1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2011 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
33
34 #include "lpfc_version.h"
35 #include "lpfc_hw4.h"
36 #include "lpfc_hw.h"
37 #include "lpfc_sli.h"
38 #include "lpfc_sli4.h"
39 #include "lpfc_nl.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
42 #include "lpfc.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
46
47 #define LPFC_RESET_WAIT 2
48 #define LPFC_ABORT_WAIT 2
49
50 int _dump_buf_done;
51
52 static char *dif_op_str[] = {
53 "SCSI_PROT_NORMAL",
54 "SCSI_PROT_READ_INSERT",
55 "SCSI_PROT_WRITE_STRIP",
56 "SCSI_PROT_READ_STRIP",
57 "SCSI_PROT_WRITE_INSERT",
58 "SCSI_PROT_READ_PASS",
59 "SCSI_PROT_WRITE_PASS",
60 };
61 static void
62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63 static void
64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65
66 static void
lpfc_debug_save_data(struct lpfc_hba * phba,struct scsi_cmnd * cmnd)67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68 {
69 void *src, *dst;
70 struct scatterlist *sgde = scsi_sglist(cmnd);
71
72 if (!_dump_buf_data) {
73 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 __func__);
76 return;
77 }
78
79
80 if (!sgde) {
81 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 "9051 BLKGRD: ERROR: data scatterlist is null\n");
83 return;
84 }
85
86 dst = (void *) _dump_buf_data;
87 while (sgde) {
88 src = sg_virt(sgde);
89 memcpy(dst, src, sgde->length);
90 dst += sgde->length;
91 sgde = sg_next(sgde);
92 }
93 }
94
95 static void
lpfc_debug_save_dif(struct lpfc_hba * phba,struct scsi_cmnd * cmnd)96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97 {
98 void *src, *dst;
99 struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100
101 if (!_dump_buf_dif) {
102 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 __func__);
105 return;
106 }
107
108 if (!sgde) {
109 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 "9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 return;
112 }
113
114 dst = _dump_buf_dif;
115 while (sgde) {
116 src = sg_virt(sgde);
117 memcpy(dst, src, sgde->length);
118 dst += sgde->length;
119 sgde = sg_next(sgde);
120 }
121 }
122
123 /**
124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125 * @phba: Pointer to HBA object.
126 * @lpfc_cmd: lpfc scsi command object pointer.
127 *
128 * This function is called from the lpfc_prep_task_mgmt_cmd function to
129 * set the last bit in the response sge entry.
130 **/
131 static void
lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 struct lpfc_scsi_buf *lpfc_cmd)
134 {
135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 if (sgl) {
137 sgl += 1;
138 sgl->word2 = le32_to_cpu(sgl->word2);
139 bf_set(lpfc_sli4_sge_last, sgl, 1);
140 sgl->word2 = cpu_to_le32(sgl->word2);
141 }
142 }
143
144 /**
145 * lpfc_update_stats - Update statistical data for the command completion
146 * @phba: Pointer to HBA object.
147 * @lpfc_cmd: lpfc scsi command object pointer.
148 *
149 * This function is called when there is a command completion and this
150 * function updates the statistical data for the command completion.
151 **/
152 static void
lpfc_update_stats(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)153 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
154 {
155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 struct lpfc_nodelist *pnode = rdata->pnode;
157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 unsigned long flags;
159 struct Scsi_Host *shost = cmd->device->host;
160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 unsigned long latency;
162 int i;
163
164 if (cmd->result)
165 return;
166
167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168
169 spin_lock_irqsave(shost->host_lock, flags);
170 if (!vport->stat_data_enabled ||
171 vport->stat_data_blocked ||
172 !pnode ||
173 !pnode->lat_data ||
174 (phba->bucket_type == LPFC_NO_BUCKET)) {
175 spin_unlock_irqrestore(shost->host_lock, flags);
176 return;
177 }
178
179 if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
180 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
181 phba->bucket_step;
182 /* check array subscript bounds */
183 if (i < 0)
184 i = 0;
185 else if (i >= LPFC_MAX_BUCKET_COUNT)
186 i = LPFC_MAX_BUCKET_COUNT - 1;
187 } else {
188 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
189 if (latency <= (phba->bucket_base +
190 ((1<<i)*phba->bucket_step)))
191 break;
192 }
193
194 pnode->lat_data[i].cmd_count++;
195 spin_unlock_irqrestore(shost->host_lock, flags);
196 }
197
198 /**
199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
200 * @phba: Pointer to HBA context object.
201 * @vport: Pointer to vport object.
202 * @ndlp: Pointer to FC node associated with the target.
203 * @lun: Lun number of the scsi device.
204 * @old_val: Old value of the queue depth.
205 * @new_val: New value of the queue depth.
206 *
207 * This function sends an event to the mgmt application indicating
208 * there is a change in the scsi device queue depth.
209 **/
210 static void
lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba * phba,struct lpfc_vport * vport,struct lpfc_nodelist * ndlp,uint32_t lun,uint32_t old_val,uint32_t new_val)211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
212 struct lpfc_vport *vport,
213 struct lpfc_nodelist *ndlp,
214 uint32_t lun,
215 uint32_t old_val,
216 uint32_t new_val)
217 {
218 struct lpfc_fast_path_event *fast_path_evt;
219 unsigned long flags;
220
221 fast_path_evt = lpfc_alloc_fast_evt(phba);
222 if (!fast_path_evt)
223 return;
224
225 fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
226 FC_REG_SCSI_EVENT;
227 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
228 LPFC_EVENT_VARQUEDEPTH;
229
230 /* Report all luns with change in queue depth */
231 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
232 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
234 &ndlp->nlp_portname, sizeof(struct lpfc_name));
235 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
236 &ndlp->nlp_nodename, sizeof(struct lpfc_name));
237 }
238
239 fast_path_evt->un.queue_depth_evt.oldval = old_val;
240 fast_path_evt->un.queue_depth_evt.newval = new_val;
241 fast_path_evt->vport = vport;
242
243 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
244 spin_lock_irqsave(&phba->hbalock, flags);
245 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
246 spin_unlock_irqrestore(&phba->hbalock, flags);
247 lpfc_worker_wake_up(phba);
248
249 return;
250 }
251
252 /**
253 * lpfc_change_queue_depth - Alter scsi device queue depth
254 * @sdev: Pointer the scsi device on which to change the queue depth.
255 * @qdepth: New queue depth to set the sdev to.
256 * @reason: The reason for the queue depth change.
257 *
258 * This function is called by the midlayer and the LLD to alter the queue
259 * depth for a scsi device. This function sets the queue depth to the new
260 * value and sends an event out to log the queue depth change.
261 **/
262 int
lpfc_change_queue_depth(struct scsi_device * sdev,int qdepth,int reason)263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
264 {
265 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
266 struct lpfc_hba *phba = vport->phba;
267 struct lpfc_rport_data *rdata;
268 unsigned long new_queue_depth, old_queue_depth;
269
270 old_queue_depth = sdev->queue_depth;
271 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
272 new_queue_depth = sdev->queue_depth;
273 rdata = sdev->hostdata;
274 if (rdata)
275 lpfc_send_sdev_queuedepth_change_event(phba, vport,
276 rdata->pnode, sdev->lun,
277 old_queue_depth,
278 new_queue_depth);
279 return sdev->queue_depth;
280 }
281
282 /**
283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
284 * @phba: The Hba for which this call is being executed.
285 *
286 * This routine is called when there is resource error in driver or firmware.
287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
288 * posts at most 1 event each second. This routine wakes up worker thread of
289 * @phba to process WORKER_RAM_DOWN_EVENT event.
290 *
291 * This routine should be called with no lock held.
292 **/
293 void
lpfc_rampdown_queue_depth(struct lpfc_hba * phba)294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
295 {
296 unsigned long flags;
297 uint32_t evt_posted;
298
299 spin_lock_irqsave(&phba->hbalock, flags);
300 atomic_inc(&phba->num_rsrc_err);
301 phba->last_rsrc_error_time = jiffies;
302
303 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
304 spin_unlock_irqrestore(&phba->hbalock, flags);
305 return;
306 }
307
308 phba->last_ramp_down_time = jiffies;
309
310 spin_unlock_irqrestore(&phba->hbalock, flags);
311
312 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
313 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
314 if (!evt_posted)
315 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
316 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
317
318 if (!evt_posted)
319 lpfc_worker_wake_up(phba);
320 return;
321 }
322
323 /**
324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
325 * @phba: The Hba for which this call is being executed.
326 *
327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
328 * post at most 1 event every 5 minute after last_ramp_up_time or
329 * last_rsrc_error_time. This routine wakes up worker thread of @phba
330 * to process WORKER_RAM_DOWN_EVENT event.
331 *
332 * This routine should be called with no lock held.
333 **/
334 static inline void
lpfc_rampup_queue_depth(struct lpfc_vport * vport,uint32_t queue_depth)335 lpfc_rampup_queue_depth(struct lpfc_vport *vport,
336 uint32_t queue_depth)
337 {
338 unsigned long flags;
339 struct lpfc_hba *phba = vport->phba;
340 uint32_t evt_posted;
341 atomic_inc(&phba->num_cmd_success);
342
343 if (vport->cfg_lun_queue_depth <= queue_depth)
344 return;
345 spin_lock_irqsave(&phba->hbalock, flags);
346 if (time_before(jiffies,
347 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
348 time_before(jiffies,
349 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
350 spin_unlock_irqrestore(&phba->hbalock, flags);
351 return;
352 }
353 phba->last_ramp_up_time = jiffies;
354 spin_unlock_irqrestore(&phba->hbalock, flags);
355
356 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
357 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
358 if (!evt_posted)
359 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
360 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
361
362 if (!evt_posted)
363 lpfc_worker_wake_up(phba);
364 return;
365 }
366
367 /**
368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
369 * @phba: The Hba for which this call is being executed.
370 *
371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker
372 * thread.This routine reduces queue depth for all scsi device on each vport
373 * associated with @phba.
374 **/
375 void
lpfc_ramp_down_queue_handler(struct lpfc_hba * phba)376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
377 {
378 struct lpfc_vport **vports;
379 struct Scsi_Host *shost;
380 struct scsi_device *sdev;
381 unsigned long new_queue_depth;
382 unsigned long num_rsrc_err, num_cmd_success;
383 int i;
384
385 num_rsrc_err = atomic_read(&phba->num_rsrc_err);
386 num_cmd_success = atomic_read(&phba->num_cmd_success);
387
388 vports = lpfc_create_vport_work_array(phba);
389 if (vports != NULL)
390 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
391 shost = lpfc_shost_from_vport(vports[i]);
392 shost_for_each_device(sdev, shost) {
393 new_queue_depth =
394 sdev->queue_depth * num_rsrc_err /
395 (num_rsrc_err + num_cmd_success);
396 if (!new_queue_depth)
397 new_queue_depth = sdev->queue_depth - 1;
398 else
399 new_queue_depth = sdev->queue_depth -
400 new_queue_depth;
401 lpfc_change_queue_depth(sdev, new_queue_depth,
402 SCSI_QDEPTH_DEFAULT);
403 }
404 }
405 lpfc_destroy_vport_work_array(phba, vports);
406 atomic_set(&phba->num_rsrc_err, 0);
407 atomic_set(&phba->num_cmd_success, 0);
408 }
409
410 /**
411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
412 * @phba: The Hba for which this call is being executed.
413 *
414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker
415 * thread.This routine increases queue depth for all scsi device on each vport
416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
417 * num_cmd_success to zero.
418 **/
419 void
lpfc_ramp_up_queue_handler(struct lpfc_hba * phba)420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
421 {
422 struct lpfc_vport **vports;
423 struct Scsi_Host *shost;
424 struct scsi_device *sdev;
425 int i;
426
427 vports = lpfc_create_vport_work_array(phba);
428 if (vports != NULL)
429 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
430 shost = lpfc_shost_from_vport(vports[i]);
431 shost_for_each_device(sdev, shost) {
432 if (vports[i]->cfg_lun_queue_depth <=
433 sdev->queue_depth)
434 continue;
435 lpfc_change_queue_depth(sdev,
436 sdev->queue_depth+1,
437 SCSI_QDEPTH_RAMP_UP);
438 }
439 }
440 lpfc_destroy_vport_work_array(phba, vports);
441 atomic_set(&phba->num_rsrc_err, 0);
442 atomic_set(&phba->num_cmd_success, 0);
443 }
444
445 /**
446 * lpfc_scsi_dev_block - set all scsi hosts to block state
447 * @phba: Pointer to HBA context object.
448 *
449 * This function walks vport list and set each SCSI host to block state
450 * by invoking fc_remote_port_delete() routine. This function is invoked
451 * with EEH when device's PCI slot has been permanently disabled.
452 **/
453 void
lpfc_scsi_dev_block(struct lpfc_hba * phba)454 lpfc_scsi_dev_block(struct lpfc_hba *phba)
455 {
456 struct lpfc_vport **vports;
457 struct Scsi_Host *shost;
458 struct scsi_device *sdev;
459 struct fc_rport *rport;
460 int i;
461
462 vports = lpfc_create_vport_work_array(phba);
463 if (vports != NULL)
464 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
465 shost = lpfc_shost_from_vport(vports[i]);
466 shost_for_each_device(sdev, shost) {
467 rport = starget_to_rport(scsi_target(sdev));
468 fc_remote_port_delete(rport);
469 }
470 }
471 lpfc_destroy_vport_work_array(phba, vports);
472 }
473
474 /**
475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
476 * @vport: The virtual port for which this call being executed.
477 * @num_to_allocate: The requested number of buffers to allocate.
478 *
479 * This routine allocates a scsi buffer for device with SLI-3 interface spec,
480 * the scsi buffer contains all the necessary information needed to initiate
481 * a SCSI I/O. The non-DMAable buffer region contains information to build
482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
483 * and the initial BPL. In addition to allocating memory, the FCP CMND and
484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
485 *
486 * Return codes:
487 * int - number of scsi buffers that were allocated.
488 * 0 = failure, less than num_to_alloc is a partial failure.
489 **/
490 static int
lpfc_new_scsi_buf_s3(struct lpfc_vport * vport,int num_to_alloc)491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
492 {
493 struct lpfc_hba *phba = vport->phba;
494 struct lpfc_scsi_buf *psb;
495 struct ulp_bde64 *bpl;
496 IOCB_t *iocb;
497 dma_addr_t pdma_phys_fcp_cmd;
498 dma_addr_t pdma_phys_fcp_rsp;
499 dma_addr_t pdma_phys_bpl;
500 uint16_t iotag;
501 int bcnt;
502
503 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
504 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
505 if (!psb)
506 break;
507
508 /*
509 * Get memory from the pci pool to map the virt space to pci
510 * bus space for an I/O. The DMA buffer includes space for the
511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
512 * necessary to support the sg_tablesize.
513 */
514 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
515 GFP_KERNEL, &psb->dma_handle);
516 if (!psb->data) {
517 kfree(psb);
518 break;
519 }
520
521 /* Initialize virtual ptrs to dma_buf region. */
522 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
523
524 /* Allocate iotag for psb->cur_iocbq. */
525 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
526 if (iotag == 0) {
527 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
528 psb->data, psb->dma_handle);
529 kfree(psb);
530 break;
531 }
532 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
533
534 psb->fcp_cmnd = psb->data;
535 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
536 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
537 sizeof(struct fcp_rsp);
538
539 /* Initialize local short-hand pointers. */
540 bpl = psb->fcp_bpl;
541 pdma_phys_fcp_cmd = psb->dma_handle;
542 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
543 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
544 sizeof(struct fcp_rsp);
545
546 /*
547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
548 * are sg list bdes. Initialize the first two and leave the
549 * rest for queuecommand.
550 */
551 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
552 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
553 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
554 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
555 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
556
557 /* Setup the physical region for the FCP RSP */
558 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
559 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
560 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
561 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
562 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
563
564 /*
565 * Since the IOCB for the FCP I/O is built into this
566 * lpfc_scsi_buf, initialize it with all known data now.
