1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51
52 #include <asm/atomic.h>
53 #include <asm/uaccess.h>
54
55 extern struct workqueue_struct *ib_wq;
56
57 union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63 };
64
65 enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71 };
72
73 enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76 };
77
78 enum rdma_transport_type
79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81 enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85 };
86
87 enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
117 };
118
119 enum ib_atomic_cap {
120 IB_ATOMIC_NONE,
121 IB_ATOMIC_HCA,
122 IB_ATOMIC_GLOB
123 };
124
125 struct ib_device_attr {
126 u64 fw_ver;
127 __be64 sys_image_guid;
128 u64 max_mr_size;
129 u64 page_size_cap;
130 u32 vendor_id;
131 u32 vendor_part_id;
132 u32 hw_ver;
133 int max_qp;
134 int max_qp_wr;
135 int device_cap_flags;
136 int max_sge;
137 int max_sge_rd;
138 int max_cq;
139 int max_cqe;
140 int max_mr;
141 int max_pd;
142 int max_qp_rd_atom;
143 int max_ee_rd_atom;
144 int max_res_rd_atom;
145 int max_qp_init_rd_atom;
146 int max_ee_init_rd_atom;
147 enum ib_atomic_cap atomic_cap;
148 enum ib_atomic_cap masked_atomic_cap;
149 int max_ee;
150 int max_rdd;
151 int max_mw;
152 int max_raw_ipv6_qp;
153 int max_raw_ethy_qp;
154 int max_mcast_grp;
155 int max_mcast_qp_attach;
156 int max_total_mcast_qp_attach;
157 int max_ah;
158 int max_fmr;
159 int max_map_per_fmr;
160 int max_srq;
161 int max_srq_wr;
162 int max_srq_sge;
163 unsigned int max_fast_reg_page_list_len;
164 u16 max_pkeys;
165 u8 local_ca_ack_delay;
166 };
167
168 enum ib_mtu {
169 IB_MTU_256 = 1,
170 IB_MTU_512 = 2,
171 IB_MTU_1024 = 3,
172 IB_MTU_2048 = 4,
173 IB_MTU_4096 = 5
174 };
175
ib_mtu_enum_to_int(enum ib_mtu mtu)176 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
177 {
178 switch (mtu) {
179 case IB_MTU_256: return 256;
180 case IB_MTU_512: return 512;
181 case IB_MTU_1024: return 1024;
182 case IB_MTU_2048: return 2048;
183 case IB_MTU_4096: return 4096;
184 default: return -1;
185 }
186 }
187
188 enum ib_port_state {
189 IB_PORT_NOP = 0,
190 IB_PORT_DOWN = 1,
191 IB_PORT_INIT = 2,
192 IB_PORT_ARMED = 3,
193 IB_PORT_ACTIVE = 4,
194 IB_PORT_ACTIVE_DEFER = 5
195 };
196
197 enum ib_port_cap_flags {
198 IB_PORT_SM = 1 << 1,
199 IB_PORT_NOTICE_SUP = 1 << 2,
200 IB_PORT_TRAP_SUP = 1 << 3,
201 IB_PORT_OPT_IPD_SUP = 1 << 4,
202 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
203 IB_PORT_SL_MAP_SUP = 1 << 6,
204 IB_PORT_MKEY_NVRAM = 1 << 7,
205 IB_PORT_PKEY_NVRAM = 1 << 8,
206 IB_PORT_LED_INFO_SUP = 1 << 9,
207 IB_PORT_SM_DISABLED = 1 << 10,
208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
210 IB_PORT_CM_SUP = 1 << 16,
211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
212 IB_PORT_REINIT_SUP = 1 << 18,
213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
215 IB_PORT_DR_NOTICE_SUP = 1 << 21,
216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
217 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
218 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
219 IB_PORT_CLIENT_REG_SUP = 1 << 25
220 };
221
222 enum ib_port_width {
223 IB_WIDTH_1X = 1,
224 IB_WIDTH_4X = 2,
225 IB_WIDTH_8X = 4,
226 IB_WIDTH_12X = 8
227 };
228
ib_width_enum_to_int(enum ib_port_width width)229 static inline int ib_width_enum_to_int(enum ib_port_width width)
230 {
231 switch (width) {
232 case IB_WIDTH_1X: return 1;
233 case IB_WIDTH_4X: return 4;
234 case IB_WIDTH_8X: return 8;
235 case IB_WIDTH_12X: return 12;
236 default: return -1;
237 }
238 }
239
240 struct ib_protocol_stats {
241 /* TBD... */
242 };
243
244 struct iw_protocol_stats {
245 u64 ipInReceives;
246 u64 ipInHdrErrors;
247 u64 ipInTooBigErrors;
248 u64 ipInNoRoutes;
249 u64 ipInAddrErrors;
250 u64 ipInUnknownProtos;
251 u64 ipInTruncatedPkts;
252 u64 ipInDiscards;
253 u64 ipInDelivers;
254 u64 ipOutForwDatagrams;
255 u64 ipOutRequests;
256 u64 ipOutDiscards;
257 u64 ipOutNoRoutes;
258 u64 ipReasmTimeout;
259 u64 ipReasmReqds;
260 u64 ipReasmOKs;
261 u64 ipReasmFails;
262 u64 ipFragOKs;
263 u64 ipFragFails;
264 u64 ipFragCreates;
265 u64 ipInMcastPkts;
266 u64 ipOutMcastPkts;
267 u64 ipInBcastPkts;
268 u64 ipOutBcastPkts;
269
270 u64 tcpRtoAlgorithm;
271 u64 tcpRtoMin;
272 u64 tcpRtoMax;
273 u64 tcpMaxConn;
274 u64 tcpActiveOpens;
275 u64 tcpPassiveOpens;
276 u64 tcpAttemptFails;
277 u64 tcpEstabResets;
278 u64 tcpCurrEstab;
279 u64 tcpInSegs;
280 u64 tcpOutSegs;
281 u64 tcpRetransSegs;
282 u64 tcpInErrs;
283 u64 tcpOutRsts;
284 };
285
286 union rdma_protocol_stats {
287 struct ib_protocol_stats ib;
288 struct iw_protocol_stats iw;
289 };
290
291 struct ib_port_attr {
292 enum ib_port_state state;
293 enum ib_mtu max_mtu;
294 enum ib_mtu active_mtu;
295 int gid_tbl_len;
296 u32 port_cap_flags;
297 u32 max_msg_sz;
298 u32 bad_pkey_cntr;
299 u32 qkey_viol_cntr;
300 u16 pkey_tbl_len;
301 u16 lid;
302 u16 sm_lid;
303 u8 lmc;
304 u8 max_vl_num;
305 u8 sm_sl;
306 u8 subnet_timeout;
307 u8 init_type_reply;
308 u8 active_width;
309 u8 active_speed;
310 u8 phys_state;
311 };
312
313 enum ib_device_modify_flags {
314 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
315 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
316 };
317
318 struct ib_device_modify {
319 u64 sys_image_guid;
320 char node_desc[64];
321 };
322
323 enum ib_port_modify_flags {
324 IB_PORT_SHUTDOWN = 1,
325 IB_PORT_INIT_TYPE = (1<<2),
326 IB_PORT_RESET_QKEY_CNTR = (1<<3)
327 };
328
329 struct ib_port_modify {
330 u32 set_port_cap_mask;
331 u32 clr_port_cap_mask;
332 u8 init_type;
333 };
334
335 enum ib_event_type {
336 IB_EVENT_CQ_ERR,
337 IB_EVENT_QP_FATAL,
338 IB_EVENT_QP_REQ_ERR,
339 IB_EVENT_QP_ACCESS_ERR,
340 IB_EVENT_COMM_EST,
341 IB_EVENT_SQ_DRAINED,
342 IB_EVENT_PATH_MIG,
343 IB_EVENT_PATH_MIG_ERR,
344 IB_EVENT_DEVICE_FATAL,
345 IB_EVENT_PORT_ACTIVE,
346 IB_EVENT_PORT_ERR,
347 IB_EVENT_LID_CHANGE,
348 IB_EVENT_PKEY_CHANGE,
349 IB_EVENT_SM_CHANGE,
350 IB_EVENT_SRQ_ERR,
351 IB_EVENT_SRQ_LIMIT_REACHED,
352 IB_EVENT_QP_LAST_WQE_REACHED,
353 IB_EVENT_CLIENT_REREGISTER
354 };
355
356 struct ib_event {
357 struct ib_device *device;
358 union {
359 struct ib_cq *cq;
360 struct ib_qp *qp;
361 struct ib_srq *srq;
362 u8 port_num;
363 } element;
364 enum ib_event_type event;
365 };
366
367 struct ib_event_handler {
368 struct ib_device *device;
369 void (*handler)(struct ib_event_handler *, struct ib_event *);
370 struct list_head list;
371 };
372
373 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
374 do { \
375 (_ptr)->device = _device; \
376 (_ptr)->handler = _handler; \
377 INIT_LIST_HEAD(&(_ptr)->list); \
378 } while (0)
379
380 struct ib_global_route {
381 union ib_gid dgid;
382 u32 flow_label;
383 u8 sgid_index;
384 u8 hop_limit;
385 u8 traffic_class;
386 };
387
388 struct ib_grh {
389 __be32 version_tclass_flow;
390 __be16 paylen;
391 u8 next_hdr;
392 u8 hop_limit;
393 union ib_gid sgid;
394 union ib_gid dgid;
395 };
396
397 enum {
398 IB_MULTICAST_QPN = 0xffffff
399 };
400
401 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
402
403 enum ib_ah_flags {
404 IB_AH_GRH = 1
405 };
406
407 enum ib_rate {
408 IB_RATE_PORT_CURRENT = 0,
409 IB_RATE_2_5_GBPS = 2,
410 IB_RATE_5_GBPS = 5,
411 IB_RATE_10_GBPS = 3,
412 IB_RATE_20_GBPS = 6,
413 IB_RATE_30_GBPS = 4,
414 IB_RATE_40_GBPS = 7,
415 IB_RATE_60_GBPS = 8,
416 IB_RATE_80_GBPS = 9,
417 IB_RATE_120_GBPS = 10
418 };
419
420 /**
421 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
422 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
423 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
424 * @rate: rate to convert.
