_dma = 0;
4762 	return warn_code;
4763 }
4764 
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4765 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4766 {
4767 	const struct firmware *fw;
4768 	const char fwname[] = "advansys/mcode.bin";
4769 	int err;
4770 	unsigned long chksum;
4771 	ushort warn_code;
4772 	PortAddr iop_base;
4773 
4774 	iop_base = asc_dvc->iop_base;
4775 	warn_code = 0;
4776 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4777 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4778 		AscResetChipAndScsiBus(asc_dvc);
4779 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4780 	}
4781 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4782 	if (asc_dvc->err_code != 0)
4783 		return UW_ERR;
4784 	if (!AscFindSignature(asc_dvc->iop_base)) {
4785 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4786 		return warn_code;
4787 	}
4788 	AscDisableInterrupt(iop_base);
4789 	warn_code |= AscInitLram(asc_dvc);
4790 	if (asc_dvc->err_code != 0)
4791 		return UW_ERR;
4792 
4793 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4794 	if (err) {
4795 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4796 		       fwname, err);
4797 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798 		return err;
4799 	}
4800 	if (fw->size < 4) {
4801 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4802 		       fw->size, fwname);
4803 		release_firmware(fw);
4804 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4805 		return -EINVAL;
4806 	}
4807 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4808 		 (fw->data[1] << 8) | fw->data[0];
4809 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4810 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4811 			     fw->size - 4) != chksum) {
4812 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4813 		release_firmware(fw);
4814 		return warn_code;
4815 	}
4816 	release_firmware(fw);
4817 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4818 	if (!asc_dvc->overrun_dma)
4819 		return warn_code;
4820 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4821 	AscEnableInterrupt(iop_base);
4822 	return warn_code;
4823 }
4824 
4825 /*
4826  * Load the Microcode
4827  *
4828  * Write the microcode image to RISC memory starting at address 0.
4829  *
4830  * The microcode is stored compressed in the following format:
4831  *
4832  *  254 word (508 byte) table indexed by byte code followed
4833  *  by the following byte codes:
4834  *
4835  *    1-Byte Code:
4836  *      00: Emit word 0 in table.
4837  *      01: Emit word 1 in table.
4838  *      .
4839  *      FD: Emit word 253 in table.
4840  *
4841  *    Multi-Byte Code:
4842  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4843  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4844  *
4845  * Returns 0 or an error if the checksum doesn't match
4846  */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4847 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4848 			    int size, int memsize, int chksum)
4849 {
4850 	int i, j, end, len = 0;
4851 	ADV_DCNT sum;
4852 
4853 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4854 
4855 	for (i = 253 * 2; i < size; i++) {
4856 		if (buf[i] == 0xff) {
4857 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4858 			for (j = 0; j < buf[i + 1]; j++) {
4859 				AdvWriteWordAutoIncLram(iop_base, word);
4860 				len += 2;
4861 			}
4862 			i += 3;
4863 		} else if (buf[i] == 0xfe) {
4864 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4865 			AdvWriteWordAutoIncLram(iop_base, word);
4866 			i += 2;
4867 			len += 2;
4868 		} else {
4869 			unsigned int off = buf[i] * 2;
4870 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4871 			AdvWriteWordAutoIncLram(iop_base, word);
4872 			len += 2;
4873 		}
4874 	}
4875 
4876 	end = len;
4877 
4878 	while (len < memsize) {
4879 		AdvWriteWordAutoIncLram(iop_base, 0);
4880 		len += 2;
4881 	}
4882 
4883 	/* Verify the microcode checksum. */
4884 	sum = 0;
4885 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4886 
4887 	for (len = 0; len < end; len += 2) {
4888 		sum += AdvReadWordAutoIncLram(iop_base);
4889 	}
4890 
4891 	if (sum != chksum)
4892 		return ASC_IERR_MCODE_CHKSUM;
4893 
4894 	return 0;
4895 }
4896 
AdvBuildCarrierFreelist(struct adv_dvc_var * asc_dvc)4897 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4898 {
4899 	ADV_CARR_T *carrp;
4900 	ADV_SDCNT buf_size;
4901 	ADV_PADDR carr_paddr;
4902 
4903 	carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4904 	asc_dvc->carr_freelist = NULL;
4905 	if (carrp == asc_dvc->carrier_buf) {
4906 		buf_size = ADV_CARRIER_BUFSIZE;
4907 	} else {
4908 		buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4909 	}
4910 
4911 	do {
4912 		/* Get physical address of the carrier 'carrp'. */
4913 		carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4914 
4915 		buf_size -= sizeof(ADV_CARR_T);
4916 
4917 		carrp->carr_pa = carr_paddr;
4918 		carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4919 
4920 		/*
4921 		 * Insert the carrier at the beginning of the freelist.
4922 		 */
4923 		carrp->next_vpa =
4924 			cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4925 		asc_dvc->carr_freelist = carrp;
4926 
4927 		carrp++;
4928 	} while (buf_size > 0);
4929 }
4930 
4931 /*
4932  * Send an idle command to the chip and wait for completion.
4933  *
4934  * Command completion is polled for once per microsecond.
4935  *
4936  * The function can be called from anywhere including an interrupt handler.
4937  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4938  * functions to prevent reentrancy.
4939  *
4940  * Return Values:
4941  *   ADV_TRUE - command completed successfully
4942  *   ADV_FALSE - command failed
4943  *   ADV_ERROR - command timed out
4944  */
4945 static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,ADV_DCNT idle_cmd_parameter)4946 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4947 	       ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4948 {
4949 	int result;
4950 	ADV_DCNT i, j;
4951 	AdvPortAddr iop_base;
4952 
4953 	iop_base = asc_dvc->iop_base;
4954 
4955 	/*
4956 	 * Clear the idle command status which is set by the microcode
4957 	 * to a non-zero value to indicate when the command is completed.
4958 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4959 	 */
4960 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4961 
4962 	/*
4963 	 * Write the idle command value after the idle command parameter
4964 	 * has been written to avoid a race condition. If the order is not
4965 	 * followed, the microcode may process the idle command before the
4966 	 * parameters have been written to LRAM.
4967 	 */
4968 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4969 				cpu_to_le32(idle_cmd_parameter));
4970 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4971 
4972 	/*
4973 	 * Tickle the RISC to tell it to process the idle command.
4974 	 */
4975 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4976 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4977 		/*
4978 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4979 		 * command 'clr_tickle_b' does not work unless the host
4980 		 * value is cleared.
4981 		 */
4982 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4983 	}
4984 
4985 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4986 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4987 		/* Poll once each microsecond for command completion. */
4988 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4989 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4990 					result);
4991 			if (result != 0)
4992 				return result;
4993 			udelay(1);
4994 		}
4995 	}
4996 
4997 	BUG();		/* The idle command should never timeout. */
4998 	return ADV_ERROR;
4999 }
5000 
5001 /*
5002  * Reset SCSI Bus and purge all outstanding requests.
5003  *
5004  * Return Value:
5005  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
5006  *      ADV_FALSE(0) -  Microcode command failed.
5007  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5008  *                      may be hung which requires driver recovery.
5009  */
AdvResetSB(ADV_DVC_VAR * asc_dvc)5010 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
5011 {
5012 	int status;
5013 
5014 	/*
5015 	 * Send the SCSI Bus Reset idle start idle command which asserts
5016 	 * the SCSI Bus Reset signal.
5017 	 */
5018 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5019 	if (status != ADV_TRUE) {
5020 		return status;
5021 	}
5022 
5023 	/*
5024 	 * Delay for the specified SCSI Bus Reset hold time.
5025 	 *
5026 	 * The hold time delay is done on the host because the RISC has no
5027 	 * microsecond accurate timer.
5028 	 */
5029 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5030 
5031 	/*
5032 	 * Send the SCSI Bus Reset end idle command which de-asserts
5033 	 * the SCSI Bus Reset signal and purges any pending requests.
5034 	 */
5035 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5036 	if (status != ADV_TRUE) {
5037 		return status;
5038 	}
5039 
5040 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
5041 
5042 	return status;
5043 }
5044 
5045 /*
5046  * Initialize the ASC-3550.
5047  *
5048  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5049  *
5050  * For a non-fatal error return a warning code. If there are no warnings
5051  * then 0 is returned.
5052  *
5053  * Needed after initialization for error recovery.
5054  */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)5055 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5056 {
5057 	const struct firmware *fw;
5058 	const char fwname[] = "advansys/3550.bin";
5059 	AdvPortAddr iop_base;
5060 	ushort warn_code;
5061 	int begin_addr;
5062 	int end_addr;
5063 	ushort code_sum;
5064 	int word;
5065 	int i;
5066 	int err;
5067 	unsigned long chksum;
5068 	ushort scsi_cfg1;
5069 	uchar tid;
5070 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5071 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
5072 	uchar max_cmd[ADV_MAX_TID + 1];
5073 
5074 	/* If there is already an error, don't continue. */
5075 	if (asc_dvc->err_code != 0)
5076 		return ADV_ERROR;
5077 
5078 	/*
5079 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5080 	 */
5081 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5082 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5083 		return ADV_ERROR;
5084 	}
5085 
5086 	warn_code = 0;
5087 	iop_base = asc_dvc->iop_base;
5088 
5089 	/*
5090 	 * Save the RISC memory BIOS region before writing the microcode.
5091 	 * The BIOS may already be loaded and using its RISC LRAM region
5092 	 * so its region must be saved and restored.
5093 	 *
5094 	 * Note: This code makes the assumption, which is currently true,
5095 	 * that a chip reset does not clear RISC LRAM.
5096 	 */
5097 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5098 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5099 				bios_mem[i]);
5100 	}
5101 
5102 	/*
5103 	 * Save current per TID negotiated values.
5104 	 */
5105 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5106 		ushort bios_version, major, minor;
5107 
5108 		bios_version =
5109 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5110 		major = (bios_version >> 12) & 0xF;
5111 		minor = (bios_version >> 8) & 0xF;
5112 		if (major < 3 || (major == 3 && minor == 1)) {
5113 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5114 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
5115 		} else {
5116 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5117 		}
5118 	}
5119 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5120 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5121 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5122 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5123 				max_cmd[tid]);
5124 	}
5125 
5126 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5127 	if (err) {
5128 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5129 		       fwname, err);
5130 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5131 		return err;
5132 	}
5133 	if (fw->size < 4) {
5134 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5135 		       fw->size, fwname);
5136 		release_firmware(fw);
5137 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5138 		return -EINVAL;
5139 	}
5140 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5141 		 (fw->data[1] << 8) | fw->data[0];
5142 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5143 					     fw->size - 4, ADV_3550_MEMSIZE,
5144 					     chksum);
5145 	release_firmware(fw);
5146 	if (asc_dvc->err_code)
5147 		return ADV_ERROR;
5148 
5149 	/*
5150 	 * Restore the RISC memory BIOS region.
5151 	 */
5152 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5153 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5154 				 bios_mem[i]);
5155 	}
5156 
5157 	/*
5158 	 * Calculate and write the microcode code checksum to the microcode
5159 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5160 	 */
5161 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5162 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5163 	code_sum = 0;
5164 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5165 	for (word = begin_addr; word < end_addr; word += 2) {
5166 		code_sum += AdvReadWordAutoIncLram(iop_base);
5167 	}
5168 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5169 
5170 	/*
5171 	 * Read and save microcode version and date.
5172 	 */
5173 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5174 			asc_dvc->cfg->mcode_date);
5175 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5176 			asc_dvc->cfg->mcode_version);
5177 
5178 	/*
5179 	 * Set the chip type to indicate the ASC3550.
5180 	 */
5181 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5182 
5183 	/*
5184 	 * If the PCI Configuration Command Register "Parity Error Response
5185 	 * Control" Bit was clear (0), then set the microcode variable
5186 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5187 	 * to ignore DMA parity errors.
5188 	 */
5189 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5190 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5191 		word |= CONTROL_FLAG_IGNORE_PERR;
5192 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5193 	}
5194 
5195 	/*
5196 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5197 	 * threshold of 128 bytes. This register is only accessible to the host.
5198 	 */
5199 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5200 			     START_CTL_EMFU | READ_CMD_MRM);
5201 
5202 	/*
5203 	 * Microcode operating variables for WDTR, SDTR, and command tag
5204 	 * queuing will be set in slave_configure() based on what a
5205 	 * device reports it is capable of in Inquiry byte 7.
5206 	 *
5207 	 * If SCSI Bus Resets have been disabled, then directly set
5208 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5209 	 * the BIOS and warm boot to work without a SCSI bus hang on
5210 	 * the Inquiry caused by host and target mismatched DTR values.
5211 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5212 	 * be assumed to be in Asynchronous, Narrow mode.
5213 	 */
5214 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5215 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5216 				 asc_dvc->wdtr_able);
5217 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5218 				 asc_dvc->sdtr_able);
5219 	}
5220 
5221 	/*
5222 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5223 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5224 	 * bitmask. These values determine the maximum SDTR speed negotiated
5225 	 * with a device.
5226 	 *
5227 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5228 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5229 	 * without determining here whether the device supports SDTR.
5230 	 *
5231 	 * 4-bit speed  SDTR speed name
5232 	 * ===========  ===============
5233 	 * 0000b (0x0)  SDTR disabled
5234 	 * 0001b (0x1)  5 Mhz
5235 	 * 0010b (0x2)  10 Mhz
5236 	 * 0011b (0x3)  20 Mhz (Ultra)
5237 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
5238 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
5239 	 * 0110b (0x6)  Undefined
5240 	 * .
5241 	 * 1111b (0xF)  Undefined
5242 	 */
5243 	word = 0;
5244 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5245 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5246 			/* Set Ultra speed for TID 'tid'. */
5247 			word |= (0x3 << (4 * (tid % 4)));
5248 		} else {
5249 			/* Set Fast speed for TID 'tid'. */
5250 			word |= (0x2 << (4 * (tid % 4)));
5251 		}
5252 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
5253 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5254 			word = 0;
5255 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
5256 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5257 			word = 0;
5258 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
5259 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5260 			word = 0;
5261 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
5262 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5263 			/* End of loop. */
5264 		}
5265 	}
5266 
5267 	/*
5268 	 * Set microcode operating variable for the disconnect per TID bitmask.
5269 	 */
5270 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5271 			 asc_dvc->cfg->disc_enable);
5272 
5273 	/*
5274 	 * Set SCSI_CFG0 Microcode Default Value.
5275 	 *
5276 	 * The microcode will set the SCSI_CFG0 register using this value
5277 	 * after it is started below.
5278 	 */
5279 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5280 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5281 			 asc_dvc->chip_scsi_id);
5282 
5283 	/*
5284 	 * Determine SCSI_CFG1 Microcode Default Value.
5285 	 *
5286 	 * The microcode will set the SCSI_CFG1 register using this value
5287 	 * after it is started below.
5288 	 */
5289 
5290 	/* Read current SCSI_CFG1 Register value. */
5291 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5292 
5293 	/*
5294 	 * If all three connectors are in use, return an error.
5295 	 */
5296 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5297 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5298 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5299 		return ADV_ERROR;
5300 	}
5301 
5302 	/*
5303 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5304 	 * register signals will be set. Check for and return an error if
5305 	 * this condition is found.
5306 	 */
5307 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5308 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5309 		return ADV_ERROR;
5310 	}
5311 
5312 	/*
5313 	 * If this is a differential board and a single-ended device
5314 	 * is attached to one of the connectors, return an error.
5315 	 */
5316 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5317 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5318 		return ADV_ERROR;
5319 	}
5320 
5321 	/*
5322 	 * If automatic termination control is enabled, then set the
5323 	 * termination value based on a table listed in a_condor.h.
5324 	 *
5325 	 * If manual termination was specified with an EEPROM setting
5326 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5327 	 * is ready to be 'ored' into SCSI_CFG1.
5328 	 */
5329 	if (asc_dvc->cfg->termination == 0) {
5330 		/*
5331 		 * The software always controls termination by setting TERM_CTL_SEL.
5332 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5333 		 */
5334 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
5335 
5336 		switch (scsi_cfg1 & CABLE_DETECT) {
5337 			/* TERM_CTL_H: on, TERM_CTL_L: on */
5338 		case 0x3:
5339 		case 0x7:
5340 		case 0xB:
5341 		case 0xD:
5342 		case 0xE:
5343 		case 0xF:
5344 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5345 			break;
5346 
5347 			/* TERM_CTL_H: on, TERM_CTL_L: off */
5348 		case 0x1:
5349 		case 0x5:
5350 		case 0x9:
5351 		case 0xA:
5352 		case 0xC:
5353 			asc_dvc->cfg->termination |= TERM_CTL_H;
5354 			break;
5355 
5356 			/* TERM_CTL_H: off, TERM_CTL_L: off */
5357 		case 0x2:
5358 		case 0x6:
5359 			break;
5360 		}
5361 	}
5362 
5363 	/*
5364 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5365 	 */
5366 	scsi_cfg1 &= ~TERM_CTL;
5367 
5368 	/*
5369 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5370 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5371 	 * referenced, because the hardware internally inverts
5372 	 * the Termination High and Low bits if TERM_POL is set.
5373 	 */
5374 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5375 
5376 	/*
5377 	 * Set SCSI_CFG1 Microcode Default Value
5378 	 *
5379 	 * Set filter value and possibly modified termination control
5380 	 * bits in the Microcode SCSI_CFG1 Register Value.
5381 	 *
5382 	 * The microcode will set the SCSI_CFG1 register using this value
5383 	 * after it is started below.
5384 	 */
5385 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5386 			 FLTR_DISABLE | scsi_cfg1);
5387 
5388 	/*
5389 	 * Set MEM_CFG Microcode Default Value
5390 	 *
5391 	 * The microcode will set the MEM_CFG register using this value
5392 	 * after it is started below.
5393 	 *
5394 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5395 	 * are defined.
5396 	 *
5397 	 * ASC-3550 has 8KB internal memory.
5398 	 */
5399 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5400 			 BIOS_EN | RAM_SZ_8KB);
5401 
5402 	/*
5403 	 * Set SEL_MASK Microcode Default Value
5404 	 *
5405 	 * The microcode will set the SEL_MASK register using this value
5406 	 * after it is started below.
5407 	 */
5408 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5409 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5410 
5411 	AdvBuildCarrierFreelist(asc_dvc);
5412 
5413 	/*
5414 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5415 	 */
5416 
5417 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5418 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5419 		return ADV_ERROR;
5420 	}
5421 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5422 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5423 
5424 	/*
5425 	 * The first command issued will be placed in the stopper carrier.
5426 	 */
5427 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5428 
5429 	/*
5430 	 * Set RISC ICQ physical address start value.
5431 	 */
5432 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5433 
5434 	/*
5435 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5436 	 */
5437 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5438 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5439 		return ADV_ERROR;
5440 	}
5441 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5442 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5443 
5444 	/*
5445 	 * The first command completed by the RISC will be placed in
5446 	 * the stopper.
5447 	 *
5448 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5449 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5450 	 */
5451 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5452 
5453 	/*
5454 	 * Set RISC IRQ physical address start value.
5455 	 */
5456 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5457 	asc_dvc->carr_pending_cnt = 0;
5458 
5459 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5460 			     (ADV_INTR_ENABLE_HOST_INTR |
5461 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5462 
5463 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5464 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5465 
5466 	/* finally, finally, gentlemen, start your engine */
5467 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5468 
5469 	/*
5470 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5471 	 * Resets should be performed. The RISC has to be running
5472 	 * to issue a SCSI Bus Reset.
5473 	 */
5474 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5475 		/*
5476 		 * If the BIOS Signature is present in memory, restore the
5477 		 * BIOS Handshake Configuration Table and do not perform
5478 		 * a SCSI Bus Reset.
5479 		 */
5480 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5481 		    0x55AA) {
5482 			/*
5483 			 * Restore per TID negotiated values.
5484 			 */
5485 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5486 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5487 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5488 					 tagqng_able);
5489 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5490 				AdvWriteByteLram(iop_base,
5491 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5492 						 max_cmd[tid]);
5493 			}
5494 		} else {
5495 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5496 				warn_code = ASC_WARN_BUSRESET_ERROR;
5497 			}
5498 		}
5499 	}
5500 
5501 	return warn_code;
5502 }
5503 
5504 /*
5505  * Initialize the ASC-38C0800.
5506  *
5507  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5508  *
5509  * For a non-fatal error return a warning code. If there are no warnings
5510  * then 0 is returned.
5511  *
5512  * Needed after initialization for error recovery.
5513  */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)5514 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5515 {
5516 	const struct firmware *fw;
5517 	const char fwname[] = "advansys/38C0800.bin";
5518 	AdvPortAddr iop_base;
5519 	ushort warn_code;
5520 	int begin_addr;
5521 	int end_addr;
5522 	ushort code_sum;
5523 	int word;
5524 	int i;
5525 	int err;
5526 	unsigned long chksum;
5527 	ushort scsi_cfg1;
5528 	uchar byte;
5529 	uchar tid;
5530 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5531 	ushort wdtr_able, sdtr_able, tagqng_able;
5532 	uchar max_cmd[ADV_MAX_TID + 1];
5533 
5534 	/* If there is already an error, don't continue. */
5535 	if (asc_dvc->err_code != 0)
5536 		return ADV_ERROR;
5537 
5538 	/*
5539 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5540 	 */
5541 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5542 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5543 		return ADV_ERROR;
5544 	}
5545 
5546 	warn_code = 0;
5547 	iop_base = asc_dvc->iop_base;
5548 
5549 	/*
5550 	 * Save the RISC memory BIOS region before writing the microcode.
5551 	 * The BIOS may already be loaded and using its RISC LRAM region
5552 	 * so its region must be saved and restored.
5553 	 *
5554 	 * Note: This code makes the assumption, which is currently true,
5555 	 * that a chip reset does not clear RISC LRAM.
5556 	 */
5557 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5558 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5559 				bios_mem[i]);
5560 	}
5561 
5562 	/*
5563 	 * Save current per TID negotiated values.
5564 	 */
5565 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5566 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5567 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5568 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5569 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5570 				max_cmd[tid]);
5571 	}
5572 
5573 	/*
5574 	 * RAM BIST (RAM Built-In Self Test)
5575 	 *
5576 	 * Address : I/O base + offset 0x38h register (byte).
5577 	 * Function: Bit 7-6(RW) : RAM mode
5578 	 *                          Normal Mode   : 0x00
5579 	 *                          Pre-test Mode : 0x40
5580 	 *                          RAM Test Mode : 0x80
5581 	 *           Bit 5       : unused
5582 	 *           Bit 4(RO)   : Done bit
5583 	 *           Bit 3-0(RO) : Status
5584 	 *                          Host Error    : 0x08
5585 	 *                          Int_RAM Error : 0x04
5586 	 *                          RISC Error    : 0x02
5587 	 *                          SCSI Error    : 0x01
5588 	 *                          No Error      : 0x00
5589 	 *
5590 	 * Note: RAM BIST code should be put right here, before loading the
5591 	 * microcode and after saving the RISC memory BIOS region.
5592 	 */
5593 
5594 	/*
5595 	 * LRAM Pre-test
5596 	 *
5597 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5598 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5599 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5600 	 * to NORMAL_MODE, return an error too.
5601 	 */
5602 	for (i = 0; i < 2; i++) {
5603 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5604 		mdelay(10);	/* Wait for 10ms before reading back. */
5605 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5606 		if ((byte & RAM_TEST_DONE) == 0
5607 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5608 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5609 			return ADV_ERROR;
5610 		}
5611 
5612 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5613 		mdelay(10);	/* Wait for 10ms before reading back. */
5614 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5615 		    != NORMAL_VALUE) {
5616 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5617 			return ADV_ERROR;
5618 		}
5619 	}
5620 
5621 	/*
5622 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5623 	 *
5624 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5625 	 * If Done bit not set or Status not 0, save register byte, set the
5626 	 * err_code, and return an error.
5627 	 */
5628 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5629 	mdelay(10);	/* Wait for 10ms before checking status. */
5630 
5631 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5632 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5633 		/* Get here if Done bit not set or Status not 0. */
5634 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5635 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5636 		return ADV_ERROR;
5637 	}
5638 
5639 	/* We need to reset back to normal mode after LRAM test passes. */
5640 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5641 
5642 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5643 	if (err) {
5644 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5645 		       fwname, err);
5646 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5647 		return err;
5648 	}
5649 	if (fw->size < 4) {
5650 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5651 		       fw->size, fwname);
5652 		release_firmware(fw);
5653 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5654 		return -EINVAL;
5655 	}
5656 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5657 		 (fw->data[1] << 8) | fw->data[0];
5658 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5659 					     fw->size - 4, ADV_38C0800_MEMSIZE,
5660 					     chksum);
5661 	release_firmware(fw);
5662 	if (asc_dvc->err_code)
5663 		return ADV_ERROR;
5664 
5665 	/*
5666 	 * Restore the RISC memory BIOS region.
5667 	 */
5668 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5669 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5670 				 bios_mem[i]);
5671 	}
5672 
5673 	/*
5674 	 * Calculate and write the microcode code checksum to the microcode
5675 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5676 	 */
5677 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5678 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5679 	code_sum = 0;
5680 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5681 	for (word = begin_addr; word < end_addr; word += 2) {
5682 		code_sum += AdvReadWordAutoIncLram(iop_base);
5683 	}
5684 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5685 
5686 	/*
5687 	 * Read microcode version and date.
5688 	 */
5689 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5690 			asc_dvc->cfg->mcode_date);
5691 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5692 			asc_dvc->cfg->mcode_version);
5693 
5694 	/*
5695 	 * Set the chip type to indicate the ASC38C0800.
5696 	 */
5697 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5698 
5699 	/*
5700 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5701 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5702 	 * cable detection and then we are able to read C_DET[3:0].
5703 	 *
5704 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5705 	 * Microcode Default Value' section below.
5706 	 */
5707 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5708 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5709 			     scsi_cfg1 | DIS_TERM_DRV);
5710 
5711 	/*
5712 	 * If the PCI Configuration Command Register "Parity Error Response
5713 	 * Control" Bit was clear (0), then set the microcode variable
5714 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5715 	 * to ignore DMA parity errors.
5716 	 */
5717 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5718 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5719 		word |= CONTROL_FLAG_IGNORE_PERR;
5720 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721 	}
5722 
5723 	/*
5724 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5725 	 * bits for the default FIFO threshold.
5726 	 *
5727 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5728 	 *
5729 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5730 	 */
5731 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5732 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5733 			     READ_CMD_MRM);
5734 
5735 	/*
5736 	 * Microcode operating variables for WDTR, SDTR, and command tag
5737 	 * queuing will be set in slave_configure() based on what a
5738 	 * device reports it is capable of in Inquiry byte 7.
5739 	 *
5740 	 * If SCSI Bus Resets have been disabled, then directly set
5741 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5742 	 * the BIOS and warm boot to work without a SCSI bus hang on
5743 	 * the Inquiry caused by host and target mismatched DTR values.
5744 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5745 	 * be assumed to be in Asynchronous, Narrow mode.
5746 	 */
5747 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5748 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5749 				 asc_dvc->wdtr_able);
5750 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5751 				 asc_dvc->sdtr_able);
5752 	}
5753 
5754 	/*
5755 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5756 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5757 	 * configuration values.
5758 	 *
5759 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5760 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5761 	 * without determining here whether the device supports SDTR.
5762 	 */
5763 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5764 			 asc_dvc->cfg->disc_enable);
5765 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5766 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5767 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5768 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5769 
5770 	/*
5771 	 * Set SCSI_CFG0 Microcode Default Value.
5772 	 *
5773 	 * The microcode will set the SCSI_CFG0 register using this value
5774 	 * after it is started below.
5775 	 */
5776 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5777 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5778 			 asc_dvc->chip_scsi_id);
5779 
5780 	/*
5781 	 * Determine SCSI_CFG1 Microcode Default Value.
5782 	 *
5783 	 * The microcode will set the SCSI_CFG1 register using this value
5784 	 * after it is started below.
5785 	 */
5786 
5787 	/* Read current SCSI_CFG1 Register value. */
5788 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5789 
5790 	/*
5791 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5792 	 * register signals will be set. Check for and return an error if
5793 	 * this condition is found.
5794 	 */
5795 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5796 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5797 		return ADV_ERROR;
5798 	}
5799 
5800 	/*
5801 	 * All kind of combinations of devices attached to one of four
5802 	 * connectors are acceptable except HVD device attached. For example,
5803 	 * LVD device can be attached to SE connector while SE device attached
5804 	 * to LVD connector.  If LVD device attached to SE connector, it only
5805 	 * runs up to Ultra speed.
5806 	 *
5807 	 * If an HVD device is attached to one of LVD connectors, return an
5808 	 * error.  However, there is no way to detect HVD device attached to
5809 	 * SE connectors.
5810 	 */
5811 	if (scsi_cfg1 & HVD) {
5812 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5813 		return ADV_ERROR;
5814 	}
5815 
5816 	/*
5817 	 * If either SE or LVD automatic termination control is enabled, then
5818 	 * set the termination value based on a table listed in a_condor.h.
5819 	 *
5820 	 * If manual termination was specified with an EEPROM setting then
5821 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5822 	 * to be 'ored' into SCSI_CFG1.
5823 	 */
5824 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825 		/* SE automatic termination control is enabled. */
5826 		switch (scsi_cfg1 & C_DET_SE) {
5827 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5828 		case 0x1:
5829 		case 0x2:
5830 		case 0x3:
5831 			asc_dvc->cfg->termination |= TERM_SE;
5832 			break;
5833 
5834 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5835 		case 0x0:
5836 			asc_dvc->cfg->termination |= TERM_SE_HI;
5837 			break;
5838 		}
5839 	}
5840 
5841 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5842 		/* LVD automatic termination control is enabled. */
5843 		switch (scsi_cfg1 & C_DET_LVD) {
5844 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5845 		case 0x4:
5846 		case 0x8:
5847 		case 0xC:
5848 			asc_dvc->cfg->termination |= TERM_LVD;
5849 			break;
5850 
5851 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5852 		case 0x0:
5853 			break;
5854 		}
5855 	}
5856 
5857 	/*
5858 	 * Clear any set TERM_SE and TERM_LVD bits.
5859 	 */
5860 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5861 
5862 	/*
5863 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5864 	 */
5865 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5866 
5867 	/*
5868 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5869 	 * bits and set possibly modified termination control bits in the
5870 	 * Microcode SCSI_CFG1 Register Value.
5871 	 */
5872 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5873 
5874 	/*
5875 	 * Set SCSI_CFG1 Microcode Default Value
5876 	 *
5877 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5878 	 * bits in the Microcode SCSI_CFG1 Register Value.
5879 	 *
5880 	 * The microcode will set the SCSI_CFG1 register using this value
5881 	 * after it is started below.
5882 	 */
5883 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5884 
5885 	/*
5886 	 * Set MEM_CFG Microcode Default Value
5887 	 *
5888 	 * The microcode will set the MEM_CFG register using this value
5889 	 * after it is started below.