567 */
568 iocb = &psb->cur_iocbq.iocb;
569 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
570 if ((phba->sli_rev == 3) &&
571 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
572 /* fill in immediate fcp command BDE */
573 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
574 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
575 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
576 unsli3.fcp_ext.icd);
577 iocb->un.fcpi64.bdl.addrHigh = 0;
578 iocb->ulpBdeCount = 0;
579 iocb->ulpLe = 0;
580 /* fill in response BDE */
581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
582 BUFF_TYPE_BDE_64;
583 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
584 sizeof(struct fcp_rsp);
585 iocb->unsli3.fcp_ext.rbde.addrLow =
586 putPaddrLow(pdma_phys_fcp_rsp);
587 iocb->unsli3.fcp_ext.rbde.addrHigh =
588 putPaddrHigh(pdma_phys_fcp_rsp);
589 } else {
590 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
591 iocb->un.fcpi64.bdl.bdeSize =
592 (2 * sizeof(struct ulp_bde64));
593 iocb->un.fcpi64.bdl.addrLow =
594 putPaddrLow(pdma_phys_bpl);
595 iocb->un.fcpi64.bdl.addrHigh =
596 putPaddrHigh(pdma_phys_bpl);
597 iocb->ulpBdeCount = 1;
598 iocb->ulpLe = 1;
599 }
600 iocb->ulpClass = CLASS3;
601 psb->status = IOSTAT_SUCCESS;
602 /* Put it back into the SCSI buffer list */
603 psb->cur_iocbq.context1 = psb;
604 lpfc_release_scsi_buf_s3(phba, psb);
605
606 }
607
608 return bcnt;
609 }
610
611 /**
612 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport
613 * @vport: pointer to lpfc vport data structure.
614 *
615 * This routine is invoked by the vport cleanup for deletions and the cleanup
616 * for an ndlp on removal.
617 **/
618 void
lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport * vport)619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport)
620 {
621 struct lpfc_hba *phba = vport->phba;
622 struct lpfc_scsi_buf *psb, *next_psb;
623 unsigned long iflag = 0;
624
625 spin_lock_irqsave(&phba->hbalock, iflag);
626 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
627 list_for_each_entry_safe(psb, next_psb,
628 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
629 if (psb->rdata && psb->rdata->pnode
630 && psb->rdata->pnode->vport == vport)
631 psb->rdata = NULL;
632 }
633 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
634 spin_unlock_irqrestore(&phba->hbalock, iflag);
635 }
636
637 /**
638 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
639 * @phba: pointer to lpfc hba data structure.
640 * @axri: pointer to the fcp xri abort wcqe structure.
641 *
642 * This routine is invoked by the worker thread to process a SLI4 fast-path
643 * FCP aborted xri.
644 **/
645 void
lpfc_sli4_fcp_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
647 struct sli4_wcqe_xri_aborted *axri)
648 {
649 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
650 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
651 struct lpfc_scsi_buf *psb, *next_psb;
652 unsigned long iflag = 0;
653 struct lpfc_iocbq *iocbq;
654 int i;
655 struct lpfc_nodelist *ndlp;
656 int rrq_empty = 0;
657 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
658
659 spin_lock_irqsave(&phba->hbalock, iflag);
660 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
661 list_for_each_entry_safe(psb, next_psb,
662 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
663 if (psb->cur_iocbq.sli4_xritag == xri) {
664 list_del(&psb->list);
665 psb->exch_busy = 0;
666 psb->status = IOSTAT_SUCCESS;
667 spin_unlock(
668 &phba->sli4_hba.abts_scsi_buf_list_lock);
669 if (psb->rdata && psb->rdata->pnode)
670 ndlp = psb->rdata->pnode;
671 else
672 ndlp = NULL;
673
674 rrq_empty = list_empty(&phba->active_rrq_list);
675 spin_unlock_irqrestore(&phba->hbalock, iflag);
676 if (ndlp)
677 lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1);
678 lpfc_release_scsi_buf_s4(phba, psb);
679 if (rrq_empty)
680 lpfc_worker_wake_up(phba);
681 return;
682 }
683 }
684 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
685 for (i = 1; i <= phba->sli.last_iotag; i++) {
686 iocbq = phba->sli.iocbq_lookup[i];
687
688 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
689 (iocbq->iocb_flag & LPFC_IO_LIBDFC))
690 continue;
691 if (iocbq->sli4_xritag != xri)
692 continue;
693 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
694 psb->exch_busy = 0;
695 spin_unlock_irqrestore(&phba->hbalock, iflag);
696 if (pring->txq_cnt)
697 lpfc_worker_wake_up(phba);
698 return;
699
700 }
701 spin_unlock_irqrestore(&phba->hbalock, iflag);
702 }
703
704 /**
705 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
706 * @phba: pointer to lpfc hba data structure.
707 *
708 * This routine walks the list of scsi buffers that have been allocated and
709 * repost them to the HBA by using SGL block post. This is needed after a
710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
711 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
712 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
713 *
714 * Returns: 0 = success, non-zero failure.
715 **/
716 int
lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba * phba)717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
718 {
719 struct lpfc_scsi_buf *psb;
720 int index, status, bcnt = 0, rcnt = 0, rc = 0;
721 LIST_HEAD(sblist);
722
723 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
724 psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
725 if (psb) {
726 /* Remove from SCSI buffer list */
727 list_del(&psb->list);
728 /* Add it to a local SCSI buffer list */
729 list_add_tail(&psb->list, &sblist);
730 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
731 bcnt = rcnt;
732 rcnt = 0;
733 }
734 } else
735 /* A hole present in the XRI array, need to skip */
736 bcnt = rcnt;
737
738 if (index == phba->sli4_hba.scsi_xri_cnt - 1)
739 /* End of XRI array for SCSI buffer, complete */
740 bcnt = rcnt;
741
742 /* Continue until collect up to a nembed page worth of sgls */
743 if (bcnt == 0)
744 continue;
745 /* Now, post the SCSI buffer list sgls as a block */
746 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
747 /* Reset SCSI buffer count for next round of posting */
748 bcnt = 0;
749 while (!list_empty(&sblist)) {
750 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
751 list);
752 if (status) {
753 /* Put this back on the abort scsi list */
754 psb->exch_busy = 1;
755 rc++;
756 } else {
757 psb->exch_busy = 0;
758 psb->status = IOSTAT_SUCCESS;
759 }
760 /* Put it back into the SCSI buffer list */
761 lpfc_release_scsi_buf_s4(phba, psb);
762 }
763 }
764 return rc;
765 }
766
767 /**
768 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
769 * @vport: The virtual port for which this call being executed.
770 * @num_to_allocate: The requested number of buffers to allocate.
771 *
772 * This routine allocates a scsi buffer for device with SLI-4 interface spec,
773 * the scsi buffer contains all the necessary information needed to initiate
774 * a SCSI I/O.
775 *
776 * Return codes:
777 * int - number of scsi buffers that were allocated.
778 * 0 = failure, less than num_to_alloc is a partial failure.
779 **/
780 static int
lpfc_new_scsi_buf_s4(struct lpfc_vport * vport,int num_to_alloc)781 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
782 {
783 struct lpfc_hba *phba = vport->phba;
784 struct lpfc_scsi_buf *psb;
785 struct sli4_sge *sgl;
786 IOCB_t *iocb;
787 dma_addr_t pdma_phys_fcp_cmd;
788 dma_addr_t pdma_phys_fcp_rsp;
789 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
790 uint16_t iotag, last_xritag = NO_XRI;
791 int status = 0, index;
792 int bcnt;
793 int non_sequential_xri = 0;
794 LIST_HEAD(sblist);
795
796 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
797 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
798 if (!psb)
799 break;
800
801 /*
802 * Get memory from the pci pool to map the virt space to pci bus
803 * space for an I/O. The DMA buffer includes space for the
804 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
805 * necessary to support the sg_tablesize.
806 */
807 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
808 GFP_KERNEL, &psb->dma_handle);
809 if (!psb->data) {
810 kfree(psb);
811 break;
812 }
813
814 /* Initialize virtual ptrs to dma_buf region. */
815 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
816
817 /* Allocate iotag for psb->cur_iocbq. */
818 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
819 if (iotag == 0) {
820 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
821 psb->data, psb->dma_handle);
822 kfree(psb);
823 break;
824 }
825
826 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
827 if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
828 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
829 psb->data, psb->dma_handle);
830 kfree(psb);
831 break;
832 }
833 if (last_xritag != NO_XRI
834 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
835 non_sequential_xri = 1;
836 } else
837 list_add_tail(&psb->list, &sblist);
838 last_xritag = psb->cur_iocbq.sli4_xritag;
839
840 index = phba->sli4_hba.scsi_xri_cnt++;
841 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
842
843 psb->fcp_bpl = psb->data;
844 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
845 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
846 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
847 sizeof(struct fcp_cmnd));
848
849 /* Initialize local short-hand pointers. */
850 sgl = (struct sli4_sge *)psb->fcp_bpl;
851 pdma_phys_bpl = psb->dma_handle;
852 pdma_phys_fcp_cmd =
853 (psb->dma_handle + phba->cfg_sg_dma_buf_size)
854 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
855 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
856
857 /*
858 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
859 * are sg list bdes. Initialize the first two and leave the
860 * rest for queuecommand.
861 */
862 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
863 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
864 bf_set(lpfc_sli4_sge_last, sgl, 0);
865 sgl->word2 = cpu_to_le32(sgl->word2);
866 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
867 sgl++;
868
869 /* Setup the physical region for the FCP RSP */
870 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
871 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
872 bf_set(lpfc_sli4_sge_last, sgl, 1);
873 sgl->word2 = cpu_to_le32(sgl->word2);
874 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
875
876 /*
877 * Since the IOCB for the FCP I/O is built into this
878 * lpfc_scsi_buf, initialize it with all known data now.
879 */
880 iocb = &psb->cur_iocbq.iocb;
881 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
882 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
883 /* setting the BLP size to 2 * sizeof BDE may not be correct.
884 * We are setting the bpl to point to out sgl. An sgl's
885 * entries are 16 bytes, a bpl entries are 12 bytes.
886 */
887 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
888 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
889 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
890 iocb->ulpBdeCount = 1;
891 iocb->ulpLe = 1;
892 iocb->ulpClass = CLASS3;
893 psb->cur_iocbq.context1 = psb;
894 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
895 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
896 else
897 pdma_phys_bpl1 = 0;
898 psb->dma_phys_bpl = pdma_phys_bpl;
899 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
900 if (non_sequential_xri) {
901 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
902 pdma_phys_bpl1,
903 psb->cur_iocbq.sli4_xritag);
904 if (status) {
905 /* Put this back on the abort scsi list */
906 psb->exch_busy = 1;
907 } else {
908 psb->exch_busy = 0;
909 psb->status = IOSTAT_SUCCESS;
910 }
911 /* Put it back into the SCSI buffer list */
912 lpfc_release_scsi_buf_s4(phba, psb);
913 break;
914 }
915 }
916 if (bcnt) {
917 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
918 /* Reset SCSI buffer count for next round of posting */
919 while (!list_empty(&sblist)) {
920 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
921 list);
922 if (status) {
923 /* Put this back on the abort scsi list */
924 psb->exch_busy = 1;
925 } else {
926 psb->exch_busy = 0;
927 psb->status = IOSTAT_SUCCESS;
928 }
929 /* Put it back into the SCSI buffer list */
930 lpfc_release_scsi_buf_s4(phba, psb);
931 }
932 }
933
934 return bcnt + non_sequential_xri;
935 }
936
937 /**
938 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
939 * @vport: The virtual port for which this call being executed.
940 * @num_to_allocate: The requested number of buffers to allocate.
941 *
942 * This routine wraps the actual SCSI buffer allocator function pointer from
943 * the lpfc_hba struct.
944 *
945 * Return codes:
946 * int - number of scsi buffers that were allocated.
947 * 0 = failure, less than num_to_alloc is a partial failure.
948 **/
949 static inline int
lpfc_new_scsi_buf(struct lpfc_vport * vport,int num_to_alloc)950 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
951 {
952 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
953 }
954
955 /**
956 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
957 * @phba: The HBA for which this call is being executed.
958 *
959 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
960 * and returns to caller.
961 *
962 * Return codes:
963 * NULL - Error
964 * Pointer to lpfc_scsi_buf - Success
965 **/
966 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf_s3(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)967 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
968 {
969 struct lpfc_scsi_buf * lpfc_cmd = NULL;
970 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
971 unsigned long iflag = 0;
972
973 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
974 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
975 if (lpfc_cmd) {
976 lpfc_cmd->seg_cnt = 0;
977 lpfc_cmd->nonsg_phys = 0;
978 lpfc_cmd->prot_seg_cnt = 0;
979 }
980 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
981 return lpfc_cmd;
982 }
983 /**
984 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
985 * @phba: The HBA for which this call is being executed.
986 *
987 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
988 * and returns to caller.
989 *
990 * Return codes:
991 * NULL - Error
992 * Pointer to lpfc_scsi_buf - Success
993 **/
994 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf_s4(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)995 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
996 {
997 struct lpfc_scsi_buf *lpfc_cmd ;
998 unsigned long iflag = 0;
999 int found = 0;
1000
1001 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1002 list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list,
1003 list) {
1004 if (lpfc_test_rrq_active(phba, ndlp,
1005 lpfc_cmd->cur_iocbq.sli4_xritag))
1006 continue;
1007 list_del(&lpfc_cmd->list);
1008 found = 1;
1009 lpfc_cmd->seg_cnt = 0;
1010 lpfc_cmd->nonsg_phys = 0;
1011 lpfc_cmd->prot_seg_cnt = 0;
1012 break;
1013 }
1014 spin_unlock_irqrestore(&phba->scsi_buf_list_lock,
1015 iflag);
1016 if (!found)
1017 return NULL;
1018 else
1019 return lpfc_cmd;
1020 }
1021 /**
1022 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1023 * @phba: The HBA for which this call is being executed.
1024 *
1025 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1026 * and returns to caller.
1027 *
1028 * Return codes:
1029 * NULL - Error
1030 * Pointer to lpfc_scsi_buf - Success
1031 **/
1032 static struct lpfc_scsi_buf*
lpfc_get_scsi_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)1033 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
1034 {
1035 return phba->lpfc_get_scsi_buf(phba, ndlp);
1036 }
1037
1038 /**
1039 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
1040 * @phba: The Hba for which this call is being executed.
1041 * @psb: The scsi buffer which is being released.
1042 *
1043 * This routine releases @psb scsi buffer by adding it to tail of @phba
1044 * lpfc_scsi_buf_list list.
1045 **/
1046 static void
lpfc_release_scsi_buf_s3(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1047 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1048 {
1049 unsigned long iflag = 0;
1050
1051 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1052 psb->pCmd = NULL;
1053 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1054 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1055 }
1056
1057 /**
1058 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
1059 * @phba: The Hba for which this call is being executed.
1060 * @psb: The scsi buffer which is being released.
1061 *
1062 * This routine releases @psb scsi buffer by adding it to tail of @phba
1063 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
1064 * and cannot be reused for at least RA_TOV amount of time if it was
1065 * aborted.
1066 **/
1067 static void
lpfc_release_scsi_buf_s4(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1068 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1069 {
1070 unsigned long iflag = 0;
1071
1072 if (psb->exch_busy) {
1073 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
1074 iflag);
1075 psb->pCmd = NULL;
1076 list_add_tail(&psb->list,
1077 &phba->sli4_hba.lpfc_abts_scsi_buf_list);
1078 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
1079 iflag);
1080 } else {
1081
1082 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1083 psb->pCmd = NULL;
1084 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1085 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1086 }
1087 }
1088
1089 /**
1090 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
1091 * @phba: The Hba for which this call is being executed.
1092 * @psb: The scsi buffer which is being released.
1093 *
1094 * This routine releases @psb scsi buffer by adding it to tail of @phba
1095 * lpfc_scsi_buf_list list.
