1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 static struct ext4_lazy_init *ext4_li_info;
58 static struct mutex ext4_li_mtx;
59 static struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82
83 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
84 static struct file_system_type ext3_fs_type = {
85 .owner = THIS_MODULE,
86 .name = "ext3",
87 .mount = ext4_mount,
88 .kill_sb = kill_block_super,
89 .fs_flags = FS_REQUIRES_DEV,
90 };
91 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
92 #else
93 #define IS_EXT3_SB(sb) (0)
94 #endif
95
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)96 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
97 struct ext4_group_desc *bg)
98 {
99 return le32_to_cpu(bg->bg_block_bitmap_lo) |
100 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
101 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
102 }
103
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)104 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
105 struct ext4_group_desc *bg)
106 {
107 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
108 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
109 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
110 }
111
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)112 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
113 struct ext4_group_desc *bg)
114 {
115 return le32_to_cpu(bg->bg_inode_table_lo) |
116 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
117 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
118 }
119
ext4_free_blks_count(struct super_block * sb,struct ext4_group_desc * bg)120 __u32 ext4_free_blks_count(struct super_block *sb,
121 struct ext4_group_desc *bg)
122 {
123 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
124 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
125 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
126 }
127
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)128 __u32 ext4_free_inodes_count(struct super_block *sb,
129 struct ext4_group_desc *bg)
130 {
131 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
132 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
133 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
134 }
135
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)136 __u32 ext4_used_dirs_count(struct super_block *sb,
137 struct ext4_group_desc *bg)
138 {
139 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
140 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
141 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
142 }
143
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)144 __u32 ext4_itable_unused_count(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le16_to_cpu(bg->bg_itable_unused_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
150 }
151
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)152 void ext4_block_bitmap_set(struct super_block *sb,
153 struct ext4_group_desc *bg, ext4_fsblk_t blk)
154 {
155 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
156 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
157 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
158 }
159
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)160 void ext4_inode_bitmap_set(struct super_block *sb,
161 struct ext4_group_desc *bg, ext4_fsblk_t blk)
162 {
163 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
164 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
165 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
166 }
167
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)168 void ext4_inode_table_set(struct super_block *sb,
169 struct ext4_group_desc *bg, ext4_fsblk_t blk)
170 {
171 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
172 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
173 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
174 }
175
ext4_free_blks_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)176 void ext4_free_blks_set(struct super_block *sb,
177 struct ext4_group_desc *bg, __u32 count)
178 {
179 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
180 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
181 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
182 }
183
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)184 void ext4_free_inodes_set(struct super_block *sb,
185 struct ext4_group_desc *bg, __u32 count)
186 {
187 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
188 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
189 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
190 }
191
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)192 void ext4_used_dirs_set(struct super_block *sb,
193 struct ext4_group_desc *bg, __u32 count)
194 {
195 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
196 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
197 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
198 }
199
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)200 void ext4_itable_unused_set(struct super_block *sb,
201 struct ext4_group_desc *bg, __u32 count)
202 {
203 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
206 }
207
208
209 /* Just increment the non-pointer handle value */
ext4_get_nojournal(void)210 static handle_t *ext4_get_nojournal(void)
211 {
212 handle_t *handle = current->journal_info;
213 unsigned long ref_cnt = (unsigned long)handle;
214
215 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
216
217 ref_cnt++;
218 handle = (handle_t *)ref_cnt;
219
220 current->journal_info = handle;
221 return handle;
222 }
223
224
225 /* Decrement the non-pointer handle value */
ext4_put_nojournal(handle_t * handle)226 static void ext4_put_nojournal(handle_t *handle)
227 {
228 unsigned long ref_cnt = (unsigned long)handle;
229
230 BUG_ON(ref_cnt == 0);
231
232 ref_cnt--;
233 handle = (handle_t *)ref_cnt;
234
235 current->journal_info = handle;
236 }
237
238 /*
239 * Wrappers for jbd2_journal_start/end.
240 *
241 * The only special thing we need to do here is to make sure that all
242 * journal_end calls result in the superblock being marked dirty, so
243 * that sync() will call the filesystem's write_super callback if
244 * appropriate.
245 *
246 * To avoid j_barrier hold in userspace when a user calls freeze(),
247 * ext4 prevents a new handle from being started by s_frozen, which
248 * is in an upper layer.
249 */
ext4_journal_start_sb(struct super_block * sb,int nblocks)250 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
251 {
252 journal_t *journal;
253 handle_t *handle;
254
255 if (sb->s_flags & MS_RDONLY)
256 return ERR_PTR(-EROFS);
257
258 journal = EXT4_SB(sb)->s_journal;
259 handle = ext4_journal_current_handle();
260
261 /*
262 * If a handle has been started, it should be allowed to
263 * finish, otherwise deadlock could happen between freeze
264 * and others(e.g. truncate) due to the restart of the
265 * journal handle if the filesystem is forzen and active
266 * handles are not stopped.
267 */
268 if (!handle)
269 vfs_check_frozen(sb, SB_FREEZE_TRANS);
270
271 if (!journal)
272 return ext4_get_nojournal();
273 /*
274 * Special case here: if the journal has aborted behind our
275 * backs (eg. EIO in the commit thread), then we still need to
276 * take the FS itself readonly cleanly.
277 */
278 if (is_journal_aborted(journal)) {
279 ext4_abort(sb, "Detected aborted journal");
280 return ERR_PTR(-EROFS);
281 }
282 return jbd2_journal_start(journal, nblocks);
283 }
284
285 /*
286 * The only special thing we need to do here is to make sure that all
287 * jbd2_journal_stop calls result in the superblock being marked dirty, so
288 * that sync() will call the filesystem's write_super callback if
289 * appropriate.
290 */
__ext4_journal_stop(const char * where,unsigned int line,handle_t * handle)291 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
292 {
293 struct super_block *sb;
294 int err;
295 int rc;
296
297 if (!ext4_handle_valid(handle)) {
298 ext4_put_nojournal(handle);
299 return 0;
300 }
301 sb = handle->h_transaction->t_journal->j_private;
302 err = handle->h_err;
303 rc = jbd2_journal_stop(handle);
304
305 if (!err)
306 err = rc;
307 if (err)
308 __ext4_std_error(sb, where, line, err);
309 return err;
310 }
311
ext4_journal_abort_handle(const char * caller,unsigned int line,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)312 void ext4_journal_abort_handle(const char *caller, unsigned int line,
313 const char *err_fn, struct buffer_head *bh,
314 handle_t *handle, int err)
315 {
316 char nbuf[16];
317 const char *errstr = ext4_decode_error(NULL, err, nbuf);
318
319 BUG_ON(!ext4_handle_valid(handle));
320
321 if (bh)
322 BUFFER_TRACE(bh, "abort");
323
324 if (!handle->h_err)
325 handle->h_err = err;
326
327 if (is_handle_aborted(handle))
328 return;
329
330 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
331 caller, line, errstr, err_fn);
332
333 jbd2_journal_abort_handle(handle);
334 }
335
__save_error_info(struct super_block * sb,const char * func,unsigned int line)336 static void __save_error_info(struct super_block *sb, const char *func,
337 unsigned int line)
338 {
339 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
340
341 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 es->s_last_error_time = cpu_to_le32(get_seconds());
344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 es->s_last_error_line = cpu_to_le32(line);
346 if (!es->s_first_error_time) {
347 es->s_first_error_time = es->s_last_error_time;
348 strncpy(es->s_first_error_func, func,
349 sizeof(es->s_first_error_func));
350 es->s_first_error_line = cpu_to_le32(line);
351 es->s_first_error_ino = es->s_last_error_ino;
352 es->s_first_error_block = es->s_last_error_block;
353 }
354 /*
355 * Start the daily error reporting function if it hasn't been
356 * started already
357 */
358 if (!es->s_error_count)
359 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
360 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
361 }
362
save_error_info(struct super_block * sb,const char * func,unsigned int line)363 static void save_error_info(struct super_block *sb, const char *func,
364 unsigned int line)
365 {
366 __save_error_info(sb, func, line);
367 ext4_commit_super(sb, 1);
368 }
369
370
371 /* Deal with the reporting of failure conditions on a filesystem such as
372 * inconsistencies detected or read IO failures.
373 *
374 * On ext2, we can store the error state of the filesystem in the
375 * superblock. That is not possible on ext4, because we may have other
376 * write ordering constraints on the superblock which prevent us from
377 * writing it out straight away; and given that the journal is about to
378 * be aborted, we can't rely on the current, or future, transactions to
379 * write out the superblock safely.
380 *
381 * We'll just use the jbd2_journal_abort() error code to record an error in
382 * the journal instead. On recovery, the journal will complain about
383 * that error until we've noted it down and cleared it.
384 */
385
ext4_handle_error(struct super_block * sb)386 static void ext4_handle_error(struct super_block *sb)
387 {
388 if (sb->s_flags & MS_RDONLY)
389 return;
390
391 if (!test_opt(sb, ERRORS_CONT)) {
392 journal_t *journal = EXT4_SB(sb)->s_journal;
393
394 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
395 if (journal)
396 jbd2_journal_abort(journal, -EIO);
397 }
398 if (test_opt(sb, ERRORS_RO)) {
399 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
400 sb->s_flags |= MS_RDONLY;
401 }
402 if (test_opt(sb, ERRORS_PANIC))
403 panic("EXT4-fs (device %s): panic forced after error\n",
404 sb->s_id);
405 }
406
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)407 void __ext4_error(struct super_block *sb, const char *function,
408 unsigned int line, const char *fmt, ...)
409 {
410 struct va_format vaf;
411 va_list args;
412
413 va_start(args, fmt);
414 vaf.fmt = fmt;
415 vaf.va = &args;
416 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
417 sb->s_id, function, line, current->comm, &vaf);
418 va_end(args);
419
420 ext4_handle_error(sb);
421 }
422
ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)423 void ext4_error_inode(struct inode *inode, const char *function,
424 unsigned int line, ext4_fsblk_t block,
425 const char *fmt, ...)
426 {
427 va_list args;
428 struct va_format vaf;
429 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
430
431 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
432 es->s_last_error_block = cpu_to_le64(block);
433 save_error_info(inode->i_sb, function, line);
434 va_start(args, fmt);
435 vaf.fmt = fmt;
436 vaf.va = &args;
437 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
438 inode->i_sb->s_id, function, line, inode->i_ino);
439 if (block)
440 printk(KERN_CONT "block %llu: ", block);
441 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
442 va_end(args);
443
444 ext4_handle_error(inode->i_sb);
445 }
446
ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)447 void ext4_error_file(struct file *file, const char *function,
448 unsigned int line, ext4_fsblk_t block,
449 const char *fmt, ...)
450 {
451 va_list args;
452 struct va_format vaf;
453 struct ext4_super_block *es;
454 struct inode *inode = file->f_dentry->d_inode;
455 char pathname[80], *path;
456
457 es = EXT4_SB(inode->i_sb)->s_es;
458 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
459 save_error_info(inode->i_sb, function, line);
460 path = d_path(&(file->f_path), pathname, sizeof(pathname));
461 if (IS_ERR(path))
462 path = "(unknown)";
463 printk(KERN_CRIT
464 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
465 inode->i_sb->s_id, function, line, inode->i_ino);
466 if (block)
467 printk(KERN_CONT "block %llu: ", block);
468 va_start(args, fmt);
469 vaf.fmt = fmt;
470 vaf.va = &args;
471 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
472 va_end(args);
473
474 ext4_handle_error(inode->i_sb);
475 }
476
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])477 static const char *ext4_decode_error(struct super_block *sb, int errno,
478 char nbuf[16])
479 {
480 char *errstr = NULL;
481
482 switch (errno) {
483 case -EIO:
484 errstr = "IO failure";
485 break;
486 case -ENOMEM:
487 errstr = "Out of memory";
488 break;
489 case -EROFS:
490 if (!sb || (EXT4_SB(sb)->s_journal &&
491 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
492 errstr = "Journal has aborted";
493 else
494 errstr = "Readonly filesystem";
495 break;
496 default:
497 /* If the caller passed in an extra buffer for unknown
498 * errors, textualise them now. Else we just return
499 * NULL. */
500 if (nbuf) {
501 /* Check for truncated error codes... */
502 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
503 errstr = nbuf;
504 }
505 break;
506 }
507
508 return errstr;
509 }
510
511 /* __ext4_std_error decodes expected errors from journaling functions
512 * automatically and invokes the appropriate error response. */
513
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)514 void __ext4_std_error(struct super_block *sb, const char *function,
515 unsigned int line, int errno)
516 {
517 char nbuf[16];
518 const char *errstr;
519
520 /* Special case: if the error is EROFS, and we're not already
521 * inside a transaction, then there's really no point in logging
522 * an error. */
523 if (errno == -EROFS && journal_current_handle() == NULL &&
524 (sb->s_flags & MS_RDONLY))
525 return;
526
527 errstr = ext4_decode_error(sb, errno, nbuf);
528 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
529 sb->s_id, function, line, errstr);
530 save_error_info(sb, function, line);
531
532 ext4_handle_error(sb);
533 }
534
535 /*
536 * ext4_abort is a much stronger failure handler than ext4_error. The
537 * abort function may be used to deal with unrecoverable failures such
538 * as journal IO errors or ENOMEM at a critical moment in log management.
539 *
540 * We unconditionally force the filesystem into an ABORT|READONLY state,
541 * unless the error response on the fs has been set to panic in which
542 * case we take the easy way out and panic immediately.
543 */
544
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)545 void __ext4_abort(struct super_block *sb, const char *function,
546 unsigned int line, const char *fmt, ...)
547 {
548 va_list args;
549
550 save_error_info(sb, function, line);
551 va_start(args, fmt);
552 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
553 function, line);
554 vprintk(fmt, args);
555 printk("\n");
556 va_end(args);
557
558 if ((sb->s_flags & MS_RDONLY) == 0) {
559 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
560 sb->s_flags |= MS_RDONLY;
561 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
562 if (EXT4_SB(sb)->s_journal)
563 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
564 save_error_info(sb, function, line);
565 }
566 if (test_opt(sb, ERRORS_PANIC))
567 panic("EXT4-fs panic from previous error\n");
568 }
569
ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)570 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
571 {
572 struct va_format vaf;
573 va_list args;
574
575 va_start(args, fmt);
576 vaf.fmt = fmt;
577 vaf.va = &args;
578 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
579 va_end(args);
580 }
581
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)582 void __ext4_warning(struct super_block *sb, const char *function,
583 unsigned int line, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
592 sb->s_id, function, line, &vaf);
593 va_end(args);
594 }
595
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)596 void __ext4_grp_locked_error(const char *function, unsigned int line,
597 struct super_block *sb, ext4_group_t grp,
598 unsigned long ino, ext4_fsblk_t block,
599 const char *fmt, ...)
600 __releases(bitlock)
601 __acquires(bitlock)
602 {
603 struct va_format vaf;
604 va_list args;
605 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
606
607 es->s_last_error_ino = cpu_to_le32(ino);
608 es->s_last_error_block = cpu_to_le64(block);
609 __save_error_info(sb, function, line);
610
611 va_start(args, fmt);
612
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
616 sb->s_id, function, line, grp);
617 if (ino)
618 printk(KERN_CONT "inode %lu: ", ino);
619 if (block)
620 printk(KERN_CONT "block %llu:", (unsigned long long) block);
621 printk(KERN_CONT "%pV\n", &vaf);
622 va_end(args);
623
624 if (test_opt(sb, ERRORS_CONT)) {
625 ext4_commit_super(sb, 0);
626 return;
627 }
628
629 ext4_unlock_group(sb, grp);
630 ext4_handle_error(sb);
631 /*
632 * We only get here in the ERRORS_RO case; relocking the group
633 * may be dangerous, but nothing bad will happen since the
634 * filesystem will have already been marked read/only and the
635 * journal has been aborted. We return 1 as a hint to callers
636 * who might what to use the return value from
637 * ext4_grp_locked_error() to distinguish between the
638 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
639 * aggressively from the ext4 function in question, with a
640 * more appropriate error code.
641 */
642 ext4_lock_group(sb, grp);
643 return;
644 }
645
ext4_update_dynamic_rev(struct super_block * sb)646 void ext4_update_dynamic_rev(struct super_block *sb)
647 {
648 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649
650 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
651 return;
652
653 ext4_warning(sb,
654 "updating to rev %d because of new feature flag, "
655 "running e2fsck is recommended",
656 EXT4_DYNAMIC_REV);
657
658 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
659 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
660 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
661 /* leave es->s_feature_*compat flags alone */
662 /* es->s_uuid will be set by e2fsck if empty */
663
664 /*
665 * The rest of the superblock fields should be zero, and if not it
666 * means they are likely already in use, so leave them alone. We
667 * can leave it up to e2fsck to clean up any inconsistencies there.
668 */
669 }
670
671 /*
672 * Open the external journal device
673 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)674 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
675 {
676 struct block_device *bdev;
677 char b[BDEVNAME_SIZE];
678
679 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
680 if (IS_ERR(bdev))
681 goto fail;
682 return bdev;
683
684 fail:
685 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
686 __bdevname(dev, b), PTR_ERR(bdev));
687 return NULL;
688 }
689
690 /*
691 * Release the journal device
692 */
ext4_blkdev_put(struct block_device * bdev)693 static int ext4_blkdev_put(struct block_device *bdev)
694 {
695 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
696 }
697
ext4_blkdev_remove(struct ext4_sb_info * sbi)698 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
699 {
700 struct block_device *bdev;
701 int ret = -ENODEV;
702
703 bdev = sbi->journal_bdev;
704 if (bdev) {
705 ret = ext4_blkdev_put(bdev);
706 sbi->journal_bdev = NULL;
707 }
708 return ret;
709 }
710
orphan_list_entry(struct list_head * l)711 static inline struct inode *orphan_list_entry(struct list_head *l)
712 {
713 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
714 }
715
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)716 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
717 {
718 struct list_head *l;
719
720 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
721 le32_to_cpu(sbi->s_es->s_last_orphan));
722
723 printk(KERN_ERR "sb_info orphan list:\n");
724 list_for_each(l, &sbi->s_orphan) {
725 struct inode *inode = orphan_list_entry(l);
726 printk(KERN_ERR " "
727 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
728 inode->i_sb->s_id, inode->i_ino, inode,
729 inode->i_mode, inode->i_nlink,
730 NEXT_ORPHAN(inode));
731 }
732 }
733
ext4_put_super(struct super_block * sb)734 static void ext4_put_super(struct super_block *sb)
735 {
736 struct ext4_sb_info *sbi = EXT4_SB(sb);
737 struct ext4_super_block *es = sbi->s_es;
738 int i, err;
739
740 ext4_unregister_li_request(sb);
741 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
742
743 flush_workqueue(sbi->dio_unwritten_wq);
744 destroy_workqueue(sbi->dio_unwritten_wq);
745
746 lock_super(sb);
747 if (sb->s_dirt)
748 ext4_commit_super(sb, 1);
749
750 if (sbi->s_journal) {
751 err = jbd2_journal_destroy(sbi->s_journal);
752 sbi->s_journal = NULL;
753 if (err < 0)
754 ext4_abort(sb, "Couldn't clean up the journal");
755 }
756
757 del_timer(&sbi->s_err_report);
758 ext4_release_system_zone(sb);
759 ext4_mb_release(sb);
760 ext4_ext_release(sb);
761 ext4_xattr_put_super(sb);
762
763 if (!(sb->s_flags & MS_RDONLY)) {
764 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
765 es->s_state = cpu_to_le16(sbi->s_mount_state);
766 ext4_commit_super(sb, 1);
767 }
768 if (sbi->s_proc) {
769 remove_proc_entry(sb->s_id, ext4_proc_root);
770 }
771 kobject_del(&sbi->s_kobj);
772
773 for (i = 0; i < sbi->s_gdb_count; i++)
774 brelse(sbi->s_group_desc[i]);
775 kfree(sbi->s_group_desc);
776 if (is_vmalloc_addr(sbi->s_flex_groups))
777 vfree(sbi->s_flex_groups);
778 else
779 kfree(sbi->s_flex_groups);
780 percpu_counter_destroy(&sbi->s_freeblocks_counter);
781 percpu_counter_destroy(&sbi->s_freeinodes_counter);
782 percpu_counter_destroy(&sbi->s_dirs_counter);
783 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
784 brelse(sbi->s_sbh);
785 #ifdef CONFIG_QUOTA
786 for (i = 0; i < MAXQUOTAS; i++)
787 kfree(sbi->s_qf_names[i]);
788 #endif
789
790 /* Debugging code just in case the in-memory inode orphan list
791 * isn't empty. The on-disk one can be non-empty if we've
792 * detected an error and taken the fs readonly, but the
793 * in-memory list had better be clean by this point. */
794 if (!list_empty(&sbi->s_orphan))
795 dump_orphan_list(sb, sbi);
796 J_ASSERT(list_empty(&sbi->s_orphan));
797
798 invalidate_bdev(sb->s_bdev);
799 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
800 /*
801 * Invalidate the journal device's buffers. We don't want them
802 * floating about in memory - the physical journal device may
803 * hotswapped, and it breaks the `ro-after' testing code.