5890 	 *
5891 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5892 	 * are defined.
5893 	 *
5894 	 * ASC-38C0800 has 16KB internal memory.
5895 	 */
5896 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5897 			 BIOS_EN | RAM_SZ_16KB);
5898 
5899 	/*
5900 	 * Set SEL_MASK Microcode Default Value
5901 	 *
5902 	 * The microcode will set the SEL_MASK register using this value
5903 	 * after it is started below.
5904 	 */
5905 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5906 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5907 
5908 	AdvBuildCarrierFreelist(asc_dvc);
5909 
5910 	/*
5911 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5912 	 */
5913 
5914 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5915 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916 		return ADV_ERROR;
5917 	}
5918 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5919 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5920 
5921 	/*
5922 	 * The first command issued will be placed in the stopper carrier.
5923 	 */
5924 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5925 
5926 	/*
5927 	 * Set RISC ICQ physical address start value.
5928 	 * carr_pa is LE, must be native before write
5929 	 */
5930 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5931 
5932 	/*
5933 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5934 	 */
5935 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5936 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5937 		return ADV_ERROR;
5938 	}
5939 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5940 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5941 
5942 	/*
5943 	 * The first command completed by the RISC will be placed in
5944 	 * the stopper.
5945 	 *
5946 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5947 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5948 	 */
5949 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5950 
5951 	/*
5952 	 * Set RISC IRQ physical address start value.
5953 	 *
5954 	 * carr_pa is LE, must be native before write *
5955 	 */
5956 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5957 	asc_dvc->carr_pending_cnt = 0;
5958 
5959 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5960 			     (ADV_INTR_ENABLE_HOST_INTR |
5961 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5962 
5963 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5964 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5965 
5966 	/* finally, finally, gentlemen, start your engine */
5967 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5968 
5969 	/*
5970 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5971 	 * Resets should be performed. The RISC has to be running
5972 	 * to issue a SCSI Bus Reset.
5973 	 */
5974 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5975 		/*
5976 		 * If the BIOS Signature is present in memory, restore the
5977 		 * BIOS Handshake Configuration Table and do not perform
5978 		 * a SCSI Bus Reset.
5979 		 */
5980 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5981 		    0x55AA) {
5982 			/*
5983 			 * Restore per TID negotiated values.
5984 			 */
5985 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5986 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5987 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5988 					 tagqng_able);
5989 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5990 				AdvWriteByteLram(iop_base,
5991 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5992 						 max_cmd[tid]);
5993 			}
5994 		} else {
5995 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5996 				warn_code = ASC_WARN_BUSRESET_ERROR;
5997 			}
5998 		}
5999 	}
6000 
6001 	return warn_code;
6002 }
6003 
6004 /*
6005  * Initialize the ASC-38C1600.
6006  *
6007  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6008  *
6009  * For a non-fatal error return a warning code. If there are no warnings
6010  * then 0 is returned.
6011  *
6012  * Needed after initialization for error recovery.
6013  */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)6014 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
6015 {
6016 	const struct firmware *fw;
6017 	const char fwname[] = "advansys/38C1600.bin";
6018 	AdvPortAddr iop_base;
6019 	ushort warn_code;
6020 	int begin_addr;
6021 	int end_addr;
6022 	ushort code_sum;
6023 	long word;
6024 	int i;
6025 	int err;
6026 	unsigned long chksum;
6027 	ushort scsi_cfg1;
6028 	uchar byte;
6029 	uchar tid;
6030 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
6031 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6032 	uchar max_cmd[ASC_MAX_TID + 1];
6033 
6034 	/* If there is already an error, don't continue. */
6035 	if (asc_dvc->err_code != 0) {
6036 		return ADV_ERROR;
6037 	}
6038 
6039 	/*
6040 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6041 	 */
6042 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6043 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6044 		return ADV_ERROR;
6045 	}
6046 
6047 	warn_code = 0;
6048 	iop_base = asc_dvc->iop_base;
6049 
6050 	/*
6051 	 * Save the RISC memory BIOS region before writing the microcode.
6052 	 * The BIOS may already be loaded and using its RISC LRAM region
6053 	 * so its region must be saved and restored.
6054 	 *
6055 	 * Note: This code makes the assumption, which is currently true,
6056 	 * that a chip reset does not clear RISC LRAM.
6057 	 */
6058 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6059 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6060 				bios_mem[i]);
6061 	}
6062 
6063 	/*
6064 	 * Save current per TID negotiated values.
6065 	 */
6066 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6067 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6068 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6069 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6070 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6071 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6072 				max_cmd[tid]);
6073 	}
6074 
6075 	/*
6076 	 * RAM BIST (Built-In Self Test)
6077 	 *
6078 	 * Address : I/O base + offset 0x38h register (byte).
6079 	 * Function: Bit 7-6(RW) : RAM mode
6080 	 *                          Normal Mode   : 0x00
6081 	 *                          Pre-test Mode : 0x40
6082 	 *                          RAM Test Mode : 0x80
6083 	 *           Bit 5       : unused
6084 	 *           Bit 4(RO)   : Done bit
6085 	 *           Bit 3-0(RO) : Status
6086 	 *                          Host Error    : 0x08
6087 	 *                          Int_RAM Error : 0x04
6088 	 *                          RISC Error    : 0x02
6089 	 *                          SCSI Error    : 0x01
6090 	 *                          No Error      : 0x00
6091 	 *
6092 	 * Note: RAM BIST code should be put right here, before loading the
6093 	 * microcode and after saving the RISC memory BIOS region.
6094 	 */
6095 
6096 	/*
6097 	 * LRAM Pre-test
6098 	 *
6099 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6100 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6101 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6102 	 * to NORMAL_MODE, return an error too.
6103 	 */
6104 	for (i = 0; i < 2; i++) {
6105 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6106 		mdelay(10);	/* Wait for 10ms before reading back. */
6107 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6108 		if ((byte & RAM_TEST_DONE) == 0
6109 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
6110 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6111 			return ADV_ERROR;
6112 		}
6113 
6114 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6115 		mdelay(10);	/* Wait for 10ms before reading back. */
6116 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6117 		    != NORMAL_VALUE) {
6118 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6119 			return ADV_ERROR;
6120 		}
6121 	}
6122 
6123 	/*
6124 	 * LRAM Test - It takes about 1.5 ms to run through the test.
6125 	 *
6126 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6127 	 * If Done bit not set or Status not 0, save register byte, set the
6128 	 * err_code, and return an error.
6129 	 */
6130 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6131 	mdelay(10);	/* Wait for 10ms before checking status. */
6132 
6133 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6134 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6135 		/* Get here if Done bit not set or Status not 0. */
6136 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
6137 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6138 		return ADV_ERROR;
6139 	}
6140 
6141 	/* We need to reset back to normal mode after LRAM test passes. */
6142 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6143 
6144 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6145 	if (err) {
6146 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6147 		       fwname, err);
6148 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6149 		return err;
6150 	}
6151 	if (fw->size < 4) {
6152 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6153 		       fw->size, fwname);
6154 		release_firmware(fw);
6155 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6156 		return -EINVAL;
6157 	}
6158 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6159 		 (fw->data[1] << 8) | fw->data[0];
6160 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6161 					     fw->size - 4, ADV_38C1600_MEMSIZE,
6162 					     chksum);
6163 	release_firmware(fw);
6164 	if (asc_dvc->err_code)
6165 		return ADV_ERROR;
6166 
6167 	/*
6168 	 * Restore the RISC memory BIOS region.
6169 	 */
6170 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6171 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6172 				 bios_mem[i]);
6173 	}
6174 
6175 	/*
6176 	 * Calculate and write the microcode code checksum to the microcode
6177 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6178 	 */
6179 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6180 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6181 	code_sum = 0;
6182 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6183 	for (word = begin_addr; word < end_addr; word += 2) {
6184 		code_sum += AdvReadWordAutoIncLram(iop_base);
6185 	}
6186 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6187 
6188 	/*
6189 	 * Read microcode version and date.
6190 	 */
6191 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6192 			asc_dvc->cfg->mcode_date);
6193 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6194 			asc_dvc->cfg->mcode_version);
6195 
6196 	/*
6197 	 * Set the chip type to indicate the ASC38C1600.
6198 	 */
6199 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6200 
6201 	/*
6202 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6203 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6204 	 * cable detection and then we are able to read C_DET[3:0].
6205 	 *
6206 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6207 	 * Microcode Default Value' section below.
6208 	 */
6209 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6210 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6211 			     scsi_cfg1 | DIS_TERM_DRV);
6212 
6213 	/*
6214 	 * If the PCI Configuration Command Register "Parity Error Response
6215 	 * Control" Bit was clear (0), then set the microcode variable
6216 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6217 	 * to ignore DMA parity errors.
6218 	 */
6219 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6220 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6221 		word |= CONTROL_FLAG_IGNORE_PERR;
6222 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6223 	}
6224 
6225 	/*
6226 	 * If the BIOS control flag AIPP (Asynchronous Information
6227 	 * Phase Protection) disable bit is not set, then set the firmware
6228 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6229 	 * AIPP checking and encoding.
6230 	 */
6231 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6232 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6233 		word |= CONTROL_FLAG_ENABLE_AIPP;
6234 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6235 	}
6236 
6237 	/*
6238 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6239 	 * and START_CTL_TH [3:2].
6240 	 */
6241 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6242 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6243 
6244 	/*
6245 	 * Microcode operating variables for WDTR, SDTR, and command tag
6246 	 * queuing will be set in slave_configure() based on what a
6247 	 * device reports it is capable of in Inquiry byte 7.
6248 	 *
6249 	 * If SCSI Bus Resets have been disabled, then directly set
6250 	 * SDTR and WDTR from the EEPROM configuration. This will allow
6251 	 * the BIOS and warm boot to work without a SCSI bus hang on
6252 	 * the Inquiry caused by host and target mismatched DTR values.
6253 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
6254 	 * be assumed to be in Asynchronous, Narrow mode.
6255 	 */
6256 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6257 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6258 				 asc_dvc->wdtr_able);
6259 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6260 				 asc_dvc->sdtr_able);
6261 	}
6262 
6263 	/*
6264 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
6265 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6266 	 * configuration values.
6267 	 *
6268 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6269 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6270 	 * without determining here whether the device supports SDTR.
6271 	 */
6272 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6273 			 asc_dvc->cfg->disc_enable);
6274 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6275 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6276 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6277 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6278 
6279 	/*
6280 	 * Set SCSI_CFG0 Microcode Default Value.
6281 	 *
6282 	 * The microcode will set the SCSI_CFG0 register using this value
6283 	 * after it is started below.
6284 	 */
6285 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6286 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6287 			 asc_dvc->chip_scsi_id);
6288 
6289 	/*
6290 	 * Calculate SCSI_CFG1 Microcode Default Value.
6291 	 *
6292 	 * The microcode will set the SCSI_CFG1 register using this value
6293 	 * after it is started below.
6294 	 *
6295 	 * Each ASC-38C1600 function has only two cable detect bits.
6296 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6297 	 */
6298 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6299 
6300 	/*
6301 	 * If the cable is reversed all of the SCSI_CTRL register signals
6302 	 * will be set. Check for and return an error if this condition is
6303 	 * found.
6304 	 */
6305 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6306 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6307 		return ADV_ERROR;
6308 	}
6309 
6310 	/*
6311 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
6312 	 * can not be connected to either connector. An LVD device or SE device
6313 	 * may be connected to either connecor. If an SE device is connected,
6314 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6315 	 *
6316 	 * If an HVD device is attached, return an error.
6317 	 */
6318 	if (scsi_cfg1 & HVD) {
6319 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6320 		return ADV_ERROR;
6321 	}
6322 
6323 	/*
6324 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
6325 	 * termination because there are two connectors for each function. Each
6326 	 * function may use either LVD or SE mode. Corresponding the SE automatic
6327 	 * termination control EEPROM bits are used for each function. Each
6328 	 * function has its own EEPROM. If SE automatic control is enabled for
6329 	 * the function, then set the termination value based on a table listed
6330 	 * in a_condor.h.
6331 	 *
6332 	 * If manual termination is specified in the EEPROM for the function,
6333 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6334 	 * ready to be 'ored' into SCSI_CFG1.
6335 	 */
6336 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6337 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6338 		/* SE automatic termination control is enabled. */
6339 		switch (scsi_cfg1 & C_DET_SE) {
6340 			/* TERM_SE_HI: on, TERM_SE_LO: on */
6341 		case 0x1:
6342 		case 0x2:
6343 		case 0x3:
6344 			asc_dvc->cfg->termination |= TERM_SE;
6345 			break;
6346 
6347 		case 0x0:
6348 			if (PCI_FUNC(pdev->devfn) == 0) {
6349 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6350 			} else {
6351 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6352 				asc_dvc->cfg->termination |= TERM_SE_HI;
6353 			}
6354 			break;
6355 		}
6356 	}
6357 
6358 	/*
6359 	 * Clear any set TERM_SE bits.
6360 	 */
6361 	scsi_cfg1 &= ~TERM_SE;
6362 
6363 	/*
6364 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6365 	 */
6366 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6367 
6368 	/*
6369 	 * Clear Big Endian and Terminator Polarity bits and set possibly
6370 	 * modified termination control bits in the Microcode SCSI_CFG1
6371 	 * Register Value.
6372 	 *
6373 	 * Big Endian bit is not used even on big endian machines.
6374 	 */
6375 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6376 
6377 	/*
6378 	 * Set SCSI_CFG1 Microcode Default Value
6379 	 *
6380 	 * Set possibly modified termination control bits in the Microcode
6381 	 * SCSI_CFG1 Register Value.
6382 	 *
6383 	 * The microcode will set the SCSI_CFG1 register using this value
6384 	 * after it is started below.
6385 	 */
6386 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6387 
6388 	/*
6389 	 * Set MEM_CFG Microcode Default Value
6390 	 *
6391 	 * The microcode will set the MEM_CFG register using this value
6392 	 * after it is started below.
6393 	 *
6394 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6395 	 * are defined.
6396 	 *
6397 	 * ASC-38C1600 has 32KB internal memory.
6398 	 *
6399 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6400 	 * out a special 16K Adv Library and Microcode version. After the issue
6401 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
6402 	 * mcode.sas files also need to be updated.
6403 	 *
6404 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6405 	 *  BIOS_EN | RAM_SZ_32KB);
6406 	 */
6407 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6408 			 BIOS_EN | RAM_SZ_16KB);
6409 
6410 	/*
6411 	 * Set SEL_MASK Microcode Default Value
6412 	 *
6413 	 * The microcode will set the SEL_MASK register using this value
6414 	 * after it is started below.
6415 	 */
6416 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6417 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6418 
6419 	AdvBuildCarrierFreelist(asc_dvc);
6420 
6421 	/*
6422 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6423 	 */
6424 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6425 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6426 		return ADV_ERROR;
6427 	}
6428 	asc_dvc->carr_freelist = (ADV_CARR_T *)
6429 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6430 
6431 	/*
6432 	 * The first command issued will be placed in the stopper carrier.
6433 	 */
6434 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6435 
6436 	/*
6437 	 * Set RISC ICQ physical address start value. Initialize the
6438 	 * COMMA register to the same value otherwise the RISC will
6439 	 * prematurely detect a command is available.
6440 	 */
6441 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6442 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6443 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6444 
6445 	/*
6446 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6447 	 */
6448 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6449 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6450 		return ADV_ERROR;
6451 	}
6452 	asc_dvc->carr_freelist = (ADV_CARR_T *)
6453 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6454 
6455 	/*
6456 	 * The first command completed by the RISC will be placed in
6457 	 * the stopper.
6458 	 *
6459 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6460 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
6461 	 */
6462 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6463 
6464 	/*
6465 	 * Set RISC IRQ physical address start value.
6466 	 */
6467 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6468 	asc_dvc->carr_pending_cnt = 0;
6469 
6470 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6471 			     (ADV_INTR_ENABLE_HOST_INTR |
6472 			      ADV_INTR_ENABLE_GLOBAL_INTR));
6473 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6474 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
6475 
6476 	/* finally, finally, gentlemen, start your engine */
6477 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6478 
6479 	/*
6480 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6481 	 * Resets should be performed. The RISC has to be running
6482 	 * to issue a SCSI Bus Reset.
6483 	 */
6484 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6485 		/*
6486 		 * If the BIOS Signature is present in memory, restore the
6487 		 * per TID microcode operating variables.
6488 		 */
6489 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6490 		    0x55AA) {
6491 			/*
6492 			 * Restore per TID negotiated values.
6493 			 */
6494 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6495 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6496 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6497 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6498 					 tagqng_able);
6499 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6500 				AdvWriteByteLram(iop_base,
6501 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6502 						 max_cmd[tid]);
6503 			}
6504 		} else {
6505 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6506 				warn_code = ASC_WARN_BUSRESET_ERROR;
6507 			}
6508 		}
6509 	}
6510 
6511 	return warn_code;
6512 }
6513 
6514 /*
6515  * Reset chip and SCSI Bus.
6516  *
6517  * Return Value:
6518  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6519  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6520  */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)6521 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6522 {
6523 	int status;
6524 	ushort wdtr_able, sdtr_able, tagqng_able;
6525 	ushort ppr_able = 0;
6526 	uchar tid, max_cmd[ADV_MAX_TID + 1];
6527 	AdvPortAddr iop_base;
6528 	ushort bios_sig;
6529 
6530 	iop_base = asc_dvc->iop_base;
6531 
6532 	/*
6533 	 * Save current per TID negotiated values.
6534 	 */
6535 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6536 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6537 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6538 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6539 	}
6540 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6541 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6542 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6543 				max_cmd[tid]);
6544 	}
6545 
6546 	/*
6547 	 * Force the AdvInitAsc3550/38C0800Driver() function to
6548 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6549 	 * The initialization functions assumes a SCSI Bus Reset is not
6550 	 * needed if the BIOS signature word is present.
6551 	 */
6552 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6553 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6554 
6555 	/*
6556 	 * Stop chip and reset it.
6557 	 */
6558 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6559 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6560 	mdelay(100);
6561 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6562 			     ADV_CTRL_REG_CMD_WR_IO_REG);
6563 
6564 	/*
6565 	 * Reset Adv Library error code, if any, and try
6566 	 * re-initializing the chip.
6567 	 */
6568 	asc_dvc->err_code = 0;
6569 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6570 		status = AdvInitAsc38C1600Driver(asc_dvc);
6571 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6572 		status = AdvInitAsc38C0800Driver(asc_dvc);
6573 	} else {
6574 		status = AdvInitAsc3550Driver(asc_dvc);
6575 	}
6576 
6577 	/* Translate initialization return value to status value. */
6578 	if (status == 0) {
6579 		status = ADV_TRUE;
6580 	} else {
6581 		status = ADV_FALSE;
6582 	}
6583 
6584 	/*
6585 	 * Restore the BIOS signature word.
6586 	 */
6587 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6588 
6589 	/*
6590 	 * Restore per TID negotiated values.
6591 	 */
6592 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6593 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6594 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6595 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6596 	}
6597 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6598 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6599 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6600 				 max_cmd[tid]);
6601 	}
6602 
6603 	return status;
6604 }
6605 
6606 /*
6607  * adv_async_callback() - Adv Library asynchronous event callback function.
6608  */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)6609 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6610 {
6611 	switch (code) {
6612 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
6613 		/*
6614 		 * The firmware detected a SCSI Bus reset.
6615 		 */
6616 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6617 		break;
6618 
6619 	case ADV_ASYNC_RDMA_FAILURE:
6620 		/*
6621 		 * Handle RDMA failure by resetting the SCSI Bus and
6622 		 * possibly the chip if it is unresponsive. Log the error
6623 		 * with a unique code.
6624 		 */
6625 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6626 		AdvResetChipAndSB(adv_dvc_varp);
6627 		break;
6628 
6629 	case ADV_HOST_SCSI_BUS_RESET:
6630 		/*
6631 		 * Host generated SCSI bus reset occurred.
6632 		 */
6633 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6634 		break;
6635 
6636 	default:
6637 		ASC_DBG(0, "unknown code 0x%x\n", code);
6638 		break;
6639 	}
6640 }
6641 
6642 /*
6643  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6644  *
6645  * Callback function for the Wide SCSI Adv Library.
6646  */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)6647 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6648 {
6649 	struct asc_board *boardp;
6650 	adv_req_t *reqp;
6651 	adv_sgblk_t *sgblkp;
6652 	struct scsi_cmnd *scp;
6653 	struct Scsi_Host *shost;
6654 	ADV_DCNT resid_cnt;
6655 
6656 	ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6657 		 (ulong)adv_dvc_varp, (ulong)scsiqp);
6658 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6659 
6660 	/*
6661 	 * Get the adv_req_t structure for the command that has been
6662 	 * completed. The adv_req_t structure actually contains the
6663 	 * completed ADV_SCSI_REQ_Q structure.
6664 	 */
6665 	reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6666 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6667 	if (reqp == NULL) {
6668 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6669 		return;
6670 	}
6671 
6672 	/*
6673 	 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6674 	 * command that has been completed.
6675 	 *
6676 	 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6677 	 * if any, are dropped, because a board structure pointer can not be
6678 	 * determined.
6679 	 */
6680 	scp = reqp->cmndp;
6681 	ASC_DBG(1, "scp 0x%p\n", scp);
6682 	if (scp == NULL) {
6683 		ASC_PRINT
6684 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6685 		return;
6686 	}
6687 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6688 
6689 	shost = scp->device->host;
6690 	ASC_STATS(shost, callback);
6691 	ASC_DBG(1, "shost 0x%p\n", shost);
6692 
6693 	boardp = shost_priv(shost);
6694 	BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6695 
6696 	/*
6697 	 * 'done_status' contains the command's ending status.
6698 	 */
6699 	switch (scsiqp->done_status) {
6700 	case QD_NO_ERROR:
6701 		ASC_DBG(2, "QD_NO_ERROR\n");
6702 		scp->result = 0;
6703 
6704 		/*
6705 		 * Check for an underrun condition.
6706 		 *
6707 		 * If there was no error and an underrun condition, then
6708 		 * then return the number of underrun bytes.
6709 		 */
6710 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6711 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6712 		    resid_cnt <= scsi_bufflen(scp)) {
6713 			ASC_DBG(1, "underrun condition %lu bytes\n",
6714 				 (ulong)resid_cnt);
6715 			scsi_set_resid(scp, resid_cnt);
6716 		}
6717 		break;
6718 
6719 	case QD_WITH_ERROR:
6720 		ASC_DBG(2, "QD_WITH_ERROR\n");
6721 		switch (scsiqp->host_status) {
6722 		case QHSTA_NO_ERROR:
6723 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6724 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6725 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6726 						  SCSI_SENSE_BUFFERSIZE);
6727 				/*
6728 				 * Note: The 'status_byte()' macro used by
6729 				 * target drivers defined in scsi.h shifts the
6730 				 * status byte returned by host drivers right
6731 				 * by 1 bit.  This is why target drivers also
6732 				 * use right shifted status byte definitions.
6733 				 * For instance target drivers use
6734 				 * CHECK_CONDITION, defined to 0x1, instead of
6735 				 * the SCSI defined check condition value of
6736 				 * 0x2. Host drivers are supposed to return
6737 				 * the status byte as it is defined by SCSI.
6738 				 */
6739 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6740 				    STATUS_BYTE(scsiqp->scsi_status);
6741 			} else {
6742 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6743 			}
6744 			break;
6745 
6746 		default:
6747 			/* Some other QHSTA error occurred. */
6748 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6749 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6750 			break;
6751 		}
6752 		break;
6753 
6754 	case QD_ABORTED_BY_HOST:
6755 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6756 		scp->result =
6757 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6758 		break;
6759 
6760 	default:
6761 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6762 		scp->result =
6763 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6764 		break;
6765 	}
6766 
6767 	/*
6768 	 * If the 'init_tidmask' bit isn't already set for the target and the
6769 	 * current request finished normally, then set the bit for the target
6770 	 * to indicate that a device is present.
6771 	 */
6772 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6773 	    scsiqp->done_status == QD_NO_ERROR &&
6774 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6775 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6776 	}
6777 
6778 	asc_scsi_done(scp);
6779 
6780 	/*
6781 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6782 	 */
6783 	while ((sgblkp = reqp->sgblkp) != NULL) {
6784 		/* Remove 'sgblkp' from the request list. */
6785 		reqp->sgblkp = sgblkp->next_sgblkp;
6786 
6787 		/* Add 'sgblkp' to the board free list. */
6788 		sgblkp->next_sgblkp = boardp->adv_sgblkp;
6789 		boardp->adv_sgblkp = sgblkp;
6790 	}
6791 
6792 	/*
6793 	 * Free the adv_req_t structure used with the command by adding
6794 	 * it back to the board free list.
6795 	 */
6796 	reqp->next_reqp = boardp->adv_reqp;
6797 	boardp->adv_reqp = reqp;
6798 
6799 	ASC_DBG(1, "done\n");
6800 }
6801 
6802 /*
6803  * Adv Library Interrupt Service Routine
6804  *
6805  *  This function is called by a driver's interrupt service routine.
6806  *  The function disables and re-enables interrupts.
6807  *
6808  *  When a microcode idle command is completed, the ADV_DVC_VAR
6809  *  'idle_cmd_done' field is set to ADV_TRUE.
6810  *
6811  *  Note: AdvISR() can be called when interrupts are disabled or even
6812  *  when there is no hardware interrupt condition present. It will
6813  *  always check for completed idle commands and microcode requests.
6814  *  This is an important feature that shouldn't be changed because it
6815  *  allows commands to be completed from polling mode loops.
6816  *
6817  * Return:
6818  *   ADV_TRUE(1) - interrupt was pending
6819  *   ADV_FALSE(0) - no interrupt was pending
6820  */
AdvISR(ADV_DVC_VAR * asc_dvc)6821 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6822 {
6823 	AdvPortAddr iop_base;
6824 	uchar int_stat;
6825 	ushort target_bit;
6826 	ADV_CARR_T *free_carrp;
6827 	ADV_VADDR irq_next_vpa;
6828 	ADV_SCSI_REQ_Q *scsiq;
6829 
6830 	iop_base = asc_dvc->iop_base;
6831 
6832 	/* Reading the register clears the interrupt. */
6833 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6834 
6835 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6836 			 ADV_INTR_STATUS_INTRC)) == 0) {
6837 		return ADV_FALSE;
6838 	}
6839 
6840 	/*
6841 	 * Notify the driver of an asynchronous microcode condition by
6842 	 * calling the adv_async_callback function. The function
6843 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6844 	 */
6845 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6846 		uchar intrb_code;
6847 
6848 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6849 
6850 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6851 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6852 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6853 			    asc_dvc->carr_pending_cnt != 0) {
6854 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6855 						     ADV_TICKLE_A);
6856 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6857 					AdvWriteByteRegister(iop_base,
6858 							     IOPB_TICKLE,
6859 							     ADV_TICKLE_NOP);
6860 				}
6861 			}
6862 		}
6863 
6864 		adv_async_callback(asc_dvc, intrb_code);
6865 	}
6866 
6867 	/*
6868 	 * Check if the IRQ stopper carrier contains a completed request.
6869 	 */
6870 	while (((irq_next_vpa =
6871 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6872 		/*
6873 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6874 		 * The RISC will have set 'areq_vpa' to a virtual address.
6875 		 *
6876 		 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6877 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6878 		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6879 		 * in AdvExeScsiQueue().
6880 		 */
6881 		scsiq = (ADV_SCSI_REQ_Q *)
6882 		    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6883 
6884 		/*
6885 		 * Request finished with good status and the queue was not
6886 		 * DMAed to host memory by the firmware. Set all status fields
6887 		 * to indicate good status.
6888 		 */
6889 		if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6890 			scsiq->done_status = QD_NO_ERROR;
6891 			scsiq->host_status = scsiq->scsi_status = 0;
6892 			scsiq->data_cnt = 0L;
6893 		}
6894 
6895 		/*
6896 		 * Advance the stopper pointer to the next carrier
6897 		 * ignoring the lower four bits. Free the previous
6898 		 * stopper carrier.
6899 		 */
6900 		free_carrp = asc_dvc->irq_sp;
6901 		asc_dvc->irq_sp = (ADV_CARR_T *)
6902 		    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6903 
6904 		free_carrp->next_vpa =
6905 		    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6906 		asc_dvc->carr_freelist = free_carrp;
6907 		asc_dvc->carr_pending_cnt--;
6908 
6909 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6910 
6911 		/*
6912 		 * Clear request microcode control flag.
6913 		 */
6914 		scsiq->cntl = 0;
6915 
6916 		/*
6917 		 * Notify the driver of the completed request by passing
6918 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6919 		 */
6920 		scsiq->a_flag |= ADV_SCSIQ_DONE;
6921 		adv_isr_callback(asc_dvc, scsiq);
6922 		/*
6923 		 * Note: After the driver callback function is called, 'scsiq'
6924 		 * can no longer be referenced.
6925 		 *
6926 		 * Fall through and continue processing other completed
6927 		 * requests...