1096 **/
1097 static void
lpfc_release_scsi_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)1098 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1099 {
1100
1101 phba->lpfc_release_scsi_buf(phba, psb);
1102 }
1103
1104 /**
1105 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1106 * @phba: The Hba for which this call is being executed.
1107 * @lpfc_cmd: The scsi buffer which is going to be mapped.
1108 *
1109 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1110 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1111 * through sg elements and format the bdea. This routine also initializes all
1112 * IOCB fields which are dependent on scsi command request buffer.
1113 *
1114 * Return codes:
1115 * 1 - Error
1116 * 0 - Success
1117 **/
1118 static int
lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)1119 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1120 {
1121 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1122 struct scatterlist *sgel = NULL;
1123 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1124 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1125 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1126 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1127 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1128 dma_addr_t physaddr;
1129 uint32_t num_bde = 0;
1130 int nseg, datadir = scsi_cmnd->sc_data_direction;
1131
1132 /*
1133 * There are three possibilities here - use scatter-gather segment, use
1134 * the single mapping, or neither. Start the lpfc command prep by
1135 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1136 * data bde entry.
1137 */
1138 bpl += 2;
1139 if (scsi_sg_count(scsi_cmnd)) {
1140 /*
1141 * The driver stores the segment count returned from pci_map_sg
1142 * because this a count of dma-mappings used to map the use_sg
1143 * pages. They are not guaranteed to be the same for those
1144 * architectures that implement an IOMMU.
1145 */
1146
1147 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1148 scsi_sg_count(scsi_cmnd), datadir);
1149 if (unlikely(!nseg))
1150 return 1;
1151
1152 lpfc_cmd->seg_cnt = nseg;
1153 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1154 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1155 "9064 BLKGRD: %s: Too many sg segments from "
1156 "dma_map_sg. Config %d, seg_cnt %d\n",
1157 __func__, phba->cfg_sg_seg_cnt,
1158 lpfc_cmd->seg_cnt);
1159 scsi_dma_unmap(scsi_cmnd);
1160 return 1;
1161 }
1162
1163 /*
1164 * The driver established a maximum scatter-gather segment count
1165 * during probe that limits the number of sg elements in any
1166 * single scsi command. Just run through the seg_cnt and format
1167 * the bde's.
1168 * When using SLI-3 the driver will try to fit all the BDEs into
1169 * the IOCB. If it can't then the BDEs get added to a BPL as it
1170 * does for SLI-2 mode.
1171 */
1172 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1173 physaddr = sg_dma_address(sgel);
1174 if (phba->sli_rev == 3 &&
1175 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1176 !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1177 nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1178 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1179 data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1180 data_bde->addrLow = putPaddrLow(physaddr);
1181 data_bde->addrHigh = putPaddrHigh(physaddr);
1182 data_bde++;
1183 } else {
1184 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1185 bpl->tus.f.bdeSize = sg_dma_len(sgel);
1186 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1187 bpl->addrLow =
1188 le32_to_cpu(putPaddrLow(physaddr));
1189 bpl->addrHigh =
1190 le32_to_cpu(putPaddrHigh(physaddr));
1191 bpl++;
1192 }
1193 }
1194 }
1195
1196 /*
1197 * Finish initializing those IOCB fields that are dependent on the
1198 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
1199 * explicitly reinitialized and for SLI-3 the extended bde count is
1200 * explicitly reinitialized since all iocb memory resources are reused.
1201 */
1202 if (phba->sli_rev == 3 &&
1203 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1204 !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1205 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1206 /*
1207 * The extended IOCB format can only fit 3 BDE or a BPL.
1208 * This I/O has more than 3 BDE so the 1st data bde will
1209 * be a BPL that is filled in here.
1210 */
1211 physaddr = lpfc_cmd->dma_handle;
1212 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1213 data_bde->tus.f.bdeSize = (num_bde *
1214 sizeof(struct ulp_bde64));
1215 physaddr += (sizeof(struct fcp_cmnd) +
1216 sizeof(struct fcp_rsp) +
1217 (2 * sizeof(struct ulp_bde64)));
1218 data_bde->addrHigh = putPaddrHigh(physaddr);
1219 data_bde->addrLow = putPaddrLow(physaddr);
1220 /* ebde count includes the response bde and data bpl */
1221 iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1222 } else {
1223 /* ebde count includes the response bde and data bdes */
1224 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1225 }
1226 } else {
1227 iocb_cmd->un.fcpi64.bdl.bdeSize =
1228 ((num_bde + 2) * sizeof(struct ulp_bde64));
1229 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1230 }
1231 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1232
1233 /*
1234 * Due to difference in data length between DIF/non-DIF paths,
1235 * we need to set word 4 of IOCB here
1236 */
1237 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1238 return 0;
1239 }
1240
1241 /*
1242 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1243 * @sc: The SCSI command to examine
1244 * @txopt: (out) BlockGuard operation for transmitted data
1245 * @rxopt: (out) BlockGuard operation for received data
1246 *
1247 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1248 *
1249 */
1250 static int
lpfc_sc_to_bg_opcodes(struct lpfc_hba * phba,struct scsi_cmnd * sc,uint8_t * txop,uint8_t * rxop)1251 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1252 uint8_t *txop, uint8_t *rxop)
1253 {
1254 uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1255 uint8_t ret = 0;
1256
1257 if (guard_type == SHOST_DIX_GUARD_IP) {
1258 switch (scsi_get_prot_op(sc)) {
1259 case SCSI_PROT_READ_INSERT:
1260 case SCSI_PROT_WRITE_STRIP:
1261 *txop = BG_OP_IN_CSUM_OUT_NODIF;
1262 *rxop = BG_OP_IN_NODIF_OUT_CSUM;
1263 break;
1264
1265 case SCSI_PROT_READ_STRIP:
1266 case SCSI_PROT_WRITE_INSERT:
1267 *txop = BG_OP_IN_NODIF_OUT_CRC;
1268 *rxop = BG_OP_IN_CRC_OUT_NODIF;
1269 break;
1270
1271 case SCSI_PROT_READ_PASS:
1272 case SCSI_PROT_WRITE_PASS:
1273 *txop = BG_OP_IN_CSUM_OUT_CRC;
1274 *rxop = BG_OP_IN_CRC_OUT_CSUM;
1275 break;
1276
1277 case SCSI_PROT_NORMAL:
1278 default:
1279 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1280 "9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1281 scsi_get_prot_op(sc), guard_type);
1282 ret = 1;
1283 break;
1284
1285 }
1286 } else if (guard_type == SHOST_DIX_GUARD_CRC) {
1287 switch (scsi_get_prot_op(sc)) {
1288 case SCSI_PROT_READ_STRIP:
1289 case SCSI_PROT_WRITE_INSERT:
1290 *txop = BG_OP_IN_NODIF_OUT_CRC;
1291 *rxop = BG_OP_IN_CRC_OUT_NODIF;
1292 break;
1293
1294 case SCSI_PROT_READ_PASS:
1295 case SCSI_PROT_WRITE_PASS:
1296 *txop = BG_OP_IN_CRC_OUT_CRC;
1297 *rxop = BG_OP_IN_CRC_OUT_CRC;
1298 break;
1299
1300 case SCSI_PROT_READ_INSERT:
1301 case SCSI_PROT_WRITE_STRIP:
1302 case SCSI_PROT_NORMAL:
1303 default:
1304 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1305 "9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1306 scsi_get_prot_op(sc), guard_type);
1307 ret = 1;
1308 break;
1309 }
1310 } else {
1311 /* unsupported format */
1312 BUG();
1313 }
1314
1315 return ret;
1316 }
1317
1318 struct scsi_dif_tuple {
1319 __be16 guard_tag; /* Checksum */
1320 __be16 app_tag; /* Opaque storage */
1321 __be32 ref_tag; /* Target LBA or indirect LBA */
1322 };
1323
1324 static inline unsigned
lpfc_cmd_blksize(struct scsi_cmnd * sc)1325 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1326 {
1327 return sc->device->sector_size;
1328 }
1329
1330 /**
1331 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1332 * @sc: in: SCSI command
1333 * @apptagmask: out: app tag mask
1334 * @apptagval: out: app tag value
1335 * @reftag: out: ref tag (reference tag)
1336 *
1337 * Description:
1338 * Extract DIF parameters from the command if possible. Otherwise,
1339 * use default parameters.
1340 *
1341 **/
1342 static inline void
lpfc_get_cmd_dif_parms(struct scsi_cmnd * sc,uint16_t * apptagmask,uint16_t * apptagval,uint32_t * reftag)1343 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1344 uint16_t *apptagval, uint32_t *reftag)
1345 {
1346 struct scsi_dif_tuple *spt;
1347 unsigned char op = scsi_get_prot_op(sc);
1348 unsigned int protcnt = scsi_prot_sg_count(sc);
1349 static int cnt;
1350
1351 if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1352 op == SCSI_PROT_WRITE_PASS)) {
1353
1354 cnt++;
1355 spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1356 scsi_prot_sglist(sc)[0].offset;
1357 *apptagmask = 0;
1358 *apptagval = 0;
1359 *reftag = cpu_to_be32(spt->ref_tag);
1360
1361 } else {
1362 /* SBC defines ref tag to be lower 32bits of LBA */
1363 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1364 *apptagmask = 0;
1365 *apptagval = 0;
1366 }
1367 }
1368
1369 /*
1370 * This function sets up buffer list for protection groups of
1371 * type LPFC_PG_TYPE_NO_DIF
1372 *
1373 * This is usually used when the HBA is instructed to generate
1374 * DIFs and insert them into data stream (or strip DIF from
1375 * incoming data stream)
1376 *
1377 * The buffer list consists of just one protection group described
1378 * below:
1379 * +-------------------------+
1380 * start of prot group --> | PDE_5 |
1381 * +-------------------------+
1382 * | PDE_6 |
1383 * +-------------------------+
1384 * | Data BDE |
1385 * +-------------------------+
1386 * |more Data BDE's ... (opt)|
1387 * +-------------------------+
1388 *
1389 * @sc: pointer to scsi command we're working on
1390 * @bpl: pointer to buffer list for protection groups
1391 * @datacnt: number of segments of data that have been dma mapped
1392 *
1393 * Note: Data s/g buffers have been dma mapped
1394 */
1395 static int
lpfc_bg_setup_bpl(struct lpfc_hba * phba,struct scsi_cmnd * sc,struct ulp_bde64 * bpl,int datasegcnt)1396 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1397 struct ulp_bde64 *bpl, int datasegcnt)
1398 {
1399 struct scatterlist *sgde = NULL; /* s/g data entry */
1400 struct lpfc_pde5 *pde5 = NULL;
1401 struct lpfc_pde6 *pde6 = NULL;
1402 dma_addr_t physaddr;
1403 int i = 0, num_bde = 0, status;
1404 int datadir = sc->sc_data_direction;
1405 unsigned blksize;
1406 uint32_t reftag;
1407 uint16_t apptagmask, apptagval;
1408 uint8_t txop, rxop;
1409
1410 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1411 if (status)
1412 goto out;
1413
1414 /* extract some info from the scsi command for pde*/
1415 blksize = lpfc_cmd_blksize(sc);
1416 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1417
1418 /* setup PDE5 with what we have */
1419 pde5 = (struct lpfc_pde5 *) bpl;
1420 memset(pde5, 0, sizeof(struct lpfc_pde5));
1421 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1422 pde5->reftag = reftag;
1423
1424 /* Endianness conversion if necessary for PDE5 */
1425 pde5->word0 = cpu_to_le32(pde5->word0);
1426 pde5->reftag = cpu_to_le32(pde5->reftag);
1427
1428 /* advance bpl and increment bde count */
1429 num_bde++;
1430 bpl++;
1431 pde6 = (struct lpfc_pde6 *) bpl;
1432
1433 /* setup PDE6 with the rest of the info */
1434 memset(pde6, 0, sizeof(struct lpfc_pde6));
1435 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1436 bf_set(pde6_optx, pde6, txop);
1437 bf_set(pde6_oprx, pde6, rxop);
1438 if (datadir == DMA_FROM_DEVICE) {
1439 bf_set(pde6_ce, pde6, 1);
1440 bf_set(pde6_re, pde6, 1);
1441 bf_set(pde6_ae, pde6, 1);
1442 }
1443 bf_set(pde6_ai, pde6, 1);
1444 bf_set(pde6_apptagval, pde6, apptagval);
1445
1446 /* Endianness conversion if necessary for PDE6 */
1447 pde6->word0 = cpu_to_le32(pde6->word0);
1448 pde6->word1 = cpu_to_le32(pde6->word1);
1449 pde6->word2 = cpu_to_le32(pde6->word2);
1450
1451 /* advance bpl and increment bde count */
1452 num_bde++;
1453 bpl++;
1454
1455 /* assumption: caller has already run dma_map_sg on command data */
1456 scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1457 physaddr = sg_dma_address(sgde);
1458 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1459 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1460 bpl->tus.f.bdeSize = sg_dma_len(sgde);
1461 if (datadir == DMA_TO_DEVICE)
1462 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1463 else
1464 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1465 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1466 bpl++;
1467 num_bde++;
1468 }
1469
1470 out:
1471 return num_bde;
1472 }
1473
1474 /*
1475 * This function sets up buffer list for protection groups of
1476 * type LPFC_PG_TYPE_DIF_BUF
1477 *
1478 * This is usually used when DIFs are in their own buffers,
1479 * separate from the data. The HBA can then by instructed
1480 * to place the DIFs in the outgoing stream. For read operations,
1481 * The HBA could extract the DIFs and place it in DIF buffers.