804 */
805 sync_blockdev(sbi->journal_bdev);
806 invalidate_bdev(sbi->journal_bdev);
807 ext4_blkdev_remove(sbi);
808 }
809 sb->s_fs_info = NULL;
810 /*
811 * Now that we are completely done shutting down the
812 * superblock, we need to actually destroy the kobject.
813 */
814 unlock_super(sb);
815 kobject_put(&sbi->s_kobj);
816 wait_for_completion(&sbi->s_kobj_unregister);
817 kfree(sbi->s_blockgroup_lock);
818 kfree(sbi);
819 }
820
821 static struct kmem_cache *ext4_inode_cachep;
822
823 /*
824 * Called inside transaction, so use GFP_NOFS
825 */
ext4_alloc_inode(struct super_block * sb)826 static struct inode *ext4_alloc_inode(struct super_block *sb)
827 {
828 struct ext4_inode_info *ei;
829
830 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
831 if (!ei)
832 return NULL;
833
834 ei->vfs_inode.i_version = 1;
835 ei->vfs_inode.i_data.writeback_index = 0;
836 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
837 INIT_LIST_HEAD(&ei->i_prealloc_list);
838 spin_lock_init(&ei->i_prealloc_lock);
839 ei->i_reserved_data_blocks = 0;
840 ei->i_reserved_meta_blocks = 0;
841 ei->i_allocated_meta_blocks = 0;
842 ei->i_da_metadata_calc_len = 0;
843 spin_lock_init(&(ei->i_block_reservation_lock));
844 #ifdef CONFIG_QUOTA
845 ei->i_reserved_quota = 0;
846 #endif
847 ei->jinode = NULL;
848 INIT_LIST_HEAD(&ei->i_completed_io_list);
849 spin_lock_init(&ei->i_completed_io_lock);
850 ei->cur_aio_dio = NULL;
851 ei->i_sync_tid = 0;
852 ei->i_datasync_tid = 0;
853 atomic_set(&ei->i_ioend_count, 0);
854 atomic_set(&ei->i_aiodio_unwritten, 0);
855
856 return &ei->vfs_inode;
857 }
858
ext4_drop_inode(struct inode * inode)859 static int ext4_drop_inode(struct inode *inode)
860 {
861 int drop = generic_drop_inode(inode);
862
863 trace_ext4_drop_inode(inode, drop);
864 return drop;
865 }
866
ext4_i_callback(struct rcu_head * head)867 static void ext4_i_callback(struct rcu_head *head)
868 {
869 struct inode *inode = container_of(head, struct inode, i_rcu);
870 INIT_LIST_HEAD(&inode->i_dentry);
871 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
872 }
873
ext4_destroy_inode(struct inode * inode)874 static void ext4_destroy_inode(struct inode *inode)
875 {
876 ext4_ioend_wait(inode);
877 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
878 ext4_msg(inode->i_sb, KERN_ERR,
879 "Inode %lu (%p): orphan list check failed!",
880 inode->i_ino, EXT4_I(inode));
881 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
882 EXT4_I(inode), sizeof(struct ext4_inode_info),
883 true);
884 dump_stack();
885 }
886 call_rcu(&inode->i_rcu, ext4_i_callback);
887 }
888
init_once(void * foo)889 static void init_once(void *foo)
890 {
891 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
892
893 INIT_LIST_HEAD(&ei->i_orphan);
894 #ifdef CONFIG_EXT4_FS_XATTR
895 init_rwsem(&ei->xattr_sem);
896 #endif
897 init_rwsem(&ei->i_data_sem);
898 inode_init_once(&ei->vfs_inode);
899 }
900
init_inodecache(void)901 static int init_inodecache(void)
902 {
903 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
904 sizeof(struct ext4_inode_info),
905 0, (SLAB_RECLAIM_ACCOUNT|
906 SLAB_MEM_SPREAD),
907 init_once);
908 if (ext4_inode_cachep == NULL)
909 return -ENOMEM;
910 return 0;
911 }
912
destroy_inodecache(void)913 static void destroy_inodecache(void)
914 {
915 kmem_cache_destroy(ext4_inode_cachep);
916 }
917
ext4_clear_inode(struct inode * inode)918 void ext4_clear_inode(struct inode *inode)
919 {
920 invalidate_inode_buffers(inode);
921 end_writeback(inode);
922 dquot_drop(inode);
923 ext4_discard_preallocations(inode);
924 if (EXT4_I(inode)->jinode) {
925 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
926 EXT4_I(inode)->jinode);
927 jbd2_free_inode(EXT4_I(inode)->jinode);
928 EXT4_I(inode)->jinode = NULL;
929 }
930 }
931
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)932 static inline void ext4_show_quota_options(struct seq_file *seq,
933 struct super_block *sb)
934 {
935 #if defined(CONFIG_QUOTA)
936 struct ext4_sb_info *sbi = EXT4_SB(sb);
937
938 if (sbi->s_jquota_fmt) {
939 char *fmtname = "";
940
941 switch (sbi->s_jquota_fmt) {
942 case QFMT_VFS_OLD:
943 fmtname = "vfsold";
944 break;
945 case QFMT_VFS_V0:
946 fmtname = "vfsv0";
947 break;
948 case QFMT_VFS_V1:
949 fmtname = "vfsv1";
950 break;
951 }
952 seq_printf(seq, ",jqfmt=%s", fmtname);
953 }
954
955 if (sbi->s_qf_names[USRQUOTA])
956 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
957
958 if (sbi->s_qf_names[GRPQUOTA])
959 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
960
961 if (test_opt(sb, USRQUOTA))
962 seq_puts(seq, ",usrquota");
963
964 if (test_opt(sb, GRPQUOTA))
965 seq_puts(seq, ",grpquota");
966 #endif
967 }
968
969 /*
970 * Show an option if
971 * - it's set to a non-default value OR
972 * - if the per-sb default is different from the global default
973 */
ext4_show_options(struct seq_file * seq,struct vfsmount * vfs)974 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
975 {
976 int def_errors;
977 unsigned long def_mount_opts;
978 struct super_block *sb = vfs->mnt_sb;
979 struct ext4_sb_info *sbi = EXT4_SB(sb);
980 struct ext4_super_block *es = sbi->s_es;
981
982 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
983 def_errors = le16_to_cpu(es->s_errors);
984
985 if (sbi->s_sb_block != 1)
986 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
987 if (test_opt(sb, MINIX_DF))
988 seq_puts(seq, ",minixdf");
989 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
990 seq_puts(seq, ",grpid");
991 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
992 seq_puts(seq, ",nogrpid");
993 if (sbi->s_resuid != EXT4_DEF_RESUID ||
994 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
995 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
996 }
997 if (sbi->s_resgid != EXT4_DEF_RESGID ||
998 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
999 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1000 }
1001 if (test_opt(sb, ERRORS_RO)) {
1002 if (def_errors == EXT4_ERRORS_PANIC ||
1003 def_errors == EXT4_ERRORS_CONTINUE) {
1004 seq_puts(seq, ",errors=remount-ro");
1005 }
1006 }
1007 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1008 seq_puts(seq, ",errors=continue");
1009 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1010 seq_puts(seq, ",errors=panic");
1011 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1012 seq_puts(seq, ",nouid32");
1013 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1014 seq_puts(seq, ",debug");
1015 if (test_opt(sb, OLDALLOC))
1016 seq_puts(seq, ",oldalloc");
1017 #ifdef CONFIG_EXT4_FS_XATTR
1018 if (test_opt(sb, XATTR_USER))
1019 seq_puts(seq, ",user_xattr");
1020 if (!test_opt(sb, XATTR_USER))
1021 seq_puts(seq, ",nouser_xattr");
1022 #endif
1023 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1024 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1025 seq_puts(seq, ",acl");
1026 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1027 seq_puts(seq, ",noacl");
1028 #endif
1029 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1030 seq_printf(seq, ",commit=%u",
1031 (unsigned) (sbi->s_commit_interval / HZ));
1032 }
1033 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1034 seq_printf(seq, ",min_batch_time=%u",
1035 (unsigned) sbi->s_min_batch_time);
1036 }
1037 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1038 seq_printf(seq, ",max_batch_time=%u",
1039 (unsigned) sbi->s_min_batch_time);
1040 }
1041
1042 /*
1043 * We're changing the default of barrier mount option, so
1044 * let's always display its mount state so it's clear what its
1045 * status is.
1046 */
1047 seq_puts(seq, ",barrier=");
1048 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1049 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1050 seq_puts(seq, ",journal_async_commit");
1051 else if (test_opt(sb, JOURNAL_CHECKSUM))
1052 seq_puts(seq, ",journal_checksum");
1053 if (test_opt(sb, I_VERSION))
1054 seq_puts(seq, ",i_version");
1055 if (!test_opt(sb, DELALLOC) &&
1056 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1057 seq_puts(seq, ",nodelalloc");
1058
1059 if (!test_opt(sb, MBLK_IO_SUBMIT))
1060 seq_puts(seq, ",nomblk_io_submit");
1061 if (sbi->s_stripe)
1062 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1063 /*
1064 * journal mode get enabled in different ways
1065 * So just print the value even if we didn't specify it
1066 */
1067 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1068 seq_puts(seq, ",data=journal");
1069 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1070 seq_puts(seq, ",data=ordered");
1071 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1072 seq_puts(seq, ",data=writeback");
1073
1074 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1075 seq_printf(seq, ",inode_readahead_blks=%u",
1076 sbi->s_inode_readahead_blks);
1077
1078 if (test_opt(sb, DATA_ERR_ABORT))
1079 seq_puts(seq, ",data_err=abort");
1080
1081 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1082 seq_puts(seq, ",noauto_da_alloc");
1083
1084 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1085 seq_puts(seq, ",discard");
1086
1087 if (test_opt(sb, NOLOAD))
1088 seq_puts(seq, ",norecovery");
1089
1090 if (test_opt(sb, DIOREAD_NOLOCK))
1091 seq_puts(seq, ",dioread_nolock");
1092
1093 if (test_opt(sb, BLOCK_VALIDITY) &&
1094 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1095 seq_puts(seq, ",block_validity");
1096
1097 if (!test_opt(sb, INIT_INODE_TABLE))
1098 seq_puts(seq, ",noinit_inode_table");
1099 else if (sbi->s_li_wait_mult)
1100 seq_printf(seq, ",init_inode_table=%u",
1101 (unsigned) sbi->s_li_wait_mult);
1102
1103 ext4_show_quota_options(seq, sb);
1104
1105 return 0;
1106 }
1107
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1108 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1109 u64 ino, u32 generation)
1110 {
1111 struct inode *inode;
1112
1113 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1114 return ERR_PTR(-ESTALE);
1115 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1116 return ERR_PTR(-ESTALE);
1117
1118 /* iget isn't really right if the inode is currently unallocated!!
1119 *
1120 * ext4_read_inode will return a bad_inode if the inode had been
1121 * deleted, so we should be safe.
1122 *
1123 * Currently we don't know the generation for parent directory, so
1124 * a generation of 0 means "accept any"
1125 */
1126 inode = ext4_iget(sb, ino);
1127 if (IS_ERR(inode))
1128 return ERR_CAST(inode);
1129 if (generation && inode->i_generation != generation) {
1130 iput(inode);
1131 return ERR_PTR(-ESTALE);
1132 }
1133
1134 return inode;
1135 }
1136
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1137 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1138 int fh_len, int fh_type)
1139 {
1140 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1141 ext4_nfs_get_inode);
1142 }
1143
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1144 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1145 int fh_len, int fh_type)
1146 {
1147 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1148 ext4_nfs_get_inode);
1149 }
1150
1151 /*
1152 * Try to release metadata pages (indirect blocks, directories) which are
1153 * mapped via the block device. Since these pages could have journal heads
1154 * which would prevent try_to_free_buffers() from freeing them, we must use
1155 * jbd2 layer's try_to_free_buffers() function to release them.