425 */
426 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
427
428 /**
429 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
430 * enum.
431 * @mult: multiple to convert.
432 */
433 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
434
435 struct ib_ah_attr {
436 struct ib_global_route grh;
437 u16 dlid;
438 u8 sl;
439 u8 src_path_bits;
440 u8 static_rate;
441 u8 ah_flags;
442 u8 port_num;
443 };
444
445 enum ib_wc_status {
446 IB_WC_SUCCESS,
447 IB_WC_LOC_LEN_ERR,
448 IB_WC_LOC_QP_OP_ERR,
449 IB_WC_LOC_EEC_OP_ERR,
450 IB_WC_LOC_PROT_ERR,
451 IB_WC_WR_FLUSH_ERR,
452 IB_WC_MW_BIND_ERR,
453 IB_WC_BAD_RESP_ERR,
454 IB_WC_LOC_ACCESS_ERR,
455 IB_WC_REM_INV_REQ_ERR,
456 IB_WC_REM_ACCESS_ERR,
457 IB_WC_REM_OP_ERR,
458 IB_WC_RETRY_EXC_ERR,
459 IB_WC_RNR_RETRY_EXC_ERR,
460 IB_WC_LOC_RDD_VIOL_ERR,
461 IB_WC_REM_INV_RD_REQ_ERR,
462 IB_WC_REM_ABORT_ERR,
463 IB_WC_INV_EECN_ERR,
464 IB_WC_INV_EEC_STATE_ERR,
465 IB_WC_FATAL_ERR,
466 IB_WC_RESP_TIMEOUT_ERR,
467 IB_WC_GENERAL_ERR
468 };
469
470 enum ib_wc_opcode {
471 IB_WC_SEND,
472 IB_WC_RDMA_WRITE,
473 IB_WC_RDMA_READ,
474 IB_WC_COMP_SWAP,
475 IB_WC_FETCH_ADD,
476 IB_WC_BIND_MW,
477 IB_WC_LSO,
478 IB_WC_LOCAL_INV,
479 IB_WC_FAST_REG_MR,
480 IB_WC_MASKED_COMP_SWAP,
481 IB_WC_MASKED_FETCH_ADD,
482 /*
483 * Set value of IB_WC_RECV so consumers can test if a completion is a
484 * receive by testing (opcode & IB_WC_RECV).
485 */
486 IB_WC_RECV = 1 << 7,
487 IB_WC_RECV_RDMA_WITH_IMM
488 };
489
490 enum ib_wc_flags {
491 IB_WC_GRH = 1,
492 IB_WC_WITH_IMM = (1<<1),
493 IB_WC_WITH_INVALIDATE = (1<<2),
494 };
495
496 struct ib_wc {
497 u64 wr_id;
498 enum ib_wc_status status;
499 enum ib_wc_opcode opcode;
500 u32 vendor_err;
501 u32 byte_len;
502 struct ib_qp *qp;
503 union {
504 __be32 imm_data;
505 u32 invalidate_rkey;
506 } ex;
507 u32 src_qp;
508 int wc_flags;
509 u16 pkey_index;
510 u16 slid;
511 u8 sl;
512 u8 dlid_path_bits;
513 u8 port_num; /* valid only for DR SMPs on switches */
514 int csum_ok;
515 };
516
517 enum ib_cq_notify_flags {
518 IB_CQ_SOLICITED = 1 << 0,
519 IB_CQ_NEXT_COMP = 1 << 1,
520 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
521 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
522 };
523
524 enum ib_srq_attr_mask {
525 IB_SRQ_MAX_WR = 1 << 0,
526 IB_SRQ_LIMIT = 1 << 1,
527 };
528
529 struct ib_srq_attr {
530 u32 max_wr;
531 u32 max_sge;
532 u32 srq_limit;
533 };
534
535 struct ib_srq_init_attr {
536 void (*event_handler)(struct ib_event *, void *);
537 void *srq_context;
538 struct ib_srq_attr attr;
539 };
540
541 struct ib_qp_cap {
542 u32 max_send_wr;
543 u32 max_recv_wr;
544 u32 max_send_sge;
545 u32 max_recv_sge;
546 u32 max_inline_data;
547 };
548
549 enum ib_sig_type {
550 IB_SIGNAL_ALL_WR,
551 IB_SIGNAL_REQ_WR
552 };
553
554 enum ib_qp_type {
555 /*
556 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
557 * here (and in that order) since the MAD layer uses them as
558 * indices into a 2-entry table.