1482 *
1483 * The buffer list for this type consists of one or more of the
1484 * protection groups described below:
1485 * +-------------------------+
1486 * start of first prot group --> | PDE_5 |
1487 * +-------------------------+
1488 * | PDE_6 |
1489 * +-------------------------+
1490 * | PDE_7 (Prot BDE) |
1491 * +-------------------------+
1492 * | Data BDE |
1493 * +-------------------------+
1494 * |more Data BDE's ... (opt)|
1495 * +-------------------------+
1496 * start of new prot group --> | PDE_5 |
1497 * +-------------------------+
1498 * | ... |
1499 * +-------------------------+
1500 *
1501 * @sc: pointer to scsi command we're working on
1502 * @bpl: pointer to buffer list for protection groups
1503 * @datacnt: number of segments of data that have been dma mapped
1504 * @protcnt: number of segment of protection data that have been dma mapped
1505 *
1506 * Note: It is assumed that both data and protection s/g buffers have been
1507 * mapped for DMA
1508 */
1509 static int
lpfc_bg_setup_bpl_prot(struct lpfc_hba * phba,struct scsi_cmnd * sc,struct ulp_bde64 * bpl,int datacnt,int protcnt)1510 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1511 struct ulp_bde64 *bpl, int datacnt, int protcnt)
1512 {
1513 struct scatterlist *sgde = NULL; /* s/g data entry */
1514 struct scatterlist *sgpe = NULL; /* s/g prot entry */
1515 struct lpfc_pde5 *pde5 = NULL;
1516 struct lpfc_pde6 *pde6 = NULL;
1517 struct lpfc_pde7 *pde7 = NULL;
1518 dma_addr_t dataphysaddr, protphysaddr;
1519 unsigned short curr_data = 0, curr_prot = 0;
1520 unsigned int split_offset;
1521 unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder;
1522 unsigned int protgrp_blks, protgrp_bytes;
1523 unsigned int remainder, subtotal;
1524 int status;
1525 int datadir = sc->sc_data_direction;
1526 unsigned char pgdone = 0, alldone = 0;
1527 unsigned blksize;
1528 uint32_t reftag;
1529 uint16_t apptagmask, apptagval;
1530 uint8_t txop, rxop;
1531 int num_bde = 0;
1532
1533 sgpe = scsi_prot_sglist(sc);
1534 sgde = scsi_sglist(sc);
1535
1536 if (!sgpe || !sgde) {
1537 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1538 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1539 sgpe, sgde);
1540 return 0;
1541 }
1542
1543 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1544 if (status)
1545 goto out;
1546
1547 /* extract some info from the scsi command */
1548 blksize = lpfc_cmd_blksize(sc);
1549 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1550
1551 split_offset = 0;
1552 do {
1553 /* setup PDE5 with what we have */
1554 pde5 = (struct lpfc_pde5 *) bpl;
1555 memset(pde5, 0, sizeof(struct lpfc_pde5));
1556 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1557 pde5->reftag = reftag;
1558
1559 /* Endianness conversion if necessary for PDE5 */
1560 pde5->word0 = cpu_to_le32(pde5->word0);
1561 pde5->reftag = cpu_to_le32(pde5->reftag);
1562
1563 /* advance bpl and increment bde count */
1564 num_bde++;
1565 bpl++;
1566 pde6 = (struct lpfc_pde6 *) bpl;
1567
1568 /* setup PDE6 with the rest of the info */
1569 memset(pde6, 0, sizeof(struct lpfc_pde6));
1570 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1571 bf_set(pde6_optx, pde6, txop);
1572 bf_set(pde6_oprx, pde6, rxop);
1573 bf_set(pde6_ce, pde6, 1);
1574 bf_set(pde6_re, pde6, 1);
1575 bf_set(pde6_ae, pde6, 1);
1576 bf_set(pde6_ai, pde6, 1);
1577 bf_set(pde6_apptagval, pde6, apptagval);
1578
1579 /* Endianness conversion if necessary for PDE6 */
1580 pde6->word0 = cpu_to_le32(pde6->word0);
1581 pde6->word1 = cpu_to_le32(pde6->word1);
1582 pde6->word2 = cpu_to_le32(pde6->word2);
1583
1584 /* advance bpl and increment bde count */
1585 num_bde++;
1586 bpl++;
1587
1588 /* setup the first BDE that points to protection buffer */
1589 protphysaddr = sg_dma_address(sgpe) + protgroup_offset;
1590 protgroup_len = sg_dma_len(sgpe) - protgroup_offset;
1591
1592 /* must be integer multiple of the DIF block length */
1593 BUG_ON(protgroup_len % 8);
1594
1595 pde7 = (struct lpfc_pde7 *) bpl;
1596 memset(pde7, 0, sizeof(struct lpfc_pde7));
1597 bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR);
1598
1599 pde7->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr));
1600 pde7->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr));
1601
1602 protgrp_blks = protgroup_len / 8;
1603 protgrp_bytes = protgrp_blks * blksize;
1604
1605 /* check if this pde is crossing the 4K boundary; if so split */
1606 if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) {
1607 protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff);
1608 protgroup_offset += protgroup_remainder;
1609 protgrp_blks = protgroup_remainder / 8;
1610 protgrp_bytes = protgroup_remainder * blksize;
1611 } else {
1612 protgroup_offset = 0;
1613 curr_prot++;
1614 }
1615
1616 num_bde++;
1617
1618 /* setup BDE's for data blocks associated with DIF data */
1619 pgdone = 0;
1620 subtotal = 0; /* total bytes processed for current prot grp */
1621 while (!pgdone) {
1622 if (!sgde) {
1623 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1624 "9065 BLKGRD:%s Invalid data segment\n",
1625 __func__);
1626 return 0;
1627 }
1628 bpl++;
1629 dataphysaddr = sg_dma_address(sgde) + split_offset;
1630 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1631 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1632
1633 remainder = sg_dma_len(sgde) - split_offset;
1634
1635 if ((subtotal + remainder) <= protgrp_bytes) {
1636 /* we can use this whole buffer */
1637 bpl->tus.f.bdeSize = remainder;
1638 split_offset = 0;
1639
1640 if ((subtotal + remainder) == protgrp_bytes)
1641 pgdone = 1;
1642 } else {
1643 /* must split this buffer with next prot grp */
1644 bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1645 split_offset += bpl->tus.f.bdeSize;
1646 }
1647
1648 subtotal += bpl->tus.f.bdeSize;
1649
1650 if (datadir == DMA_TO_DEVICE)
1651 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1652 else
1653 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1654 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1655
1656 num_bde++;
1657 curr_data++;
1658
1659 if (split_offset)
1660 break;
1661
1662 /* Move to the next s/g segment if possible */
1663 sgde = sg_next(sgde);
1664
1665 }
1666
1667 if (protgroup_offset) {
1668 /* update the reference tag */
1669 reftag += protgrp_blks;
1670 bpl++;
1671 continue;
1672 }
1673
1674 /* are we done ? */
1675 if (curr_prot == protcnt) {
1676 alldone = 1;
1677 } else if (curr_prot < protcnt) {
1678 /* advance to next prot buffer */
1679 sgpe = sg_next(sgpe);
1680 bpl++;
1681
1682 /* update the reference tag */
1683 reftag += protgrp_blks;
1684 } else {
1685 /* if we're here, we have a bug */
1686 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1687 "9054 BLKGRD: bug in %s\n", __func__);
1688 }
1689
1690 } while (!alldone);
1691
1692 out:
1693
1694 return num_bde;
1695 }
1696
1697 /*
1698 * Given a SCSI command that supports DIF, determine composition of protection
1699 * groups involved in setting up buffer lists
1700 *
1701 * Returns:
1702 * for DIF (for both read and write)
1703 * */
1704 static int
lpfc_prot_group_type(struct lpfc_hba * phba,struct scsi_cmnd * sc)1705 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1706 {
1707 int ret = LPFC_PG_TYPE_INVALID;
1708 unsigned char op = scsi_get_prot_op(sc);
1709
1710 switch (op) {
1711 case SCSI_PROT_READ_STRIP:
1712 case SCSI_PROT_WRITE_INSERT:
1713 ret = LPFC_PG_TYPE_NO_DIF;
1714 break;
1715 case SCSI_PROT_READ_INSERT:
1716 case SCSI_PROT_WRITE_STRIP:
1717 case SCSI_PROT_READ_PASS:
1718 case SCSI_PROT_WRITE_PASS:
1719 ret = LPFC_PG_TYPE_DIF_BUF;
1720 break;
1721 default:
1722 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1723 "9021 Unsupported protection op:%d\n", op);
1724 break;
1725 }
1726
1727 return ret;
1728 }
1729
1730 /*
1731 * This is the protection/DIF aware version of
1732 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1733 * two functions eventually, but for now, it's here
1734 */
1735 static int
lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)1736 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1737 struct lpfc_scsi_buf *lpfc_cmd)
1738 {
1739 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1740 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1741 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1742 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1743 uint32_t num_bde = 0;
1744 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1745 int prot_group_type = 0;
1746 int diflen, fcpdl;
1747 unsigned blksize;
1748
1749 /*
1750 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1751 * fcp_rsp regions to the first data bde entry
1752 */
1753 bpl += 2;
1754 if (scsi_sg_count(scsi_cmnd)) {
1755 /*
1756 * The driver stores the segment count returned from pci_map_sg
1757 * because this a count of dma-mappings used to map the use_sg
1758 * pages. They are not guaranteed to be the same for those
1759 * architectures that implement an IOMMU.
1760 */
1761 datasegcnt = dma_map_sg(&phba->pcidev->dev,
1762 scsi_sglist(scsi_cmnd),
1763 scsi_sg_count(scsi_cmnd), datadir);
1764 if (unlikely(!datasegcnt))
1765 return 1;
1766
1767 lpfc_cmd->seg_cnt = datasegcnt;
1768 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1769 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1770 "9067 BLKGRD: %s: Too many sg segments"
1771 " from dma_map_sg. Config %d, seg_cnt"
1772 " %d\n",
1773 __func__, phba->cfg_sg_seg_cnt,
1774 lpfc_cmd->seg_cnt);
1775 scsi_dma_unmap(scsi_cmnd);
1776 return 1;
1777 }
1778
1779 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1780
1781 switch (prot_group_type) {
1782 case LPFC_PG_TYPE_NO_DIF:
1783 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1784 datasegcnt);
1785 /* we should have 2 or more entries in buffer list */
1786 if (num_bde < 2)
1787 goto err;
1788 break;
1789 case LPFC_PG_TYPE_DIF_BUF:{
1790 /*
1791 * This type indicates that protection buffers are
1792 * passed to the driver, so that needs to be prepared
1793 * for DMA
1794 */
1795 protsegcnt = dma_map_sg(&phba->pcidev->dev,
1796 scsi_prot_sglist(scsi_cmnd),
1797 scsi_prot_sg_count(scsi_cmnd), datadir);
1798 if (unlikely(!protsegcnt)) {
1799 scsi_dma_unmap(scsi_cmnd);
1800 return 1;
1801 }
1802
1803 lpfc_cmd->prot_seg_cnt = protsegcnt;
1804 if (lpfc_cmd->prot_seg_cnt
1805 > phba->cfg_prot_sg_seg_cnt) {
1806 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1807 "9068 BLKGRD: %s: Too many prot sg "
1808 "segments from dma_map_sg. Config %d,"
1809 "prot_seg_cnt %d\n", __func__,
1810 phba->cfg_prot_sg_seg_cnt,
1811 lpfc_cmd->prot_seg_cnt);
1812 dma_unmap_sg(&phba->pcidev->dev,
1813 scsi_prot_sglist(scsi_cmnd),
1814 scsi_prot_sg_count(scsi_cmnd),
1815 datadir);
1816 scsi_dma_unmap(scsi_cmnd);
1817 return 1;
1818 }
1819
1820 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1821 datasegcnt, protsegcnt);
1822 /* we should have 3 or more entries in buffer list */
1823 if (num_bde < 3)
1824 goto err;
1825 break;
1826 }
1827 case LPFC_PG_TYPE_INVALID:
1828 default:
1829 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1830 "9022 Unexpected protection group %i\n",
1831 prot_group_type);
1832 return 1;
1833 }
1834 }
1835
1836 /*
1837 * Finish initializing those IOCB fields that are dependent on the
1838 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly
1839 * reinitialized since all iocb memory resources are used many times
1840 * for transmit, receive, and continuation bpl's.
1841 */
1842 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1843 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1844 iocb_cmd->ulpBdeCount = 1;
1845 iocb_cmd->ulpLe = 1;
1846
1847 fcpdl = scsi_bufflen(scsi_cmnd);
1848
1849 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1850 /*
1851 * We are in DIF Type 1 mode
1852 * Every data block has a 8 byte DIF (trailer)
1853 * attached to it. Must ajust FCP data length
1854 */
1855 blksize = lpfc_cmd_blksize(scsi_cmnd);
1856 diflen = (fcpdl / blksize) * 8;
1857 fcpdl += diflen;
1858 }
1859 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1860
1861 /*
1862 * Due to difference in data length between DIF/non-DIF paths,
1863 * we need to set word 4 of IOCB here
1864 */
1865 iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1866
1867 return 0;
1868 err:
1869 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1870 "9023 Could not setup all needed BDE's"
1871 "prot_group_type=%d, num_bde=%d\n",
1872 prot_group_type, num_bde);
1873 return 1;
1874 }
1875
1876 /*
1877 * This function checks for BlockGuard errors detected by
1878 * the HBA. In case of errors, the ASC/ASCQ fields in the
1879 * sense buffer will be set accordingly, paired with
1880 * ILLEGAL_REQUEST to signal to the kernel that the HBA
1881 * detected corruption.
1882 *
1883 * Returns:
1884 * 0 - No error found
1885 * 1 - BlockGuard error found
1886 * -1 - Internal error (bad profile, ...etc)
1887 */
1888 static int
lpfc_parse_bg_err(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * pIocbOut)1889 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1890 struct lpfc_iocbq *pIocbOut)
1891 {
1892 struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1893 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1894 int ret = 0;
1895 uint32_t bghm = bgf->bghm;
1896 uint32_t bgstat = bgf->bgstat;
1897 uint64_t failing_sector = 0;
1898
1899 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd"
1900 " 0x%x lba 0x%llx blk cnt 0x%x "
1901 "bgstat=0x%x bghm=0x%x\n",
1902 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1903 blk_rq_sectors(cmd->request), bgstat, bghm);
1904
1905 spin_lock(&_dump_buf_lock);
1906 if (!_dump_buf_done) {
1907 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving"
1908 " Data for %u blocks to debugfs\n",
1909 (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1910 lpfc_debug_save_data(phba, cmd);
1911
1912 /* If we have a prot sgl, save the DIF buffer */
1913 if (lpfc_prot_group_type(phba, cmd) ==
1914 LPFC_PG_TYPE_DIF_BUF) {
1915 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: "
1916 "Saving DIF for %u blocks to debugfs\n",
1917 (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1918 lpfc_debug_save_dif(phba, cmd);
1919 }
1920
1921 _dump_buf_done = 1;
1922 }
1923 spin_unlock(&_dump_buf_lock);
1924
1925 if (lpfc_bgs_get_invalid_prof(bgstat)) {
1926 cmd->result = ScsiResult(DID_ERROR, 0);
1927 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid"
1928 " BlockGuard profile. bgstat:0x%x\n",
1929 bgstat);
1930 ret = (-1);
1931 goto out;
1932 }
1933
1934 if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1935 cmd->result = ScsiResult(DID_ERROR, 0);
1936 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: "
1937 "Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1938 bgstat);
1939 ret = (-1);
1940 goto out;
1941 }
1942
1943 if (lpfc_bgs_get_guard_err(bgstat)) {
1944 ret = 1;
1945
1946 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1947 0x10, 0x1);
1948 cmd->result = DRIVER_SENSE << 24
1949 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1950 phba->bg_guard_err_cnt++;
1951 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1952 "9055 BLKGRD: guard_tag error\n");
1953 }
1954
1955 if (lpfc_bgs_get_reftag_err(bgstat)) {
1956 ret = 1;
1957
1958 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1959 0x10, 0x3);
1960 cmd->result = DRIVER_SENSE << 24
1961 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1962
1963 phba->bg_reftag_err_cnt++;
1964 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1965 "9056 BLKGRD: ref_tag error\n");
1966 }
1967
1968 if (lpfc_bgs_get_apptag_err(bgstat)) {
1969 ret = 1;
1970
1971 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1972 0x10, 0x2);
1973 cmd->result = DRIVER_SENSE << 24
1974 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1975
1976 phba->bg_apptag_err_cnt++;
1977 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1978 "9061 BLKGRD: app_tag error\n");
1979 }
1980
1981 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
1982 /*
1983 * setup sense data descriptor 0 per SPC-4 as an information
1984 * field, and put the failing LBA in it
1985 */
1986 cmd->sense_buffer[8] = 0; /* Information */
1987 cmd->sense_buffer[9] = 0xa; /* Add. length */
1988 bghm /= cmd->device->sector_size;
1989
1990 failing_sector = scsi_get_lba(cmd);
1991 failing_sector += bghm;
1992
1993 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
1994 }
1995
1996 if (!ret) {
1997 /* No error was reported - problem in FW? */
1998 cmd->result = ScsiResult(DID_ERROR, 0);
1999 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2000 "9057 BLKGRD: no errors reported!\n");
2001 }
2002
2003 out:
2004 return ret;
2005 }
2006
2007 /**
2008 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
2009 * @phba: The Hba for which this call is being executed.
2010 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2011 *
2012 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
2013 * field of @lpfc_cmd for device with SLI-4 interface spec.
2014 *
2015 * Return codes:
2016 * 1 - Error
2017 * 0 - Success
2018 **/
2019 static int
lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)2020 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2021 {
2022 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2023 struct scatterlist *sgel = NULL;
2024 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2025 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
2026 struct sli4_sge *first_data_sgl;
2027 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2028 dma_addr_t physaddr;
2029 uint32_t num_bde = 0;
2030 uint32_t dma_len;
2031 uint32_t dma_offset = 0;
2032 int nseg;
2033 struct ulp_bde64 *bde;
2034
2035 /*
2036 * There are three possibilities here - use scatter-gather segment, use
2037 * the single mapping, or neither. Start the lpfc command prep by
2038 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2039 * data bde entry.