1156 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1157 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1158 gfp_t wait)
1159 {
1160 journal_t *journal = EXT4_SB(sb)->s_journal;
1161
1162 WARN_ON(PageChecked(page));
1163 if (!page_has_buffers(page))
1164 return 0;
1165 if (journal)
1166 return jbd2_journal_try_to_free_buffers(journal, page,
1167 wait & ~__GFP_WAIT);
1168 return try_to_free_buffers(page);
1169 }
1170
1171 #ifdef CONFIG_QUOTA
1172 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1173 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1174
1175 static int ext4_write_dquot(struct dquot *dquot);
1176 static int ext4_acquire_dquot(struct dquot *dquot);
1177 static int ext4_release_dquot(struct dquot *dquot);
1178 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1179 static int ext4_write_info(struct super_block *sb, int type);
1180 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1181 struct path *path);
1182 static int ext4_quota_off(struct super_block *sb, int type);
1183 static int ext4_quota_on_mount(struct super_block *sb, int type);
1184 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1185 size_t len, loff_t off);
1186 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1187 const char *data, size_t len, loff_t off);
1188
1189 static const struct dquot_operations ext4_quota_operations = {
1190 #ifdef CONFIG_QUOTA
1191 .get_reserved_space = ext4_get_reserved_space,
1192 #endif
1193 .write_dquot = ext4_write_dquot,
1194 .acquire_dquot = ext4_acquire_dquot,
1195 .release_dquot = ext4_release_dquot,
1196 .mark_dirty = ext4_mark_dquot_dirty,
1197 .write_info = ext4_write_info,
1198 .alloc_dquot = dquot_alloc,
1199 .destroy_dquot = dquot_destroy,
1200 };
1201
1202 static const struct quotactl_ops ext4_qctl_operations = {
1203 .quota_on = ext4_quota_on,
1204 .quota_off = ext4_quota_off,
1205 .quota_sync = dquot_quota_sync,
1206 .get_info = dquot_get_dqinfo,
1207 .set_info = dquot_set_dqinfo,
1208 .get_dqblk = dquot_get_dqblk,
1209 .set_dqblk = dquot_set_dqblk
1210 };
1211 #endif
1212
1213 static const struct super_operations ext4_sops = {
1214 .alloc_inode = ext4_alloc_inode,
1215 .destroy_inode = ext4_destroy_inode,
1216 .write_inode = ext4_write_inode,
1217 .dirty_inode = ext4_dirty_inode,
1218 .drop_inode = ext4_drop_inode,
1219 .evict_inode = ext4_evict_inode,
1220 .put_super = ext4_put_super,
1221 .sync_fs = ext4_sync_fs,
1222 .freeze_fs = ext4_freeze,
1223 .unfreeze_fs = ext4_unfreeze,
1224 .statfs = ext4_statfs,
1225 .remount_fs = ext4_remount,
1226 .show_options = ext4_show_options,
1227 #ifdef CONFIG_QUOTA
1228 .quota_read = ext4_quota_read,
1229 .quota_write = ext4_quota_write,
1230 #endif
1231 .bdev_try_to_free_page = bdev_try_to_free_page,
1232 };
1233
1234 static const struct super_operations ext4_nojournal_sops = {
1235 .alloc_inode = ext4_alloc_inode,
1236 .destroy_inode = ext4_destroy_inode,
1237 .write_inode = ext4_write_inode,
1238 .dirty_inode = ext4_dirty_inode,
1239 .drop_inode = ext4_drop_inode,
1240 .evict_inode = ext4_evict_inode,
1241 .write_super = ext4_write_super,
1242 .put_super = ext4_put_super,
1243 .statfs = ext4_statfs,
1244 .remount_fs = ext4_remount,
1245 .show_options = ext4_show_options,
1246 #ifdef CONFIG_QUOTA
1247 .quota_read = ext4_quota_read,
1248 .quota_write = ext4_quota_write,
1249 #endif
1250 .bdev_try_to_free_page = bdev_try_to_free_page,
1251 };
1252
1253 static const struct export_operations ext4_export_ops = {
1254 .fh_to_dentry = ext4_fh_to_dentry,
1255 .fh_to_parent = ext4_fh_to_parent,
1256 .get_parent = ext4_get_parent,
1257 };
1258
1259 enum {
1260 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1261 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1262 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1263 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1264 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1265 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1266 Opt_journal_update, Opt_journal_dev,
1267 Opt_journal_checksum, Opt_journal_async_commit,
1268 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1269 Opt_data_err_abort, Opt_data_err_ignore,
1270 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1271 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1272 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1273 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1274 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1275 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1276 Opt_inode_readahead_blks, Opt_journal_ioprio,
1277 Opt_dioread_nolock, Opt_dioread_lock,
1278 Opt_discard, Opt_nodiscard,
1279 Opt_init_inode_table, Opt_noinit_inode_table,
1280 };
1281
1282 static const match_table_t tokens = {
1283 {Opt_bsd_df, "bsddf"},
1284 {Opt_minix_df, "minixdf"},
1285 {Opt_grpid, "grpid"},
1286 {Opt_grpid, "bsdgroups"},
1287 {Opt_nogrpid, "nogrpid"},
1288 {Opt_nogrpid, "sysvgroups"},
1289 {Opt_resgid, "resgid=%u"},
1290 {Opt_resuid, "resuid=%u"},
1291 {Opt_sb, "sb=%u"},
1292 {Opt_err_cont, "errors=continue"},
1293 {Opt_err_panic, "errors=panic"},
1294 {Opt_err_ro, "errors=remount-ro"},
1295 {Opt_nouid32, "nouid32"},
1296 {Opt_debug, "debug"},
1297 {Opt_oldalloc, "oldalloc"},
1298 {Opt_orlov, "orlov"},
1299 {Opt_user_xattr, "user_xattr"},
1300 {Opt_nouser_xattr, "nouser_xattr"},
1301 {Opt_acl, "acl"},
1302 {Opt_noacl, "noacl"},
1303 {Opt_noload, "noload"},
1304 {Opt_noload, "norecovery"},
1305 {Opt_nobh, "nobh"},
1306 {Opt_bh, "bh"},
1307 {Opt_commit, "commit=%u"},
1308 {Opt_min_batch_time, "min_batch_time=%u"},
1309 {Opt_max_batch_time, "max_batch_time=%u"},
1310 {Opt_journal_update, "journal=update"},
1311 {Opt_journal_dev, "journal_dev=%u"},
1312 {Opt_journal_checksum, "journal_checksum"},
1313 {Opt_journal_async_commit, "journal_async_commit"},
1314 {Opt_abort, "abort"},
1315 {Opt_data_journal, "data=journal"},
1316 {Opt_data_ordered, "data=ordered"},
1317 {Opt_data_writeback, "data=writeback"},
1318 {Opt_data_err_abort, "data_err=abort"},
1319 {Opt_data_err_ignore, "data_err=ignore"},
1320 {Opt_offusrjquota, "usrjquota="},
1321 {Opt_usrjquota, "usrjquota=%s"},
1322 {Opt_offgrpjquota, "grpjquota="},
1323 {Opt_grpjquota, "grpjquota=%s"},
1324 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1325 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1326 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1327 {Opt_grpquota, "grpquota"},
1328 {Opt_noquota, "noquota"},
1329 {Opt_quota, "quota"},
1330 {Opt_usrquota, "usrquota"},
1331 {Opt_barrier, "barrier=%u"},
1332 {Opt_barrier, "barrier"},
1333 {Opt_nobarrier, "nobarrier"},
1334 {Opt_i_version, "i_version"},
1335 {Opt_stripe, "stripe=%u"},
1336 {Opt_resize, "resize"},
1337 {Opt_delalloc, "delalloc"},
1338 {Opt_nodelalloc, "nodelalloc"},
1339 {Opt_mblk_io_submit, "mblk_io_submit"},
1340 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1341 {Opt_block_validity, "block_validity"},
1342 {Opt_noblock_validity, "noblock_validity"},
1343 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1344 {Opt_journal_ioprio, "journal_ioprio=%u"},
1345 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1346 {Opt_auto_da_alloc, "auto_da_alloc"},
1347 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1348 {Opt_dioread_nolock, "dioread_nolock"},
1349 {Opt_dioread_lock, "dioread_lock"},
1350 {Opt_discard, "discard"},
1351 {Opt_nodiscard, "nodiscard"},
1352 {Opt_init_inode_table, "init_itable=%u"},
1353 {Opt_init_inode_table, "init_itable"},
1354 {Opt_noinit_inode_table, "noinit_itable"},
1355 {Opt_err, NULL},
1356 };
1357
get_sb_block(void ** data)1358 static ext4_fsblk_t get_sb_block(void **data)
1359 {
1360 ext4_fsblk_t sb_block;
1361 char *options = (char *) *data;
1362
1363 if (!options || strncmp(options, "sb=", 3) != 0)
1364 return 1; /* Default location */
1365
1366 options += 3;
1367 /* TODO: use simple_strtoll with >32bit ext4 */
1368 sb_block = simple_strtoul(options, &options, 0);
1369 if (*options && *options != ',') {
1370 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1371 (char *) *data);
1372 return 1;
1373 }
1374 if (*options == ',')
1375 options++;
1376 *data = (void *) options;
1377
1378 return sb_block;
1379 }
1380
1381 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1382 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1383 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1384
1385 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1386 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1387 {
1388 struct ext4_sb_info *sbi = EXT4_SB(sb);
1389 char *qname;
1390
1391 if (sb_any_quota_loaded(sb) &&
1392 !sbi->s_qf_names[qtype]) {
1393 ext4_msg(sb, KERN_ERR,
1394 "Cannot change journaled "
1395 "quota options when quota turned on");
1396 return 0;
1397 }
1398 qname = match_strdup(args);
1399 if (!qname) {
1400 ext4_msg(sb, KERN_ERR,
1401 "Not enough memory for storing quotafile name");
1402 return 0;
1403 }
1404 if (sbi->s_qf_names[qtype] &&
1405 strcmp(sbi->s_qf_names[qtype], qname)) {
1406 ext4_msg(sb, KERN_ERR,
1407 "%s quota file already specified", QTYPE2NAME(qtype));
1408 kfree(qname);
1409 return 0;
1410 }
1411 sbi->s_qf_names[qtype] = qname;
1412 if (strchr(sbi->s_qf_names[qtype], '/')) {
1413 ext4_msg(sb, KERN_ERR,
1414 "quotafile must be on filesystem root");
1415 kfree(sbi->s_qf_names[qtype]);
1416 sbi->s_qf_names[qtype] = NULL;
1417 return 0;
1418 }
1419 set_opt(sb, QUOTA);
1420 return 1;
1421 }
1422
clear_qf_name(struct super_block * sb,int qtype)1423 static int clear_qf_name(struct super_block *sb, int qtype)
1424 {
1425
1426 struct ext4_sb_info *sbi = EXT4_SB(sb);
1427
1428 if (sb_any_quota_loaded(sb) &&
1429 sbi->s_qf_names[qtype]) {
1430 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1431 " when quota turned on");
1432 return 0;
1433 }
1434 /*
1435 * The space will be released later when all options are confirmed
1436 * to be correct
1437 */
1438 sbi->s_qf_names[qtype] = NULL;
1439 return 1;
1440 }
1441 #endif
1442
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,ext4_fsblk_t * n_blocks_count,int is_remount)1443 static int parse_options(char *options, struct super_block *sb,
1444 unsigned long *journal_devnum,
1445 unsigned int *journal_ioprio,
1446 ext4_fsblk_t *n_blocks_count, int is_remount)
1447 {
1448 struct ext4_sb_info *sbi = EXT4_SB(sb);
1449 char *p;
1450 substring_t args[MAX_OPT_ARGS];
1451 int data_opt = 0;
1452 int option;
1453 #ifdef CONFIG_QUOTA
1454 int qfmt;
1455 #endif
1456
1457 if (!options)
1458 return 1;
1459
1460 while ((p = strsep(&options, ",")) != NULL) {
1461 int token;
1462 if (!*p)
1463 continue;
1464
1465 /*
1466 * Initialize args struct so we know whether arg was
1467 * found; some options take optional arguments.
1468 */
1469 args[0].to = args[0].from = NULL;
1470 token = match_token(p, tokens, args);
1471 switch (token) {
1472 case Opt_bsd_df:
1473 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1474 clear_opt(sb, MINIX_DF);
1475 break;
1476 case Opt_minix_df:
1477 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1478 set_opt(sb, MINIX_DF);
1479
1480 break;
1481 case Opt_grpid:
1482 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1483 set_opt(sb, GRPID);
1484
1485 break;
1486 case Opt_nogrpid:
1487 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1488 clear_opt(sb, GRPID);
1489
1490 break;
1491 case Opt_resuid:
1492 if (match_int(&args[0], &option))
1493 return 0;
1494 sbi->s_resuid = option;
1495 break;
1496 case Opt_resgid:
1497 if (match_int(&args[0], &option))
1498 return 0;
1499 sbi->s_resgid = option;
1500 break;
1501 case Opt_sb:
1502 /* handled by get_sb_block() instead of here */
1503 /* *sb_block = match_int(&args[0]); */
1504 break;
1505 case Opt_err_panic:
1506 clear_opt(sb, ERRORS_CONT);
1507 clear_opt(sb, ERRORS_RO);
1508 set_opt(sb, ERRORS_PANIC);
1509 break;
1510 case Opt_err_ro:
1511 clear_opt(sb, ERRORS_CONT);
1512 clear_opt(sb, ERRORS_PANIC);
1513 set_opt(sb, ERRORS_RO);
1514 break;
1515 case Opt_err_cont:
1516 clear_opt(sb, ERRORS_RO);
1517 clear_opt(sb, ERRORS_PANIC);
1518 set_opt(sb, ERRORS_CONT);
1519 break;
1520 case Opt_nouid32:
1521 set_opt(sb, NO_UID32);
1522 break;
1523 case Opt_debug:
1524 set_opt(sb, DEBUG);
1525 break;
1526 case Opt_oldalloc:
1527 set_opt(sb, OLDALLOC);
1528 break;
1529 case Opt_orlov:
1530 clear_opt(sb, OLDALLOC);
1531 break;
1532 #ifdef CONFIG_EXT4_FS_XATTR
1533 case Opt_user_xattr:
1534 set_opt(sb, XATTR_USER);
1535 break;
1536 case Opt_nouser_xattr:
1537 clear_opt(sb, XATTR_USER);
1538 break;
1539 #else
1540 case Opt_user_xattr:
1541 case Opt_nouser_xattr:
1542 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1543 break;
1544 #endif
1545 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1546 case Opt_acl:
1547 set_opt(sb, POSIX_ACL);
1548 break;
1549 case Opt_noacl:
1550 clear_opt(sb, POSIX_ACL);
1551 break;
1552 #else
1553 case Opt_acl:
1554 case Opt_noacl:
1555 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1556 break;
1557 #endif
1558 case Opt_journal_update:
1559 /* @@@ FIXME */
1560 /* Eventually we will want to be able to create
1561 a journal file here. For now, only allow the
1562 user to specify an existing inode to be the
1563 journal file. */
1564 if (is_remount) {
1565 ext4_msg(sb, KERN_ERR,
1566 "Cannot specify journal on remount");
1567 return 0;
1568 }
1569 set_opt(sb, UPDATE_JOURNAL);
1570 break;
1571 case Opt_journal_dev:
1572 if (is_remount) {
1573 ext4_msg(sb, KERN_ERR,
1574 "Cannot specify journal on remount");
1575 return 0;
1576 }
1577 if (match_int(&args[0], &option))
1578 return 0;
1579 *journal_devnum = option;
1580 break;
1581 case Opt_journal_checksum:
1582 set_opt(sb, JOURNAL_CHECKSUM);
1583 break;
1584 case Opt_journal_async_commit:
1585 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1586 set_opt(sb, JOURNAL_CHECKSUM);
1587 break;
1588 case Opt_noload:
1589 set_opt(sb, NOLOAD);
1590 break;
1591 case Opt_commit:
1592 if (match_int(&args[0], &option))
1593 return 0;
1594 if (option < 0)
1595 return 0;
1596 if (option == 0)
1597 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1598 sbi->s_commit_interval = HZ * option;
1599 break;
1600 case Opt_max_batch_time:
1601 if (match_int(&args[0], &option))
1602 return 0;
1603 if (option < 0)
1604 return 0;
1605 if (option == 0)
1606 option = EXT4_DEF_MAX_BATCH_TIME;
1607 sbi->s_max_batch_time = option;
1608 break;
1609 case Opt_min_batch_time:
1610 if (match_int(&args[0], &option))
1611 return 0;
1612 if (option < 0)
1613 return 0;
1614 sbi->s_min_batch_time = option;
1615 break;
1616 case Opt_data_journal:
1617 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1618 goto datacheck;
1619 case Opt_data_ordered:
1620 data_opt = EXT4_MOUNT_ORDERED_DATA;
1621 goto datacheck;
1622 case Opt_data_writeback:
1623 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1624 datacheck:
1625 if (is_remount) {
1626 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1627 ext4_msg(sb, KERN_ERR,
1628 "Cannot change data mode on remount");
1629 return 0;
1630 }
1631 } else {
1632 clear_opt(sb, DATA_FLAGS);
1633 sbi->s_mount_opt |= data_opt;
1634 }
1635 break;
1636 case Opt_data_err_abort:
1637 set_opt(sb, DATA_ERR_ABORT);
1638 break;
1639 case Opt_data_err_ignore:
1640 clear_opt(sb, DATA_ERR_ABORT);
1641 break;
1642 #ifdef CONFIG_QUOTA
1643 case Opt_usrjquota:
1644 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1645 return 0;
1646 break;
1647 case Opt_grpjquota:
1648 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1649 return 0;
1650 break;
1651 case Opt_offusrjquota:
1652 if (!clear_qf_name(sb, USRQUOTA))
1653 return 0;
1654 break;
1655 case Opt_offgrpjquota:
1656 if (!clear_qf_name(sb, GRPQUOTA))
1657 return 0;
1658 break;
1659
1660 case Opt_jqfmt_vfsold:
1661 qfmt = QFMT_VFS_OLD;
1662 goto set_qf_format;
1663 case Opt_jqfmt_vfsv0:
1664 qfmt = QFMT_VFS_V0;
1665 goto set_qf_format;
1666 case Opt_jqfmt_vfsv1:
1667 qfmt = QFMT_VFS_V1;
1668 set_qf_format:
1669 if (sb_any_quota_loaded(sb) &&
1670 sbi->s_jquota_fmt != qfmt) {
1671 ext4_msg(sb, KERN_ERR, "Cannot change "
1672 "journaled quota options when "
1673 "quota turned on");
1674 return 0;
1675 }
1676 sbi->s_jquota_fmt = qfmt;
1677 break;
1678 case Opt_quota:
1679 case Opt_usrquota:
1680 set_opt(sb, QUOTA);
1681 set_opt(sb, USRQUOTA);
1682 break;
1683 case Opt_grpquota:
1684 set_opt(sb, QUOTA);
1685 set_opt(sb, GRPQUOTA);
1686 break;
1687 case Opt_noquota:
1688 if (sb_any_quota_loaded(sb)) {
1689 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1690 "options when quota turned on");
1691 return 0;
1692 }
1693 clear_opt(sb, QUOTA);
1694 clear_opt(sb, USRQUOTA);
1695 clear_opt(sb, GRPQUOTA);
1696 break;
1697 #else
1698 case Opt_quota:
1699 case Opt_usrquota:
1700 case Opt_grpquota:
1701 ext4_msg(sb, KERN_ERR,
1702 "quota options not supported");
1703 break;
1704 case Opt_usrjquota:
1705 case Opt_grpjquota:
1706 case Opt_offusrjquota:
1707 case Opt_offgrpjquota:
1708 case Opt_jqfmt_vfsold:
1709 case Opt_jqfmt_vfsv0:
1710 case Opt_jqfmt_vfsv1:
1711 ext4_msg(sb, KERN_ERR,
1712 "journaled quota options not supported");
1713 break;
1714 case Opt_noquota:
1715 break;
1716 #endif
1717 case Opt_abort:
1718 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1719 break;
1720 case Opt_nobarrier:
1721 clear_opt(sb, BARRIER);
1722 break;
1723 case Opt_barrier:
1724 if (args[0].from) {
1725 if (match_int(&args[0], &option))
1726 return 0;
1727 } else
1728 option = 1; /* No argument, default to 1 */
1729 if (option)
1730 set_opt(sb, BARRIER);
1731 else
1732 clear_opt(sb, BARRIER);
1733 break;
1734 case Opt_ignore:
1735 break;
1736 case Opt_resize:
1737 if (!is_remount) {
1738 ext4_msg(sb, KERN_ERR,
1739 "resize option only available "
1740 "for remount");
1741 return 0;
1742 }
1743 if (match_int(&args[0], &option) != 0)
1744 return 0;
1745 *n_blocks_count = option;
1746 break;
1747 case Opt_nobh:
1748 ext4_msg(sb, KERN_WARNING,
1749 "Ignoring deprecated nobh option");
1750 break;
1751 case Opt_bh:
1752 ext4_msg(sb, KERN_WARNING,
1753 "Ignoring deprecated bh option");
1754 break;
1755 case Opt_i_version:
1756 set_opt(sb, I_VERSION);
1757 sb->s_flags |= MS_I_VERSION;
1758 break;
1759 case Opt_nodelalloc:
1760 clear_opt(sb, DELALLOC);
1761 break;
1762 case Opt_mblk_io_submit:
1763 set_opt(sb, MBLK_IO_SUBMIT);
1764 break;
1765 case Opt_nomblk_io_submit:
1766 clear_opt(sb, MBLK_IO_SUBMIT);
1767 break;
1768 case Opt_stripe:
1769 if (match_int(&args[0], &option))
1770 return 0;
1771 if (option < 0)
1772 return 0;
1773 sbi->s_stripe = option;
1774 break;
1775 case Opt_delalloc:
1776 set_opt(sb, DELALLOC);
1777 break;
1778 case Opt_block_validity:
1779 set_opt(sb, BLOCK_VALIDITY);
1780 break;
1781 case Opt_noblock_validity:
1782 clear_opt(sb, BLOCK_VALIDITY);
1783 break;
1784 case Opt_inode_readahead_blks:
1785 if (match_int(&args[0], &option))
1786 return 0;
1787 if (option < 0 || option > (1 << 30))
1788 return 0;
1789 if (option && !is_power_of_2(option)) {
1790 ext4_msg(sb, KERN_ERR,
1791 "EXT4-fs: inode_readahead_blks"
1792 " must be a power of 2");
1793 return 0;
1794 }
1795 sbi->s_inode_readahead_blks = option;
1796 break;
1797 case Opt_journal_ioprio:
1798 if (match_int(&args[0], &option))
1799 return 0;
1800 if (option < 0 || option > 7)
1801 break;
1802 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1803 option);
1804 break;
1805 case Opt_noauto_da_alloc:
1806 set_opt(sb, NO_AUTO_DA_ALLOC);
1807 break;
1808 case Opt_auto_da_alloc:
1809 if (args[0].from) {
1810 if (match_int(&args[0], &option))
1811 return 0;
1812 } else
1813 option = 1; /* No argument, default to 1 */
1814 if (option)
1815 clear_opt(sb, NO_AUTO_DA_ALLOC);
1816 else
1817 set_opt(sb,NO_AUTO_DA_ALLOC);
1818 break;
1819 case Opt_discard:
1820 set_opt(sb, DISCARD);
1821 break;
1822 case Opt_nodiscard:
1823 clear_opt(sb, DISCARD);
1824 break;
1825 case Opt_dioread_nolock:
1826 set_opt(sb, DIOREAD_NOLOCK);
1827 break;
1828 case Opt_dioread_lock:
1829 clear_opt(sb, DIOREAD_NOLOCK);
1830 break;
1831 case Opt_init_inode_table:
1832 set_opt(sb, INIT_INODE_TABLE);
1833 if (args[0].from) {
1834 if (match_int(&args[0], &option))
1835 return 0;
1836 } else
1837 option = EXT4_DEF_LI_WAIT_MULT;
1838 if (option < 0)
1839 return 0;
1840 sbi->s_li_wait_mult = option;
1841 break;
1842 case Opt_noinit_inode_table:
1843 clear_opt(sb, INIT_INODE_TABLE);
1844 break;
1845 default:
1846 ext4_msg(sb, KERN_ERR,
1847 "Unrecognized mount option \"%s\" "
1848 "or missing value", p);
1849 return 0;
1850 }
1851 }
1852 #ifdef CONFIG_QUOTA
1853 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1854 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1855 clear_opt(sb, USRQUOTA);
1856
1857 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1858 clear_opt(sb, GRPQUOTA);
1859
1860 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1861 ext4_msg(sb, KERN_ERR, "old and new quota "
1862 "format mixing");
1863 return 0;
1864 }
1865
1866 if (!sbi->s_jquota_fmt) {
1867 ext4_msg(sb, KERN_ERR, "journaled quota format "
1868 "not specified");
1869 return 0;
1870 }
1871 } else {
1872 if (sbi->s_jquota_fmt) {
1873 ext4_msg(sb, KERN_ERR, "journaled quota format "
1874 "specified with no journaling "
1875 "enabled");
1876 return 0;
1877 }
1878 }
1879 #endif
1880 return 1;
1881 }
1882
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1883 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1884 int read_only)
1885 {
1886 struct ext4_sb_info *sbi = EXT4_SB(sb);
1887 int res = 0;
1888
1889 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1890 ext4_msg(sb, KERN_ERR, "revision level too high, "
1891 "forcing read-only mode");
1892 res = MS_RDONLY;
1893 }
1894 if (read_only)
1895 return res;
1896 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1897 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1898 "running e2fsck is recommended");
1899 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1900 ext4_msg(sb, KERN_WARNING,
1901 "warning: mounting fs with errors, "
1902 "running e2fsck is recommended");
1903 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1904 le16_to_cpu(es->s_mnt_count) >=
1905 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1906 ext4_msg(sb, KERN_WARNING,
1907 "warning: maximal mount count reached, "
1908 "running e2fsck is recommended");
1909 else if (le32_to_cpu(es->s_checkinterval) &&