6928 		 */
6929 	}
6930 	return ADV_TRUE;
6931 }
6932 
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6933 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6934 {
6935 	if (asc_dvc->err_code == 0) {
6936 		asc_dvc->err_code = err_code;
6937 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6938 				 err_code);
6939 	}
6940 	return err_code;
6941 }
6942 
AscAckInterrupt(PortAddr iop_base)6943 static void AscAckInterrupt(PortAddr iop_base)
6944 {
6945 	uchar host_flag;
6946 	uchar risc_flag;
6947 	ushort loop;
6948 
6949 	loop = 0;
6950 	do {
6951 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6952 		if (loop++ > 0x7FFF) {
6953 			break;
6954 		}
6955 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6956 	host_flag =
6957 	    AscReadLramByte(iop_base,
6958 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6959 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6960 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6961 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6962 	loop = 0;
6963 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6964 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6965 		if (loop++ > 3) {
6966 			break;
6967 		}
6968 	}
6969 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6970 }
6971 
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6972 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6973 {
6974 	const uchar *period_table;
6975 	int max_index;
6976 	int min_index;
6977 	int i;
6978 
6979 	period_table = asc_dvc->sdtr_period_tbl;
6980 	max_index = (int)asc_dvc->max_sdtr_index;
6981 	min_index = (int)asc_dvc->min_sdtr_index;
6982 	if ((syn_time <= period_table[max_index])) {
6983 		for (i = min_index; i < (max_index - 1); i++) {
6984 			if (syn_time <= period_table[i]) {
6985 				return (uchar)i;
6986 			}
6987 		}
6988 		return (uchar)max_index;
6989 	} else {
6990 		return (uchar)(max_index + 1);
6991 	}
6992 }
6993 
6994 static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6995 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6996 {
6997 	EXT_MSG sdtr_buf;
6998 	uchar sdtr_period_index;
6999 	PortAddr iop_base;
7000 
7001 	iop_base = asc_dvc->iop_base;
7002 	sdtr_buf.msg_type = EXTENDED_MESSAGE;
7003 	sdtr_buf.msg_len = MS_SDTR_LEN;
7004 	sdtr_buf.msg_req = EXTENDED_SDTR;
7005 	sdtr_buf.xfer_period = sdtr_period;
7006 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
7007 	sdtr_buf.req_ack_offset = sdtr_offset;
7008 	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7009 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
7010 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7011 					(uchar *)&sdtr_buf,
7012 					sizeof(EXT_MSG) >> 1);
7013 		return ((sdtr_period_index << 4) | sdtr_offset);
7014 	} else {
7015 		sdtr_buf.req_ack_offset = 0;
7016 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7017 					(uchar *)&sdtr_buf,
7018 					sizeof(EXT_MSG) >> 1);
7019 		return 0;
7020 	}
7021 }
7022 
7023 static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)7024 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7025 {
7026 	uchar byte;
7027 	uchar sdtr_period_ix;
7028 
7029 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7030 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7031 		return 0xFF;
7032 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7033 	return byte;
7034 }
7035 
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)7036 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7037 {
7038 	ASC_SCSI_BIT_ID_TYPE org_id;
7039 	int i;
7040 	int sta = TRUE;
7041 
7042 	AscSetBank(iop_base, 1);
7043 	org_id = AscReadChipDvcID(iop_base);
7044 	for (i = 0; i <= ASC_MAX_TID; i++) {
7045 		if (org_id == (0x01 << i))
7046 			break;
7047 	}
7048 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7049 	AscWriteChipDvcID(iop_base, id);
7050 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7051 		AscSetBank(iop_base, 0);
7052 		AscSetChipSyn(iop_base, sdtr_data);
7053 		if (AscGetChipSyn(iop_base) != sdtr_data) {
7054 			sta = FALSE;
7055 		}
7056 	} else {
7057 		sta = FALSE;
7058 	}
7059 	AscSetBank(iop_base, 1);
7060 	AscWriteChipDvcID(iop_base, org_id);
7061 	AscSetBank(iop_base, 0);
7062 	return (sta);
7063 }
7064 
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)7065 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7066 {
7067 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7068 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7069 }
7070 
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)7071 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7072 {
7073 	EXT_MSG ext_msg;
7074 	EXT_MSG out_msg;
7075 	ushort halt_q_addr;
7076 	int sdtr_accept;
7077 	ushort int_halt_code;
7078 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7079 	ASC_SCSI_BIT_ID_TYPE target_id;
7080 	PortAddr iop_base;
7081 	uchar tag_code;
7082 	uchar q_status;
7083 	uchar halt_qp;
7084 	uchar sdtr_data;
7085 	uchar target_ix;
7086 	uchar q_cntl, tid_no;
7087 	uchar cur_dvc_qng;
7088 	uchar asyn_sdtr;
7089 	uchar scsi_status;
7090 	struct asc_board *boardp;
7091 
7092 	BUG_ON(!asc_dvc->drv_ptr);
7093 	boardp = asc_dvc->drv_ptr;
7094 
7095 	iop_base = asc_dvc->iop_base;
7096 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7097 
7098 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7099 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7100 	target_ix = AscReadLramByte(iop_base,
7101 				    (ushort)(halt_q_addr +
7102 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
7103 	q_cntl = AscReadLramByte(iop_base,
7104 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7105 	tid_no = ASC_TIX_TO_TID(target_ix);
7106 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7107 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7108 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7109 	} else {
7110 		asyn_sdtr = 0;
7111 	}
7112 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7113 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7114 			AscSetChipSDTR(iop_base, 0, tid_no);
7115 			boardp->sdtr_data[tid_no] = 0;
7116 		}
7117 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7118 		return (0);
7119 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7120 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7121 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7122 			boardp->sdtr_data[tid_no] = asyn_sdtr;
7123 		}
7124 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7125 		return (0);
7126 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7127 		AscMemWordCopyPtrFromLram(iop_base,
7128 					  ASCV_MSGIN_BEG,
7129 					  (uchar *)&ext_msg,
7130 					  sizeof(EXT_MSG) >> 1);
7131 
7132 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7133 		    ext_msg.msg_req == EXTENDED_SDTR &&
7134 		    ext_msg.msg_len == MS_SDTR_LEN) {
7135 			sdtr_accept = TRUE;
7136 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7137 
7138 				sdtr_accept = FALSE;
7139 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7140 			}
7141 			if ((ext_msg.xfer_period <
7142 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7143 			    || (ext_msg.xfer_period >
7144 				asc_dvc->sdtr_period_tbl[asc_dvc->
7145 							 max_sdtr_index])) {
7146 				sdtr_accept = FALSE;
7147 				ext_msg.xfer_period =
7148 				    asc_dvc->sdtr_period_tbl[asc_dvc->
7149 							     min_sdtr_index];
7150 			}
7151 			if (sdtr_accept) {
7152 				sdtr_data =
7153 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7154 						   ext_msg.req_ack_offset);
7155 				if ((sdtr_data == 0xFF)) {
7156 
7157 					q_cntl |= QC_MSG_OUT;
7158 					asc_dvc->init_sdtr &= ~target_id;
7159 					asc_dvc->sdtr_done &= ~target_id;
7160 					AscSetChipSDTR(iop_base, asyn_sdtr,
7161 						       tid_no);
7162 					boardp->sdtr_data[tid_no] = asyn_sdtr;
7163 				}
7164 			}
7165 			if (ext_msg.req_ack_offset == 0) {
7166 
7167 				q_cntl &= ~QC_MSG_OUT;
7168 				asc_dvc->init_sdtr &= ~target_id;
7169 				asc_dvc->sdtr_done &= ~target_id;
7170 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7171 			} else {
7172 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7173 					q_cntl &= ~QC_MSG_OUT;
7174 					asc_dvc->sdtr_done |= target_id;
7175 					asc_dvc->init_sdtr |= target_id;
7176 					asc_dvc->pci_fix_asyn_xfer &=
7177 					    ~target_id;
7178 					sdtr_data =
7179 					    AscCalSDTRData(asc_dvc,
7180 							   ext_msg.xfer_period,
7181 							   ext_msg.
7182 							   req_ack_offset);
7183 					AscSetChipSDTR(iop_base, sdtr_data,
7184 						       tid_no);
7185 					boardp->sdtr_data[tid_no] = sdtr_data;
7186 				} else {
7187 					q_cntl |= QC_MSG_OUT;
7188 					AscMsgOutSDTR(asc_dvc,
7189 						      ext_msg.xfer_period,
7190 						      ext_msg.req_ack_offset);
7191 					asc_dvc->pci_fix_asyn_xfer &=
7192 					    ~target_id;
7193 					sdtr_data =
7194 					    AscCalSDTRData(asc_dvc,
7195 							   ext_msg.xfer_period,
7196 							   ext_msg.
7197 							   req_ack_offset);
7198 					AscSetChipSDTR(iop_base, sdtr_data,
7199 						       tid_no);
7200 					boardp->sdtr_data[tid_no] = sdtr_data;
7201 					asc_dvc->sdtr_done |= target_id;
7202 					asc_dvc->init_sdtr |= target_id;
7203 				}
7204 			}
7205 
7206 			AscWriteLramByte(iop_base,
7207 					 (ushort)(halt_q_addr +
7208 						  (ushort)ASC_SCSIQ_B_CNTL),
7209 					 q_cntl);
7210 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7211 			return (0);
7212 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7213 			   ext_msg.msg_req == EXTENDED_WDTR &&
7214 			   ext_msg.msg_len == MS_WDTR_LEN) {
7215 
7216 			ext_msg.wdtr_width = 0;
7217 			AscMemWordCopyPtrToLram(iop_base,
7218 						ASCV_MSGOUT_BEG,
7219 						(uchar *)&ext_msg,
7220 						sizeof(EXT_MSG) >> 1);
7221 			q_cntl |= QC_MSG_OUT;
7222 			AscWriteLramByte(iop_base,
7223 					 (ushort)(halt_q_addr +
7224 						  (ushort)ASC_SCSIQ_B_CNTL),
7225 					 q_cntl);
7226 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7227 			return (0);
7228 		} else {
7229 
7230 			ext_msg.msg_type = MESSAGE_REJECT;
7231 			AscMemWordCopyPtrToLram(iop_base,
7232 						ASCV_MSGOUT_BEG,
7233 						(uchar *)&ext_msg,
7234 						sizeof(EXT_MSG) >> 1);
7235 			q_cntl |= QC_MSG_OUT;
7236 			AscWriteLramByte(iop_base,
7237 					 (ushort)(halt_q_addr +
7238 						  (ushort)ASC_SCSIQ_B_CNTL),
7239 					 q_cntl);
7240 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7241 			return (0);
7242 		}
7243 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7244 
7245 		q_cntl |= QC_REQ_SENSE;
7246 
7247 		if ((asc_dvc->init_sdtr & target_id) != 0) {
7248 
7249 			asc_dvc->sdtr_done &= ~target_id;
7250 
7251 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7252 			q_cntl |= QC_MSG_OUT;
7253 			AscMsgOutSDTR(asc_dvc,
7254 				      asc_dvc->
7255 				      sdtr_period_tbl[(sdtr_data >> 4) &
7256 						      (uchar)(asc_dvc->
7257 							      max_sdtr_index -
7258 							      1)],
7259 				      (uchar)(sdtr_data & (uchar)
7260 					      ASC_SYN_MAX_OFFSET));
7261 		}
7262 
7263 		AscWriteLramByte(iop_base,
7264 				 (ushort)(halt_q_addr +
7265 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7266 
7267 		tag_code = AscReadLramByte(iop_base,
7268 					   (ushort)(halt_q_addr + (ushort)
7269 						    ASC_SCSIQ_B_TAG_CODE));
7270 		tag_code &= 0xDC;
7271 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7272 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7273 		    ) {
7274 
7275 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7276 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7277 
7278 		}
7279 		AscWriteLramByte(iop_base,
7280 				 (ushort)(halt_q_addr +
7281 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
7282 				 tag_code);
7283 
7284 		q_status = AscReadLramByte(iop_base,
7285 					   (ushort)(halt_q_addr + (ushort)
7286 						    ASC_SCSIQ_B_STATUS));
7287 		q_status |= (QS_READY | QS_BUSY);
7288 		AscWriteLramByte(iop_base,
7289 				 (ushort)(halt_q_addr +
7290 					  (ushort)ASC_SCSIQ_B_STATUS),
7291 				 q_status);
7292 
7293 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7294 		scsi_busy &= ~target_id;
7295 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7296 
7297 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7298 		return (0);
7299 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7300 
7301 		AscMemWordCopyPtrFromLram(iop_base,
7302 					  ASCV_MSGOUT_BEG,
7303 					  (uchar *)&out_msg,
7304 					  sizeof(EXT_MSG) >> 1);
7305 
7306 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7307 		    (out_msg.msg_len == MS_SDTR_LEN) &&
7308 		    (out_msg.msg_req == EXTENDED_SDTR)) {
7309 
7310 			asc_dvc->init_sdtr &= ~target_id;
7311 			asc_dvc->sdtr_done &= ~target_id;
7312 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7313 			boardp->sdtr_data[tid_no] = asyn_sdtr;
7314 		}
7315 		q_cntl &= ~QC_MSG_OUT;
7316 		AscWriteLramByte(iop_base,
7317 				 (ushort)(halt_q_addr +
7318 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7319 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7320 		return (0);
7321 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7322 
7323 		scsi_status = AscReadLramByte(iop_base,
7324 					      (ushort)((ushort)halt_q_addr +
7325 						       (ushort)
7326 						       ASC_SCSIQ_SCSI_STATUS));
7327 		cur_dvc_qng =
7328 		    AscReadLramByte(iop_base,
7329 				    (ushort)((ushort)ASC_QADR_BEG +
7330 					     (ushort)target_ix));
7331 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7332 
7333 			scsi_busy = AscReadLramByte(iop_base,
7334 						    (ushort)ASCV_SCSIBUSY_B);
7335 			scsi_busy |= target_id;
7336 			AscWriteLramByte(iop_base,
7337 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7338 			asc_dvc->queue_full_or_busy |= target_id;
7339 
7340 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7341 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7342 					cur_dvc_qng -= 1;
7343 					asc_dvc->max_dvc_qng[tid_no] =
7344 					    cur_dvc_qng;
7345 
7346 					AscWriteLramByte(iop_base,
7347 							 (ushort)((ushort)
7348 								  ASCV_MAX_DVC_QNG_BEG
7349 								  + (ushort)
7350 								  tid_no),
7351 							 cur_dvc_qng);
7352 
7353 					/*
7354 					 * Set the device queue depth to the
7355 					 * number of active requests when the
7356 					 * QUEUE FULL condition was encountered.
7357 					 */
7358 					boardp->queue_full |= target_id;
7359 					boardp->queue_full_cnt[tid_no] =
7360 					    cur_dvc_qng;
7361 				}
7362 			}
7363 		}
7364 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7365 		return (0);
7366 	}
7367 #if CC_VERY_LONG_SG_LIST
7368 	else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7369 		uchar q_no;
7370 		ushort q_addr;
7371 		uchar sg_wk_q_no;
7372 		uchar first_sg_wk_q_no;
7373 		ASC_SCSI_Q *scsiq;	/* Ptr to driver request. */
7374 		ASC_SG_HEAD *sg_head;	/* Ptr to driver SG request. */
7375 		ASC_SG_LIST_Q scsi_sg_q;	/* Structure written to queue. */
7376 		ushort sg_list_dwords;
7377 		ushort sg_entry_cnt;
7378 		uchar next_qp;
7379 		int i;
7380 
7381 		q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7382 		if (q_no == ASC_QLINK_END)
7383 			return 0;
7384 
7385 		q_addr = ASC_QNO_TO_QADDR(q_no);
7386 
7387 		/*
7388 		 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7389 		 * structure pointer using a macro provided by the driver.
7390 		 * The ASC_SCSI_REQ pointer provides a pointer to the
7391 		 * host ASC_SG_HEAD structure.
7392 		 */
7393 		/* Read request's SRB pointer. */
7394 		scsiq = (ASC_SCSI_Q *)
7395 		    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7396 								    (ushort)
7397 								    (q_addr +
7398 								     ASC_SCSIQ_D_SRBPTR))));
7399 
7400 		/*
7401 		 * Get request's first and working SG queue.
7402 		 */
7403 		sg_wk_q_no = AscReadLramByte(iop_base,
7404 					     (ushort)(q_addr +
7405 						      ASC_SCSIQ_B_SG_WK_QP));
7406 
7407 		first_sg_wk_q_no = AscReadLramByte(iop_base,
7408 						   (ushort)(q_addr +
7409 							    ASC_SCSIQ_B_FIRST_SG_WK_QP));
7410 
7411 		/*
7412 		 * Reset request's working SG queue back to the
7413 		 * first SG queue.
7414 		 */
7415 		AscWriteLramByte(iop_base,
7416 				 (ushort)(q_addr +
7417 					  (ushort)ASC_SCSIQ_B_SG_WK_QP),
7418 				 first_sg_wk_q_no);
7419 
7420 		sg_head = scsiq->sg_head;
7421 
7422 		/*
7423 		 * Set sg_entry_cnt to the number of SG elements
7424 		 * that will be completed on this interrupt.
7425 		 *
7426 		 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7427 		 * SG elements. The data_cnt and data_addr fields which
7428 		 * add 1 to the SG element capacity are not used when
7429 		 * restarting SG handling after a halt.
7430 		 */
7431 		if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7432 			sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7433 
7434 			/*
7435 			 * Keep track of remaining number of SG elements that
7436 			 * will need to be handled on the next interrupt.
7437 			 */
7438 			scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7439 		} else {
7440 			sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7441 			scsiq->remain_sg_entry_cnt = 0;
7442 		}
7443 
7444 		/*
7445 		 * Copy SG elements into the list of allocated SG queues.
7446 		 *
7447 		 * Last index completed is saved in scsiq->next_sg_index.
7448 		 */
7449 		next_qp = first_sg_wk_q_no;
7450 		q_addr = ASC_QNO_TO_QADDR(next_qp);
7451 		scsi_sg_q.sg_head_qp = q_no;
7452 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7453 		for (i = 0; i < sg_head->queue_cnt; i++) {
7454 			scsi_sg_q.seq_no = i + 1;
7455 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7456 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7457 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7458 				/*
7459 				 * After very first SG queue RISC FW uses next
7460 				 * SG queue first element then checks sg_list_cnt
7461 				 * against zero and then decrements, so set
7462 				 * sg_list_cnt 1 less than number of SG elements
7463 				 * in each SG queue.
7464 				 */
7465 				scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7466 				scsi_sg_q.sg_cur_list_cnt =
7467 				    ASC_SG_LIST_PER_Q - 1;
7468 			} else {
7469 				/*
7470 				 * This is the last SG queue in the list of
7471 				 * allocated SG queues. If there are more
7472 				 * SG elements than will fit in the allocated
7473 				 * queues, then set the QCSG_SG_XFER_MORE flag.
7474 				 */
7475 				if (scsiq->remain_sg_entry_cnt != 0) {
7476 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7477 				} else {
7478 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7479 				}
7480 				/* equals sg_entry_cnt * 2 */
7481 				sg_list_dwords = sg_entry_cnt << 1;
7482 				scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7483 				scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7484 				sg_entry_cnt = 0;
7485 			}
7486 
7487 			scsi_sg_q.q_no = next_qp;
7488 			AscMemWordCopyPtrToLram(iop_base,
7489 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7490 						(uchar *)&scsi_sg_q,
7491 						sizeof(ASC_SG_LIST_Q) >> 1);
7492 
7493 			AscMemDWordCopyPtrToLram(iop_base,
7494 						 q_addr + ASC_SGQ_LIST_BEG,
7495 						 (uchar *)&sg_head->
7496 						 sg_list[scsiq->next_sg_index],
7497 						 sg_list_dwords);
7498 
7499 			scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7500 
7501 			/*
7502 			 * If the just completed SG queue contained the
7503 			 * last SG element, then no more SG queues need
7504 			 * to be written.
7505 			 */
7506 			if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7507 				break;
7508 			}
7509 
7510 			next_qp = AscReadLramByte(iop_base,
7511 						  (ushort)(q_addr +
7512 							   ASC_SCSIQ_B_FWD));
7513 			q_addr = ASC_QNO_TO_QADDR(next_qp);
7514 		}
7515 
7516 		/*
7517 		 * Clear the halt condition so the RISC will be restarted
7518 		 * after the return.
7519 		 */
7520 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7521 		return (0);
7522 	}
7523 #endif /* CC_VERY_LONG_SG_LIST */
7524 	return (0);
7525 }
7526 
7527 /*
7528  * void
7529  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7530  *
7531  * Calling/Exit State:
7532  *    none
7533  *
7534  * Description:
7535  *     Input an ASC_QDONE_INFO structure from the chip
7536  */
7537 static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)7538 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7539 {
7540 	int i;
7541 	ushort word;
7542 
7543 	AscSetChipLramAddr(iop_base, s_addr);
7544 	for (i = 0; i < 2 * words; i += 2) {
7545 		if (i == 10) {
7546 			continue;
7547 		}
7548 		word = inpw(iop_base + IOP_RAM_DATA);
7549 		inbuf[i] = word & 0xff;
7550 		inbuf[i + 1] = (word >> 8) & 0xff;
7551 	}
7552 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7553 }
7554 
7555 static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,ASC_DCNT max_dma_count)7556 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7557 		      ushort q_addr,
7558 		      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7559 {
7560 	ushort _val;
7561 	uchar sg_queue_cnt;
7562 
7563 	DvcGetQinfo(iop_base,
7564 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7565 		    (uchar *)scsiq,
7566 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7567 
7568 	_val = AscReadLramWord(iop_base,
7569 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7570 	scsiq->q_status = (uchar)_val;
7571 	scsiq->q_no = (uchar)(_val >> 8);
7572 	_val = AscReadLramWord(iop_base,
7573 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7574 	scsiq->cntl = (uchar)_val;
7575 	sg_queue_cnt = (uchar)(_val >> 8);
7576 	_val = AscReadLramWord(iop_base,
7577 			       (ushort)(q_addr +
7578 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
7579 	scsiq->sense_len = (uchar)_val;
7580 	scsiq->extra_bytes = (uchar)(_val >> 8);
7581 
7582 	/*
7583 	 * Read high word of remain bytes from alternate location.
7584 	 */
7585 	scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7586 							  (ushort)(q_addr +
7587 								   (ushort)
7588 								   ASC_SCSIQ_W_ALT_DC1)))
7589 			       << 16);
7590 	/*
7591 	 * Read low word of remain bytes from original location.
7592 	 */
7593 	scsiq->remain_bytes += AscReadLramWord(iop_base,
7594 					       (ushort)(q_addr + (ushort)
7595 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7596 
7597 	scsiq->remain_bytes &= max_dma_count;
7598 	return sg_queue_cnt;
7599 }
7600 
7601 /*
7602  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7603  *
7604  * Interrupt callback function for the Narrow SCSI Asc Library.
7605  */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)7606 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7607 {
7608 	struct asc_board *boardp;
7609 	struct scsi_cmnd *scp;
7610 	struct Scsi_Host *shost;
7611 
7612 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7613 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7614 
7615 	scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7616 	if (!scp)
7617 		return;
7618 
7619 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7620 
7621 	shost = scp->device->host;
7622 	ASC_STATS(shost, callback);
7623 	ASC_DBG(1, "shost 0x%p\n", shost);
7624 
7625 	boardp = shost_priv(shost);
7626 	BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7627 
7628 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7629 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7630 	/*
7631 	 * 'qdonep' contains the command's ending status.
7632 	 */
7633 	switch (qdonep->d3.done_stat) {
7634 	case QD_NO_ERROR:
7635 		ASC_DBG(2, "QD_NO_ERROR\n");
7636 		scp->result = 0;
7637 
7638 		/*
7639 		 * Check for an underrun condition.
7640 		 *
7641 		 * If there was no error and an underrun condition, then
7642 		 * return the number of underrun bytes.
7643 		 */
7644 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7645 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7646 			ASC_DBG(1, "underrun condition %u bytes\n",
7647 				 (unsigned)qdonep->remain_bytes);
7648 			scsi_set_resid(scp, qdonep->remain_bytes);
7649 		}
7650 		break;
7651 
7652 	case QD_WITH_ERROR:
7653 		ASC_DBG(2, "QD_WITH_ERROR\n");
7654 		switch (qdonep->d3.host_stat) {
7655 		case QHSTA_NO_ERROR:
7656 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7657 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7658 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7659 						  SCSI_SENSE_BUFFERSIZE);
7660 				/*
7661 				 * Note: The 'status_byte()' macro used by
7662 				 * target drivers defined in scsi.h shifts the
7663 				 * status byte returned by host drivers right
7664 				 * by 1 bit.  This is why target drivers also
7665 				 * use right shifted status byte definitions.
7666 				 * For instance target drivers use
7667 				 * CHECK_CONDITION, defined to 0x1, instead of
7668 				 * the SCSI defined check condition value of
7669 				 * 0x2. Host drivers are supposed to return
7670 				 * the status byte as it is defined by SCSI.
7671 				 */
7672 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7673 				    STATUS_BYTE(qdonep->d3.scsi_stat);
7674 			} else {
7675 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7676 			}
7677 			break;
7678 
7679 		default:
7680 			/* QHSTA error occurred */
7681 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7682 			scp->result = HOST_BYTE(DID_BAD_TARGET);
7683 			break;
7684 		}
7685 		break;
7686 
7687 	case QD_ABORTED_BY_HOST:
7688 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7689 		scp->result =
7690 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7691 						    scsi_msg) |
7692 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7693 		break;
7694 
7695 	default:
7696 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7697 		scp->result =
7698 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7699 						    scsi_msg) |
7700 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7701 		break;
7702 	}
7703 
7704 	/*
7705 	 * If the 'init_tidmask' bit isn't already set for the target and the
7706 	 * current request finished normally, then set the bit for the target
7707 	 * to indicate that a device is present.
7708 	 */
7709 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7710 	    qdonep->d3.done_stat == QD_NO_ERROR &&
7711 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7712 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7713 	}
7714 
7715 	asc_scsi_done(scp);
7716 }
7717 
AscIsrQDone(ASC_DVC_VAR * asc_dvc)7718 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7719 {
7720 	uchar next_qp;
7721 	uchar n_q_used;
7722 	uchar sg_list_qp;
7723 	uchar sg_queue_cnt;
7724 	uchar q_cnt;
7725 	uchar done_q_tail;
7726 	uchar tid_no;
7727 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7728 	ASC_SCSI_BIT_ID_TYPE target_id;
7729 	PortAddr iop_base;
7730 	ushort q_addr;
7731 	ushort sg_q_addr;
7732 	uchar cur_target_qng;
7733 	ASC_QDONE_INFO scsiq_buf;
7734 	ASC_QDONE_INFO *scsiq;
7735 	int false_overrun;
7736 
7737 	iop_base = asc_dvc->iop_base;
7738 	n_q_used = 1;
7739 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7740 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7741 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7742 	next_qp = AscReadLramByte(iop_base,
7743 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7744 	if (next_qp != ASC_QLINK_END) {
7745 		AscPutVarDoneQTail(iop_base, next_qp);
7746 		q_addr = ASC_QNO_TO_QADDR(next_qp);
7747 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7748 						     asc_dvc->max_dma_count);
7749 		AscWriteLramByte(iop_base,
7750 				 (ushort)(q_addr +
7751 					  (ushort)ASC_SCSIQ_B_STATUS),
7752 				 (uchar)(scsiq->
7753 					 q_status & (uchar)~(QS_READY |
7754 							     QS_ABORTED)));
7755 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7756 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7757 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7758 			sg_q_addr = q_addr;
7759 			sg_list_qp = next_qp;
7760 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7761 				sg_list_qp = AscReadLramByte(iop_base,
7762 							     (ushort)(sg_q_addr
7763 								      + (ushort)
7764 								      ASC_SCSIQ_B_FWD));
7765 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7766 				if (sg_list_qp == ASC_QLINK_END) {
7767 					AscSetLibErrorCode(asc_dvc,
7768 							   ASCQ_ERR_SG_Q_LINKS);
7769 					scsiq->d3.done_stat = QD_WITH_ERROR;
7770 					scsiq->d3.host_stat =
7771 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7772 					goto FATAL_ERR_QDONE;
7773 				}
7774 				AscWriteLramByte(iop_base,
7775 						 (ushort)(sg_q_addr + (ushort)
7776 							  ASC_SCSIQ_B_STATUS),
7777 						 QS_FREE);
7778 			}
7779 			n_q_used = sg_queue_cnt + 1;
7780 			AscPutVarDoneQTail(iop_base, sg_list_qp);
7781 		}
7782 		if (asc_dvc->queue_full_or_busy & target_id) {
7783 			cur_target_qng = AscReadLramByte(iop_base,
7784 							 (ushort)((ushort)
7785 								  ASC_QADR_BEG
7786 								  + (ushort)
7787 								  scsiq->d2.
7788 								  target_ix));
7789 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7790 				scsi_busy = AscReadLramByte(iop_base, (ushort)
7791 							    ASCV_SCSIBUSY_B);
7792 				scsi_busy &= ~target_id;
7793 				AscWriteLramByte(iop_base,
7794 						 (ushort)ASCV_SCSIBUSY_B,
7795 						 scsi_busy);
7796 				asc_dvc->queue_full_or_busy &= ~target_id;
7797 			}
7798 		}
7799 		if (asc_dvc->cur_total_qng >= n_q_used) {
7800 			asc_dvc->cur_total_qng -= n_q_used;
7801 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7802 				asc_dvc->cur_dvc_qng[tid_no]--;
7803 			}
7804 		} else {
7805 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7806 			scsiq->d3.done_stat = QD_WITH_ERROR;
7807 			goto FATAL_ERR_QDONE;
7808 		}
7809 		if ((scsiq->d2.srb_ptr == 0UL) ||
7810 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
7811 			return (0x11);
7812 		} else if (scsiq->q_status == QS_DONE) {
7813 			false_overrun = FALSE;
7814 			if (scsiq->extra_bytes != 0) {
7815 				scsiq->remain_bytes +=
7816 				    (ADV_DCNT)scsiq->extra_bytes;
7817 			}
7818 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7819 				if (scsiq->d3.host_stat ==
7820 				    QHSTA_M_DATA_OVER_RUN) {
7821 					if ((scsiq->
7822 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
7823 					    == 0) {
7824 						scsiq->d3.done_stat =
7825 						    QD_NO_ERROR;
7826 						scsiq->d3.host_stat =
7827 						    QHSTA_NO_ERROR;
7828 					} else if (false_overrun) {
7829 						scsiq->d3.done_stat =
7830 						    QD_NO_ERROR;
7831 						scsiq->d3.host_stat =
7832 						    QHSTA_NO_ERROR;
7833 					}
7834 				} else if (scsiq->d3.host_stat ==
7835 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7836 					AscStopChip(iop_base);
7837 					AscSetChipControl(iop_base,
7838 							  (uchar)(CC_SCSI_RESET
7839 								  | CC_HALT));
7840 					udelay(60);
7841 					AscSetChipControl(iop_base, CC_HALT);
7842 					AscSetChipStatus(iop_base,
7843 							 CIW_CLR_SCSI_RESET_INT);
7844 					AscSetChipStatus(iop_base, 0);
7845 					AscSetChipControl(iop_base, 0);
7846 				}
7847 			}
7848 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7849 				asc_isr_callback(asc_dvc, scsiq);
7850 			} else {
7851 				if ((AscReadLramByte(iop_base,
7852 						     (ushort)(q_addr + (ushort)
7853 							      ASC_SCSIQ_CDB_BEG))
7854 				     == START_STOP)) {
7855 					asc_dvc->unit_not_ready &= ~target_id;
7856 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
7857 						asc_dvc->start_motor &=
7858 						    ~target_id;
7859 					}
7860 				}
7861 			}
7862 			return (1);
7863 		} else {
7864 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7865  FATAL_ERR_QDONE:
7866 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7867 				asc_isr_callback(asc_dvc, scsiq);
7868 			}
7869 			return (0x80);
7870 		}
7871 	}
7872 	return (0);
7873 }
7874 
AscISR(ASC_DVC_VAR * asc_dvc)7875 static int AscISR(ASC_DVC_VAR *asc_dvc)
7876 {
7877 	ASC_CS_TYPE chipstat;
7878 	PortAddr iop_base;
7879 	ushort saved_ram_addr;
7880 	uchar ctrl_reg;
7881 	uchar saved_ctrl_reg;
7882 	int int_pending;
7883 	int status;
7884 	uchar host_flag;
7885 
7886 	iop_base = asc_dvc->iop_base;
7887 	int_pending = FALSE;
7888 
7889 	if (AscIsIntPending(iop_base) == 0)
7890 		return int_pending;
7891 
7892 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7893 		return ERR;
7894 	}
7895 	if (asc_dvc->in_critical_cnt != 0) {
7896 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7897 		return ERR;
7898 	}
7899 	if (asc_dvc->is_in_int) {
7900 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7901 		return ERR;
7902 	}
7903 	asc_dvc->is_in_int = TRUE;
7904 	ctrl_reg = AscGetChipControl(iop_base);
7905 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7906 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7907 	chipstat = AscGetChipStatus(iop_base);
7908 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7909 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7910 			int i = 10;
7911 			int_pending = TRUE;
7912 			asc_dvc->sdtr_done = 0;
7913 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7914 			while ((AscGetChipStatus(iop_base) &
7915 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7916 				mdelay(100);
7917 			}
7918 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7919 			AscSetChipControl(iop_base, CC_HALT);
7920 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7921 			AscSetChipStatus(iop_base, 0);
7922 			chipstat = AscGetChipStatus(iop_base);
7923 		}
7924 	}
7925 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7926 	host_flag = AscReadLramByte(iop_base,
7927 				    ASCV_HOST_FLAG_B) &
7928 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7929 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7930 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7931 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7932 		AscAckInterrupt(iop_base);
7933 		int_pending = TRUE;
7934 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7935 			if (AscIsrChipHalted(asc_dvc) == ERR) {
7936 				goto ISR_REPORT_QDONE_FATAL_ERROR;
7937 			} else {
7938 				saved_ctrl_reg &= (uchar)(~CC_HALT);
7939 			}
7940 		} else {
7941  ISR_REPORT_QDONE_FATAL_ERROR:
7942 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7943 				while (((status =
7944 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7945 				}
7946 			} else {
7947 				do {
7948 					if ((status =
7949 					     AscIsrQDone(asc_dvc)) == 1) {
7950 						break;
7951 					}
7952 				} while (status == 0x11);
7953 			}
7954 			if ((status & 0x80) != 0)
7955 				int_pending = ERR;
7956 		}
7957 	}
7958 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7959 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7960 	AscSetChipControl(iop_base, saved_ctrl_reg);
7961 	asc_dvc->is_in_int = FALSE;
7962 	return int_pending;
7963 }
7964 
7965 /*
7966  * advansys_reset()
7967  *
7968  * Reset the bus associated with the command 'scp'.