2040 */
2041 if (scsi_sg_count(scsi_cmnd)) {
2042 /*
2043 * The driver stores the segment count returned from pci_map_sg
2044 * because this a count of dma-mappings used to map the use_sg
2045 * pages. They are not guaranteed to be the same for those
2046 * architectures that implement an IOMMU.
2047 */
2048
2049 nseg = scsi_dma_map(scsi_cmnd);
2050 if (unlikely(!nseg))
2051 return 1;
2052 sgl += 1;
2053 /* clear the last flag in the fcp_rsp map entry */
2054 sgl->word2 = le32_to_cpu(sgl->word2);
2055 bf_set(lpfc_sli4_sge_last, sgl, 0);
2056 sgl->word2 = cpu_to_le32(sgl->word2);
2057 sgl += 1;
2058 first_data_sgl = sgl;
2059 lpfc_cmd->seg_cnt = nseg;
2060 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
2061 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:"
2062 " %s: Too many sg segments from "
2063 "dma_map_sg. Config %d, seg_cnt %d\n",
2064 __func__, phba->cfg_sg_seg_cnt,
2065 lpfc_cmd->seg_cnt);
2066 scsi_dma_unmap(scsi_cmnd);
2067 return 1;
2068 }
2069
2070 /*
2071 * The driver established a maximum scatter-gather segment count
2072 * during probe that limits the number of sg elements in any
2073 * single scsi command. Just run through the seg_cnt and format
2074 * the sge's.
2075 * When using SLI-3 the driver will try to fit all the BDEs into
2076 * the IOCB. If it can't then the BDEs get added to a BPL as it
2077 * does for SLI-2 mode.
2078 */
2079 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
2080 physaddr = sg_dma_address(sgel);
2081 dma_len = sg_dma_len(sgel);
2082 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
2083 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
2084 if ((num_bde + 1) == nseg)
2085 bf_set(lpfc_sli4_sge_last, sgl, 1);
2086 else
2087 bf_set(lpfc_sli4_sge_last, sgl, 0);
2088 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
2089 sgl->word2 = cpu_to_le32(sgl->word2);
2090 sgl->sge_len = cpu_to_le32(dma_len);
2091 dma_offset += dma_len;
2092 sgl++;
2093 }
2094 /* setup the performance hint (first data BDE) if enabled */
2095 if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) {
2096 bde = (struct ulp_bde64 *)
2097 &(iocb_cmd->unsli3.sli3Words[5]);
2098 bde->addrLow = first_data_sgl->addr_lo;
2099 bde->addrHigh = first_data_sgl->addr_hi;
2100 bde->tus.f.bdeSize =
2101 le32_to_cpu(first_data_sgl->sge_len);
2102 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2103 bde->tus.w = cpu_to_le32(bde->tus.w);
2104 }
2105 } else {
2106 sgl += 1;
2107 /* clear the last flag in the fcp_rsp map entry */
2108 sgl->word2 = le32_to_cpu(sgl->word2);
2109 bf_set(lpfc_sli4_sge_last, sgl, 1);
2110 sgl->word2 = cpu_to_le32(sgl->word2);
2111 }
2112
2113 /*
2114 * Finish initializing those IOCB fields that are dependent on the
2115 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
2116 * explicitly reinitialized.
2117 * all iocb memory resources are reused.
2118 */
2119 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
2120
2121 /*
2122 * Due to difference in data length between DIF/non-DIF paths,
2123 * we need to set word 4 of IOCB here
2124 */
2125 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
2126 return 0;
2127 }
2128
2129 /**
2130 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2131 * @phba: The Hba for which this call is being executed.
2132 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2133 *
2134 * This routine wraps the actual DMA mapping function pointer from the
2135 * lpfc_hba struct.
2136 *
2137 * Return codes:
2138 * 1 - Error
2139 * 0 - Success
2140 **/
2141 static inline int
lpfc_scsi_prep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * lpfc_cmd)2142 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2143 {
2144 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2145 }
2146
2147 /**
2148 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2149 * @phba: Pointer to hba context object.
2150 * @vport: Pointer to vport object.
2151 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2152 * @rsp_iocb: Pointer to response iocb object which reported error.
2153 *
2154 * This function posts an event when there is a SCSI command reporting
2155 * error from the scsi device.
2156 **/
2157 static void
lpfc_send_scsi_error_event(struct lpfc_hba * phba,struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * rsp_iocb)2158 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
2159 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
2160 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2161 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2162 uint32_t resp_info = fcprsp->rspStatus2;
2163 uint32_t scsi_status = fcprsp->rspStatus3;
2164 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2165 struct lpfc_fast_path_event *fast_path_evt = NULL;
2166 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
2167 unsigned long flags;
2168
2169 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2170 return;
2171
2172 /* If there is queuefull or busy condition send a scsi event */
2173 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
2174 (cmnd->result == SAM_STAT_BUSY)) {
2175 fast_path_evt = lpfc_alloc_fast_evt(phba);
2176 if (!fast_path_evt)
2177 return;
2178 fast_path_evt->un.scsi_evt.event_type =
2179 FC_REG_SCSI_EVENT;
2180 fast_path_evt->un.scsi_evt.subcategory =
2181 (cmnd->result == SAM_STAT_TASK_SET_FULL) ?
2182 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
2183 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
2184 memcpy(&fast_path_evt->un.scsi_evt.wwpn,
2185 &pnode->nlp_portname, sizeof(struct lpfc_name));
2186 memcpy(&fast_path_evt->un.scsi_evt.wwnn,
2187 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2188 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
2189 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
2190 fast_path_evt = lpfc_alloc_fast_evt(phba);
2191 if (!fast_path_evt)
2192 return;
2193 fast_path_evt->un.check_cond_evt.scsi_event.event_type =
2194 FC_REG_SCSI_EVENT;
2195 fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
2196 LPFC_EVENT_CHECK_COND;
2197 fast_path_evt->un.check_cond_evt.scsi_event.lun =
2198 cmnd->device->lun;
2199 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
2200 &pnode->nlp_portname, sizeof(struct lpfc_name));
2201 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
2202 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2203 fast_path_evt->un.check_cond_evt.sense_key =
2204 cmnd->sense_buffer[2] & 0xf;
2205 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
2206 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
2207 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2208 fcpi_parm &&
2209 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
2210 ((scsi_status == SAM_STAT_GOOD) &&
2211 !(resp_info & (RESID_UNDER | RESID_OVER))))) {
2212 /*
2213 * If status is good or resid does not match with fcp_param and
2214 * there is valid fcpi_parm, then there is a read_check error
2215 */
2216 fast_path_evt = lpfc_alloc_fast_evt(phba);
2217 if (!fast_path_evt)
2218 return;
2219 fast_path_evt->un.read_check_error.header.event_type =
2220 FC_REG_FABRIC_EVENT;
2221 fast_path_evt->un.read_check_error.header.subcategory =
2222 LPFC_EVENT_FCPRDCHKERR;
2223 memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
2224 &pnode->nlp_portname, sizeof(struct lpfc_name));
2225 memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
2226 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2227 fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
2228 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
2229 fast_path_evt->un.read_check_error.fcpiparam =
2230 fcpi_parm;
2231 } else
2232 return;
2233
2234 fast_path_evt->vport = vport;
2235 spin_lock_irqsave(&phba->hbalock, flags);
2236 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
2237 spin_unlock_irqrestore(&phba->hbalock, flags);
2238 lpfc_worker_wake_up(phba);
2239 return;
2240 }
2241
2242 /**
2243 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2244 * @phba: The HBA for which this call is being executed.
2245 * @psb: The scsi buffer which is going to be un-mapped.
2246 *
2247 * This routine does DMA un-mapping of scatter gather list of scsi command
2248 * field of @lpfc_cmd for device with SLI-3 interface spec.
2249 **/
2250 static void
lpfc_scsi_unprep_dma_buf(struct lpfc_hba * phba,struct lpfc_scsi_buf * psb)2251 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2252 {
2253 /*
2254 * There are only two special cases to consider. (1) the scsi command
2255 * requested scatter-gather usage or (2) the scsi command allocated
2256 * a request buffer, but did not request use_sg. There is a third
2257 * case, but it does not require resource deallocation.
2258 */
2259 if (psb->seg_cnt > 0)
2260 scsi_dma_unmap(psb->pCmd);
2261 if (psb->prot_seg_cnt > 0)
2262 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2263 scsi_prot_sg_count(psb->pCmd),
2264 psb->pCmd->sc_data_direction);
2265 }
2266
2267 /**
2268 * lpfc_handler_fcp_err - FCP response handler
2269 * @vport: The virtual port for which this call is being executed.
2270 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2271 * @rsp_iocb: The response IOCB which contains FCP error.
2272 *
2273 * This routine is called to process response IOCB with status field
2274 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2275 * based upon SCSI and FCP error.
2276 **/
2277 static void
lpfc_handle_fcp_err(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_iocbq * rsp_iocb)2278 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2279 struct lpfc_iocbq *rsp_iocb)
2280 {
2281 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2282 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2283 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2284 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2285 uint32_t resp_info = fcprsp->rspStatus2;
2286 uint32_t scsi_status = fcprsp->rspStatus3;
2287 uint32_t *lp;
2288 uint32_t host_status = DID_OK;
2289 uint32_t rsplen = 0;
2290 uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2291
2292
2293 /*
2294 * If this is a task management command, there is no
2295 * scsi packet associated with this lpfc_cmd. The driver
2296 * consumes it.
2297 */
2298 if (fcpcmd->fcpCntl2) {
2299 scsi_status = 0;
2300 goto out;
2301 }
2302
2303 if (resp_info & RSP_LEN_VALID) {
2304 rsplen = be32_to_cpu(fcprsp->rspRspLen);
2305 if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
2306 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2307 "2719 Invalid response length: "
2308 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2309 cmnd->device->id,
2310 cmnd->device->lun, cmnd->cmnd[0],
2311 rsplen);
2312 host_status = DID_ERROR;
2313 goto out;
2314 }
2315 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
2316 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2317 "2757 Protocol failure detected during "
2318 "processing of FCP I/O op: "
2319 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2320 cmnd->device->id,
2321 cmnd->device->lun, cmnd->cmnd[0],
2322 fcprsp->rspInfo3);
2323 host_status = DID_ERROR;
2324 goto out;
2325 }
2326 }
2327
2328 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2329 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2330 if (snslen > SCSI_SENSE_BUFFERSIZE)
2331 snslen = SCSI_SENSE_BUFFERSIZE;
2332
2333 if (resp_info & RSP_LEN_VALID)
2334 rsplen = be32_to_cpu(fcprsp->rspRspLen);
2335 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2336 }
2337 lp = (uint32_t *)cmnd->sense_buffer;
2338
2339 if (!scsi_status && (resp_info & RESID_UNDER))
2340 logit = LOG_FCP;
2341
2342 lpfc_printf_vlog(vport, KERN_WARNING, logit,
2343 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2344 "Data: x%x x%x x%x x%x x%x\n",
2345 cmnd->cmnd[0], scsi_status,
2346 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2347 be32_to_cpu(fcprsp->rspResId),
2348 be32_to_cpu(fcprsp->rspSnsLen),
2349 be32_to_cpu(fcprsp->rspRspLen),
2350 fcprsp->rspInfo3);
2351
2352 scsi_set_resid(cmnd, 0);
2353 if (resp_info & RESID_UNDER) {
2354 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2355
2356 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2357 "9025 FCP Read Underrun, expected %d, "
2358 "residual %d Data: x%x x%x x%x\n",
2359 be32_to_cpu(fcpcmd->fcpDl),
2360 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2361 cmnd->underflow);
2362
2363 /*
2364 * If there is an under run check if under run reported by
2365 * storage array is same as the under run reported by HBA.
2366 * If this is not same, there is a dropped frame.
2367 */
2368 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2369 fcpi_parm &&
2370 (scsi_get_resid(cmnd) != fcpi_parm)) {
2371 lpfc_printf_vlog(vport, KERN_WARNING,
2372 LOG_FCP | LOG_FCP_ERROR,
2373 "9026 FCP Read Check Error "
2374 "and Underrun Data: x%x x%x x%x x%x\n",
2375 be32_to_cpu(fcpcmd->fcpDl),
2376 scsi_get_resid(cmnd), fcpi_parm,
2377 cmnd->cmnd[0]);
2378 scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2379 host_status = DID_ERROR;
2380 }
2381 /*
2382 * The cmnd->underflow is the minimum number of bytes that must
2383 * be transferred for this command. Provided a sense condition
2384 * is not present, make sure the actual amount transferred is at
2385 * least the underflow value or fail.
2386 */
2387 if (!(resp_info & SNS_LEN_VALID) &&
2388 (scsi_status == SAM_STAT_GOOD) &&
2389 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2390 < cmnd->underflow)) {
2391 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2392 "9027 FCP command x%x residual "
2393 "underrun converted to error "
2394 "Data: x%x x%x x%x\n",
2395 cmnd->cmnd[0], scsi_bufflen(cmnd),
2396 scsi_get_resid(cmnd), cmnd->underflow);
2397 host_status = DID_ERROR;
2398 }
2399 } else if (resp_info & RESID_OVER) {
2400 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2401 "9028 FCP command x%x residual overrun error. "
2402 "Data: x%x x%x\n", cmnd->cmnd[0],
2403 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2404 host_status = DID_ERROR;
2405
2406 /*
2407 * Check SLI validation that all the transfer was actually done
2408 * (fcpi_parm should be zero). Apply check only to reads.
2409 */
2410 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2411 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2412 "9029 FCP Read Check Error Data: "
2413 "x%x x%x x%x x%x x%x\n",
2414 be32_to_cpu(fcpcmd->fcpDl),
2415 be32_to_cpu(fcprsp->rspResId),
2416 fcpi_parm, cmnd->cmnd[0], scsi_status);
2417 switch (scsi_status) {
2418 case SAM_STAT_GOOD:
2419 case SAM_STAT_CHECK_CONDITION:
2420 /* Fabric dropped a data frame. Fail any successful
2421 * command in which we detected dropped frames.
2422 * A status of good or some check conditions could
2423 * be considered a successful command.
2424 */
2425 host_status = DID_ERROR;
2426 break;
2427 }
2428 scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2429 }
2430
2431 out:
2432 cmnd->result = ScsiResult(host_status, scsi_status);
2433 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2434 }
2435
2436 /**
2437 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2438 * @phba: The Hba for which this call is being executed.
2439 * @pIocbIn: The command IOCBQ for the scsi cmnd.
2440 * @pIocbOut: The response IOCBQ for the scsi cmnd.
2441 *
2442 * This routine assigns scsi command result by looking into response IOCB
2443 * status field appropriately. This routine handles QUEUE FULL condition as
2444 * well by ramping down device queue depth.