559 */
560 IB_QPT_SMI,
561 IB_QPT_GSI,
562
563 IB_QPT_RC,
564 IB_QPT_UC,
565 IB_QPT_UD,
566 IB_QPT_RAW_IPV6,
567 IB_QPT_RAW_ETHERTYPE
568 };
569
570 enum ib_qp_create_flags {
571 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
572 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
573 };
574
575 struct ib_qp_init_attr {
576 void (*event_handler)(struct ib_event *, void *);
577 void *qp_context;
578 struct ib_cq *send_cq;
579 struct ib_cq *recv_cq;
580 struct ib_srq *srq;
581 struct ib_qp_cap cap;
582 enum ib_sig_type sq_sig_type;
583 enum ib_qp_type qp_type;
584 enum ib_qp_create_flags create_flags;
585 u8 port_num; /* special QP types only */
586 };
587
588 enum ib_rnr_timeout {
589 IB_RNR_TIMER_655_36 = 0,
590 IB_RNR_TIMER_000_01 = 1,
591 IB_RNR_TIMER_000_02 = 2,
592 IB_RNR_TIMER_000_03 = 3,
593 IB_RNR_TIMER_000_04 = 4,
594 IB_RNR_TIMER_000_06 = 5,
595 IB_RNR_TIMER_000_08 = 6,
596 IB_RNR_TIMER_000_12 = 7,
597 IB_RNR_TIMER_000_16 = 8,
598 IB_RNR_TIMER_000_24 = 9,
599 IB_RNR_TIMER_000_32 = 10,
600 IB_RNR_TIMER_000_48 = 11,
601 IB_RNR_TIMER_000_64 = 12,
602 IB_RNR_TIMER_000_96 = 13,
603 IB_RNR_TIMER_001_28 = 14,
604 IB_RNR_TIMER_001_92 = 15,
605 IB_RNR_TIMER_002_56 = 16,
606 IB_RNR_TIMER_003_84 = 17,
607 IB_RNR_TIMER_005_12 = 18,
608 IB_RNR_TIMER_007_68 = 19,
609 IB_RNR_TIMER_010_24 = 20,
610 IB_RNR_TIMER_015_36 = 21,
611 IB_RNR_TIMER_020_48 = 22,
612 IB_RNR_TIMER_030_72 = 23,
613 IB_RNR_TIMER_040_96 = 24,
614 IB_RNR_TIMER_061_44 = 25,
615 IB_RNR_TIMER_081_92 = 26,
616 IB_RNR_TIMER_122_88 = 27,
617 IB_RNR_TIMER_163_84 = 28,
618 IB_RNR_TIMER_245_76 = 29,
619 IB_RNR_TIMER_327_68 = 30,
620 IB_RNR_TIMER_491_52 = 31
621 };
622
623 enum ib_qp_attr_mask {
624 IB_QP_STATE = 1,
625 IB_QP_CUR_STATE = (1<<1),
626 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
627 IB_QP_ACCESS_FLAGS = (1<<3),
628 IB_QP_PKEY_INDEX = (1<<4),
629 IB_QP_PORT = (1<<5),
630 IB_QP_QKEY = (1<<6),
631 IB_QP_AV = (1<<7),
632 IB_QP_PATH_MTU = (1<<8),
633 IB_QP_TIMEOUT = (1<<9),
634 IB_QP_RETRY_CNT = (1<<10),
635 IB_QP_RNR_RETRY = (1<<11),
636 IB_QP_RQ_PSN = (1<<12),
637 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
638 IB_QP_ALT_PATH = (1<<14),
639 IB_QP_MIN_RNR_TIMER = (1<<15),
640 IB_QP_SQ_PSN = (1<<16),
641 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
642 IB_QP_PATH_MIG_STATE = (1<<18),
643 IB_QP_CAP = (1<<19),
644 IB_QP_DEST_QPN = (1<<20)
645 };
646
647 enum ib_qp_state {
648 IB_QPS_RESET,
649 IB_QPS_INIT,
650 IB_QPS_RTR,
651 IB_QPS_RTS,
652 IB_QPS_SQD,
653 IB_QPS_SQE,
654 IB_QPS_ERR
655 };
656
657 enum ib_mig_state {
658 IB_MIG_MIGRATED,
659 IB_MIG_REARM,
660 IB_MIG_ARMED
661 };
662
663 struct ib_qp_attr {
664 enum ib_qp_state qp_state;
665 enum ib_qp_state cur_qp_state;
666 enum ib_mtu path_mtu;
667 enum ib_mig_state path_mig_state;
668 u32 qkey;
669 u32 rq_psn;
670 u32 sq_psn;
671 u32 dest_qp_num;
672 int qp_access_flags;
673 struct ib_qp_cap cap;
674 struct ib_ah_attr ah_attr;
675 struct ib_ah_attr alt_ah_attr;
676 u16 pkey_index;
677 u16 alt_pkey_index;
678 u8 en_sqd_async_notify;
679 u8 sq_draining;
680 u8 max_rd_atomic;
681 u8 max_dest_rd_atomic;
682 u8 min_rnr_timer;
683 u8 port_num;
684 u8 timeout;
685 u8 retry_cnt;
686 u8 rnr_retry;
687 u8 alt_port_num;
688 u8 alt_timeout;
689 };
690
691 enum ib_wr_opcode {
692 IB_WR_RDMA_WRITE,
693 IB_WR_RDMA_WRITE_WITH_IMM,
694 IB_WR_SEND,
695 IB_WR_SEND_WITH_IMM,
696 IB_WR_RDMA_READ,
697 IB_WR_ATOMIC_CMP_AND_SWP,
698 IB_WR_ATOMIC_FETCH_AND_ADD,
699 IB_WR_LSO,
700 IB_WR_SEND_WITH_INV,
701 IB_WR_RDMA_READ_WITH_INV,
702 IB_WR_LOCAL_INV,
703 IB_WR_FAST_REG_MR,
704 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
705 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
706 };
707
708 enum ib_send_flags {
709 IB_SEND_FENCE = 1,
710 IB_SEND_SIGNALED = (1<<1),
711 IB_SEND_SOLICITED = (1<<2),
712 IB_SEND_INLINE = (1<<3),
713 IB_SEND_IP_CSUM = (1<<4)
714 };
715
716 struct ib_sge {
717 u64 addr;
718 u32 length;
719 u32 lkey;
720 };
721
722 struct ib_fast_reg_page_list {
723 struct ib_device *device;
724 u64 *page_list;
725 unsigned int max_page_list_len;
726 };
727
728 struct ib_send_wr {
729 struct ib_send_wr *next;
730 u64 wr_id;
731 struct ib_sge *sg_list;
732 int num_sge;
733 enum ib_wr_opcode opcode;
734 int send_flags;
735 union {
736 __be32 imm_data;
737 u32 invalidate_rkey;
738 } ex;
739 union {
740 struct {
741 u64 remote_addr;
742 u32 rkey;
743 } rdma;
744 struct {
745 u64 remote_addr;
746 u64 compare_add;
747 u64 swap;
748 u64 compare_add_mask;
749 u64 swap_mask;
750 u32 rkey;
751 } atomic;
752 struct {
753 struct ib_ah *ah;
754 void *header;
755 int hlen;
756 int mss;
757 u32 remote_qpn;
758 u32 remote_qkey;
759 u16 pkey_index; /* valid for GSI only */
760 u8 port_num; /* valid for DR SMPs on switch only */
761 } ud;
762 struct {
763 u64 iova_start;
764 struct ib_fast_reg_page_list *page_list;
765 unsigned int page_shift;
766 unsigned int page_list_len;
767 u32 length;
768 int access_flags;
769 u32 rkey;
770 } fast_reg;
771 } wr;
772 };
773
774 struct ib_recv_wr {
775 struct ib_recv_wr *next;
776 u64 wr_id;
777 struct ib_sge *sg_list;
778 int num_sge;
779 };
780
781 enum ib_access_flags {
782 IB_ACCESS_LOCAL_WRITE = 1,
783 IB_ACCESS_REMOTE_WRITE = (1<<1),
784 IB_ACCESS_REMOTE_READ = (1<<2),
785 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
786 IB_ACCESS_MW_BIND = (1<<4)
787 };
788
789 struct ib_phys_buf {
790 u64 addr;
791 u64 size;
792 };
793
794 struct ib_mr_attr {
795 struct ib_pd *pd;
796 u64 device_virt_addr;
797 u64 size;
798 int mr_access_flags;
799 u32 lkey;
800 u32 rkey;
801 };
802
803 enum ib_mr_rereg_flags {
804 IB_MR_REREG_TRANS = 1,
805 IB_MR_REREG_PD = (1<<1),
806 IB_MR_REREG_ACCESS = (1<<2)
807 };
808
809 struct ib_mw_bind {
810 struct ib_mr *mr;
811 u64 wr_id;
812 u64 addr;
813 u32 length;
814 int send_flags;
815 int mw_access_flags;
816 };
817
818 struct ib_fmr_attr {
819 int max_pages;
820 int max_maps;
821 u8 page_shift;
822 };
823
824 struct ib_ucontext {
825 struct ib_device *device;
826 struct list_head pd_list;
827 struct list_head mr_list;
828 struct list_head mw_list;
829 struct list_head cq_list;
830 struct list_head qp_list;
831 struct list_head srq_list;
832 struct list_head ah_list;
833 int closing;
834 };
835
836 struct ib_uobject {
837 u64 user_handle; /* handle given to us by userspace */
838 struct ib_ucontext *context; /* associated user context */
839 void *object; /* containing object */
840 struct list_head list; /* link to context's list */
841 int id; /* index into kernel idr */
842 struct kref ref;
843 struct rw_semaphore mutex; /* protects .live */
844 int live;
845 };
846
847 struct ib_udata {
848 void __user *inbuf;
849 void __user *outbuf;
850 size_t inlen;
851 size_t outlen;
852 };
853
854 struct ib_pd {
855 struct ib_device *device;
856 struct ib_uobject *uobject;
857 atomic_t usecnt; /* count all resources */
858 };
859
860 struct ib_ah {
861 struct ib_device *device;
862 struct ib_pd *pd;
863 struct ib_uobject *uobject;
864 };
865
866 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
867
868 struct ib_cq {
869 struct ib_device *device;
870 struct ib_uobject *uobject;
871 ib_comp_handler comp_handler;
872 void (*event_handler)(struct ib_event *, void *);
873 void *cq_context;
874 int cqe;
875 atomic_t usecnt; /* count number of work queues */
876 };
877
878 struct ib_srq {
879 struct ib_device *device;
880 struct ib_pd *pd;
881 struct ib_uobject *uobject;
882 void (*event_handler)(struct ib_event *, void *);
883 void *srq_context;
884 atomic_t usecnt;