1910 (le32_to_cpu(es->s_lastcheck) +
1911 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1912 ext4_msg(sb, KERN_WARNING,
1913 "warning: checktime reached, "
1914 "running e2fsck is recommended");
1915 if (!sbi->s_journal)
1916 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1917 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1918 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1919 le16_add_cpu(&es->s_mnt_count, 1);
1920 es->s_mtime = cpu_to_le32(get_seconds());
1921 ext4_update_dynamic_rev(sb);
1922 if (sbi->s_journal)
1923 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1924
1925 ext4_commit_super(sb, 1);
1926 if (test_opt(sb, DEBUG))
1927 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1928 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1929 sb->s_blocksize,
1930 sbi->s_groups_count,
1931 EXT4_BLOCKS_PER_GROUP(sb),
1932 EXT4_INODES_PER_GROUP(sb),
1933 sbi->s_mount_opt, sbi->s_mount_opt2);
1934
1935 return res;
1936 }
1937
ext4_fill_flex_info(struct super_block * sb)1938 static int ext4_fill_flex_info(struct super_block *sb)
1939 {
1940 struct ext4_sb_info *sbi = EXT4_SB(sb);
1941 struct ext4_group_desc *gdp = NULL;
1942 ext4_group_t flex_group_count;
1943 ext4_group_t flex_group;
1944 int groups_per_flex = 0;
1945 size_t size;
1946 int i;
1947
1948 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1949 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1950
1951 if (groups_per_flex < 2) {
1952 sbi->s_log_groups_per_flex = 0;
1953 return 1;
1954 }
1955
1956 /* We allocate both existing and potentially added groups */
1957 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1958 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1959 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1960 size = flex_group_count * sizeof(struct flex_groups);
1961 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1962 if (sbi->s_flex_groups == NULL) {
1963 sbi->s_flex_groups = vzalloc(size);
1964 if (sbi->s_flex_groups == NULL) {
1965 ext4_msg(sb, KERN_ERR,
1966 "not enough memory for %u flex groups",
1967 flex_group_count);
1968 goto failed;
1969 }
1970 }
1971
1972 for (i = 0; i < sbi->s_groups_count; i++) {
1973 gdp = ext4_get_group_desc(sb, i, NULL);
1974
1975 flex_group = ext4_flex_group(sbi, i);
1976 atomic_add(ext4_free_inodes_count(sb, gdp),
1977 &sbi->s_flex_groups[flex_group].free_inodes);
1978 atomic_add(ext4_free_blks_count(sb, gdp),
1979 &sbi->s_flex_groups[flex_group].free_blocks);
1980 atomic_add(ext4_used_dirs_count(sb, gdp),
1981 &sbi->s_flex_groups[flex_group].used_dirs);
1982 }
1983
1984 return 1;
1985 failed:
1986 return 0;
1987 }
1988
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1989 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1990 struct ext4_group_desc *gdp)
1991 {
1992 __u16 crc = 0;
1993
1994 if (sbi->s_es->s_feature_ro_compat &
1995 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1996 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1997 __le32 le_group = cpu_to_le32(block_group);
1998
1999 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2000 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2001 crc = crc16(crc, (__u8 *)gdp, offset);
2002 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2003 /* for checksum of struct ext4_group_desc do the rest...*/
2004 if ((sbi->s_es->s_feature_incompat &
2005 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2006 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2007 crc = crc16(crc, (__u8 *)gdp + offset,
2008 le16_to_cpu(sbi->s_es->s_desc_size) -
2009 offset);
2010 }
2011
2012 return cpu_to_le16(crc);
2013 }
2014
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2015 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2016 struct ext4_group_desc *gdp)
2017 {
2018 if ((sbi->s_es->s_feature_ro_compat &
2019 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2020 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2021 return 0;
2022
2023 return 1;
2024 }
2025
2026 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2027 static int ext4_check_descriptors(struct super_block *sb,
2028 ext4_group_t *first_not_zeroed)
2029 {
2030 struct ext4_sb_info *sbi = EXT4_SB(sb);
2031 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2032 ext4_fsblk_t last_block;
2033 ext4_fsblk_t block_bitmap;
2034 ext4_fsblk_t inode_bitmap;
2035 ext4_fsblk_t inode_table;
2036 int flexbg_flag = 0;
2037 ext4_group_t i, grp = sbi->s_groups_count;
2038
2039 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2040 flexbg_flag = 1;
2041
2042 ext4_debug("Checking group descriptors");
2043
2044 for (i = 0; i < sbi->s_groups_count; i++) {
2045 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2046
2047 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2048 last_block = ext4_blocks_count(sbi->s_es) - 1;
2049 else
2050 last_block = first_block +
2051 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2052
2053 if ((grp == sbi->s_groups_count) &&
2054 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2055 grp = i;
2056
2057 block_bitmap = ext4_block_bitmap(sb, gdp);
2058 if (block_bitmap < first_block || block_bitmap > last_block) {
2059 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2060 "Block bitmap for group %u not in group "
2061 "(block %llu)!", i, block_bitmap);
2062 return 0;
2063 }
2064 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2065 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2066 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2067 "Inode bitmap for group %u not in group "
2068 "(block %llu)!", i, inode_bitmap);
2069 return 0;
2070 }
2071 inode_table = ext4_inode_table(sb, gdp);
2072 if (inode_table < first_block ||
2073 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2074 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2075 "Inode table for group %u not in group "
2076 "(block %llu)!", i, inode_table);
2077 return 0;
2078 }
2079 ext4_lock_group(sb, i);
2080 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082 "Checksum for group %u failed (%u!=%u)",
2083 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2084 gdp)), le16_to_cpu(gdp->bg_checksum));
2085 if (!(sb->s_flags & MS_RDONLY)) {
2086 ext4_unlock_group(sb, i);
2087 return 0;
2088 }
2089 }
2090 ext4_unlock_group(sb, i);
2091 if (!flexbg_flag)
2092 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2093 }
2094 if (NULL != first_not_zeroed)
2095 *first_not_zeroed = grp;
2096
2097 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2098 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2099 return 1;
2100 }
2101
2102 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2103 * the superblock) which were deleted from all directories, but held open by
2104 * a process at the time of a crash. We walk the list and try to delete these
2105 * inodes at recovery time (only with a read-write filesystem).
2106 *
2107 * In order to keep the orphan inode chain consistent during traversal (in
2108 * case of crash during recovery), we link each inode into the superblock
2109 * orphan list_head and handle it the same way as an inode deletion during
2110 * normal operation (which journals the operations for us).
2111 *
2112 * We only do an iget() and an iput() on each inode, which is very safe if we
2113 * accidentally point at an in-use or already deleted inode. The worst that
2114 * can happen in this case is that we get a "bit already cleared" message from
2115 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2116 * e2fsck was run on this filesystem, and it must have already done the orphan
2117 * inode cleanup for us, so we can safely abort without any further action.
2118 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2119 static void ext4_orphan_cleanup(struct super_block *sb,
2120 struct ext4_super_block *es)
2121 {
2122 unsigned int s_flags = sb->s_flags;
2123 int nr_orphans = 0, nr_truncates = 0;
2124 #ifdef CONFIG_QUOTA
2125 int i;
2126 #endif
2127 if (!es->s_last_orphan) {
2128 jbd_debug(4, "no orphan inodes to clean up\n");
2129 return;
2130 }
2131
2132 if (bdev_read_only(sb->s_bdev)) {
2133 ext4_msg(sb, KERN_ERR, "write access "
2134 "unavailable, skipping orphan cleanup");
2135 return;
2136 }
2137
2138 /* Check if feature set would not allow a r/w mount */
2139 if (!ext4_feature_set_ok(sb, 0)) {
2140 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2141 "unknown ROCOMPAT features");
2142 return;
2143 }
2144
2145 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2146 if (es->s_last_orphan)
2147 jbd_debug(1, "Errors on filesystem, "
2148 "clearing orphan list.\n");
2149 es->s_last_orphan = 0;
2150 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2151 return;
2152 }
2153
2154 if (s_flags & MS_RDONLY) {
2155 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2156 sb->s_flags &= ~MS_RDONLY;
2157 }
2158 #ifdef CONFIG_QUOTA
2159 /* Needed for iput() to work correctly and not trash data */
2160 sb->s_flags |= MS_ACTIVE;
2161 /* Turn on quotas so that they are updated correctly */
2162 for (i = 0; i < MAXQUOTAS; i++) {
2163 if (EXT4_SB(sb)->s_qf_names[i]) {
2164 int ret = ext4_quota_on_mount(sb, i);
2165 if (ret < 0)
2166 ext4_msg(sb, KERN_ERR,
2167 "Cannot turn on journaled "
2168 "quota: error %d", ret);
2169 }
2170 }
2171 #endif
2172
2173 while (es->s_last_orphan) {
2174 struct inode *inode;
2175
2176 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2177 if (IS_ERR(inode)) {
2178 es->s_last_orphan = 0;
2179 break;
2180 }
2181
2182 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2183 dquot_initialize(inode);
2184 if (inode->i_nlink) {
2185 ext4_msg(sb, KERN_DEBUG,
2186 "%s: truncating inode %lu to %lld bytes",
2187 __func__, inode->i_ino, inode->i_size);
2188 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2189 inode->i_ino, inode->i_size);
2190 ext4_truncate(inode);
2191 nr_truncates++;
2192 } else {
2193 ext4_msg(sb, KERN_DEBUG,
2194 "%s: deleting unreferenced inode %lu",
2195 __func__, inode->i_ino);
2196 jbd_debug(2, "deleting unreferenced inode %lu\n",
2197 inode->i_ino);
2198 nr_orphans++;
2199 }
2200 iput(inode); /* The delete magic happens here! */
2201 }
2202
2203 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2204
2205 if (nr_orphans)
2206 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2207 PLURAL(nr_orphans));
2208 if (nr_truncates)
2209 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2210 PLURAL(nr_truncates));
2211 #ifdef CONFIG_QUOTA
2212 /* Turn quotas off */
2213 for (i = 0; i < MAXQUOTAS; i++) {
2214 if (sb_dqopt(sb)->files[i])
2215 dquot_quota_off(sb, i);
2216 }
2217 #endif
2218 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2219 }
2220
2221 /*
2222 * Maximal extent format file size.
2223 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2224 * extent format containers, within a sector_t, and within i_blocks
2225 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2226 * so that won't be a limiting factor.
2227 *
2228 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2229 */
ext4_max_size(int blkbits,int has_huge_files)2230 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2231 {
2232 loff_t res;
2233 loff_t upper_limit = MAX_LFS_FILESIZE;
2234
2235 /* small i_blocks in vfs inode? */
2236 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2237 /*
2238 * CONFIG_LBDAF is not enabled implies the inode
2239 * i_block represent total blocks in 512 bytes
2240 * 32 == size of vfs inode i_blocks * 8
2241 */
2242 upper_limit = (1LL << 32) - 1;
2243
2244 /* total blocks in file system block size */
2245 upper_limit >>= (blkbits - 9);
2246 upper_limit <<= blkbits;
2247 }
2248
2249 /* 32-bit extent-start container, ee_block */
2250 res = 1LL << 32;
2251 res <<= blkbits;
2252 res -= 1;
2253
2254 /* Sanity check against vm- & vfs- imposed limits */
2255 if (res > upper_limit)
2256 res = upper_limit;
2257
2258 return res;
2259 }
2260
2261 /*
2262 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2263 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2264 * We need to be 1 filesystem block less than the 2^48 sector limit.
2265 */
ext4_max_bitmap_size(int bits,int has_huge_files)2266 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2267 {
2268 loff_t res = EXT4_NDIR_BLOCKS;
2269 int meta_blocks;
2270 loff_t upper_limit;
2271 /* This is calculated to be the largest file size for a dense, block
2272 * mapped file such that the file's total number of 512-byte sectors,
2273 * including data and all indirect blocks, does not exceed (2^48 - 1).
2274 *
2275 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2276 * number of 512-byte sectors of the file.
2277 */
2278
2279 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2280 /*
2281 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2282 * the inode i_block field represents total file blocks in
2283 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2284 */
2285 upper_limit = (1LL << 32) - 1;
2286
2287 /* total blocks in file system block size */
2288 upper_limit >>= (bits - 9);
2289
2290 } else {
2291 /*
2292 * We use 48 bit ext4_inode i_blocks
2293 * With EXT4_HUGE_FILE_FL set the i_blocks
2294 * represent total number of blocks in
2295 * file system block size
2296 */
2297 upper_limit = (1LL << 48) - 1;
2298
2299 }
2300
2301 /* indirect blocks */
2302 meta_blocks = 1;
2303 /* double indirect blocks */
2304 meta_blocks += 1 + (1LL << (bits-2));
2305 /* tripple indirect blocks */
2306 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2307
2308 upper_limit -= meta_blocks;
2309 upper_limit <<= bits;
2310
2311 res += 1LL << (bits-2);
2312 res += 1LL << (2*(bits-2));
2313 res += 1LL << (3*(bits-2));
2314 res <<= bits;
2315 if (res > upper_limit)
2316 res = upper_limit;
2317
2318 if (res > MAX_LFS_FILESIZE)
2319 res = MAX_LFS_FILESIZE;
2320
2321 return res;
2322 }
2323
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2324 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2325 ext4_fsblk_t logical_sb_block, int nr)
2326 {
2327 struct ext4_sb_info *sbi = EXT4_SB(sb);
2328 ext4_group_t bg, first_meta_bg;
2329 int has_super = 0;
2330
2331 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2332
2333 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2334 nr < first_meta_bg)
2335 return logical_sb_block + nr + 1;
2336 bg = sbi->s_desc_per_block * nr;
2337 if (ext4_bg_has_super(sb, bg))
2338 has_super = 1;
2339
2340 return (has_super + ext4_group_first_block_no(sb, bg));
2341 }
2342
2343 /**
2344 * ext4_get_stripe_size: Get the stripe size.
2345 * @sbi: In memory super block info
2346 *
2347 * If we have specified it via mount option, then
2348 * use the mount option value. If the value specified at mount time is
2349 * greater than the blocks per group use the super block value.
2350 * If the super block value is greater than blocks per group return 0.
2351 * Allocator needs it be less than blocks per group.
2352 *
2353 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2354 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2355 {
2356 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2357 unsigned long stripe_width =
2358 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2359
2360 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2361 return sbi->s_stripe;
2362
2363 if (stripe_width <= sbi->s_blocks_per_group)
2364 return stripe_width;
2365
2366 if (stride <= sbi->s_blocks_per_group)
2367 return stride;
2368
2369 return 0;
2370 }
2371
2372 /* sysfs supprt */
2373
2374 struct ext4_attr {
2375 struct attribute attr;
2376 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2377 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2378 const char *, size_t);
2379 int offset;
2380 };
2381
parse_strtoul(const char * buf,unsigned long max,unsigned long * value)2382 static int parse_strtoul(const char *buf,
2383 unsigned long max, unsigned long *value)
2384 {
2385 char *endp;
2386
2387 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2388 endp = skip_spaces(endp);
2389 if (*endp || *value > max)
2390 return -EINVAL;
2391
2392 return 0;
2393 }
2394
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2395 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2396 struct ext4_sb_info *sbi,
2397 char *buf)
2398 {
2399 return snprintf(buf, PAGE_SIZE, "%llu\n",
2400 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2401 }
2402
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2403 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2404 struct ext4_sb_info *sbi, char *buf)
2405 {
2406 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2407
2408 if (!sb->s_bdev->bd_part)
2409 return snprintf(buf, PAGE_SIZE, "0\n");
2410 return snprintf(buf, PAGE_SIZE, "%lu\n",
2411 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2412 sbi->s_sectors_written_start) >> 1);
2413 }
2414
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2415 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2416 struct ext4_sb_info *sbi, char *buf)
2417 {
2418 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2419
2420 if (!sb->s_bdev->bd_part)
2421 return snprintf(buf, PAGE_SIZE, "0\n");
2422 return snprintf(buf, PAGE_SIZE, "%llu\n",
2423 (unsigned long long)(sbi->s_kbytes_written +
2424 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2425 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2426 }
2427
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2428 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2429 struct ext4_sb_info *sbi,
2430 const char *buf, size_t count)
2431 {
2432 unsigned long t;
2433
2434 if (parse_strtoul(buf, 0x40000000, &t))
2435 return -EINVAL;
2436
2437 if (t && !is_power_of_2(t))
2438 return -EINVAL;
2439
2440 sbi->s_inode_readahead_blks = t;
2441 return count;
2442 }
2443
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2444 static ssize_t sbi_ui_show(struct ext4_attr *a,
2445 struct ext4_sb_info *sbi, char *buf)
2446 {
2447 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2448
2449 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2450 }
2451
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2452 static ssize_t sbi_ui_store(struct ext4_attr *a,
2453 struct ext4_sb_info *sbi,
2454 const char *buf, size_t count)
2455 {
2456 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2457 unsigned long t;
2458
2459 if (parse_strtoul(buf, 0xffffffff, &t))
2460 return -EINVAL;
2461 *ui = t;
2462 return count;
2463 }
2464
2465 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2466 static struct ext4_attr ext4_attr_##_name = { \
2467 .attr = {.name = __stringify(_name), .mode = _mode }, \
2468 .show = _show, \
2469 .store = _store, \
2470 .offset = offsetof(struct ext4_sb_info, _elname), \
2471 }
2472 #define EXT4_ATTR(name, mode, show, store) \
2473 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2474
2475 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2476 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2477 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2478 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2479 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2480 #define ATTR_LIST(name) &ext4_attr_##name.attr
2481
2482 EXT4_RO_ATTR(delayed_allocation_blocks);
2483 EXT4_RO_ATTR(session_write_kbytes);
2484 EXT4_RO_ATTR(lifetime_write_kbytes);
2485 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2486 inode_readahead_blks_store, s_inode_readahead_blks);
2487 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2488 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2489 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2490 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2491 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2492 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2493 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2494 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2495
2496 static struct attribute *ext4_attrs[] = {
2497 ATTR_LIST(delayed_allocation_blocks),
2498 ATTR_LIST(session_write_kbytes),
2499 ATTR_LIST(lifetime_write_kbytes),
2500 ATTR_LIST(inode_readahead_blks),
2501 ATTR_LIST(inode_goal),
2502 ATTR_LIST(mb_stats),
2503 ATTR_LIST(mb_max_to_scan),
2504 ATTR_LIST(mb_min_to_scan),
2505 ATTR_LIST(mb_order2_req),
2506 ATTR_LIST(mb_stream_req),
2507 ATTR_LIST(mb_group_prealloc),
2508 ATTR_LIST(max_writeback_mb_bump),
2509 NULL,
2510 };
2511
2512 /* Features this copy of ext4 supports */
2513 EXT4_INFO_ATTR(lazy_itable_init);
2514 EXT4_INFO_ATTR(batched_discard);
2515
2516 static struct attribute *ext4_feat_attrs[] = {
2517 ATTR_LIST(lazy_itable_init),
2518 ATTR_LIST(batched_discard),
2519 NULL,
2520 };
2521
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2522 static ssize_t ext4_attr_show(struct kobject *kobj,
2523 struct attribute *attr, char *buf)
2524 {
2525 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2526 s_kobj);
2527 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2528
2529 return a->show ? a->show(a, sbi, buf) : 0;
2530 }
2531
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2532 static ssize_t ext4_attr_store(struct kobject *kobj,
2533 struct attribute *attr,
2534 const char *buf, size_t len)
2535 {
2536 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2537 s_kobj);
2538 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2539
2540 return a->store ? a->store(a, sbi, buf, len) : 0;
2541 }
2542
ext4_sb_release(struct kobject * kobj)2543 static void ext4_sb_release(struct kobject *kobj)
2544 {
2545 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2546 s_kobj);
2547 complete(&sbi->s_kobj_unregister);
2548 }
2549
2550 static const struct sysfs_ops ext4_attr_ops = {
2551 .show = ext4_attr_show,
2552 .store = ext4_attr_store,
2553 };
2554
2555 static struct kobj_type ext4_ktype = {
2556 .default_attrs = ext4_attrs,
2557 .sysfs_ops = &ext4_attr_ops,
2558 .release = ext4_sb_release,
2559 };
2560
ext4_feat_release(struct kobject * kobj)2561 static void ext4_feat_release(struct kobject *kobj)
2562 {
2563 complete(&ext4_feat->f_kobj_unregister);
2564 }
2565
2566 static struct kobj_type ext4_feat_ktype = {
2567 .default_attrs = ext4_feat_attrs,
2568 .sysfs_ops = &ext4_attr_ops,
2569 .release = ext4_feat_release,
2570 };
2571
2572 /*
2573 * Check whether this filesystem can be mounted based on
2574 * the features present and the RDONLY/RDWR mount requested.