2445 **/
2446 static void
lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * pIocbIn,struct lpfc_iocbq * pIocbOut)2447 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2448 struct lpfc_iocbq *pIocbOut)
2449 {
2450 struct lpfc_scsi_buf *lpfc_cmd =
2451 (struct lpfc_scsi_buf *) pIocbIn->context1;
2452 struct lpfc_vport *vport = pIocbIn->vport;
2453 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2454 struct lpfc_nodelist *pnode = rdata->pnode;
2455 struct scsi_cmnd *cmd;
2456 int result;
2457 struct scsi_device *tmp_sdev;
2458 int depth;
2459 unsigned long flags;
2460 struct lpfc_fast_path_event *fast_path_evt;
2461 struct Scsi_Host *shost;
2462 uint32_t queue_depth, scsi_id;
2463
2464 /* Sanity check on return of outstanding command */
2465 if (!(lpfc_cmd->pCmd))
2466 return;
2467 cmd = lpfc_cmd->pCmd;
2468 shost = cmd->device->host;
2469
2470 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2471 lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2472 /* pick up SLI4 exhange busy status from HBA */
2473 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY;
2474
2475 if (pnode && NLP_CHK_NODE_ACT(pnode))
2476 atomic_dec(&pnode->cmd_pending);
2477
2478 if (lpfc_cmd->status) {
2479 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2480 (lpfc_cmd->result & IOERR_DRVR_MASK))
2481 lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2482 else if (lpfc_cmd->status >= IOSTAT_CNT)
2483 lpfc_cmd->status = IOSTAT_DEFAULT;
2484
2485 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2486 "9030 FCP cmd x%x failed <%d/%d> "
2487 "status: x%x result: x%x Data: x%x x%x\n",
2488 cmd->cmnd[0],
2489 cmd->device ? cmd->device->id : 0xffff,
2490 cmd->device ? cmd->device->lun : 0xffff,
2491 lpfc_cmd->status, lpfc_cmd->result,
2492 pIocbOut->iocb.ulpContext,
2493 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2494
2495 switch (lpfc_cmd->status) {
2496 case IOSTAT_FCP_RSP_ERROR:
2497 /* Call FCP RSP handler to determine result */
2498 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2499 break;
2500 case IOSTAT_NPORT_BSY:
2501 case IOSTAT_FABRIC_BSY:
2502 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2503 fast_path_evt = lpfc_alloc_fast_evt(phba);
2504 if (!fast_path_evt)
2505 break;
2506 fast_path_evt->un.fabric_evt.event_type =
2507 FC_REG_FABRIC_EVENT;
2508 fast_path_evt->un.fabric_evt.subcategory =
2509 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2510 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2511 if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2512 memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2513 &pnode->nlp_portname,
2514 sizeof(struct lpfc_name));
2515 memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2516 &pnode->nlp_nodename,
2517 sizeof(struct lpfc_name));
2518 }
2519 fast_path_evt->vport = vport;
2520 fast_path_evt->work_evt.evt =
2521 LPFC_EVT_FASTPATH_MGMT_EVT;
2522 spin_lock_irqsave(&phba->hbalock, flags);
2523 list_add_tail(&fast_path_evt->work_evt.evt_listp,
2524 &phba->work_list);
2525 spin_unlock_irqrestore(&phba->hbalock, flags);
2526 lpfc_worker_wake_up(phba);
2527 break;
2528 case IOSTAT_LOCAL_REJECT:
2529 case IOSTAT_REMOTE_STOP:
2530 if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR ||
2531 lpfc_cmd->result ==
2532 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR ||
2533 lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR ||
2534 lpfc_cmd->result ==
2535 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) {
2536 cmd->result = ScsiResult(DID_NO_CONNECT, 0);
2537 break;
2538 }
2539 if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2540 lpfc_cmd->result == IOERR_NO_RESOURCES ||
2541 lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
2542 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
2543 cmd->result = ScsiResult(DID_REQUEUE, 0);
2544 break;
2545 }
2546 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2547 lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2548 pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2549 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2550 /*
2551 * This is a response for a BG enabled
2552 * cmd. Parse BG error
2553 */
2554 lpfc_parse_bg_err(phba, lpfc_cmd,
2555 pIocbOut);
2556 break;
2557 } else {
2558 lpfc_printf_vlog(vport, KERN_WARNING,
2559 LOG_BG,
2560 "9031 non-zero BGSTAT "
2561 "on unprotected cmd\n");
2562 }
2563 }
2564 if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP)
2565 && (phba->sli_rev == LPFC_SLI_REV4)
2566 && (pnode && NLP_CHK_NODE_ACT(pnode))) {
2567 /* This IO was aborted by the target, we don't
2568 * know the rxid and because we did not send the
2569 * ABTS we cannot generate and RRQ.
2570 */
2571 lpfc_set_rrq_active(phba, pnode,
2572 lpfc_cmd->cur_iocbq.sli4_xritag,
2573 0, 0);
2574 }
2575 /* else: fall through */
2576 default:
2577 cmd->result = ScsiResult(DID_ERROR, 0);
2578 break;
2579 }
2580
2581 if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2582 || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2583 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2584 SAM_STAT_BUSY);
2585 } else
2586 cmd->result = ScsiResult(DID_OK, 0);
2587
2588 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2589 uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2590
2591 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2592 "0710 Iodone <%d/%d> cmd %p, error "
2593 "x%x SNS x%x x%x Data: x%x x%x\n",
2594 cmd->device->id, cmd->device->lun, cmd,
2595 cmd->result, *lp, *(lp + 3), cmd->retries,
2596 scsi_get_resid(cmd));
2597 }
2598
2599 lpfc_update_stats(phba, lpfc_cmd);
2600 result = cmd->result;
2601 if (vport->cfg_max_scsicmpl_time &&
2602 time_after(jiffies, lpfc_cmd->start_time +
2603 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2604 spin_lock_irqsave(shost->host_lock, flags);
2605 if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2606 if (pnode->cmd_qdepth >
2607 atomic_read(&pnode->cmd_pending) &&
2608 (atomic_read(&pnode->cmd_pending) >
2609 LPFC_MIN_TGT_QDEPTH) &&
2610 ((cmd->cmnd[0] == READ_10) ||
2611 (cmd->cmnd[0] == WRITE_10)))
2612 pnode->cmd_qdepth =
2613 atomic_read(&pnode->cmd_pending);
2614
2615 pnode->last_change_time = jiffies;
2616 }
2617 spin_unlock_irqrestore(shost->host_lock, flags);
2618 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2619 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) &&
2620 time_after(jiffies, pnode->last_change_time +
2621 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2622 spin_lock_irqsave(shost->host_lock, flags);
2623 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT
2624 / 100;
2625 depth = depth ? depth : 1;
2626 pnode->cmd_qdepth += depth;
2627 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth)
2628 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth;
2629 pnode->last_change_time = jiffies;
2630 spin_unlock_irqrestore(shost->host_lock, flags);
2631 }
2632 }
2633
2634 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2635
2636 /* The sdev is not guaranteed to be valid post scsi_done upcall. */
2637 queue_depth = cmd->device->queue_depth;
2638 scsi_id = cmd->device->id;
2639 cmd->scsi_done(cmd);
2640
2641 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2642 /*
2643 * If there is a thread waiting for command completion
2644 * wake up the thread.
2645 */
2646 spin_lock_irqsave(shost->host_lock, flags);
2647 lpfc_cmd->pCmd = NULL;
2648 if (lpfc_cmd->waitq)
2649 wake_up(lpfc_cmd->waitq);
2650 spin_unlock_irqrestore(shost->host_lock, flags);
2651 lpfc_release_scsi_buf(phba, lpfc_cmd);
2652 return;
2653 }
2654
2655 if (!result)
2656 lpfc_rampup_queue_depth(vport, queue_depth);
2657
2658 /*
2659 * Check for queue full. If the lun is reporting queue full, then
2660 * back off the lun queue depth to prevent target overloads.
2661 */
2662 if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2663 NLP_CHK_NODE_ACT(pnode)) {
2664 shost_for_each_device(tmp_sdev, shost) {
2665 if (tmp_sdev->id != scsi_id)
2666 continue;
2667 depth = scsi_track_queue_full(tmp_sdev,
2668 tmp_sdev->queue_depth-1);
2669 if (depth <= 0)
2670 continue;
2671 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2672 "0711 detected queue full - lun queue "
2673 "depth adjusted to %d.\n", depth);
2674 lpfc_send_sdev_queuedepth_change_event(phba, vport,
2675 pnode,
2676 tmp_sdev->lun,
2677 depth+1, depth);
2678 }
2679 }
2680
2681 /*
2682 * If there is a thread waiting for command completion
2683 * wake up the thread.
2684 */
2685 spin_lock_irqsave(shost->host_lock, flags);
2686 lpfc_cmd->pCmd = NULL;
2687 if (lpfc_cmd->waitq)
2688 wake_up(lpfc_cmd->waitq);
2689 spin_unlock_irqrestore(shost->host_lock, flags);
2690
2691 lpfc_release_scsi_buf(phba, lpfc_cmd);
2692 }
2693
2694 /**
2695 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2696 * @data: A pointer to the immediate command data portion of the IOCB.
2697 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2698 *
2699 * The routine copies the entire FCP command from @fcp_cmnd to @data while
2700 * byte swapping the data to big endian format for transmission on the wire.
2701 **/
2702 static void
lpfc_fcpcmd_to_iocb(uint8_t * data,struct fcp_cmnd * fcp_cmnd)2703 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2704 {
2705 int i, j;
2706 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2707 i += sizeof(uint32_t), j++) {
2708 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2709 }
2710 }
2711
2712 /**
2713 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2714 * @vport: The virtual port for which this call is being executed.
2715 * @lpfc_cmd: The scsi command which needs to send.
2716 * @pnode: Pointer to lpfc_nodelist.
2717 *
2718 * This routine initializes fcp_cmnd and iocb data structure from scsi command
2719 * to transfer for device with SLI3 interface spec.
2720 **/
2721 static void
lpfc_scsi_prep_cmnd(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,struct lpfc_nodelist * pnode)2722 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2723 struct lpfc_nodelist *pnode)
2724 {
2725 struct lpfc_hba *phba = vport->phba;
2726 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2727 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2728 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2729 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2730 int datadir = scsi_cmnd->sc_data_direction;
2731 char tag[2];
2732
2733 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2734 return;
2735
2736 lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2737 /* clear task management bits */
2738 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2739
2740 int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2741 &lpfc_cmd->fcp_cmnd->fcp_lun);
2742
2743 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2744
2745 if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2746 switch (tag[0]) {
2747 case HEAD_OF_QUEUE_TAG:
2748 fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2749 break;
2750 case ORDERED_QUEUE_TAG:
2751 fcp_cmnd->fcpCntl1 = ORDERED_Q;
2752 break;
2753 default:
2754 fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2755 break;
2756 }
2757 } else
2758 fcp_cmnd->fcpCntl1 = 0;
2759
2760 /*
2761 * There are three possibilities here - use scatter-gather segment, use
2762 * the single mapping, or neither. Start the lpfc command prep by
2763 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2764 * data bde entry.
2765 */
2766 if (scsi_sg_count(scsi_cmnd)) {
2767 if (datadir == DMA_TO_DEVICE) {
2768 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2769 if (phba->sli_rev < LPFC_SLI_REV4) {
2770 iocb_cmd->un.fcpi.fcpi_parm = 0;
2771 iocb_cmd->ulpPU = 0;
2772 } else
2773 iocb_cmd->ulpPU = PARM_READ_CHECK;
2774 fcp_cmnd->fcpCntl3 = WRITE_DATA;
2775 phba->fc4OutputRequests++;
2776 } else {
2777 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2778 iocb_cmd->ulpPU = PARM_READ_CHECK;
2779 fcp_cmnd->fcpCntl3 = READ_DATA;
2780 phba->fc4InputRequests++;
2781 }
2782 } else {
2783 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2784 iocb_cmd->un.fcpi.fcpi_parm = 0;
2785 iocb_cmd->ulpPU = 0;
2786 fcp_cmnd->fcpCntl3 = 0;
2787 phba->fc4ControlRequests++;
2788 }
2789 if (phba->sli_rev == 3 &&
2790 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2791 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2792 /*
2793 * Finish initializing those IOCB fields that are independent
2794 * of the scsi_cmnd request_buffer
2795 */
2796 piocbq->iocb.ulpContext = pnode->nlp_rpi;
2797 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2798 piocbq->iocb.ulpFCP2Rcvy = 1;
2799 else
2800 piocbq->iocb.ulpFCP2Rcvy = 0;
2801
2802 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2803 piocbq->context1 = lpfc_cmd;
2804 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2805 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2806 piocbq->vport = vport;
2807 }
2808
2809 /**
2810 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2811 * @vport: The virtual port for which this call is being executed.
2812 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2813 * @lun: Logical unit number.
2814 * @task_mgmt_cmd: SCSI task management command.
2815 *
2816 * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2817 * for device with SLI-3 interface spec.
2818 *
2819 * Return codes:
2820 * 0 - Error
2821 * 1 - Success
2822 **/
2823 static int
lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport * vport,struct lpfc_scsi_buf * lpfc_cmd,unsigned int lun,uint8_t task_mgmt_cmd)2824 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2825 struct lpfc_scsi_buf *lpfc_cmd,
2826 unsigned int lun,
2827 uint8_t task_mgmt_cmd)
2828 {
2829 struct lpfc_iocbq *piocbq;
2830 IOCB_t *piocb;
2831 struct fcp_cmnd *fcp_cmnd;
2832 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2833 struct lpfc_nodelist *ndlp = rdata->pnode;
2834
2835 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2836 ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2837 return 0;
2838
2839 piocbq = &(lpfc_cmd->cur_iocbq);
2840 piocbq->vport = vport;
2841
2842 piocb = &piocbq->iocb;
2843
2844 fcp_cmnd = lpfc_cmd->fcp_cmnd;
2845 /* Clear out any old data in the FCP command area */
2846 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2847 int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2848 fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2849 if (vport->phba->sli_rev == 3 &&
2850 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2851 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2852 piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2853 piocb->ulpContext = ndlp->nlp_rpi;
2854 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2855 piocb->ulpFCP2Rcvy = 1;
2856 }
2857 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2858
2859 /* ulpTimeout is only one byte */
2860 if (lpfc_cmd->timeout > 0xff) {
2861 /*
2862 * Do not timeout the command at the firmware level.
2863 * The driver will provide the timeout mechanism.
2864 */
2865 piocb->ulpTimeout = 0;
2866 } else
2867 piocb->ulpTimeout = lpfc_cmd->timeout;
2868
2869 if (vport->phba->sli_rev == LPFC_SLI_REV4)
2870 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2871
2872 return 1;
2873 }
2874
2875 /**
2876 * lpfc_scsi_api_table_setup - Set up scsi api function jump table
2877 * @phba: The hba struct for which this call is being executed.
2878 * @dev_grp: The HBA PCI-Device group number.
2879 *
2880 * This routine sets up the SCSI interface API function jump table in @phba
2881 * struct.
2882 * Returns: 0 - success, -ENODEV - failure.
2883 **/
2884 int
lpfc_scsi_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)2885 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2886 {
2887
2888 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2889 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2890
2891 switch (dev_grp) {
2892 case LPFC_PCI_DEV_LP:
2893 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2894 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2895 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2896 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3;
2897 break;
2898 case LPFC_PCI_DEV_OC:
2899 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2900 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2901 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2902 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4;
2903 break;
2904 default:
2905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2906 "1418 Invalid HBA PCI-device group: 0x%x\n",
2907 dev_grp);
2908 return -ENODEV;
2909 break;
2910 }
2911 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2912 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2913 return 0;
2914 }
2915
2916 /**
2917 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2918 * @phba: The Hba for which this call is being executed.
2919 * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2920 * @rspiocbq: Pointer to lpfc_iocbq data structure.
2921 *
2922 * This routine is IOCB completion routine for device reset and target reset
2923 * routine. This routine release scsi buffer associated with lpfc_cmd.
2924 **/
2925 static void
lpfc_tskmgmt_def_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)2926 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2927 struct lpfc_iocbq *cmdiocbq,
2928 struct lpfc_iocbq *rspiocbq)
2929 {
2930 struct lpfc_scsi_buf *lpfc_cmd =
2931 (struct lpfc_scsi_buf *) cmdiocbq->context1;
2932 if (lpfc_cmd)
2933 lpfc_release_scsi_buf(phba, lpfc_cmd);
2934 return;
2935 }
2936
2937 /**
2938 * lpfc_info - Info entry point of scsi_host_template data structure
2939 * @host: The scsi host for which this call is being executed.
2940 *
2941 * This routine provides module information about hba.
2942 *
2943 * Reutrn code:
2944 * Pointer to char - Success.
