1 /**
2 * drivers/net/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19 /**
20 * Supports:
21 * KS8851 16bit MLL chip from Micrel Inc.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37
38 #define DRV_NAME "ks8851_mll"
39
40 static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
41 #define MAX_RECV_FRAMES 32
42 #define MAX_BUF_SIZE 2048
43 #define TX_BUF_SIZE 2000
44 #define RX_BUF_SIZE 2000
45
46 #define KS_CCR 0x08
47 #define CCR_EEPROM (1 << 9)
48 #define CCR_SPI (1 << 8)
49 #define CCR_8BIT (1 << 7)
50 #define CCR_16BIT (1 << 6)
51 #define CCR_32BIT (1 << 5)
52 #define CCR_SHARED (1 << 4)
53 #define CCR_32PIN (1 << 0)
54
55 /* MAC address registers */
56 #define KS_MARL 0x10
57 #define KS_MARM 0x12
58 #define KS_MARH 0x14
59
60 #define KS_OBCR 0x20
61 #define OBCR_ODS_16MA (1 << 6)
62
63 #define KS_EEPCR 0x22
64 #define EEPCR_EESA (1 << 4)
65 #define EEPCR_EESB (1 << 3)
66 #define EEPCR_EEDO (1 << 2)
67 #define EEPCR_EESCK (1 << 1)
68 #define EEPCR_EECS (1 << 0)
69
70 #define KS_MBIR 0x24
71 #define MBIR_TXMBF (1 << 12)
72 #define MBIR_TXMBFA (1 << 11)
73 #define MBIR_RXMBF (1 << 4)
74 #define MBIR_RXMBFA (1 << 3)
75
76 #define KS_GRR 0x26
77 #define GRR_QMU (1 << 1)
78 #define GRR_GSR (1 << 0)
79
80 #define KS_WFCR 0x2A
81 #define WFCR_MPRXE (1 << 7)
82 #define WFCR_WF3E (1 << 3)
83 #define WFCR_WF2E (1 << 2)
84 #define WFCR_WF1E (1 << 1)
85 #define WFCR_WF0E (1 << 0)
86
87 #define KS_WF0CRC0 0x30
88 #define KS_WF0CRC1 0x32
89 #define KS_WF0BM0 0x34
90 #define KS_WF0BM1 0x36
91 #define KS_WF0BM2 0x38
92 #define KS_WF0BM3 0x3A
93
94 #define KS_WF1CRC0 0x40
95 #define KS_WF1CRC1 0x42
96 #define KS_WF1BM0 0x44
97 #define KS_WF1BM1 0x46
98 #define KS_WF1BM2 0x48
99 #define KS_WF1BM3 0x4A
100
101 #define KS_WF2CRC0 0x50
102 #define KS_WF2CRC1 0x52
103 #define KS_WF2BM0 0x54
104 #define KS_WF2BM1 0x56
105 #define KS_WF2BM2 0x58
106 #define KS_WF2BM3 0x5A
107
108 #define KS_WF3CRC0 0x60
109 #define KS_WF3CRC1 0x62
110 #define KS_WF3BM0 0x64
111 #define KS_WF3BM1 0x66
112 #define KS_WF3BM2 0x68
113 #define KS_WF3BM3 0x6A
114
115 #define KS_TXCR 0x70
116 #define TXCR_TCGICMP (1 << 8)
117 #define TXCR_TCGUDP (1 << 7)
118 #define TXCR_TCGTCP (1 << 6)
119 #define TXCR_TCGIP (1 << 5)
120 #define TXCR_FTXQ (1 << 4)
121 #define TXCR_TXFCE (1 << 3)
122 #define TXCR_TXPE (1 << 2)
123 #define TXCR_TXCRC (1 << 1)
124 #define TXCR_TXE (1 << 0)
125
126 #define KS_TXSR 0x72
127 #define TXSR_TXLC (1 << 13)
128 #define TXSR_TXMC (1 << 12)
129 #define TXSR_TXFID_MASK (0x3f << 0)
130 #define TXSR_TXFID_SHIFT (0)
131 #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
132
133
134 #define KS_RXCR1 0x74
135 #define RXCR1_FRXQ (1 << 15)
136 #define RXCR1_RXUDPFCC (1 << 14)
137 #define RXCR1_RXTCPFCC (1 << 13)
138 #define RXCR1_RXIPFCC (1 << 12)
139 #define RXCR1_RXPAFMA (1 << 11)
140 #define RXCR1_RXFCE (1 << 10)
141 #define RXCR1_RXEFE (1 << 9)
142 #define RXCR1_RXMAFMA (1 << 8)
143 #define RXCR1_RXBE (1 << 7)
144 #define RXCR1_RXME (1 << 6)
145 #define RXCR1_RXUE (1 << 5)
146 #define RXCR1_RXAE (1 << 4)
147 #define RXCR1_RXINVF (1 << 1)
148 #define RXCR1_RXE (1 << 0)
149 #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
150 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
151
152 #define KS_RXCR2 0x76
153 #define RXCR2_SRDBL_MASK (0x7 << 5)
154 #define RXCR2_SRDBL_SHIFT (5)
155 #define RXCR2_SRDBL_4B (0x0 << 5)
156 #define RXCR2_SRDBL_8B (0x1 << 5)
157 #define RXCR2_SRDBL_16B (0x2 << 5)
158 #define RXCR2_SRDBL_32B (0x3 << 5)
159 /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
160 #define RXCR2_IUFFP (1 << 4)
161 #define RXCR2_RXIUFCEZ (1 << 3)
162 #define RXCR2_UDPLFE (1 << 2)
163 #define RXCR2_RXICMPFCC (1 << 1)
164 #define RXCR2_RXSAF (1 << 0)
165
166 #define KS_TXMIR 0x78
167
168 #define KS_RXFHSR 0x7C
169 #define RXFSHR_RXFV (1 << 15)
170 #define RXFSHR_RXICMPFCS (1 << 13)
171 #define RXFSHR_RXIPFCS (1 << 12)
172 #define RXFSHR_RXTCPFCS (1 << 11)
173 #define RXFSHR_RXUDPFCS (1 << 10)
174 #define RXFSHR_RXBF (1 << 7)
175 #define RXFSHR_RXMF (1 << 6)
176 #define RXFSHR_RXUF (1 << 5)
177 #define RXFSHR_RXMR (1 << 4)
178 #define RXFSHR_RXFT (1 << 3)
179 #define RXFSHR_RXFTL (1 << 2)
180 #define RXFSHR_RXRF (1 << 1)
181 #define RXFSHR_RXCE (1 << 0)
182 #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
183 RXFSHR_RXFTL | RXFSHR_RXMR |\
184 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
185 RXFSHR_RXTCPFCS)
186 #define KS_RXFHBCR 0x7E
187 #define RXFHBCR_CNT_MASK 0x0FFF
188
189 #define KS_TXQCR 0x80
190 #define TXQCR_AETFE (1 << 2)
191 #define TXQCR_TXQMAM (1 << 1)
192 #define TXQCR_METFE (1 << 0)
193
194 #define KS_RXQCR 0x82
195 #define RXQCR_RXDTTS (1 << 12)
196 #define RXQCR_RXDBCTS (1 << 11)
197 #define RXQCR_RXFCTS (1 << 10)
198 #define RXQCR_RXIPHTOE (1 << 9)
199 #define RXQCR_RXDTTE (1 << 7)
200 #define RXQCR_RXDBCTE (1 << 6)
201 #define RXQCR_RXFCTE (1 << 5)
202 #define RXQCR_ADRFE (1 << 4)
203 #define RXQCR_SDA (1 << 3)
204 #define RXQCR_RRXEF (1 << 0)
205 #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
206
207 #define KS_TXFDPR 0x84