7969  *
7970  * This function runs its own thread. Interrupts must be blocked but
7971  * sleeping is allowed and no locking other than for host structures is
7972  * required. Returns SUCCESS or FAILED.
7973  */
advansys_reset(struct scsi_cmnd * scp)7974 static int advansys_reset(struct scsi_cmnd *scp)
7975 {
7976 	struct Scsi_Host *shost = scp->device->host;
7977 	struct asc_board *boardp = shost_priv(shost);
7978 	unsigned long flags;
7979 	int status;
7980 	int ret = SUCCESS;
7981 
7982 	ASC_DBG(1, "0x%p\n", scp);
7983 
7984 	ASC_STATS(shost, reset);
7985 
7986 	scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7987 
7988 	if (ASC_NARROW_BOARD(boardp)) {
7989 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7990 
7991 		/* Reset the chip and SCSI bus. */
7992 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7993 		status = AscInitAsc1000Driver(asc_dvc);
7994 
7995 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7996 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7997 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7998 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7999 				    status);
8000 			ret = FAILED;
8001 		} else if (status) {
8002 			scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
8003 				    "0x%x\n", status);
8004 		} else {
8005 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8006 				    "successful\n");
8007 		}
8008 
8009 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8010 		spin_lock_irqsave(shost->host_lock, flags);
8011 	} else {
8012 		/*
8013 		 * If the suggest reset bus flags are set, then reset the bus.
8014 		 * Otherwise only reset the device.
8015 		 */
8016 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8017 
8018 		/*
8019 		 * Reset the target's SCSI bus.
8020 		 */
8021 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
8022 		switch (AdvResetChipAndSB(adv_dvc)) {
8023 		case ASC_TRUE:
8024 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8025 				    "successful\n");
8026 			break;
8027 		case ASC_FALSE:
8028 		default:
8029 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8030 			ret = FAILED;
8031 			break;
8032 		}
8033 		spin_lock_irqsave(shost->host_lock, flags);
8034 		AdvISR(adv_dvc);
8035 	}
8036 
8037 	/* Save the time of the most recently completed reset. */
8038 	boardp->last_reset = jiffies;
8039 	spin_unlock_irqrestore(shost->host_lock, flags);
8040 
8041 	ASC_DBG(1, "ret %d\n", ret);
8042 
8043 	return ret;
8044 }
8045 
8046 /*
8047  * advansys_biosparam()
8048  *
8049  * Translate disk drive geometry if the "BIOS greater than 1 GB"
8050  * support is enabled for a drive.
8051  *
8052  * ip (information pointer) is an int array with the following definition:
8053  * ip[0]: heads
8054  * ip[1]: sectors
8055  * ip[2]: cylinders
8056  */
8057 static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])8058 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8059 		   sector_t capacity, int ip[])
8060 {
8061 	struct asc_board *boardp = shost_priv(sdev->host);
8062 
8063 	ASC_DBG(1, "begin\n");
8064 	ASC_STATS(sdev->host, biosparam);
8065 	if (ASC_NARROW_BOARD(boardp)) {
8066 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8067 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8068 			ip[0] = 255;
8069 			ip[1] = 63;
8070 		} else {
8071 			ip[0] = 64;
8072 			ip[1] = 32;
8073 		}
8074 	} else {
8075 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8076 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8077 			ip[0] = 255;
8078 			ip[1] = 63;
8079 		} else {
8080 			ip[0] = 64;
8081 			ip[1] = 32;
8082 		}
8083 	}
8084 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8085 	ASC_DBG(1, "end\n");
8086 	return 0;
8087 }
8088 
8089 /*
8090  * First-level interrupt handler.
8091  *
8092  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8093  */
advansys_interrupt(int irq,void * dev_id)8094 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8095 {
8096 	struct Scsi_Host *shost = dev_id;
8097 	struct asc_board *boardp = shost_priv(shost);
8098 	irqreturn_t result = IRQ_NONE;
8099 
8100 	ASC_DBG(2, "boardp 0x%p\n", boardp);
8101 	spin_lock(shost->host_lock);
8102 	if (ASC_NARROW_BOARD(boardp)) {
8103 		if (AscIsIntPending(shost->io_port)) {
8104 			result = IRQ_HANDLED;
8105 			ASC_STATS(shost, interrupt);
8106 			ASC_DBG(1, "before AscISR()\n");
8107 			AscISR(&boardp->dvc_var.asc_dvc_var);
8108 		}
8109 	} else {
8110 		ASC_DBG(1, "before AdvISR()\n");
8111 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8112 			result = IRQ_HANDLED;
8113 			ASC_STATS(shost, interrupt);
8114 		}
8115 	}
8116 	spin_unlock(shost->host_lock);
8117 
8118 	ASC_DBG(1, "end\n");
8119 	return result;
8120 }
8121 
AscHostReqRiscHalt(PortAddr iop_base)8122 static int AscHostReqRiscHalt(PortAddr iop_base)
8123 {
8124 	int count = 0;
8125 	int sta = 0;
8126 	uchar saved_stop_code;
8127 
8128 	if (AscIsChipHalted(iop_base))
8129 		return (1);
8130 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8131 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8132 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8133 	do {
8134 		if (AscIsChipHalted(iop_base)) {
8135 			sta = 1;
8136 			break;
8137 		}
8138 		mdelay(100);
8139 	} while (count++ < 20);
8140 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8141 	return (sta);
8142 }
8143 
8144 static int
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)8145 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8146 {
8147 	int sta = FALSE;
8148 
8149 	if (AscHostReqRiscHalt(iop_base)) {
8150 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8151 		AscStartChip(iop_base);
8152 	}
8153 	return sta;
8154 }
8155 
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)8156 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8157 {
8158 	char type = sdev->type;
8159 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8160 
8161 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8162 		return;
8163 	if (asc_dvc->init_sdtr & tid_bits)
8164 		return;
8165 
8166 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8167 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8168 
8169 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8170 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8171 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
8172 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8173 
8174 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8175 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8176 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8177 }
8178 
8179 static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)8180 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8181 {
8182 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8183 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8184 
8185 	if (sdev->lun == 0) {
8186 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8187 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8188 			asc_dvc->init_sdtr |= tid_bit;
8189 		} else {
8190 			asc_dvc->init_sdtr &= ~tid_bit;
8191 		}
8192 
8193 		if (orig_init_sdtr != asc_dvc->init_sdtr)
8194 			AscAsyncFix(asc_dvc, sdev);
8195 	}
8196 
8197 	if (sdev->tagged_supported) {
8198 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8199 			if (sdev->lun == 0) {
8200 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
8201 				asc_dvc->use_tagged_qng |= tid_bit;
8202 			}
8203 			scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8204 						asc_dvc->max_dvc_qng[sdev->id]);
8205 		}
8206 	} else {
8207 		if (sdev->lun == 0) {
8208 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8209 			asc_dvc->use_tagged_qng &= ~tid_bit;
8210 		}
8211 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8212 	}
8213 
8214 	if ((sdev->lun == 0) &&
8215 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8216 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8217 				 asc_dvc->cfg->disc_enable);
8218 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8219 				 asc_dvc->use_tagged_qng);
8220 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8221 				 asc_dvc->cfg->can_tagged_qng);
8222 
8223 		asc_dvc->max_dvc_qng[sdev->id] =
8224 					asc_dvc->cfg->max_tag_qng[sdev->id];
8225 		AscWriteLramByte(asc_dvc->iop_base,
8226 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8227 				 asc_dvc->max_dvc_qng[sdev->id]);
8228 	}
8229 }
8230 
8231 /*
8232  * Wide Transfers
8233  *
8234  * If the EEPROM enabled WDTR for the device and the device supports wide
8235  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8236  * write the new value to the microcode.
8237  */
8238 static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)8239 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8240 {
8241 	unsigned short cfg_word;
8242 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8243 	if ((cfg_word & tidmask) != 0)
8244 		return;
8245 
8246 	cfg_word |= tidmask;
8247 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8248 
8249 	/*
8250 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
8251 	 * the target to cause it to negotiate with the new setting set above.
8252 	 * WDTR when accepted causes the target to enter asynchronous mode, so
8253 	 * SDTR must be negotiated.
8254 	 */
8255 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8256 	cfg_word &= ~tidmask;
8257 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8258 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8259 	cfg_word &= ~tidmask;
8260 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8261 }
8262 
8263 /*
8264  * Synchronous Transfers
8265  *
8266  * If the EEPROM enabled SDTR for the device and the device
8267  * supports synchronous transfers, then turn on the device's
8268  * 'sdtr_able' bit. Write the new value to the microcode.
8269  */
8270 static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)8271 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8272 {
8273 	unsigned short cfg_word;
8274 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8275 	if ((cfg_word & tidmask) != 0)
8276 		return;
8277 
8278 	cfg_word |= tidmask;
8279 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8280 
8281 	/*
8282 	 * Clear the microcode "SDTR negotiation" done indicator for the
8283 	 * target to cause it to negotiate with the new setting set above.
8284 	 */
8285 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8286 	cfg_word &= ~tidmask;
8287 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8288 }
8289 
8290 /*
8291  * PPR (Parallel Protocol Request) Capable
8292  *
8293  * If the device supports DT mode, then it must be PPR capable.
8294  * The PPR message will be used in place of the SDTR and WDTR
8295  * messages to negotiate synchronous speed and offset, transfer
8296  * width, and protocol options.
8297  */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)8298 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8299 				AdvPortAddr iop_base, unsigned short tidmask)
8300 {
8301 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8302 	adv_dvc->ppr_able |= tidmask;
8303 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8304 }
8305 
8306 static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)8307 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8308 {
8309 	AdvPortAddr iop_base = adv_dvc->iop_base;
8310 	unsigned short tidmask = 1 << sdev->id;
8311 
8312 	if (sdev->lun == 0) {
8313 		/*
8314 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8315 		 * is enabled in the EEPROM and the device supports the
8316 		 * feature, then enable it in the microcode.
8317 		 */
8318 
8319 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8320 			advansys_wide_enable_wdtr(iop_base, tidmask);
8321 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8322 			advansys_wide_enable_sdtr(iop_base, tidmask);
8323 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8324 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8325 
8326 		/*
8327 		 * Tag Queuing is disabled for the BIOS which runs in polled
8328 		 * mode and would see no benefit from Tag Queuing. Also by
8329 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8330 		 * bugs will at least work with the BIOS.
8331 		 */
8332 		if ((adv_dvc->tagqng_able & tidmask) &&
8333 		    sdev->tagged_supported) {
8334 			unsigned short cfg_word;
8335 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8336 			cfg_word |= tidmask;
8337 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8338 					 cfg_word);
8339 			AdvWriteByteLram(iop_base,
8340 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8341 					 adv_dvc->max_dvc_qng);
8342 		}
8343 	}
8344 
8345 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8346 		scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8347 					adv_dvc->max_dvc_qng);
8348 	} else {
8349 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8350 	}
8351 }
8352 
8353 /*
8354  * Set the number of commands to queue per device for the
8355  * specified host adapter.
8356  */
advansys_slave_configure(struct scsi_device * sdev)8357 static int advansys_slave_configure(struct scsi_device *sdev)
8358 {
8359 	struct asc_board *boardp = shost_priv(sdev->host);
8360 
8361 	if (ASC_NARROW_BOARD(boardp))
8362 		advansys_narrow_slave_configure(sdev,
8363 						&boardp->dvc_var.asc_dvc_var);
8364 	else
8365 		advansys_wide_slave_configure(sdev,
8366 						&boardp->dvc_var.adv_dvc_var);
8367 
8368 	return 0;
8369 }
8370 
advansys_get_sense_buffer_dma(struct scsi_cmnd * scp)8371 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8372 {
8373 	struct asc_board *board = shost_priv(scp->device->host);
8374 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8375 					     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8376 	dma_cache_sync(board->dev, scp->sense_buffer,
8377 		       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8378 	return cpu_to_le32(scp->SCp.dma_handle);
8379 }
8380 
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)8381 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8382 			struct asc_scsi_q *asc_scsi_q)
8383 {
8384 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8385 	int use_sg;
8386 
8387 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8388 
8389 	/*
8390 	 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8391 	 */
8392 	asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8393 	if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8394 		scp->result = HOST_BYTE(DID_SOFT_ERROR);
8395 		return ASC_ERROR;
8396 	}
8397 
8398 	/*
8399 	 * Build the ASC_SCSI_Q request.
8400 	 */
8401 	asc_scsi_q->cdbptr = &scp->cmnd[0];
8402 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
8403 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8404 	asc_scsi_q->q1.target_lun = scp->device->lun;
8405 	asc_scsi_q->q2.target_ix =
8406 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8407 	asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8408 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8409 
8410 	/*
8411 	 * If there are any outstanding requests for the current target,
8412 	 * then every 255th request send an ORDERED request. This heuristic
8413 	 * tries to retain the benefit of request sorting while preventing
8414 	 * request starvation. 255 is the max number of tags or pending commands
8415 	 * a device may have outstanding.
8416 	 *
8417 	 * The request count is incremented below for every successfully
8418 	 * started request.
8419 	 *
8420 	 */
8421 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8422 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
8423 		asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8424 	} else {
8425 		asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8426 	}
8427 
8428 	/* Build ASC_SCSI_Q */
8429 	use_sg = scsi_dma_map(scp);
8430 	if (use_sg != 0) {
8431 		int sgcnt;
8432 		struct scatterlist *slp;
8433 		struct asc_sg_head *asc_sg_head;
8434 
8435 		if (use_sg > scp->device->host->sg_tablesize) {
8436 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8437 				"sg_tablesize %d\n", use_sg,
8438 				scp->device->host->sg_tablesize);
8439 			scsi_dma_unmap(scp);
8440 			scp->result = HOST_BYTE(DID_ERROR);
8441 			return ASC_ERROR;
8442 		}
8443 
8444 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8445 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8446 		if (!asc_sg_head) {
8447 			scsi_dma_unmap(scp);
8448 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
8449 			return ASC_ERROR;
8450 		}
8451 
8452 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8453 		asc_scsi_q->sg_head = asc_sg_head;
8454 		asc_scsi_q->q1.data_cnt = 0;
8455 		asc_scsi_q->q1.data_addr = 0;
8456 		/* This is a byte value, otherwise it would need to be swapped. */
8457 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8458 		ASC_STATS_ADD(scp->device->host, xfer_elem,
8459 			      asc_sg_head->entry_cnt);
8460 
8461 		/*
8462 		 * Convert scatter-gather list into ASC_SG_HEAD list.
8463 		 */
8464 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8465 			asc_sg_head->sg_list[sgcnt].addr =
8466 			    cpu_to_le32(sg_dma_address(slp));
8467 			asc_sg_head->sg_list[sgcnt].bytes =
8468 			    cpu_to_le32(sg_dma_len(slp));
8469 			ASC_STATS_ADD(scp->device->host, xfer_sect,
8470 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8471 		}
8472 	}
8473 
8474 	ASC_STATS(scp->device->host, xfer_cnt);
8475 
8476 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8477 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8478 
8479 	return ASC_NOERROR;
8480 }
8481 
8482 /*
8483  * Build scatter-gather list for Adv Library (Wide Board).
8484  *
8485  * Additional ADV_SG_BLOCK structures will need to be allocated
8486  * if the total number of scatter-gather elements exceeds
8487  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8488  * assumed to be physically contiguous.
8489  *
8490  * Return:
8491  *      ADV_SUCCESS(1) - SG List successfully created
8492  *      ADV_ERROR(-1) - SG List creation failed
8493  */
8494 static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,struct scsi_cmnd * scp,int use_sg)8495 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8496 	       int use_sg)
8497 {
8498 	adv_sgblk_t *sgblkp;
8499 	ADV_SCSI_REQ_Q *scsiqp;
8500 	struct scatterlist *slp;
8501 	int sg_elem_cnt;
8502 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
8503 	ADV_PADDR sg_block_paddr;
8504 	int i;
8505 
8506 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8507 	slp = scsi_sglist(scp);
8508 	sg_elem_cnt = use_sg;
8509 	prev_sg_block = NULL;
8510 	reqp->sgblkp = NULL;
8511 
8512 	for (;;) {
8513 		/*
8514 		 * Allocate a 'adv_sgblk_t' structure from the board free
8515 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8516 		 * (15) scatter-gather elements.
8517 		 */
8518 		if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8519 			ASC_DBG(1, "no free adv_sgblk_t\n");
8520 			ASC_STATS(scp->device->host, adv_build_nosg);
8521 
8522 			/*
8523 			 * Allocation failed. Free 'adv_sgblk_t' structures
8524 			 * already allocated for the request.
8525 			 */
8526 			while ((sgblkp = reqp->sgblkp) != NULL) {
8527 				/* Remove 'sgblkp' from the request list. */
8528 				reqp->sgblkp = sgblkp->next_sgblkp;
8529 
8530 				/* Add 'sgblkp' to the board free list. */
8531 				sgblkp->next_sgblkp = boardp->adv_sgblkp;
8532 				boardp->adv_sgblkp = sgblkp;
8533 			}
8534 			return ASC_BUSY;
8535 		}
8536 
8537 		/* Complete 'adv_sgblk_t' board allocation. */
8538 		boardp->adv_sgblkp = sgblkp->next_sgblkp;
8539 		sgblkp->next_sgblkp = NULL;
8540 
8541 		/*
8542 		 * Get 8 byte aligned virtual and physical addresses
8543 		 * for the allocated ADV_SG_BLOCK structure.
8544 		 */
8545 		sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8546 		sg_block_paddr = virt_to_bus(sg_block);
8547 
8548 		/*
8549 		 * Check if this is the first 'adv_sgblk_t' for the
8550 		 * request.
8551 		 */
8552 		if (reqp->sgblkp == NULL) {
8553 			/* Request's first scatter-gather block. */
8554 			reqp->sgblkp = sgblkp;
8555 
8556 			/*
8557 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8558 			 * address pointers.
8559 			 */
8560 			scsiqp->sg_list_ptr = sg_block;
8561 			scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8562 		} else {
8563 			/* Request's second or later scatter-gather block. */
8564 			sgblkp->next_sgblkp = reqp->sgblkp;
8565 			reqp->sgblkp = sgblkp;
8566 
8567 			/*
8568 			 * Point the previous ADV_SG_BLOCK structure to
8569 			 * the newly allocated ADV_SG_BLOCK structure.
8570 			 */
8571 			prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8572 		}
8573 
8574 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8575 			sg_block->sg_list[i].sg_addr =
8576 					cpu_to_le32(sg_dma_address(slp));
8577 			sg_block->sg_list[i].sg_count =
8578 					cpu_to_le32(sg_dma_len(slp));
8579 			ASC_STATS_ADD(scp->device->host, xfer_sect,
8580 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8581 
8582 			if (--sg_elem_cnt == 0) {	/* Last ADV_SG_BLOCK and scatter-gather entry. */
8583 				sg_block->sg_cnt = i + 1;
8584 				sg_block->sg_ptr = 0L;	/* Last ADV_SG_BLOCK in list. */
8585 				return ADV_SUCCESS;
8586 			}
8587 			slp++;
8588 		}
8589 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8590 		prev_sg_block = sg_block;
8591 	}
8592 }
8593 
8594 /*
8595  * Build a request structure for the Adv Library (Wide Board).
8596  *
8597  * If an adv_req_t can not be allocated to issue the request,
8598  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8599  *
8600  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8601  * microcode for DMA addresses or math operations are byte swapped
8602  * to little-endian order.
8603  */
8604 static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,ADV_SCSI_REQ_Q ** adv_scsiqpp)8605 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8606 	      ADV_SCSI_REQ_Q **adv_scsiqpp)
8607 {
8608 	adv_req_t *reqp;
8609 	ADV_SCSI_REQ_Q *scsiqp;
8610 	int i;
8611 	int ret;
8612 	int use_sg;
8613 
8614 	/*
8615 	 * Allocate an adv_req_t structure from the board to execute
8616 	 * the command.
8617 	 */
8618 	if (boardp->adv_reqp == NULL) {
8619 		ASC_DBG(1, "no free adv_req_t\n");
8620 		ASC_STATS(scp->device->host, adv_build_noreq);
8621 		return ASC_BUSY;
8622 	} else {
8623 		reqp = boardp->adv_reqp;
8624 		boardp->adv_reqp = reqp->next_reqp;
8625 		reqp->next_reqp = NULL;
8626 	}
8627 
8628 	/*
8629 	 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8630 	 */
8631 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8632 
8633 	/*
8634 	 * Initialize the structure.
8635 	 */
8636 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8637 
8638 	/*
8639 	 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8640 	 */
8641 	scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8642 
8643 	/*
8644 	 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8645 	 */
8646 	reqp->cmndp = scp;
8647 
8648 	/*
8649 	 * Build the ADV_SCSI_REQ_Q request.
8650 	 */
8651 
8652 	/* Set CDB length and copy it to the request structure.  */
8653 	scsiqp->cdb_len = scp->cmd_len;
8654 	/* Copy first 12 CDB bytes to cdb[]. */
8655 	for (i = 0; i < scp->cmd_len && i < 12; i++) {
8656 		scsiqp->cdb[i] = scp->cmnd[i];
8657 	}
8658 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
8659 	for (; i < scp->cmd_len; i++) {
8660 		scsiqp->cdb16[i - 12] = scp->cmnd[i];
8661 	}
8662 
8663 	scsiqp->target_id = scp->device->id;
8664 	scsiqp->target_lun = scp->device->lun;
8665 
8666 	scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8667 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8668 
8669 	/* Build ADV_SCSI_REQ_Q */
8670 
8671 	use_sg = scsi_dma_map(scp);
8672 	if (use_sg == 0) {
8673 		/* Zero-length transfer */
8674 		reqp->sgblkp = NULL;
8675 		scsiqp->data_cnt = 0;
8676 		scsiqp->vdata_addr = NULL;
8677 
8678 		scsiqp->data_addr = 0;
8679 		scsiqp->sg_list_ptr = NULL;
8680 		scsiqp->sg_real_addr = 0;
8681 	} else {
8682 		if (use_sg > ADV_MAX_SG_LIST) {
8683 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8684 				   "ADV_MAX_SG_LIST %d\n", use_sg,
8685 				   scp->device->host->sg_tablesize);
8686 			scsi_dma_unmap(scp);
8687 			scp->result = HOST_BYTE(DID_ERROR);
8688 
8689 			/*
8690 			 * Free the 'adv_req_t' structure by adding it back
8691 			 * to the board free list.
8692 			 */
8693 			reqp->next_reqp = boardp->adv_reqp;
8694 			boardp->adv_reqp = reqp;
8695 
8696 			return ASC_ERROR;
8697 		}
8698 
8699 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8700 
8701 		ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8702 		if (ret != ADV_SUCCESS) {
8703 			/*
8704 			 * Free the adv_req_t structure by adding it back to
8705 			 * the board free list.
8706 			 */
8707 			reqp->next_reqp = boardp->adv_reqp;
8708 			boardp->adv_reqp = reqp;
8709 
8710 			return ret;
8711 		}
8712 
8713 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8714 	}
8715 
8716 	ASC_STATS(scp->device->host, xfer_cnt);
8717 
8718 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8719 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8720 
8721 	*adv_scsiqpp = scsiqp;
8722 
8723 	return ASC_NOERROR;
8724 }
8725 
AscSgListToQueue(int sg_list)8726 static int AscSgListToQueue(int sg_list)
8727 {
8728 	int n_sg_list_qs;
8729 
8730 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8731 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8732 		n_sg_list_qs++;
8733 	return n_sg_list_qs + 1;
8734 }
8735 
8736 static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)8737 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8738 {
8739 	uint cur_used_qs;
8740 	uint cur_free_qs;
8741 	ASC_SCSI_BIT_ID_TYPE target_id;
8742 	uchar tid_no;
8743 
8744 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8745 	tid_no = ASC_TIX_TO_TID(target_ix);
8746 	if ((asc_dvc->unit_not_ready & target_id) ||
8747 	    (asc_dvc->queue_full_or_busy & target_id)) {
8748 		return 0;
8749 	}
8750 	if (n_qs == 1) {
8751 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8752 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8753 	} else {
8754 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8755 		    (uint) ASC_MIN_FREE_Q;
8756 	}
8757 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8758 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8759 		if (asc_dvc->cur_dvc_qng[tid_no] >=
8760 		    asc_dvc->max_dvc_qng[tid_no]) {
8761 			return 0;
8762 		}
8763 		return cur_free_qs;
8764 	}
8765 	if (n_qs > 1) {
8766 		if ((n_qs > asc_dvc->last_q_shortage)
8767 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8768 			asc_dvc->last_q_shortage = n_qs;
8769 		}
8770 	}
8771 	return 0;
8772 }
8773 
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)8774 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8775 {
8776 	ushort q_addr;
8777 	uchar next_qp;
8778 	uchar q_status;
8779 
8780 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
8781 	q_status = (uchar)AscReadLramByte(iop_base,
8782 					  (ushort)(q_addr +
8783 						   ASC_SCSIQ_B_STATUS));
8784 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8785 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8786 		return next_qp;
8787 	return ASC_QLINK_END;
8788 }
8789 
8790 static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)8791 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8792 {
8793 	uchar i;
8794 
8795 	for (i = 0; i < n_free_q; i++) {
8796 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8797 		if (free_q_head == ASC_QLINK_END)
8798 			break;
8799 	}
8800 	return free_q_head;
8801 }
8802 
8803 /*
8804  * void
8805  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8806  *
8807  * Calling/Exit State:
8808  *    none
8809  *
8810  * Description:
8811  *     Output an ASC_SCSI_Q structure to the chip
8812  */
8813 static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)8814 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8815 {
8816 	int i;
8817 
8818 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8819 	AscSetChipLramAddr(iop_base, s_addr);
8820 	for (i = 0; i < 2 * words; i += 2) {
8821 		if (i == 4 || i == 20) {
8822 			continue;
8823 		}
8824 		outpw(iop_base + IOP_RAM_DATA,
8825 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8826 	}
8827 }
8828 
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8829 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8830 {
8831 	ushort q_addr;
8832 	uchar tid_no;
8833 	uchar sdtr_data;
8834 	uchar syn_period_ix;
8835 	uchar syn_offset;
8836 	PortAddr iop_base;
8837 
8838 	iop_base = asc_dvc->iop_base;
8839 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8840 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8841 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8842 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8843 		syn_period_ix =
8844 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8845 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8846 		AscMsgOutSDTR(asc_dvc,
8847 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
8848 			      syn_offset);
8849 		scsiq->q1.cntl |= QC_MSG_OUT;
8850 	}
8851 	q_addr = ASC_QNO_TO_QADDR(q_no);
8852 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8853 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8854 	}
8855 	scsiq->q1.status = QS_FREE;
8856 	AscMemWordCopyPtrToLram(iop_base,
8857 				q_addr + ASC_SCSIQ_CDB_BEG,
8858 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8859 
8860 	DvcPutScsiQ(iop_base,
8861 		    q_addr + ASC_SCSIQ_CPY_BEG,
8862 		    (uchar *)&scsiq->q1.cntl,
8863 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8864 	AscWriteLramWord(iop_base,
8865 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8866 			 (ushort)(((ushort)scsiq->q1.
8867 				   q_no << 8) | (ushort)QS_READY));
8868 	return 1;
8869 }
8870 
8871 static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8872 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8873 {
8874 	int sta;
8875 	int i;
8876 	ASC_SG_HEAD *sg_head;
8877 	ASC_SG_LIST_Q scsi_sg_q;
8878 	ASC_DCNT saved_data_addr;
8879 	ASC_DCNT saved_data_cnt;
8880 	PortAddr iop_base;
8881 	ushort sg_list_dwords;
8882 	ushort sg_index;
8883 	ushort sg_entry_cnt;
8884 	ushort q_addr;
8885 	uchar next_qp;
8886 
8887 	iop_base = asc_dvc->iop_base;
8888 	sg_head = scsiq->sg_head;
8889 	saved_data_addr = scsiq->q1.data_addr;
8890 	saved_data_cnt = scsiq->q1.data_cnt;
8891 	scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8892 	scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8893 #if CC_VERY_LONG_SG_LIST
8894 	/*
8895 	 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8896 	 * then not all SG elements will fit in the allocated queues.
8897 	 * The rest of the SG elements will be copied when the RISC
8898 	 * completes the SG elements that fit and halts.
8899 	 */
8900 	if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8901 		/*
8902 		 * Set sg_entry_cnt to be the number of SG elements that
8903 		 * will fit in the allocated SG queues. It is minus 1, because
8904 		 * the first SG element is handled above. ASC_MAX_SG_LIST is
8905 		 * already inflated by 1 to account for this. For example it
8906 		 * may be 50 which is 1 + 7 queues * 7 SG elements.
8907 		 */
8908 		sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8909 
8910 		/*
8911 		 * Keep track of remaining number of SG elements that will
8912 		 * need to be handled from a_isr.c.