2945 **/
2946 const char *
lpfc_info(struct Scsi_Host * host)2947 lpfc_info(struct Scsi_Host *host)
2948 {
2949 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2950 struct lpfc_hba *phba = vport->phba;
2951 int len;
2952 static char lpfcinfobuf[384];
2953
2954 memset(lpfcinfobuf,0,384);
2955 if (phba && phba->pcidev){
2956 strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2957 len = strlen(lpfcinfobuf);
2958 snprintf(lpfcinfobuf + len,
2959 384-len,
2960 " on PCI bus %02x device %02x irq %d",
2961 phba->pcidev->bus->number,
2962 phba->pcidev->devfn,
2963 phba->pcidev->irq);
2964 len = strlen(lpfcinfobuf);
2965 if (phba->Port[0]) {
2966 snprintf(lpfcinfobuf + len,
2967 384-len,
2968 " port %s",
2969 phba->Port);
2970 }
2971 len = strlen(lpfcinfobuf);
2972 if (phba->sli4_hba.link_state.logical_speed) {
2973 snprintf(lpfcinfobuf + len,
2974 384-len,
2975 " Logical Link Speed: %d Mbps",
2976 phba->sli4_hba.link_state.logical_speed * 10);
2977 }
2978 }
2979 return lpfcinfobuf;
2980 }
2981
2982 /**
2983 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2984 * @phba: The Hba for which this call is being executed.
2985 *
2986 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo.
2987 * The default value of cfg_poll_tmo is 10 milliseconds.
2988 **/
lpfc_poll_rearm_timer(struct lpfc_hba * phba)2989 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
2990 {
2991 unsigned long poll_tmo_expires =
2992 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
2993
2994 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
2995 mod_timer(&phba->fcp_poll_timer,
2996 poll_tmo_expires);
2997 }
2998
2999 /**
3000 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
3001 * @phba: The Hba for which this call is being executed.
3002 *
3003 * This routine starts the fcp_poll_timer of @phba.
3004 **/
lpfc_poll_start_timer(struct lpfc_hba * phba)3005 void lpfc_poll_start_timer(struct lpfc_hba * phba)
3006 {
3007 lpfc_poll_rearm_timer(phba);
3008 }
3009
3010 /**
3011 * lpfc_poll_timeout - Restart polling timer
3012 * @ptr: Map to lpfc_hba data structure pointer.
3013 *
3014 * This routine restarts fcp_poll timer, when FCP ring polling is enable
3015 * and FCP Ring interrupt is disable.
3016 **/
3017
lpfc_poll_timeout(unsigned long ptr)3018 void lpfc_poll_timeout(unsigned long ptr)
3019 {
3020 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
3021
3022 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3023 lpfc_sli_handle_fast_ring_event(phba,
3024 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3025
3026 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3027 lpfc_poll_rearm_timer(phba);
3028 }
3029 }
3030
3031 /**
3032 * lpfc_queuecommand - scsi_host_template queuecommand entry point
3033 * @cmnd: Pointer to scsi_cmnd data structure.
3034 * @done: Pointer to done routine.
3035 *
3036 * Driver registers this routine to scsi midlayer to submit a @cmd to process.
3037 * This routine prepares an IOCB from scsi command and provides to firmware.
3038 * The @done callback is invoked after driver finished processing the command.
3039 *
3040 * Return value :
3041 * 0 - Success
3042 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
3043 **/
3044 static int
lpfc_queuecommand_lck(struct scsi_cmnd * cmnd,void (* done)(struct scsi_cmnd *))3045 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
3046 {
3047 struct Scsi_Host *shost = cmnd->device->host;
3048 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3049 struct lpfc_hba *phba = vport->phba;
3050 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3051 struct lpfc_nodelist *ndlp;
3052 struct lpfc_scsi_buf *lpfc_cmd;
3053 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
3054 int err;
3055
3056 err = fc_remote_port_chkready(rport);
3057 if (err) {
3058 cmnd->result = err;
3059 goto out_fail_command;
3060 }
3061 ndlp = rdata->pnode;
3062
3063 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
3064 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3065
3066 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
3067 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
3068 " op:%02x str=%s without registering for"
3069 " BlockGuard - Rejecting command\n",
3070 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3071 dif_op_str[scsi_get_prot_op(cmnd)]);
3072 goto out_fail_command;
3073 }
3074
3075 /*
3076 * Catch race where our node has transitioned, but the
3077 * transport is still transitioning.
3078 */
3079 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
3080 cmnd->result = ScsiResult(DID_IMM_RETRY, 0);
3081 goto out_fail_command;
3082 }
3083 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)
3084 goto out_tgt_busy;
3085
3086 lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp);
3087 if (lpfc_cmd == NULL) {
3088 lpfc_rampdown_queue_depth(phba);
3089
3090 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3091 "0707 driver's buffer pool is empty, "
3092 "IO busied\n");
3093 goto out_host_busy;
3094 }
3095
3096 /*
3097 * Store the midlayer's command structure for the completion phase
3098 * and complete the command initialization.
3099 */
3100 lpfc_cmd->pCmd = cmnd;
3101 lpfc_cmd->rdata = rdata;
3102 lpfc_cmd->timeout = 0;
3103 lpfc_cmd->start_time = jiffies;
3104 cmnd->host_scribble = (unsigned char *)lpfc_cmd;
3105 cmnd->scsi_done = done;
3106
3107 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3108 if (vport->phba->cfg_enable_bg) {
3109 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3110 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
3111 "str=%s\n",
3112 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3113 dif_op_str[scsi_get_prot_op(cmnd)]);
3114 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3115 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
3116 "%02x %02x %02x %02x %02x\n",
3117 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
3118 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
3119 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
3120 cmnd->cmnd[9]);
3121 if (cmnd->cmnd[0] == READ_10)
3122 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3123 "9035 BLKGRD: READ @ sector %llu, "
3124 "count %u\n",
3125 (unsigned long long)scsi_get_lba(cmnd),
3126 blk_rq_sectors(cmnd->request));
3127 else if (cmnd->cmnd[0] == WRITE_10)
3128 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3129 "9036 BLKGRD: WRITE @ sector %llu, "
3130 "count %u cmd=%p\n",
3131 (unsigned long long)scsi_get_lba(cmnd),
3132 blk_rq_sectors(cmnd->request),
3133 cmnd);
3134 }
3135
3136 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
3137 } else {
3138 if (vport->phba->cfg_enable_bg) {
3139 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3140 "9038 BLKGRD: rcvd unprotected cmd:"
3141 "%02x op:%02x str=%s\n",
3142 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3143 dif_op_str[scsi_get_prot_op(cmnd)]);
3144 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3145 "9039 BLKGRD: CDB: %02x %02x %02x "
3146 "%02x %02x %02x %02x %02x %02x %02x\n",
3147 cmnd->cmnd[0], cmnd->cmnd[1],
3148 cmnd->cmnd[2], cmnd->cmnd[3],
3149 cmnd->cmnd[4], cmnd->cmnd[5],
3150 cmnd->cmnd[6], cmnd->cmnd[7],
3151 cmnd->cmnd[8], cmnd->cmnd[9]);
3152 if (cmnd->cmnd[0] == READ_10)
3153 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3154 "9040 dbg: READ @ sector %llu, "
3155 "count %u\n",
3156 (unsigned long long)scsi_get_lba(cmnd),
3157 blk_rq_sectors(cmnd->request));
3158 else if (cmnd->cmnd[0] == WRITE_10)
3159 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3160 "9041 dbg: WRITE @ sector %llu, "
3161 "count %u cmd=%p\n",
3162 (unsigned long long)scsi_get_lba(cmnd),
3163 blk_rq_sectors(cmnd->request), cmnd);
3164 else
3165 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3166 "9042 dbg: parser not implemented\n");
3167 }
3168 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
3169 }
3170
3171 if (err)
3172 goto out_host_busy_free_buf;
3173
3174 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
3175
3176 atomic_inc(&ndlp->cmd_pending);
3177 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
3178 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
3179 if (err) {
3180 atomic_dec(&ndlp->cmd_pending);
3181 goto out_host_busy_free_buf;
3182 }
3183 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3184 spin_unlock(shost->host_lock);
3185 lpfc_sli_handle_fast_ring_event(phba,
3186 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3187
3188 spin_lock(shost->host_lock);
3189 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3190 lpfc_poll_rearm_timer(phba);
3191 }
3192
3193 return 0;
3194
3195 out_host_busy_free_buf:
3196 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
3197 lpfc_release_scsi_buf(phba, lpfc_cmd);
3198 out_host_busy:
3199 return SCSI_MLQUEUE_HOST_BUSY;
3200
3201 out_tgt_busy:
3202 return SCSI_MLQUEUE_TARGET_BUSY;
3203
3204 out_fail_command:
3205 done(cmnd);
3206 return 0;
3207 }
3208
DEF_SCSI_QCMD(lpfc_queuecommand)3209 static DEF_SCSI_QCMD(lpfc_queuecommand)
3210
3211 /**
3212 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3213 * @cmnd: Pointer to scsi_cmnd data structure.
3214 *
3215 * This routine aborts @cmnd pending in base driver.
3216 *
3217 * Return code :
3218 * 0x2003 - Error
3219 * 0x2002 - Success
3220 **/
3221 static int
3222 lpfc_abort_handler(struct scsi_cmnd *cmnd)
3223 {
3224 struct Scsi_Host *shost = cmnd->device->host;
3225 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3226 struct lpfc_hba *phba = vport->phba;
3227 struct lpfc_iocbq *iocb;
3228 struct lpfc_iocbq *abtsiocb;
3229 struct lpfc_scsi_buf *lpfc_cmd;
3230 IOCB_t *cmd, *icmd;
3231 int ret = SUCCESS;
3232 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
3233
3234 ret = fc_block_scsi_eh(cmnd);
3235 if (ret)
3236 return ret;
3237 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
3238 if (!lpfc_cmd) {
3239 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3240 "2873 SCSI Layer I/O Abort Request IO CMPL Status "
3241 "x%x ID %d "
3242 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3243 cmnd->device->lun, cmnd->serial_number);
3244 return SUCCESS;
3245 }
3246
3247 /*
3248 * If pCmd field of the corresponding lpfc_scsi_buf structure
3249 * points to a different SCSI command, then the driver has
3250 * already completed this command, but the midlayer did not
3251 * see the completion before the eh fired. Just return
3252 * SUCCESS.
3253 */
3254 iocb = &lpfc_cmd->cur_iocbq;
3255 if (lpfc_cmd->pCmd != cmnd)
3256 goto out;
3257
3258 BUG_ON(iocb->context1 != lpfc_cmd);
3259
3260 abtsiocb = lpfc_sli_get_iocbq(phba);
3261 if (abtsiocb == NULL) {
3262 ret = FAILED;
3263 goto out;
3264 }
3265
3266 /*
3267 * The scsi command can not be in txq and it is in flight because the
3268 * pCmd is still pointig at the SCSI command we have to abort. There
3269 * is no need to search the txcmplq. Just send an abort to the FW.
3270 */
3271
3272 cmd = &iocb->iocb;
3273 icmd = &abtsiocb->iocb;
3274 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
3275 icmd->un.acxri.abortContextTag = cmd->ulpContext;
3276 if (phba->sli_rev == LPFC_SLI_REV4)
3277 icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
3278 else
3279 icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3280
3281 icmd->ulpLe = 1;
3282 icmd->ulpClass = cmd->ulpClass;
3283
3284 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3285 abtsiocb->fcp_wqidx = iocb->fcp_wqidx;
3286 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
3287
3288 if (lpfc_is_link_up(phba))
3289 icmd->ulpCommand = CMD_ABORT_XRI_CN;
3290 else
3291 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3292
3293 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3294 abtsiocb->vport = vport;
3295 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3296 IOCB_ERROR) {
3297 lpfc_sli_release_iocbq(phba, abtsiocb);
3298 ret = FAILED;
3299 goto out;
3300 }
3301
3302 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3303 lpfc_sli_handle_fast_ring_event(phba,
3304 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3305
3306 lpfc_cmd->waitq = &waitq;
3307 /* Wait for abort to complete */
3308 wait_event_timeout(waitq,
3309 (lpfc_cmd->pCmd != cmnd),
3310 (2*vport->cfg_devloss_tmo*HZ));
3311
3312 spin_lock_irq(shost->host_lock);
3313 lpfc_cmd->waitq = NULL;
3314 spin_unlock_irq(shost->host_lock);
3315
3316 if (lpfc_cmd->pCmd == cmnd) {
3317 ret = FAILED;
3318 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3319 "0748 abort handler timed out waiting "
3320 "for abort to complete: ret %#x, ID %d, "
3321 "LUN %d, snum %#lx\n",
3322 ret, cmnd->device->id, cmnd->device->lun,
3323 cmnd->serial_number);
3324 }
3325
3326 out:
3327 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3328 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3329 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3330 cmnd->device->lun, cmnd->serial_number);
3331 return ret;
3332 }
3333
3334 static char *
lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)3335 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3336 {
3337 switch (task_mgmt_cmd) {
3338 case FCP_ABORT_TASK_SET:
3339 return "ABORT_TASK_SET";
3340 case FCP_CLEAR_TASK_SET:
3341 return "FCP_CLEAR_TASK_SET";
3342 case FCP_BUS_RESET:
3343 return "FCP_BUS_RESET";
3344 case FCP_LUN_RESET:
3345 return "FCP_LUN_RESET";
3346 case FCP_TARGET_RESET:
3347 return "FCP_TARGET_RESET";
3348 case FCP_CLEAR_ACA:
3349 return "FCP_CLEAR_ACA";
3350 case FCP_TERMINATE_TASK:
3351 return "FCP_TERMINATE_TASK";
3352 default:
3353 return "unknown";
3354 }
3355 }
3356
3357 /**
3358 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3359 * @vport: The virtual port for which this call is being executed.
3360 * @rdata: Pointer to remote port local data
3361 * @tgt_id: Target ID of remote device.
3362 * @lun_id: Lun number for the TMF
3363 * @task_mgmt_cmd: type of TMF to send
3364 *
3365 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3366 * a remote port.
3367 *
3368 * Return Code:
3369 * 0x2003 - Error
3370 * 0x2002 - Success.
3371 **/
3372 static int
lpfc_send_taskmgmt(struct lpfc_vport * vport,struct lpfc_rport_data * rdata,unsigned tgt_id,unsigned int lun_id,uint8_t task_mgmt_cmd)3373 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3374 unsigned tgt_id, unsigned int lun_id,
3375 uint8_t task_mgmt_cmd)
3376 {
3377 struct lpfc_hba *phba = vport->phba;
3378 struct lpfc_scsi_buf *lpfc_cmd;
3379 struct lpfc_iocbq *iocbq;
3380 struct lpfc_iocbq *iocbqrsp;
3381 struct lpfc_nodelist *pnode = rdata->pnode;
3382 int ret;
3383 int status;
3384
3385 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3386 return FAILED;
3387
3388 lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode);
3389 if (lpfc_cmd == NULL)
3390 return FAILED;
3391 lpfc_cmd->timeout = 60;
3392 lpfc_cmd->rdata = rdata;
3393
3394 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3395 task_mgmt_cmd);
3396 if (!status) {
3397 lpfc_release_scsi_buf(phba, lpfc_cmd);
3398 return FAILED;
3399 }
3400
3401 iocbq = &lpfc_cmd->cur_iocbq;
3402 iocbqrsp = lpfc_sli_get_iocbq(phba);
3403 if (iocbqrsp == NULL) {
3404 lpfc_release_scsi_buf(phba, lpfc_cmd);
3405 return FAILED;
3406 }
3407
3408 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3409 "0702 Issue %s to TGT %d LUN %d "
3410 "rpi x%x nlp_flag x%x\n",
3411 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3412 pnode->nlp_rpi, pnode->nlp_flag);
3413
3414 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3415 iocbq, iocbqrsp, lpfc_cmd->timeout);
3416 if (status != IOCB_SUCCESS) {
3417 if (status == IOCB_TIMEDOUT) {
3418 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3419 ret = TIMEOUT_ERROR;
3420 } else
3421 ret = FAILED;
3422 lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3423 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3424 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3425 lpfc_taskmgmt_name(task_mgmt_cmd),
3426 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3427 iocbqrsp->iocb.un.ulpWord[4]);
3428 } else if (status == IOCB_BUSY)
3429 ret = FAILED;
3430 else
3431 ret = SUCCESS;
3432
3433 lpfc_sli_release_iocbq(phba, iocbqrsp);
3434
3435 if (ret != TIMEOUT_ERROR)
3436 lpfc_release_scsi_buf(phba, lpfc_cmd);
3437
3438 return ret;
3439 }
3440
3441 /**
3442 * lpfc_chk_tgt_mapped -
3443 * @vport: The virtual port to check on
3444 * @cmnd: Pointer to scsi_cmnd data structure.