208 #define TXFDPR_TXFPAI (1 << 14)
209 #define TXFDPR_TXFP_MASK (0x7ff << 0)
210 #define TXFDPR_TXFP_SHIFT (0)
211
212 #define KS_RXFDPR 0x86
213 #define RXFDPR_RXFPAI (1 << 14)
214
215 #define KS_RXDTTR 0x8C
216 #define KS_RXDBCTR 0x8E
217
218 #define KS_IER 0x90
219 #define KS_ISR 0x92
220 #define IRQ_LCI (1 << 15)
221 #define IRQ_TXI (1 << 14)
222 #define IRQ_RXI (1 << 13)
223 #define IRQ_RXOI (1 << 11)
224 #define IRQ_TXPSI (1 << 9)
225 #define IRQ_RXPSI (1 << 8)
226 #define IRQ_TXSAI (1 << 6)
227 #define IRQ_RXWFDI (1 << 5)
228 #define IRQ_RXMPDI (1 << 4)
229 #define IRQ_LDI (1 << 3)
230 #define IRQ_EDI (1 << 2)
231 #define IRQ_SPIBEI (1 << 1)
232 #define IRQ_DEDI (1 << 0)
233
234 #define KS_RXFCTR 0x9C
235 #define RXFCTR_THRESHOLD_MASK 0x00FF
236
237 #define KS_RXFC 0x9D
238 #define RXFCTR_RXFC_MASK (0xff << 8)
239 #define RXFCTR_RXFC_SHIFT (8)
240 #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
241 #define RXFCTR_RXFCT_MASK (0xff << 0)
242 #define RXFCTR_RXFCT_SHIFT (0)
243
244 #define KS_TXNTFSR 0x9E
245
246 #define KS_MAHTR0 0xA0
247 #define KS_MAHTR1 0xA2
248 #define KS_MAHTR2 0xA4
249 #define KS_MAHTR3 0xA6
250
251 #define KS_FCLWR 0xB0
252 #define KS_FCHWR 0xB2
253 #define KS_FCOWR 0xB4
254
255 #define KS_CIDER 0xC0
256 #define CIDER_ID 0x8870
257 #define CIDER_REV_MASK (0x7 << 1)
258 #define CIDER_REV_SHIFT (1)
259 #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
260
261 #define KS_CGCR 0xC6
262 #define KS_IACR 0xC8
263 #define IACR_RDEN (1 << 12)
264 #define IACR_TSEL_MASK (0x3 << 10)
265 #define IACR_TSEL_SHIFT (10)
266 #define IACR_TSEL_MIB (0x3 << 10)
267 #define IACR_ADDR_MASK (0x1f << 0)
268 #define IACR_ADDR_SHIFT (0)
269
270 #define KS_IADLR 0xD0
271 #define KS_IAHDR 0xD2
272
273 #define KS_PMECR 0xD4
274 #define PMECR_PME_DELAY (1 << 14)
275 #define PMECR_PME_POL (1 << 12)
276 #define PMECR_WOL_WAKEUP (1 << 11)
277 #define PMECR_WOL_MAGICPKT (1 << 10)
278 #define PMECR_WOL_LINKUP (1 << 9)
279 #define PMECR_WOL_ENERGY (1 << 8)
280 #define PMECR_AUTO_WAKE_EN (1 << 7)
281 #define PMECR_WAKEUP_NORMAL (1 << 6)
282 #define PMECR_WKEVT_MASK (0xf << 2)
283 #define PMECR_WKEVT_SHIFT (2)
284 #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
285 #define PMECR_WKEVT_ENERGY (0x1 << 2)
286 #define PMECR_WKEVT_LINK (0x2 << 2)
287 #define PMECR_WKEVT_MAGICPKT (0x4 << 2)
288 #define PMECR_WKEVT_FRAME (0x8 << 2)
289 #define PMECR_PM_MASK (0x3 << 0)
290 #define PMECR_PM_SHIFT (0)
291 #define PMECR_PM_NORMAL (0x0 << 0)
292 #define PMECR_PM_ENERGY (0x1 << 0)
293 #define PMECR_PM_SOFTDOWN (0x2 << 0)
294 #define PMECR_PM_POWERSAVE (0x3 << 0)
295
296 /* Standard MII PHY data */
297 #define KS_P1MBCR 0xE4
298 #define P1MBCR_FORCE_FDX (1 << 8)
299
300 #define KS_P1MBSR 0xE6
301 #define P1MBSR_AN_COMPLETE (1 << 5)
302 #define P1MBSR_AN_CAPABLE (1 << 3)
303 #define P1MBSR_LINK_UP (1 << 2)
304
305 #define KS_PHY1ILR 0xE8
306 #define KS_PHY1IHR 0xEA
307 #define KS_P1ANAR 0xEC
308 #define KS_P1ANLPR 0xEE
309
310 #define KS_P1SCLMD 0xF4
311 #define P1SCLMD_LEDOFF (1 << 15)
312 #define P1SCLMD_TXIDS (1 << 14)
313 #define P1SCLMD_RESTARTAN (1 << 13)
314 #define P1SCLMD_DISAUTOMDIX (1 << 10)
315 #define P1SCLMD_FORCEMDIX (1 << 9)
316 #define P1SCLMD_AUTONEGEN (1 << 7)
317 #define P1SCLMD_FORCE100 (1 << 6)
318 #define P1SCLMD_FORCEFDX (1 << 5)
319 #define P1SCLMD_ADV_FLOW (1 << 4)
320 #define P1SCLMD_ADV_100BT_FDX (1 << 3)
321 #define P1SCLMD_ADV_100BT_HDX (1 << 2)
322 #define P1SCLMD_ADV_10BT_FDX (1 << 1)
323 #define P1SCLMD_ADV_10BT_HDX (1 << 0)
324
325 #define KS_P1CR 0xF6
326 #define P1CR_HP_MDIX (1 << 15)
327 #define P1CR_REV_POL (1 << 13)
328 #define P1CR_OP_100M (1 << 10)
329 #define P1CR_OP_FDX (1 << 9)
330 #define P1CR_OP_MDI (1 << 7)
331 #define P1CR_AN_DONE (1 << 6)
332 #define P1CR_LINK_GOOD (1 << 5)
333 #define P1CR_PNTR_FLOW (1 << 4)
334 #define P1CR_PNTR_100BT_FDX (1 << 3)
335 #define P1CR_PNTR_100BT_HDX (1 << 2)
336 #define P1CR_PNTR_10BT_FDX (1 << 1)
337 #define P1CR_PNTR_10BT_HDX (1 << 0)
338
339 /* TX Frame control */
340
341 #define TXFR_TXIC (1 << 15)
342 #define TXFR_TXFID_MASK (0x3f << 0)
343 #define TXFR_TXFID_SHIFT (0)
344
345 #define KS_P1SR 0xF8
346 #define P1SR_HP_MDIX (1 << 15)
347 #define P1SR_REV_POL (1 << 13)
348 #define P1SR_OP_100M (1 << 10)
349 #define P1SR_OP_FDX (1 << 9)
350 #define P1SR_OP_MDI (1 << 7)
351 #define P1SR_AN_DONE (1 << 6)
352 #define P1SR_LINK_GOOD (1 << 5)
353 #define P1SR_PNTR_FLOW (1 << 4)
354 #define P1SR_PNTR_100BT_FDX (1 << 3)
355 #define P1SR_PNTR_100BT_HDX (1 << 2)
356 #define P1SR_PNTR_10BT_FDX (1 << 1)
357 #define P1SR_PNTR_10BT_HDX (1 << 0)
358
359 #define ENUM_BUS_NONE 0
360 #define ENUM_BUS_8BIT 1
361 #define ENUM_BUS_16BIT 2
362 #define ENUM_BUS_32BIT 3
363
364 #define MAX_MCAST_LST 32
365 #define HW_MCAST_SIZE 8
366
367 /**
368 * union ks_tx_hdr - tx header data
369 * @txb: The header as bytes
370 * @txw: The header as 16bit, little-endian words
371 *
372 * A dual representation of the tx header data to allow
373 * access to individual bytes, and to allow 16bit accesses
374 * with 16bit alignment.