2575 * Returns 1 if this filesystem can be mounted as requested,
2576 * 0 if it cannot be.
2577 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2578 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2579 {
2580 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2581 ext4_msg(sb, KERN_ERR,
2582 "Couldn't mount because of "
2583 "unsupported optional features (%x)",
2584 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2585 ~EXT4_FEATURE_INCOMPAT_SUPP));
2586 return 0;
2587 }
2588
2589 if (readonly)
2590 return 1;
2591
2592 /* Check that feature set is OK for a read-write mount */
2593 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2594 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2595 "unsupported optional features (%x)",
2596 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2597 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2598 return 0;
2599 }
2600 /*
2601 * Large file size enabled file system can only be mounted
2602 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2603 */
2604 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2605 if (sizeof(blkcnt_t) < sizeof(u64)) {
2606 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2607 "cannot be mounted RDWR without "
2608 "CONFIG_LBDAF");
2609 return 0;
2610 }
2611 }
2612 return 1;
2613 }
2614
2615 /*
2616 * This function is called once a day if we have errors logged
2617 * on the file system
2618 */
print_daily_error_info(unsigned long arg)2619 static void print_daily_error_info(unsigned long arg)
2620 {
2621 struct super_block *sb = (struct super_block *) arg;
2622 struct ext4_sb_info *sbi;
2623 struct ext4_super_block *es;
2624
2625 sbi = EXT4_SB(sb);
2626 es = sbi->s_es;
2627
2628 if (es->s_error_count)
2629 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2630 le32_to_cpu(es->s_error_count));
2631 if (es->s_first_error_time) {
2632 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2633 sb->s_id, le32_to_cpu(es->s_first_error_time),
2634 (int) sizeof(es->s_first_error_func),
2635 es->s_first_error_func,
2636 le32_to_cpu(es->s_first_error_line));
2637 if (es->s_first_error_ino)
2638 printk(": inode %u",
2639 le32_to_cpu(es->s_first_error_ino));
2640 if (es->s_first_error_block)
2641 printk(": block %llu", (unsigned long long)
2642 le64_to_cpu(es->s_first_error_block));
2643 printk("\n");
2644 }
2645 if (es->s_last_error_time) {
2646 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2647 sb->s_id, le32_to_cpu(es->s_last_error_time),
2648 (int) sizeof(es->s_last_error_func),
2649 es->s_last_error_func,
2650 le32_to_cpu(es->s_last_error_line));
2651 if (es->s_last_error_ino)
2652 printk(": inode %u",
2653 le32_to_cpu(es->s_last_error_ino));
2654 if (es->s_last_error_block)
2655 printk(": block %llu", (unsigned long long)
2656 le64_to_cpu(es->s_last_error_block));
2657 printk("\n");
2658 }
2659 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2660 }
2661
ext4_lazyinode_timeout(unsigned long data)2662 static void ext4_lazyinode_timeout(unsigned long data)
2663 {
2664 struct task_struct *p = (struct task_struct *)data;
2665 wake_up_process(p);
2666 }
2667
2668 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2669 static int ext4_run_li_request(struct ext4_li_request *elr)
2670 {
2671 struct ext4_group_desc *gdp = NULL;
2672 ext4_group_t group, ngroups;
2673 struct super_block *sb;
2674 unsigned long timeout = 0;
2675 int ret = 0;
2676
2677 sb = elr->lr_super;
2678 ngroups = EXT4_SB(sb)->s_groups_count;
2679
2680 for (group = elr->lr_next_group; group < ngroups; group++) {
2681 gdp = ext4_get_group_desc(sb, group, NULL);
2682 if (!gdp) {
2683 ret = 1;
2684 break;
2685 }
2686
2687 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2688 break;
2689 }
2690
2691 if (group == ngroups)
2692 ret = 1;
2693
2694 if (!ret) {
2695 timeout = jiffies;
2696 ret = ext4_init_inode_table(sb, group,
2697 elr->lr_timeout ? 0 : 1);
2698 if (elr->lr_timeout == 0) {
2699 timeout = jiffies - timeout;
2700 if (elr->lr_sbi->s_li_wait_mult)
2701 timeout *= elr->lr_sbi->s_li_wait_mult;
2702 else
2703 timeout *= 20;
2704 elr->lr_timeout = timeout;
2705 }
2706 elr->lr_next_sched = jiffies + elr->lr_timeout;
2707 elr->lr_next_group = group + 1;
2708 }
2709
2710 return ret;
2711 }
2712
2713 /*
2714 * Remove lr_request from the list_request and free the
2715 * request tructure. Should be called with li_list_mtx held
2716 */
ext4_remove_li_request(struct ext4_li_request * elr)2717 static void ext4_remove_li_request(struct ext4_li_request *elr)
2718 {
2719 struct ext4_sb_info *sbi;
2720
2721 if (!elr)
2722 return;
2723
2724 sbi = elr->lr_sbi;
2725
2726 list_del(&elr->lr_request);
2727 sbi->s_li_request = NULL;
2728 kfree(elr);
2729 }
2730
ext4_unregister_li_request(struct super_block * sb)2731 static void ext4_unregister_li_request(struct super_block *sb)
2732 {
2733 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2734
2735 if (!ext4_li_info)
2736 return;
2737
2738 mutex_lock(&ext4_li_info->li_list_mtx);
2739 ext4_remove_li_request(elr);
2740 mutex_unlock(&ext4_li_info->li_list_mtx);
2741 }
2742
2743 static struct task_struct *ext4_lazyinit_task;
2744
2745 /*
2746 * This is the function where ext4lazyinit thread lives. It walks
2747 * through the request list searching for next scheduled filesystem.
2748 * When such a fs is found, run the lazy initialization request
2749 * (ext4_rn_li_request) and keep track of the time spend in this
2750 * function. Based on that time we compute next schedule time of
2751 * the request. When walking through the list is complete, compute
2752 * next waking time and put itself into sleep.
2753 */
ext4_lazyinit_thread(void * arg)2754 static int ext4_lazyinit_thread(void *arg)
2755 {
2756 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2757 struct list_head *pos, *n;
2758 struct ext4_li_request *elr;
2759 unsigned long next_wakeup;
2760 DEFINE_WAIT(wait);
2761
2762 BUG_ON(NULL == eli);
2763
2764 eli->li_timer.data = (unsigned long)current;
2765 eli->li_timer.function = ext4_lazyinode_timeout;
2766
2767 eli->li_task = current;
2768 wake_up(&eli->li_wait_task);
2769
2770 cont_thread:
2771 while (true) {
2772 next_wakeup = MAX_JIFFY_OFFSET;
2773
2774 mutex_lock(&eli->li_list_mtx);
2775 if (list_empty(&eli->li_request_list)) {
2776 mutex_unlock(&eli->li_list_mtx);
2777 goto exit_thread;
2778 }
2779
2780 list_for_each_safe(pos, n, &eli->li_request_list) {
2781 elr = list_entry(pos, struct ext4_li_request,
2782 lr_request);
2783
2784 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2785 if (ext4_run_li_request(elr) != 0) {
2786 /* error, remove the lazy_init job */
2787 ext4_remove_li_request(elr);
2788 continue;
2789 }
2790 }
2791
2792 if (time_before(elr->lr_next_sched, next_wakeup))
2793 next_wakeup = elr->lr_next_sched;
2794 }
2795 mutex_unlock(&eli->li_list_mtx);
2796
2797 if (freezing(current))
2798 refrigerator();
2799
2800 if ((time_after_eq(jiffies, next_wakeup)) ||
2801 (MAX_JIFFY_OFFSET == next_wakeup)) {
2802 cond_resched();
2803 continue;
2804 }
2805
2806 eli->li_timer.expires = next_wakeup;
2807 add_timer(&eli->li_timer);
2808 prepare_to_wait(&eli->li_wait_daemon, &wait,
2809 TASK_INTERRUPTIBLE);
2810 if (time_before(jiffies, next_wakeup))
2811 schedule();
2812 finish_wait(&eli->li_wait_daemon, &wait);
2813 if (kthread_should_stop()) {
2814 ext4_clear_request_list();
2815 goto exit_thread;
2816 }
2817 }
2818
2819 exit_thread:
2820 /*
2821 * It looks like the request list is empty, but we need
2822 * to check it under the li_list_mtx lock, to prevent any
2823 * additions into it, and of course we should lock ext4_li_mtx
2824 * to atomically free the list and ext4_li_info, because at
2825 * this point another ext4 filesystem could be registering
2826 * new one.
2827 */
2828 mutex_lock(&ext4_li_mtx);
2829 mutex_lock(&eli->li_list_mtx);
2830 if (!list_empty(&eli->li_request_list)) {
2831 mutex_unlock(&eli->li_list_mtx);
2832 mutex_unlock(&ext4_li_mtx);
2833 goto cont_thread;
2834 }
2835 mutex_unlock(&eli->li_list_mtx);
2836 del_timer_sync(&ext4_li_info->li_timer);
2837 eli->li_task = NULL;
2838 wake_up(&eli->li_wait_task);
2839
2840 kfree(ext4_li_info);
2841 ext4_lazyinit_task = NULL;
2842 ext4_li_info = NULL;
2843 mutex_unlock(&ext4_li_mtx);
2844
2845 return 0;
2846 }
2847
ext4_clear_request_list(void)2848 static void ext4_clear_request_list(void)
2849 {
2850 struct list_head *pos, *n;
2851 struct ext4_li_request *elr;
2852
2853 mutex_lock(&ext4_li_info->li_list_mtx);
2854 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2855 elr = list_entry(pos, struct ext4_li_request,
2856 lr_request);
2857 ext4_remove_li_request(elr);
2858 }
2859 mutex_unlock(&ext4_li_info->li_list_mtx);
2860 }
2861
ext4_run_lazyinit_thread(void)2862 static int ext4_run_lazyinit_thread(void)
2863 {
2864 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2865 ext4_li_info, "ext4lazyinit");
2866 if (IS_ERR(ext4_lazyinit_task)) {
2867 int err = PTR_ERR(ext4_lazyinit_task);
2868 ext4_clear_request_list();
2869 del_timer_sync(&ext4_li_info->li_timer);
2870 kfree(ext4_li_info);
2871 ext4_li_info = NULL;
2872 printk(KERN_CRIT "EXT4: error %d creating inode table "
2873 "initialization thread\n",
2874 err);
2875 return err;
2876 }
2877 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2878
2879 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2880 return 0;
2881 }
2882
2883 /*
2884 * Check whether it make sense to run itable init. thread or not.
2885 * If there is at least one uninitialized inode table, return
2886 * corresponding group number, else the loop goes through all
2887 * groups and return total number of groups.
2888 */
ext4_has_uninit_itable(struct super_block * sb)2889 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2890 {
2891 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2892 struct ext4_group_desc *gdp = NULL;
2893
2894 for (group = 0; group < ngroups; group++) {
2895 gdp = ext4_get_group_desc(sb, group, NULL);
2896 if (!gdp)
2897 continue;
2898
2899 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2900 break;
2901 }
2902
2903 return group;
2904 }
2905
ext4_li_info_new(void)2906 static int ext4_li_info_new(void)
2907 {
2908 struct ext4_lazy_init *eli = NULL;
2909
2910 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2911 if (!eli)
2912 return -ENOMEM;
2913
2914 eli->li_task = NULL;
2915 INIT_LIST_HEAD(&eli->li_request_list);
2916 mutex_init(&eli->li_list_mtx);
2917
2918 init_waitqueue_head(&eli->li_wait_daemon);
2919 init_waitqueue_head(&eli->li_wait_task);
2920 init_timer(&eli->li_timer);
2921 eli->li_state |= EXT4_LAZYINIT_QUIT;
2922
2923 ext4_li_info = eli;
2924
2925 return 0;
2926 }
2927
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2928 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2929 ext4_group_t start)
2930 {
2931 struct ext4_sb_info *sbi = EXT4_SB(sb);
2932 struct ext4_li_request *elr;
2933 unsigned long rnd;
2934
2935 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2936 if (!elr)
2937 return NULL;
2938
2939 elr->lr_super = sb;
2940 elr->lr_sbi = sbi;
2941 elr->lr_next_group = start;
2942
2943 /*
2944 * Randomize first schedule time of the request to
2945 * spread the inode table initialization requests
2946 * better.
2947 */
2948 get_random_bytes(&rnd, sizeof(rnd));
2949 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2950 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2951
2952 return elr;
2953 }
2954
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2955 static int ext4_register_li_request(struct super_block *sb,
2956 ext4_group_t first_not_zeroed)
2957 {
2958 struct ext4_sb_info *sbi = EXT4_SB(sb);
2959 struct ext4_li_request *elr;
2960 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2961 int ret = 0;
2962
2963 if (sbi->s_li_request != NULL)
2964 return 0;
2965
2966 if (first_not_zeroed == ngroups ||
2967 (sb->s_flags & MS_RDONLY) ||
2968 !test_opt(sb, INIT_INODE_TABLE)) {
2969 sbi->s_li_request = NULL;
2970 return 0;
2971 }
2972
2973 if (first_not_zeroed == ngroups) {
2974 sbi->s_li_request = NULL;
2975 return 0;
2976 }
2977
2978 elr = ext4_li_request_new(sb, first_not_zeroed);
2979 if (!elr)
2980 return -ENOMEM;
2981
2982 mutex_lock(&ext4_li_mtx);
2983
2984 if (NULL == ext4_li_info) {
2985 ret = ext4_li_info_new();
2986 if (ret)
2987 goto out;
2988 }
2989
2990 mutex_lock(&ext4_li_info->li_list_mtx);
2991 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2992 mutex_unlock(&ext4_li_info->li_list_mtx);
2993
2994 sbi->s_li_request = elr;
2995 /*
2996 * set elr to NULL here since it has been inserted to
2997 * the request_list and the removal and free of it is
2998 * handled by ext4_clear_request_list from now on.
2999 */
3000 elr = NULL;
3001
3002 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3003 ret = ext4_run_lazyinit_thread();
3004 if (ret)
3005 goto out;
3006 }
3007 out:
3008 mutex_unlock(&ext4_li_mtx);
3009 if (ret)
3010 kfree(elr);
3011 return ret;
3012 }
3013
3014 /*
3015 * We do not need to lock anything since this is called on
3016 * module unload.
3017 */
ext4_destroy_lazyinit_thread(void)3018 static void ext4_destroy_lazyinit_thread(void)
3019 {
3020 /*
3021 * If thread exited earlier
3022 * there's nothing to be done.
3023 */
3024 if (!ext4_li_info || !ext4_lazyinit_task)
3025 return;
3026
3027 kthread_stop(ext4_lazyinit_task);
3028 }
3029
ext4_fill_super(struct super_block * sb,void * data,int silent)3030 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3031 __releases(kernel_lock)
3032 __acquires(kernel_lock)
3033 {
3034 char *orig_data = kstrdup(data, GFP_KERNEL);
3035 struct buffer_head *bh;
3036 struct ext4_super_block *es = NULL;
3037 struct ext4_sb_info *sbi;
3038 ext4_fsblk_t block;
3039 ext4_fsblk_t sb_block = get_sb_block(&data);
3040 ext4_fsblk_t logical_sb_block;
3041 unsigned long offset = 0;
3042 unsigned long journal_devnum = 0;
3043 unsigned long def_mount_opts;
3044 struct inode *root;
3045 char *cp;
3046 const char *descr;
3047 int ret = -ENOMEM;
3048 int blocksize;
3049 unsigned int db_count;
3050 unsigned int i;
3051 int needs_recovery, has_huge_files;
3052 __u64 blocks_count;
3053 int err;
3054 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3055 ext4_group_t first_not_zeroed;
3056
3057 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3058 if (!sbi)
3059 goto out_free_orig;
3060
3061 sbi->s_blockgroup_lock =
3062 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3063 if (!sbi->s_blockgroup_lock) {
3064 kfree(sbi);
3065 goto out_free_orig;
3066 }
3067 sb->s_fs_info = sbi;
3068 sbi->s_mount_opt = 0;
3069 sbi->s_resuid = EXT4_DEF_RESUID;
3070 sbi->s_resgid = EXT4_DEF_RESGID;
3071 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3072 sbi->s_sb_block = sb_block;
3073 if (sb->s_bdev->bd_part)
3074 sbi->s_sectors_written_start =
3075 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3076
3077 /* Cleanup superblock name */
3078 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3079 *cp = '!';
3080
3081 ret = -EINVAL;
3082 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3083 if (!blocksize) {
3084 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3085 goto out_fail;
3086 }
3087
3088 /*
3089 * The ext4 superblock will not be buffer aligned for other than 1kB
3090 * block sizes. We need to calculate the offset from buffer start.