8913 		 */
8914 		scsiq->remain_sg_entry_cnt =
8915 		    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8916 	} else {
8917 #endif /* CC_VERY_LONG_SG_LIST */
8918 		/*
8919 		 * Set sg_entry_cnt to be the number of SG elements that
8920 		 * will fit in the allocated SG queues. It is minus 1, because
8921 		 * the first SG element is handled above.
8922 		 */
8923 		sg_entry_cnt = sg_head->entry_cnt - 1;
8924 #if CC_VERY_LONG_SG_LIST
8925 	}
8926 #endif /* CC_VERY_LONG_SG_LIST */
8927 	if (sg_entry_cnt != 0) {
8928 		scsiq->q1.cntl |= QC_SG_HEAD;
8929 		q_addr = ASC_QNO_TO_QADDR(q_no);
8930 		sg_index = 1;
8931 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8932 		scsi_sg_q.sg_head_qp = q_no;
8933 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8934 		for (i = 0; i < sg_head->queue_cnt; i++) {
8935 			scsi_sg_q.seq_no = i + 1;
8936 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8937 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8938 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8939 				if (i == 0) {
8940 					scsi_sg_q.sg_list_cnt =
8941 					    ASC_SG_LIST_PER_Q;
8942 					scsi_sg_q.sg_cur_list_cnt =
8943 					    ASC_SG_LIST_PER_Q;
8944 				} else {
8945 					scsi_sg_q.sg_list_cnt =
8946 					    ASC_SG_LIST_PER_Q - 1;
8947 					scsi_sg_q.sg_cur_list_cnt =
8948 					    ASC_SG_LIST_PER_Q - 1;
8949 				}
8950 			} else {
8951 #if CC_VERY_LONG_SG_LIST
8952 				/*
8953 				 * This is the last SG queue in the list of
8954 				 * allocated SG queues. If there are more
8955 				 * SG elements than will fit in the allocated
8956 				 * queues, then set the QCSG_SG_XFER_MORE flag.
8957 				 */
8958 				if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8959 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8960 				} else {
8961 #endif /* CC_VERY_LONG_SG_LIST */
8962 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8963 #if CC_VERY_LONG_SG_LIST
8964 				}
8965 #endif /* CC_VERY_LONG_SG_LIST */
8966 				sg_list_dwords = sg_entry_cnt << 1;
8967 				if (i == 0) {
8968 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8969 					scsi_sg_q.sg_cur_list_cnt =
8970 					    sg_entry_cnt;
8971 				} else {
8972 					scsi_sg_q.sg_list_cnt =
8973 					    sg_entry_cnt - 1;
8974 					scsi_sg_q.sg_cur_list_cnt =
8975 					    sg_entry_cnt - 1;
8976 				}
8977 				sg_entry_cnt = 0;
8978 			}
8979 			next_qp = AscReadLramByte(iop_base,
8980 						  (ushort)(q_addr +
8981 							   ASC_SCSIQ_B_FWD));
8982 			scsi_sg_q.q_no = next_qp;
8983 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8984 			AscMemWordCopyPtrToLram(iop_base,
8985 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8986 						(uchar *)&scsi_sg_q,
8987 						sizeof(ASC_SG_LIST_Q) >> 1);
8988 			AscMemDWordCopyPtrToLram(iop_base,
8989 						 q_addr + ASC_SGQ_LIST_BEG,
8990 						 (uchar *)&sg_head->
8991 						 sg_list[sg_index],
8992 						 sg_list_dwords);
8993 			sg_index += ASC_SG_LIST_PER_Q;
8994 			scsiq->next_sg_index = sg_index;
8995 		}
8996 	} else {
8997 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8998 	}
8999 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
9000 	scsiq->q1.data_addr = saved_data_addr;
9001 	scsiq->q1.data_cnt = saved_data_cnt;
9002 	return (sta);
9003 }
9004 
9005 static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)9006 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
9007 {
9008 	PortAddr iop_base;
9009 	uchar free_q_head;
9010 	uchar next_qp;
9011 	uchar tid_no;
9012 	uchar target_ix;
9013 	int sta;
9014 
9015 	iop_base = asc_dvc->iop_base;
9016 	target_ix = scsiq->q2.target_ix;
9017 	tid_no = ASC_TIX_TO_TID(target_ix);
9018 	sta = 0;
9019 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
9020 	if (n_q_required > 1) {
9021 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
9022 						    (uchar)n_q_required);
9023 		if (next_qp != ASC_QLINK_END) {
9024 			asc_dvc->last_q_shortage = 0;
9025 			scsiq->sg_head->queue_cnt = n_q_required - 1;
9026 			scsiq->q1.q_no = free_q_head;
9027 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9028 						     free_q_head);
9029 		}
9030 	} else if (n_q_required == 1) {
9031 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9032 		if (next_qp != ASC_QLINK_END) {
9033 			scsiq->q1.q_no = free_q_head;
9034 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9035 		}
9036 	}
9037 	if (sta == 1) {
9038 		AscPutVarFreeQHead(iop_base, next_qp);
9039 		asc_dvc->cur_total_qng += n_q_required;
9040 		asc_dvc->cur_dvc_qng[tid_no]++;
9041 	}
9042 	return sta;
9043 }
9044 
9045 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
9046 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9047 	INQUIRY,
9048 	REQUEST_SENSE,
9049 	READ_CAPACITY,
9050 	READ_TOC,
9051 	MODE_SELECT,
9052 	MODE_SENSE,
9053 	MODE_SELECT_10,
9054 	MODE_SENSE_10,
9055 	0xFF,
9056 	0xFF,
9057 	0xFF,
9058 	0xFF,
9059 	0xFF,
9060 	0xFF,
9061 	0xFF,
9062 	0xFF
9063 };
9064 
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)9065 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9066 {
9067 	PortAddr iop_base;
9068 	int sta;
9069 	int n_q_required;
9070 	int disable_syn_offset_one_fix;
9071 	int i;
9072 	ASC_PADDR addr;
9073 	ushort sg_entry_cnt = 0;
9074 	ushort sg_entry_cnt_minus_one = 0;
9075 	uchar target_ix;
9076 	uchar tid_no;
9077 	uchar sdtr_data;
9078 	uchar extra_bytes;
9079 	uchar scsi_cmd;
9080 	uchar disable_cmd;
9081 	ASC_SG_HEAD *sg_head;
9082 	ASC_DCNT data_cnt;
9083 
9084 	iop_base = asc_dvc->iop_base;
9085 	sg_head = scsiq->sg_head;
9086 	if (asc_dvc->err_code != 0)
9087 		return (ERR);
9088 	scsiq->q1.q_no = 0;
9089 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9090 		scsiq->q1.extra_bytes = 0;
9091 	}
9092 	sta = 0;
9093 	target_ix = scsiq->q2.target_ix;
9094 	tid_no = ASC_TIX_TO_TID(target_ix);
9095 	n_q_required = 1;
9096 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9097 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9098 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9099 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9100 			AscMsgOutSDTR(asc_dvc,
9101 				      asc_dvc->
9102 				      sdtr_period_tbl[(sdtr_data >> 4) &
9103 						      (uchar)(asc_dvc->
9104 							      max_sdtr_index -
9105 							      1)],
9106 				      (uchar)(sdtr_data & (uchar)
9107 					      ASC_SYN_MAX_OFFSET));
9108 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9109 		}
9110 	}
9111 	if (asc_dvc->in_critical_cnt != 0) {
9112 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9113 		return (ERR);
9114 	}
9115 	asc_dvc->in_critical_cnt++;
9116 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9117 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9118 			asc_dvc->in_critical_cnt--;
9119 			return (ERR);
9120 		}
9121 #if !CC_VERY_LONG_SG_LIST
9122 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9123 			asc_dvc->in_critical_cnt--;
9124 			return (ERR);
9125 		}
9126 #endif /* !CC_VERY_LONG_SG_LIST */
9127 		if (sg_entry_cnt == 1) {
9128 			scsiq->q1.data_addr =
9129 			    (ADV_PADDR)sg_head->sg_list[0].addr;
9130 			scsiq->q1.data_cnt =
9131 			    (ADV_DCNT)sg_head->sg_list[0].bytes;
9132 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9133 		}
9134 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9135 	}
9136 	scsi_cmd = scsiq->cdbptr[0];
9137 	disable_syn_offset_one_fix = FALSE;
9138 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9139 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9140 		if (scsiq->q1.cntl & QC_SG_HEAD) {
9141 			data_cnt = 0;
9142 			for (i = 0; i < sg_entry_cnt; i++) {
9143 				data_cnt +=
9144 				    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9145 							  bytes);
9146 			}
9147 		} else {
9148 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9149 		}
9150 		if (data_cnt != 0UL) {
9151 			if (data_cnt < 512UL) {
9152 				disable_syn_offset_one_fix = TRUE;
9153 			} else {
9154 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9155 				     i++) {
9156 					disable_cmd =
9157 					    _syn_offset_one_disable_cmd[i];
9158 					if (disable_cmd == 0xFF) {
9159 						break;
9160 					}
9161 					if (scsi_cmd == disable_cmd) {
9162 						disable_syn_offset_one_fix =
9163 						    TRUE;
9164 						break;
9165 					}
9166 				}
9167 			}
9168 		}
9169 	}
9170 	if (disable_syn_offset_one_fix) {
9171 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9172 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9173 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
9174 	} else {
9175 		scsiq->q2.tag_code &= 0x27;
9176 	}
9177 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9178 		if (asc_dvc->bug_fix_cntl) {
9179 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9180 				if ((scsi_cmd == READ_6) ||
9181 				    (scsi_cmd == READ_10)) {
9182 					addr =
9183 					    (ADV_PADDR)le32_to_cpu(sg_head->
9184 								   sg_list
9185 								   [sg_entry_cnt_minus_one].
9186 								   addr) +
9187 					    (ADV_DCNT)le32_to_cpu(sg_head->
9188 								  sg_list
9189 								  [sg_entry_cnt_minus_one].
9190 								  bytes);
9191 					extra_bytes =
9192 					    (uchar)((ushort)addr & 0x0003);
9193 					if ((extra_bytes != 0)
9194 					    &&
9195 					    ((scsiq->q2.
9196 					      tag_code &
9197 					      ASC_TAG_FLAG_EXTRA_BYTES)
9198 					     == 0)) {
9199 						scsiq->q2.tag_code |=
9200 						    ASC_TAG_FLAG_EXTRA_BYTES;
9201 						scsiq->q1.extra_bytes =
9202 						    extra_bytes;
9203 						data_cnt =
9204 						    le32_to_cpu(sg_head->
9205 								sg_list
9206 								[sg_entry_cnt_minus_one].
9207 								bytes);
9208 						data_cnt -=
9209 						    (ASC_DCNT) extra_bytes;
9210 						sg_head->
9211 						    sg_list
9212 						    [sg_entry_cnt_minus_one].
9213 						    bytes =
9214 						    cpu_to_le32(data_cnt);
9215 					}
9216 				}
9217 			}
9218 		}
9219 		sg_head->entry_to_copy = sg_head->entry_cnt;
9220 #if CC_VERY_LONG_SG_LIST
9221 		/*
9222 		 * Set the sg_entry_cnt to the maximum possible. The rest of
9223 		 * the SG elements will be copied when the RISC completes the
9224 		 * SG elements that fit and halts.
9225 		 */
9226 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9227 			sg_entry_cnt = ASC_MAX_SG_LIST;
9228 		}
9229 #endif /* CC_VERY_LONG_SG_LIST */
9230 		n_q_required = AscSgListToQueue(sg_entry_cnt);
9231 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9232 		     (uint) n_q_required)
9233 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9234 			if ((sta =
9235 			     AscSendScsiQueue(asc_dvc, scsiq,
9236 					      n_q_required)) == 1) {
9237 				asc_dvc->in_critical_cnt--;
9238 				return (sta);
9239 			}
9240 		}
9241 	} else {
9242 		if (asc_dvc->bug_fix_cntl) {
9243 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9244 				if ((scsi_cmd == READ_6) ||
9245 				    (scsi_cmd == READ_10)) {
9246 					addr =
9247 					    le32_to_cpu(scsiq->q1.data_addr) +
9248 					    le32_to_cpu(scsiq->q1.data_cnt);
9249 					extra_bytes =
9250 					    (uchar)((ushort)addr & 0x0003);
9251 					if ((extra_bytes != 0)
9252 					    &&
9253 					    ((scsiq->q2.
9254 					      tag_code &
9255 					      ASC_TAG_FLAG_EXTRA_BYTES)
9256 					     == 0)) {
9257 						data_cnt =
9258 						    le32_to_cpu(scsiq->q1.
9259 								data_cnt);
9260 						if (((ushort)data_cnt & 0x01FF)
9261 						    == 0) {
9262 							scsiq->q2.tag_code |=
9263 							    ASC_TAG_FLAG_EXTRA_BYTES;
9264 							data_cnt -= (ASC_DCNT)
9265 							    extra_bytes;
9266 							scsiq->q1.data_cnt =
9267 							    cpu_to_le32
9268 							    (data_cnt);
9269 							scsiq->q1.extra_bytes =
9270 							    extra_bytes;
9271 						}
9272 					}
9273 				}
9274 			}
9275 		}
9276 		n_q_required = 1;
9277 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9278 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9279 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9280 						    n_q_required)) == 1) {
9281 				asc_dvc->in_critical_cnt--;
9282 				return (sta);
9283 			}
9284 		}
9285 	}
9286 	asc_dvc->in_critical_cnt--;
9287 	return (sta);
9288 }
9289 
9290 /*
9291  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9292  *
9293  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9294  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
9295  *   RISC to notify it a new command is ready to be executed.
9296  *
9297  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9298  * set to SCSI_MAX_RETRY.
9299  *
9300  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9301  * for DMA addresses or math operations are byte swapped to little-endian
9302  * order.
9303  *
9304  * Return:
9305  *      ADV_SUCCESS(1) - The request was successfully queued.
9306  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
9307  *                       request completes.
9308  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
9309  *                       host IC error.
9310  */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,ADV_SCSI_REQ_Q * scsiq)9311 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9312 {
9313 	AdvPortAddr iop_base;
9314 	ADV_PADDR req_paddr;
9315 	ADV_CARR_T *new_carrp;
9316 
9317 	/*
9318 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9319 	 */
9320 	if (scsiq->target_id > ADV_MAX_TID) {
9321 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9322 		scsiq->done_status = QD_WITH_ERROR;
9323 		return ADV_ERROR;
9324 	}
9325 
9326 	iop_base = asc_dvc->iop_base;
9327 
9328 	/*
9329 	 * Allocate a carrier ensuring at least one carrier always
9330 	 * remains on the freelist and initialize fields.
9331 	 */
9332 	if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9333 		return ADV_BUSY;
9334 	}
9335 	asc_dvc->carr_freelist = (ADV_CARR_T *)
9336 	    ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9337 	asc_dvc->carr_pending_cnt++;
9338 
9339 	/*
9340 	 * Set the carrier to be a stopper by setting 'next_vpa'
9341 	 * to the stopper value. The current stopper will be changed
9342 	 * below to point to the new stopper.
9343 	 */
9344 	new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9345 
9346 	/*
9347 	 * Clear the ADV_SCSI_REQ_Q done flag.
9348 	 */
9349 	scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9350 
9351 	req_paddr = virt_to_bus(scsiq);
9352 	BUG_ON(req_paddr & 31);
9353 	/* Wait for assertion before making little-endian */
9354 	req_paddr = cpu_to_le32(req_paddr);
9355 
9356 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9357 	scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9358 	scsiq->scsiq_rptr = req_paddr;
9359 
9360 	scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9361 	/*
9362 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9363 	 * order during initialization.
9364 	 */
9365 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9366 
9367 	/*
9368 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9369 	 * the microcode. The newly allocated stopper will become the new
9370 	 * stopper.
9371 	 */
9372 	asc_dvc->icq_sp->areq_vpa = req_paddr;
9373 
9374 	/*
9375 	 * Set the 'next_vpa' pointer for the old stopper to be the
9376 	 * physical address of the new stopper. The RISC can only
9377 	 * follow physical addresses.
9378 	 */
9379 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9380 
9381 	/*
9382 	 * Set the host adapter stopper pointer to point to the new carrier.
9383 	 */
9384 	asc_dvc->icq_sp = new_carrp;
9385 
9386 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9387 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9388 		/*
9389 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9390 		 */
9391 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9392 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9393 			/*
9394 			 * Clear the tickle value. In the ASC-3550 the RISC flag
9395 			 * command 'clr_tickle_a' does not work unless the host
9396 			 * value is cleared.
9397 			 */
9398 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9399 					     ADV_TICKLE_NOP);
9400 		}
9401 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9402 		/*
9403 		 * Notify the RISC a carrier is ready by writing the physical
9404 		 * address of the new carrier stopper to the COMMA register.
9405 		 */
9406 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9407 				      le32_to_cpu(new_carrp->carr_pa));
9408 	}
9409 
9410 	return ADV_SUCCESS;
9411 }
9412 
9413 /*
9414  * Execute a single 'Scsi_Cmnd'.
9415  */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)9416 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9417 {
9418 	int ret, err_code;
9419 	struct asc_board *boardp = shost_priv(scp->device->host);
9420 
9421 	ASC_DBG(1, "scp 0x%p\n", scp);
9422 
9423 	if (ASC_NARROW_BOARD(boardp)) {
9424 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9425 		struct asc_scsi_q asc_scsi_q;
9426 
9427 		/* asc_build_req() can not return ASC_BUSY. */
9428 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
9429 		if (ret == ASC_ERROR) {
9430 			ASC_STATS(scp->device->host, build_error);
9431 			return ASC_ERROR;
9432 		}
9433 
9434 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9435 		kfree(asc_scsi_q.sg_head);
9436 		err_code = asc_dvc->err_code;
9437 	} else {
9438 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9439 		ADV_SCSI_REQ_Q *adv_scsiqp;
9440 
9441 		switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9442 		case ASC_NOERROR:
9443 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9444 			break;
9445 		case ASC_BUSY:
9446 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9447 			/*
9448 			 * The asc_stats fields 'adv_build_noreq' and
9449 			 * 'adv_build_nosg' count wide board busy conditions.
9450 			 * They are updated in adv_build_req and
9451 			 * adv_get_sglist, respectively.
9452 			 */
9453 			return ASC_BUSY;
9454 		case ASC_ERROR:
9455 		default:
9456 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9457 			ASC_STATS(scp->device->host, build_error);
9458 			return ASC_ERROR;
9459 		}
9460 
9461 		ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9462 		err_code = adv_dvc->err_code;
9463 	}
9464 
9465 	switch (ret) {
9466 	case ASC_NOERROR:
9467 		ASC_STATS(scp->device->host, exe_noerror);
9468 		/*
9469 		 * Increment monotonically increasing per device
9470 		 * successful request counter. Wrapping doesn't matter.
9471 		 */
9472 		boardp->reqcnt[scp->device->id]++;
9473 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9474 		break;
9475 	case ASC_BUSY:
9476 		ASC_STATS(scp->device->host, exe_busy);
9477 		break;
9478 	case ASC_ERROR:
9479 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9480 			"err_code 0x%x\n", err_code);
9481 		ASC_STATS(scp->device->host, exe_error);
9482 		scp->result = HOST_BYTE(DID_ERROR);
9483 		break;
9484 	default:
9485 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9486 			"err_code 0x%x\n", err_code);
9487 		ASC_STATS(scp->device->host, exe_unknown);
9488 		scp->result = HOST_BYTE(DID_ERROR);
9489 		break;
9490 	}
9491 
9492 	ASC_DBG(1, "end\n");
9493 	return ret;
9494 }
9495 
9496 /*
9497  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9498  *
9499  * This function always returns 0. Command return status is saved
9500  * in the 'scp' result field.
9501  */
9502 static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))9503 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9504 {
9505 	struct Scsi_Host *shost = scp->device->host;
9506 	int asc_res, result = 0;
9507 
9508 	ASC_STATS(shost, queuecommand);
9509 	scp->scsi_done = done;
9510 
9511 	asc_res = asc_execute_scsi_cmnd(scp);
9512 
9513 	switch (asc_res) {
9514 	case ASC_NOERROR:
9515 		break;
9516 	case ASC_BUSY:
9517 		result = SCSI_MLQUEUE_HOST_BUSY;
9518 		break;
9519 	case ASC_ERROR:
9520 	default:
9521 		asc_scsi_done(scp);
9522 		break;
9523 	}
9524 
9525 	return result;
9526 }
9527 
DEF_SCSI_QCMD(advansys_queuecommand)9528 static DEF_SCSI_QCMD(advansys_queuecommand)
9529 
9530 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9531 {
9532 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9533 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9534 	return inpw(eisa_cfg_iop);
9535 }
9536 
9537 /*
9538  * Return the BIOS address of the adapter at the specified
9539  * I/O port and with the specified bus type.
9540  */
9541 static unsigned short __devinit
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)9542 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9543 {
9544 	unsigned short cfg_lsw;
9545 	unsigned short bios_addr;
9546 
9547 	/*
9548 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
9549 	 * of this the driver can not determine where a PCI BIOS is
9550 	 * loaded and executes.
9551 	 */
9552 	if (bus_type & ASC_IS_PCI)
9553 		return 0;
9554 
9555 	if ((bus_type & ASC_IS_EISA) != 0) {
9556 		cfg_lsw = AscGetEisaChipCfg(iop_base);
9557 		cfg_lsw &= 0x000F;
9558 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9559 		return bios_addr;
9560 	}
9561 
9562 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9563 
9564 	/*
9565 	 *  ISA PnP uses the top bit as the 32K BIOS flag
9566 	 */
9567 	if (bus_type == ASC_IS_ISAPNP)
9568 		cfg_lsw &= 0x7FFF;
9569 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9570 	return bios_addr;
9571 }
9572 
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)9573 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9574 {
9575 	ushort cfg_lsw;
9576 
9577 	if (AscGetChipScsiID(iop_base) == new_host_id) {
9578 		return (new_host_id);
9579 	}
9580 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9581 	cfg_lsw &= 0xF8FF;
9582 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9583 	AscSetChipCfgLsw(iop_base, cfg_lsw);
9584 	return (AscGetChipScsiID(iop_base));
9585 }
9586 
AscGetChipScsiCtrl(PortAddr iop_base)9587 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9588 {
9589 	unsigned char sc;
9590 
9591 	AscSetBank(iop_base, 1);
9592 	sc = inp(iop_base + IOP_REG_SC);
9593 	AscSetBank(iop_base, 0);
9594 	return sc;
9595 }
9596 
9597 static unsigned char __devinit
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)9598 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9599 {
9600 	if (bus_type & ASC_IS_EISA) {
9601 		PortAddr eisa_iop;
9602 		unsigned char revision;
9603 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9604 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
9605 		revision = inp(eisa_iop);
9606 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9607 	}
9608 	return AscGetChipVerNo(iop_base);
9609 }
9610 
9611 #ifdef CONFIG_ISA
AscEnableIsaDma(uchar dma_channel)9612 static void __devinit AscEnableIsaDma(uchar dma_channel)
9613 {
9614 	if (dma_channel < 4) {
9615 		outp(0x000B, (ushort)(0xC0 | dma_channel));
9616 		outp(0x000A, dma_channel);
9617 	} else if (dma_channel < 8) {
9618 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9619 		outp(0x00D4, (ushort)(dma_channel - 4));
9620 	}
9621 }
9622 #endif /* CONFIG_ISA */
9623 
AscStopQueueExe(PortAddr iop_base)9624 static int AscStopQueueExe(PortAddr iop_base)
9625 {
9626 	int count = 0;
9627 
9628 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9629 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9630 				 ASC_STOP_REQ_RISC_STOP);
9631 		do {
9632 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9633 			    ASC_STOP_ACK_RISC_STOP) {
9634 				return (1);
9635 			}
9636 			mdelay(100);
9637 		} while (count++ < 20);
9638 	}
9639 	return (0);
9640 }
9641 
AscGetMaxDmaCount(ushort bus_type)9642 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9643 {
9644 	if (bus_type & ASC_IS_ISA)
9645 		return ASC_MAX_ISA_DMA_COUNT;
9646 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9647 		return ASC_MAX_VL_DMA_COUNT;
9648 	return ASC_MAX_PCI_DMA_COUNT;
9649 }
9650 
9651 #ifdef CONFIG_ISA
AscGetIsaDmaChannel(PortAddr iop_base)9652 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9653 {
9654 	ushort channel;
9655 
9656 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9657 	if (channel == 0x03)
9658 		return (0);
9659 	else if (channel == 0x00)
9660 		return (7);
9661 	return (channel + 4);
9662 }
9663 
AscSetIsaDmaChannel(PortAddr iop_base,ushort dma_channel)9664 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9665 {
9666 	ushort cfg_lsw;
9667 	uchar value;
9668 
9669 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
9670 		if (dma_channel == 7)
9671 			value = 0x00;
9672 		else
9673 			value = dma_channel - 4;
9674 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9675 		cfg_lsw |= value;
9676 		AscSetChipCfgLsw(iop_base, cfg_lsw);
9677 		return (AscGetIsaDmaChannel(iop_base));
9678 	}
9679 	return 0;
9680 }
9681 
AscGetIsaDmaSpeed(PortAddr iop_base)9682 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9683 {
9684 	uchar speed_value;
9685 
9686 	AscSetBank(iop_base, 1);
9687 	speed_value = AscReadChipDmaSpeed(iop_base);
9688 	speed_value &= 0x07;
9689 	AscSetBank(iop_base, 0);
9690 	return speed_value;
9691 }
9692 
AscSetIsaDmaSpeed(PortAddr iop_base,uchar speed_value)9693 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9694 {
9695 	speed_value &= 0x07;
9696 	AscSetBank(iop_base, 1);
9697 	AscWriteChipDmaSpeed(iop_base, speed_value);
9698 	AscSetBank(iop_base, 0);
9699 	return AscGetIsaDmaSpeed(iop_base);
9700 }
9701 #endif /* CONFIG_ISA */
9702 
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)9703 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9704 {
9705 	int i;
9706 	PortAddr iop_base;
9707 	ushort warn_code;
9708 	uchar chip_version;
9709 
9710 	iop_base = asc_dvc->iop_base;
9711 	warn_code = 0;
9712 	asc_dvc->err_code = 0;
9713 	if ((asc_dvc->bus_type &
9714 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9715 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9716 	}
9717 	AscSetChipControl(iop_base, CC_HALT);
9718 	AscSetChipStatus(iop_base, 0);
9719 	asc_dvc->bug_fix_cntl = 0;
9720 	asc_dvc->pci_fix_asyn_xfer = 0;
9721 	asc_dvc->pci_fix_asyn_xfer_always = 0;
9722 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
9723 	asc_dvc->sdtr_done = 0;
9724 	asc_dvc->cur_total_qng = 0;
9725 	asc_dvc->is_in_int = 0;
9726 	asc_dvc->in_critical_cnt = 0;
9727 	asc_dvc->last_q_shortage = 0;
9728 	asc_dvc->use_tagged_qng = 0;
9729 	asc_dvc->no_scam = 0;
9730 	asc_dvc->unit_not_ready = 0;
9731 	asc_dvc->queue_full_or_busy = 0;
9732 	asc_dvc->redo_scam = 0;
9733 	asc_dvc->res2 = 0;
9734 	asc_dvc->min_sdtr_index = 0;
9735 	asc_dvc->cfg->can_tagged_qng = 0;
9736 	asc_dvc->cfg->cmd_qng_enabled = 0;
9737 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9738 	asc_dvc->init_sdtr = 0;
9739 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9740 	asc_dvc->scsi_reset_wait = 3;
9741 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9742 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9743 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9744 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9745 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9746 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9747 	asc_dvc->cfg->chip_version = chip_version;
9748 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9749 	asc_dvc->max_sdtr_index = 7;
9750 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9751 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9752 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9753 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9754 		asc_dvc->max_sdtr_index = 15;
9755 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9756 			AscSetExtraControl(iop_base,
9757 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9758 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9759 			AscSetExtraControl(iop_base,
9760 					   (SEC_ACTIVE_NEGATE |
9761 					    SEC_ENABLE_FILTER));
9762 		}
9763 	}
9764 	if (asc_dvc->bus_type == ASC_IS_PCI) {
9765 		AscSetExtraControl(iop_base,
9766 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9767 	}
9768 
9769 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9770 #ifdef CONFIG_ISA
9771 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9772 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9773 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9774 			asc_dvc->bus_type = ASC_IS_ISAPNP;
9775 		}
9776 		asc_dvc->cfg->isa_dma_channel =
9777 		    (uchar)AscGetIsaDmaChannel(iop_base);
9778 	}
9779 #endif /* CONFIG_ISA */
9780 	for (i = 0; i <= ASC_MAX_TID; i++) {
9781 		asc_dvc->cur_dvc_qng[i] = 0;
9782 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9783 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9784 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9785 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9786 	}
9787 	return warn_code;
9788 }
9789 
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)9790 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9791 {
9792 	int retry;
9793 
9794 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9795 		unsigned char read_back;
9796 		AscSetChipEEPCmd(iop_base, cmd_reg);
9797 		mdelay(1);
9798 		read_back = AscGetChipEEPCmd(iop_base);
9799 		if (read_back == cmd_reg)
9800 			return 1;
9801 	}
9802 	return 0;
9803 }
9804 
AscWaitEEPRead(void)9805 static void __devinit AscWaitEEPRead(void)
9806 {
9807 	mdelay(1);
9808 }
9809 
AscReadEEPWord(PortAddr iop_base,uchar addr)9810 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9811 {
9812 	ushort read_wval;
9813 	uchar cmd_reg;
9814 
9815 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9816 	AscWaitEEPRead();
9817 	cmd_reg = addr | ASC_EEP_CMD_READ;
9818 	AscWriteEEPCmdReg(iop_base, cmd_reg);
9819 	AscWaitEEPRead();
9820 	read_wval = AscGetChipEEPData(iop_base);
9821 	AscWaitEEPRead();
9822 	return read_wval;
9823 }
9824 
9825 static ushort __devinit
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9826 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9827 {
9828 	ushort wval;
9829 	ushort sum;
9830 	ushort *wbuf;
9831 	int cfg_beg;
9832 	int cfg_end;
9833 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9834 	int s_addr;
9835 
9836 	wbuf = (ushort *)cfg_buf;
9837 	sum = 0;
9838 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9839 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9840 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9841 		sum += *wbuf;
9842 	}
9843 	if (bus_type & ASC_IS_VL) {
9844 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9845 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9846 	} else {
9847 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9848 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9849 	}
9850 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9851 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9852 		if (s_addr <= uchar_end_in_config) {
9853 			/*
9854 			 * Swap all char fields - must unswap bytes already swapped
9855 			 * by AscReadEEPWord().
9856 			 */
9857 			*wbuf = le16_to_cpu(wval);
9858 		} else {
9859 			/* Don't swap word field at the end - cntl field. */
9860 			*wbuf = wval;
9861 		}
9862 		sum += wval;	/* Checksum treats all EEPROM data as words. */
9863 	}
9864 	/*
9865 	 * Read the checksum word which will be compared against 'sum'
9866 	 * by the caller. Word field already swapped.