375 */
376 union ks_tx_hdr {
377 u8 txb[4];
378 __le16 txw[2];
379 };
380
381 /**
382 * struct ks_net - KS8851 driver private data
383 * @net_device : The network device we're bound to
384 * @hw_addr : start address of data register.
385 * @hw_addr_cmd : start address of command register.
386 * @txh : temporaly buffer to save status/length.
387 * @lock : Lock to ensure that the device is not accessed when busy.
388 * @pdev : Pointer to platform device.
389 * @mii : The MII state information for the mii calls.
390 * @frame_head_info : frame header information for multi-pkt rx.
391 * @statelock : Lock on this structure for tx list.
392 * @msg_enable : The message flags controlling driver output (see ethtool).
393 * @frame_cnt : number of frames received.
394 * @bus_width : i/o bus width.
395 * @irq : irq number assigned to this device.
396 * @rc_rxqcr : Cached copy of KS_RXQCR.
397 * @rc_txcr : Cached copy of KS_TXCR.
398 * @rc_ier : Cached copy of KS_IER.
399 * @sharedbus : Multipex(addr and data bus) mode indicator.
400 * @cmd_reg_cache : command register cached.
401 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
402 * @promiscuous : promiscuous mode indicator.
403 * @all_mcast : mutlicast indicator.
404 * @mcast_lst_size : size of multicast list.
405 * @mcast_lst : multicast list.
406 * @mcast_bits : multicast enabed.
407 * @mac_addr : MAC address assigned to this device.
408 * @fid : frame id.
409 * @extra_byte : number of extra byte prepended rx pkt.
410 * @enabled : indicator this device works.
411 *
412 * The @lock ensures that the chip is protected when certain operations are
413 * in progress. When the read or write packet transfer is in progress, most
414 * of the chip registers are not accessible until the transfer is finished and
415 * the DMA has been de-asserted.
416 *
417 * The @statelock is used to protect information in the structure which may
418 * need to be accessed via several sources, such as the network driver layer
419 * or one of the work queues.
420 *
421 */
422
423 /* Receive multiplex framer header info */
424 struct type_frame_head {
425 u16 sts; /* Frame status */
426 u16 len; /* Byte count */
427 };
428
429 struct ks_net {
430 struct net_device *netdev;
431 void __iomem *hw_addr;
432 void __iomem *hw_addr_cmd;
433 union ks_tx_hdr txh ____cacheline_aligned;
434 struct mutex lock; /* spinlock to be interrupt safe */
435 struct platform_device *pdev;
436 struct mii_if_info mii;
437 struct type_frame_head *frame_head_info;
438 spinlock_t statelock;
439 u32 msg_enable;
440 u32 frame_cnt;
441 int bus_width;
442 int irq;
443
444 u16 rc_rxqcr;
445 u16 rc_txcr;
446 u16 rc_ier;
447 u16 sharedbus;
448 u16 cmd_reg_cache;
449 u16 cmd_reg_cache_int;
450 u16 promiscuous;
451 u16 all_mcast;
452 u16 mcast_lst_size;
453 u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
454 u8 mcast_bits[HW_MCAST_SIZE];
455 u8 mac_addr[6];
456 u8 fid;
457 u8 extra_byte;
458 u8 enabled;
459 };
460
461 static int msg_enable;
462
463 #define BE3 0x8000 /* Byte Enable 3 */
464 #define BE2 0x4000 /* Byte Enable 2 */
465 #define BE1 0x2000 /* Byte Enable 1 */
466 #define BE0 0x1000 /* Byte Enable 0 */
467
468 /**
469 * register read/write calls.
470 *
471 * All these calls issue transactions to access the chip's registers. They
472 * all require that the necessary lock is held to prevent accesses when the
473 * chip is busy transferring packet data (RX/TX FIFO accesses).
474 */
475
476 /**
477 * ks_rdreg8 - read 8 bit register from device
478 * @ks : The chip information
479 * @offset: The register address
480 *
481 * Read a 8bit register from the chip, returning the result
482 */
ks_rdreg8(struct ks_net * ks,int offset)483 static u8 ks_rdreg8(struct ks_net *ks, int offset)
484 {
485 u16 data;
486 u8 shift_bit = offset & 0x03;
487 u8 shift_data = (offset & 1) << 3;
488 ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
489 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
490 data = ioread16(ks->hw_addr);
491 return (u8)(data >> shift_data);
492 }
493
494 /**
495 * ks_rdreg16 - read 16 bit register from device
496 * @ks : The chip information
497 * @offset: The register address
498 *
499 * Read a 16bit register from the chip, returning the result
500 */
501
ks_rdreg16(struct ks_net * ks,int offset)502 static u16 ks_rdreg16(struct ks_net *ks, int offset)
503 {
504 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
505 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
506 return ioread16(ks->hw_addr);
507 }
508
509 /**
510 * ks_wrreg8 - write 8bit register value to chip
511 * @ks: The chip information
512 * @offset: The register address
513 * @value: The value to write
514 *
515 */
ks_wrreg8(struct ks_net * ks,int offset,u8 value)516 static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
517 {
518 u8 shift_bit = (offset & 0x03);
519 u16 value_write = (u16)(value << ((offset & 1) << 3));
520 ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
521 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
522 iowrite16(value_write, ks->hw_addr);
523 }
524
525 /**
526 * ks_wrreg16 - write 16bit register value to chip
527 * @ks: The chip information
528 * @offset: The register address
529 * @value: The value to write
530 *
531 */
532
ks_wrreg16(struct ks_net * ks,int offset,u16 value)533 static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
534 {
535 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
536 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
537 iowrite16(value, ks->hw_addr);
538 }
539
540 /**
541 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
542 * @ks: The chip state
543 * @wptr: buffer address to save data
544 * @len: length in byte to read
545 *
546 */
ks_inblk(struct ks_net * ks,u16 * wptr,u32 len)547 static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
548 {
549 len >>= 1;
550 while (len--)
551 *wptr++ = (u16)ioread16(ks->hw_addr);
552 }
553
554 /**
555 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
556 * @ks: The chip information
557 * @wptr: buffer address
558 * @len: length in byte to write
559 *
560 */
ks_outblk(struct ks_net * ks,u16 * wptr,u32 len)561 static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
562 {
563 len >>= 1;
564 while (len--)
565 iowrite16(*wptr++, ks->hw_addr);
566 }
567
ks_disable_int(struct ks_net * ks)568 static void ks_disable_int(struct ks_net *ks)
569 {
570 ks_wrreg16(ks, KS_IER, 0x0000);
571 } /* ks_disable_int */
572
ks_enable_int(struct ks_net * ks)573 static void ks_enable_int(struct ks_net *ks)
574 {
575 ks_wrreg16(ks, KS_IER, ks->rc_ier);
576 } /* ks_enable_int */
577
578 /**
579 * ks_tx_fifo_space - return the available hardware buffer size.