885 };
886
887 struct ib_qp {
888 struct ib_device *device;
889 struct ib_pd *pd;
890 struct ib_cq *send_cq;
891 struct ib_cq *recv_cq;
892 struct ib_srq *srq;
893 struct ib_uobject *uobject;
894 void (*event_handler)(struct ib_event *, void *);
895 void *qp_context;
896 u32 qp_num;
897 enum ib_qp_type qp_type;
898 };
899
900 struct ib_mr {
901 struct ib_device *device;
902 struct ib_pd *pd;
903 struct ib_uobject *uobject;
904 u32 lkey;
905 u32 rkey;
906 atomic_t usecnt; /* count number of MWs */
907 };
908
909 struct ib_mw {
910 struct ib_device *device;
911 struct ib_pd *pd;
912 struct ib_uobject *uobject;
913 u32 rkey;
914 };
915
916 struct ib_fmr {
917 struct ib_device *device;
918 struct ib_pd *pd;
919 struct list_head list;
920 u32 lkey;
921 u32 rkey;
922 };
923
924 struct ib_mad;
925 struct ib_grh;
926
927 enum ib_process_mad_flags {
928 IB_MAD_IGNORE_MKEY = 1,
929 IB_MAD_IGNORE_BKEY = 2,
930 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
931 };
932
933 enum ib_mad_result {
934 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
935 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
936 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
937 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
938 };
939
940 #define IB_DEVICE_NAME_MAX 64
941
942 struct ib_cache {
943 rwlock_t lock;
944 struct ib_event_handler event_handler;
945 struct ib_pkey_cache **pkey_cache;
946 struct ib_gid_cache **gid_cache;
947 u8 *lmc_cache;
948 };
949
950 struct ib_dma_mapping_ops {
951 int (*mapping_error)(struct ib_device *dev,
952 u64 dma_addr);
953 u64 (*map_single)(struct ib_device *dev,
954 void *ptr, size_t size,
955 enum dma_data_direction direction);
956 void (*unmap_single)(struct ib_device *dev,
957 u64 addr, size_t size,
958 enum dma_data_direction direction);
959 u64 (*map_page)(struct ib_device *dev,
960 struct page *page, unsigned long offset,
961 size_t size,
962 enum dma_data_direction direction);
963 void (*unmap_page)(struct ib_device *dev,
964 u64 addr, size_t size,
965 enum dma_data_direction direction);
966 int (*map_sg)(struct ib_device *dev,
967 struct scatterlist *sg, int nents,
968 enum dma_data_direction direction);
969 void (*unmap_sg)(struct ib_device *dev,
970 struct scatterlist *sg, int nents,
971 enum dma_data_direction direction);
972 u64 (*dma_address)(struct ib_device *dev,
973 struct scatterlist *sg);
974 unsigned int (*dma_len)(struct ib_device *dev,
975 struct scatterlist *sg);
976 void (*sync_single_for_cpu)(struct ib_device *dev,
977 u64 dma_handle,
978 size_t size,
979 enum dma_data_direction dir);
980 void (*sync_single_for_device)(struct ib_device *dev,
981 u64 dma_handle,
982 size_t size,
983 enum dma_data_direction dir);
984 void *(*alloc_coherent)(struct ib_device *dev,
985 size_t size,
986 u64 *dma_handle,
987 gfp_t flag);
988 void (*free_coherent)(struct ib_device *dev,
989 size_t size, void *cpu_addr,
990 u64 dma_handle);
991 };
992
993 struct iw_cm_verbs;
994
995 struct ib_device {
996 struct device *dma_device;
997
998 char name[IB_DEVICE_NAME_MAX];
999
1000 struct list_head event_handler_list;
1001 spinlock_t event_handler_lock;
1002
1003 spinlock_t client_data_lock;
1004 struct list_head core_list;
1005 struct list_head client_data_list;
1006
1007 struct ib_cache cache;
1008 int *pkey_tbl_len;
1009 int *gid_tbl_len;
1010
1011 int num_comp_vectors;
1012
1013 struct iw_cm_verbs *iwcm;
1014
1015 int (*get_protocol_stats)(struct ib_device *device,
1016 union rdma_protocol_stats *stats);
1017 int (*query_device)(struct ib_device *device,
1018 struct ib_device_attr *device_attr);
1019 int (*query_port)(struct ib_device *device,
1020 u8 port_num,
1021 struct ib_port_attr *port_attr);
1022 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1023 u8 port_num);
1024 int (*query_gid)(struct ib_device *device,
1025 u8 port_num, int index,
1026 union ib_gid *gid);
1027 int (*query_pkey)(struct ib_device *device,
1028 u8 port_num, u16 index, u16 *pkey);
1029 int (*modify_device)(struct ib_device *device,
1030 int device_modify_mask,
1031 struct ib_device_modify *device_modify);
1032 int (*modify_port)(struct ib_device *device,
1033 u8 port_num, int port_modify_mask,
1034 struct ib_port_modify *port_modify);
1035 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1036 struct ib_udata *udata);
1037 int (*dealloc_ucontext)(struct ib_ucontext *context);
1038 int (*mmap)(struct ib_ucontext *context,
1039 struct vm_area_struct *vma);
1040 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1041 struct ib_ucontext *context,
1042 struct ib_udata *udata);
1043 int (*dealloc_pd)(struct ib_pd *pd);
1044 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1045 struct ib_ah_attr *ah_attr);
1046 int (*modify_ah)(struct ib_ah *ah,
1047 struct ib_ah_attr *ah_attr);
1048 int (*query_ah)(struct ib_ah *ah,
1049 struct ib_ah_attr *ah_attr);
1050 int (*destroy_ah)(struct ib_ah *ah);
1051 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1052 struct ib_srq_init_attr *srq_init_attr,
1053 struct ib_udata *udata);
1054 int (*modify_srq)(struct ib_srq *srq,
1055 struct ib_srq_attr *srq_attr,
1056 enum ib_srq_attr_mask srq_attr_mask,
1057 struct ib_udata *udata);
1058 int (*query_srq)(struct ib_srq *srq,
1059 struct ib_srq_attr *srq_attr);
1060 int (*destroy_srq)(struct ib_srq *srq);
1061 int (*post_srq_recv)(struct ib_srq *srq,
1062 struct ib_recv_wr *recv_wr,
1063 struct ib_recv_wr **bad_recv_wr);
1064 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1065 struct ib_qp_init_attr *qp_init_attr,
1066 struct ib_udata *udata);
1067 int (*modify_qp)(struct ib_qp *qp,
1068 struct ib_qp_attr *qp_attr,
1069 int qp_attr_mask,
1070 struct ib_udata *udata);
1071 int (*query_qp)(struct ib_qp *qp,
1072 struct ib_qp_attr *qp_attr,
1073 int qp_attr_mask,
1074 struct ib_qp_init_attr *qp_init_attr);
1075 int (*destroy_qp)(struct ib_qp *qp);
1076 int (*post_send)(struct ib_qp *qp,
1077 struct ib_send_wr *send_wr,
1078 struct ib_send_wr **bad_send_wr);
1079 int (*post_recv)(struct ib_qp *qp,
1080 struct ib_recv_wr *recv_wr,
1081 struct ib_recv_wr **bad_recv_wr);
1082 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1083 int comp_vector,
1084 struct ib_ucontext *context,
1085 struct ib_udata *udata);
1086 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1087 u16 cq_period);
1088 int (*destroy_cq)(struct ib_cq *cq);
1089 int (*resize_cq)(struct ib_cq *cq, int cqe,
1090 struct ib_udata *udata);
1091 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1092 struct ib_wc *wc);
1093 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1094 int (*req_notify_cq)(struct ib_cq *cq,
1095 enum ib_cq_notify_flags flags);
1096 int (*req_ncomp_notif)(struct ib_cq *cq,
1097 int wc_cnt);
1098 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1099 int mr_access_flags);
1100 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1101 struct ib_phys_buf *phys_buf_array,
1102 int num_phys_buf,
1103 int mr_access_flags,
1104 u64 *iova_start);
1105 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1106 u64 start, u64 length,
1107 u64 virt_addr,
1108 int mr_access_flags,
1109 struct ib_udata *udata);
1110 int (*query_mr)(struct ib_mr *mr,
1111 struct ib_mr_attr *mr_attr);
1112 int (*dereg_mr)(struct ib_mr *mr);
1113 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1114 int max_page_list_len);
1115 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1116 int page_list_len);
1117 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1118 int (*rereg_phys_mr)(struct ib_mr *mr,