9867 	 */
9868 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9869 	return sum;
9870 }
9871 
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)9872 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9873 {
9874 	PortAddr iop_base;
9875 	ushort q_addr;
9876 	ushort saved_word;
9877 	int sta;
9878 
9879 	iop_base = asc_dvc->iop_base;
9880 	sta = 0;
9881 	q_addr = ASC_QNO_TO_QADDR(241);
9882 	saved_word = AscReadLramWord(iop_base, q_addr);
9883 	AscSetChipLramAddr(iop_base, q_addr);
9884 	AscSetChipLramData(iop_base, 0x55AA);
9885 	mdelay(10);
9886 	AscSetChipLramAddr(iop_base, q_addr);
9887 	if (AscGetChipLramData(iop_base) == 0x55AA) {
9888 		sta = 1;
9889 		AscWriteLramWord(iop_base, q_addr, saved_word);
9890 	}
9891 	return (sta);
9892 }
9893 
AscWaitEEPWrite(void)9894 static void __devinit AscWaitEEPWrite(void)
9895 {
9896 	mdelay(20);
9897 }
9898 
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)9899 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9900 {
9901 	ushort read_back;
9902 	int retry;
9903 
9904 	retry = 0;
9905 	while (TRUE) {
9906 		AscSetChipEEPData(iop_base, data_reg);
9907 		mdelay(1);
9908 		read_back = AscGetChipEEPData(iop_base);
9909 		if (read_back == data_reg) {
9910 			return (1);
9911 		}
9912 		if (retry++ > ASC_EEP_MAX_RETRY) {
9913 			return (0);
9914 		}
9915 	}
9916 }
9917 
9918 static ushort __devinit
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)9919 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9920 {
9921 	ushort read_wval;
9922 
9923 	read_wval = AscReadEEPWord(iop_base, addr);
9924 	if (read_wval != word_val) {
9925 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9926 		AscWaitEEPRead();
9927 		AscWriteEEPDataReg(iop_base, word_val);
9928 		AscWaitEEPRead();
9929 		AscWriteEEPCmdReg(iop_base,
9930 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9931 		AscWaitEEPWrite();
9932 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9933 		AscWaitEEPRead();
9934 		return (AscReadEEPWord(iop_base, addr));
9935 	}
9936 	return (read_wval);
9937 }
9938 
9939 static int __devinit
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9940 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9941 {
9942 	int n_error;
9943 	ushort *wbuf;
9944 	ushort word;
9945 	ushort sum;
9946 	int s_addr;
9947 	int cfg_beg;
9948 	int cfg_end;
9949 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9950 
9951 	wbuf = (ushort *)cfg_buf;
9952 	n_error = 0;
9953 	sum = 0;
9954 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9955 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9956 		sum += *wbuf;
9957 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9958 			n_error++;
9959 		}
9960 	}
9961 	if (bus_type & ASC_IS_VL) {
9962 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9963 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9964 	} else {
9965 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9966 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9967 	}
9968 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9969 		if (s_addr <= uchar_end_in_config) {
9970 			/*
9971 			 * This is a char field. Swap char fields before they are
9972 			 * swapped again by AscWriteEEPWord().
9973 			 */
9974 			word = cpu_to_le16(*wbuf);
9975 			if (word !=
9976 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9977 				n_error++;
9978 			}
9979 		} else {
9980 			/* Don't swap word field at the end - cntl field. */
9981 			if (*wbuf !=
9982 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9983 				n_error++;
9984 			}
9985 		}
9986 		sum += *wbuf;	/* Checksum calculated from word values. */
9987 	}
9988 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9989 	*wbuf = sum;
9990 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9991 		n_error++;
9992 	}
9993 
9994 	/* Read EEPROM back again. */
9995 	wbuf = (ushort *)cfg_buf;
9996 	/*
9997 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9998 	 */
9999 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
10000 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
10001 			n_error++;
10002 		}
10003 	}
10004 	if (bus_type & ASC_IS_VL) {
10005 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
10006 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
10007 	} else {
10008 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
10009 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
10010 	}
10011 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
10012 		if (s_addr <= uchar_end_in_config) {
10013 			/*
10014 			 * Swap all char fields. Must unswap bytes already swapped
10015 			 * by AscReadEEPWord().
10016 			 */
10017 			word =
10018 			    le16_to_cpu(AscReadEEPWord
10019 					(iop_base, (uchar)s_addr));
10020 		} else {
10021 			/* Don't swap word field at the end - cntl field. */
10022 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
10023 		}
10024 		if (*wbuf != word) {
10025 			n_error++;
10026 		}
10027 	}
10028 	/* Read checksum; Byte swapping not needed. */
10029 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10030 		n_error++;
10031 	}
10032 	return n_error;
10033 }
10034 
10035 static int __devinit
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)10036 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10037 {
10038 	int retry;
10039 	int n_error;
10040 
10041 	retry = 0;
10042 	while (TRUE) {
10043 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10044 						   bus_type)) == 0) {
10045 			break;
10046 		}
10047 		if (++retry > ASC_EEP_MAX_RETRY) {
10048 			break;
10049 		}
10050 	}
10051 	return n_error;
10052 }
10053 
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)10054 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10055 {
10056 	ASCEEP_CONFIG eep_config_buf;
10057 	ASCEEP_CONFIG *eep_config;
10058 	PortAddr iop_base;
10059 	ushort chksum;
10060 	ushort warn_code;
10061 	ushort cfg_msw, cfg_lsw;
10062 	int i;
10063 	int write_eep = 0;
10064 
10065 	iop_base = asc_dvc->iop_base;
10066 	warn_code = 0;
10067 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10068 	AscStopQueueExe(iop_base);
10069 	if ((AscStopChip(iop_base) == FALSE) ||
10070 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
10071 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10072 		AscResetChipAndScsiBus(asc_dvc);
10073 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10074 	}
10075 	if (AscIsChipHalted(iop_base) == FALSE) {
10076 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10077 		return (warn_code);
10078 	}
10079 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10080 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10081 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10082 		return (warn_code);
10083 	}
10084 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10085 	cfg_msw = AscGetChipCfgMsw(iop_base);
10086 	cfg_lsw = AscGetChipCfgLsw(iop_base);
10087 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10088 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10089 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10090 		AscSetChipCfgMsw(iop_base, cfg_msw);
10091 	}
10092 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10093 	ASC_DBG(1, "chksum 0x%x\n", chksum);
10094 	if (chksum == 0) {
10095 		chksum = 0xaa55;
10096 	}
10097 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10098 		warn_code |= ASC_WARN_AUTO_CONFIG;
10099 		if (asc_dvc->cfg->chip_version == 3) {
10100 			if (eep_config->cfg_lsw != cfg_lsw) {
10101 				warn_code |= ASC_WARN_EEPROM_RECOVER;
10102 				eep_config->cfg_lsw =
10103 				    AscGetChipCfgLsw(iop_base);
10104 			}
10105 			if (eep_config->cfg_msw != cfg_msw) {
10106 				warn_code |= ASC_WARN_EEPROM_RECOVER;
10107 				eep_config->cfg_msw =
10108 				    AscGetChipCfgMsw(iop_base);
10109 			}
10110 		}
10111 	}
10112 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10113 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10114 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10115 	if (chksum != eep_config->chksum) {
10116 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10117 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
10118 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10119 			eep_config->init_sdtr = 0xFF;
10120 			eep_config->disc_enable = 0xFF;
10121 			eep_config->start_motor = 0xFF;
10122 			eep_config->use_cmd_qng = 0;
10123 			eep_config->max_total_qng = 0xF0;
10124 			eep_config->max_tag_qng = 0x20;
10125 			eep_config->cntl = 0xBFFF;
10126 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
10127 			eep_config->no_scam = 0;
10128 			eep_config->adapter_info[0] = 0;
10129 			eep_config->adapter_info[1] = 0;
10130 			eep_config->adapter_info[2] = 0;
10131 			eep_config->adapter_info[3] = 0;
10132 			eep_config->adapter_info[4] = 0;
10133 			/* Indicate EEPROM-less board. */
10134 			eep_config->adapter_info[5] = 0xBB;
10135 		} else {
10136 			ASC_PRINT
10137 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10138 			write_eep = 1;
10139 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
10140 		}
10141 	}
10142 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10143 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10144 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10145 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10146 	asc_dvc->start_motor = eep_config->start_motor;
10147 	asc_dvc->dvc_cntl = eep_config->cntl;
10148 	asc_dvc->no_scam = eep_config->no_scam;
10149 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10150 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10151 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10152 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10153 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10154 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10155 	if (!AscTestExternalLram(asc_dvc)) {
10156 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10157 		     ASC_IS_PCI_ULTRA)) {
10158 			eep_config->max_total_qng =
10159 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10160 			eep_config->max_tag_qng =
10161 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10162 		} else {
10163 			eep_config->cfg_msw |= 0x0800;
10164 			cfg_msw |= 0x0800;
10165 			AscSetChipCfgMsw(iop_base, cfg_msw);
10166 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10167 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10168 		}
10169 	} else {
10170 	}
10171 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10172 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10173 	}
10174 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10175 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10176 	}
10177 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10178 		eep_config->max_tag_qng = eep_config->max_total_qng;
10179 	}
10180 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10181 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10182 	}
10183 	asc_dvc->max_total_qng = eep_config->max_total_qng;
10184 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10185 	    eep_config->use_cmd_qng) {
10186 		eep_config->disc_enable = eep_config->use_cmd_qng;
10187 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10188 	}
10189 	ASC_EEP_SET_CHIP_ID(eep_config,
10190 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10191 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10192 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10193 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10194 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10195 	}
10196 
10197 	for (i = 0; i <= ASC_MAX_TID; i++) {
10198 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10199 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10200 		asc_dvc->cfg->sdtr_period_offset[i] =
10201 		    (uchar)(ASC_DEF_SDTR_OFFSET |
10202 			    (asc_dvc->min_sdtr_index << 4));
10203 	}
10204 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10205 	if (write_eep) {
10206 		if ((i = AscSetEEPConfig(iop_base, eep_config,
10207 				     asc_dvc->bus_type)) != 0) {
10208 			ASC_PRINT1
10209 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10210 			     i);
10211 		} else {
10212 			ASC_PRINT
10213 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10214 		}
10215 	}
10216 	return (warn_code);
10217 }
10218 
AscInitGetConfig(struct Scsi_Host * shost)10219 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10220 {
10221 	struct asc_board *board = shost_priv(shost);
10222 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10223 	unsigned short warn_code = 0;
10224 
10225 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10226 	if (asc_dvc->err_code != 0)
10227 		return asc_dvc->err_code;
10228 
10229 	if (AscFindSignature(asc_dvc->iop_base)) {
10230 		warn_code |= AscInitAscDvcVar(asc_dvc);
10231 		warn_code |= AscInitFromEEP(asc_dvc);
10232 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10233 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10234 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10235 	} else {
10236 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10237 	}
10238 
10239 	switch (warn_code) {
10240 	case 0:	/* No error */
10241 		break;
10242 	case ASC_WARN_IO_PORT_ROTATE:
10243 		shost_printk(KERN_WARNING, shost, "I/O port address "
10244 				"modified\n");
10245 		break;
10246 	case ASC_WARN_AUTO_CONFIG:
10247 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10248 				"enabled\n");
10249 		break;
10250 	case ASC_WARN_EEPROM_CHKSUM:
10251 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10252 		break;
10253 	case ASC_WARN_IRQ_MODIFIED:
10254 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10255 		break;
10256 	case ASC_WARN_CMD_QNG_CONFLICT:
10257 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10258 				"disconnects\n");
10259 		break;
10260 	default:
10261 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10262 				warn_code);
10263 		break;
10264 	}
10265 
10266 	if (asc_dvc->err_code != 0)
10267 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10268 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10269 
10270 	return asc_dvc->err_code;
10271 }
10272 
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10273 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10274 {
10275 	struct asc_board *board = shost_priv(shost);
10276 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10277 	PortAddr iop_base = asc_dvc->iop_base;
10278 	unsigned short cfg_msw;
10279 	unsigned short warn_code = 0;
10280 
10281 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10282 	if (asc_dvc->err_code != 0)
10283 		return asc_dvc->err_code;
10284 	if (!AscFindSignature(asc_dvc->iop_base)) {
10285 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10286 		return asc_dvc->err_code;
10287 	}
10288 
10289 	cfg_msw = AscGetChipCfgMsw(iop_base);
10290 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10291 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10292 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10293 		AscSetChipCfgMsw(iop_base, cfg_msw);
10294 	}
10295 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10296 	    asc_dvc->cfg->cmd_qng_enabled) {
10297 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10298 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10299 	}
10300 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10301 		warn_code |= ASC_WARN_AUTO_CONFIG;
10302 	}
10303 #ifdef CONFIG_PCI
10304 	if (asc_dvc->bus_type & ASC_IS_PCI) {
10305 		cfg_msw &= 0xFFC0;
10306 		AscSetChipCfgMsw(iop_base, cfg_msw);
10307 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10308 		} else {
10309 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10310 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10311 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10312 				asc_dvc->bug_fix_cntl |=
10313 				    ASC_BUG_FIX_ASYN_USE_SYN;
10314 			}
10315 		}
10316 	} else
10317 #endif /* CONFIG_PCI */
10318 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10319 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10320 		    == ASC_CHIP_VER_ASYN_BUG) {
10321 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10322 		}
10323 	}
10324 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10325 	    asc_dvc->cfg->chip_scsi_id) {
10326 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10327 	}
10328 #ifdef CONFIG_ISA
10329 	if (asc_dvc->bus_type & ASC_IS_ISA) {
10330 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10331 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10332 	}
10333 #endif /* CONFIG_ISA */
10334 
10335 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10336 
10337 	switch (warn_code) {
10338 	case 0:	/* No error. */
10339 		break;
10340 	case ASC_WARN_IO_PORT_ROTATE:
10341 		shost_printk(KERN_WARNING, shost, "I/O port address "
10342 				"modified\n");
10343 		break;
10344 	case ASC_WARN_AUTO_CONFIG:
10345 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10346 				"enabled\n");
10347 		break;
10348 	case ASC_WARN_EEPROM_CHKSUM:
10349 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10350 		break;
10351 	case ASC_WARN_IRQ_MODIFIED:
10352 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10353 		break;
10354 	case ASC_WARN_CMD_QNG_CONFLICT:
10355 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10356 				"disconnects\n");
10357 		break;
10358 	default:
10359 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10360 				warn_code);
10361 		break;
10362 	}
10363 
10364 	if (asc_dvc->err_code != 0)
10365 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10366 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10367 
10368 	return asc_dvc->err_code;
10369 }
10370 
10371 /*
10372  * EEPROM Configuration.
10373  *
10374  * All drivers should use this structure to set the default EEPROM
10375  * configuration. The BIOS now uses this structure when it is built.
10376  * Additional structure information can be found in a_condor.h where
10377  * the structure is defined.
10378  *
10379  * The *_Field_IsChar structs are needed to correct for endianness.
10380  * These values are read from the board 16 bits at a time directly
10381  * into the structs. Because some fields are char, the values will be
10382  * in the wrong order. The *_Field_IsChar tells when to flip the
10383  * bytes. Data read and written to PCI memory is automatically swapped
10384  * on big-endian platforms so char fields read as words are actually being
10385  * unswapped on big-endian platforms.
10386  */
10387 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10388 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
10389 	0x0000,			/* cfg_msw */
10390 	0xFFFF,			/* disc_enable */
10391 	0xFFFF,			/* wdtr_able */
10392 	0xFFFF,			/* sdtr_able */
10393 	0xFFFF,			/* start_motor */
10394 	0xFFFF,			/* tagqng_able */
10395 	0xFFFF,			/* bios_scan */
10396 	0,			/* scam_tolerant */
10397 	7,			/* adapter_scsi_id */
10398 	0,			/* bios_boot_delay */
10399 	3,			/* scsi_reset_delay */
10400 	0,			/* bios_id_lun */
10401 	0,			/* termination */
10402 	0,			/* reserved1 */
10403 	0xFFE7,			/* bios_ctrl */
10404 	0xFFFF,			/* ultra_able */
10405 	0,			/* reserved2 */
10406 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
10407 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
10408 	0,			/* dvc_cntl */
10409 	0,			/* bug_fix */
10410 	0,			/* serial_number_word1 */
10411 	0,			/* serial_number_word2 */
10412 	0,			/* serial_number_word3 */
10413 	0,			/* check_sum */
10414 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10415 	,			/* oem_name[16] */
10416 	0,			/* dvc_err_code */
10417 	0,			/* adv_err_code */
10418 	0,			/* adv_err_addr */
10419 	0,			/* saved_dvc_err_code */
10420 	0,			/* saved_adv_err_code */
10421 	0,			/* saved_adv_err_addr */
10422 	0			/* num_of_err */
10423 };
10424 
10425 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10426 	0,			/* cfg_lsw */
10427 	0,			/* cfg_msw */
10428 	0,			/* -disc_enable */
10429 	0,			/* wdtr_able */
10430 	0,			/* sdtr_able */
10431 	0,			/* start_motor */
10432 	0,			/* tagqng_able */
10433 	0,			/* bios_scan */
10434 	0,			/* scam_tolerant */
10435 	1,			/* adapter_scsi_id */
10436 	1,			/* bios_boot_delay */
10437 	1,			/* scsi_reset_delay */
10438 	1,			/* bios_id_lun */
10439 	1,			/* termination */
10440 	1,			/* reserved1 */
10441 	0,			/* bios_ctrl */
10442 	0,			/* ultra_able */
10443 	0,			/* reserved2 */
10444 	1,			/* max_host_qng */
10445 	1,			/* max_dvc_qng */
10446 	0,			/* dvc_cntl */
10447 	0,			/* bug_fix */
10448 	0,			/* serial_number_word1 */
10449 	0,			/* serial_number_word2 */
10450 	0,			/* serial_number_word3 */
10451 	0,			/* check_sum */
10452 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10453 	,			/* oem_name[16] */
10454 	0,			/* dvc_err_code */
10455 	0,			/* adv_err_code */
10456 	0,			/* adv_err_addr */
10457 	0,			/* saved_dvc_err_code */
10458 	0,			/* saved_adv_err_code */
10459 	0,			/* saved_adv_err_addr */
10460 	0			/* num_of_err */
10461 };
10462 
10463 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10464 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10465 	0x0000,			/* 01 cfg_msw */
10466 	0xFFFF,			/* 02 disc_enable */
10467 	0xFFFF,			/* 03 wdtr_able */
10468 	0x4444,			/* 04 sdtr_speed1 */
10469 	0xFFFF,			/* 05 start_motor */
10470 	0xFFFF,			/* 06 tagqng_able */
10471 	0xFFFF,			/* 07 bios_scan */
10472 	0,			/* 08 scam_tolerant */
10473 	7,			/* 09 adapter_scsi_id */
10474 	0,			/*    bios_boot_delay */
10475 	3,			/* 10 scsi_reset_delay */
10476 	0,			/*    bios_id_lun */
10477 	0,			/* 11 termination_se */
10478 	0,			/*    termination_lvd */
10479 	0xFFE7,			/* 12 bios_ctrl */
10480 	0x4444,			/* 13 sdtr_speed2 */
10481 	0x4444,			/* 14 sdtr_speed3 */
10482 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10483 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10484 	0,			/* 16 dvc_cntl */
10485 	0x4444,			/* 17 sdtr_speed4 */
10486 	0,			/* 18 serial_number_word1 */
10487 	0,			/* 19 serial_number_word2 */
10488 	0,			/* 20 serial_number_word3 */
10489 	0,			/* 21 check_sum */
10490 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10491 	,			/* 22-29 oem_name[16] */
10492 	0,			/* 30 dvc_err_code */
10493 	0,			/* 31 adv_err_code */
10494 	0,			/* 32 adv_err_addr */
10495 	0,			/* 33 saved_dvc_err_code */
10496 	0,			/* 34 saved_adv_err_code */
10497 	0,			/* 35 saved_adv_err_addr */
10498 	0,			/* 36 reserved */
10499 	0,			/* 37 reserved */
10500 	0,			/* 38 reserved */
10501 	0,			/* 39 reserved */
10502 	0,			/* 40 reserved */
10503 	0,			/* 41 reserved */
10504 	0,			/* 42 reserved */
10505 	0,			/* 43 reserved */
10506 	0,			/* 44 reserved */
10507 	0,			/* 45 reserved */
10508 	0,			/* 46 reserved */
10509 	0,			/* 47 reserved */
10510 	0,			/* 48 reserved */
10511 	0,			/* 49 reserved */
10512 	0,			/* 50 reserved */
10513 	0,			/* 51 reserved */
10514 	0,			/* 52 reserved */
10515 	0,			/* 53 reserved */
10516 	0,			/* 54 reserved */
10517 	0,			/* 55 reserved */
10518 	0,			/* 56 cisptr_lsw */
10519 	0,			/* 57 cisprt_msw */
10520 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10521 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
10522 	0,			/* 60 reserved */
10523 	0,			/* 61 reserved */
10524 	0,			/* 62 reserved */
10525 	0			/* 63 reserved */
10526 };
10527 
10528 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10529 	0,			/* 00 cfg_lsw */
10530 	0,			/* 01 cfg_msw */
10531 	0,			/* 02 disc_enable */
10532 	0,			/* 03 wdtr_able */
10533 	0,			/* 04 sdtr_speed1 */
10534 	0,			/* 05 start_motor */
10535 	0,			/* 06 tagqng_able */
10536 	0,			/* 07 bios_scan */
10537 	0,			/* 08 scam_tolerant */
10538 	1,			/* 09 adapter_scsi_id */
10539 	1,			/*    bios_boot_delay */
10540 	1,			/* 10 scsi_reset_delay */
10541 	1,			/*    bios_id_lun */
10542 	1,			/* 11 termination_se */
10543 	1,			/*    termination_lvd */
10544 	0,			/* 12 bios_ctrl */
10545 	0,			/* 13 sdtr_speed2 */
10546 	0,			/* 14 sdtr_speed3 */
10547 	1,			/* 15 max_host_qng */
10548 	1,			/*    max_dvc_qng */
10549 	0,			/* 16 dvc_cntl */
10550 	0,			/* 17 sdtr_speed4 */
10551 	0,			/* 18 serial_number_word1 */
10552 	0,			/* 19 serial_number_word2 */
10553 	0,			/* 20 serial_number_word3 */
10554 	0,			/* 21 check_sum */
10555 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10556 	,			/* 22-29 oem_name[16] */
10557 	0,			/* 30 dvc_err_code */
10558 	0,			/* 31 adv_err_code */
10559 	0,			/* 32 adv_err_addr */
10560 	0,			/* 33 saved_dvc_err_code */
10561 	0,			/* 34 saved_adv_err_code */
10562 	0,			/* 35 saved_adv_err_addr */
10563 	0,			/* 36 reserved */
10564 	0,			/* 37 reserved */
10565 	0,			/* 38 reserved */
10566 	0,			/* 39 reserved */
10567 	0,			/* 40 reserved */
10568 	0,			/* 41 reserved */
10569 	0,			/* 42 reserved */
10570 	0,			/* 43 reserved */
10571 	0,			/* 44 reserved */
10572 	0,			/* 45 reserved */
10573 	0,			/* 46 reserved */
10574 	0,			/* 47 reserved */
10575 	0,			/* 48 reserved */
10576 	0,			/* 49 reserved */
10577 	0,			/* 50 reserved */
10578 	0,			/* 51 reserved */
10579 	0,			/* 52 reserved */
10580 	0,			/* 53 reserved */
10581 	0,			/* 54 reserved */
10582 	0,			/* 55 reserved */
10583 	0,			/* 56 cisptr_lsw */
10584 	0,			/* 57 cisprt_msw */
10585 	0,			/* 58 subsysvid */
10586 	0,			/* 59 subsysid */
10587 	0,			/* 60 reserved */
10588 	0,			/* 61 reserved */
10589 	0,			/* 62 reserved */
10590 	0			/* 63 reserved */
10591 };
10592 
10593 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10594 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10595 	0x0000,			/* 01 cfg_msw */
10596 	0xFFFF,			/* 02 disc_enable */
10597 	0xFFFF,			/* 03 wdtr_able */
10598 	0x5555,			/* 04 sdtr_speed1 */
10599 	0xFFFF,			/* 05 start_motor */
10600 	0xFFFF,			/* 06 tagqng_able */
10601 	0xFFFF,			/* 07 bios_scan */
10602 	0,			/* 08 scam_tolerant */
10603 	7,			/* 09 adapter_scsi_id */
10604 	0,			/*    bios_boot_delay */
10605 	3,			/* 10 scsi_reset_delay */
10606 	0,			/*    bios_id_lun */
10607 	0,			/* 11 termination_se */
10608 	0,			/*    termination_lvd */
10609 	0xFFE7,			/* 12 bios_ctrl */
10610 	0x5555,			/* 13 sdtr_speed2 */
10611 	0x5555,			/* 14 sdtr_speed3 */
10612 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10613 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10614 	0,			/* 16 dvc_cntl */
10615 	0x5555,			/* 17 sdtr_speed4 */
10616 	0,			/* 18 serial_number_word1 */
10617 	0,			/* 19 serial_number_word2 */
10618 	0,			/* 20 serial_number_word3 */
10619 	0,			/* 21 check_sum */
10620 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10621 	,			/* 22-29 oem_name[16] */
10622 	0,			/* 30 dvc_err_code */
10623 	0,			/* 31 adv_err_code */
10624 	0,			/* 32 adv_err_addr */
10625 	0,			/* 33 saved_dvc_err_code */
10626 	0,			/* 34 saved_adv_err_code */
10627 	0,			/* 35 saved_adv_err_addr */
10628 	0,			/* 36 reserved */
10629 	0,			/* 37 reserved */
10630 	0,			/* 38 reserved */
10631 	0,			/* 39 reserved */
10632 	0,			/* 40 reserved */
10633 	0,			/* 41 reserved */
10634 	0,			/* 42 reserved */
10635 	0,			/* 43 reserved */
10636 	0,			/* 44 reserved */
10637 	0,			/* 45 reserved */
10638 	0,			/* 46 reserved */
10639 	0,			/* 47 reserved */
10640 	0,			/* 48 reserved */
10641 	0,			/* 49 reserved */
10642 	0,			/* 50 reserved */
10643 	0,			/* 51 reserved */
10644 	0,			/* 52 reserved */
10645 	0,			/* 53 reserved */
10646 	0,			/* 54 reserved */
10647 	0,			/* 55 reserved */
10648 	0,			/* 56 cisptr_lsw */
10649 	0,			/* 57 cisprt_msw */
10650 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10651 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
10652 	0,			/* 60 reserved */
10653 	0,			/* 61 reserved */
10654 	0,			/* 62 reserved */
10655 	0			/* 63 reserved */
10656 };
10657 
10658 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10659 	0,			/* 00 cfg_lsw */
10660 	0,			/* 01 cfg_msw */
10661 	0,			/* 02 disc_enable */
10662 	0,			/* 03 wdtr_able */
10663 	0,			/* 04 sdtr_speed1 */
10664 	0,			/* 05 start_motor */
10665 	0,			/* 06 tagqng_able */
10666 	0,			/* 07 bios_scan */
10667 	0,			/* 08 scam_tolerant */
10668 	1,			/* 09 adapter_scsi_id */
10669 	1,			/*    bios_boot_delay */
10670 	1,			/* 10 scsi_reset_delay */
10671 	1,			/*    bios_id_lun */
10672 	1,			/* 11 termination_se */
10673 	1,			/*    termination_lvd */
10674 	0,			/* 12 bios_ctrl */
10675 	0,			/* 13 sdtr_speed2 */
10676 	0,			/* 14 sdtr_speed3 */
10677 	1,			/* 15 max_host_qng */
10678 	1,			/*    max_dvc_qng */
10679 	0,			/* 16 dvc_cntl */
10680 	0,			/* 17 sdtr_speed4 */
10681 	0,			/* 18 serial_number_word1 */
10682 	0,			/* 19 serial_number_word2 */
10683 	0,			/* 20 serial_number_word3 */
10684 	0,			/* 21 check_sum */
10685 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10686 	,			/* 22-29 oem_name[16] */
10687 	0,			/* 30 dvc_err_code */
10688 	0,			/* 31 adv_err_code */
10689 	0,			/* 32 adv_err_addr */
10690 	0,			/* 33 saved_dvc_err_code */
10691 	0,			/* 34 saved_adv_err_code */
10692 	0,			/* 35 saved_adv_err_addr */
10693 	0,			/* 36 reserved */
10694 	0,			/* 37 reserved */
10695 	0,			/* 38 reserved */
10696 	0,			/* 39 reserved */
10697 	0,			/* 40 reserved */
10698 	0,			/* 41 reserved */
10699 	0,			/* 42 reserved */
10700 	0,			/* 43 reserved */
10701 	0,			/* 44 reserved */
10702 	0,			/* 45 reserved */
10703 	0,			/* 46 reserved */
10704 	0,			/* 47 reserved */
10705 	0,			/* 48 reserved */
10706 	0,			/* 49 reserved */
10707 	0,			/* 50 reserved */
10708 	0,			/* 51 reserved */
10709 	0,			/* 52 reserved */
10710 	0,			/* 53 reserved */
10711 	0,			/* 54 reserved */
10712 	0,			/* 55 reserved */
10713 	0,			/* 56 cisptr_lsw */
10714 	0,			/* 57 cisprt_msw */
10715 	0,			/* 58 subsysvid */
10716 	0,			/* 59 subsysid */
10717 	0,			/* 60 reserved */
10718 	0,			/* 61 reserved */
10719 	0,			/* 62 reserved */
10720 	0			/* 63 reserved */
10721 };
10722 
10723 #ifdef CONFIG_PCI
10724 /*
10725  * Wait for EEPROM command to complete
10726  */
AdvWaitEEPCmd(AdvPortAddr iop_base)10727 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10728 {
10729 	int eep_delay_ms;
10730 
10731 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10732 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10733 		    ASC_EEP_CMD_DONE) {
10734 			break;
10735 		}
10736 		mdelay(1);
10737 	}
10738 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10739 	    0)
10740 		BUG();
10741 }
10742 
10743 /*
10744  * Read the EEPROM from specified location
10745  */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)10746 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10747 {
10748 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10749 			     ASC_EEP_CMD_READ | eep_word_addr);
10750 	AdvWaitEEPCmd(iop_base);
10751 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10752 }
10753 
10754 /*
10755  * Write the EEPROM from 'cfg_buf'.
10756  */
10757 static void __devinit
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10758 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10759 {
10760 	ushort *wbuf;
10761 	ushort addr, chksum;
10762 	ushort *charfields;
10763 
10764 	wbuf = (ushort *)cfg_buf;
10765 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10766 	chksum = 0;
10767 
10768 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10769 	AdvWaitEEPCmd(iop_base);
10770 
10771 	/*
10772 	 * Write EEPROM from word 0 to word 20.