580 * @ks: The chip information
581 *
582 */
ks_tx_fifo_space(struct ks_net * ks)583 static inline u16 ks_tx_fifo_space(struct ks_net *ks)
584 {
585 return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
586 }
587
588 /**
589 * ks_save_cmd_reg - save the command register from the cache.
590 * @ks: The chip information
591 *
592 */
ks_save_cmd_reg(struct ks_net * ks)593 static inline void ks_save_cmd_reg(struct ks_net *ks)
594 {
595 /*ks8851 MLL has a bug to read back the command register.
596 * So rely on software to save the content of command register.
597 */
598 ks->cmd_reg_cache_int = ks->cmd_reg_cache;
599 }
600
601 /**
602 * ks_restore_cmd_reg - restore the command register from the cache and
603 * write to hardware register.
604 * @ks: The chip information
605 *
606 */
ks_restore_cmd_reg(struct ks_net * ks)607 static inline void ks_restore_cmd_reg(struct ks_net *ks)
608 {
609 ks->cmd_reg_cache = ks->cmd_reg_cache_int;
610 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
611 }
612
613 /**
614 * ks_set_powermode - set power mode of the device
615 * @ks: The chip information
616 * @pwrmode: The power mode value to write to KS_PMECR.
617 *
618 * Change the power mode of the chip.
619 */
ks_set_powermode(struct ks_net * ks,unsigned pwrmode)620 static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
621 {
622 unsigned pmecr;
623
624 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
625
626 ks_rdreg16(ks, KS_GRR);
627 pmecr = ks_rdreg16(ks, KS_PMECR);
628 pmecr &= ~PMECR_PM_MASK;
629 pmecr |= pwrmode;
630
631 ks_wrreg16(ks, KS_PMECR, pmecr);
632 }
633
634 /**
635 * ks_read_config - read chip configuration of bus width.
636 * @ks: The chip information
637 *
638 */
ks_read_config(struct ks_net * ks)639 static void ks_read_config(struct ks_net *ks)
640 {
641 u16 reg_data = 0;
642
643 /* Regardless of bus width, 8 bit read should always work.*/
644 reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
645 reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
646
647 /* addr/data bus are multiplexed */
648 ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
649
650 /* There are garbage data when reading data from QMU,
651 depending on bus-width.
652 */
653
654 if (reg_data & CCR_8BIT) {
655 ks->bus_width = ENUM_BUS_8BIT;
656 ks->extra_byte = 1;
657 } else if (reg_data & CCR_16BIT) {
658 ks->bus_width = ENUM_BUS_16BIT;
659 ks->extra_byte = 2;
660 } else {
661 ks->bus_width = ENUM_BUS_32BIT;
662 ks->extra_byte = 4;
663 }
664 }
665
666 /**
667 * ks_soft_reset - issue one of the soft reset to the device
668 * @ks: The device state.
669 * @op: The bit(s) to set in the GRR
670 *
671 * Issue the relevant soft-reset command to the device's GRR register
672 * specified by @op.
673 *
674 * Note, the delays are in there as a caution to ensure that the reset
675 * has time to take effect and then complete. Since the datasheet does
676 * not currently specify the exact sequence, we have chosen something
677 * that seems to work with our device.
678 */
ks_soft_reset(struct ks_net * ks,unsigned op)679 static void ks_soft_reset(struct ks_net *ks, unsigned op)
680 {
681 /* Disable interrupt first */
682 ks_wrreg16(ks, KS_IER, 0x0000);
683 ks_wrreg16(ks, KS_GRR, op);
684 mdelay(10); /* wait a short time to effect reset */
685 ks_wrreg16(ks, KS_GRR, 0);
686 mdelay(1); /* wait for condition to clear */
687 }
688
689
ks_enable_qmu(struct ks_net * ks)690 void ks_enable_qmu(struct ks_net *ks)
691 {
692 u16 w;
693
694 w = ks_rdreg16(ks, KS_TXCR);
695 /* Enables QMU Transmit (TXCR). */
696 ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
697
698 /*
699 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
700 * Enable
701 */
702
703 w = ks_rdreg16(ks, KS_RXQCR);
704 ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
705
706 /* Enables QMU Receive (RXCR1). */
707 w = ks_rdreg16(ks, KS_RXCR1);
708 ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
709 ks->enabled = true;
710 } /* ks_enable_qmu */
711
ks_disable_qmu(struct ks_net * ks)712 static void ks_disable_qmu(struct ks_net *ks)
713 {
714 u16 w;
715
716 w = ks_rdreg16(ks, KS_TXCR);
717
718 /* Disables QMU Transmit (TXCR). */
719 w &= ~TXCR_TXE;
720 ks_wrreg16(ks, KS_TXCR, w);
721
722 /* Disables QMU Receive (RXCR1). */
723 w = ks_rdreg16(ks, KS_RXCR1);
724 w &= ~RXCR1_RXE ;
725 ks_wrreg16(ks, KS_RXCR1, w);
726
727 ks->enabled = false;
728
729 } /* ks_disable_qmu */
730
731 /**
732 * ks_read_qmu - read 1 pkt data from the QMU.
733 * @ks: The chip information
734 * @buf: buffer address to save 1 pkt
735 * @len: Pkt length
736 * Here is the sequence to read 1 pkt:
737 * 1. set sudo DMA mode
738 * 2. read prepend data
739 * 3. read pkt data
740 * 4. reset sudo DMA Mode
741 */
ks_read_qmu(struct ks_net * ks,u16 * buf,u32 len)742 static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
743 {
744 u32 r = ks->extra_byte & 0x1 ;
745 u32 w = ks->extra_byte - r;
746
747 /* 1. set sudo DMA mode */
748 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
749 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
750
751 /* 2. read prepend data */
752 /**
753 * read 4 + extra bytes and discard them.
754 * extra bytes for dummy, 2 for status, 2 for len
755 */
756
757 /* use likely(r) for 8 bit access for performance */
758 if (unlikely(r))
759 ioread8(ks->hw_addr);
760 ks_inblk(ks, buf, w + 2 + 2);
761
762 /* 3. read pkt data */
763 ks_inblk(ks, buf, ALIGN(len, 4));
764
765 /* 4. reset sudo DMA Mode */
766 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
767 }
768
769 /**
770 * ks_rcv - read multiple pkts data from the QMU.
771 * @ks: The chip information
772 * @netdev: The network device being opened.
773 *
774 * Read all of header information before reading pkt content.
775 * It is not allowed only port of pkts in QMU after issuing
776 * interrupt ack.