3091 */
3092 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3093 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3094 offset = do_div(logical_sb_block, blocksize);
3095 } else {
3096 logical_sb_block = sb_block;
3097 }
3098
3099 if (!(bh = sb_bread(sb, logical_sb_block))) {
3100 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3101 goto out_fail;
3102 }
3103 /*
3104 * Note: s_es must be initialized as soon as possible because
3105 * some ext4 macro-instructions depend on its value
3106 */
3107 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3108 sbi->s_es = es;
3109 sb->s_magic = le16_to_cpu(es->s_magic);
3110 if (sb->s_magic != EXT4_SUPER_MAGIC)
3111 goto cantfind_ext4;
3112 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3113
3114 /* Set defaults before we parse the mount options */
3115 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3116 set_opt(sb, INIT_INODE_TABLE);
3117 if (def_mount_opts & EXT4_DEFM_DEBUG)
3118 set_opt(sb, DEBUG);
3119 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3120 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3121 "2.6.38");
3122 set_opt(sb, GRPID);
3123 }
3124 if (def_mount_opts & EXT4_DEFM_UID16)
3125 set_opt(sb, NO_UID32);
3126 /* xattr user namespace & acls are now defaulted on */
3127 #ifdef CONFIG_EXT4_FS_XATTR
3128 set_opt(sb, XATTR_USER);
3129 #endif
3130 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3131 set_opt(sb, POSIX_ACL);
3132 #endif
3133 set_opt(sb, MBLK_IO_SUBMIT);
3134 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3135 set_opt(sb, JOURNAL_DATA);
3136 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3137 set_opt(sb, ORDERED_DATA);
3138 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3139 set_opt(sb, WRITEBACK_DATA);
3140
3141 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3142 set_opt(sb, ERRORS_PANIC);
3143 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3144 set_opt(sb, ERRORS_CONT);
3145 else
3146 set_opt(sb, ERRORS_RO);
3147 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3148 set_opt(sb, BLOCK_VALIDITY);
3149 if (def_mount_opts & EXT4_DEFM_DISCARD)
3150 set_opt(sb, DISCARD);
3151
3152 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3153 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3154 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3155 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3156 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3157
3158 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3159 set_opt(sb, BARRIER);
3160
3161 /*
3162 * enable delayed allocation by default
3163 * Use -o nodelalloc to turn it off
3164 */
3165 if (!IS_EXT3_SB(sb) &&
3166 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3167 set_opt(sb, DELALLOC);
3168
3169 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3170 &journal_devnum, &journal_ioprio, NULL, 0)) {
3171 ext4_msg(sb, KERN_WARNING,
3172 "failed to parse options in superblock: %s",
3173 sbi->s_es->s_mount_opts);
3174 }
3175 if (!parse_options((char *) data, sb, &journal_devnum,
3176 &journal_ioprio, NULL, 0))
3177 goto failed_mount;
3178
3179 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3180 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3181
3182 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3183 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3184 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3185 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3186 ext4_msg(sb, KERN_WARNING,
3187 "feature flags set on rev 0 fs, "
3188 "running e2fsck is recommended");
3189
3190 /*
3191 * Check feature flags regardless of the revision level, since we
3192 * previously didn't change the revision level when setting the flags,
3193 * so there is a chance incompat flags are set on a rev 0 filesystem.
3194 */
3195 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3196 goto failed_mount;
3197
3198 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3199
3200 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3201 blocksize > EXT4_MAX_BLOCK_SIZE) {
3202 ext4_msg(sb, KERN_ERR,
3203 "Unsupported filesystem blocksize %d", blocksize);
3204 goto failed_mount;
3205 }
3206
3207 if (sb->s_blocksize != blocksize) {
3208 /* Validate the filesystem blocksize */
3209 if (!sb_set_blocksize(sb, blocksize)) {
3210 ext4_msg(sb, KERN_ERR, "bad block size %d",
3211 blocksize);
3212 goto failed_mount;
3213 }
3214
3215 brelse(bh);
3216 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3217 offset = do_div(logical_sb_block, blocksize);
3218 bh = sb_bread(sb, logical_sb_block);
3219 if (!bh) {
3220 ext4_msg(sb, KERN_ERR,
3221 "Can't read superblock on 2nd try");
3222 goto failed_mount;
3223 }
3224 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3225 sbi->s_es = es;
3226 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3227 ext4_msg(sb, KERN_ERR,
3228 "Magic mismatch, very weird!");
3229 goto failed_mount;
3230 }
3231 }
3232
3233 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3234 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3235 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3236 has_huge_files);
3237 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3238
3239 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3240 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3241 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3242 } else {
3243 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3244 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3245 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3246 (!is_power_of_2(sbi->s_inode_size)) ||
3247 (sbi->s_inode_size > blocksize)) {
3248 ext4_msg(sb, KERN_ERR,
3249 "unsupported inode size: %d",
3250 sbi->s_inode_size);
3251 goto failed_mount;
3252 }
3253 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3254 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3255 }
3256
3257 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3258 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3259 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3260 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3261 !is_power_of_2(sbi->s_desc_size)) {
3262 ext4_msg(sb, KERN_ERR,
3263 "unsupported descriptor size %lu",
3264 sbi->s_desc_size);
3265 goto failed_mount;
3266 }
3267 } else
3268 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3269
3270 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3271 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3272 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3273 goto cantfind_ext4;
3274
3275 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3276 if (sbi->s_inodes_per_block == 0)
3277 goto cantfind_ext4;
3278 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3279 sbi->s_inodes_per_block;
3280 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3281 sbi->s_sbh = bh;
3282 sbi->s_mount_state = le16_to_cpu(es->s_state);
3283 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3284 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3285
3286 for (i = 0; i < 4; i++)
3287 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3288 sbi->s_def_hash_version = es->s_def_hash_version;
3289 i = le32_to_cpu(es->s_flags);
3290 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3291 sbi->s_hash_unsigned = 3;
3292 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3293 #ifdef __CHAR_UNSIGNED__
3294 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3295 sbi->s_hash_unsigned = 3;
3296 #else
3297 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3298 #endif
3299 sb->s_dirt = 1;
3300 }
3301
3302 if (sbi->s_blocks_per_group > blocksize * 8) {
3303 ext4_msg(sb, KERN_ERR,
3304 "#blocks per group too big: %lu",
3305 sbi->s_blocks_per_group);
3306 goto failed_mount;
3307 }
3308 if (sbi->s_inodes_per_group > blocksize * 8) {
3309 ext4_msg(sb, KERN_ERR,
3310 "#inodes per group too big: %lu",
3311 sbi->s_inodes_per_group);
3312 goto failed_mount;
3313 }
3314
3315 /*
3316 * Test whether we have more sectors than will fit in sector_t,
3317 * and whether the max offset is addressable by the page cache.
3318 */
3319 err = generic_check_addressable(sb->s_blocksize_bits,
3320 ext4_blocks_count(es));
3321 if (err) {
3322 ext4_msg(sb, KERN_ERR, "filesystem"
3323 " too large to mount safely on this system");
3324 if (sizeof(sector_t) < 8)
3325 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3326 ret = err;
3327 goto failed_mount;
3328 }
3329
3330 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3331 goto cantfind_ext4;
3332
3333 /* check blocks count against device size */
3334 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3335 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3336 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3337 "exceeds size of device (%llu blocks)",
3338 ext4_blocks_count(es), blocks_count);
3339 goto failed_mount;
3340 }
3341
3342 /*
3343 * It makes no sense for the first data block to be beyond the end
3344 * of the filesystem.
3345 */
3346 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3347 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3348 "block %u is beyond end of filesystem (%llu)",
3349 le32_to_cpu(es->s_first_data_block),
3350 ext4_blocks_count(es));
3351 goto failed_mount;
3352 }
3353 blocks_count = (ext4_blocks_count(es) -
3354 le32_to_cpu(es->s_first_data_block) +
3355 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3356 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3357 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3358 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3359 "(block count %llu, first data block %u, "
3360 "blocks per group %lu)", sbi->s_groups_count,
3361 ext4_blocks_count(es),
3362 le32_to_cpu(es->s_first_data_block),
3363 EXT4_BLOCKS_PER_GROUP(sb));
3364 goto failed_mount;
3365 }
3366 sbi->s_groups_count = blocks_count;
3367 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3368 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3369 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3370 EXT4_DESC_PER_BLOCK(sb);
3371 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3372 GFP_KERNEL);
3373 if (sbi->s_group_desc == NULL) {
3374 ext4_msg(sb, KERN_ERR, "not enough memory");
3375 goto failed_mount;
3376 }
3377
3378 #ifdef CONFIG_PROC_FS
3379 if (ext4_proc_root)
3380 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3381 #endif
3382
3383 bgl_lock_init(sbi->s_blockgroup_lock);
3384
3385 for (i = 0; i < db_count; i++) {
3386 block = descriptor_loc(sb, logical_sb_block, i);
3387 sbi->s_group_desc[i] = sb_bread(sb, block);
3388 if (!sbi->s_group_desc[i]) {
3389 ext4_msg(sb, KERN_ERR,
3390 "can't read group descriptor %d", i);
3391 db_count = i;
3392 goto failed_mount2;
3393 }
3394 }
3395 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3396 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3397 goto failed_mount2;
3398 }
3399 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3400 if (!ext4_fill_flex_info(sb)) {
3401 ext4_msg(sb, KERN_ERR,
3402 "unable to initialize "
3403 "flex_bg meta info!");
3404 goto failed_mount2;
3405 }
3406
3407 sbi->s_gdb_count = db_count;
3408 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3409 spin_lock_init(&sbi->s_next_gen_lock);
3410
3411 init_timer(&sbi->s_err_report);
3412 sbi->s_err_report.function = print_daily_error_info;
3413 sbi->s_err_report.data = (unsigned long) sb;
3414
3415 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3416 ext4_count_free_blocks(sb));
3417 if (!err) {
3418 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3419 ext4_count_free_inodes(sb));
3420 }
3421 if (!err) {
3422 err = percpu_counter_init(&sbi->s_dirs_counter,
3423 ext4_count_dirs(sb));
3424 }
3425 if (!err) {
3426 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3427 }
3428 if (err) {
3429 ext4_msg(sb, KERN_ERR, "insufficient memory");
3430 goto failed_mount3;
3431 }
3432
3433 sbi->s_stripe = ext4_get_stripe_size(sbi);
3434 sbi->s_max_writeback_mb_bump = 128;
3435
3436 /*
3437 * set up enough so that it can read an inode
3438 */
3439 if (!test_opt(sb, NOLOAD) &&
3440 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3441 sb->s_op = &ext4_sops;
3442 else
3443 sb->s_op = &ext4_nojournal_sops;
3444 sb->s_export_op = &ext4_export_ops;
3445 sb->s_xattr = ext4_xattr_handlers;
3446 #ifdef CONFIG_QUOTA
3447 sb->s_qcop = &ext4_qctl_operations;
3448 sb->dq_op = &ext4_quota_operations;
3449 #endif
3450 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3451
3452 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3453 mutex_init(&sbi->s_orphan_lock);
3454 mutex_init(&sbi->s_resize_lock);
3455
3456 sb->s_root = NULL;
3457
3458 needs_recovery = (es->s_last_orphan != 0 ||
3459 EXT4_HAS_INCOMPAT_FEATURE(sb,
3460 EXT4_FEATURE_INCOMPAT_RECOVER));
3461
3462 /*
3463 * The first inode we look at is the journal inode. Don't try
3464 * root first: it may be modified in the journal!
3465 */
3466 if (!test_opt(sb, NOLOAD) &&
3467 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3468 if (ext4_load_journal(sb, es, journal_devnum))
3469 goto failed_mount3;
3470 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3471 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3472 ext4_msg(sb, KERN_ERR, "required journal recovery "
3473 "suppressed and not mounted read-only");
3474 goto failed_mount_wq;
3475 } else {
3476 clear_opt(sb, DATA_FLAGS);
3477 set_opt(sb, WRITEBACK_DATA);
3478 sbi->s_journal = NULL;
3479 needs_recovery = 0;
3480 goto no_journal;
3481 }
3482
3483 if (ext4_blocks_count(es) > 0xffffffffULL &&
3484 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3485 JBD2_FEATURE_INCOMPAT_64BIT)) {
3486 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3487 goto failed_mount_wq;
3488 }
3489
3490 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3491 jbd2_journal_set_features(sbi->s_journal,
3492 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3493 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3494 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3495 jbd2_journal_set_features(sbi->s_journal,
3496 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3497 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3498 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3499 } else {
3500 jbd2_journal_clear_features(sbi->s_journal,
3501 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3502 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3503 }
3504
3505 /* We have now updated the journal if required, so we can
3506 * validate the data journaling mode. */
3507 switch (test_opt(sb, DATA_FLAGS)) {
3508 case 0:
3509 /* No mode set, assume a default based on the journal
3510 * capabilities: ORDERED_DATA if the journal can
3511 * cope, else JOURNAL_DATA
3512 */
3513 if (jbd2_journal_check_available_features
3514 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3515 set_opt(sb, ORDERED_DATA);
3516 else
3517 set_opt(sb, JOURNAL_DATA);
3518 break;
3519
3520 case EXT4_MOUNT_ORDERED_DATA:
3521 case EXT4_MOUNT_WRITEBACK_DATA:
3522 if (!jbd2_journal_check_available_features
3523 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3524 ext4_msg(sb, KERN_ERR, "Journal does not support "
3525 "requested data journaling mode");
3526 goto failed_mount_wq;
3527 }
3528 default:
3529 break;
3530 }
3531 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3532
3533 /*
3534 * The journal may have updated the bg summary counts, so we
3535 * need to update the global counters.
3536 */
3537 percpu_counter_set(&sbi->s_freeblocks_counter,
3538 ext4_count_free_blocks(sb));
3539 percpu_counter_set(&sbi->s_freeinodes_counter,
3540 ext4_count_free_inodes(sb));
3541 percpu_counter_set(&sbi->s_dirs_counter,
3542 ext4_count_dirs(sb));
3543 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3544
3545 no_journal:
3546 /*
3547 * The maximum number of concurrent works can be high and
3548 * concurrency isn't really necessary. Limit it to 1.
3549 */
3550 EXT4_SB(sb)->dio_unwritten_wq =
3551 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3552 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3553 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3554 goto failed_mount_wq;
3555 }
3556
3557 /*
3558 * The jbd2_journal_load will have done any necessary log recovery,
3559 * so we can safely mount the rest of the filesystem now.
3560 */
3561
3562 root = ext4_iget(sb, EXT4_ROOT_INO);
3563 if (IS_ERR(root)) {
3564 ext4_msg(sb, KERN_ERR, "get root inode failed");
3565 ret = PTR_ERR(root);
3566 root = NULL;
3567 goto failed_mount4;
3568 }
3569 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3570 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3571 goto failed_mount4;
3572 }
3573 sb->s_root = d_alloc_root(root);
3574 if (!sb->s_root) {
3575 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3576 ret = -ENOMEM;
3577 goto failed_mount4;
3578 }
3579
3580 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3581
3582 /* determine the minimum size of new large inodes, if present */
3583 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3584 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3585 EXT4_GOOD_OLD_INODE_SIZE;
3586 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3587 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3588 if (sbi->s_want_extra_isize <
3589 le16_to_cpu(es->s_want_extra_isize))
3590 sbi->s_want_extra_isize =
3591 le16_to_cpu(es->s_want_extra_isize);
3592 if (sbi->s_want_extra_isize <
3593 le16_to_cpu(es->s_min_extra_isize))
3594 sbi->s_want_extra_isize =
3595 le16_to_cpu(es->s_min_extra_isize);
3596 }
3597 }
3598 /* Check if enough inode space is available */
3599 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3600 sbi->s_inode_size) {
3601 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3602 EXT4_GOOD_OLD_INODE_SIZE;
3603 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3604 "available");
3605 }
3606
3607 if (test_opt(sb, DELALLOC) &&
3608 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3609 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3610 "requested data journaling mode");
3611 clear_opt(sb, DELALLOC);
3612 }
3613 if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3615 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3616 "option - requested data journaling mode");
3617 clear_opt(sb, DIOREAD_NOLOCK);
3618 }
3619 if (sb->s_blocksize < PAGE_SIZE) {
3620 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3621 "option - block size is too small");
3622 clear_opt(sb, DIOREAD_NOLOCK);
3623 }
3624 }
3625
3626 err = ext4_setup_system_zone(sb);
3627 if (err) {
3628 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3629 "zone (%d)", err);
3630 goto failed_mount4;
3631 }
3632
3633 ext4_ext_init(sb);
3634 err = ext4_mb_init(sb, needs_recovery);
3635 if (err) {
3636 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3637 err);
3638 goto failed_mount4;
3639 }
3640
3641 err = ext4_register_li_request(sb, first_not_zeroed);
3642 if (err)
3643 goto failed_mount4;
3644
3645 sbi->s_kobj.kset = ext4_kset;
3646 init_completion(&sbi->s_kobj_unregister);
3647 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3648 "%s", sb->s_id);
3649 if (err) {
3650 ext4_mb_release(sb);
3651 ext4_ext_release(sb);
3652 goto failed_mount4;
3653 };
3654
3655 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3656 ext4_orphan_cleanup(sb, es);
3657 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3658 if (needs_recovery) {
3659 ext4_msg(sb, KERN_INFO, "recovery complete");
3660 ext4_mark_recovery_complete(sb, es);
3661 }
3662 if (EXT4_SB(sb)->s_journal) {
3663 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3664 descr = " journalled data mode";
3665 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3666 descr = " ordered data mode";
3667 else
3668 descr = " writeback data mode";
3669 } else
3670 descr = "out journal";
3671
3672 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3673 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3674 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3675
3676 if (es->s_error_count)
3677 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3678
3679 kfree(orig_data);
3680 return 0;
3681
3682 cantfind_ext4:
3683 if (!silent)
3684 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3685 goto failed_mount;
3686
3687 failed_mount4:
3688 iput(root);
3689 sb->s_root = NULL;
3690 ext4_msg(sb, KERN_ERR, "mount failed");
3691 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3692 failed_mount_wq:
3693 ext4_release_system_zone(sb);
3694 if (sbi->s_journal) {
3695 jbd2_journal_destroy(sbi->s_journal);
3696 sbi->s_journal = NULL;
3697 }
3698 failed_mount3:
3699 del_timer(&sbi->s_err_report);
3700 if (sbi->s_flex_groups) {
3701 if (is_vmalloc_addr(sbi->s_flex_groups))
3702 vfree(sbi->s_flex_groups);
3703 else
3704 kfree(sbi->s_flex_groups);
3705 }
3706 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3707 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3708 percpu_counter_destroy(&sbi->s_dirs_counter);
3709 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3710 failed_mount2:
3711 for (i = 0; i < db_count; i++)
3712 brelse(sbi->s_group_desc[i]);
3713 kfree(sbi->s_group_desc);
3714 failed_mount:
3715 if (sbi->s_proc) {
3716 remove_proc_entry(sb->s_id, ext4_proc_root);
3717 }
3718 #ifdef CONFIG_QUOTA
3719 for (i = 0; i < MAXQUOTAS; i++)
3720 kfree(sbi->s_qf_names[i]);
3721 #endif
3722 ext4_blkdev_remove(sbi);
3723 brelse(bh);
3724 out_fail:
3725 sb->s_fs_info = NULL;
3726 kfree(sbi->s_blockgroup_lock);
3727 kfree(sbi);
3728 out_free_orig:
3729 kfree(orig_data);
3730 return ret;
3731 }
3732
3733 /*
3734 * Setup any per-fs journal parameters now. We'll do this both on
3735 * initial mount, once the journal has been initialised but before we've
3736 * done any recovery; and again on any subsequent remount.