1119 int mr_rereg_mask,
1120 struct ib_pd *pd,
1121 struct ib_phys_buf *phys_buf_array,
1122 int num_phys_buf,
1123 int mr_access_flags,
1124 u64 *iova_start);
1125 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1126 int (*bind_mw)(struct ib_qp *qp,
1127 struct ib_mw *mw,
1128 struct ib_mw_bind *mw_bind);
1129 int (*dealloc_mw)(struct ib_mw *mw);
1130 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1131 int mr_access_flags,
1132 struct ib_fmr_attr *fmr_attr);
1133 int (*map_phys_fmr)(struct ib_fmr *fmr,
1134 u64 *page_list, int list_len,
1135 u64 iova);
1136 int (*unmap_fmr)(struct list_head *fmr_list);
1137 int (*dealloc_fmr)(struct ib_fmr *fmr);
1138 int (*attach_mcast)(struct ib_qp *qp,
1139 union ib_gid *gid,
1140 u16 lid);
1141 int (*detach_mcast)(struct ib_qp *qp,
1142 union ib_gid *gid,
1143 u16 lid);
1144 int (*process_mad)(struct ib_device *device,
1145 int process_mad_flags,
1146 u8 port_num,
1147 struct ib_wc *in_wc,
1148 struct ib_grh *in_grh,
1149 struct ib_mad *in_mad,
1150 struct ib_mad *out_mad);
1151
1152 struct ib_dma_mapping_ops *dma_ops;
1153
1154 struct module *owner;
1155 struct device dev;
1156 struct kobject *ports_parent;
1157 struct list_head port_list;
1158
1159 enum {
1160 IB_DEV_UNINITIALIZED,
1161 IB_DEV_REGISTERED,
1162 IB_DEV_UNREGISTERED
1163 } reg_state;
1164
1165 int uverbs_abi_ver;
1166 u64 uverbs_cmd_mask;
1167
1168 char node_desc[64];
1169 __be64 node_guid;
1170 u32 local_dma_lkey;
1171 u8 node_type;
1172 u8 phys_port_cnt;
1173 };
1174
1175 struct ib_client {
1176 char *name;
1177 void (*add) (struct ib_device *);
1178 void (*remove)(struct ib_device *);
1179
1180 struct list_head list;
1181 };
1182
1183 struct ib_device *ib_alloc_device(size_t size);
1184 void ib_dealloc_device(struct ib_device *device);
1185
1186 int ib_register_device(struct ib_device *device,
1187 int (*port_callback)(struct ib_device *,
1188 u8, struct kobject *));
1189 void ib_unregister_device(struct ib_device *device);
1190
1191 int ib_register_client (struct ib_client *client);
1192 void ib_unregister_client(struct ib_client *client);
1193
1194 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1195 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1196 void *data);
1197
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)1198 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1199 {
1200 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1201 }
1202
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)1203 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1204 {
1205 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1206 }
1207
1208 /**
1209 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1210 * contains all required attributes and no attributes not allowed for
1211 * the given QP state transition.
1212 * @cur_state: Current QP state
1213 * @next_state: Next QP state
1214 * @type: QP type
1215 * @mask: Mask of supplied QP attributes
1216 *
1217 * This function is a helper function that a low-level driver's
1218 * modify_qp method can use to validate the consumer's input. It
1219 * checks that cur_state and next_state are valid QP states, that a
1220 * transition from cur_state to next_state is allowed by the IB spec,
1221 * and that the attribute mask supplied is allowed for the transition.
1222 */
1223 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1224 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1225
1226 int ib_register_event_handler (struct ib_event_handler *event_handler);
1227 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1228 void ib_dispatch_event(struct ib_event *event);
1229
1230 int ib_query_device(struct ib_device *device,
1231 struct ib_device_attr *device_attr);
1232
1233 int ib_query_port(struct ib_device *device,
1234 u8 port_num, struct ib_port_attr *port_attr);
1235
1236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1237 u8 port_num);
1238
1239 int ib_query_gid(struct ib_device *device,
1240 u8 port_num, int index, union ib_gid *gid);
1241
1242 int ib_query_pkey(struct ib_device *device,
1243 u8 port_num, u16 index, u16 *pkey);
1244
1245 int ib_modify_device(struct ib_device *device,
1246 int device_modify_mask,
1247 struct ib_device_modify *device_modify);
1248
1249 int ib_modify_port(struct ib_device *device,
1250 u8 port_num, int port_modify_mask,
1251 struct ib_port_modify *port_modify);
1252
1253 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1254 u8 *port_num, u16 *index);
1255
1256 int ib_find_pkey(struct ib_device *device,
1257 u8 port_num, u16 pkey, u16 *index);
1258
1259 /**
1260 * ib_alloc_pd - Allocates an unused protection domain.
1261 * @device: The device on which to allocate the protection domain.
1262 *
1263 * A protection domain object provides an association between QPs, shared
1264 * receive queues, address handles, memory regions, and memory windows.
1265 */
1266 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1267
1268 /**
1269 * ib_dealloc_pd - Deallocates a protection domain.
1270 * @pd: The protection domain to deallocate.
1271 */
1272 int ib_dealloc_pd(struct ib_pd *pd);
1273
1274 /**
1275 * ib_create_ah - Creates an address handle for the given address vector.
1276 * @pd: The protection domain associated with the address handle.
1277 * @ah_attr: The attributes of the address vector.
1278 *
1279 * The address handle is used to reference a local or global destination
1280 * in all UD QP post sends.
1281 */
1282 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1283
1284 /**
1285 * ib_init_ah_from_wc - Initializes address handle attributes from a
1286 * work completion.
1287 * @device: Device on which the received message arrived.
1288 * @port_num: Port on which the received message arrived.
1289 * @wc: Work completion associated with the received message.
1290 * @grh: References the received global route header. This parameter is
1291 * ignored unless the work completion indicates that the GRH is valid.
1292 * @ah_attr: Returned attributes that can be used when creating an address
1293 * handle for replying to the message.
1294 */
1295 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1296 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1297
1298 /**
1299 * ib_create_ah_from_wc - Creates an address handle associated with the
1300 * sender of the specified work completion.
1301 * @pd: The protection domain associated with the address handle.
1302 * @wc: Work completion information associated with a received message.
1303 * @grh: References the received global route header. This parameter is
1304 * ignored unless the work completion indicates that the GRH is valid.
1305 * @port_num: The outbound port number to associate with the address.
1306 *
1307 * The address handle is used to reference a local or global destination
1308 * in all UD QP post sends.
1309 */
1310 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1311 struct ib_grh *grh, u8 port_num);
1312
1313 /**
1314 * ib_modify_ah - Modifies the address vector associated with an address
1315 * handle.
1316 * @ah: The address handle to modify.
1317 * @ah_attr: The new address vector attributes to associate with the
1318 * address handle.
1319 */
1320 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1321
1322 /**
1323 * ib_query_ah - Queries the address vector associated with an address
1324 * handle.
1325 * @ah: The address handle to query.
1326 * @ah_attr: The address vector attributes associated with the address
1327 * handle.