10773 	 */
10774 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10775 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10776 		ushort word;
10777 
10778 		if (*charfields++) {
10779 			word = cpu_to_le16(*wbuf);
10780 		} else {
10781 			word = *wbuf;
10782 		}
10783 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10784 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10785 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10786 				     ASC_EEP_CMD_WRITE | addr);
10787 		AdvWaitEEPCmd(iop_base);
10788 		mdelay(ADV_EEP_DELAY_MS);
10789 	}
10790 
10791 	/*
10792 	 * Write EEPROM checksum at word 21.
10793 	 */
10794 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10795 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10796 	AdvWaitEEPCmd(iop_base);
10797 	wbuf++;
10798 	charfields++;
10799 
10800 	/*
10801 	 * Write EEPROM OEM name at words 22 to 29.
10802 	 */
10803 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10804 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10805 		ushort word;
10806 
10807 		if (*charfields++) {
10808 			word = cpu_to_le16(*wbuf);
10809 		} else {
10810 			word = *wbuf;
10811 		}
10812 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10813 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10814 				     ASC_EEP_CMD_WRITE | addr);
10815 		AdvWaitEEPCmd(iop_base);
10816 	}
10817 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10818 	AdvWaitEEPCmd(iop_base);
10819 }
10820 
10821 /*
10822  * Write the EEPROM from 'cfg_buf'.
10823  */
10824 static void __devinit
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)10825 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10826 {
10827 	ushort *wbuf;
10828 	ushort *charfields;
10829 	ushort addr, chksum;
10830 
10831 	wbuf = (ushort *)cfg_buf;
10832 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10833 	chksum = 0;
10834 
10835 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10836 	AdvWaitEEPCmd(iop_base);
10837 
10838 	/*
10839 	 * Write EEPROM from word 0 to word 20.
10840 	 */
10841 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10842 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10843 		ushort word;
10844 
10845 		if (*charfields++) {
10846 			word = cpu_to_le16(*wbuf);
10847 		} else {
10848 			word = *wbuf;
10849 		}
10850 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10851 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10852 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10853 				     ASC_EEP_CMD_WRITE | addr);
10854 		AdvWaitEEPCmd(iop_base);
10855 		mdelay(ADV_EEP_DELAY_MS);
10856 	}
10857 
10858 	/*
10859 	 * Write EEPROM checksum at word 21.
10860 	 */
10861 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10862 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10863 	AdvWaitEEPCmd(iop_base);
10864 	wbuf++;
10865 	charfields++;
10866 
10867 	/*
10868 	 * Write EEPROM OEM name at words 22 to 29.
10869 	 */
10870 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10871 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10872 		ushort word;
10873 
10874 		if (*charfields++) {
10875 			word = cpu_to_le16(*wbuf);
10876 		} else {
10877 			word = *wbuf;
10878 		}
10879 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10880 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10881 				     ASC_EEP_CMD_WRITE | addr);
10882 		AdvWaitEEPCmd(iop_base);
10883 	}
10884 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10885 	AdvWaitEEPCmd(iop_base);
10886 }
10887 
10888 /*
10889  * Write the EEPROM from 'cfg_buf'.
10890  */
10891 static void __devinit
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)10892 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10893 {
10894 	ushort *wbuf;
10895 	ushort *charfields;
10896 	ushort addr, chksum;
10897 
10898 	wbuf = (ushort *)cfg_buf;
10899 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10900 	chksum = 0;
10901 
10902 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10903 	AdvWaitEEPCmd(iop_base);
10904 
10905 	/*
10906 	 * Write EEPROM from word 0 to word 20.
10907 	 */
10908 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10909 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10910 		ushort word;
10911 
10912 		if (*charfields++) {
10913 			word = cpu_to_le16(*wbuf);
10914 		} else {
10915 			word = *wbuf;
10916 		}
10917 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10918 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10919 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10920 				     ASC_EEP_CMD_WRITE | addr);
10921 		AdvWaitEEPCmd(iop_base);
10922 		mdelay(ADV_EEP_DELAY_MS);
10923 	}
10924 
10925 	/*
10926 	 * Write EEPROM checksum at word 21.
10927 	 */
10928 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10929 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10930 	AdvWaitEEPCmd(iop_base);
10931 	wbuf++;
10932 	charfields++;
10933 
10934 	/*
10935 	 * Write EEPROM OEM name at words 22 to 29.
10936 	 */
10937 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10938 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10939 		ushort word;
10940 
10941 		if (*charfields++) {
10942 			word = cpu_to_le16(*wbuf);
10943 		} else {
10944 			word = *wbuf;
10945 		}
10946 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10947 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10948 				     ASC_EEP_CMD_WRITE | addr);
10949 		AdvWaitEEPCmd(iop_base);
10950 	}
10951 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10952 	AdvWaitEEPCmd(iop_base);
10953 }
10954 
10955 /*
10956  * Read EEPROM configuration into the specified buffer.
10957  *
10958  * Return a checksum based on the EEPROM configuration read.
10959  */
10960 static ushort __devinit
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10961 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10962 {
10963 	ushort wval, chksum;
10964 	ushort *wbuf;
10965 	int eep_addr;
10966 	ushort *charfields;
10967 
10968 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10969 	wbuf = (ushort *)cfg_buf;
10970 	chksum = 0;
10971 
10972 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10973 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10974 		wval = AdvReadEEPWord(iop_base, eep_addr);
10975 		chksum += wval;	/* Checksum is calculated from word values. */
10976 		if (*charfields++) {
10977 			*wbuf = le16_to_cpu(wval);
10978 		} else {
10979 			*wbuf = wval;
10980 		}
10981 	}
10982 	/* Read checksum word. */
10983 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10984 	wbuf++;
10985 	charfields++;
10986 
10987 	/* Read rest of EEPROM not covered by the checksum. */
10988 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10989 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10990 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10991 		if (*charfields++) {
10992 			*wbuf = le16_to_cpu(*wbuf);
10993 		}
10994 	}
10995 	return chksum;
10996 }
10997 
10998 /*
10999  * Read EEPROM configuration into the specified buffer.
11000  *
11001  * Return a checksum based on the EEPROM configuration read.
11002  */
11003 static ushort __devinit
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)11004 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
11005 {
11006 	ushort wval, chksum;
11007 	ushort *wbuf;
11008 	int eep_addr;
11009 	ushort *charfields;
11010 
11011 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
11012 	wbuf = (ushort *)cfg_buf;
11013 	chksum = 0;
11014 
11015 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11016 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11017 		wval = AdvReadEEPWord(iop_base, eep_addr);
11018 		chksum += wval;	/* Checksum is calculated from word values. */
11019 		if (*charfields++) {
11020 			*wbuf = le16_to_cpu(wval);
11021 		} else {
11022 			*wbuf = wval;
11023 		}
11024 	}
11025 	/* Read checksum word. */
11026 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11027 	wbuf++;
11028 	charfields++;
11029 
11030 	/* Read rest of EEPROM not covered by the checksum. */
11031 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11032 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11033 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11034 		if (*charfields++) {
11035 			*wbuf = le16_to_cpu(*wbuf);
11036 		}
11037 	}
11038 	return chksum;
11039 }
11040 
11041 /*
11042  * Read EEPROM configuration into the specified buffer.
11043  *
11044  * Return a checksum based on the EEPROM configuration read.
11045  */
11046 static ushort __devinit
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)11047 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11048 {
11049 	ushort wval, chksum;
11050 	ushort *wbuf;
11051 	int eep_addr;
11052 	ushort *charfields;
11053 
11054 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11055 	wbuf = (ushort *)cfg_buf;
11056 	chksum = 0;
11057 
11058 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11059 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11060 		wval = AdvReadEEPWord(iop_base, eep_addr);
11061 		chksum += wval;	/* Checksum is calculated from word values. */
11062 		if (*charfields++) {
11063 			*wbuf = le16_to_cpu(wval);
11064 		} else {
11065 			*wbuf = wval;
11066 		}
11067 	}
11068 	/* Read checksum word. */
11069 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11070 	wbuf++;
11071 	charfields++;
11072 
11073 	/* Read rest of EEPROM not covered by the checksum. */
11074 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11075 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11076 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11077 		if (*charfields++) {
11078 			*wbuf = le16_to_cpu(*wbuf);
11079 		}
11080 	}
11081 	return chksum;
11082 }
11083 
11084 /*
11085  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11086  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11087  * all of this is done.
11088  *
11089  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11090  *
11091  * For a non-fatal error return a warning code. If there are no warnings
11092  * then 0 is returned.
11093  *
11094  * Note: Chip is stopped on entry.
11095  */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)11096 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11097 {
11098 	AdvPortAddr iop_base;
11099 	ushort warn_code;
11100 	ADVEEP_3550_CONFIG eep_config;
11101 
11102 	iop_base = asc_dvc->iop_base;
11103 
11104 	warn_code = 0;
11105 
11106 	/*
11107 	 * Read the board's EEPROM configuration.
11108 	 *
11109 	 * Set default values if a bad checksum is found.
11110 	 */
11111 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11112 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11113 
11114 		/*
11115 		 * Set EEPROM default values.
11116 		 */
11117 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
11118 			sizeof(ADVEEP_3550_CONFIG));
11119 
11120 		/*
11121 		 * Assume the 6 byte board serial number that was read from
11122 		 * EEPROM is correct even if the EEPROM checksum failed.
11123 		 */
11124 		eep_config.serial_number_word3 =
11125 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11126 
11127 		eep_config.serial_number_word2 =
11128 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11129 
11130 		eep_config.serial_number_word1 =
11131 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11132 
11133 		AdvSet3550EEPConfig(iop_base, &eep_config);
11134 	}
11135 	/*
11136 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11137 	 * EEPROM configuration that was read.
11138 	 *
11139 	 * This is the mapping of EEPROM fields to Adv Library fields.
11140 	 */
11141 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11142 	asc_dvc->sdtr_able = eep_config.sdtr_able;
11143 	asc_dvc->ultra_able = eep_config.ultra_able;
11144 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11145 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11146 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11147 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11148 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11149 	asc_dvc->start_motor = eep_config.start_motor;
11150 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11151 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11152 	asc_dvc->no_scam = eep_config.scam_tolerant;
11153 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11154 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11155 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11156 
11157 	/*
11158 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11159 	 * maximum queuing (max. 63, min. 4).
11160 	 */
11161 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11162 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11163 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11164 		/* If the value is zero, assume it is uninitialized. */
11165 		if (eep_config.max_host_qng == 0) {
11166 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11167 		} else {
11168 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11169 		}
11170 	}
11171 
11172 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11173 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11174 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11175 		/* If the value is zero, assume it is uninitialized. */
11176 		if (eep_config.max_dvc_qng == 0) {
11177 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11178 		} else {
11179 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11180 		}
11181 	}
11182 
11183 	/*
11184 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11185 	 * set 'max_dvc_qng' to 'max_host_qng'.
11186 	 */
11187 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11188 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11189 	}
11190 
11191 	/*
11192 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11193 	 * values based on possibly adjusted EEPROM values.
11194 	 */
11195 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11196 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11197 
11198 	/*
11199 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11200 	 * the ADV_DVC_CFG 'termination' field to automatic also.
11201 	 *
11202 	 * If the termination is specified with a non-zero 'termination'
11203 	 * value check that a legal value is set and set the ADV_DVC_CFG
11204 	 * 'termination' field appropriately.
11205 	 */
11206 	if (eep_config.termination == 0) {
11207 		asc_dvc->cfg->termination = 0;	/* auto termination */
11208 	} else {
11209 		/* Enable manual control with low off / high off. */
11210 		if (eep_config.termination == 1) {
11211 			asc_dvc->cfg->termination = TERM_CTL_SEL;
11212 
11213 			/* Enable manual control with low off / high on. */
11214 		} else if (eep_config.termination == 2) {
11215 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11216 
11217 			/* Enable manual control with low on / high on. */
11218 		} else if (eep_config.termination == 3) {
11219 			asc_dvc->cfg->termination =
11220 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11221 		} else {
11222 			/*
11223 			 * The EEPROM 'termination' field contains a bad value. Use
11224 			 * automatic termination instead.
11225 			 */
11226 			asc_dvc->cfg->termination = 0;
11227 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11228 		}
11229 	}
11230 
11231 	return warn_code;
11232 }
11233 
11234 /*
11235  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11236  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11237  * all of this is done.
11238  *
11239  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11240  *
11241  * For a non-fatal error return a warning code. If there are no warnings
11242  * then 0 is returned.
11243  *
11244  * Note: Chip is stopped on entry.
11245  */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)11246 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11247 {
11248 	AdvPortAddr iop_base;
11249 	ushort warn_code;
11250 	ADVEEP_38C0800_CONFIG eep_config;
11251 	uchar tid, termination;
11252 	ushort sdtr_speed = 0;
11253 
11254 	iop_base = asc_dvc->iop_base;
11255 
11256 	warn_code = 0;
11257 
11258 	/*
11259 	 * Read the board's EEPROM configuration.
11260 	 *
11261 	 * Set default values if a bad checksum is found.
11262 	 */
11263 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11264 	    eep_config.check_sum) {
11265 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11266 
11267 		/*
11268 		 * Set EEPROM default values.
11269 		 */
11270 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11271 			sizeof(ADVEEP_38C0800_CONFIG));
11272 
11273 		/*
11274 		 * Assume the 6 byte board serial number that was read from
11275 		 * EEPROM is correct even if the EEPROM checksum failed.
11276 		 */
11277 		eep_config.serial_number_word3 =
11278 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11279 
11280 		eep_config.serial_number_word2 =
11281 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11282 
11283 		eep_config.serial_number_word1 =
11284 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11285 
11286 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
11287 	}
11288 	/*
11289 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11290 	 * EEPROM configuration that was read.
11291 	 *
11292 	 * This is the mapping of EEPROM fields to Adv Library fields.
11293 	 */
11294 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11295 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11296 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11297 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11298 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11299 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11300 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11301 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11302 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11303 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11304 	asc_dvc->start_motor = eep_config.start_motor;
11305 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11306 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11307 	asc_dvc->no_scam = eep_config.scam_tolerant;
11308 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11309 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11310 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11311 
11312 	/*
11313 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11314 	 * are set, then set an 'sdtr_able' bit for it.
11315 	 */
11316 	asc_dvc->sdtr_able = 0;
11317 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11318 		if (tid == 0) {
11319 			sdtr_speed = asc_dvc->sdtr_speed1;
11320 		} else if (tid == 4) {
11321 			sdtr_speed = asc_dvc->sdtr_speed2;
11322 		} else if (tid == 8) {
11323 			sdtr_speed = asc_dvc->sdtr_speed3;
11324 		} else if (tid == 12) {
11325 			sdtr_speed = asc_dvc->sdtr_speed4;
11326 		}
11327 		if (sdtr_speed & ADV_MAX_TID) {
11328 			asc_dvc->sdtr_able |= (1 << tid);
11329 		}
11330 		sdtr_speed >>= 4;
11331 	}
11332 
11333 	/*
11334 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11335 	 * maximum queuing (max. 63, min. 4).
11336 	 */
11337 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11338 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11339 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11340 		/* If the value is zero, assume it is uninitialized. */
11341 		if (eep_config.max_host_qng == 0) {
11342 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11343 		} else {
11344 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11345 		}
11346 	}
11347 
11348 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11349 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11350 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11351 		/* If the value is zero, assume it is uninitialized. */
11352 		if (eep_config.max_dvc_qng == 0) {
11353 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11354 		} else {
11355 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11356 		}
11357 	}
11358 
11359 	/*
11360 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11361 	 * set 'max_dvc_qng' to 'max_host_qng'.
11362 	 */
11363 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11364 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11365 	}
11366 
11367 	/*
11368 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11369 	 * values based on possibly adjusted EEPROM values.
11370 	 */
11371 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11372 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11373 
11374 	/*
11375 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11376 	 * the ADV_DVC_CFG 'termination' field to automatic also.
11377 	 *
11378 	 * If the termination is specified with a non-zero 'termination'
11379 	 * value check that a legal value is set and set the ADV_DVC_CFG
11380 	 * 'termination' field appropriately.
11381 	 */
11382 	if (eep_config.termination_se == 0) {
11383 		termination = 0;	/* auto termination for SE */
11384 	} else {
11385 		/* Enable manual control with low off / high off. */
11386 		if (eep_config.termination_se == 1) {
11387 			termination = 0;
11388 
11389 			/* Enable manual control with low off / high on. */
11390 		} else if (eep_config.termination_se == 2) {
11391 			termination = TERM_SE_HI;
11392 
11393 			/* Enable manual control with low on / high on. */
11394 		} else if (eep_config.termination_se == 3) {
11395 			termination = TERM_SE;
11396 		} else {
11397 			/*
11398 			 * The EEPROM 'termination_se' field contains a bad value.
11399 			 * Use automatic termination instead.
11400 			 */
11401 			termination = 0;
11402 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11403 		}
11404 	}
11405 
11406 	if (eep_config.termination_lvd == 0) {
11407 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11408 	} else {
11409 		/* Enable manual control with low off / high off. */
11410 		if (eep_config.termination_lvd == 1) {
11411 			asc_dvc->cfg->termination = termination;
11412 
11413 			/* Enable manual control with low off / high on. */
11414 		} else if (eep_config.termination_lvd == 2) {
11415 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11416 
11417 			/* Enable manual control with low on / high on. */
11418 		} else if (eep_config.termination_lvd == 3) {
11419 			asc_dvc->cfg->termination = termination | TERM_LVD;
11420 		} else {
11421 			/*
11422 			 * The EEPROM 'termination_lvd' field contains a bad value.
11423 			 * Use automatic termination instead.
11424 			 */
11425 			asc_dvc->cfg->termination = termination;
11426 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11427 		}
11428 	}
11429 
11430 	return warn_code;
11431 }
11432 
11433 /*
11434  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11435  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11436  * all of this is done.
11437  *
11438  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11439  *
11440  * For a non-fatal error return a warning code. If there are no warnings
11441  * then 0 is returned.
11442  *
11443  * Note: Chip is stopped on entry.
11444  */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)11445 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11446 {
11447 	AdvPortAddr iop_base;
11448 	ushort warn_code;
11449 	ADVEEP_38C1600_CONFIG eep_config;
11450 	uchar tid, termination;
11451 	ushort sdtr_speed = 0;
11452 
11453 	iop_base = asc_dvc->iop_base;
11454 
11455 	warn_code = 0;
11456 
11457 	/*
11458 	 * Read the board's EEPROM configuration.
11459 	 *
11460 	 * Set default values if a bad checksum is found.
11461 	 */
11462 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11463 	    eep_config.check_sum) {
11464 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11465 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11466 
11467 		/*
11468 		 * Set EEPROM default values.
11469 		 */
11470 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11471 			sizeof(ADVEEP_38C1600_CONFIG));
11472 
11473 		if (PCI_FUNC(pdev->devfn) != 0) {
11474 			u8 ints;
11475 			/*
11476 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11477 			 * and old Mac system booting problem. The Expansion
11478 			 * ROM must be disabled in Function 1 for these systems
11479 			 */
11480 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11481 			/*
11482 			 * Clear the INTAB (bit 11) if the GPIO 0 input
11483 			 * indicates the Function 1 interrupt line is wired
11484 			 * to INTB.
11485 			 *
11486 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11487 			 *   1 - Function 1 interrupt line wired to INT A.
11488 			 *   0 - Function 1 interrupt line wired to INT B.
11489 			 *
11490 			 * Note: Function 0 is always wired to INTA.
11491 			 * Put all 5 GPIO bits in input mode and then read
11492 			 * their input values.
11493 			 */
11494 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11495 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11496 			if ((ints & 0x01) == 0)
11497 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11498 		}
11499 
11500 		/*
11501 		 * Assume the 6 byte board serial number that was read from
11502 		 * EEPROM is correct even if the EEPROM checksum failed.
11503 		 */
11504 		eep_config.serial_number_word3 =
11505 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11506 		eep_config.serial_number_word2 =
11507 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11508 		eep_config.serial_number_word1 =
11509 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11510 
11511 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
11512 	}
11513 
11514 	/*
11515 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11516 	 * EEPROM configuration that was read.
11517 	 *
11518 	 * This is the mapping of EEPROM fields to Adv Library fields.
11519 	 */
11520 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11521 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11522 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11523 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11524 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11525 	asc_dvc->ppr_able = 0;
11526 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11527 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11528 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11529 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11530 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11531 	asc_dvc->start_motor = eep_config.start_motor;
11532 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11533 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11534 	asc_dvc->no_scam = eep_config.scam_tolerant;
11535 
11536 	/*
11537 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11538 	 * are set, then set an 'sdtr_able' bit for it.
11539 	 */
11540 	asc_dvc->sdtr_able = 0;
11541 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11542 		if (tid == 0) {
11543 			sdtr_speed = asc_dvc->sdtr_speed1;
11544 		} else if (tid == 4) {
11545 			sdtr_speed = asc_dvc->sdtr_speed2;
11546 		} else if (tid == 8) {
11547 			sdtr_speed = asc_dvc->sdtr_speed3;
11548 		} else if (tid == 12) {
11549 			sdtr_speed = asc_dvc->sdtr_speed4;
11550 		}
11551 		if (sdtr_speed & ASC_MAX_TID) {
11552 			asc_dvc->sdtr_able |= (1 << tid);
11553 		}
11554 		sdtr_speed >>= 4;
11555 	}
11556 
11557 	/*
11558 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11559 	 * maximum queuing (max. 63, min. 4).
11560 	 */
11561 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11562 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11563 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11564 		/* If the value is zero, assume it is uninitialized. */
11565 		if (eep_config.max_host_qng == 0) {
11566 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11567 		} else {
11568 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11569 		}
11570 	}
11571 
11572 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11573 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11574 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11575 		/* If the value is zero, assume it is uninitialized. */
11576 		if (eep_config.max_dvc_qng == 0) {
11577 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11578 		} else {
11579 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11580 		}
11581 	}
11582 
11583 	/*
11584 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11585 	 * set 'max_dvc_qng' to 'max_host_qng'.
11586 	 */
11587 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11588 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11589 	}
11590 
11591 	/*
11592 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11593 	 * values based on possibly adjusted EEPROM values.
11594 	 */
11595 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11596 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11597 
11598 	/*
11599 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11600 	 * the ASC_DVC_CFG 'termination' field to automatic also.
11601 	 *
11602 	 * If the termination is specified with a non-zero 'termination'
11603 	 * value check that a legal value is set and set the ASC_DVC_CFG
11604 	 * 'termination' field appropriately.
11605 	 */
11606 	if (eep_config.termination_se == 0) {
11607 		termination = 0;	/* auto termination for SE */
11608 	} else {
11609 		/* Enable manual control with low off / high off. */
11610 		if (eep_config.termination_se == 1) {
11611 			termination = 0;
11612 
11613 			/* Enable manual control with low off / high on. */
11614 		} else if (eep_config.termination_se == 2) {
11615 			termination = TERM_SE_HI;
11616 
11617 			/* Enable manual control with low on / high on. */
11618 		} else if (eep_config.termination_se == 3) {
11619 			termination = TERM_SE;
11620 		} else {
11621 			/*
11622 			 * The EEPROM 'termination_se' field contains a bad value.
11623 			 * Use automatic termination instead.
11624 			 */
11625 			termination = 0;
11626 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11627 		}
11628 	}
11629 
11630 	if (eep_config.termination_lvd == 0) {
11631 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11632 	} else {
11633 		/* Enable manual control with low off / high off. */
11634 		if (eep_config.termination_lvd == 1) {
11635 			asc_dvc->cfg->termination = termination;
11636 
11637 			/* Enable manual control with low off / high on. */
11638 		} else if (eep_config.termination_lvd == 2) {
11639 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11640 
11641 			/* Enable manual control with low on / high on. */
11642 		} else if (eep_config.termination_lvd == 3) {
11643 			asc_dvc->cfg->termination = termination | TERM_LVD;
11644 		} else {
11645 			/*
11646 			 * The EEPROM 'termination_lvd' field contains a bad value.
11647 			 * Use automatic termination instead.
11648 			 */
11649 			asc_dvc->cfg->termination = termination;
11650 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11651 		}
11652 	}
11653 
11654 	return warn_code;
11655 }
11656 
11657 /*
11658  * Initialize the ADV_DVC_VAR structure.
11659  *
11660  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11661  *
11662  * For a non-fatal error return a warning code. If there are no warnings
11663  * then 0 is returned.
11664  */
11665 static int __devinit
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)11666 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11667 {
11668 	struct asc_board *board = shost_priv(shost);
11669 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11670 	unsigned short warn_code = 0;
11671 	AdvPortAddr iop_base = asc_dvc->iop_base;
11672 	u16 cmd;
11673 	int status;
11674 
11675 	asc_dvc->err_code = 0;
11676 
11677 	/*
11678 	 * Save the state of the PCI Configuration Command Register
11679 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
11680 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11681 	 * DMA parity errors.
11682 	 */
11683 	asc_dvc->cfg->control_flag = 0;
11684 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11685 	if ((cmd & PCI_COMMAND_PARITY) == 0)
11686 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11687 
11688 	asc_dvc->cfg->chip_version =
11689 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11690 
11691 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11692 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11693 		 (ushort)ADV_CHIP_ID_BYTE);
11694 
11695 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11696 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11697 		 (ushort)ADV_CHIP_ID_WORD);
11698 
11699 	/*
11700 	 * Reset the chip to start and allow register writes.
11701 	 */
11702 	if (AdvFindSignature(iop_base) == 0) {
11703 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11704 		return ADV_ERROR;
11705 	} else {
11706 		/*
11707 		 * The caller must set 'chip_type' to a valid setting.
11708 		 */
11709 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11710 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11711 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11712 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11713 			return ADV_ERROR;
11714 		}
11715 
11716 		/*
11717 		 * Reset Chip.
11718 		 */
11719 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11720 				     ADV_CTRL_REG_CMD_RESET);
11721 		mdelay(100);
11722 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11723 				     ADV_CTRL_REG_CMD_WR_IO_REG);
11724 
11725 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11726 			status = AdvInitFrom38C1600EEP(asc_dvc);
11727 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11728 			status = AdvInitFrom38C0800EEP(asc_dvc);
11729 		} else {
11730 			status = AdvInitFrom3550EEP(asc_dvc);
11731 		}
11732 		warn_code |= status;
11733 	}
11734 
11735 	if (warn_code != 0)
11736 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11737 
11738 	if (asc_dvc->err_code)
11739 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11740 				asc_dvc->err_code);
11741 
11742 	return asc_dvc->err_code;
11743 }
11744 #endif
11745 
11746 static struct scsi_host_template advansys_template = {
11747 	.proc_name = DRV_NAME,
11748 #ifdef CONFIG_PROC_FS
11749 	.proc_info = advansys_proc_info,
11750 #endif
11751 	.name = DRV_NAME,
11752 	.info = advansys_info,
11753 	.queuecommand = advansys_queuecommand,
11754 	.eh_bus_reset_handler = advansys_reset,
11755 	.bios_param = advansys_biosparam,
11756 	.slave_configure = advansys_slave_configure,
11757 	/*
11758 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11759 	 * must be set. The flag will be cleared in advansys_board_found
11760 	 * for non-ISA adapters.
11761 	 */
11762 	.unchecked_isa_dma = 1,
11763 	/*
11764 	 * All adapters controlled by this driver are capable of large
11765 	 * scatter-gather lists. According to the mid-level SCSI documentation
11766 	 * this obviates any performance gain provided by setting
11767 	 * 'use_clustering'. But empirically while CPU utilization is increased
11768 	 * by enabling clustering, I/O throughput increases as well.
11769 	 */
11770 	.use_clustering = ENABLE_CLUSTERING,
11771 };
11772 
advansys_wide_init_chip(struct Scsi_Host * shost)11773 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11774 {
11775 	struct asc_board *board = shost_priv(shost);
11776 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11777 	int req_cnt = 0;
11778 	adv_req_t *reqp = NULL;
11779 	int sg_cnt = 0;
11780 	adv_sgblk_t *sgp;
11781 	int warn_code, err_code;
11782 
11783 	/*
11784 	 * Allocate buffer carrier structures. The total size
11785 	 * is about 4 KB, so allocate all at once.
11786 	 */
11787 	adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11788 	ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11789 
11790 	if (!adv_dvc->carrier_buf)
11791 		goto kmalloc_failed;
11792 
11793 	/*
11794 	 * Allocate up to 'max_host_qng' request structures for the Wide
11795 	 * board. The total size is about 16 KB, so allocate all at once.
11796 	 * If the allocation fails decrement and try again.
11797 	 */
11798 	for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11799 		reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11800 
11801 		ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11802 			 (ulong)sizeof(adv_req_t) * req_cnt);
11803 
11804 		if (reqp)
11805 			break;
11806 	}
11807 
11808 	if (!reqp)
11809 		goto kmalloc_failed;
11810 
11811 	adv_dvc->orig_reqp = reqp;
11812 
11813 	/*
11814 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11815 	 * the Wide board. Each structure is about 136 bytes.
11816 	 */
11817 	board->adv_sgblkp = NULL;
11818 	for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11819 		sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11820 
11821 		if (!sgp)
11822 			break;
11823 
11824 		sgp->next_sgblkp = board->adv_sgblkp;
11825 		board->adv_sgblkp = sgp;
11826 
11827 	}
11828 
11829 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11830 		 sizeof(adv_sgblk_t) * sg_cnt);
11831 
11832 	if (!board->adv_sgblkp)
11833 		goto kmalloc_failed;
11834 
11835 	/*
11836 	 * Point 'adv_reqp' to the request structures and
11837 	 * link them together.