777 */
ks_rcv(struct ks_net * ks,struct net_device * netdev)778 static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
779 {
780 u32 i;
781 struct type_frame_head *frame_hdr = ks->frame_head_info;
782 struct sk_buff *skb;
783
784 ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
785
786 /* read all header information */
787 for (i = 0; i < ks->frame_cnt; i++) {
788 /* Checking Received packet status */
789 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
790 /* Get packet len from hardware */
791 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
792 frame_hdr++;
793 }
794
795 frame_hdr = ks->frame_head_info;
796 while (ks->frame_cnt--) {
797 skb = dev_alloc_skb(frame_hdr->len + 16);
798 if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
799 (frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
800 skb_reserve(skb, 2);
801 /* read data block including CRC 4 bytes */
802 ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
803 skb_put(skb, frame_hdr->len);
804 skb->protocol = eth_type_trans(skb, netdev);
805 netif_rx(skb);
806 } else {
807 pr_err("%s: err:skb alloc\n", __func__);
808 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
809 if (skb)
810 dev_kfree_skb_irq(skb);
811 }
812 frame_hdr++;
813 }
814 }
815
816 /**
817 * ks_update_link_status - link status update.
818 * @netdev: The network device being opened.
819 * @ks: The chip information
820 *
821 */
822
ks_update_link_status(struct net_device * netdev,struct ks_net * ks)823 static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
824 {
825 /* check the status of the link */
826 u32 link_up_status;
827 if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
828 netif_carrier_on(netdev);
829 link_up_status = true;
830 } else {
831 netif_carrier_off(netdev);
832 link_up_status = false;
833 }
834 netif_dbg(ks, link, ks->netdev,
835 "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
836 }
837
838 /**
839 * ks_irq - device interrupt handler
840 * @irq: Interrupt number passed from the IRQ hnalder.
841 * @pw: The private word passed to register_irq(), our struct ks_net.
842 *
843 * This is the handler invoked to find out what happened
844 *
845 * Read the interrupt status, work out what needs to be done and then clear
846 * any of the interrupts that are not needed.
847 */
848
ks_irq(int irq,void * pw)849 static irqreturn_t ks_irq(int irq, void *pw)
850 {
851 struct net_device *netdev = pw;
852 struct ks_net *ks = netdev_priv(netdev);
853 u16 status;
854
855 /*this should be the first in IRQ handler */
856 ks_save_cmd_reg(ks);
857
858 status = ks_rdreg16(ks, KS_ISR);
859 if (unlikely(!status)) {
860 ks_restore_cmd_reg(ks);
861 return IRQ_NONE;
862 }
863
864 ks_wrreg16(ks, KS_ISR, status);
865
866 if (likely(status & IRQ_RXI))
867 ks_rcv(ks, netdev);
868
869 if (unlikely(status & IRQ_LCI))
870 ks_update_link_status(netdev, ks);
871
872 if (unlikely(status & IRQ_TXI))
873 netif_wake_queue(netdev);
874
875 if (unlikely(status & IRQ_LDI)) {
876
877 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
878 pmecr &= ~PMECR_WKEVT_MASK;
879 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
880 }
881
882 /* this should be the last in IRQ handler*/
883 ks_restore_cmd_reg(ks);
884 return IRQ_HANDLED;
885 }
886
887
888 /**
889 * ks_net_open - open network device
890 * @netdev: The network device being opened.
891 *
892 * Called when the network device is marked active, such as a user executing
893 * 'ifconfig up' on the device.
894 */
ks_net_open(struct net_device * netdev)895 static int ks_net_open(struct net_device *netdev)
896 {
897 struct ks_net *ks = netdev_priv(netdev);
898 int err;
899
900 #define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
901 /* lock the card, even if we may not actually do anything
902 * else at the moment.
903 */
904
905 netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
906
907 /* reset the HW */
908 err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
909
910 if (err) {
911 pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
912 return err;
913 }
914
915 /* wake up powermode to normal mode */
916 ks_set_powermode(ks, PMECR_PM_NORMAL);
917 mdelay(1); /* wait for normal mode to take effect */
918
919 ks_wrreg16(ks, KS_ISR, 0xffff);
920 ks_enable_int(ks);
921 ks_enable_qmu(ks);
922 netif_start_queue(ks->netdev);
923
924 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
925
926 return 0;
927 }
928
929 /**
930 * ks_net_stop - close network device
931 * @netdev: The device being closed.
932 *
933 * Called to close down a network device which has been active. Cancell any
934 * work, shutdown the RX and TX process and then place the chip into a low
935 * power state whilst it is not being used.
936 */
ks_net_stop(struct net_device * netdev)937 static int ks_net_stop(struct net_device *netdev)
938 {
939 struct ks_net *ks = netdev_priv(netdev);
940
941 netif_info(ks, ifdown, netdev, "shutting down\n");
942
943 netif_stop_queue(netdev);
944
945 mutex_lock(&ks->lock);
946
947 /* turn off the IRQs and ack any outstanding */
948 ks_wrreg16(ks, KS_IER, 0x0000);
949 ks_wrreg16(ks, KS_ISR, 0xffff);
950
951 /* shutdown RX/TX QMU */
952 ks_disable_qmu(ks);
953
954 /* set powermode to soft power down to save power */
955 ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
956 free_irq(ks->irq, netdev);
957 mutex_unlock(&ks->lock);
958 return 0;
959 }
960
961
962 /**
963 * ks_write_qmu - write 1 pkt data to the QMU.
964 * @ks: The chip information
965 * @pdata: buffer address to save 1 pkt
966 * @len: Pkt length in byte
967 * Here is the sequence to write 1 pkt:
968 * 1. set sudo DMA mode
969 * 2. write status/length
970 * 3. write pkt data
971 * 4. reset sudo DMA Mode
972 * 5. reset sudo DMA mode
973 * 6. Wait until pkt is out
974 */
ks_write_qmu(struct ks_net * ks,u8 * pdata,u16 len)975 static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
976 {
977 /* start header at txb[0] to align txw entries */
978 ks->txh.txw[0] = 0;
979 ks->txh.txw[1] = cpu_to_le16(len);
980
981 /* 1. set sudo-DMA mode */
982 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
983 /* 2. write status/lenth info */
984 ks_outblk(ks, ks->txh.txw, 4);
985 /* 3. write pkt data */
986 ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
987 /* 4. reset sudo-DMA mode */
988 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
989 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
990 ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
991 /* 6. wait until TXQCR_METFE is auto-cleared */
992 while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
993 ;
994 }
995
996 /**
997 * ks_start_xmit - transmit packet
998 * @skb : The buffer to transmit
999 * @netdev : The device used to transmit the packet.
1000 *
1001 * Called by the network layer to transmit the @skb.