3737 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)3738 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3739 {
3740 struct ext4_sb_info *sbi = EXT4_SB(sb);
3741
3742 journal->j_commit_interval = sbi->s_commit_interval;
3743 journal->j_min_batch_time = sbi->s_min_batch_time;
3744 journal->j_max_batch_time = sbi->s_max_batch_time;
3745
3746 write_lock(&journal->j_state_lock);
3747 if (test_opt(sb, BARRIER))
3748 journal->j_flags |= JBD2_BARRIER;
3749 else
3750 journal->j_flags &= ~JBD2_BARRIER;
3751 if (test_opt(sb, DATA_ERR_ABORT))
3752 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3753 else
3754 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3755 write_unlock(&journal->j_state_lock);
3756 }
3757
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)3758 static journal_t *ext4_get_journal(struct super_block *sb,
3759 unsigned int journal_inum)
3760 {
3761 struct inode *journal_inode;
3762 journal_t *journal;
3763
3764 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3765
3766 /* First, test for the existence of a valid inode on disk. Bad
3767 * things happen if we iget() an unused inode, as the subsequent
3768 * iput() will try to delete it. */
3769
3770 journal_inode = ext4_iget(sb, journal_inum);
3771 if (IS_ERR(journal_inode)) {
3772 ext4_msg(sb, KERN_ERR, "no journal found");
3773 return NULL;
3774 }
3775 if (!journal_inode->i_nlink) {
3776 make_bad_inode(journal_inode);
3777 iput(journal_inode);
3778 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3779 return NULL;
3780 }
3781
3782 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3783 journal_inode, journal_inode->i_size);
3784 if (!S_ISREG(journal_inode->i_mode)) {
3785 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3786 iput(journal_inode);
3787 return NULL;
3788 }
3789
3790 journal = jbd2_journal_init_inode(journal_inode);
3791 if (!journal) {
3792 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3793 iput(journal_inode);
3794 return NULL;
3795 }
3796 journal->j_private = sb;
3797 ext4_init_journal_params(sb, journal);
3798 return journal;
3799 }
3800
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)3801 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3802 dev_t j_dev)
3803 {
3804 struct buffer_head *bh;
3805 journal_t *journal;
3806 ext4_fsblk_t start;
3807 ext4_fsblk_t len;
3808 int hblock, blocksize;
3809 ext4_fsblk_t sb_block;
3810 unsigned long offset;
3811 struct ext4_super_block *es;
3812 struct block_device *bdev;
3813
3814 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3815
3816 bdev = ext4_blkdev_get(j_dev, sb);
3817 if (bdev == NULL)
3818 return NULL;
3819
3820 blocksize = sb->s_blocksize;
3821 hblock = bdev_logical_block_size(bdev);
3822 if (blocksize < hblock) {
3823 ext4_msg(sb, KERN_ERR,
3824 "blocksize too small for journal device");
3825 goto out_bdev;
3826 }
3827
3828 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3829 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3830 set_blocksize(bdev, blocksize);
3831 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3832 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3833 "external journal");
3834 goto out_bdev;
3835 }
3836
3837 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3838 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3839 !(le32_to_cpu(es->s_feature_incompat) &
3840 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3841 ext4_msg(sb, KERN_ERR, "external journal has "
3842 "bad superblock");
3843 brelse(bh);
3844 goto out_bdev;
3845 }
3846
3847 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3848 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3849 brelse(bh);
3850 goto out_bdev;
3851 }
3852
3853 len = ext4_blocks_count(es);
3854 start = sb_block + 1;
3855 brelse(bh); /* we're done with the superblock */
3856
3857 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3858 start, len, blocksize);
3859 if (!journal) {
3860 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3861 goto out_bdev;
3862 }
3863 journal->j_private = sb;
3864 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3865 wait_on_buffer(journal->j_sb_buffer);
3866 if (!buffer_uptodate(journal->j_sb_buffer)) {
3867 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3868 goto out_journal;
3869 }
3870 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3871 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3872 "user (unsupported) - %d",
3873 be32_to_cpu(journal->j_superblock->s_nr_users));
3874 goto out_journal;
3875 }
3876 EXT4_SB(sb)->journal_bdev = bdev;
3877 ext4_init_journal_params(sb, journal);
3878 return journal;
3879
3880 out_journal:
3881 jbd2_journal_destroy(journal);
3882 out_bdev:
3883 ext4_blkdev_put(bdev);
3884 return NULL;
3885 }
3886
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)3887 static int ext4_load_journal(struct super_block *sb,
3888 struct ext4_super_block *es,
3889 unsigned long journal_devnum)
3890 {
3891 journal_t *journal;
3892 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3893 dev_t journal_dev;
3894 int err = 0;
3895 int really_read_only;
3896
3897 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3898
3899 if (journal_devnum &&
3900 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3901 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3902 "numbers have changed");
3903 journal_dev = new_decode_dev(journal_devnum);
3904 } else
3905 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3906
3907 really_read_only = bdev_read_only(sb->s_bdev);
3908
3909 /*
3910 * Are we loading a blank journal or performing recovery after a
3911 * crash? For recovery, we need to check in advance whether we
3912 * can get read-write access to the device.
3913 */
3914 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3915 if (sb->s_flags & MS_RDONLY) {
3916 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3917 "required on readonly filesystem");
3918 if (really_read_only) {
3919 ext4_msg(sb, KERN_ERR, "write access "
3920 "unavailable, cannot proceed");
3921 return -EROFS;
3922 }
3923 ext4_msg(sb, KERN_INFO, "write access will "
3924 "be enabled during recovery");
3925 }
3926 }
3927
3928 if (journal_inum && journal_dev) {
3929 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3930 "and inode journals!");
3931 return -EINVAL;
3932 }
3933
3934 if (journal_inum) {
3935 if (!(journal = ext4_get_journal(sb, journal_inum)))
3936 return -EINVAL;
3937 } else {
3938 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3939 return -EINVAL;
3940 }
3941
3942 if (!(journal->j_flags & JBD2_BARRIER))
3943 ext4_msg(sb, KERN_INFO, "barriers disabled");
3944
3945 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3946 err = jbd2_journal_update_format(journal);
3947 if (err) {
3948 ext4_msg(sb, KERN_ERR, "error updating journal");
3949 jbd2_journal_destroy(journal);
3950 return err;
3951 }
3952 }
3953
3954 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3955 err = jbd2_journal_wipe(journal, !really_read_only);
3956 if (!err) {
3957 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3958 if (save)
3959 memcpy(save, ((char *) es) +
3960 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3961 err = jbd2_journal_load(journal);
3962 if (save)
3963 memcpy(((char *) es) + EXT4_S_ERR_START,
3964 save, EXT4_S_ERR_LEN);
3965 kfree(save);
3966 }
3967
3968 if (err) {
3969 ext4_msg(sb, KERN_ERR, "error loading journal");
3970 jbd2_journal_destroy(journal);
3971 return err;
3972 }
3973
3974 EXT4_SB(sb)->s_journal = journal;
3975 ext4_clear_journal_err(sb, es);
3976
3977 if (!really_read_only && journal_devnum &&
3978 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3979 es->s_journal_dev = cpu_to_le32(journal_devnum);
3980
3981 /* Make sure we flush the recovery flag to disk. */
3982 ext4_commit_super(sb, 1);
3983 }
3984
3985 return 0;
3986 }
3987
ext4_commit_super(struct super_block * sb,int sync)3988 static int ext4_commit_super(struct super_block *sb, int sync)
3989 {
3990 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3991 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3992 int error = 0;
3993
3994 if (!sbh)
3995 return error;
3996 if (buffer_write_io_error(sbh)) {
3997 /*
3998 * Oh, dear. A previous attempt to write the
3999 * superblock failed. This could happen because the
4000 * USB device was yanked out. Or it could happen to
4001 * be a transient write error and maybe the block will
4002 * be remapped. Nothing we can do but to retry the
4003 * write and hope for the best.
4004 */
4005 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4006 "superblock detected");
4007 clear_buffer_write_io_error(sbh);
4008 set_buffer_uptodate(sbh);
4009 }
4010 /*
4011 * If the file system is mounted read-only, don't update the
4012 * superblock write time. This avoids updating the superblock
4013 * write time when we are mounting the root file system
4014 * read/only but we need to replay the journal; at that point,
4015 * for people who are east of GMT and who make their clock
4016 * tick in localtime for Windows bug-for-bug compatibility,
4017 * the clock is set in the future, and this will cause e2fsck
4018 * to complain and force a full file system check.
4019 */
4020 if (!(sb->s_flags & MS_RDONLY))
4021 es->s_wtime = cpu_to_le32(get_seconds());
4022 if (sb->s_bdev->bd_part)
4023 es->s_kbytes_written =
4024 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4025 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4026 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4027 else
4028 es->s_kbytes_written =
4029 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4030 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4031 &EXT4_SB(sb)->s_freeblocks_counter));
4032 es->s_free_inodes_count =
4033 cpu_to_le32(percpu_counter_sum_positive(
4034 &EXT4_SB(sb)->s_freeinodes_counter));
4035 sb->s_dirt = 0;
4036 BUFFER_TRACE(sbh, "marking dirty");
4037 mark_buffer_dirty(sbh);
4038 if (sync) {
4039 error = sync_dirty_buffer(sbh);
4040 if (error)
4041 return error;
4042
4043 error = buffer_write_io_error(sbh);
4044 if (error) {
4045 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4046 "superblock");
4047 clear_buffer_write_io_error(sbh);
4048 set_buffer_uptodate(sbh);
4049 }
4050 }
4051 return error;
4052 }
4053
4054 /*
4055 * Have we just finished recovery? If so, and if we are mounting (or
4056 * remounting) the filesystem readonly, then we will end up with a
4057 * consistent fs on disk. Record that fact.
4058 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4059 static void ext4_mark_recovery_complete(struct super_block *sb,
4060 struct ext4_super_block *es)
4061 {
4062 journal_t *journal = EXT4_SB(sb)->s_journal;
4063
4064 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4065 BUG_ON(journal != NULL);
4066 return;
4067 }
4068 jbd2_journal_lock_updates(journal);
4069 if (jbd2_journal_flush(journal) < 0)
4070 goto out;
4071
4072 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4073 sb->s_flags & MS_RDONLY) {
4074 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4075 ext4_commit_super(sb, 1);
4076 }
4077
4078 out:
4079 jbd2_journal_unlock_updates(journal);
4080 }
4081
4082 /*
4083 * If we are mounting (or read-write remounting) a filesystem whose journal
4084 * has recorded an error from a previous lifetime, move that error to the
4085 * main filesystem now.
4086 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4087 static void ext4_clear_journal_err(struct super_block *sb,
4088 struct ext4_super_block *es)
4089 {
4090 journal_t *journal;
4091 int j_errno;
4092 const char *errstr;
4093
4094 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4095
4096 journal = EXT4_SB(sb)->s_journal;
4097
4098 /*
4099 * Now check for any error status which may have been recorded in the
4100 * journal by a prior ext4_error() or ext4_abort()
4101 */
4102
4103 j_errno = jbd2_journal_errno(journal);
4104 if (j_errno) {
4105 char nbuf[16];
4106
4107 errstr = ext4_decode_error(sb, j_errno, nbuf);
4108 ext4_warning(sb, "Filesystem error recorded "
4109 "from previous mount: %s", errstr);
4110 ext4_warning(sb, "Marking fs in need of filesystem check.");
4111
4112 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4113 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4114 ext4_commit_super(sb, 1);
4115
4116 jbd2_journal_clear_err(journal);
4117 }
4118 }
4119
4120 /*
4121 * Force the running and committing transactions to commit,
4122 * and wait on the commit.
4123 */
ext4_force_commit(struct super_block * sb)4124 int ext4_force_commit(struct super_block *sb)
4125 {
4126 journal_t *journal;
4127 int ret = 0;
4128
4129 if (sb->s_flags & MS_RDONLY)
4130 return 0;
4131
4132 journal = EXT4_SB(sb)->s_journal;
4133 if (journal) {
4134 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4135 ret = ext4_journal_force_commit(journal);
4136 }
4137
4138 return ret;
4139 }
4140
ext4_write_super(struct super_block * sb)4141 static void ext4_write_super(struct super_block *sb)
4142 {
4143 lock_super(sb);
4144 ext4_commit_super(sb, 1);
4145 unlock_super(sb);
4146 }
4147
ext4_sync_fs(struct super_block * sb,int wait)4148 static int ext4_sync_fs(struct super_block *sb, int wait)
4149 {
4150 int ret = 0;
4151 tid_t target;
4152 struct ext4_sb_info *sbi = EXT4_SB(sb);
4153
4154 trace_ext4_sync_fs(sb, wait);
4155 flush_workqueue(sbi->dio_unwritten_wq);
4156 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4157 if (wait)
4158 jbd2_log_wait_commit(sbi->s_journal, target);
4159 }
4160 return ret;
4161 }
4162
4163 /*
4164 * LVM calls this function before a (read-only) snapshot is created. This
4165 * gives us a chance to flush the journal completely and mark the fs clean.
4166 *
4167 * Note that only this function cannot bring a filesystem to be in a clean
4168 * state independently, because ext4 prevents a new handle from being started
4169 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4170 * the upper layer.
4171 */
ext4_freeze(struct super_block * sb)4172 static int ext4_freeze(struct super_block *sb)
4173 {
4174 int error = 0;
4175 journal_t *journal;
4176
4177 if (sb->s_flags & MS_RDONLY)
4178 return 0;
4179
4180 journal = EXT4_SB(sb)->s_journal;
4181
4182 /* Now we set up the journal barrier. */
4183 jbd2_journal_lock_updates(journal);
4184
4185 /*
4186 * Don't clear the needs_recovery flag if we failed to flush
4187 * the journal.
4188 */
4189 error = jbd2_journal_flush(journal);
4190 if (error < 0)
4191 goto out;
4192
4193 /* Journal blocked and flushed, clear needs_recovery flag. */
4194 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4195 error = ext4_commit_super(sb, 1);
4196 out:
4197 /* we rely on s_frozen to stop further updates */
4198 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4199 return error;
4200 }
4201
4202 /*
4203 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4204 * flag here, even though the filesystem is not technically dirty yet.
4205 */
ext4_unfreeze(struct super_block * sb)4206 static int ext4_unfreeze(struct super_block *sb)
4207 {
4208 if (sb->s_flags & MS_RDONLY)
4209 return 0;
4210
4211 lock_super(sb);
4212 /* Reset the needs_recovery flag before the fs is unlocked. */
4213 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4214 ext4_commit_super(sb, 1);
4215 unlock_super(sb);
4216 return 0;
4217 }
4218
4219 /*
4220 * Structure to save mount options for ext4_remount's benefit
4221 */
4222 struct ext4_mount_options {
4223 unsigned long s_mount_opt;
4224 unsigned long s_mount_opt2;
4225 uid_t s_resuid;
4226 gid_t s_resgid;
4227 unsigned long s_commit_interval;
4228 u32 s_min_batch_time, s_max_batch_time;
4229 #ifdef CONFIG_QUOTA
4230 int s_jquota_fmt;
4231 char *s_qf_names[MAXQUOTAS];
4232 #endif
4233 };
4234
ext4_remount(struct super_block * sb,int * flags,char * data)4235 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4236 {
4237 struct ext4_super_block *es;
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239 ext4_fsblk_t n_blocks_count = 0;
4240 unsigned long old_sb_flags;
4241 struct ext4_mount_options old_opts;
4242 int enable_quota = 0;
4243 ext4_group_t g;
4244 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4245 int err;
4246 #ifdef CONFIG_QUOTA
4247 int i;
4248 #endif
4249 char *orig_data = kstrdup(data, GFP_KERNEL);
4250
4251 /* Store the original options */
4252 lock_super(sb);
4253 old_sb_flags = sb->s_flags;
4254 old_opts.s_mount_opt = sbi->s_mount_opt;
4255 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4256 old_opts.s_resuid = sbi->s_resuid;
4257 old_opts.s_resgid = sbi->s_resgid;
4258 old_opts.s_commit_interval = sbi->s_commit_interval;
4259 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4260 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4261 #ifdef CONFIG_QUOTA
4262 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4263 for (i = 0; i < MAXQUOTAS; i++)
4264 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4265 #endif
4266 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4267 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4268
4269 /*
4270 * Allow the "check" option to be passed as a remount option.
4271 */
4272 if (!parse_options(data, sb, NULL, &journal_ioprio,
4273 &n_blocks_count, 1)) {
4274 err = -EINVAL;
4275 goto restore_opts;
4276 }
4277
4278 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4279 ext4_abort(sb, "Abort forced by user");
4280
4281 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4282 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4283
4284 es = sbi->s_es;
4285
4286 if (sbi->s_journal) {
4287 ext4_init_journal_params(sb, sbi->s_journal);
4288 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4289 }
4290
4291 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4292 n_blocks_count > ext4_blocks_count(es)) {
4293 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4294 err = -EROFS;
4295 goto restore_opts;
4296 }
4297
4298 if (*flags & MS_RDONLY) {
4299 err = dquot_suspend(sb, -1);
4300 if (err < 0)
4301 goto restore_opts;
4302
4303 /*
4304 * First of all, the unconditional stuff we have to do
4305 * to disable replay of the journal when we next remount
4306 */
4307 sb->s_flags |= MS_RDONLY;
4308
4309 /*
4310 * OK, test if we are remounting a valid rw partition
4311 * readonly, and if so set the rdonly flag and then
4312 * mark the partition as valid again.
4313 */
4314 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4315 (sbi->s_mount_state & EXT4_VALID_FS))
4316 es->s_state = cpu_to_le16(sbi->s_mount_state);
4317
4318 if (sbi->s_journal)
4319 ext4_mark_recovery_complete(sb, es);
4320 } else {
4321 /* Make sure we can mount this feature set readwrite */
4322 if (!ext4_feature_set_ok(sb, 0)) {
4323 err = -EROFS;
4324 goto restore_opts;
4325 }
4326 /*
4327 * Make sure the group descriptor checksums
4328 * are sane. If they aren't, refuse to remount r/w.