1328 */
1329 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1330
1331 /**
1332 * ib_destroy_ah - Destroys an address handle.
1333 * @ah: The address handle to destroy.
1334 */
1335 int ib_destroy_ah(struct ib_ah *ah);
1336
1337 /**
1338 * ib_create_srq - Creates a SRQ associated with the specified protection
1339 * domain.
1340 * @pd: The protection domain associated with the SRQ.
1341 * @srq_init_attr: A list of initial attributes required to create the
1342 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1343 * the actual capabilities of the created SRQ.
1344 *
1345 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1346 * requested size of the SRQ, and set to the actual values allocated
1347 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1348 * will always be at least as large as the requested values.
1349 */
1350 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1351 struct ib_srq_init_attr *srq_init_attr);
1352
1353 /**
1354 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1355 * @srq: The SRQ to modify.
1356 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1357 * the current values of selected SRQ attributes are returned.
1358 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1359 * are being modified.
1360 *
1361 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1362 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1363 * the number of receives queued drops below the limit.
1364 */
1365 int ib_modify_srq(struct ib_srq *srq,
1366 struct ib_srq_attr *srq_attr,
1367 enum ib_srq_attr_mask srq_attr_mask);
1368
1369 /**
1370 * ib_query_srq - Returns the attribute list and current values for the
1371 * specified SRQ.
1372 * @srq: The SRQ to query.
1373 * @srq_attr: The attributes of the specified SRQ.
1374 */
1375 int ib_query_srq(struct ib_srq *srq,
1376 struct ib_srq_attr *srq_attr);
1377
1378 /**
1379 * ib_destroy_srq - Destroys the specified SRQ.
1380 * @srq: The SRQ to destroy.
1381 */
1382 int ib_destroy_srq(struct ib_srq *srq);
1383
1384 /**
1385 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1386 * @srq: The SRQ to post the work request on.
1387 * @recv_wr: A list of work requests to post on the receive queue.
1388 * @bad_recv_wr: On an immediate failure, this parameter will reference
1389 * the work request that failed to be posted on the QP.
1390 */
ib_post_srq_recv(struct ib_srq * srq,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1391 static inline int ib_post_srq_recv(struct ib_srq *srq,
1392 struct ib_recv_wr *recv_wr,
1393 struct ib_recv_wr **bad_recv_wr)
1394 {
1395 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1396 }
1397
1398 /**
1399 * ib_create_qp - Creates a QP associated with the specified protection
1400 * domain.
1401 * @pd: The protection domain associated with the QP.
1402 * @qp_init_attr: A list of initial attributes required to create the
1403 * QP. If QP creation succeeds, then the attributes are updated to
1404 * the actual capabilities of the created QP.
1405 */
1406 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1407 struct ib_qp_init_attr *qp_init_attr);
1408
1409 /**
1410 * ib_modify_qp - Modifies the attributes for the specified QP and then
1411 * transitions the QP to the given state.
1412 * @qp: The QP to modify.
1413 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1414 * the current values of selected QP attributes are returned.
1415 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1416 * are being modified.
1417 */
1418 int ib_modify_qp(struct ib_qp *qp,
1419 struct ib_qp_attr *qp_attr,
1420 int qp_attr_mask);
1421
1422 /**
1423 * ib_query_qp - Returns the attribute list and current values for the
1424 * specified QP.
1425 * @qp: The QP to query.
1426 * @qp_attr: The attributes of the specified QP.
1427 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1428 * @qp_init_attr: Additional attributes of the selected QP.
1429 *
1430 * The qp_attr_mask may be used to limit the query to gathering only the
1431 * selected attributes.
1432 */
1433 int ib_query_qp(struct ib_qp *qp,
1434 struct ib_qp_attr *qp_attr,
1435 int qp_attr_mask,
1436 struct ib_qp_init_attr *qp_init_attr);
1437
1438 /**
1439 * ib_destroy_qp - Destroys the specified QP.
1440 * @qp: The QP to destroy.
1441 */
1442 int ib_destroy_qp(struct ib_qp *qp);
1443
1444 /**
1445 * ib_post_send - Posts a list of work requests to the send queue of
1446 * the specified QP.
1447 * @qp: The QP to post the work request on.
1448 * @send_wr: A list of work requests to post on the send queue.
1449 * @bad_send_wr: On an immediate failure, this parameter will reference
1450 * the work request that failed to be posted on the QP.
1451 *
1452 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1453 * error is returned, the QP state shall not be affected,
1454 * ib_post_send() will return an immediate error after queueing any
1455 * earlier work requests in the list.
1456 */
ib_post_send(struct ib_qp * qp,struct ib_send_wr * send_wr,struct ib_send_wr ** bad_send_wr)1457 static inline int ib_post_send(struct ib_qp *qp,
1458 struct ib_send_wr *send_wr,
1459 struct ib_send_wr **bad_send_wr)
1460 {
1461 return qp->device->post_send(qp, send_wr, bad_send_wr);
1462 }
1463
1464 /**
1465 * ib_post_recv - Posts a list of work requests to the receive queue of
1466 * the specified QP.
1467 * @qp: The QP to post the work request on.
1468 * @recv_wr: A list of work requests to post on the receive queue.
1469 * @bad_recv_wr: On an immediate failure, this parameter will reference
1470 * the work request that failed to be posted on the QP.
1471 */
ib_post_recv(struct ib_qp * qp,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1472 static inline int ib_post_recv(struct ib_qp *qp,
1473 struct ib_recv_wr *recv_wr,
1474 struct ib_recv_wr **bad_recv_wr)
1475 {
1476 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1477 }
1478
1479 /**
1480 * ib_create_cq - Creates a CQ on the specified device.
1481 * @device: The device on which to create the CQ.
1482 * @comp_handler: A user-specified callback that is invoked when a
1483 * completion event occurs on the CQ.
1484 * @event_handler: A user-specified callback that is invoked when an
1485 * asynchronous event not associated with a completion occurs on the CQ.
1486 * @cq_context: Context associated with the CQ returned to the user via
1487 * the associated completion and event handlers.
1488 * @cqe: The minimum size of the CQ.
1489 * @comp_vector - Completion vector used to signal completion events.
1490 * Must be >= 0 and < context->num_comp_vectors.
1491 *
1492 * Users can examine the cq structure to determine the actual CQ size.
1493 */
1494 struct ib_cq *ib_create_cq(struct ib_device *device,
1495 ib_comp_handler comp_handler,
1496 void (*event_handler)(struct ib_event *, void *),
1497 void *cq_context, int cqe, int comp_vector);
1498
1499 /**
1500 * ib_resize_cq - Modifies the capacity of the CQ.
1501 * @cq: The CQ to resize.
1502 * @cqe: The minimum size of the CQ.
1503 *
1504 * Users can examine the cq structure to determine the actual CQ size.
1505 */
1506 int ib_resize_cq(struct ib_cq *cq, int cqe);
1507
1508 /**
1509 * ib_modify_cq - Modifies moderation params of the CQ
1510 * @cq: The CQ to modify.
1511 * @cq_count: number of CQEs that will trigger an event
1512 * @cq_period: max period of time in usec before triggering an event
1513 *
1514 */
1515 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1516
1517 /**
1518 * ib_destroy_cq - Destroys the specified CQ.
1519 * @cq: The CQ to destroy.
1520 */
1521 int ib_destroy_cq(struct ib_cq *cq);
1522
1523 /**
1524 * ib_poll_cq - poll a CQ for completion(s)
1525 * @cq:the CQ being polled
1526 * @num_entries:maximum number of completions to return
1527 * @wc:array of at least @num_entries &struct ib_wc where completions
1528 * will be returned
1529 *
1530 * Poll a CQ for (possibly multiple) completions. If the return value
1531 * is < 0, an error occurred. If the return value is >= 0, it is the
1532 * number of completions returned. If the return value is
1533 * non-negative and < num_entries, then the CQ was emptied.
1534 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)1535 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1536 struct ib_wc *wc)
1537 {
1538 return cq->device->poll_cq(cq, num_entries, wc);
1539 }
1540
1541 /**
1542 * ib_peek_cq - Returns the number of unreaped completions currently
1543 * on the specified CQ.
1544 * @cq: The CQ to peek.
1545 * @wc_cnt: A minimum number of unreaped completions to check for.