1002 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1003 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1004 */
ks_start_xmit(struct sk_buff * skb,struct net_device * netdev)1005 static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1006 {
1007 int retv = NETDEV_TX_OK;
1008 struct ks_net *ks = netdev_priv(netdev);
1009
1010 disable_irq(netdev->irq);
1011 ks_disable_int(ks);
1012 spin_lock(&ks->statelock);
1013
1014 /* Extra space are required:
1015 * 4 byte for alignment, 4 for status/length, 4 for CRC
1016 */
1017
1018 if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1019 ks_write_qmu(ks, skb->data, skb->len);
1020 dev_kfree_skb(skb);
1021 } else
1022 retv = NETDEV_TX_BUSY;
1023 spin_unlock(&ks->statelock);
1024 ks_enable_int(ks);
1025 enable_irq(netdev->irq);
1026 return retv;
1027 }
1028
1029 /**
1030 * ks_start_rx - ready to serve pkts
1031 * @ks : The chip information
1032 *
1033 */
ks_start_rx(struct ks_net * ks)1034 static void ks_start_rx(struct ks_net *ks)
1035 {
1036 u16 cntl;
1037
1038 /* Enables QMU Receive (RXCR1). */
1039 cntl = ks_rdreg16(ks, KS_RXCR1);
1040 cntl |= RXCR1_RXE ;
1041 ks_wrreg16(ks, KS_RXCR1, cntl);
1042 } /* ks_start_rx */
1043
1044 /**
1045 * ks_stop_rx - stop to serve pkts
1046 * @ks : The chip information
1047 *
1048 */
ks_stop_rx(struct ks_net * ks)1049 static void ks_stop_rx(struct ks_net *ks)
1050 {
1051 u16 cntl;
1052
1053 /* Disables QMU Receive (RXCR1). */
1054 cntl = ks_rdreg16(ks, KS_RXCR1);
1055 cntl &= ~RXCR1_RXE ;
1056 ks_wrreg16(ks, KS_RXCR1, cntl);
1057
1058 } /* ks_stop_rx */
1059
1060 static unsigned long const ethernet_polynomial = 0x04c11db7U;
1061
ether_gen_crc(int length,u8 * data)1062 static unsigned long ether_gen_crc(int length, u8 *data)
1063 {
1064 long crc = -1;
1065 while (--length >= 0) {
1066 u8 current_octet = *data++;
1067 int bit;
1068
1069 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1070 crc = (crc << 1) ^
1071 ((crc < 0) ^ (current_octet & 1) ?
1072 ethernet_polynomial : 0);
1073 }
1074 }
1075 return (unsigned long)crc;
1076 } /* ether_gen_crc */
1077
1078 /**
1079 * ks_set_grpaddr - set multicast information
1080 * @ks : The chip information
1081 */
1082
ks_set_grpaddr(struct ks_net * ks)1083 static void ks_set_grpaddr(struct ks_net *ks)
1084 {
1085 u8 i;
1086 u32 index, position, value;
1087
1088 memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1089
1090 for (i = 0; i < ks->mcast_lst_size; i++) {
1091 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1092 index = position >> 3;
1093 value = 1 << (position & 7);
1094 ks->mcast_bits[index] |= (u8)value;
1095 }
1096
1097 for (i = 0; i < HW_MCAST_SIZE; i++) {
1098 if (i & 1) {
1099 ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1100 (ks->mcast_bits[i] << 8) |
1101 ks->mcast_bits[i - 1]);
1102 }
1103 }
1104 } /* ks_set_grpaddr */
1105
1106 /*
1107 * ks_clear_mcast - clear multicast information
1108 *
1109 * @ks : The chip information
1110 * This routine removes all mcast addresses set in the hardware.
1111 */
1112
ks_clear_mcast(struct ks_net * ks)1113 static void ks_clear_mcast(struct ks_net *ks)
1114 {
1115 u16 i, mcast_size;
1116 for (i = 0; i < HW_MCAST_SIZE; i++)
1117 ks->mcast_bits[i] = 0;
1118
1119 mcast_size = HW_MCAST_SIZE >> 2;
1120 for (i = 0; i < mcast_size; i++)
1121 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1122 }
1123
ks_set_promis(struct ks_net * ks,u16 promiscuous_mode)1124 static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1125 {
1126 u16 cntl;
1127 ks->promiscuous = promiscuous_mode;
1128 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1129 cntl = ks_rdreg16(ks, KS_RXCR1);
1130
1131 cntl &= ~RXCR1_FILTER_MASK;
1132 if (promiscuous_mode)
1133 /* Enable Promiscuous mode */
1134 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1135 else
1136 /* Disable Promiscuous mode (default normal mode) */
1137 cntl |= RXCR1_RXPAFMA;
1138
1139 ks_wrreg16(ks, KS_RXCR1, cntl);
1140
1141 if (ks->enabled)
1142 ks_start_rx(ks);
1143
1144 } /* ks_set_promis */
1145
ks_set_mcast(struct ks_net * ks,u16 mcast)1146 static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1147 {
1148 u16 cntl;
1149
1150 ks->all_mcast = mcast;
1151 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1152 cntl = ks_rdreg16(ks, KS_RXCR1);
1153 cntl &= ~RXCR1_FILTER_MASK;
1154 if (mcast)
1155 /* Enable "Perfect with Multicast address passed mode" */
1156 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1157 else
1158 /**
1159 * Disable "Perfect with Multicast address passed
1160 * mode" (normal mode).
1161 */
1162 cntl |= RXCR1_RXPAFMA;
1163
1164 ks_wrreg16(ks, KS_RXCR1, cntl);
1165
1166 if (ks->enabled)
1167 ks_start_rx(ks);
1168 } /* ks_set_mcast */
1169
ks_set_rx_mode(struct net_device * netdev)1170 static void ks_set_rx_mode(struct net_device *netdev)
1171 {
1172 struct ks_net *ks = netdev_priv(netdev);
1173 struct netdev_hw_addr *ha;
1174
1175 /* Turn on/off promiscuous mode. */
1176 if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1177 ks_set_promis(ks,
1178 (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1179 /* Turn on/off all mcast mode. */
1180 else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1181 ks_set_mcast(ks,
1182 (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1183 else
1184 ks_set_promis(ks, false);
1185
1186 if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1187 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1188 int i = 0;
1189
1190 netdev_for_each_mc_addr(ha, netdev) {
1191 if (!(*ha->addr & 1))
1192 continue;
1193 if (i >= MAX_MCAST_LST)
1194 break;
1195 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1196 }
1197 ks->mcast_lst_size = (u8)i;
1198 ks_set_grpaddr(ks);
1199 } else {
1200 /**
1201 * List too big to support so
1202 * turn on all mcast mode.