4329 */
4330 for (g = 0; g < sbi->s_groups_count; g++) {
4331 struct ext4_group_desc *gdp =
4332 ext4_get_group_desc(sb, g, NULL);
4333
4334 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4335 ext4_msg(sb, KERN_ERR,
4336 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4337 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4338 le16_to_cpu(gdp->bg_checksum));
4339 err = -EINVAL;
4340 goto restore_opts;
4341 }
4342 }
4343
4344 /*
4345 * If we have an unprocessed orphan list hanging
4346 * around from a previously readonly bdev mount,
4347 * require a full umount/remount for now.
4348 */
4349 if (es->s_last_orphan) {
4350 ext4_msg(sb, KERN_WARNING, "Couldn't "
4351 "remount RDWR because of unprocessed "
4352 "orphan inode list. Please "
4353 "umount/remount instead");
4354 err = -EINVAL;
4355 goto restore_opts;
4356 }
4357
4358 /*
4359 * Mounting a RDONLY partition read-write, so reread
4360 * and store the current valid flag. (It may have
4361 * been changed by e2fsck since we originally mounted
4362 * the partition.)
4363 */
4364 if (sbi->s_journal)
4365 ext4_clear_journal_err(sb, es);
4366 sbi->s_mount_state = le16_to_cpu(es->s_state);
4367 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4368 goto restore_opts;
4369 if (!ext4_setup_super(sb, es, 0))
4370 sb->s_flags &= ~MS_RDONLY;
4371 enable_quota = 1;
4372 }
4373 }
4374
4375 /*
4376 * Reinitialize lazy itable initialization thread based on
4377 * current settings
4378 */
4379 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4380 ext4_unregister_li_request(sb);
4381 else {
4382 ext4_group_t first_not_zeroed;
4383 first_not_zeroed = ext4_has_uninit_itable(sb);
4384 ext4_register_li_request(sb, first_not_zeroed);
4385 }
4386
4387 ext4_setup_system_zone(sb);
4388 if (sbi->s_journal == NULL)
4389 ext4_commit_super(sb, 1);
4390
4391 #ifdef CONFIG_QUOTA
4392 /* Release old quota file names */
4393 for (i = 0; i < MAXQUOTAS; i++)
4394 if (old_opts.s_qf_names[i] &&
4395 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4396 kfree(old_opts.s_qf_names[i]);
4397 #endif
4398 unlock_super(sb);
4399 if (enable_quota)
4400 dquot_resume(sb, -1);
4401
4402 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4403 kfree(orig_data);
4404 return 0;
4405
4406 restore_opts:
4407 sb->s_flags = old_sb_flags;
4408 sbi->s_mount_opt = old_opts.s_mount_opt;
4409 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4410 sbi->s_resuid = old_opts.s_resuid;
4411 sbi->s_resgid = old_opts.s_resgid;
4412 sbi->s_commit_interval = old_opts.s_commit_interval;
4413 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4414 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4415 #ifdef CONFIG_QUOTA
4416 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4417 for (i = 0; i < MAXQUOTAS; i++) {
4418 if (sbi->s_qf_names[i] &&
4419 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4420 kfree(sbi->s_qf_names[i]);
4421 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4422 }
4423 #endif
4424 unlock_super(sb);
4425 kfree(orig_data);
4426 return err;
4427 }
4428
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4429 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4430 {
4431 struct super_block *sb = dentry->d_sb;
4432 struct ext4_sb_info *sbi = EXT4_SB(sb);
4433 struct ext4_super_block *es = sbi->s_es;
4434 u64 fsid;
4435
4436 if (test_opt(sb, MINIX_DF)) {
4437 sbi->s_overhead_last = 0;
4438 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4439 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4440 ext4_fsblk_t overhead = 0;
4441
4442 /*
4443 * Compute the overhead (FS structures). This is constant
4444 * for a given filesystem unless the number of block groups
4445 * changes so we cache the previous value until it does.
4446 */
4447
4448 /*
4449 * All of the blocks before first_data_block are
4450 * overhead
4451 */
4452 overhead = le32_to_cpu(es->s_first_data_block);
4453
4454 /*
4455 * Add the overhead attributed to the superblock and
4456 * block group descriptors. If the sparse superblocks
4457 * feature is turned on, then not all groups have this.
4458 */
4459 for (i = 0; i < ngroups; i++) {
4460 overhead += ext4_bg_has_super(sb, i) +
4461 ext4_bg_num_gdb(sb, i);
4462 cond_resched();
4463 }
4464
4465 /*
4466 * Every block group has an inode bitmap, a block
4467 * bitmap, and an inode table.
4468 */
4469 overhead += ngroups * (2 + sbi->s_itb_per_group);
4470 sbi->s_overhead_last = overhead;
4471 smp_wmb();
4472 sbi->s_blocks_last = ext4_blocks_count(es);
4473 }
4474
4475 buf->f_type = EXT4_SUPER_MAGIC;
4476 buf->f_bsize = sb->s_blocksize;
4477 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4478 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4479 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4480 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4481 if (buf->f_bfree < ext4_r_blocks_count(es))
4482 buf->f_bavail = 0;
4483 buf->f_files = le32_to_cpu(es->s_inodes_count);
4484 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4485 buf->f_namelen = EXT4_NAME_LEN;
4486 fsid = le64_to_cpup((void *)es->s_uuid) ^
4487 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4488 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4489 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4490
4491 return 0;
4492 }
4493
4494 /* Helper function for writing quotas on sync - we need to start transaction
4495 * before quota file is locked for write. Otherwise the are possible deadlocks:
4496 * Process 1 Process 2
4497 * ext4_create() quota_sync()
4498 * jbd2_journal_start() write_dquot()
4499 * dquot_initialize() down(dqio_mutex)
4500 * down(dqio_mutex) jbd2_journal_start()
4501 *
4502 */
4503
4504 #ifdef CONFIG_QUOTA
4505
dquot_to_inode(struct dquot * dquot)4506 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4507 {
4508 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4509 }
4510
ext4_write_dquot(struct dquot * dquot)4511 static int ext4_write_dquot(struct dquot *dquot)
4512 {
4513 int ret, err;
4514 handle_t *handle;
4515 struct inode *inode;
4516
4517 inode = dquot_to_inode(dquot);
4518 handle = ext4_journal_start(inode,
4519 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4520 if (IS_ERR(handle))
4521 return PTR_ERR(handle);
4522 ret = dquot_commit(dquot);
4523 err = ext4_journal_stop(handle);
4524 if (!ret)
4525 ret = err;
4526 return ret;
4527 }
4528
ext4_acquire_dquot(struct dquot * dquot)4529 static int ext4_acquire_dquot(struct dquot *dquot)
4530 {
4531 int ret, err;
4532 handle_t *handle;
4533
4534 handle = ext4_journal_start(dquot_to_inode(dquot),
4535 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4536 if (IS_ERR(handle))
4537 return PTR_ERR(handle);
4538 ret = dquot_acquire(dquot);
4539 err = ext4_journal_stop(handle);
4540 if (!ret)
4541 ret = err;
4542 return ret;
4543 }
4544
ext4_release_dquot(struct dquot * dquot)4545 static int ext4_release_dquot(struct dquot *dquot)
4546 {
4547 int ret, err;
4548 handle_t *handle;
4549
4550 handle = ext4_journal_start(dquot_to_inode(dquot),
4551 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4552 if (IS_ERR(handle)) {
4553 /* Release dquot anyway to avoid endless cycle in dqput() */
4554 dquot_release(dquot);
4555 return PTR_ERR(handle);
4556 }
4557 ret = dquot_release(dquot);
4558 err = ext4_journal_stop(handle);
4559 if (!ret)
4560 ret = err;
4561 return ret;
4562 }
4563
ext4_mark_dquot_dirty(struct dquot * dquot)4564 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4565 {
4566 /* Are we journaling quotas? */
4567 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4568 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4569 dquot_mark_dquot_dirty(dquot);
4570 return ext4_write_dquot(dquot);
4571 } else {
4572 return dquot_mark_dquot_dirty(dquot);
4573 }
4574 }
4575
ext4_write_info(struct super_block * sb,int type)4576 static int ext4_write_info(struct super_block *sb, int type)
4577 {
4578 int ret, err;
4579 handle_t *handle;
4580
4581 /* Data block + inode block */
4582 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4583 if (IS_ERR(handle))
4584 return PTR_ERR(handle);
4585 ret = dquot_commit_info(sb, type);
4586 err = ext4_journal_stop(handle);
4587 if (!ret)
4588 ret = err;
4589 return ret;
4590 }
4591
4592 /*
4593 * Turn on quotas during mount time - we need to find
4594 * the quota file and such...
4595 */
ext4_quota_on_mount(struct super_block * sb,int type)4596 static int ext4_quota_on_mount(struct super_block *sb, int type)
4597 {
4598 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4599 EXT4_SB(sb)->s_jquota_fmt, type);
4600 }
4601
4602 /*
4603 * Standard function to be called on quota_on
4604 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4605 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4606 struct path *path)
4607 {
4608 int err;
4609
4610 if (!test_opt(sb, QUOTA))
4611 return -EINVAL;
4612
4613 /* Quotafile not on the same filesystem? */
4614 if (path->mnt->mnt_sb != sb)
4615 return -EXDEV;
4616 /* Journaling quota? */
4617 if (EXT4_SB(sb)->s_qf_names[type]) {
4618 /* Quotafile not in fs root? */
4619 if (path->dentry->d_parent != sb->s_root)
4620 ext4_msg(sb, KERN_WARNING,
4621 "Quota file not on filesystem root. "
4622 "Journaled quota will not work");
4623 }
4624
4625 /*
4626 * When we journal data on quota file, we have to flush journal to see
4627 * all updates to the file when we bypass pagecache...
4628 */
4629 if (EXT4_SB(sb)->s_journal &&
4630 ext4_should_journal_data(path->dentry->d_inode)) {
4631 /*
4632 * We don't need to lock updates but journal_flush() could
4633 * otherwise be livelocked...
4634 */
4635 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4636 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4637 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4638 if (err)
4639 return err;
4640 }
4641
4642 return dquot_quota_on(sb, type, format_id, path);
4643 }
4644
ext4_quota_off(struct super_block * sb,int type)4645 static int ext4_quota_off(struct super_block *sb, int type)
4646 {
4647 struct inode *inode = sb_dqopt(sb)->files[type];
4648 handle_t *handle;
4649
4650 /* Force all delayed allocation blocks to be allocated.
4651 * Caller already holds s_umount sem */
4652 if (test_opt(sb, DELALLOC))
4653 sync_filesystem(sb);
4654
4655 /* Update modification times of quota files when userspace can
4656 * start looking at them */
4657 handle = ext4_journal_start(inode, 1);
4658 if (IS_ERR(handle))
4659 goto out;
4660 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4661 ext4_mark_inode_dirty(handle, inode);
4662 ext4_journal_stop(handle);
4663
4664 out:
4665 return dquot_quota_off(sb, type);
4666 }
4667
4668 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4669 * acquiring the locks... As quota files are never truncated and quota code
4670 * itself serializes the operations (and no one else should touch the files)
4671 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)4672 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4673 size_t len, loff_t off)
4674 {
4675 struct inode *inode = sb_dqopt(sb)->files[type];
4676 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4677 int err = 0;
4678 int offset = off & (sb->s_blocksize - 1);
4679 int tocopy;
4680 size_t toread;
4681 struct buffer_head *bh;
4682 loff_t i_size = i_size_read(inode);
4683
4684 if (off > i_size)
4685 return 0;
4686 if (off+len > i_size)
4687 len = i_size-off;
4688 toread = len;
4689 while (toread > 0) {
4690 tocopy = sb->s_blocksize - offset < toread ?
4691 sb->s_blocksize - offset : toread;
4692 bh = ext4_bread(NULL, inode, blk, 0, &err);
4693 if (err)
4694 return err;
4695 if (!bh) /* A hole? */
4696 memset(data, 0, tocopy);
4697 else
4698 memcpy(data, bh->b_data+offset, tocopy);
4699 brelse(bh);
4700 offset = 0;
4701 toread -= tocopy;
4702 data += tocopy;
4703 blk++;
4704 }
4705 return len;
4706 }
4707
4708 /* Write to quotafile (we know the transaction is already started and has
4709 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)4710 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4711 const char *data, size_t len, loff_t off)
4712 {
4713 struct inode *inode = sb_dqopt(sb)->files[type];
4714 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4715 int err = 0;
4716 int offset = off & (sb->s_blocksize - 1);
4717 struct buffer_head *bh;
4718 handle_t *handle = journal_current_handle();
4719
4720 if (EXT4_SB(sb)->s_journal && !handle) {
4721 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4722 " cancelled because transaction is not started",
4723 (unsigned long long)off, (unsigned long long)len);
4724 return -EIO;
4725 }
4726 /*
4727 * Since we account only one data block in transaction credits,
4728 * then it is impossible to cross a block boundary.
4729 */
4730 if (sb->s_blocksize - offset < len) {
4731 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4732 " cancelled because not block aligned",
4733 (unsigned long long)off, (unsigned long long)len);
4734 return -EIO;
4735 }
4736
4737 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4738 bh = ext4_bread(handle, inode, blk, 1, &err);
4739 if (!bh)
4740 goto out;
4741 err = ext4_journal_get_write_access(handle, bh);
4742 if (err) {
4743 brelse(bh);
4744 goto out;
4745 }
4746 lock_buffer(bh);
4747 memcpy(bh->b_data+offset, data, len);
4748 flush_dcache_page(bh->b_page);
4749 unlock_buffer(bh);
4750 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4751 brelse(bh);
4752 out:
4753 if (err) {
4754 mutex_unlock(&inode->i_mutex);
4755 return err;
4756 }
4757 if (inode->i_size < off + len) {
4758 i_size_write(inode, off + len);
4759 EXT4_I(inode)->i_disksize = inode->i_size;
4760 ext4_mark_inode_dirty(handle, inode);
4761 }
4762 mutex_unlock(&inode->i_mutex);
4763 return len;
4764 }
4765
4766 #endif
4767
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4768 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4769 const char *dev_name, void *data)
4770 {
4771 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4772 }
4773
4774 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4775 static struct file_system_type ext2_fs_type = {
4776 .owner = THIS_MODULE,
4777 .name = "ext2",
4778 .mount = ext4_mount,
4779 .kill_sb = kill_block_super,
4780 .fs_flags = FS_REQUIRES_DEV,
4781 };
4782
register_as_ext2(void)4783 static inline void register_as_ext2(void)
4784 {
4785 int err = register_filesystem(&ext2_fs_type);
4786 if (err)
4787 printk(KERN_WARNING
4788 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4789 }
4790
unregister_as_ext2(void)4791 static inline void unregister_as_ext2(void)
4792 {
4793 unregister_filesystem(&ext2_fs_type);
4794 }
4795 MODULE_ALIAS("ext2");
4796 #else
register_as_ext2(void)4797 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)4798 static inline void unregister_as_ext2(void) { }
4799 #endif
4800
4801 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)4802 static inline void register_as_ext3(void)
4803 {
4804 int err = register_filesystem(&ext3_fs_type);
4805 if (err)
4806 printk(KERN_WARNING
4807 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4808 }
4809
unregister_as_ext3(void)4810 static inline void unregister_as_ext3(void)
4811 {
4812 unregister_filesystem(&ext3_fs_type);
4813 }
4814 MODULE_ALIAS("ext3");
4815 #else
register_as_ext3(void)4816 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)4817 static inline void unregister_as_ext3(void) { }
4818 #endif
4819
4820 static struct file_system_type ext4_fs_type = {
4821 .owner = THIS_MODULE,
4822 .name = "ext4",
4823 .mount = ext4_mount,
4824 .kill_sb = kill_block_super,
4825 .fs_flags = FS_REQUIRES_DEV,
4826 };
4827
ext4_init_feat_adverts(void)4828 static int __init ext4_init_feat_adverts(void)
4829 {
4830 struct ext4_features *ef;
4831 int ret = -ENOMEM;
4832
4833 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4834 if (!ef)
4835 goto out;
4836
4837 ef->f_kobj.kset = ext4_kset;
4838 init_completion(&ef->f_kobj_unregister);
4839 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4840 "features");
4841 if (ret) {
4842 kfree(ef);
4843 goto out;
4844 }
4845
4846 ext4_feat = ef;
4847 ret = 0;
4848 out:
4849 return ret;
4850 }
4851
ext4_exit_feat_adverts(void)4852 static void ext4_exit_feat_adverts(void)
4853 {
4854 kobject_put(&ext4_feat->f_kobj);
4855 wait_for_completion(&ext4_feat->f_kobj_unregister);
4856 kfree(ext4_feat);
4857 }
4858
4859 /* Shared across all ext4 file systems */
4860 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4861 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4862
ext4_init_fs(void)4863 static int __init ext4_init_fs(void)
4864 {
4865 int i, err;
4866
4867 ext4_check_flag_values();
4868
4869 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4870 mutex_init(&ext4__aio_mutex[i]);
4871 init_waitqueue_head(&ext4__ioend_wq[i]);
4872 }
4873
4874 err = ext4_init_pageio();
4875 if (err)
4876 return err;
4877 err = ext4_init_system_zone();
4878 if (err)
4879 goto out7;
4880 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4881 if (!ext4_kset)
4882 goto out6;
4883 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4884 if (!ext4_proc_root)
4885 goto out5;
4886
4887 err = ext4_init_feat_adverts();
4888 if (err)
4889 goto out4;
4890
4891 err = ext4_init_mballoc();
4892 if (err)
4893 goto out3;
4894
4895 err = ext4_init_xattr();
4896 if (err)
4897 goto out2;
4898 err = init_inodecache();
4899 if (err)
4900 goto out1;
4901 register_as_ext2();
4902 register_as_ext3();
4903 err = register_filesystem(&ext4_fs_type);
4904 if (err)
4905 goto out;
4906
4907 ext4_li_info = NULL;
4908 mutex_init(&ext4_li_mtx);
4909 return 0;
4910 out:
4911 unregister_as_ext2();
4912 unregister_as_ext3();
4913 destroy_inodecache();
4914 out1:
4915 ext4_exit_xattr();
4916 out2:
4917 ext4_exit_mballoc();
4918 out3:
4919 ext4_exit_feat_adverts();
4920 out4:
4921 remove_proc_entry("fs/ext4", NULL);
4922 out5:
4923 kset_unregister(ext4_kset);
4924 out6:
4925 ext4_exit_system_zone();
4926 out7:
4927 ext4_exit_pageio();
4928 return err;
4929 }
4930
ext4_exit_fs(void)4931 static void __exit ext4_exit_fs(void)
4932 {
4933 ext4_destroy_lazyinit_thread();
4934 unregister_as_ext2();
4935 unregister_as_ext3();
4936 unregister_filesystem(&ext4_fs_type);
4937 destroy_inodecache();
4938 ext4_exit_xattr();
4939 ext4_exit_mballoc();
4940 ext4_exit_feat_adverts();
4941 remove_proc_entry("fs/ext4", NULL);
4942 kset_unregister(ext4_kset);
4943 ext4_exit_system_zone();
4944 ext4_exit_pageio();
4945 }
4946
4947 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4948 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4949 MODULE_LICENSE("GPL");
4950 module_init(ext4_init_fs)
4951 module_exit(ext4_exit_fs)
4952