1546 *
1547 * If the number of unreaped completions is greater than or equal to wc_cnt,
1548 * this function returns wc_cnt, otherwise, it returns the actual number of
1549 * unreaped completions.
1550 */
1551 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1552
1553 /**
1554 * ib_req_notify_cq - Request completion notification on a CQ.
1555 * @cq: The CQ to generate an event for.
1556 * @flags:
1557 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1558 * to request an event on the next solicited event or next work
1559 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1560 * may also be |ed in to request a hint about missed events, as
1561 * described below.
1562 *
1563 * Return Value:
1564 * < 0 means an error occurred while requesting notification
1565 * == 0 means notification was requested successfully, and if
1566 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1567 * were missed and it is safe to wait for another event. In
1568 * this case is it guaranteed that any work completions added
1569 * to the CQ since the last CQ poll will trigger a completion
1570 * notification event.
1571 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1572 * in. It means that the consumer must poll the CQ again to
1573 * make sure it is empty to avoid missing an event because of a
1574 * race between requesting notification and an entry being
1575 * added to the CQ. This return value means it is possible
1576 * (but not guaranteed) that a work completion has been added
1577 * to the CQ since the last poll without triggering a
1578 * completion notification event.
1579 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)1580 static inline int ib_req_notify_cq(struct ib_cq *cq,
1581 enum ib_cq_notify_flags flags)
1582 {
1583 return cq->device->req_notify_cq(cq, flags);
1584 }
1585
1586 /**
1587 * ib_req_ncomp_notif - Request completion notification when there are
1588 * at least the specified number of unreaped completions on the CQ.
1589 * @cq: The CQ to generate an event for.
1590 * @wc_cnt: The number of unreaped completions that should be on the
1591 * CQ before an event is generated.
1592 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)1593 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1594 {
1595 return cq->device->req_ncomp_notif ?
1596 cq->device->req_ncomp_notif(cq, wc_cnt) :
1597 -ENOSYS;
1598 }
1599
1600 /**
1601 * ib_get_dma_mr - Returns a memory region for system memory that is
1602 * usable for DMA.
1603 * @pd: The protection domain associated with the memory region.
1604 * @mr_access_flags: Specifies the memory access rights.
1605 *
1606 * Note that the ib_dma_*() functions defined below must be used
1607 * to create/destroy addresses used with the Lkey or Rkey returned
1608 * by ib_get_dma_mr().
1609 */
1610 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1611
1612 /**
1613 * ib_dma_mapping_error - check a DMA addr for error
1614 * @dev: The device for which the dma_addr was created
1615 * @dma_addr: The DMA address to check
1616 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)1617 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1618 {
1619 if (dev->dma_ops)
1620 return dev->dma_ops->mapping_error(dev, dma_addr);
1621 return dma_mapping_error(dev->dma_device, dma_addr);
1622 }
1623
1624 /**
1625 * ib_dma_map_single - Map a kernel virtual address to DMA address
1626 * @dev: The device for which the dma_addr is to be created
1627 * @cpu_addr: The kernel virtual address
1628 * @size: The size of the region in bytes
1629 * @direction: The direction of the DMA
1630 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)1631 static inline u64 ib_dma_map_single(struct ib_device *dev,
1632 void *cpu_addr, size_t size,
1633 enum dma_data_direction direction)
1634 {
1635 if (dev->dma_ops)
1636 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1637 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1638 }
1639
1640 /**
1641 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1642 * @dev: The device for which the DMA address was created
1643 * @addr: The DMA address
1644 * @size: The size of the region in bytes
1645 * @direction: The direction of the DMA
1646 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1647 static inline void ib_dma_unmap_single(struct ib_device *dev,
1648 u64 addr, size_t size,
1649 enum dma_data_direction direction)
1650 {
1651 if (dev->dma_ops)
1652 dev->dma_ops->unmap_single(dev, addr, size, direction);
1653 else
1654 dma_unmap_single(dev->dma_device, addr, size, direction);
1655 }
1656
ib_dma_map_single_attrs(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1657 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1658 void *cpu_addr, size_t size,
1659 enum dma_data_direction direction,
1660 struct dma_attrs *attrs)
1661 {
1662 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1663 direction, attrs);
1664 }
1665
ib_dma_unmap_single_attrs(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1666 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1667 u64 addr, size_t size,
1668 enum dma_data_direction direction,
1669 struct dma_attrs *attrs)
1670 {
1671 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1672 direction, attrs);
1673 }
1674
1675 /**
1676 * ib_dma_map_page - Map a physical page to DMA address
1677 * @dev: The device for which the dma_addr is to be created
1678 * @page: The page to be mapped
1679 * @offset: The offset within the page
1680 * @size: The size of the region in bytes
1681 * @direction: The direction of the DMA
1682 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)1683 static inline u64 ib_dma_map_page(struct ib_device *dev,
1684 struct page *page,
1685 unsigned long offset,
1686 size_t size,
1687 enum dma_data_direction direction)
1688 {
1689 if (dev->dma_ops)
1690 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1691 return dma_map_page(dev->dma_device, page, offset, size, direction);
1692 }
1693
1694 /**
1695 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1696 * @dev: The device for which the DMA address was created
1697 * @addr: The DMA address
1698 * @size: The size of the region in bytes
1699 * @direction: The direction of the DMA
1700 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1701 static inline void ib_dma_unmap_page(struct ib_device *dev,
1702 u64 addr, size_t size,
1703 enum dma_data_direction direction)
1704 {
1705 if (dev->dma_ops)
1706 dev->dma_ops->unmap_page(dev, addr, size, direction);
1707 else
1708 dma_unmap_page(dev->dma_device, addr, size, direction);
1709 }
1710
1711 /**
1712 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1713 * @dev: The device for which the DMA addresses are to be created
1714 * @sg: The array of scatter/gather entries
1715 * @nents: The number of scatter/gather entries
1716 * @direction: The direction of the DMA
1717 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1718 static inline int ib_dma_map_sg(struct ib_device *dev,
1719 struct scatterlist *sg, int nents,
1720 enum dma_data_direction direction)
1721 {
1722 if (dev->dma_ops)
1723 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1724 return dma_map_sg(dev->dma_device, sg, nents, direction);
1725 }
1726
1727 /**
1728 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1729 * @dev: The device for which the DMA addresses were created
1730 * @sg: The array of scatter/gather entries
1731 * @nents: The number of scatter/gather entries
1732 * @direction: The direction of the DMA
1733 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1734 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1735 struct scatterlist *sg, int nents,
1736 enum dma_data_direction direction)
1737 {
1738 if (dev->dma_ops)
1739 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1740 else
1741 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1742 }
1743
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1744 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1745 struct scatterlist *sg, int nents,
1746 enum dma_data_direction direction,
1747 struct dma_attrs *attrs)
1748 {
1749 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1750 }
1751
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1752 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1753 struct scatterlist *sg, int nents,
1754 enum dma_data_direction direction,
1755 struct dma_attrs *attrs)
1756 {
1757 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1758 }
1759 /**
1760 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1761 * @dev: The device for which the DMA addresses were created
1762 * @sg: The scatter/gather entry
1763 */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)1764 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1765 struct scatterlist *sg)
1766 {
1767 if (dev->dma_ops)
1768 return dev->dma_ops->dma_address(dev, sg);
1769 return sg_dma_address(sg);
1770 }
1771
1772 /**
1773 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1774 * @dev: The device for which the DMA addresses were created
1775 * @sg: The scatter/gather entry
1776 */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)1777 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1778 struct scatterlist *sg)
1779 {
1780 if (dev->dma_ops)
1781 return dev->dma_ops->dma_len(dev, sg);
1782 return sg_dma_len(sg);
1783 }
1784
1785 /**
1786 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1787 * @dev: The device for which the DMA address was created
1788 * @addr: The DMA address
1789 * @size: The size of the region in bytes
1790 * @dir: The direction of the DMA
1791 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1792 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1793 u64 addr,
1794 size_t size,
1795 enum dma_data_direction dir)
1796 {
1797 if (dev->dma_ops)
1798 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1799 else
1800 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1801 }
1802
1803 /**
1804 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1805 * @dev: The device for which the DMA address was created
1806 * @addr: The DMA address
1807 * @size: The size of the region in bytes
1808 * @dir: The direction of the DMA
1809 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1810 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1811 u64 addr,
1812 size_t size,
1813 enum dma_data_direction dir)
1814 {
1815 if (dev->dma_ops)
1816 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1817 else
1818 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1819 }
1820
1821 /**
1822 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1823 * @dev: The device for which the DMA address is requested
1824 * @size: The size of the region to allocate in bytes
1825 * @dma_handle: A pointer for returning the DMA address of the region
1826 * @flag: memory allocator flags
1827 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,u64 * dma_handle,gfp_t flag)1828 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1829 size_t size,
1830 u64 *dma_handle,
1831 gfp_t flag)
1832 {
1833 if (dev->dma_ops)
1834 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1835 else {
1836 dma_addr_t handle;
1837 void *ret;
1838
1839 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1840 *dma_handle = handle;
1841 return ret;
1842 }
1843 }
1844
1845 /**
1846 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1847 * @dev: The device for which the DMA addresses were allocated
1848 * @size: The size of the region
1849 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1850 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1851 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,u64 dma_handle)1852 static inline void ib_dma_free_coherent(struct ib_device *dev,
1853 size_t size, void *cpu_addr,
1854 u64 dma_handle)
1855 {
1856 if (dev->dma_ops)
1857 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1858 else
1859 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1860 }
1861
1862 /**
1863 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1864 * by an HCA.