1203 */
1204 ks->mcast_lst_size = MAX_MCAST_LST;
1205 ks_set_mcast(ks, true);
1206 }
1207 } else {
1208 ks->mcast_lst_size = 0;
1209 ks_clear_mcast(ks);
1210 }
1211 } /* ks_set_rx_mode */
1212
ks_set_mac(struct ks_net * ks,u8 * data)1213 static void ks_set_mac(struct ks_net *ks, u8 *data)
1214 {
1215 u16 *pw = (u16 *)data;
1216 u16 w, u;
1217
1218 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1219
1220 u = *pw++;
1221 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1222 ks_wrreg16(ks, KS_MARH, w);
1223
1224 u = *pw++;
1225 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1226 ks_wrreg16(ks, KS_MARM, w);
1227
1228 u = *pw;
1229 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1230 ks_wrreg16(ks, KS_MARL, w);
1231
1232 memcpy(ks->mac_addr, data, 6);
1233
1234 if (ks->enabled)
1235 ks_start_rx(ks);
1236 }
1237
ks_set_mac_address(struct net_device * netdev,void * paddr)1238 static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1239 {
1240 struct ks_net *ks = netdev_priv(netdev);
1241 struct sockaddr *addr = paddr;
1242 u8 *da;
1243
1244 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1245
1246 da = (u8 *)netdev->dev_addr;
1247
1248 ks_set_mac(ks, da);
1249 return 0;
1250 }
1251
ks_net_ioctl(struct net_device * netdev,struct ifreq * req,int cmd)1252 static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1253 {
1254 struct ks_net *ks = netdev_priv(netdev);
1255
1256 if (!netif_running(netdev))
1257 return -EINVAL;
1258
1259 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1260 }
1261
1262 static const struct net_device_ops ks_netdev_ops = {
1263 .ndo_open = ks_net_open,
1264 .ndo_stop = ks_net_stop,
1265 .ndo_do_ioctl = ks_net_ioctl,
1266 .ndo_start_xmit = ks_start_xmit,
1267 .ndo_set_mac_address = ks_set_mac_address,
1268 .ndo_set_rx_mode = ks_set_rx_mode,
1269 .ndo_change_mtu = eth_change_mtu,
1270 .ndo_validate_addr = eth_validate_addr,
1271 };
1272
1273 /* ethtool support */
1274
ks_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * di)1275 static void ks_get_drvinfo(struct net_device *netdev,
1276 struct ethtool_drvinfo *di)
1277 {
1278 strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1279 strlcpy(di->version, "1.00", sizeof(di->version));
1280 strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1281 sizeof(di->bus_info));
1282 }
1283
ks_get_msglevel(struct net_device * netdev)1284 static u32 ks_get_msglevel(struct net_device *netdev)
1285 {
1286 struct ks_net *ks = netdev_priv(netdev);
1287 return ks->msg_enable;
1288 }
1289
ks_set_msglevel(struct net_device * netdev,u32 to)1290 static void ks_set_msglevel(struct net_device *netdev, u32 to)
1291 {
1292 struct ks_net *ks = netdev_priv(netdev);
1293 ks->msg_enable = to;
1294 }
1295
ks_get_settings(struct net_device * netdev,struct ethtool_cmd * cmd)1296 static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1297 {
1298 struct ks_net *ks = netdev_priv(netdev);
1299 return mii_ethtool_gset(&ks->mii, cmd);
1300 }
1301
ks_set_settings(struct net_device * netdev,struct ethtool_cmd * cmd)1302 static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1303 {
1304 struct ks_net *ks = netdev_priv(netdev);
1305 return mii_ethtool_sset(&ks->mii, cmd);
1306 }
1307
ks_get_link(struct net_device * netdev)1308 static u32 ks_get_link(struct net_device *netdev)
1309 {
1310 struct ks_net *ks = netdev_priv(netdev);
1311 return mii_link_ok(&ks->mii);
1312 }
1313
ks_nway_reset(struct net_device * netdev)1314 static int ks_nway_reset(struct net_device *netdev)
1315 {
1316 struct ks_net *ks = netdev_priv(netdev);
1317 return mii_nway_restart(&ks->mii);
1318 }
1319
1320 static const struct ethtool_ops ks_ethtool_ops = {
1321 .get_drvinfo = ks_get_drvinfo,
1322 .get_msglevel = ks_get_msglevel,
1323 .set_msglevel = ks_set_msglevel,
1324 .get_settings = ks_get_settings,
1325 .set_settings = ks_set_settings,
1326 .get_link = ks_get_link,
1327 .nway_reset = ks_nway_reset,
1328 };
1329
1330 /* MII interface controls */
1331
1332 /**
1333 * ks_phy_reg - convert MII register into a KS8851 register
1334 * @reg: MII register number.
1335 *
1336 * Return the KS8851 register number for the corresponding MII PHY register
1337 * if possible. Return zero if the MII register has no direct mapping to the
1338 * KS8851 register set.
1339 */
ks_phy_reg(int reg)1340 static int ks_phy_reg(int reg)
1341 {
1342 switch (reg) {
1343 case MII_BMCR:
1344 return KS_P1MBCR;
1345 case MII_BMSR:
1346 return KS_P1MBSR;
1347 case MII_PHYSID1:
1348 return KS_PHY1ILR;
1349 case MII_PHYSID2:
1350 return KS_PHY1IHR;
1351 case MII_ADVERTISE:
1352 return KS_P1ANAR;
1353 case MII_LPA:
1354 return KS_P1ANLPR;
1355 }
1356
1357 return 0x0;
1358 }
1359
1360 /**
1361 * ks_phy_read - MII interface PHY register read.
1362 * @netdev: The network device the PHY is on.
1363 * @phy_addr: Address of PHY (ignored as we only have one)
1364 * @reg: The register to read.
1365 *
1366 * This call reads data from the PHY register specified in @reg. Since the
1367 * device does not support all the MII registers, the non-existent values
1368 * are always returned as zero.
1369 *
1370 * We return zero for unsupported registers as the MII code does not check
1371 * the value returned for any error status, and simply returns it to the
1372 * caller. The mii-tool that the driver was tested with takes any -ve error
1373 * as real PHY capabilities, thus displaying incorrect data to the user.
1374 */
ks_phy_read(struct net_device * netdev,int phy_addr,int reg)1375 static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1376 {
1377 struct ks_net *ks = netdev_priv(netdev);
1378 int ksreg;
1379 int result;
1380
1381 ksreg = ks_phy_reg(reg);
1382 if (!ksreg)
1383 return 0x0; /* no error return allowed, so use zero */
1384
1385 mutex_lock(&ks->lock);
1386 result = ks_rdreg16(ks, ksreg);
1387 mutex_unlock(&ks->lock);
1388
1389 return result;
1390 }
1391
ks_phy_write(struct net_device * netdev,int phy,int reg,int value)1392 static void ks_phy_write(struct net_device *netdev,
1393 int phy, int reg, int value)
1394 {
1395 struct ks_net *ks = netdev_priv(netdev);
1396 int ksreg;
1397
1398 ksreg = ks_phy_reg(reg);
1399 if (ksreg) {
1400 mutex_lock(&ks->lock);
1401 ks_wrreg16(ks, ksreg, value);
1402 mutex_unlock(&ks->lock);
1403 }
1404 }
1405
1406 /**
1407 * ks_read_selftest - read the selftest memory info.
1408 * @ks: The device state
1409 *
1410 * Read and check the TX/RX memory selftest information.
1411 */
ks_read_selftest(struct ks_net * ks)1412 static int ks_read_selftest(struct ks_net *ks)
1413 {
1414 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1415 int ret = 0;
1416 unsigned rd;
1417
1418 rd = ks_rdreg16(ks, KS_MBIR);
1419
1420 if ((rd & both_done) != both_done) {
1421 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1422 return 0;
1423 }
1424
1425 if (rd & MBIR_TXMBFA) {
1426 netdev_err(ks->netdev, "TX memory selftest fails\n");
1427 ret |= 1;
1428 }
1429
1430 if (rd & MBIR_RXMBFA) {
1431 netdev_err(ks->netdev, "RX memory selftest fails\n");
1432 ret |= 2;
1433 }
1434
1435 netdev_info(ks->netdev, "the selftest passes\n");
1436 return ret;
1437 }
1438
ks_setup(struct ks_net * ks)1439 static void ks_setup(struct ks_net *ks)
1440 {
1441 u16 w;
1442
1443 /**
1444 * Configure QMU Transmit
1445 */
1446
1447 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1448 ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1449
1450 /* Setup Receive Frame Data Pointer Auto-Increment */
1451 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1452
1453 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1454 ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1455
1456 /* Setup RxQ Command Control (RXQCR) */
1457 ks->rc_rxqcr = RXQCR_CMD_CNTL;
1458 ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1459
1460 /**
1461 * set the force mode to half duplex, default is full duplex
1462 * because if the auto-negotiation fails, most switch uses
1463 * half-duplex.