11838 	 */
11839 	req_cnt--;
11840 	reqp[req_cnt].next_reqp = NULL;
11841 	for (; req_cnt > 0; req_cnt--) {
11842 		reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11843 	}
11844 	board->adv_reqp = &reqp[0];
11845 
11846 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11847 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11848 		warn_code = AdvInitAsc3550Driver(adv_dvc);
11849 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11850 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11851 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11852 	} else {
11853 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11854 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11855 	}
11856 	err_code = adv_dvc->err_code;
11857 
11858 	if (warn_code || err_code) {
11859 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11860 			"0x%x\n", warn_code, err_code);
11861 	}
11862 
11863 	goto exit;
11864 
11865  kmalloc_failed:
11866 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11867 	err_code = ADV_ERROR;
11868  exit:
11869 	return err_code;
11870 }
11871 
advansys_wide_free_mem(struct asc_board * board)11872 static void advansys_wide_free_mem(struct asc_board *board)
11873 {
11874 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11875 	kfree(adv_dvc->carrier_buf);
11876 	adv_dvc->carrier_buf = NULL;
11877 	kfree(adv_dvc->orig_reqp);
11878 	adv_dvc->orig_reqp = board->adv_reqp = NULL;
11879 	while (board->adv_sgblkp) {
11880 		adv_sgblk_t *sgp = board->adv_sgblkp;
11881 		board->adv_sgblkp = sgp->next_sgblkp;
11882 		kfree(sgp);
11883 	}
11884 }
11885 
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)11886 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11887 					  unsigned int iop, int bus_type)
11888 {
11889 	struct pci_dev *pdev;
11890 	struct asc_board *boardp = shost_priv(shost);
11891 	ASC_DVC_VAR *asc_dvc_varp = NULL;
11892 	ADV_DVC_VAR *adv_dvc_varp = NULL;
11893 	int share_irq, warn_code, ret;
11894 
11895 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11896 
11897 	if (ASC_NARROW_BOARD(boardp)) {
11898 		ASC_DBG(1, "narrow board\n");
11899 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11900 		asc_dvc_varp->bus_type = bus_type;
11901 		asc_dvc_varp->drv_ptr = boardp;
11902 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11903 		asc_dvc_varp->iop_base = iop;
11904 	} else {
11905 #ifdef CONFIG_PCI
11906 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11907 		adv_dvc_varp->drv_ptr = boardp;
11908 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11909 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11910 			ASC_DBG(1, "wide board ASC-3550\n");
11911 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11912 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11913 			ASC_DBG(1, "wide board ASC-38C0800\n");
11914 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11915 		} else {
11916 			ASC_DBG(1, "wide board ASC-38C1600\n");
11917 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11918 		}
11919 
11920 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11921 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11922 		if (!boardp->ioremap_addr) {
11923 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11924 					"returned NULL\n",
11925 					(long)pci_resource_start(pdev, 1),
11926 					boardp->asc_n_io_port);
11927 			ret = -ENODEV;
11928 			goto err_shost;
11929 		}
11930 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11931 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11932 
11933 		/*
11934 		 * Even though it isn't used to access wide boards, other
11935 		 * than for the debug line below, save I/O Port address so
11936 		 * that it can be reported.
11937 		 */
11938 		boardp->ioport = iop;
11939 
11940 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11941 				(ushort)inp(iop + 1), (ushort)inpw(iop));
11942 #endif /* CONFIG_PCI */
11943 	}
11944 
11945 #ifdef CONFIG_PROC_FS
11946 	/*
11947 	 * Allocate buffer for printing information from
11948 	 * /proc/scsi/advansys/[0...].
11949 	 */
11950 	boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11951 	if (!boardp->prtbuf) {
11952 		shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11953 				ASC_PRTBUF_SIZE);
11954 		ret = -ENOMEM;
11955 		goto err_unmap;
11956 	}
11957 #endif /* CONFIG_PROC_FS */
11958 
11959 	if (ASC_NARROW_BOARD(boardp)) {
11960 		/*
11961 		 * Set the board bus type and PCI IRQ before
11962 		 * calling AscInitGetConfig().
11963 		 */
11964 		switch (asc_dvc_varp->bus_type) {
11965 #ifdef CONFIG_ISA
11966 		case ASC_IS_ISA:
11967 			shost->unchecked_isa_dma = TRUE;
11968 			share_irq = 0;
11969 			break;
11970 		case ASC_IS_VL:
11971 			shost->unchecked_isa_dma = FALSE;
11972 			share_irq = 0;
11973 			break;
11974 		case ASC_IS_EISA:
11975 			shost->unchecked_isa_dma = FALSE;
11976 			share_irq = IRQF_SHARED;
11977 			break;
11978 #endif /* CONFIG_ISA */
11979 #ifdef CONFIG_PCI
11980 		case ASC_IS_PCI:
11981 			shost->unchecked_isa_dma = FALSE;
11982 			share_irq = IRQF_SHARED;
11983 			break;
11984 #endif /* CONFIG_PCI */
11985 		default:
11986 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11987 					"%d\n", asc_dvc_varp->bus_type);
11988 			shost->unchecked_isa_dma = TRUE;
11989 			share_irq = 0;
11990 			break;
11991 		}
11992 
11993 		/*
11994 		 * NOTE: AscInitGetConfig() may change the board's
11995 		 * bus_type value. The bus_type value should no
11996 		 * longer be used. If the bus_type field must be
11997 		 * referenced only use the bit-wise AND operator "&".
11998 		 */
11999 		ASC_DBG(2, "AscInitGetConfig()\n");
12000 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
12001 	} else {
12002 #ifdef CONFIG_PCI
12003 		/*
12004 		 * For Wide boards set PCI information before calling
12005 		 * AdvInitGetConfig().
12006 		 */
12007 		shost->unchecked_isa_dma = FALSE;
12008 		share_irq = IRQF_SHARED;
12009 		ASC_DBG(2, "AdvInitGetConfig()\n");
12010 
12011 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
12012 #endif /* CONFIG_PCI */
12013 	}
12014 
12015 	if (ret)
12016 		goto err_free_proc;
12017 
12018 	/*
12019 	 * Save the EEPROM configuration so that it can be displayed
12020 	 * from /proc/scsi/advansys/[0...].
12021 	 */
12022 	if (ASC_NARROW_BOARD(boardp)) {
12023 
12024 		ASCEEP_CONFIG *ep;
12025 
12026 		/*
12027 		 * Set the adapter's target id bit in the 'init_tidmask' field.
12028 		 */
12029 		boardp->init_tidmask |=
12030 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12031 
12032 		/*
12033 		 * Save EEPROM settings for the board.
12034 		 */
12035 		ep = &boardp->eep_config.asc_eep;
12036 
12037 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12038 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12039 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12040 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12041 		ep->start_motor = asc_dvc_varp->start_motor;
12042 		ep->cntl = asc_dvc_varp->dvc_cntl;
12043 		ep->no_scam = asc_dvc_varp->no_scam;
12044 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
12045 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12046 		/* 'max_tag_qng' is set to the same value for every device. */
12047 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12048 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12049 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12050 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12051 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12052 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12053 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12054 
12055 		/*
12056 		 * Modify board configuration.
12057 		 */
12058 		ASC_DBG(2, "AscInitSetConfig()\n");
12059 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12060 		if (ret)
12061 			goto err_free_proc;
12062 	} else {
12063 		ADVEEP_3550_CONFIG *ep_3550;
12064 		ADVEEP_38C0800_CONFIG *ep_38C0800;
12065 		ADVEEP_38C1600_CONFIG *ep_38C1600;
12066 
12067 		/*
12068 		 * Save Wide EEP Configuration Information.
12069 		 */
12070 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12071 			ep_3550 = &boardp->eep_config.adv_3550_eep;
12072 
12073 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12074 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12075 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12076 			ep_3550->termination = adv_dvc_varp->cfg->termination;
12077 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12078 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12079 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12080 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12081 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12082 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12083 			ep_3550->start_motor = adv_dvc_varp->start_motor;
12084 			ep_3550->scsi_reset_delay =
12085 			    adv_dvc_varp->scsi_reset_wait;
12086 			ep_3550->serial_number_word1 =
12087 			    adv_dvc_varp->cfg->serial1;
12088 			ep_3550->serial_number_word2 =
12089 			    adv_dvc_varp->cfg->serial2;
12090 			ep_3550->serial_number_word3 =
12091 			    adv_dvc_varp->cfg->serial3;
12092 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12093 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12094 
12095 			ep_38C0800->adapter_scsi_id =
12096 			    adv_dvc_varp->chip_scsi_id;
12097 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12098 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12099 			ep_38C0800->termination_lvd =
12100 			    adv_dvc_varp->cfg->termination;
12101 			ep_38C0800->disc_enable =
12102 			    adv_dvc_varp->cfg->disc_enable;
12103 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12104 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12105 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12106 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12107 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12108 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12109 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12110 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12111 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12112 			ep_38C0800->scsi_reset_delay =
12113 			    adv_dvc_varp->scsi_reset_wait;
12114 			ep_38C0800->serial_number_word1 =
12115 			    adv_dvc_varp->cfg->serial1;
12116 			ep_38C0800->serial_number_word2 =
12117 			    adv_dvc_varp->cfg->serial2;
12118 			ep_38C0800->serial_number_word3 =
12119 			    adv_dvc_varp->cfg->serial3;
12120 		} else {
12121 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12122 
12123 			ep_38C1600->adapter_scsi_id =
12124 			    adv_dvc_varp->chip_scsi_id;
12125 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12126 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12127 			ep_38C1600->termination_lvd =
12128 			    adv_dvc_varp->cfg->termination;
12129 			ep_38C1600->disc_enable =
12130 			    adv_dvc_varp->cfg->disc_enable;
12131 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12132 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12133 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12134 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12135 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12136 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12137 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12138 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12139 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12140 			ep_38C1600->scsi_reset_delay =
12141 			    adv_dvc_varp->scsi_reset_wait;
12142 			ep_38C1600->serial_number_word1 =
12143 			    adv_dvc_varp->cfg->serial1;
12144 			ep_38C1600->serial_number_word2 =
12145 			    adv_dvc_varp->cfg->serial2;
12146 			ep_38C1600->serial_number_word3 =
12147 			    adv_dvc_varp->cfg->serial3;
12148 		}
12149 
12150 		/*
12151 		 * Set the adapter's target id bit in the 'init_tidmask' field.
12152 		 */
12153 		boardp->init_tidmask |=
12154 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12155 	}
12156 
12157 	/*
12158 	 * Channels are numbered beginning with 0. For AdvanSys one host
12159 	 * structure supports one channel. Multi-channel boards have a
12160 	 * separate host structure for each channel.
12161 	 */
12162 	shost->max_channel = 0;
12163 	if (ASC_NARROW_BOARD(boardp)) {
12164 		shost->max_id = ASC_MAX_TID + 1;
12165 		shost->max_lun = ASC_MAX_LUN + 1;
12166 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
12167 
12168 		shost->io_port = asc_dvc_varp->iop_base;
12169 		boardp->asc_n_io_port = ASC_IOADR_GAP;
12170 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12171 
12172 		/* Set maximum number of queues the adapter can handle. */
12173 		shost->can_queue = asc_dvc_varp->max_total_qng;
12174 	} else {
12175 		shost->max_id = ADV_MAX_TID + 1;
12176 		shost->max_lun = ADV_MAX_LUN + 1;
12177 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
12178 
12179 		/*
12180 		 * Save the I/O Port address and length even though
12181 		 * I/O ports are not used to access Wide boards.
12182 		 * Instead the Wide boards are accessed with
12183 		 * PCI Memory Mapped I/O.
12184 		 */
12185 		shost->io_port = iop;
12186 
12187 		shost->this_id = adv_dvc_varp->chip_scsi_id;
12188 
12189 		/* Set maximum number of queues the adapter can handle. */
12190 		shost->can_queue = adv_dvc_varp->max_host_qng;
12191 	}
12192 
12193 	/*
12194 	 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12195 	 * and should be set to zero.
12196 	 *
12197 	 * But because of a bug introduced in v1.3.89 if the driver is
12198 	 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12199 	 * SCSI function 'allocate_device' will panic. To allow the driver
12200 	 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12201 	 *
12202 	 * Note: This is wrong.  cmd_per_lun should be set to the depth
12203 	 * you want on untagged devices always.
12204 	 #ifdef MODULE
12205 	 */
12206 	shost->cmd_per_lun = 1;
12207 /* #else
12208             shost->cmd_per_lun = 0;
12209 #endif */
12210 
12211 	/*
12212 	 * Set the maximum number of scatter-gather elements the
12213 	 * adapter can handle.
12214 	 */
12215 	if (ASC_NARROW_BOARD(boardp)) {
12216 		/*
12217 		 * Allow two commands with 'sg_tablesize' scatter-gather
12218 		 * elements to be executed simultaneously. This value is
12219 		 * the theoretical hardware limit. It may be decreased
12220 		 * below.
12221 		 */
12222 		shost->sg_tablesize =
12223 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
12224 		     ASC_SG_LIST_PER_Q) + 1;
12225 	} else {
12226 		shost->sg_tablesize = ADV_MAX_SG_LIST;
12227 	}
12228 
12229 	/*
12230 	 * The value of 'sg_tablesize' can not exceed the SCSI
12231 	 * mid-level driver definition of SG_ALL. SG_ALL also
12232 	 * must not be exceeded, because it is used to define the
12233 	 * size of the scatter-gather table in 'struct asc_sg_head'.
12234 	 */
12235 	if (shost->sg_tablesize > SG_ALL) {
12236 		shost->sg_tablesize = SG_ALL;
12237 	}
12238 
12239 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12240 
12241 	/* BIOS start address. */
12242 	if (ASC_NARROW_BOARD(boardp)) {
12243 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12244 						    asc_dvc_varp->bus_type);
12245 	} else {
12246 		/*
12247 		 * Fill-in BIOS board variables. The Wide BIOS saves
12248 		 * information in LRAM that is used by the driver.
12249 		 */
12250 		AdvReadWordLram(adv_dvc_varp->iop_base,
12251 				BIOS_SIGNATURE, boardp->bios_signature);
12252 		AdvReadWordLram(adv_dvc_varp->iop_base,
12253 				BIOS_VERSION, boardp->bios_version);
12254 		AdvReadWordLram(adv_dvc_varp->iop_base,
12255 				BIOS_CODESEG, boardp->bios_codeseg);
12256 		AdvReadWordLram(adv_dvc_varp->iop_base,
12257 				BIOS_CODELEN, boardp->bios_codelen);
12258 
12259 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12260 			 boardp->bios_signature, boardp->bios_version);
12261 
12262 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12263 			 boardp->bios_codeseg, boardp->bios_codelen);
12264 
12265 		/*
12266 		 * If the BIOS saved a valid signature, then fill in
12267 		 * the BIOS code segment base address.
12268 		 */
12269 		if (boardp->bios_signature == 0x55AA) {
12270 			/*
12271 			 * Convert x86 realmode code segment to a linear
12272 			 * address by shifting left 4.
12273 			 */
12274 			shost->base = ((ulong)boardp->bios_codeseg << 4);
12275 		} else {
12276 			shost->base = 0;
12277 		}
12278 	}
12279 
12280 	/*
12281 	 * Register Board Resources - I/O Port, DMA, IRQ
12282 	 */
12283 
12284 	/* Register DMA Channel for Narrow boards. */
12285 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
12286 #ifdef CONFIG_ISA
12287 	if (ASC_NARROW_BOARD(boardp)) {
12288 		/* Register DMA channel for ISA bus. */
12289 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12290 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12291 			ret = request_dma(shost->dma_channel, DRV_NAME);
12292 			if (ret) {
12293 				shost_printk(KERN_ERR, shost, "request_dma() "
12294 						"%d failed %d\n",
12295 						shost->dma_channel, ret);
12296 				goto err_free_proc;
12297 			}
12298 			AscEnableIsaDma(shost->dma_channel);
12299 		}
12300 	}
12301 #endif /* CONFIG_ISA */
12302 
12303 	/* Register IRQ Number. */
12304 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12305 
12306 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12307 			  DRV_NAME, shost);
12308 
12309 	if (ret) {
12310 		if (ret == -EBUSY) {
12311 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12312 					"already in use\n", boardp->irq);
12313 		} else if (ret == -EINVAL) {
12314 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12315 					"not valid\n", boardp->irq);
12316 		} else {
12317 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12318 					"failed with %d\n", boardp->irq, ret);
12319 		}
12320 		goto err_free_dma;
12321 	}
12322 
12323 	/*
12324 	 * Initialize board RISC chip and enable interrupts.
12325 	 */
12326 	if (ASC_NARROW_BOARD(boardp)) {
12327 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
12328 
12329 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12330 		if (!asc_dvc_varp->overrun_buf) {
12331 			ret = -ENOMEM;
12332 			goto err_free_irq;
12333 		}
12334 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12335 
12336 		if (warn_code || asc_dvc_varp->err_code) {
12337 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12338 					"warn 0x%x, error 0x%x\n",
12339 					asc_dvc_varp->init_state, warn_code,
12340 					asc_dvc_varp->err_code);
12341 			if (!asc_dvc_varp->overrun_dma) {
12342 				ret = -ENODEV;
12343 				goto err_free_mem;
12344 			}
12345 		}
12346 	} else {
12347 		if (advansys_wide_init_chip(shost)) {
12348 			ret = -ENODEV;
12349 			goto err_free_mem;
12350 		}
12351 	}
12352 
12353 	ASC_DBG_PRT_SCSI_HOST(2, shost);
12354 
12355 	ret = scsi_add_host(shost, boardp->dev);
12356 	if (ret)
12357 		goto err_free_mem;
12358 
12359 	scsi_scan_host(shost);
12360 	return 0;
12361 
12362  err_free_mem:
12363 	if (ASC_NARROW_BOARD(boardp)) {
12364 		if (asc_dvc_varp->overrun_dma)
12365 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
12366 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12367 		kfree(asc_dvc_varp->overrun_buf);
12368 	} else
12369 		advansys_wide_free_mem(boardp);
12370  err_free_irq:
12371 	free_irq(boardp->irq, shost);
12372  err_free_dma:
12373 #ifdef CONFIG_ISA
12374 	if (shost->dma_channel != NO_ISA_DMA)
12375 		free_dma(shost->dma_channel);
12376 #endif
12377  err_free_proc:
12378 	kfree(boardp->prtbuf);
12379  err_unmap:
12380 	if (boardp->ioremap_addr)
12381 		iounmap(boardp->ioremap_addr);
12382  err_shost:
12383 	return ret;
12384 }
12385 
12386 /*
12387  * advansys_release()
12388  *
12389  * Release resources allocated for a single AdvanSys adapter.
12390  */
advansys_release(struct Scsi_Host * shost)12391 static int advansys_release(struct Scsi_Host *shost)
12392 {
12393 	struct asc_board *board = shost_priv(shost);
12394 	ASC_DBG(1, "begin\n");
12395 	scsi_remove_host(shost);
12396 	free_irq(board->irq, shost);
12397 #ifdef CONFIG_ISA
12398 	if (shost->dma_channel != NO_ISA_DMA) {
12399 		ASC_DBG(1, "free_dma()\n");
12400 		free_dma(shost->dma_channel);
12401 	}
12402 #endif
12403 	if (ASC_NARROW_BOARD(board)) {
12404 		dma_unmap_single(board->dev,
12405 					board->dvc_var.asc_dvc_var.overrun_dma,
12406 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12407 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12408 	} else {
12409 		iounmap(board->ioremap_addr);
12410 		advansys_wide_free_mem(board);
12411 	}
12412 	kfree(board->prtbuf);
12413 	scsi_host_put(shost);
12414 	ASC_DBG(1, "end\n");
12415 	return 0;
12416 }
12417 
12418 #define ASC_IOADR_TABLE_MAX_IX  11
12419 
12420 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12421 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12422 	0x0210, 0x0230, 0x0250, 0x0330
12423 };
12424 
12425 /*
12426  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
12427  * 00: 10
12428  * 01: 11
12429  * 10: 12
12430  * 11: 15
12431  */
advansys_isa_irq_no(PortAddr iop_base)12432 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12433 {
12434 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12435 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12436 	if (chip_irq == 13)
12437 		chip_irq = 15;
12438 	return chip_irq;
12439 }
12440 
advansys_isa_probe(struct device * dev,unsigned int id)12441 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12442 {
12443 	int err = -ENODEV;
12444 	PortAddr iop_base = _asc_def_iop_base[id];
12445 	struct Scsi_Host *shost;
12446 	struct asc_board *board;
12447 
12448 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12449 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12450 		return -ENODEV;
12451 	}
12452 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12453 	if (!AscFindSignature(iop_base))
12454 		goto release_region;
12455 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12456 		goto release_region;
12457 
12458 	err = -ENOMEM;
12459 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12460 	if (!shost)
12461 		goto release_region;
12462 
12463 	board = shost_priv(shost);
12464 	board->irq = advansys_isa_irq_no(iop_base);
12465 	board->dev = dev;
12466 
12467 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12468 	if (err)
12469 		goto free_host;
12470 
12471 	dev_set_drvdata(dev, shost);
12472 	return 0;
12473 
12474  free_host:
12475 	scsi_host_put(shost);
12476  release_region:
12477 	release_region(iop_base, ASC_IOADR_GAP);
12478 	return err;
12479 }
12480 
advansys_isa_remove(struct device * dev,unsigned int id)12481 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12482 {
12483 	int ioport = _asc_def_iop_base[id];
12484 	advansys_release(dev_get_drvdata(dev));
12485 	release_region(ioport, ASC_IOADR_GAP);
12486 	return 0;
12487 }
12488 
12489 static struct isa_driver advansys_isa_driver = {
12490 	.probe		= advansys_isa_probe,
12491 	.remove		= __devexit_p(advansys_isa_remove),
12492 	.driver = {
12493 		.owner	= THIS_MODULE,
12494 		.name	= DRV_NAME,
12495 	},
12496 };
12497 
12498 /*
12499  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
12500  * 000: invalid
12501  * 001: 10
12502  * 010: 11
12503  * 011: 12
12504  * 100: invalid
12505  * 101: 14
12506  * 110: 15
12507  * 111: invalid
12508  */
advansys_vlb_irq_no(PortAddr iop_base)12509 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12510 {
12511 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12512 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12513 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12514 		return 0;
12515 	return chip_irq;
12516 }
12517 
advansys_vlb_probe(struct device * dev,unsigned int id)12518 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12519 {
12520 	int err = -ENODEV;
12521 	PortAddr iop_base = _asc_def_iop_base[id];
12522 	struct Scsi_Host *shost;
12523 	struct asc_board *board;
12524 
12525 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12526 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12527 		return -ENODEV;
12528 	}
12529 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12530 	if (!AscFindSignature(iop_base))
12531 		goto release_region;
12532 	/*
12533 	 * I don't think this condition can actually happen, but the old
12534 	 * driver did it, and the chances of finding a VLB setup in 2007
12535 	 * to do testing with is slight to none.
12536 	 */
12537 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12538 		goto release_region;
12539 
12540 	err = -ENOMEM;
12541 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12542 	if (!shost)
12543 		goto release_region;
12544 
12545 	board = shost_priv(shost);
12546 	board->irq = advansys_vlb_irq_no(iop_base);
12547 	board->dev = dev;
12548 
12549 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12550 	if (err)
12551 		goto free_host;
12552 
12553 	dev_set_drvdata(dev, shost);
12554 	return 0;
12555 
12556  free_host:
12557 	scsi_host_put(shost);
12558  release_region:
12559 	release_region(iop_base, ASC_IOADR_GAP);
12560 	return -ENODEV;
12561 }
12562 
12563 static struct isa_driver advansys_vlb_driver = {
12564 	.probe		= advansys_vlb_probe,
12565 	.remove		= __devexit_p(advansys_isa_remove),
12566 	.driver = {
12567 		.owner	= THIS_MODULE,
12568 		.name	= "advansys_vlb",
12569 	},
12570 };
12571 
12572 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12573 	{ "ABP7401" },
12574 	{ "ABP7501" },
12575 	{ "" }
12576 };
12577 
12578 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12579 
12580 /*
12581  * EISA is a little more tricky than PCI; each EISA device may have two
12582  * channels, and this driver is written to make each channel its own Scsi_Host
12583  */
12584 struct eisa_scsi_data {
12585 	struct Scsi_Host *host[2];
12586 };
12587 
12588 /*
12589  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12590  * 000: 10
12591  * 001: 11
12592  * 010: 12
12593  * 011: invalid
12594  * 100: 14
12595  * 101: 15
12596  * 110: invalid
12597  * 111: invalid
12598  */
advansys_eisa_irq_no(struct eisa_device * edev)12599 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12600 {
12601 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12602 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12603 	if ((chip_irq == 13) || (chip_irq > 15))
12604 		return 0;
12605 	return chip_irq;
12606 }
12607 
advansys_eisa_probe(struct device * dev)12608 static int __devinit advansys_eisa_probe(struct device *dev)
12609 {
12610 	int i, ioport, irq = 0;
12611 	int err;
12612 	struct eisa_device *edev = to_eisa_device(dev);
12613 	struct eisa_scsi_data *data;
12614 
12615 	err = -ENOMEM;
12616 	data = kzalloc(sizeof(*data), GFP_KERNEL);
12617 	if (!data)
12618 		goto fail;
12619 	ioport = edev->base_addr + 0xc30;
12620 
12621 	err = -ENODEV;
12622 	for (i = 0; i < 2; i++, ioport += 0x20) {
12623 		struct asc_board *board;
12624 		struct Scsi_Host *shost;
12625 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12626 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12627 			       ioport + ASC_IOADR_GAP - 1);
12628 			continue;
12629 		}
12630 		if (!AscFindSignature(ioport)) {
12631 			release_region(ioport, ASC_IOADR_GAP);
12632 			continue;
12633 		}
12634 
12635 		/*
12636 		 * I don't know why we need to do this for EISA chips, but
12637 		 * not for any others.  It looks to be equivalent to
12638 		 * AscGetChipCfgMsw, but I may have overlooked something,
12639 		 * so I'm not converting it until I get an EISA board to
12640 		 * test with.
12641 		 */
12642 		inw(ioport + 4);
12643 
12644 		if (!irq)
12645 			irq = advansys_eisa_irq_no(edev);
12646 
12647 		err = -ENOMEM;
12648 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12649 		if (!shost)
12650 			goto release_region;
12651 
12652 		board = shost_priv(shost);
12653 		board->irq = irq;
12654 		board->dev = dev;
12655 
12656 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12657 		if (!err) {
12658 			data->host[i] = shost;
12659 			continue;
12660 		}
12661 
12662 		scsi_host_put(shost);
12663  release_region:
12664 		release_region(ioport, ASC_IOADR_GAP);
12665 		break;
12666 	}
12667 
12668 	if (err)
12669 		goto free_data;
12670 	dev_set_drvdata(dev, data);
12671 	return 0;
12672 
12673  free_data:
12674 	kfree(data->host[0]);
12675 	kfree(data->host[1]);
12676 	kfree(data);
12677  fail:
12678 	return err;
12679 }
12680 
advansys_eisa_remove(struct device * dev)12681 static __devexit int advansys_eisa_remove(struct device *dev)
12682 {
12683 	int i;
12684 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
12685 
12686 	for (i = 0; i < 2; i++) {
12687 		int ioport;
12688 		struct Scsi_Host *shost = data->host[i];
12689 		if (!shost)
12690 			continue;
12691 		ioport = shost->io_port;
12692 		advansys_release(shost);
12693 		release_region(ioport, ASC_IOADR_GAP);
12694 	}
12695 
12696 	kfree(data);
12697 	return 0;
12698 }
12699 
12700 static struct eisa_driver advansys_eisa_driver = {
12701 	.id_table =		advansys_eisa_table,
12702 	.driver = {
12703 		.name =		DRV_NAME,
12704 		.probe =	advansys_eisa_probe,
12705 		.remove =	__devexit_p(advansys_eisa_remove),
12706 	}
12707 };
12708 
12709 /* PCI Devices supported by this driver */
12710 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12711 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12712 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12713 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12714 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12715 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12716 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12717 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12718 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12719 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12720 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12721 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12722 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12723 	{}
12724 };
12725 
12726 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12727 
advansys_set_latency(struct pci_dev * pdev)12728 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12729 {
12730 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12731 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12732 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12733 	} else {
12734 		u8 latency;
12735 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12736 		if (latency < 0x20)
12737 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12738 	}
12739 }
12740 
12741 static int __devinit
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)12742 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12743 {
12744 	int err, ioport;
12745 	struct Scsi_Host *shost;
12746 	struct asc_board *board;
12747 
12748 	err = pci_enable_device(pdev);
12749 	if (err)
12750 		goto fail;
12751 	err = pci_request_regions(pdev, DRV_NAME);
12752 	if (err)
12753 		goto disable_device;
12754 	pci_set_master(pdev);
12755 	advansys_set_latency(pdev);
12756 
12757 	err = -ENODEV;
12758 	if (pci_resource_len(pdev, 0) == 0)
12759 		goto release_region;
12760 
12761 	ioport = pci_resource_start(pdev, 0);
12762 
12763 	err = -ENOMEM;
12764 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12765 	if (!shost)
12766 		goto release_region;
12767 
12768 	board = shost_priv(shost);
12769 	board->irq = pdev->irq;
12770 	board->dev = &pdev->dev;
12771 
12772 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12773 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12774 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12775 		board->flags |= ASC_IS_WIDE_BOARD;
12776 	}
12777 
12778 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12779 	if (err)
12780 		goto free_host;
12781 
12782 	pci_set_drvdata(pdev, shost);
12783 	return 0;
12784 
12785  free_host:
12786 	scsi_host_put(shost);
12787  release_region:
12788 	pci_release_regions(pdev);
12789  disable_device:
12790 	pci_disable_device(pdev);
12791  fail:
12792 	return err;
12793 }
12794 
advansys_pci_remove(struct pci_dev * pdev)12795 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12796 {
12797 	advansys_release(pci_get_drvdata(pdev));
12798 	pci_release_regions(pdev);
12799 	pci_disable_device(pdev);
12800 }
12801 
12802 static struct pci_driver advansys_pci_driver = {
12803 	.name =		DRV_NAME,
12804 	.id_table =	advansys_pci_tbl,
12805 	.probe =	advansys_pci_probe,
12806 	.remove =	__devexit_p(advansys_pci_remove),
12807 };
12808 
advansys_init(void)12809 static int __init advansys_init(void)
12810 {
12811 	int error;
12812 
12813 	error = isa_register_driver(&advansys_isa_driver,
12814 				    ASC_IOADR_TABLE_MAX_IX);
12815 	if (error)
12816 		goto fail;
12817 
12818 	error = isa_register_driver(&advansys_vlb_driver,
12819 				    ASC_IOADR_TABLE_MAX_IX);
12820 	if (error)
12821 		goto unregister_isa;
12822 
12823 	error = eisa_driver_register(&advansys_eisa_driver);
12824 	if (error)
12825 		goto unregister_vlb;
12826 
12827 	error = pci_register_driver(&advansys_pci_driver);
12828 	if (error)
12829 		goto unregister_eisa;
12830 
12831 	return 0;
12832 
12833  unregister_eisa:
12834 	eisa_driver_unregister(&advansys_eisa_driver);
12835  unregister_vlb:
12836 	isa_unregister_driver(&advansys_vlb_driver);
12837  unregister_isa:
12838 	isa_unregister_driver(&advansys_isa_driver);
12839  fail:
12840 	return error;
12841 }
12842 
advansys_exit(void)12843 static void __exit advansys_exit(void)
12844 {
12845 	pci_unregister_driver(&advansys_pci_driver);
12846 	eisa_driver_unregister(&advansys_eisa_driver);
12847 	isa_unregister_driver(&advansys_vlb_driver);
12848 	isa_unregister_driver(&advansys_isa_driver);
12849 }
12850 
12851 module_init(advansys_init);
12852 module_exit(advansys_exit);
12853 
12854 MODULE_LICENSE("GPL");
12855 MODULE_FIRMWARE("advansys/mcode.bin");
12856 MODULE_FIRMWARE("advansys/3550.bin");
12857 MODULE_FIRMWARE("advansys/38C0800.bin");
12858 MODULE_FIRMWARE("advansys/38C1600.bin");
12859