1865 * @pd: The protection domain associated assigned to the registered region.
1866 * @phys_buf_array: Specifies a list of physical buffers to use in the
1867 * memory region.
1868 * @num_phys_buf: Specifies the size of the phys_buf_array.
1869 * @mr_access_flags: Specifies the memory access rights.
1870 * @iova_start: The offset of the region's starting I/O virtual address.
1871 */
1872 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1873 struct ib_phys_buf *phys_buf_array,
1874 int num_phys_buf,
1875 int mr_access_flags,
1876 u64 *iova_start);
1877
1878 /**
1879 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1880 * Conceptually, this call performs the functions deregister memory region
1881 * followed by register physical memory region. Where possible,
1882 * resources are reused instead of deallocated and reallocated.
1883 * @mr: The memory region to modify.
1884 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1885 * properties of the memory region are being modified.
1886 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1887 * the new protection domain to associated with the memory region,
1888 * otherwise, this parameter is ignored.
1889 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1890 * field specifies a list of physical buffers to use in the new
1891 * translation, otherwise, this parameter is ignored.
1892 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1893 * field specifies the size of the phys_buf_array, otherwise, this
1894 * parameter is ignored.
1895 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1896 * field specifies the new memory access rights, otherwise, this
1897 * parameter is ignored.
1898 * @iova_start: The offset of the region's starting I/O virtual address.
1899 */
1900 int ib_rereg_phys_mr(struct ib_mr *mr,
1901 int mr_rereg_mask,
1902 struct ib_pd *pd,
1903 struct ib_phys_buf *phys_buf_array,
1904 int num_phys_buf,
1905 int mr_access_flags,
1906 u64 *iova_start);
1907
1908 /**
1909 * ib_query_mr - Retrieves information about a specific memory region.
1910 * @mr: The memory region to retrieve information about.
1911 * @mr_attr: The attributes of the specified memory region.
1912 */
1913 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1914
1915 /**
1916 * ib_dereg_mr - Deregisters a memory region and removes it from the
1917 * HCA translation table.
1918 * @mr: The memory region to deregister.
1919 */
1920 int ib_dereg_mr(struct ib_mr *mr);
1921
1922 /**
1923 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1924 * IB_WR_FAST_REG_MR send work request.
1925 * @pd: The protection domain associated with the region.
1926 * @max_page_list_len: requested max physical buffer list length to be
1927 * used with fast register work requests for this MR.
1928 */
1929 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1930
1931 /**
1932 * ib_alloc_fast_reg_page_list - Allocates a page list array
1933 * @device - ib device pointer.
1934 * @page_list_len - size of the page list array to be allocated.
1935 *
1936 * This allocates and returns a struct ib_fast_reg_page_list * and a
1937 * page_list array that is at least page_list_len in size. The actual
1938 * size is returned in max_page_list_len. The caller is responsible
1939 * for initializing the contents of the page_list array before posting
1940 * a send work request with the IB_WC_FAST_REG_MR opcode.
1941 *
1942 * The page_list array entries must be translated using one of the
1943 * ib_dma_*() functions just like the addresses passed to
1944 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1945 * ib_fast_reg_page_list must not be modified by the caller until the
1946 * IB_WC_FAST_REG_MR work request completes.
1947 */
1948 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1949 struct ib_device *device, int page_list_len);
1950
1951 /**
1952 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1953 * page list array.
1954 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1955 */
1956 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1957
1958 /**
1959 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1960 * R_Key and L_Key.
1961 * @mr - struct ib_mr pointer to be updated.
1962 * @newkey - new key to be used.
1963 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)1964 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1965 {
1966 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1967 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1968 }
1969
1970 /**
1971 * ib_alloc_mw - Allocates a memory window.
1972 * @pd: The protection domain associated with the memory window.
1973 */
1974 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1975
1976 /**
1977 * ib_bind_mw - Posts a work request to the send queue of the specified
1978 * QP, which binds the memory window to the given address range and
1979 * remote access attributes.
1980 * @qp: QP to post the bind work request on.
1981 * @mw: The memory window to bind.
1982 * @mw_bind: Specifies information about the memory window, including
1983 * its address range, remote access rights, and associated memory region.
1984 */
ib_bind_mw(struct ib_qp * qp,struct ib_mw * mw,struct ib_mw_bind * mw_bind)1985 static inline int ib_bind_mw(struct ib_qp *qp,
1986 struct ib_mw *mw,
1987 struct ib_mw_bind *mw_bind)
1988 {
1989 /* XXX reference counting in corresponding MR? */
1990 return mw->device->bind_mw ?
1991 mw->device->bind_mw(qp, mw, mw_bind) :
1992 -ENOSYS;
1993 }
1994
1995 /**
1996 * ib_dealloc_mw - Deallocates a memory window.
1997 * @mw: The memory window to deallocate.
1998 */
1999 int ib_dealloc_mw(struct ib_mw *mw);
2000
2001 /**
2002 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2003 * @pd: The protection domain associated with the unmapped region.
2004 * @mr_access_flags: Specifies the memory access rights.
2005 * @fmr_attr: Attributes of the unmapped region.
2006 *
2007 * A fast memory region must be mapped before it can be used as part of
2008 * a work request.
2009 */
2010 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2011 int mr_access_flags,
2012 struct ib_fmr_attr *fmr_attr);
2013
2014 /**
2015 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2016 * @fmr: The fast memory region to associate with the pages.
2017 * @page_list: An array of physical pages to map to the fast memory region.
2018 * @list_len: The number of pages in page_list.
2019 * @iova: The I/O virtual address to use with the mapped region.
2020 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)2021 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2022 u64 *page_list, int list_len,
2023 u64 iova)
2024 {
2025 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2026 }
2027
2028 /**
2029 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2030 * @fmr_list: A linked list of fast memory regions to unmap.
2031 */
2032 int ib_unmap_fmr(struct list_head *fmr_list);
2033
2034 /**
2035 * ib_dealloc_fmr - Deallocates a fast memory region.
2036 * @fmr: The fast memory region to deallocate.
2037 */
2038 int ib_dealloc_fmr(struct ib_fmr *fmr);
2039
2040 /**
2041 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2042 * @qp: QP to attach to the multicast group. The QP must be type
2043 * IB_QPT_UD.
2044 * @gid: Multicast group GID.
2045 * @lid: Multicast group LID in host byte order.
2046 *
2047 * In order to send and receive multicast packets, subnet
2048 * administration must have created the multicast group and configured
2049 * the fabric appropriately. The port associated with the specified
2050 * QP must also be a member of the multicast group.
2051 */
2052 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2053
2054 /**
2055 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2056 * @qp: QP to detach from the multicast group.
2057 * @gid: Multicast group GID.
2058 * @lid: Multicast group LID in host byte order.
2059 */
2060 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2061
2062 #endif /* IB_VERBS_H */
2063