1464 */
1465
1466 w = ks_rdreg16(ks, KS_P1MBCR);
1467 w &= ~P1MBCR_FORCE_FDX;
1468 ks_wrreg16(ks, KS_P1MBCR, w);
1469
1470 w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1471 ks_wrreg16(ks, KS_TXCR, w);
1472
1473 w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1474
1475 if (ks->promiscuous) /* bPromiscuous */
1476 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1477 else if (ks->all_mcast) /* Multicast address passed mode */
1478 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1479 else /* Normal mode */
1480 w |= RXCR1_RXPAFMA;
1481
1482 ks_wrreg16(ks, KS_RXCR1, w);
1483 } /*ks_setup */
1484
1485
ks_setup_int(struct ks_net * ks)1486 static void ks_setup_int(struct ks_net *ks)
1487 {
1488 ks->rc_ier = 0x00;
1489 /* Clear the interrupts status of the hardware. */
1490 ks_wrreg16(ks, KS_ISR, 0xffff);
1491
1492 /* Enables the interrupts of the hardware. */
1493 ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1494 } /* ks_setup_int */
1495
ks_hw_init(struct ks_net * ks)1496 static int ks_hw_init(struct ks_net *ks)
1497 {
1498 #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1499 ks->promiscuous = 0;
1500 ks->all_mcast = 0;
1501 ks->mcast_lst_size = 0;
1502
1503 ks->frame_head_info = (struct type_frame_head *) \
1504 kmalloc(MHEADER_SIZE, GFP_KERNEL);
1505 if (!ks->frame_head_info) {
1506 pr_err("Error: Fail to allocate frame memory\n");
1507 return false;
1508 }
1509
1510 ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1511 return true;
1512 }
1513
1514
ks8851_probe(struct platform_device * pdev)1515 static int __devinit ks8851_probe(struct platform_device *pdev)
1516 {
1517 int err = -ENOMEM;
1518 struct resource *io_d, *io_c;
1519 struct net_device *netdev;
1520 struct ks_net *ks;
1521 u16 id, data;
1522
1523 io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524 io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1525
1526 if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
1527 goto err_mem_region;
1528
1529 if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
1530 goto err_mem_region1;
1531
1532 netdev = alloc_etherdev(sizeof(struct ks_net));
1533 if (!netdev)
1534 goto err_alloc_etherdev;
1535
1536 SET_NETDEV_DEV(netdev, &pdev->dev);
1537
1538 ks = netdev_priv(netdev);
1539 ks->netdev = netdev;
1540 ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
1541
1542 if (!ks->hw_addr)
1543 goto err_ioremap;
1544
1545 ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
1546 if (!ks->hw_addr_cmd)
1547 goto err_ioremap1;
1548
1549 ks->irq = platform_get_irq(pdev, 0);
1550
1551 if (ks->irq < 0) {
1552 err = ks->irq;
1553 goto err_get_irq;
1554 }
1555
1556 ks->pdev = pdev;
1557
1558 mutex_init(&ks->lock);
1559 spin_lock_init(&ks->statelock);
1560
1561 netdev->netdev_ops = &ks_netdev_ops;
1562 netdev->ethtool_ops = &ks_ethtool_ops;
1563
1564 /* setup mii state */
1565 ks->mii.dev = netdev;
1566 ks->mii.phy_id = 1,
1567 ks->mii.phy_id_mask = 1;
1568 ks->mii.reg_num_mask = 0xf;
1569 ks->mii.mdio_read = ks_phy_read;
1570 ks->mii.mdio_write = ks_phy_write;
1571
1572 netdev_info(netdev, "message enable is %d\n", msg_enable);
1573 /* set the default message enable */
1574 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1575 NETIF_MSG_PROBE |
1576 NETIF_MSG_LINK));
1577 ks_read_config(ks);
1578
1579 /* simple check for a valid chip being connected to the bus */
1580 if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1581 netdev_err(netdev, "failed to read device ID\n");
1582 err = -ENODEV;
1583 goto err_register;
1584 }
1585
1586 if (ks_read_selftest(ks)) {
1587 netdev_err(netdev, "failed to read device ID\n");
1588 err = -ENODEV;
1589 goto err_register;
1590 }
1591
1592 err = register_netdev(netdev);
1593 if (err)
1594 goto err_register;
1595
1596 platform_set_drvdata(pdev, netdev);
1597
1598 ks_soft_reset(ks, GRR_GSR);
1599 ks_hw_init(ks);
1600 ks_disable_qmu(ks);
1601 ks_setup(ks);
1602 ks_setup_int(ks);
1603 memcpy(netdev->dev_addr, ks->mac_addr, 6);
1604
1605 data = ks_rdreg16(ks, KS_OBCR);
1606 ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1607
1608 /**
1609 * If you want to use the default MAC addr,
1610 * comment out the 2 functions below.
1611 */
1612
1613 random_ether_addr(netdev->dev_addr);
1614 ks_set_mac(ks, netdev->dev_addr);
1615
1616 id = ks_rdreg16(ks, KS_CIDER);
1617
1618 netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1619 (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1620 return 0;
1621
1622 err_register:
1623 err_get_irq:
1624 iounmap(ks->hw_addr_cmd);
1625 err_ioremap1:
1626 iounmap(ks->hw_addr);
1627 err_ioremap:
1628 free_netdev(netdev);
1629 err_alloc_etherdev:
1630 release_mem_region(io_c->start, resource_size(io_c));
1631 err_mem_region1:
1632 release_mem_region(io_d->start, resource_size(io_d));
1633 err_mem_region:
1634 return err;
1635 }
1636
ks8851_remove(struct platform_device * pdev)1637 static int __devexit ks8851_remove(struct platform_device *pdev)
1638 {
1639 struct net_device *netdev = platform_get_drvdata(pdev);
1640 struct ks_net *ks = netdev_priv(netdev);
1641 struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1642
1643 kfree(ks->frame_head_info);
1644 unregister_netdev(netdev);
1645 iounmap(ks->hw_addr);
1646 free_netdev(netdev);
1647 release_mem_region(iomem->start, resource_size(iomem));
1648 platform_set_drvdata(pdev, NULL);
1649 return 0;
1650
1651 }
1652
1653 static struct platform_driver ks8851_platform_driver = {
1654 .driver = {
1655 .name = DRV_NAME,
1656 .owner = THIS_MODULE,
1657 },
1658 .probe = ks8851_probe,
1659 .remove = __devexit_p(ks8851_remove),
1660 };
1661
ks8851_init(void)1662 static int __init ks8851_init(void)
1663 {
1664 return platform_driver_register(&ks8851_platform_driver);
1665 }
1666
ks8851_exit(void)1667 static void __exit ks8851_exit(void)
1668 {
1669 platform_driver_unregister(&ks8851_platform_driver);
1670 }
1671
1672 module_init(ks8851_init);
1673 module_exit(ks8851_exit);
1674
1675 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1676 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1677 MODULE_LICENSE("GPL");
1678 module_param_named(message, msg_enable, int, 0);
1679 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1680
1681