3445 *
3446 * This routine delays until the scsi target (aka rport) for the
3447 * command exists (is present and logged in) or we declare it non-existent.
3448 *
3449 * Return code :
3450 * 0x2003 - Error
3451 * 0x2002 - Success
3452 **/
3453 static int
lpfc_chk_tgt_mapped(struct lpfc_vport * vport,struct scsi_cmnd * cmnd)3454 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3455 {
3456 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3457 struct lpfc_nodelist *pnode;
3458 unsigned long later;
3459
3460 if (!rdata) {
3461 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3462 "0797 Tgt Map rport failure: rdata x%p\n", rdata);
3463 return FAILED;
3464 }
3465 pnode = rdata->pnode;
3466 /*
3467 * If target is not in a MAPPED state, delay until
3468 * target is rediscovered or devloss timeout expires.
3469 */
3470 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3471 while (time_after(later, jiffies)) {
3472 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3473 return FAILED;
3474 if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3475 return SUCCESS;
3476 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3477 rdata = cmnd->device->hostdata;
3478 if (!rdata)
3479 return FAILED;
3480 pnode = rdata->pnode;
3481 }
3482 if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3483 (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3484 return FAILED;
3485 return SUCCESS;
3486 }
3487
3488 /**
3489 * lpfc_reset_flush_io_context -
3490 * @vport: The virtual port (scsi_host) for the flush context
3491 * @tgt_id: If aborting by Target contect - specifies the target id
3492 * @lun_id: If aborting by Lun context - specifies the lun id
3493 * @context: specifies the context level to flush at.
3494 *
3495 * After a reset condition via TMF, we need to flush orphaned i/o
3496 * contexts from the adapter. This routine aborts any contexts
3497 * outstanding, then waits for their completions. The wait is
3498 * bounded by devloss_tmo though.
3499 *
3500 * Return code :
3501 * 0x2003 - Error
3502 * 0x2002 - Success
3503 **/
3504 static int
lpfc_reset_flush_io_context(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd context)3505 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3506 uint64_t lun_id, lpfc_ctx_cmd context)
3507 {
3508 struct lpfc_hba *phba = vport->phba;
3509 unsigned long later;
3510 int cnt;
3511
3512 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3513 if (cnt)
3514 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3515 tgt_id, lun_id, context);
3516 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3517 while (time_after(later, jiffies) && cnt) {
3518 schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3519 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3520 }
3521 if (cnt) {
3522 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3523 "0724 I/O flush failure for context %s : cnt x%x\n",
3524 ((context == LPFC_CTX_LUN) ? "LUN" :
3525 ((context == LPFC_CTX_TGT) ? "TGT" :
3526 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3527 cnt);
3528 return FAILED;
3529 }
3530 return SUCCESS;
3531 }
3532
3533 /**
3534 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3535 * @cmnd: Pointer to scsi_cmnd data structure.
3536 *
3537 * This routine does a device reset by sending a LUN_RESET task management
3538 * command.
3539 *
3540 * Return code :
3541 * 0x2003 - Error
3542 * 0x2002 - Success
3543 **/
3544 static int
lpfc_device_reset_handler(struct scsi_cmnd * cmnd)3545 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3546 {
3547 struct Scsi_Host *shost = cmnd->device->host;
3548 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3549 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3550 struct lpfc_nodelist *pnode;
3551 unsigned tgt_id = cmnd->device->id;
3552 unsigned int lun_id = cmnd->device->lun;
3553 struct lpfc_scsi_event_header scsi_event;
3554 int status;
3555
3556 if (!rdata) {
3557 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3558 "0798 Device Reset rport failure: rdata x%p\n", rdata);
3559 return FAILED;
3560 }
3561 pnode = rdata->pnode;
3562 status = fc_block_scsi_eh(cmnd);
3563 if (status)
3564 return status;
3565
3566 status = lpfc_chk_tgt_mapped(vport, cmnd);
3567 if (status == FAILED) {
3568 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3569 "0721 Device Reset rport failure: rdata x%p\n", rdata);
3570 return FAILED;
3571 }
3572
3573 scsi_event.event_type = FC_REG_SCSI_EVENT;
3574 scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3575 scsi_event.lun = lun_id;
3576 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3577 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3578
3579 fc_host_post_vendor_event(shost, fc_get_event_number(),
3580 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3581
3582 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3583 FCP_LUN_RESET);
3584
3585 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3586 "0713 SCSI layer issued Device Reset (%d, %d) "
3587 "return x%x\n", tgt_id, lun_id, status);
3588
3589 /*
3590 * We have to clean up i/o as : they may be orphaned by the TMF;
3591 * or if the TMF failed, they may be in an indeterminate state.
3592 * So, continue on.
3593 * We will report success if all the i/o aborts successfully.
3594 */
3595 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3596 LPFC_CTX_LUN);
3597 return status;
3598 }
3599
3600 /**
3601 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3602 * @cmnd: Pointer to scsi_cmnd data structure.
3603 *
3604 * This routine does a target reset by sending a TARGET_RESET task management
3605 * command.
3606 *
3607 * Return code :
3608 * 0x2003 - Error
3609 * 0x2002 - Success
3610 **/
3611 static int
lpfc_target_reset_handler(struct scsi_cmnd * cmnd)3612 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3613 {
3614 struct Scsi_Host *shost = cmnd->device->host;
3615 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3616 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3617 struct lpfc_nodelist *pnode;
3618 unsigned tgt_id = cmnd->device->id;
3619 unsigned int lun_id = cmnd->device->lun;
3620 struct lpfc_scsi_event_header scsi_event;
3621 int status;
3622
3623 if (!rdata) {
3624 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3625 "0799 Target Reset rport failure: rdata x%p\n", rdata);
3626 return FAILED;
3627 }
3628 pnode = rdata->pnode;
3629 status = fc_block_scsi_eh(cmnd);
3630 if (status)
3631 return status;
3632
3633 status = lpfc_chk_tgt_mapped(vport, cmnd);
3634 if (status == FAILED) {
3635 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3636 "0722 Target Reset rport failure: rdata x%p\n", rdata);
3637 return FAILED;
3638 }
3639
3640 scsi_event.event_type = FC_REG_SCSI_EVENT;
3641 scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3642 scsi_event.lun = 0;
3643 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3644 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3645
3646 fc_host_post_vendor_event(shost, fc_get_event_number(),
3647 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3648
3649 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3650 FCP_TARGET_RESET);
3651
3652 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3653 "0723 SCSI layer issued Target Reset (%d, %d) "
3654 "return x%x\n", tgt_id, lun_id, status);
3655
3656 /*
3657 * We have to clean up i/o as : they may be orphaned by the TMF;
3658 * or if the TMF failed, they may be in an indeterminate state.
3659 * So, continue on.
3660 * We will report success if all the i/o aborts successfully.
3661 */
3662 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3663 LPFC_CTX_TGT);
3664 return status;
3665 }
3666
3667 /**
3668 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3669 * @cmnd: Pointer to scsi_cmnd data structure.
3670 *
3671 * This routine does target reset to all targets on @cmnd->device->host.
3672 * This emulates Parallel SCSI Bus Reset Semantics.
3673 *
3674 * Return code :
3675 * 0x2003 - Error
3676 * 0x2002 - Success
3677 **/
3678 static int
lpfc_bus_reset_handler(struct scsi_cmnd * cmnd)3679 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3680 {
3681 struct Scsi_Host *shost = cmnd->device->host;
3682 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3683 struct lpfc_nodelist *ndlp = NULL;
3684 struct lpfc_scsi_event_header scsi_event;
3685 int match;
3686 int ret = SUCCESS, status, i;
3687
3688 scsi_event.event_type = FC_REG_SCSI_EVENT;
3689 scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3690 scsi_event.lun = 0;
3691 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3692 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3693
3694 fc_host_post_vendor_event(shost, fc_get_event_number(),
3695 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3696
3697 ret = fc_block_scsi_eh(cmnd);
3698 if (ret)
3699 return ret;
3700
3701 /*
3702 * Since the driver manages a single bus device, reset all
3703 * targets known to the driver. Should any target reset
3704 * fail, this routine returns failure to the midlayer.
3705 */
3706 for (i = 0; i < LPFC_MAX_TARGET; i++) {
3707 /* Search for mapped node by target ID */
3708 match = 0;
3709 spin_lock_irq(shost->host_lock);
3710 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3711 if (!NLP_CHK_NODE_ACT(ndlp))
3712 continue;
3713 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3714 ndlp->nlp_sid == i &&
3715 ndlp->rport) {
3716 match = 1;
3717 break;
3718 }
3719 }
3720 spin_unlock_irq(shost->host_lock);
3721 if (!match)
3722 continue;
3723
3724 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3725 i, 0, FCP_TARGET_RESET);
3726
3727 if (status != SUCCESS) {
3728 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3729 "0700 Bus Reset on target %d failed\n",
3730 i);
3731 ret = FAILED;
3732 }
3733 }
3734 /*
3735 * We have to clean up i/o as : they may be orphaned by the TMFs
3736 * above; or if any of the TMFs failed, they may be in an
3737 * indeterminate state.
3738 * We will report success if all the i/o aborts successfully.
3739 */
3740
3741 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3742 if (status != SUCCESS)
3743 ret = FAILED;
3744
3745 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3746 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3747 return ret;
3748 }
3749
3750 /**
3751 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3752 * @sdev: Pointer to scsi_device.
3753 *
3754 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's
3755 * globally available list of scsi buffers. This routine also makes sure scsi
3756 * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3757 * of scsi buffer exists for the lifetime of the driver.
3758 *
3759 * Return codes:
3760 * non-0 - Error
3761 * 0 - Success
3762 **/
3763 static int
lpfc_slave_alloc(struct scsi_device * sdev)3764 lpfc_slave_alloc(struct scsi_device *sdev)
3765 {
3766 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3767 struct lpfc_hba *phba = vport->phba;
3768 struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3769 uint32_t total = 0;
3770 uint32_t num_to_alloc = 0;
3771 int num_allocated = 0;
3772 uint32_t sdev_cnt;
3773
3774 if (!rport || fc_remote_port_chkready(rport))
3775 return -ENXIO;
3776
3777 sdev->hostdata = rport->dd_data;
3778 sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
3779
3780 /*
3781 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3782 * available list of scsi buffers. Don't allocate more than the
3783 * HBA limit conveyed to the midlayer via the host structure. The
3784 * formula accounts for the lun_queue_depth + error handlers + 1
3785 * extra. This list of scsi bufs exists for the lifetime of the driver.
3786 */
3787 total = phba->total_scsi_bufs;
3788 num_to_alloc = vport->cfg_lun_queue_depth + 2;
3789
3790 /* If allocated buffers are enough do nothing */
3791 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
3792 return 0;
3793
3794 /* Allow some exchanges to be available always to complete discovery */
3795 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3796 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3797 "0704 At limitation of %d preallocated "
3798 "command buffers\n", total);
3799 return 0;
3800 /* Allow some exchanges to be available always to complete discovery */
3801 } else if (total + num_to_alloc >
3802 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3803 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3804 "0705 Allocation request of %d "
3805 "command buffers will exceed max of %d. "
3806 "Reducing allocation request to %d.\n",
3807 num_to_alloc, phba->cfg_hba_queue_depth,
3808 (phba->cfg_hba_queue_depth - total));
3809 num_to_alloc = phba->cfg_hba_queue_depth - total;
3810 }
3811 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3812 if (num_to_alloc != num_allocated) {
3813 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3814 "0708 Allocation request of %d "
3815 "command buffers did not succeed. "
3816 "Allocated %d buffers.\n",
3817 num_to_alloc, num_allocated);
3818 }
3819 if (num_allocated > 0)
3820 phba->total_scsi_bufs += num_allocated;
3821 return 0;
3822 }
3823
3824 /**
3825 * lpfc_slave_configure - scsi_host_template slave_configure entry point
3826 * @sdev: Pointer to scsi_device.
3827 *
3828 * This routine configures following items
3829 * - Tag command queuing support for @sdev if supported.
3830 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3831 *
3832 * Return codes:
3833 * 0 - Success
3834 **/
3835 static int
lpfc_slave_configure(struct scsi_device * sdev)3836 lpfc_slave_configure(struct scsi_device *sdev)
3837 {
3838 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3839 struct lpfc_hba *phba = vport->phba;
3840
3841 if (sdev->tagged_supported)
3842 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3843 else
3844 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3845
3846 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3847 lpfc_sli_handle_fast_ring_event(phba,
3848 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3849 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3850 lpfc_poll_rearm_timer(phba);
3851 }
3852
3853 return 0;
3854 }
3855
3856 /**
3857 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3858 * @sdev: Pointer to scsi_device.
3859 *
3860 * This routine sets @sdev hostatdata filed to null.
3861 **/
3862 static void
lpfc_slave_destroy(struct scsi_device * sdev)3863 lpfc_slave_destroy(struct scsi_device *sdev)
3864 {
3865 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3866 struct lpfc_hba *phba = vport->phba;
3867 atomic_dec(&phba->sdev_cnt);
3868 sdev->hostdata = NULL;
3869 return;
3870 }
3871
3872
3873 struct scsi_host_template lpfc_template = {
3874 .module = THIS_MODULE,
3875 .name = LPFC_DRIVER_NAME,
3876 .info = lpfc_info,
3877 .queuecommand = lpfc_queuecommand,
3878 .eh_abort_handler = lpfc_abort_handler,
3879 .eh_device_reset_handler = lpfc_device_reset_handler,
3880 .eh_target_reset_handler = lpfc_target_reset_handler,
3881 .eh_bus_reset_handler = lpfc_bus_reset_handler,
3882 .slave_alloc = lpfc_slave_alloc,
3883 .slave_configure = lpfc_slave_configure,
3884 .slave_destroy = lpfc_slave_destroy,
3885 .scan_finished = lpfc_scan_finished,
3886 .this_id = -1,
3887 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT,
3888 .cmd_per_lun = LPFC_CMD_PER_LUN,
3889 .use_clustering = ENABLE_CLUSTERING,
3890 .shost_attrs = lpfc_hba_attrs,
3891 .max_sectors = 0xFFFF,
3892 .vendor_id = LPFC_NL_VENDOR_ID,
3893 .change_queue_depth = lpfc_change_queue_depth,
3894 };
3895
3896 struct scsi_host_template lpfc_vport_template = {
3897 .module = THIS_MODULE,
3898 .name = LPFC_DRIVER_NAME,
3899 .info = lpfc_info,
3900 .queuecommand = lpfc_queuecommand,
3901 .eh_abort_handler = lpfc_abort_handler,
3902 .eh_device_reset_handler = lpfc_device_reset_handler,
3903 .eh_target_reset_handler = lpfc_target_reset_handler,
3904 .eh_bus_reset_handler = lpfc_bus_reset_handler,
3905 .slave_alloc = lpfc_slave_alloc,
3906 .slave_configure = lpfc_slave_configure,
3907 .slave_destroy = lpfc_slave_destroy,
3908 .scan_finished = lpfc_scan_finished,
3909 .this_id = -1,
3910 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT,
3911 .cmd_per_lun = LPFC_CMD_PER_LUN,
3912 .use_clustering = ENABLE_CLUSTERING,
3913 .shost_attrs = lpfc_vport_attrs,
3914 .max_sectors = 0xFFFF,
3915 .change_queue_depth = lpfc_change_queue_depth,
3916 };
3917